f25835ee9f988a876bdedb50cd61299c1b7c52f5
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -u ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${level}" in
80 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
81 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
82 "" ) ;;
83 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
84 esac
85
86 case "${class}" in
87 m ) staticdefault="${predefault}" ;;
88 M ) staticdefault="0" ;;
89 * ) test "${staticdefault}" || staticdefault=0 ;;
90 esac
91 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
92 # multi-arch defaults.
93 # test "${predefault}" || predefault=0
94
95 # come up with a format, use a few guesses for variables
96 case ":${class}:${fmt}:${print}:" in
97 :[vV]::: )
98 if [ "${returntype}" = int ]
99 then
100 fmt="%d"
101 print="${macro}"
102 elif [ "${returntype}" = long ]
103 then
104 fmt="%ld"
105 print="${macro}"
106 fi
107 ;;
108 esac
109 test "${fmt}" || fmt="%ld"
110 test "${print}" || print="(long) ${macro}"
111
112 case "${invalid_p}" in
113 0 ) valid_p=1 ;;
114 "" )
115 if [ -n "${predefault}" ]
116 then
117 #invalid_p="gdbarch->${function} == ${predefault}"
118 valid_p="gdbarch->${function} != ${predefault}"
119 else
120 #invalid_p="gdbarch->${function} == 0"
121 valid_p="gdbarch->${function} != 0"
122 fi
123 ;;
124 * ) valid_p="!(${invalid_p})"
125 esac
126
127 # PREDEFAULT is a valid fallback definition of MEMBER when
128 # multi-arch is not enabled. This ensures that the
129 # default value, when multi-arch is the same as the
130 # default value when not multi-arch. POSTDEFAULT is
131 # always a valid definition of MEMBER as this again
132 # ensures consistency.
133
134 if [ -n "${postdefault}" ]
135 then
136 fallbackdefault="${postdefault}"
137 elif [ -n "${predefault}" ]
138 then
139 fallbackdefault="${predefault}"
140 else
141 fallbackdefault="0"
142 fi
143
144 #NOT YET: See gdbarch.log for basic verification of
145 # database
146
147 break
148 fi
149 done
150 if [ -n "${class}" ]
151 then
152 true
153 else
154 false
155 fi
156 }
157
158
159 fallback_default_p ()
160 {
161 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
162 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 }
164
165 class_is_variable_p ()
166 {
167 case "${class}" in
168 *v* | *V* ) true ;;
169 * ) false ;;
170 esac
171 }
172
173 class_is_function_p ()
174 {
175 case "${class}" in
176 *f* | *F* | *m* | *M* ) true ;;
177 * ) false ;;
178 esac
179 }
180
181 class_is_multiarch_p ()
182 {
183 case "${class}" in
184 *m* | *M* ) true ;;
185 * ) false ;;
186 esac
187 }
188
189 class_is_predicate_p ()
190 {
191 case "${class}" in
192 *F* | *V* | *M* ) true ;;
193 * ) false ;;
194 esac
195 }
196
197 class_is_info_p ()
198 {
199 case "${class}" in
200 *i* ) true ;;
201 * ) false ;;
202 esac
203 }
204
205
206 # dump out/verify the doco
207 for field in ${read}
208 do
209 case ${field} in
210
211 class ) : ;;
212
213 # # -> line disable
214 # f -> function
215 # hiding a function
216 # F -> function + predicate
217 # hiding a function + predicate to test function validity
218 # v -> variable
219 # hiding a variable
220 # V -> variable + predicate
221 # hiding a variable + predicate to test variables validity
222 # i -> set from info
223 # hiding something from the ``struct info'' object
224 # m -> multi-arch function
225 # hiding a multi-arch function (parameterised with the architecture)
226 # M -> multi-arch function + predicate
227 # hiding a multi-arch function + predicate to test function validity
228
229 level ) : ;;
230
231 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
232 # LEVEL is a predicate on checking that a given method is
233 # initialized (using INVALID_P).
234
235 macro ) : ;;
236
237 # The name of the MACRO that this method is to be accessed by.
238
239 returntype ) : ;;
240
241 # For functions, the return type; for variables, the data type
242
243 function ) : ;;
244
245 # For functions, the member function name; for variables, the
246 # variable name. Member function names are always prefixed with
247 # ``gdbarch_'' for name-space purity.
248
249 formal ) : ;;
250
251 # The formal argument list. It is assumed that the formal
252 # argument list includes the actual name of each list element.
253 # A function with no arguments shall have ``void'' as the
254 # formal argument list.
255
256 actual ) : ;;
257
258 # The list of actual arguments. The arguments specified shall
259 # match the FORMAL list given above. Functions with out
260 # arguments leave this blank.
261
262 attrib ) : ;;
263
264 # Any GCC attributes that should be attached to the function
265 # declaration. At present this field is unused.
266
267 staticdefault ) : ;;
268
269 # To help with the GDB startup a static gdbarch object is
270 # created. STATICDEFAULT is the value to insert into that
271 # static gdbarch object. Since this a static object only
272 # simple expressions can be used.
273
274 # If STATICDEFAULT is empty, zero is used.
275
276 predefault ) : ;;
277
278 # An initial value to assign to MEMBER of the freshly
279 # malloc()ed gdbarch object. After initialization, the
280 # freshly malloc()ed object is passed to the target
281 # architecture code for further updates.
282
283 # If PREDEFAULT is empty, zero is used.
284
285 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
286 # INVALID_P are specified, PREDEFAULT will be used as the
287 # default for the non- multi-arch target.
288
289 # A zero PREDEFAULT function will force the fallback to call
290 # internal_error().
291
292 # Variable declarations can refer to ``gdbarch'' which will
293 # contain the current architecture. Care should be taken.
294
295 postdefault ) : ;;
296
297 # A value to assign to MEMBER of the new gdbarch object should
298 # the target architecture code fail to change the PREDEFAULT
299 # value.
300
301 # If POSTDEFAULT is empty, no post update is performed.
302
303 # If both INVALID_P and POSTDEFAULT are non-empty then
304 # INVALID_P will be used to determine if MEMBER should be
305 # changed to POSTDEFAULT.
306
307 # If a non-empty POSTDEFAULT and a zero INVALID_P are
308 # specified, POSTDEFAULT will be used as the default for the
309 # non- multi-arch target (regardless of the value of
310 # PREDEFAULT).
311
312 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
313
314 # Variable declarations can refer to ``gdbarch'' which will
315 # contain the current architecture. Care should be taken.
316
317 invalid_p ) : ;;
318
319 # A predicate equation that validates MEMBER. Non-zero is
320 # returned if the code creating the new architecture failed to
321 # initialize MEMBER or the initialized the member is invalid.
