*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is not running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 #
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
380 #
381 # Number of bits in a short or unsigned short for the target machine.
382 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
388 # machine.
389 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
390
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394
395 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
396 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
397 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
398 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
399 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
400 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
401
402 # For most targets, a pointer on the target and its representation as an
403 # address in GDB have the same size and "look the same". For such a
404 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
405 # / addr_bit will be set from it.
406 #
407 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
408 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
409 #
410 # ptr_bit is the size of a pointer on the target
411 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
412 # addr_bit is the size of a target address as represented in gdb
413 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
414 # Number of bits in a BFD_VMA for the target object file format.
415 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
416 #
417 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
418 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
419 #
420 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
421 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
422 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
423 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 # serious shakedown.
427 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
428 #
429 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
430 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
431 #
432 v:=:int:num_regs:::0:-1
433 # This macro gives the number of pseudo-registers that live in the
434 # register namespace but do not get fetched or stored on the target.
435 # These pseudo-registers may be aliases for other registers,
436 # combinations of other registers, or they may be computed by GDB.
437 v:=:int:num_pseudo_regs:::0:0::0
438
439 # GDB's standard (or well known) register numbers. These can map onto
440 # a real register or a pseudo (computed) register or not be defined at
441 # all (-1).
442 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
443 v:=:int:sp_regnum:::-1:-1::0
444 v:=:int:pc_regnum:::-1:-1::0
445 v:=:int:ps_regnum:::-1:-1::0
446 v:=:int:fp0_regnum:::0:-1::0
447 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
448 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
450 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
451 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
452 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
453 # Convert from an sdb register number to an internal gdb register number.
454 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
455 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
456 f:=:const char *:register_name:int regnr:regnr
457
458 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
459 M::struct type *:register_type:int reg_nr:reg_nr
460 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
461 # register offsets computed using just REGISTER_TYPE, this can be
462 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
463 # function with predicate has a valid (callable) initial value. As a
464 # consequence, even when the predicate is false, the corresponding
465 # function works. This simplifies the migration process - old code,
466 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
467 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
471 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # DEPRECATED_FP_REGNUM.
473 v:=:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 # DEPRECATED_REGISTER_SIZE can be deleted.
478 v:=:int:deprecated_register_size
479 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
480 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
481
482 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
483 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 # MAP a GDB RAW register number onto a simulator register number. See
486 # also include/...-sim.h.
487 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
488 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
489 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
493 #
494 v:=:int:believe_pcc_promotion:::::::
495 #
496 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
498 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
499 # Construct a value representing the contents of register REGNUM in
500 # frame FRAME, interpreted as type TYPE. The routine needs to
501 # allocate and return a struct value with all value attributes
502 # (but not the value contents) filled in.
503 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
504 #
505 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
506 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
507 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
508 #
509 # NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
510 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
511
512 # It has been suggested that this, well actually its predecessor,
513 # should take the type/value of the function to be called and not the
514 # return type. This is left as an exercise for the reader.
515
516 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
517 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
518 # (via legacy_return_value), when a small struct is involved.
519
520 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
521
522 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
523 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
524 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
525 # RETURN_VALUE.
526
527 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
528 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
529 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
530
531 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
532 # ABI suitable for the implementation of a robust extract
533 # struct-convention return-value address method (the sparc saves the
534 # address in the callers frame). All the other cases so far examined,
535 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
536 # erreneous - the code was incorrectly assuming that the return-value
537 # address, stored in a register, was preserved across the entire
538 # function call.
539
540 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
541 # the ABIs that are still to be analyzed - perhaps this should simply
542 # be deleted. The commented out extract_returned_value_address method
543 # is provided as a starting point for the 32-bit SPARC. It, or
544 # something like it, along with changes to both infcmd.c and stack.c
545 # will be needed for that case to work. NB: It is passed the callers
546 # frame since it is only after the callee has returned that this
547 # function is used.
548
549 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
550 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
551
552 #
553 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
554 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
555 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
556 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
557 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
558 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
559 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
560
561 # A function can be addressed by either it's "pointer" (possibly a
562 # descriptor address) or "entry point" (first executable instruction).
563 # The method "convert_from_func_ptr_addr" converting the former to the
564 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
565 # a simplified subset of that functionality - the function's address
566 # corresponds to the "function pointer" and the function's start
567 # corresponds to the "function entry point" - and hence is redundant.
568
569 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
570
571 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
572
573 # Fetch the target specific address used to represent a load module.
574 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
575 #
576 v:=:CORE_ADDR:frame_args_skip:::0:::0
577 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
578 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
579 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
580 # frame-base. Enable frame-base before frame-unwind.
581 F:=:int:frame_num_args:struct frame_info *frame:frame
582 #
583 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
584 # to frame_align and the requirement that methods such as
585 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
586 # alignment.
587 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
588 M::CORE_ADDR:frame_align:CORE_ADDR address:address
589 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
590 # stabs_argument_has_addr.
591 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
592 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
593 v:=:int:frame_red_zone_size
594 #
595 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
596 # On some machines there are bits in addresses which are not really
597 # part of the address, but are used by the kernel, the hardware, etc.
598 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
599 # we get a "real" address such as one would find in a symbol table.
600 # This is used only for addresses of instructions, and even then I'm
601 # not sure it's used in all contexts. It exists to deal with there
602 # being a few stray bits in the PC which would mislead us, not as some
603 # sort of generic thing to handle alignment or segmentation (it's
604 # possible it should be in TARGET_READ_PC instead).
605 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
606 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
607 # ADDR_BITS_REMOVE.
608 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
609 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
610 # the target needs software single step. An ISA method to implement it.
611 #
612 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
613 # using the breakpoint system instead of blatting memory directly (as with rs6000).
614 #
615 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
616 # single step. If not, then implement single step using breakpoints.
617 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
618 # Return non-zero if the processor is executing a delay slot and a
619 # further single-step is needed before the instruction finishes.
620 M::int:single_step_through_delay:struct frame_info *frame:frame
621 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
622 # disassembler. Perhaps objdump can handle it?
623 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
624 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
625
626
627 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
628 # evaluates non-zero, this is the address where the debugger will place
629 # a step-resume breakpoint to get us past the dynamic linker.
630 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
631 # Some systems also have trampoline code for returning from shared libs.
632 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
633
634 # A target might have problems with watchpoints as soon as the stack
635 # frame of the current function has been destroyed. This mostly happens
636 # as the first action in a funtion's epilogue. in_function_epilogue_p()
637 # is defined to return a non-zero value if either the given addr is one
638 # instruction after the stack destroying instruction up to the trailing
639 # return instruction or if we can figure out that the stack frame has
640 # already been invalidated regardless of the value of addr. Targets
641 # which don't suffer from that problem could just let this functionality
642 # untouched.
643 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
644 # Given a vector of command-line arguments, return a newly allocated
645 # string which, when passed to the create_inferior function, will be
646 # parsed (on Unix systems, by the shell) to yield the same vector.