322 # If POSTDEFAULT is non-empty then MEMBER will be updated to
323 # that value. If POSTDEFAULT is empty then internal_error()
324 # is called.
325
326 # If INVALID_P is empty, a check that MEMBER is no longer
327 # equal to PREDEFAULT is used.
328
329 # The expression ``0'' disables the INVALID_P check making
330 # PREDEFAULT a legitimate value.
331
332 # See also PREDEFAULT and POSTDEFAULT.
333
334 fmt ) : ;;
335
336 # printf style format string that can be used to print out the
337 # MEMBER. Sometimes "%s" is useful. For functions, this is
338 # ignored and the function address is printed.
339
340 # If FMT is empty, ``%ld'' is used.
341
342 print ) : ;;
343
344 # An optional equation that casts MEMBER to a value suitable
345 # for formatting by FMT.
346
347 # If PRINT is empty, ``(long)'' is used.
348
349 print_p ) : ;;
350
351 # An optional indicator for any predicte to wrap around the
352 # print member code.
353
354 # () -> Call a custom function to do the dump.
355 # exp -> Wrap print up in ``if (${print_p}) ...
356 # ``'' -> No predicate
357
358 # If PRINT_P is empty, ``1'' is always used.
359
360 description ) : ;;
361
362 # Currently unused.
363
364 *)
365 echo "Bad field ${field}"
366 exit 1;;
367 esac
368 done
369
370
371 function_list ()
372 {
373 # See below (DOCO) for description of each field
374 cat <<EOF
375 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
376 #
377 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
378 # Number of bits in a char or unsigned char for the target machine.
379 # Just like CHAR_BIT in <limits.h> but describes the target machine.
380 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
381 #
382 # Number of bits in a short or unsigned short for the target machine.
383 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
384 # Number of bits in an int or unsigned int for the target machine.
385 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
386 # Number of bits in a long or unsigned long for the target machine.
387 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
388 # Number of bits in a long long or unsigned long long for the target
389 # machine.
390 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
391 # Number of bits in a float for the target machine.
392 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393 # Number of bits in a double for the target machine.
394 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395 # Number of bits in a long double for the target machine.
396 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
397 # For most targets, a pointer on the target and its representation as an
398 # address in GDB have the same size and "look the same". For such a
399 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
400 # / addr_bit will be set from it.
401 #
402 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
403 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
404 #
405 # ptr_bit is the size of a pointer on the target
406 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
407 # addr_bit is the size of a target address as represented in gdb
408 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
409 # Number of bits in a BFD_VMA for the target object file format.
410 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
414 #
415 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
416 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
417 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
418 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
419 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
420 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 # serious shakedown.
424 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
425 #
426 M:::void:register_read:int regnum, char *buf:regnum, buf:
427 M:::void:register_write:int regnum, char *buf:regnum, buf:
428 #
429 v:2:NUM_REGS:int:num_regs::::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
435 v:2:SP_REGNUM:int:sp_regnum::::0:-1
436 v:2:FP_REGNUM:int:fp_regnum::::0:-1
437 v:2:PC_REGNUM:int:pc_regnum::::0:-1
438 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
439 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
440 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
441 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
442 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
443 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
444 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
445 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
446 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
447 # Convert from an sdb register number to an internal gdb register number.
448 # This should be defined in tm.h, if REGISTER_NAMES is not set up
449 # to map one to one onto the sdb register numbers.
450 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
451 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
452 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
453 v:2:REGISTER_SIZE:int:register_size::::0:-1
454 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
455 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
456 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
457 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
458 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
459 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
460 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
461 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
462 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
463 # MAP a GDB RAW register number onto a simulator register number. See
464 # also include/...-sim.h.
465 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
466 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
467 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
468 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
469 #
470 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
471 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
472 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
473 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
474 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
475 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
476 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
477 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
478 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
479 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
480 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
481 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
482 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
483 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
484 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
485 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
486 #
487 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
488 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
489 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
490 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
491 #
492 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
493 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
494 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
495 # This function is called when the value of a pseudo-register needs to
496 # be updated. Typically it will be defined on a per-architecture
497 # basis.
498 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
499 # This function is called when the value of a pseudo-register needs to
500 # be set or stored. Typically it will be defined on a
501 # per-architecture basis.
502 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
503 #
504 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
505 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
506 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
507 #
508 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
509 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
510 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
511 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
512 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
513 f:2:POP_FRAME:void:pop_frame:void:-:::0
514 #
515 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
516 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
517 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
518 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
519 #
520 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
521 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
522 #
523 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
524 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
525 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
526 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
527 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
528 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
529 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
530 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
531 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
532 #
533 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
534 #
535 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
536 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
537 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
538 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
539 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
540 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
541 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
542 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
543 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
544 #
545 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
546 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
547 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
548 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
549 v:2:PARM_BOUNDARY:int:parm_boundary
550 #
551 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
552 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
553 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
554 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
555 # On some machines there are bits in addresses which are not really
556 # part of the address, but are used by the kernel, the hardware, etc.
557 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
558 # we get a "real" address such as one would find in a symbol table.
559 # This is used only for addresses of instructions, and even then I'm
560 # not sure it's used in all contexts. It exists to deal with there
561 # being a few stray bits in the PC which would mislead us, not as some
562 # sort of generic thing to handle alignment or segmentation (it's
563 # possible it should be in TARGET_READ_PC instead).
564 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
565 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
566 # ADDR_BITS_REMOVE.
567 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
568 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
569 # the target needs software single step. An ISA method to implement it.
570 #
571 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
572 # using the breakpoint system instead of blatting memory directly (as with rs6000).
573 #
574 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
575 # single step. If not, then implement single step using breakpoints.
576 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
577 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
578 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
579 # For SVR4 shared libraries, each call goes through a small piece of
580 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
581 # to nonzero if we are current stopped in one of these.
582 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
583 # A target might have problems with watchpoints as soon as the stack
584 # frame of the current function has been destroyed. This mostly happens
585 # as the first action in a funtion's epilogue. in_function_epilogue_p()
586 # is defined to return a non-zero value if either the given addr is one
587 # instruction after the stack destroying instruction up to the trailing
588 # return instruction or if we can figure out that the stack frame has
589 # already been invalidated regardless of the value of addr. Targets
590 # which don't suffer from that problem could just let this functionality
591 # untouched.
592 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
593 # Given a vector of command-line arguments, return a newly allocated
594 # string which, when passed to the create_inferior function, will be
595 # parsed (on Unix systems, by the shell) to yield the same vector.
596 # This function should call error() if the argument vector is not
597 # representable for this target or if this target does not support
598 # command-line arguments.
599 # ARGC is the number of elements in the vector.
600 # ARGV is an array of strings, one per argument.