647 # This function should call error() if the argument vector is not
648 # representable for this target or if this target does not support
649 # command-line arguments.
650 # ARGC is the number of elements in the vector.
651 # ARGV is an array of strings, one per argument.
652 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
653 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
654 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
655 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
656 v:=:int:cannot_step_breakpoint:::0:0::0
657 v:=:int:have_nonsteppable_watchpoint:::0:0::0
658 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
659 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
660 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
661 # Is a register in a group
662 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
663 # Fetch the pointer to the ith function argument.
664 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
665
666 # Return the appropriate register set for a core file section with
667 # name SECT_NAME and size SECT_SIZE.
668 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
669
670 # If the elements of C++ vtables are in-place function descriptors rather
671 # than normal function pointers (which may point to code or a descriptor),
672 # set this to one.
673 v::int:vtable_function_descriptors:::0:0::0
674
675 # Set if the least significant bit of the delta is used instead of the least
676 # significant bit of the pfn for pointers to virtual member functions.
677 v::int:vbit_in_delta:::0:0::0
678 EOF
679 }
680
681 #
682 # The .log file
683 #
684 exec > new-gdbarch.log
685 function_list | while do_read
686 do
687 cat <<EOF
688 ${class} ${returntype} ${function} ($formal)
689 EOF
690 for r in ${read}
691 do
692 eval echo \"\ \ \ \ ${r}=\${${r}}\"
693 done
694 if class_is_predicate_p && fallback_default_p
695 then
696 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
697 kill $$
698 exit 1
699 fi
700 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
701 then
702 echo "Error: postdefault is useless when invalid_p=0" 1>&2
703 kill $$
704 exit 1
705 fi
706 if class_is_multiarch_p
707 then
708 if class_is_predicate_p ; then :
709 elif test "x${predefault}" = "x"
710 then
711 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
712 kill $$
713 exit 1
714 fi
715 fi
716 echo ""
717 done
718
719 exec 1>&2
720 compare_new gdbarch.log
721
722
723 copyright ()
724 {
725 cat <<EOF
726 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
727
728 /* Dynamic architecture support for GDB, the GNU debugger.
729
730 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
731 Free Software Foundation, Inc.
732
733 This file is part of GDB.
734
735 This program is free software; you can redistribute it and/or modify
736 it under the terms of the GNU General Public License as published by
737 the Free Software Foundation; either version 2 of the License, or
738 (at your option) any later version.
739
740 This program is distributed in the hope that it will be useful,
741 but WITHOUT ANY WARRANTY; without even the implied warranty of
742 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
743 GNU General Public License for more details.
744
745 You should have received a copy of the GNU General Public License
746 along with this program; if not, write to the Free Software
747 Foundation, Inc., 51 Franklin Street, Fifth Floor,
748 Boston, MA 02110-1301, USA. */
749
750 /* This file was created with the aid of \`\`gdbarch.sh''.
751
752 The Bourne shell script \`\`gdbarch.sh'' creates the files
753 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
754 against the existing \`\`gdbarch.[hc]''. Any differences found
755 being reported.
756
757 If editing this file, please also run gdbarch.sh and merge any
758 changes into that script. Conversely, when making sweeping changes
759 to this file, modifying gdbarch.sh and using its output may prove
760 easier. */
761
762 EOF
763 }
764
765 #
766 # The .h file
767 #
768
769 exec > new-gdbarch.h
770 copyright
771 cat <<EOF
772 #ifndef GDBARCH_H
773 #define GDBARCH_H
774
775 struct floatformat;
776 struct ui_file;
777 struct frame_info;
778 struct value;
779 struct objfile;
780 struct minimal_symbol;
781 struct regcache;
782 struct reggroup;
783 struct regset;
784 struct disassemble_info;
785 struct target_ops;
786 struct obstack;
787 struct bp_target_info;
788 struct target_desc;
789
790 extern struct gdbarch *current_gdbarch;
791 EOF
792
793 # function typedef's
794 printf "\n"
795 printf "\n"
796 printf "/* The following are pre-initialized by GDBARCH. */\n"
797 function_list | while do_read
798 do
799 if class_is_info_p
800 then
801 printf "\n"
802 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
803 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
804 if test -n "${macro}"
805 then
806 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
807 printf "#error \"Non multi-arch definition of ${macro}\"\n"
808 printf "#endif\n"
809 printf "#if !defined (${macro})\n"
810 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
811 printf "#endif\n"
812 fi
813 fi
814 done
815
816 # function typedef's
817 printf "\n"
818 printf "\n"
819 printf "/* The following are initialized by the target dependent code. */\n"
820 function_list | while do_read
821 do
822 if [ -n "${comment}" ]
823 then
824 echo "${comment}" | sed \
825 -e '2 s,#,/*,' \
826 -e '3,$ s,#, ,' \
827 -e '$ s,$, */,'
828 fi
829
830 if class_is_predicate_p
831 then
832 if test -n "${macro}"
833 then
834 printf "\n"
835 printf "#if defined (${macro})\n"
836 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
837 printf "#if !defined (${macro}_P)\n"
838 printf "#define ${macro}_P() (1)\n"
839 printf "#endif\n"
840 printf "#endif\n"
841 fi
842 printf "\n"
843 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
844 if test -n "${macro}"
845 then
846 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
847 printf "#error \"Non multi-arch definition of ${macro}\"\n"
848 printf "#endif\n"
849 printf "#if !defined (${macro}_P)\n"
850 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
851 printf "#endif\n"
852 fi
853 fi
854 if class_is_variable_p
855 then
856 printf "\n"
857 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
858 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
859 if test -n "${macro}"
860 then
861 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
862 printf "#error \"Non multi-arch definition of ${macro}\"\n"
863 printf "#endif\n"
864 printf "#if !defined (${macro})\n"
865 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
866 printf "#endif\n"
867 fi
868 fi
869 if class_is_function_p
870 then
871 printf "\n"
872 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
873 then
874 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
875 elif class_is_multiarch_p
876 then
877 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
878 else
879 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
880 fi
881 if [ "x${formal}" = "xvoid" ]
882 then
883 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
884 else
885 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
886 fi
887 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
888 if test -n "${macro}"
889 then
890 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
891 printf "#error \"Non multi-arch definition of ${macro}\"\n"
892 printf "#endif\n"
893 if [ "x${actual}" = "x" ]
894 then
895 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
896 elif [ "x${actual}" = "x-" ]
897 then
898 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
899 else
900 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
901 fi
902 printf "#if !defined (${macro})\n"
903 if [ "x${actual}" = "x" ]
904 then
905 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
906 elif [ "x${actual}" = "x-" ]
907 then
908 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
909 else
910 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
911 fi
912 printf "#endif\n"
913 fi
914 fi
915 done
916
917 # close it off
918 cat <<EOF
919
920 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
921
922
923 /* Mechanism for co-ordinating the selection of a specific
924 architecture.