601 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
602 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
603 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
604 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
605 EOF
606 }
607
608 #
609 # The .log file
610 #
611 exec > new-gdbarch.log
612 function_list | while do_read
613 do
614 cat <<EOF
615 ${class} ${macro}(${actual})
616 ${returntype} ${function} ($formal)${attrib}
617 EOF
618 for r in ${read}
619 do
620 eval echo \"\ \ \ \ ${r}=\${${r}}\"
621 done
622 # #fallbackdefault=${fallbackdefault}
623 # #valid_p=${valid_p}
624 #EOF
625 if class_is_predicate_p && fallback_default_p
626 then
627 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
628 kill $$
629 exit 1
630 fi
631 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
632 then
633 echo "Error: postdefault is useless when invalid_p=0" 1>&2
634 kill $$
635 exit 1
636 fi
637 if class_is_multiarch_p
638 then
639 if class_is_predicate_p ; then :
640 elif test "x${predefault}" = "x"
641 then
642 echo "Error: pure multi-arch function must have a predefault" 1>&2
643 kill $$
644 exit 1
645 fi
646 fi
647 echo ""
648 done
649
650 exec 1>&2
651 compare_new gdbarch.log
652
653
654 copyright ()
655 {
656 cat <<EOF
657 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
658
659 /* Dynamic architecture support for GDB, the GNU debugger.
660 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
661
662 This file is part of GDB.
663
664 This program is free software; you can redistribute it and/or modify
665 it under the terms of the GNU General Public License as published by
666 the Free Software Foundation; either version 2 of the License, or
667 (at your option) any later version.
668
669 This program is distributed in the hope that it will be useful,
670 but WITHOUT ANY WARRANTY; without even the implied warranty of
671 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
672 GNU General Public License for more details.
673
674 You should have received a copy of the GNU General Public License
675 along with this program; if not, write to the Free Software
676 Foundation, Inc., 59 Temple Place - Suite 330,
677 Boston, MA 02111-1307, USA. */
678
679 /* This file was created with the aid of \`\`gdbarch.sh''.
680
681 The Bourne shell script \`\`gdbarch.sh'' creates the files
682 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
683 against the existing \`\`gdbarch.[hc]''. Any differences found
684 being reported.
685
686 If editing this file, please also run gdbarch.sh and merge any
687 changes into that script. Conversely, when making sweeping changes
688 to this file, modifying gdbarch.sh and using its output may prove
689 easier. */
690
691 EOF
692 }
693
694 #
695 # The .h file
696 #
697
698 exec > new-gdbarch.h
699 copyright
700 cat <<EOF
701 #ifndef GDBARCH_H
702 #define GDBARCH_H
703
704 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
705 #if !GDB_MULTI_ARCH
706 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
707 #endif
708
709 struct frame_info;
710 struct value;
711 struct objfile;
712 struct minimal_symbol;
713
714 extern struct gdbarch *current_gdbarch;
715
716
717 /* If any of the following are defined, the target wasn't correctly
718 converted. */
719
720 #if GDB_MULTI_ARCH
721 #if defined (EXTRA_FRAME_INFO)
722 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
723 #endif
724 #endif
725
726 #if GDB_MULTI_ARCH
727 #if defined (FRAME_FIND_SAVED_REGS)
728 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
729 #endif
730 #endif
731
732 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
733 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
734 #endif
735 EOF
736
737 # function typedef's
738 printf "\n"
739 printf "\n"
740 printf "/* The following are pre-initialized by GDBARCH. */\n"
741 function_list | while do_read
742 do
743 if class_is_info_p
744 then
745 printf "\n"
746 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
747 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
748 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
749 printf "#error \"Non multi-arch definition of ${macro}\"\n"
750 printf "#endif\n"
751 printf "#if GDB_MULTI_ARCH\n"
752 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
753 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
754 printf "#endif\n"
755 printf "#endif\n"
756 fi
757 done
758
759 # function typedef's
760 printf "\n"
761 printf "\n"
762 printf "/* The following are initialized by the target dependent code. */\n"
763 function_list | while do_read
764 do
765 if [ -n "${comment}" ]
766 then
767 echo "${comment}" | sed \
768 -e '2 s,#,/*,' \
769 -e '3,$ s,#, ,' \
770 -e '$ s,$, */,'
771 fi
772 if class_is_multiarch_p
773 then
774 if class_is_predicate_p
775 then
776 printf "\n"
777 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
778 fi
779 else
780 if class_is_predicate_p
781 then
782 printf "\n"
783 printf "#if defined (${macro})\n"
784 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
785 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
786 printf "#if !defined (${macro}_P)\n"
787 printf "#define ${macro}_P() (1)\n"
788 printf "#endif\n"
789 printf "#endif\n"
790 printf "\n"
791 printf "/* Default predicate for non- multi-arch targets. */\n"
792 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
793 printf "#define ${macro}_P() (0)\n"
794 printf "#endif\n"
795 printf "\n"
796 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
797 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
798 printf "#error \"Non multi-arch definition of ${macro}\"\n"
799 printf "#endif\n"
800 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
801 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
802 printf "#endif\n"
803 fi
804 fi
805 if class_is_variable_p
806 then
807 if fallback_default_p || class_is_predicate_p
808 then
809 printf "\n"
810 printf "/* Default (value) for non- multi-arch platforms. */\n"
811 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
812 echo "#define ${macro} (${fallbackdefault})" \
813 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
814 printf "#endif\n"
815 fi
816 printf "\n"
817 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
818 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
819 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
820 printf "#error \"Non multi-arch definition of ${macro}\"\n"
821 printf "#endif\n"
822 printf "#if GDB_MULTI_ARCH\n"
823 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
824 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
825 printf "#endif\n"
826 printf "#endif\n"
827 fi
828 if class_is_function_p
829 then
830 if class_is_multiarch_p ; then :
831 elif fallback_default_p || class_is_predicate_p
832 then
833 printf "\n"
834 printf "/* Default (function) for non- multi-arch platforms. */\n"
835 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
836 if [ "x${fallbackdefault}" = "x0" ]
837 then
838 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
839 else
840 # FIXME: Should be passing current_gdbarch through!
841 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
842 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
843 fi
844 printf "#endif\n"
845 fi
846 printf "\n"
847 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
848 then
849 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
850 elif class_is_multiarch_p
851 then
852 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
853 else
854 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
855 fi
856 if [ "x${formal}" = "xvoid" ]
857 then
858 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
859 else
860 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
861 fi
862 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
863 if class_is_multiarch_p ; then :
864 else
865 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
866 printf "#error \"Non multi-arch definition of ${macro}\"\n"
867 printf "#endif\n"
868 printf "#if GDB_MULTI_ARCH\n"
869 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
870 if [ "x${actual}" = "x" ]
871 then
872 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
873 elif [ "x${actual}" = "x-" ]
874 then
875 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
876 else
877 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
878 fi
879 printf "#endif\n"
880 printf "#endif\n"
881 fi
882 fi
883 done
884
885 # close it off
886 cat <<EOF
887
888 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
889
890
891 /* Mechanism for co-ordinating the selection of a specific
892 architecture.