925
926 GDB targets (*-tdep.c) can register an interest in a specific
927 architecture. Other GDB components can register a need to maintain
928 per-architecture data.
929
930 The mechanisms below ensures that there is only a loose connection
931 between the set-architecture command and the various GDB
932 components. Each component can independently register their need
933 to maintain architecture specific data with gdbarch.
934
935 Pragmatics:
936
937 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
938 didn't scale.
939
940 The more traditional mega-struct containing architecture specific
941 data for all the various GDB components was also considered. Since
942 GDB is built from a variable number of (fairly independent)
943 components it was determined that the global aproach was not
944 applicable. */
945
946
947 /* Register a new architectural family with GDB.
948
949 Register support for the specified ARCHITECTURE with GDB. When
950 gdbarch determines that the specified architecture has been
951 selected, the corresponding INIT function is called.
952
953 --
954
955 The INIT function takes two parameters: INFO which contains the
956 information available to gdbarch about the (possibly new)
957 architecture; ARCHES which is a list of the previously created
958 \`\`struct gdbarch'' for this architecture.
959
960 The INFO parameter is, as far as possible, be pre-initialized with
961 information obtained from INFO.ABFD or the global defaults.
962
963 The ARCHES parameter is a linked list (sorted most recently used)
964 of all the previously created architures for this architecture
965 family. The (possibly NULL) ARCHES->gdbarch can used to access
966 values from the previously selected architecture for this
967 architecture family. The global \`\`current_gdbarch'' shall not be
968 used.
969
970 The INIT function shall return any of: NULL - indicating that it
971 doesn't recognize the selected architecture; an existing \`\`struct
972 gdbarch'' from the ARCHES list - indicating that the new
973 architecture is just a synonym for an earlier architecture (see
974 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
975 - that describes the selected architecture (see gdbarch_alloc()).
976
977 The DUMP_TDEP function shall print out all target specific values.
978 Care should be taken to ensure that the function works in both the
979 multi-arch and non- multi-arch cases. */
980
981 struct gdbarch_list
982 {
983 struct gdbarch *gdbarch;
984 struct gdbarch_list *next;
985 };
986
987 struct gdbarch_info
988 {
989 /* Use default: NULL (ZERO). */
990 const struct bfd_arch_info *bfd_arch_info;
991
992 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
993 int byte_order;
994
995 /* Use default: NULL (ZERO). */
996 bfd *abfd;
997
998 /* Use default: NULL (ZERO). */
999 struct gdbarch_tdep_info *tdep_info;
1000
1001 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1002 enum gdb_osabi osabi;
1003
1004 /* Use default: NULL (ZERO). */
1005 const struct target_desc *target_desc;
1006 };
1007
1008 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1009 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1010
1011 /* DEPRECATED - use gdbarch_register() */
1012 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1013
1014 extern void gdbarch_register (enum bfd_architecture architecture,
1015 gdbarch_init_ftype *,
1016 gdbarch_dump_tdep_ftype *);
1017
1018
1019 /* Return a freshly allocated, NULL terminated, array of the valid
1020 architecture names. Since architectures are registered during the
1021 _initialize phase this function only returns useful information
1022 once initialization has been completed. */
1023
1024 extern const char **gdbarch_printable_names (void);
1025
1026
1027 /* Helper function. Search the list of ARCHES for a GDBARCH that
1028 matches the information provided by INFO. */
1029
1030 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1031
1032
1033 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1034 basic initialization using values obtained from the INFO and TDEP
1035 parameters. set_gdbarch_*() functions are called to complete the
1036 initialization of the object. */
1037
1038 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1039
1040
1041 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1042 It is assumed that the caller freeds the \`\`struct
1043 gdbarch_tdep''. */
1044
1045 extern void gdbarch_free (struct gdbarch *);
1046
1047
1048 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1049 obstack. The memory is freed when the corresponding architecture
1050 is also freed. */
1051
1052 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1053 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1054 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1055
1056
1057 /* Helper function. Force an update of the current architecture.
1058
1059 The actual architecture selected is determined by INFO, \`\`(gdb) set
1060 architecture'' et.al., the existing architecture and BFD's default
1061 architecture. INFO should be initialized to zero and then selected
1062 fields should be updated.
1063
1064 Returns non-zero if the update succeeds */
1065
1066 extern int gdbarch_update_p (struct gdbarch_info info);
1067
1068
1069 /* Helper function. Find an architecture matching info.
1070
1071 INFO should be initialized using gdbarch_info_init, relevant fields
1072 set, and then finished using gdbarch_info_fill.
1073
1074 Returns the corresponding architecture, or NULL if no matching
1075 architecture was found. "current_gdbarch" is not updated. */
1076
1077 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1078
1079
1080 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1081
1082 FIXME: kettenis/20031124: Of the functions that follow, only
1083 gdbarch_from_bfd is supposed to survive. The others will
1084 dissappear since in the future GDB will (hopefully) be truly
1085 multi-arch. However, for now we're still stuck with the concept of
1086 a single active architecture. */
1087
1088 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1089
1090
1091 /* Register per-architecture data-pointer.
1092
1093 Reserve space for a per-architecture data-pointer. An identifier
1094 for the reserved data-pointer is returned. That identifer should
1095 be saved in a local static variable.
1096
1097 Memory for the per-architecture data shall be allocated using
1098 gdbarch_obstack_zalloc. That memory will be deleted when the
1099 corresponding architecture object is deleted.
1100
1101 When a previously created architecture is re-selected, the
1102 per-architecture data-pointer for that previous architecture is
1103 restored. INIT() is not re-called.
1104
1105 Multiple registrarants for any architecture are allowed (and
1106 strongly encouraged). */
1107
1108 struct gdbarch_data;
1109
1110 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1111 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1112 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1113 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1114 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1115 struct gdbarch_data *data,
1116 void *pointer);
1117
1118 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1119
1120
1121
1122 /* Register per-architecture memory region.
1123
1124 Provide a memory-region swap mechanism. Per-architecture memory
1125 region are created. These memory regions are swapped whenever the
1126 architecture is changed. For a new architecture, the memory region
1127 is initialized with zero (0) and the INIT function is called.
1128
1129 Memory regions are swapped / initialized in the order that they are
1130 registered. NULL DATA and/or INIT values can be specified.