893
894 GDB targets (*-tdep.c) can register an interest in a specific
895 architecture. Other GDB components can register a need to maintain
896 per-architecture data.
897
898 The mechanisms below ensures that there is only a loose connection
899 between the set-architecture command and the various GDB
900 components. Each component can independently register their need
901 to maintain architecture specific data with gdbarch.
902
903 Pragmatics:
904
905 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
906 didn't scale.
907
908 The more traditional mega-struct containing architecture specific
909 data for all the various GDB components was also considered. Since
910 GDB is built from a variable number of (fairly independent)
911 components it was determined that the global aproach was not
912 applicable. */
913
914
915 /* Register a new architectural family with GDB.
916
917 Register support for the specified ARCHITECTURE with GDB. When
918 gdbarch determines that the specified architecture has been
919 selected, the corresponding INIT function is called.
920
921 --
922
923 The INIT function takes two parameters: INFO which contains the
924 information available to gdbarch about the (possibly new)
925 architecture; ARCHES which is a list of the previously created
926 \`\`struct gdbarch'' for this architecture.
927
928 The INIT function parameter INFO shall, as far as possible, be
929 pre-initialized with information obtained from INFO.ABFD or
930 previously selected architecture (if similar).
931
932 The INIT function shall return any of: NULL - indicating that it
933 doesn't recognize the selected architecture; an existing \`\`struct
934 gdbarch'' from the ARCHES list - indicating that the new
935 architecture is just a synonym for an earlier architecture (see
936 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
937 - that describes the selected architecture (see gdbarch_alloc()).
938
939 The DUMP_TDEP function shall print out all target specific values.
940 Care should be taken to ensure that the function works in both the
941 multi-arch and non- multi-arch cases. */
942
943 struct gdbarch_list
944 {
945 struct gdbarch *gdbarch;
946 struct gdbarch_list *next;
947 };
948
949 struct gdbarch_info
950 {
951 /* Use default: NULL (ZERO). */
952 const struct bfd_arch_info *bfd_arch_info;
953
954 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
955 int byte_order;
956
957 /* Use default: NULL (ZERO). */
958 bfd *abfd;
959
960 /* Use default: NULL (ZERO). */
961 struct gdbarch_tdep_info *tdep_info;
962 };
963
964 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
965 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
966
967 /* DEPRECATED - use gdbarch_register() */
968 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
969
970 extern void gdbarch_register (enum bfd_architecture architecture,
971 gdbarch_init_ftype *,
972 gdbarch_dump_tdep_ftype *);
973
974
975 /* Return a freshly allocated, NULL terminated, array of the valid
976 architecture names. Since architectures are registered during the
977 _initialize phase this function only returns useful information
978 once initialization has been completed. */
979
980 extern const char **gdbarch_printable_names (void);
981
982
983 /* Helper function. Search the list of ARCHES for a GDBARCH that
984 matches the information provided by INFO. */
985
986 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
987
988
989 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
990 basic initialization using values obtained from the INFO andTDEP
991 parameters. set_gdbarch_*() functions are called to complete the
992 initialization of the object. */
993
994 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
995
996
997 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
998 It is assumed that the caller freeds the \`\`struct
999 gdbarch_tdep''. */
1000
1001 extern void gdbarch_free (struct gdbarch *);
1002
1003
1004 /* Helper function. Force an update of the current architecture.
1005
1006 The actual architecture selected is determined by INFO, \`\`(gdb) set
1007 architecture'' et.al., the existing architecture and BFD's default
1008 architecture. INFO should be initialized to zero and then selected
1009 fields should be updated.
1010
1011 Returns non-zero if the update succeeds */
1012
1013 extern int gdbarch_update_p (struct gdbarch_info info);
1014
1015
1016
1017 /* Register per-architecture data-pointer.
1018
1019 Reserve space for a per-architecture data-pointer. An identifier
1020 for the reserved data-pointer is returned. That identifer should
1021 be saved in a local static variable.
1022
1023 The per-architecture data-pointer can be initialized in one of two
1024 ways: The value can be set explicitly using a call to
1025 set_gdbarch_data(); the value can be set implicitly using the value
1026 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1027 called after the basic architecture vector has been created.
1028
1029 When a previously created architecture is re-selected, the
1030 per-architecture data-pointer for that previous architecture is
1031 restored. INIT() is not called.
1032
1033 During initialization, multiple assignments of the data-pointer are
1034 allowed, non-NULL values are deleted by calling FREE(). If the
1035 architecture is deleted using gdbarch_free() all non-NULL data
1036 pointers are also deleted using FREE().
1037
1038 Multiple registrarants for any architecture are allowed (and
1039 strongly encouraged). */
1040
1041 struct gdbarch_data;
1042
1043 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1044 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1045 void *pointer);
1046 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1047 gdbarch_data_free_ftype *free);
1048 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1049 struct gdbarch_data *data,
1050 void *pointer);
1051
1052 extern void *gdbarch_data (struct gdbarch_data*);
1053
1054
1055 /* Register per-architecture memory region.
1056
1057 Provide a memory-region swap mechanism. Per-architecture memory
1058 region are created. These memory regions are swapped whenever the
1059 architecture is changed. For a new architecture, the memory region
1060 is initialized with zero (0) and the INIT function is called.
1061
1062 Memory regions are swapped / initialized in the order that they are
1063 registered. NULL DATA and/or INIT values can be specified.
1064
1065 New code should use register_gdbarch_data(). */
1066
1067 typedef void (gdbarch_swap_ftype) (void);
1068 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1069 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1070
1071
1072
1073 /* The target-system-dependent byte order is dynamic */
1074
1075 extern int target_byte_order;
1076 #ifndef TARGET_BYTE_ORDER
1077 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1078 #endif
1079
1080 extern int target_byte_order_auto;
1081 #ifndef TARGET_BYTE_ORDER_AUTO
1082 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1083 #endif
1084
1085
1086
1087 /* The target-system-dependent BFD architecture is dynamic */
1088
1089 extern int target_architecture_auto;
1090 #ifndef TARGET_ARCHITECTURE_AUTO
1091 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1092 #endif
1093
1094 extern const struct bfd_arch_info *target_architecture;
1095 #ifndef TARGET_ARCHITECTURE
1096 #define TARGET_ARCHITECTURE (target_architecture + 0)
1097 #endif
1098
1099
1100 /* The target-system-dependent disassembler is semi-dynamic */
1101
1102 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1103 unsigned int len, disassemble_info *info);
1104
1105 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1106 disassemble_info *info);
1107
1108 extern void dis_asm_print_address (bfd_vma addr,
1109 disassemble_info *info);
1110
1111 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1112 extern disassemble_info tm_print_insn_info;
1113 #ifndef TARGET_PRINT_INSN_INFO
1114 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1115 #endif
1116
1117
1118
1119 /* Set the dynamic target-system-dependent parameters (architecture,
1120 byte-order, ...) using information found in the BFD */
1121
1122 extern void set_gdbarch_from_file (bfd *);
1123
1124
1125 /* Initialize the current architecture to the "first" one we find on
1126 our list. */
1127
1128 extern void initialize_current_architecture (void);
1129
1130 /* For non-multiarched targets, do any initialization of the default
1131 gdbarch object necessary after the _initialize_MODULE functions
1132 have run. */
1133 extern void initialize_non_multiarch ();
1134
1135 /* gdbarch trace variable */
1136 extern int gdbarch_debug;
1137
1138 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1139
1140 #endif
1141 EOF
1142 exec 1>&2
1143 #../move-if-change new-gdbarch.h gdbarch.h
1144 compare_new gdbarch.h
1145
1146
1147 #
1148 # C file
1149 #
1150
1151 exec > new-gdbarch.c
1152 copyright
1153 cat <<EOF
1154
1155 #include "defs.h"
1156 #include "arch-utils.h"
1157
1158 #if GDB_MULTI_ARCH
1159 #include "gdbcmd.h"
1160 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1161 #else
1162 /* Just include everything in sight so that the every old definition
1163 of macro is visible. */
1164 #include "gdb_string.h"
1165 #include <ctype.h>
1166 #include "symtab.h"
1167 #include "frame.h"
1168 #include "inferior.h"
1169 #include "breakpoint.h"
1170 #include "gdb_wait.h"
1171 #include "gdbcore.h"
1172 #include "gdbcmd.h"
1173 #include "target.h"
1174 #include "gdbthread.h"
1175 #include "annotate.h"
1176 #include "symfile.h" /* for overlay functions */
1177 #include "value.h" /* For old tm.h/nm.h macros. */
1178 #endif
1179 #include "symcat.h"
1180
1181 #include "floatformat.h"
1182
1183 #include "gdb_assert.h"
1184 #include "gdb-events.h"
1185
1186 /* Static function declarations */
1187
1188 static void verify_gdbarch (struct gdbarch *gdbarch);
1189 static void alloc_gdbarch_data (struct gdbarch *);
1190 static void init_gdbarch_data (struct gdbarch *);
1191 static void free_gdbarch_data (struct gdbarch *);
1192 static void init_gdbarch_swap (struct gdbarch *);
1193 static void swapout_gdbarch_swap (struct gdbarch *);
1194 static void swapin_gdbarch_swap (struct gdbarch *);
1195
1196 /* Convenience macro for allocting typesafe memory. */
1197
1198 #ifndef XMALLOC
1199 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1200 #endif
1201
1202
1203 /* Non-zero if we want to trace architecture code. */
1204
1205 #ifndef GDBARCH_DEBUG
1206 #define GDBARCH_DEBUG 0
1207 #endif
1208 int gdbarch_debug = GDBARCH_DEBUG;
1209
1210 EOF
1211
1212 # gdbarch open the gdbarch object
1213 printf "\n"
1214 printf "/* Maintain the struct gdbarch object */\n"
1215 printf "\n"
1216 printf "struct gdbarch\n"
1217 printf "{\n"
1218 printf " /* basic architectural information */\n"
1219 function_list | while do_read
1220 do
1221 if class_is_info_p
1222 then
1223 printf " ${returntype} ${function};\n"
1224 fi
1225 done
1226 printf "\n"
1227 printf " /* target specific vector. */\n"
1228 printf " struct gdbarch_tdep *tdep;\n"
1229 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1230 printf "\n"
1231 printf " /* per-architecture data-pointers */\n"
1232 printf " unsigned nr_data;\n"
1233 printf " void **data;\n"
1234 printf "\n"
1235 printf " /* per-architecture swap-regions */\n"
1236 printf " struct gdbarch_swap *swap;\n"
1237 printf "\n"
1238 cat <<EOF
1239 /* Multi-arch values.
1240
1241 When extending this structure you must:
1242
1243 Add the field below.
1244
1245 Declare set/get functions and define the corresponding
1246 macro in gdbarch.h.
1247
1248 gdbarch_alloc(): If zero/NULL is not a suitable default,
1249 initialize the new field.
1250
1251 verify_gdbarch(): Confirm that the target updated the field
1252 correctly.
1253
1254 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1255 field is dumped out
1256
1257 \`\`startup_gdbarch()'': Append an initial value to the static
1258 variable (base values on the host's c-type system).
1259
1260 get_gdbarch(): Implement the set/get functions (probably using
1261 the macro's as shortcuts).
1262
1263 */
1264
1265 EOF
1266 function_list | while do_read
1267 do
1268 if class_is_variable_p
1269 then
1270 printf " ${returntype} ${function};\n"
1271 elif class_is_function_p
1272 then
1273 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1274 fi
1275 done
1276 printf "};\n"
1277
1278 # A pre-initialized vector
1279 printf "\n"
1280 printf "\n"
1281 cat <<EOF
1282 /* The default architecture uses host values (for want of a better
1283 choice). */
1284 EOF
1285 printf "\n"
1286 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1287 printf "\n"
1288 printf "struct gdbarch startup_gdbarch =\n"
1289 printf "{\n"
1290 printf " /* basic architecture information */\n"
1291 function_list | while do_read
1292 do
1293 if class_is_info_p
1294 then
1295 printf " ${staticdefault},\n"
1296 fi
1297 done
1298 cat <<EOF
1299 /* target specific vector and its dump routine */
1300 NULL, NULL,
1301 /*per-architecture data-pointers and swap regions */
1302 0, NULL, NULL,
1303 /* Multi-arch values */
1304 EOF
1305 function_list | while do_read
1306 do
1307 if class_is_function_p || class_is_variable_p
1308 then
1309 printf " ${staticdefault},\n"
1310 fi
1311 done
1312 cat <<EOF
1313 /* startup_gdbarch() */
1314 };
1315
1316 struct gdbarch *current_gdbarch = &startup_gdbarch;
1317
1318 /* Do any initialization needed for a non-multiarch configuration
1319 after the _initialize_MODULE functions have been run. */
1320 void
1321 initialize_non_multiarch ()
1322 {
1323 alloc_gdbarch_data (&startup_gdbarch);
1324 init_gdbarch_data (&startup_gdbarch);
1325 }
1326 EOF
1327
1328 # Create a new gdbarch struct
1329 printf "\n"
1330 printf "\n"
1331 cat <<EOF
1332 /* Create a new \`\`struct gdbarch'' based on information provided by
1333 \`\`struct gdbarch_info''. */
1334 EOF
1335 printf "\n"
1336 cat <<EOF
1337 struct gdbarch *
1338 gdbarch_alloc (const struct gdbarch_info *info,
1339 struct gdbarch_tdep *tdep)
1340 {
1341 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1342 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1343 the current local architecture and not the previous global
1344 architecture. This ensures that the new architectures initial
1345 values are not influenced by the previous architecture. Once
1346 everything is parameterised with gdbarch, this will go away. */
1347 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1348 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1349
1350 alloc_gdbarch_data (current_gdbarch);
1351
1352 current_gdbarch->tdep = tdep;
1353 EOF
1354 printf "\n"
1355 function_list | while do_read
1356 do
1357 if class_is_info_p
1358 then
1359 printf " current_gdbarch->${function} = info->${function};\n"
1360 fi
1361 done
1362 printf "\n"
1363 printf " /* Force the explicit initialization of these. */\n"
1364 function_list | while do_read
1365 do
1366 if class_is_function_p || class_is_variable_p
1367 then
1368 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1369 then
1370 printf " current_gdbarch->${function} = ${predefault};\n"
1371 fi
1372 fi
1373 done
1374 cat <<EOF
1375 /* gdbarch_alloc() */
1376
1377 return current_gdbarch;
1378 }
1379 EOF
1380
1381 # Free a gdbarch struct.