1131
1132 New code should use gdbarch_data_register_*(). */
1133
1134 typedef void (gdbarch_swap_ftype) (void);
1135 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1136 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1137
1138
1139
1140 /* Set the dynamic target-system-dependent parameters (architecture,
1141 byte-order, ...) using information found in the BFD */
1142
1143 extern void set_gdbarch_from_file (bfd *);
1144
1145
1146 /* Initialize the current architecture to the "first" one we find on
1147 our list. */
1148
1149 extern void initialize_current_architecture (void);
1150
1151 /* gdbarch trace variable */
1152 extern int gdbarch_debug;
1153
1154 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1155
1156 #endif
1157 EOF
1158 exec 1>&2
1159 #../move-if-change new-gdbarch.h gdbarch.h
1160 compare_new gdbarch.h
1161
1162
1163 #
1164 # C file
1165 #
1166
1167 exec > new-gdbarch.c
1168 copyright
1169 cat <<EOF
1170
1171 #include "defs.h"
1172 #include "arch-utils.h"
1173
1174 #include "gdbcmd.h"
1175 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1176 #include "symcat.h"
1177
1178 #include "floatformat.h"
1179
1180 #include "gdb_assert.h"
1181 #include "gdb_string.h"
1182 #include "gdb-events.h"
1183 #include "reggroups.h"
1184 #include "osabi.h"
1185 #include "gdb_obstack.h"
1186
1187 /* Static function declarations */
1188
1189 static void alloc_gdbarch_data (struct gdbarch *);
1190
1191 /* Non-zero if we want to trace architecture code. */
1192
1193 #ifndef GDBARCH_DEBUG
1194 #define GDBARCH_DEBUG 0
1195 #endif
1196 int gdbarch_debug = GDBARCH_DEBUG;
1197 static void
1198 show_gdbarch_debug (struct ui_file *file, int from_tty,
1199 struct cmd_list_element *c, const char *value)
1200 {
1201 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1202 }
1203
1204 static const char *
1205 pformat (const struct floatformat *format)
1206 {
1207 if (format == NULL)
1208 return "(null)";
1209 else
1210 return format->name;
1211 }
1212
1213 EOF
1214
1215 # gdbarch open the gdbarch object
1216 printf "\n"
1217 printf "/* Maintain the struct gdbarch object */\n"
1218 printf "\n"
1219 printf "struct gdbarch\n"
1220 printf "{\n"
1221 printf " /* Has this architecture been fully initialized? */\n"
1222 printf " int initialized_p;\n"
1223 printf "\n"
1224 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1225 printf " struct obstack *obstack;\n"
1226 printf "\n"
1227 printf " /* basic architectural information */\n"
1228 function_list | while do_read
1229 do
1230 if class_is_info_p
1231 then
1232 printf " ${returntype} ${function};\n"
1233 fi
1234 done
1235 printf "\n"
1236 printf " /* target specific vector. */\n"
1237 printf " struct gdbarch_tdep *tdep;\n"
1238 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1239 printf "\n"
1240 printf " /* per-architecture data-pointers */\n"
1241 printf " unsigned nr_data;\n"
1242 printf " void **data;\n"
1243 printf "\n"
1244 printf " /* per-architecture swap-regions */\n"
1245 printf " struct gdbarch_swap *swap;\n"
1246 printf "\n"
1247 cat <<EOF
1248 /* Multi-arch values.
1249
1250 When extending this structure you must:
1251
1252 Add the field below.
1253
1254 Declare set/get functions and define the corresponding
1255 macro in gdbarch.h.
1256
1257 gdbarch_alloc(): If zero/NULL is not a suitable default,
1258 initialize the new field.
1259
1260 verify_gdbarch(): Confirm that the target updated the field
1261 correctly.
1262
1263 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1264 field is dumped out
1265
1266 \`\`startup_gdbarch()'': Append an initial value to the static
1267 variable (base values on the host's c-type system).
1268
1269 get_gdbarch(): Implement the set/get functions (probably using
1270 the macro's as shortcuts).
1271
1272 */
1273
1274 EOF
1275 function_list | while do_read
1276 do
1277 if class_is_variable_p
1278 then
1279 printf " ${returntype} ${function};\n"
1280 elif class_is_function_p
1281 then
1282 printf " gdbarch_${function}_ftype *${function};\n"
1283 fi
1284 done
1285 printf "};\n"
1286
1287 # A pre-initialized vector
1288 printf "\n"
1289 printf "\n"
1290 cat <<EOF
1291 /* The default architecture uses host values (for want of a better
1292 choice). */
1293 EOF
1294 printf "\n"
1295 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1296 printf "\n"
1297 printf "struct gdbarch startup_gdbarch =\n"
1298 printf "{\n"
1299 printf " 1, /* Always initialized. */\n"
1300 printf " NULL, /* The obstack. */\n"
1301 printf " /* basic architecture information */\n"
1302 function_list | while do_read
1303 do
1304 if class_is_info_p
1305 then
1306 printf " ${staticdefault}, /* ${function} */\n"
1307 fi
1308 done
1309 cat <<EOF
1310 /* target specific vector and its dump routine */
1311 NULL, NULL,
1312 /*per-architecture data-pointers and swap regions */
1313 0, NULL, NULL,
1314 /* Multi-arch values */
1315 EOF
1316 function_list | while do_read
1317 do
1318 if class_is_function_p || class_is_variable_p
1319 then
1320 printf " ${staticdefault}, /* ${function} */\n"
1321 fi
1322 done
1323 cat <<EOF
1324 /* startup_gdbarch() */
1325 };
1326
1327 struct gdbarch *current_gdbarch = &startup_gdbarch;
1328 EOF
1329
1330 # Create a new gdbarch struct
1331 cat <<EOF
1332
1333 /* Create a new \`\`struct gdbarch'' based on information provided by
1334 \`\`struct gdbarch_info''. */
1335 EOF
1336 printf "\n"
1337 cat <<EOF
1338 struct gdbarch *
1339 gdbarch_alloc (const struct gdbarch_info *info,
1340 struct gdbarch_tdep *tdep)
1341 {
1342 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1343 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1344 the current local architecture and not the previous global
1345 architecture. This ensures that the new architectures initial
1346 values are not influenced by the previous architecture. Once
1347 everything is parameterised with gdbarch, this will go away. */
1348 struct gdbarch *current_gdbarch;
1349
1350 /* Create an obstack for allocating all the per-architecture memory,
1351 then use that to allocate the architecture vector. */
1352 struct obstack *obstack = XMALLOC (struct obstack);
1353 obstack_init (obstack);
1354 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1355 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1356 current_gdbarch->obstack = obstack;
1357
1358 alloc_gdbarch_data (current_gdbarch);
1359
1360 current_gdbarch->tdep = tdep;
1361 EOF
1362 printf "\n"
1363 function_list | while do_read
1364 do
1365 if class_is_info_p
1366 then
1367 printf " current_gdbarch->${function} = info->${function};\n"
1368 fi
1369 done
1370 printf "\n"
1371 printf " /* Force the explicit initialization of these. */\n"
1372 function_list | while do_read
1373 do
1374 if class_is_function_p || class_is_variable_p
1375 then
1376 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1377 then
1378 printf " current_gdbarch->${function} = ${predefault};\n"
1379 fi
1380 fi
1381 done
1382 cat <<EOF
1383 /* gdbarch_alloc() */
1384
1385 return current_gdbarch;
1386 }
1387 EOF
1388
1389 # Free a gdbarch struct.
1390 printf "\n"
1391 printf "\n"
1392 cat <<EOF
1393 /* Allocate extra space using the per-architecture obstack. */
1394
1395 void *
1396 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1397 {
1398 void *data = obstack_alloc (arch->obstack, size);
1399 memset (data, 0, size);
1400 return data;
1401 }
1402
1403
1404 /* Free a gdbarch struct. This should never happen in normal
1405 operation --- once you've created a gdbarch, you keep it around.
1406 However, if an architecture's init function encounters an error
1407 building the structure, it may need to clean up a partially
1408 constructed gdbarch. */
1409
1410 void
1411 gdbarch_free (struct gdbarch *arch)
1412 {
1413 struct obstack *obstack;
1414 gdb_assert (arch != NULL);
1415 gdb_assert (!arch->initialized_p);
1416 obstack = arch->obstack;
1417 obstack_free (obstack, 0); /* Includes the ARCH. */
1418 xfree (obstack);
1419 }
1420 EOF
1421
1422 # verify a new architecture
1423 cat <<EOF
1424
1425
1426 /* Ensure that all values in a GDBARCH are reasonable. */
1427
1428 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1429 just happens to match the global variable \`\`current_gdbarch''. That
1430 way macros refering to that variable get the local and not the global
1431 version - ulgh. Once everything is parameterised with gdbarch, this
1432 will go away. */
1433
1434 static void
1435 verify_gdbarch (struct gdbarch *current_gdbarch)
1436 {
1437 struct ui_file *log;
1438 struct cleanup *cleanups;
1439 long dummy;
1440 char *buf;
1441 log = mem_fileopen ();
1442 cleanups = make_cleanup_ui_file_delete (log);
1443 /* fundamental */
1444 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1445 fprintf_unfiltered (log, "\n\tbyte-order");
1446 if (current_gdbarch->bfd_arch_info == NULL)
1447 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1448 /* Check those that need to be defined for the given multi-arch level. */
1449 EOF
1450 function_list | while do_read
1451 do
1452 if class_is_function_p || class_is_variable_p
1453 then
1454 if [ "x${invalid_p}" = "x0" ]
1455 then
1456 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1457 elif class_is_predicate_p
1458 then
1459 printf " /* Skip verify of ${function}, has predicate */\n"
1460 # FIXME: See do_read for potential simplification
1461 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1462 then
1463 printf " if (${invalid_p})\n"
1464 printf " current_gdbarch->${function} = ${postdefault};\n"
1465 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1466 then
1467 printf " if (current_gdbarch->${function} == ${predefault})\n"
1468 printf " current_gdbarch->${function} = ${postdefault};\n"
1469 elif [ -n "${postdefault}" ]
1470 then
1471 printf " if (current_gdbarch->${function} == 0)\n"
1472 printf " current_gdbarch->${function} = ${postdefault};\n"
1473 elif [ -n "${invalid_p}" ]
1474 then
1475 printf " if (${invalid_p})\n"
1476 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1477 elif [ -n "${predefault}" ]
1478 then
1479 printf " if (current_gdbarch->${function} == ${predefault})\n"
1480 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1481 fi
1482 fi
1483 done
1484 cat <<EOF
1485 buf = ui_file_xstrdup (log, &dummy);
1486 make_cleanup (xfree, buf);
1487 if (strlen (buf) > 0)
1488 internal_error (__FILE__, __LINE__,
1489 _("verify_gdbarch: the following are invalid ...%s"),
1490 buf);
1491 do_cleanups (cleanups);
1492 }
1493 EOF
1494
1495 # dump the structure
1496 printf "\n"
1497 printf "\n"
1498 cat <<EOF
1499 /* Print out the details of the current architecture. */
1500
1501 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1502 just happens to match the global variable \`\`current_gdbarch''. That
1503 way macros refering to that variable get the local and not the global
1504 version - ulgh. Once everything is parameterised with gdbarch, this
1505 will go away. */
1506
1507 void
1508 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1509 {
1510 const char *gdb_xm_file = "<not-defined>";
1511 const char *gdb_nm_file = "<not-defined>";
1512 const char *gdb_tm_file = "<not-defined>";
1513 #if defined (GDB_XM_FILE)
1514 gdb_xm_file = GDB_XM_FILE;
1515 #endif
1516 fprintf_unfiltered (file,
1517 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1518 gdb_xm_file);
1519 #if defined (GDB_NM_FILE)
1520 gdb_nm_file = GDB_NM_FILE;
1521 #endif
1522 fprintf_unfiltered (file,
1523 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1524 gdb_nm_file);
1525 #if defined (GDB_TM_FILE)
1526 gdb_tm_file = GDB_TM_FILE;
1527 #endif
1528 fprintf_unfiltered (file,
1529 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1530 gdb_tm_file);
1531 EOF
1532 function_list | sort -t: -k 4 | while do_read
1533 do
1534 # First the predicate
1535 if class_is_predicate_p
1536 then
1537 if test -n "${macro}"
1538 then
1539 printf "#ifdef ${macro}_P\n"
1540 printf " fprintf_unfiltered (file,\n"
1541 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1542 printf " \"${macro}_P()\",\n"
1543 printf " XSTRING (${macro}_P ()));\n"
1544 printf "#endif\n"
1545 fi
1546 printf " fprintf_unfiltered (file,\n"
1547 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1548 printf " gdbarch_${function}_p (current_gdbarch));\n"
1549 fi
1550 # Print the macro definition.
1551 if test -n "${macro}"
1552 then
1553 printf "#ifdef ${macro}\n"
1554 if class_is_function_p
1555 then
1556 printf " fprintf_unfiltered (file,\n"
1557 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1558 printf " \"${macro}(${actual})\",\n"
1559 printf " XSTRING (${macro} (${actual})));\n"
1560 else
1561 printf " fprintf_unfiltered (file,\n"
1562 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1563 printf " XSTRING (${macro}));\n"
1564 fi
1565 printf "#endif\n"
1566 fi
1567 # Print the corresponding value.
1568 if class_is_function_p
1569 then
1570 printf " fprintf_unfiltered (file,\n"
1571 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1572 printf " (long) current_gdbarch->${function});\n"
1573 else
1574 # It is a variable
1575 case "${print}:${returntype}" in
1576 :CORE_ADDR )
1577 fmt="0x%s"
1578 print="paddr_nz (current_gdbarch->${function})"
1579 ;;
1580 :* )
1581 fmt="%s"
1582 print="paddr_d (current_gdbarch->${function})"
1583 ;;
1584 * )
1585 fmt="%s"
1586 ;;
1587 esac
1588 printf " fprintf_unfiltered (file,\n"
1589 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1590 printf " ${print});\n"
1591 fi
1592 done
1593 cat <<EOF
1594 if (current_gdbarch->dump_tdep != NULL)
1595 current_gdbarch->dump_tdep (current_gdbarch, file);
1596 }
1597 EOF
1598
1599
1600 # GET/SET
1601 printf "\n"
1602 cat <<EOF
1603 struct gdbarch_tdep *
1604 gdbarch_tdep (struct gdbarch *gdbarch)
1605 {
1606 if (gdbarch_debug >= 2)
1607 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1608 return gdbarch->tdep;
1609 }
1610 EOF
1611 printf "\n"
1612 function_list | while do_read
1613 do
1614 if class_is_predicate_p
1615 then
1616 printf "\n"
1617 printf "int\n"
1618 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1619 printf "{\n"
1620 printf " gdb_assert (gdbarch != NULL);\n"
1621 printf " return ${predicate};\n"
1622 printf "}\n"
1623 fi
1624 if class_is_function_p
1625 then
1626 printf "\n"
1627 printf "${returntype}\n"
1628 if [ "x${formal}" = "xvoid" ]
1629 then
1630 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1631 else
1632 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1633 fi
1634 printf "{\n"
1635 printf " gdb_assert (gdbarch != NULL);\n"
1636 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1637 if class_is_predicate_p && test -n "${predefault}"
1638 then
1639 # Allow a call to a function with a predicate.