1382 printf "\n"
1383 printf "\n"
1384 cat <<EOF
1385 /* Free a gdbarch struct. This should never happen in normal
1386 operation --- once you've created a gdbarch, you keep it around.
1387 However, if an architecture's init function encounters an error
1388 building the structure, it may need to clean up a partially
1389 constructed gdbarch. */
1390
1391 void
1392 gdbarch_free (struct gdbarch *arch)
1393 {
1394 gdb_assert (arch != NULL);
1395 free_gdbarch_data (arch);
1396 xfree (arch);
1397 }
1398 EOF
1399
1400 # verify a new architecture
1401 printf "\n"
1402 printf "\n"
1403 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1404 printf "\n"
1405 cat <<EOF
1406 static void
1407 verify_gdbarch (struct gdbarch *gdbarch)
1408 {
1409 struct ui_file *log;
1410 struct cleanup *cleanups;
1411 long dummy;
1412 char *buf;
1413 /* Only perform sanity checks on a multi-arch target. */
1414 if (!GDB_MULTI_ARCH)
1415 return;
1416 log = mem_fileopen ();
1417 cleanups = make_cleanup_ui_file_delete (log);
1418 /* fundamental */
1419 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1420 fprintf_unfiltered (log, "\n\tbyte-order");
1421 if (gdbarch->bfd_arch_info == NULL)
1422 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1423 /* Check those that need to be defined for the given multi-arch level. */
1424 EOF
1425 function_list | while do_read
1426 do
1427 if class_is_function_p || class_is_variable_p
1428 then
1429 if [ "x${invalid_p}" = "x0" ]
1430 then
1431 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1432 elif class_is_predicate_p
1433 then
1434 printf " /* Skip verify of ${function}, has predicate */\n"
1435 # FIXME: See do_read for potential simplification
1436 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1437 then
1438 printf " if (${invalid_p})\n"
1439 printf " gdbarch->${function} = ${postdefault};\n"
1440 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1441 then
1442 printf " if (gdbarch->${function} == ${predefault})\n"
1443 printf " gdbarch->${function} = ${postdefault};\n"
1444 elif [ -n "${postdefault}" ]
1445 then
1446 printf " if (gdbarch->${function} == 0)\n"
1447 printf " gdbarch->${function} = ${postdefault};\n"
1448 elif [ -n "${invalid_p}" ]
1449 then
1450 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1451 printf " && (${invalid_p}))\n"
1452 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1453 elif [ -n "${predefault}" ]
1454 then
1455 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1456 printf " && (gdbarch->${function} == ${predefault}))\n"
1457 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1458 fi
1459 fi
1460 done
1461 cat <<EOF
1462 buf = ui_file_xstrdup (log, &dummy);
1463 make_cleanup (xfree, buf);
1464 if (strlen (buf) > 0)
1465 internal_error (__FILE__, __LINE__,
1466 "verify_gdbarch: the following are invalid ...%s",
1467 buf);
1468 do_cleanups (cleanups);
1469 }
1470 EOF
1471
1472 # dump the structure
1473 printf "\n"
1474 printf "\n"
1475 cat <<EOF
1476 /* Print out the details of the current architecture. */
1477
1478 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1479 just happens to match the global variable \`\`current_gdbarch''. That
1480 way macros refering to that variable get the local and not the global
1481 version - ulgh. Once everything is parameterised with gdbarch, this
1482 will go away. */
1483
1484 void
1485 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1486 {
1487 fprintf_unfiltered (file,
1488 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1489 GDB_MULTI_ARCH);
1490 EOF
1491 function_list | sort -t: +2 | while do_read
1492 do
1493 # multiarch functions don't have macros.
1494 if class_is_multiarch_p
1495 then
1496 printf " if (GDB_MULTI_ARCH)\n"
1497 printf " fprintf_unfiltered (file,\n"
1498 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1499 printf " (long) current_gdbarch->${function});\n"
1500 continue
1501 fi
1502 # Print the macro definition.