1640 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1641 fi
1642 printf " if (gdbarch_debug >= 2)\n"
1643 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1644 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1645 then
1646 if class_is_multiarch_p
1647 then
1648 params="gdbarch"
1649 else
1650 params=""
1651 fi
1652 else
1653 if class_is_multiarch_p
1654 then
1655 params="gdbarch, ${actual}"
1656 else
1657 params="${actual}"
1658 fi
1659 fi
1660 if [ "x${returntype}" = "xvoid" ]
1661 then
1662 printf " gdbarch->${function} (${params});\n"
1663 else
1664 printf " return gdbarch->${function} (${params});\n"
1665 fi
1666 printf "}\n"
1667 printf "\n"
1668 printf "void\n"
1669 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1670 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1671 printf "{\n"
1672 printf " gdbarch->${function} = ${function};\n"
1673 printf "}\n"
1674 elif class_is_variable_p
1675 then
1676 printf "\n"
1677 printf "${returntype}\n"
1678 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1679 printf "{\n"
1680 printf " gdb_assert (gdbarch != NULL);\n"
1681 if [ "x${invalid_p}" = "x0" ]
1682 then
1683 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1684 elif [ -n "${invalid_p}" ]
1685 then
1686 printf " /* Check variable is valid. */\n"
1687 printf " gdb_assert (!(${invalid_p}));\n"
1688 elif [ -n "${predefault}" ]
1689 then
1690 printf " /* Check variable changed from pre-default. */\n"
1691 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1692 fi
1693 printf " if (gdbarch_debug >= 2)\n"
1694 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1695 printf " return gdbarch->${function};\n"
1696 printf "}\n"
1697 printf "\n"
1698 printf "void\n"
1699 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1700 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1701 printf "{\n"
1702 printf " gdbarch->${function} = ${function};\n"
1703 printf "}\n"
1704 elif class_is_info_p
1705 then
1706 printf "\n"
1707 printf "${returntype}\n"
1708 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1709 printf "{\n"
1710 printf " gdb_assert (gdbarch != NULL);\n"
1711 printf " if (gdbarch_debug >= 2)\n"
1712 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1713 printf " return gdbarch->${function};\n"
1714 printf "}\n"
1715 fi
1716 done
1717
1718 # All the trailing guff
1719 cat <<EOF
1720
1721
1722 /* Keep a registry of per-architecture data-pointers required by GDB
1723 modules. */
1724
1725 struct gdbarch_data
1726 {
1727 unsigned index;
1728 int init_p;
1729 gdbarch_data_pre_init_ftype *pre_init;
1730 gdbarch_data_post_init_ftype *post_init;
1731 };
1732
1733 struct gdbarch_data_registration
1734 {
1735 struct gdbarch_data *data;
1736 struct gdbarch_data_registration *next;
1737 };
1738
1739 struct gdbarch_data_registry
1740 {
1741 unsigned nr;
1742 struct gdbarch_data_registration *registrations;
1743 };
1744
1745 struct gdbarch_data_registry gdbarch_data_registry =
1746 {
1747 0, NULL,
1748 };
1749
1750 static struct gdbarch_data *
1751 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1752 gdbarch_data_post_init_ftype *post_init)
1753 {
1754 struct gdbarch_data_registration **curr;
1755 /* Append the new registraration. */
1756 for (curr = &gdbarch_data_registry.registrations;
1757 (*curr) != NULL;
1758 curr = &(*curr)->next);
1759 (*curr) = XMALLOC (struct gdbarch_data_registration);
1760 (*curr)->next = NULL;
1761 (*curr)->data = XMALLOC (struct gdbarch_data);
1762 (*curr)->data->index = gdbarch_data_registry.nr++;
1763 (*curr)->data->pre_init = pre_init;
1764 (*curr)->data->post_init = post_init;
1765 (*curr)->data->init_p = 1;
1766 return (*curr)->data;
1767 }
1768
1769 struct gdbarch_data *
1770 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1771 {
1772 return gdbarch_data_register (pre_init, NULL);
1773 }
1774
1775 struct gdbarch_data *
1776 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1777 {
1778 return gdbarch_data_register (NULL, post_init);
1779 }
1780
1781 /* Create/delete the gdbarch data vector. */
1782
1783 static void
1784 alloc_gdbarch_data (struct gdbarch *gdbarch)
1785 {
1786 gdb_assert (gdbarch->data == NULL);
1787 gdbarch->nr_data = gdbarch_data_registry.nr;
1788 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1789 }
1790
1791 /* Initialize the current value of the specified per-architecture
1792 data-pointer. */
1793
1794 void
1795 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1796 struct gdbarch_data *data,
1797 void *pointer)
1798 {
1799 gdb_assert (data->index < gdbarch->nr_data);
1800 gdb_assert (gdbarch->data[data->index] == NULL);
1801 gdb_assert (data->pre_init == NULL);
1802 gdbarch->data[data->index] = pointer;
1803 }
1804
1805 /* Return the current value of the specified per-architecture
1806 data-pointer. */
1807
1808 void *
1809 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1810 {
1811 gdb_assert (data->index < gdbarch->nr_data);
1812 if (gdbarch->data[data->index] == NULL)
1813 {
1814 /* The data-pointer isn't initialized, call init() to get a
1815 value. */
1816 if (data->pre_init != NULL)
1817 /* Mid architecture creation: pass just the obstack, and not
1818 the entire architecture, as that way it isn't possible for
1819 pre-init code to refer to undefined architecture
1820 fields. */
1821 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1822 else if (gdbarch->initialized_p
1823 && data->post_init != NULL)
1824 /* Post architecture creation: pass the entire architecture
1825 (as all fields are valid), but be careful to also detect
1826 recursive references. */
1827 {
1828 gdb_assert (data->init_p);
1829 data->init_p = 0;
1830 gdbarch->data[data->index] = data->post_init (gdbarch);
1831 data->init_p = 1;
1832 }
1833 else
1834 /* The architecture initialization hasn't completed - punt -
1835 hope that the caller knows what they are doing. Once
1836 deprecated_set_gdbarch_data has been initialized, this can be
1837 changed to an internal error. */
1838 return NULL;
1839 gdb_assert (gdbarch->data[data->index] != NULL);
1840 }
1841 return gdbarch->data[data->index];
1842 }
1843
1844
1845
1846 /* Keep a registry of swapped data required by GDB modules. */
1847
1848 struct gdbarch_swap
1849 {
1850 void *swap;
1851 struct gdbarch_swap_registration *source;
1852 struct gdbarch_swap *next;
1853 };
1854
1855 struct gdbarch_swap_registration
1856 {
1857 void *data;
1858 unsigned long sizeof_data;
1859 gdbarch_swap_ftype *init;
1860 struct gdbarch_swap_registration *next;
1861 };
1862
1863 struct gdbarch_swap_registry
1864 {
1865 int nr;
1866 struct gdbarch_swap_registration *registrations;
1867 };
1868
1869 struct gdbarch_swap_registry gdbarch_swap_registry =
1870 {
1871 0, NULL,
1872 };
1873
1874 void
1875 deprecated_register_gdbarch_swap (void *data,
1876 unsigned long sizeof_data,
1877 gdbarch_swap_ftype *init)
1878 {
1879 struct gdbarch_swap_registration **rego;
1880 for (rego = &gdbarch_swap_registry.registrations;
1881 (*rego) != NULL;
1882 rego = &(*rego)->next);
1883 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1884 (*rego)->next = NULL;
1885 (*rego)->init = init;
1886 (*rego)->data = data;
1887 (*rego)->sizeof_data = sizeof_data;
1888 }
1889
1890 static void
1891 current_gdbarch_swap_init_hack (void)
1892 {
1893 struct gdbarch_swap_registration *rego;
1894 struct gdbarch_swap **curr = &current_gdbarch->swap;
1895 for (rego = gdbarch_swap_registry.registrations;
1896 rego != NULL;
1897 rego = rego->next)
1898 {
1899 if (rego->data != NULL)
1900 {
1901 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1902 struct gdbarch_swap);
1903 (*curr)->source = rego;
1904 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1905 rego->sizeof_data);
1906 (*curr)->next = NULL;
1907 curr = &(*curr)->next;
1908 }
1909 if (rego->init != NULL)
1910 rego->init ();
1911 }
1912 }
1913
1914 static struct gdbarch *
1915 current_gdbarch_swap_out_hack (void)
1916 {
1917 struct gdbarch *old_gdbarch = current_gdbarch;
1918 struct gdbarch_swap *curr;
1919
1920 gdb_assert (old_gdbarch != NULL);
1921 for (curr = old_gdbarch->swap;
1922 curr != NULL;
1923 curr = curr->next)
1924 {
1925 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1926 memset (curr->source->data, 0, curr->source->sizeof_data);
1927 }
1928 current_gdbarch = NULL;
1929 return old_gdbarch;
1930 }
1931
1932 static void
1933 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1934 {
1935 struct gdbarch_swap *curr;
1936
1937 gdb_assert (current_gdbarch == NULL);
1938 for (curr = new_gdbarch->swap;
1939 curr != NULL;
1940 curr = curr->next)
1941 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1942 current_gdbarch = new_gdbarch;
1943 }
1944
1945
1946 /* Keep a registry of the architectures known by GDB. */
1947
1948 struct gdbarch_registration
1949 {
1950 enum bfd_architecture bfd_architecture;
1951 gdbarch_init_ftype *init;
1952 gdbarch_dump_tdep_ftype *dump_tdep;
1953 struct gdbarch_list *arches;
1954 struct gdbarch_registration *next;
1955 };
1956
1957 static struct gdbarch_registration *gdbarch_registry = NULL;
1958
1959 static void
1960 append_name (const char ***buf, int *nr, const char *name)
1961 {
1962 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1963 (*buf)[*nr] = name;
1964 *nr += 1;
1965 }
1966
1967 const char **
1968 gdbarch_printable_names (void)
1969 {
1970 /* Accumulate a list of names based on the registed list of
1971 architectures. */
1972 enum bfd_architecture a;
1973 int nr_arches = 0;
1974 const char **arches = NULL;
1975 struct gdbarch_registration *rego;
1976 for (rego = gdbarch_registry;
1977 rego != NULL;
1978 rego = rego->next)
1979 {
1980 const struct bfd_arch_info *ap;
1981 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1982 if (ap == NULL)
1983 internal_error (__FILE__, __LINE__,
1984 _("gdbarch_architecture_names: multi-arch unknown"));
1985 do
1986 {
1987 append_name (&arches, &nr_arches, ap->printable_name);
1988 ap = ap->next;
1989 }
1990 while (ap != NULL);
1991 }
1992 append_name (&arches, &nr_arches, NULL);
1993 return arches;
1994 }
1995
1996
1997 void
1998 gdbarch_register (enum bfd_architecture bfd_architecture,
1999 gdbarch_init_ftype *init,
2000 gdbarch_dump_tdep_ftype *dump_tdep)
2001 {
2002 struct gdbarch_registration **curr;
2003 const struct bfd_arch_info *bfd_arch_info;
2004 /* Check that BFD recognizes this architecture */
2005 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2006 if (bfd_arch_info == NULL)
2007 {
2008 internal_error (__FILE__, __LINE__,
2009 _("gdbarch: Attempt to register unknown architecture (%d)"),
2010 bfd_architecture);
2011 }
2012 /* Check that we haven't seen this architecture before */
2013 for (curr = &gdbarch_registry;
2014 (*curr) != NULL;
2015 curr = &(*curr)->next)
2016 {
2017 if (bfd_architecture == (*curr)->bfd_architecture)
2018 internal_error (__FILE__, __LINE__,
2019 _("gdbarch: Duplicate registraration of architecture (%s)"),
2020 bfd_arch_info->printable_name);
2021 }
2022 /* log it */
2023 if (gdbarch_debug)
2024 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2025 bfd_arch_info->printable_name,
2026 (long) init);
2027 /* Append it */
2028 (*curr) = XMALLOC (struct gdbarch_registration);
2029 (*curr)->bfd_architecture = bfd_architecture;
2030 (*curr)->init = init;
2031 (*curr)->dump_tdep = dump_tdep;
2032 (*curr)->arches = NULL;
2033 (*curr)->next = NULL;
2034 }
2035
2036 void
2037 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2038 gdbarch_init_ftype *init)
2039 {
2040 gdbarch_register (bfd_architecture, init, NULL);
2041 }
2042
2043
2044 /* Look for an architecture using gdbarch_info. */
2045
2046 struct gdbarch_list *
2047 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2048 const struct gdbarch_info *info)
2049 {
2050 for (; arches != NULL; arches = arches->next)
2051 {
2052 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2053 continue;
2054 if (info->byte_order != arches->gdbarch->byte_order)
2055 continue;
2056 if (info->osabi != arches->gdbarch->osabi)
2057 continue;
2058 if (info->target_desc != arches->gdbarch->target_desc)
2059 continue;
2060 return arches;
2061 }
2062 return NULL;
2063 }
2064
2065
2066 /* Find an architecture that matches the specified INFO. Create a new
2067 architecture if needed. Return that new architecture. Assumes
2068 that there is no current architecture. */
2069
2070 static struct gdbarch *
2071 find_arch_by_info (struct gdbarch_info info)
2072 {