1503 printf "#ifdef ${macro}\n"
1504 if [ "x${returntype}" = "xvoid" ]
1505 then
1506 printf "#if GDB_MULTI_ARCH\n"
1507 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1508 fi
1509 if class_is_function_p
1510 then
1511 printf " fprintf_unfiltered (file,\n"
1512 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1513 printf " \"${macro}(${actual})\",\n"
1514 printf " XSTRING (${macro} (${actual})));\n"
1515 else
1516 printf " fprintf_unfiltered (file,\n"
1517 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1518 printf " XSTRING (${macro}));\n"
1519 fi
1520 # Print the architecture vector value
1521 if [ "x${returntype}" = "xvoid" ]
1522 then
1523 printf "#endif\n"
1524 fi
1525 if [ "x${print_p}" = "x()" ]
1526 then
1527 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1528 elif [ "x${print_p}" = "x0" ]
1529 then
1530 printf " /* skip print of ${macro}, print_p == 0. */\n"
1531 elif [ -n "${print_p}" ]
1532 then
1533 printf " if (${print_p})\n"
1534 printf " fprintf_unfiltered (file,\n"
1535 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1536 printf " ${print});\n"
1537 elif class_is_function_p
1538 then
1539 printf " if (GDB_MULTI_ARCH)\n"
1540 printf " fprintf_unfiltered (file,\n"
1541 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1542 printf " (long) current_gdbarch->${function}\n"
1543 printf " /*${macro} ()*/);\n"
1544 else
1545 printf " fprintf_unfiltered (file,\n"
1546 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1547 printf " ${print});\n"
1548 fi
1549 printf "#endif\n"
1550 done
1551 cat <<EOF
1552 if (current_gdbarch->dump_tdep != NULL)
1553 current_gdbarch->dump_tdep (current_gdbarch, file);
1554 }
1555 EOF
1556
1557
1558 # GET/SET
1559 printf "\n"
1560 cat <<EOF
1561 struct gdbarch_tdep *
1562 gdbarch_tdep (struct gdbarch *gdbarch)
1563 {
1564 if (gdbarch_debug >= 2)
1565 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1566 return gdbarch->tdep;
1567 }
1568 EOF
1569 printf "\n"
1570 function_list | while do_read
1571 do
1572 if class_is_predicate_p
1573 then
1574 printf "\n"
1575 printf "int\n"
1576 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1577 printf "{\n"
1578 if [ -n "${valid_p}" ]
1579 then
1580 printf " return ${valid_p};\n"
1581 else
1582 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1583 fi
1584 printf "}\n"
1585 fi
1586 if class_is_function_p
1587 then
1588 printf "\n"
1589 printf "${returntype}\n"
1590 if [ "x${formal}" = "xvoid" ]
1591 then
1592 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1593 else
1594 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1595 fi
1596 printf "{\n"
1597 printf " if (gdbarch->${function} == 0)\n"
1598 printf " internal_error (__FILE__, __LINE__,\n"
1599 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1600 printf " if (gdbarch_debug >= 2)\n"
1601 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1602 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1603 then
1604 if class_is_multiarch_p
1605 then
1606 params="gdbarch"
1607 else
1608 params=""
1609 fi
1610 else
1611 if class_is_multiarch_p
1612 then
1613 params="gdbarch, ${actual}"
1614 else
1615 params="${actual}"
1616 fi
1617 fi
1618 if [ "x${returntype}" = "xvoid" ]
1619 then
1620 printf " gdbarch->${function} (${params});\n"
1621 else
1622 printf " return gdbarch->${function} (${params});\n"
1623 fi
1624 printf "}\n"
1625 printf "\n"
1626 printf "void\n"
1627 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1628 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1629 printf "{\n"
1630 printf " gdbarch->${function} = ${function};\n"
1631 printf "}\n"
1632 elif class_is_variable_p
1633 then
1634 printf "\n"
1635 printf "${returntype}\n"
1636 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1637 printf "{\n"
1638 if [ "x${invalid_p}" = "x0" ]
1639 then
1640 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1641 elif [ -n "${invalid_p}" ]
1642 then
1643 printf " if (${invalid_p})\n"
1644 printf " internal_error (__FILE__, __LINE__,\n"
1645 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1646 elif [ -n "${predefault}" ]
1647 then
1648 printf " if (gdbarch->${function} == ${predefault})\n"
1649 printf " internal_error (__FILE__, __LINE__,\n"
1650 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1651 fi
1652 printf " if (gdbarch_debug >= 2)\n"
1653 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1654 printf " return gdbarch->${function};\n"
1655 printf "}\n"
1656 printf "\n"
1657 printf "void\n"
1658 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1659 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1660 printf "{\n"
1661 printf " gdbarch->${function} = ${function};\n"
1662 printf "}\n"
1663 elif class_is_info_p
1664 then
1665 printf "\n"
1666 printf "${returntype}\n"
1667 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1668 printf "{\n"
1669 printf " if (gdbarch_debug >= 2)\n"
1670 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1671 printf " return gdbarch->${function};\n"
1672 printf "}\n"
1673 fi
1674 done
1675
1676 # All the trailing guff
1677 cat <<EOF
1678
1679
1680 /* Keep a registry of per-architecture data-pointers required by GDB
1681 modules. */
1682
1683 struct gdbarch_data
1684 {
1685 unsigned index;
1686 gdbarch_data_init_ftype *init;
1687 gdbarch_data_free_ftype *free;
1688 };
1689
1690 struct gdbarch_data_registration
1691 {
1692 struct gdbarch_data *data;
1693 struct gdbarch_data_registration *next;
1694 };
1695
1696 struct gdbarch_data_registry
1697 {
1698 unsigned nr;
1699 struct gdbarch_data_registration *registrations;
1700 };
1701
1702 struct gdbarch_data_registry gdbarch_data_registry =
1703 {
1704 0, NULL,
1705 };
1706
1707 struct gdbarch_data *
1708 register_gdbarch_data (gdbarch_data_init_ftype *init,
1709 gdbarch_data_free_ftype *free)
1710 {
1711 struct gdbarch_data_registration **curr;
1712 for (curr = &gdbarch_data_registry.registrations;
1713 (*curr) != NULL;
1714 curr = &(*curr)->next);
1715 (*curr) = XMALLOC (struct gdbarch_data_registration);
1716 (*curr)->next = NULL;
1717 (*curr)->data = XMALLOC (struct gdbarch_data);
1718 (*curr)->data->index = gdbarch_data_registry.nr++;
1719 (*curr)->data->init = init;
1720 (*curr)->data->free = free;
1721 return (*curr)->data;
1722 }
1723
1724
1725 /* Walk through all the registered users initializing each in turn. */
1726
1727 static void
1728 init_gdbarch_data (struct gdbarch *gdbarch)
1729 {
1730 struct gdbarch_data_registration *rego;
1731 for (rego = gdbarch_data_registry.registrations;
1732 rego != NULL;
1733 rego = rego->next)
1734 {