2073 struct gdbarch *new_gdbarch;
2074 struct gdbarch_registration *rego;
2075
2076 /* The existing architecture has been swapped out - all this code
2077 works from a clean slate. */
2078 gdb_assert (current_gdbarch == NULL);
2079
2080 /* Fill in missing parts of the INFO struct using a number of
2081 sources: "set ..."; INFOabfd supplied; and the global
2082 defaults. */
2083 gdbarch_info_fill (&info);
2084
2085 /* Must have found some sort of architecture. */
2086 gdb_assert (info.bfd_arch_info != NULL);
2087
2088 if (gdbarch_debug)
2089 {
2090 fprintf_unfiltered (gdb_stdlog,
2091 "find_arch_by_info: info.bfd_arch_info %s\n",
2092 (info.bfd_arch_info != NULL
2093 ? info.bfd_arch_info->printable_name
2094 : "(null)"));
2095 fprintf_unfiltered (gdb_stdlog,
2096 "find_arch_by_info: info.byte_order %d (%s)\n",
2097 info.byte_order,
2098 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2099 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2100 : "default"));
2101 fprintf_unfiltered (gdb_stdlog,
2102 "find_arch_by_info: info.osabi %d (%s)\n",
2103 info.osabi, gdbarch_osabi_name (info.osabi));
2104 fprintf_unfiltered (gdb_stdlog,
2105 "find_arch_by_info: info.abfd 0x%lx\n",
2106 (long) info.abfd);
2107 fprintf_unfiltered (gdb_stdlog,
2108 "find_arch_by_info: info.tdep_info 0x%lx\n",
2109 (long) info.tdep_info);
2110 }
2111
2112 /* Find the tdep code that knows about this architecture. */
2113 for (rego = gdbarch_registry;
2114 rego != NULL;
2115 rego = rego->next)
2116 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2117 break;
2118 if (rego == NULL)
2119 {
2120 if (gdbarch_debug)
2121 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2122 "No matching architecture\n");
2123 return 0;
2124 }
2125
2126 /* Ask the tdep code for an architecture that matches "info". */
2127 new_gdbarch = rego->init (info, rego->arches);
2128
2129 /* Did the tdep code like it? No. Reject the change and revert to
2130 the old architecture. */
2131 if (new_gdbarch == NULL)
2132 {
2133 if (gdbarch_debug)
2134 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2135 "Target rejected architecture\n");
2136 return NULL;
2137 }
2138
2139 /* Is this a pre-existing architecture (as determined by already
2140 being initialized)? Move it to the front of the architecture
2141 list (keeping the list sorted Most Recently Used). */
2142 if (new_gdbarch->initialized_p)
2143 {
2144 struct gdbarch_list **list;
2145 struct gdbarch_list *this;
2146 if (gdbarch_debug)
2147 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2148 "Previous architecture 0x%08lx (%s) selected\n",
2149 (long) new_gdbarch,
2150 new_gdbarch->bfd_arch_info->printable_name);
2151 /* Find the existing arch in the list. */
2152 for (list = &rego->arches;
2153 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2154 list = &(*list)->next);
2155 /* It had better be in the list of architectures. */
2156 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2157 /* Unlink THIS. */
2158 this = (*list);
2159 (*list) = this->next;
2160 /* Insert THIS at the front. */
2161 this->next = rego->arches;
2162 rego->arches = this;
2163 /* Return it. */
2164 return new_gdbarch;
2165 }
2166
2167 /* It's a new architecture. */
2168 if (gdbarch_debug)
2169 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2170 "New architecture 0x%08lx (%s) selected\n",
2171 (long) new_gdbarch,
2172 new_gdbarch->bfd_arch_info->printable_name);
2173
2174 /* Insert the new architecture into the front of the architecture
2175 list (keep the list sorted Most Recently Used). */
2176 {
2177 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2178 this->next = rego->arches;
2179 this->gdbarch = new_gdbarch;
2180 rego->arches = this;
2181 }
2182
2183 /* Check that the newly installed architecture is valid. Plug in
2184 any post init values. */
2185 new_gdbarch->dump_tdep = rego->dump_tdep;
2186 verify_gdbarch (new_gdbarch);
2187 new_gdbarch->initialized_p = 1;
2188
2189 /* Initialize any per-architecture swap areas. This phase requires
2190 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2191 swap the entire architecture out. */
2192 current_gdbarch = new_gdbarch;
2193 current_gdbarch_swap_init_hack ();
2194 current_gdbarch_swap_out_hack ();
2195
2196 if (gdbarch_debug)
2197 gdbarch_dump (new_gdbarch, gdb_stdlog);
2198
2199 return new_gdbarch;
2200 }
2201
2202 struct gdbarch *
2203 gdbarch_find_by_info (struct gdbarch_info info)
2204 {
2205 /* Save the previously selected architecture, setting the global to
2206 NULL. This stops things like gdbarch->init() trying to use the
2207 previous architecture's configuration. The previous architecture
2208 may not even be of the same architecture family. The most recent
2209 architecture of the same family is found at the head of the
2210 rego->arches list. */
2211 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2212
2213 /* Find the specified architecture. */
2214 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2215
2216 /* Restore the existing architecture. */
2217 gdb_assert (current_gdbarch == NULL);
2218 current_gdbarch_swap_in_hack (old_gdbarch);
2219
2220 return new_gdbarch;
2221 }
2222
2223 /* Make the specified architecture current, swapping the existing one
2224 out. */
2225
2226 void
2227 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2228 {
2229 gdb_assert (new_gdbarch != NULL);
2230 gdb_assert (current_gdbarch != NULL);
2231 gdb_assert (new_gdbarch->initialized_p);
2232 current_gdbarch_swap_out_hack ();
2233 current_gdbarch_swap_in_hack (new_gdbarch);
2234 architecture_changed_event ();
2235 flush_cached_frames ();
2236 }
2237
2238 extern void _initialize_gdbarch (void);
2239
2240 void
2241 _initialize_gdbarch (void)
2242 {
2243 struct cmd_list_element *c;
2244
2245 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2246 Set architecture debugging."), _("\\
2247 Show architecture debugging."), _("\\
2248 When non-zero, architecture debugging is enabled."),
2249 NULL,
2250 show_gdbarch_debug,
2251 &setdebuglist, &showdebuglist);
2252 }
2253 EOF
2254
2255 # close things off
2256 exec 1>&2
2257 #../move-if-change new-gdbarch.c gdbarch.c
2258 compare_new gdbarch.c
This page took 0.080271 seconds and 4 git commands to generate.