1735 struct gdbarch_data *data = rego->data;
1736 gdb_assert (data->index < gdbarch->nr_data);
1737 if (data->init != NULL)
1738 {
1739 void *pointer = data->init (gdbarch);
1740 set_gdbarch_data (gdbarch, data, pointer);
1741 }
1742 }
1743 }
1744
1745 /* Create/delete the gdbarch data vector. */
1746
1747 static void
1748 alloc_gdbarch_data (struct gdbarch *gdbarch)
1749 {
1750 gdb_assert (gdbarch->data == NULL);
1751 gdbarch->nr_data = gdbarch_data_registry.nr;
1752 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1753 }
1754
1755 static void
1756 free_gdbarch_data (struct gdbarch *gdbarch)
1757 {
1758 struct gdbarch_data_registration *rego;
1759 gdb_assert (gdbarch->data != NULL);
1760 for (rego = gdbarch_data_registry.registrations;
1761 rego != NULL;
1762 rego = rego->next)
1763 {
1764 struct gdbarch_data *data = rego->data;
1765 gdb_assert (data->index < gdbarch->nr_data);
1766 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1767 {
1768 data->free (gdbarch, gdbarch->data[data->index]);
1769 gdbarch->data[data->index] = NULL;
1770 }
1771 }
1772 xfree (gdbarch->data);
1773 gdbarch->data = NULL;
1774 }
1775
1776
1777 /* Initialize the current value of thee specified per-architecture
1778 data-pointer. */
1779
1780 void
1781 set_gdbarch_data (struct gdbarch *gdbarch,
1782 struct gdbarch_data *data,
1783 void *pointer)
1784 {
1785 gdb_assert (data->index < gdbarch->nr_data);
1786 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1787 data->free (gdbarch, gdbarch->data[data->index]);
1788 gdbarch->data[data->index] = pointer;
1789 }
1790
1791 /* Return the current value of the specified per-architecture
1792 data-pointer. */
1793
1794 void *
1795 gdbarch_data (struct gdbarch_data *data)
1796 {
1797 gdb_assert (data->index < current_gdbarch->nr_data);
1798 return current_gdbarch->data[data->index];
1799 }
1800
1801
1802
1803 /* Keep a registry of swapped data required by GDB modules. */
1804
1805 struct gdbarch_swap
1806 {
1807 void *swap;
1808 struct gdbarch_swap_registration *source;
1809 struct gdbarch_swap *next;
1810 };
1811
1812 struct gdbarch_swap_registration
1813 {
1814 void *data;
1815 unsigned long sizeof_data;
1816 gdbarch_swap_ftype *init;
1817 struct gdbarch_swap_registration *next;
1818 };
1819
1820 struct gdbarch_swap_registry
1821 {
1822 int nr;
1823 struct gdbarch_swap_registration *registrations;
1824 };
1825
1826 struct gdbarch_swap_registry gdbarch_swap_registry =
1827 {
1828 0, NULL,
1829 };
1830
1831 void
1832 register_gdbarch_swap (void *data,
1833 unsigned long sizeof_data,
1834 gdbarch_swap_ftype *init)
1835 {
1836 struct gdbarch_swap_registration **rego;
1837 for (rego = &gdbarch_swap_registry.registrations;
1838 (*rego) != NULL;
1839 rego = &(*rego)->next);
1840 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1841 (*rego)->next = NULL;
1842 (*rego)->init = init;
1843 (*rego)->data = data;
1844 (*rego)->sizeof_data = sizeof_data;
1845 }
1846
1847
1848 static void
1849 init_gdbarch_swap (struct gdbarch *gdbarch)
1850 {
1851 struct gdbarch_swap_registration *rego;
1852 struct gdbarch_swap **curr = &gdbarch->swap;
1853 for (rego = gdbarch_swap_registry.registrations;
1854 rego != NULL;
1855 rego = rego->next)
1856 {
1857 if (rego->data != NULL)
1858 {
1859 (*curr) = XMALLOC (struct gdbarch_swap);
1860 (*curr)->source = rego;
1861 (*curr)->swap = xmalloc (rego->sizeof_data);
1862 (*curr)->next = NULL;
1863 memset (rego->data, 0, rego->sizeof_data);
1864 curr = &(*curr)->next;
1865 }
1866 if (rego->init != NULL)
1867 rego->init ();
1868 }
1869 }
1870
1871 static void
1872 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1873 {
1874 struct gdbarch_swap *curr;
1875 for (curr = gdbarch->swap;
1876 curr != NULL;
1877 curr = curr->next)
1878 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1879 }
1880
1881 static void
1882 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1883 {
1884 struct gdbarch_swap *curr;
1885 for (curr = gdbarch->swap;
1886 curr != NULL;
1887 curr = curr->next)
1888 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1889 }
1890
1891
1892 /* Keep a registry of the architectures known by GDB. */
1893
1894 struct gdbarch_registration
1895 {
1896 enum bfd_architecture bfd_architecture;
1897 gdbarch_init_ftype *init;
1898 gdbarch_dump_tdep_ftype *dump_tdep;
1899 struct gdbarch_list *arches;
1900 struct gdbarch_registration *next;
1901 };
1902
1903 static struct gdbarch_registration *gdbarch_registry = NULL;
1904
1905 static void
1906 append_name (const char ***buf, int *nr, const char *name)
1907 {
1908 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1909 (*buf)[*nr] = name;
1910 *nr += 1;
1911 }
1912
1913 const char **
1914 gdbarch_printable_names (void)
1915 {
1916 if (GDB_MULTI_ARCH)
1917 {
1918 /* Accumulate a list of names based on the registed list of
1919 architectures. */
1920 enum bfd_architecture a;
1921 int nr_arches = 0;
1922 const char **arches = NULL;
1923 struct gdbarch_registration *rego;
1924 for (rego = gdbarch_registry;
1925 rego != NULL;
1926 rego = rego->next)
1927 {
1928 const struct bfd_arch_info *ap;
1929 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1930 if (ap == NULL)
1931 internal_error (__FILE__, __LINE__,
1932 "gdbarch_architecture_names: multi-arch unknown");
1933 do
1934 {
1935 append_name (&arches, &nr_arches, ap->printable_name);
1936 ap = ap->next;
1937 }
1938 while (ap != NULL);
1939 }
1940 append_name (&arches, &nr_arches, NULL);
1941 return arches;
1942 }
1943 else
1944 /* Just return all the architectures that BFD knows. Assume that
1945 the legacy architecture framework supports them. */
1946 return bfd_arch_list ();
1947 }
1948
1949
1950 void
1951 gdbarch_register (enum bfd_architecture bfd_architecture,
1952 gdbarch_init_ftype *init,
1953 gdbarch_dump_tdep_ftype *dump_tdep)
1954 {
1955 struct gdbarch_registration **curr;
1956 const struct bfd_arch_info *bfd_arch_info;
1957 /* Check that BFD recognizes this architecture */
1958 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1959 if (bfd_arch_info == NULL)
1960 {
1961 internal_error (__FILE__, __LINE__,
1962 "gdbarch: Attempt to register unknown architecture (%d)",
1963 bfd_architecture);
1964 }
1965 /* Check that we haven't seen this architecture before */
1966 for (curr = &gdbarch_registry;
1967 (*curr) != NULL;
1968 curr = &(*curr)->next)
1969 {
1970 if (bfd_architecture == (*curr)->bfd_architecture)
1971 internal_error (__FILE__, __LINE__,
1972 "gdbarch: Duplicate registraration of architecture (%s)",
1973 bfd_arch_info->printable_name);
1974 }
1975 /* log it */
1976 if (gdbarch_debug)
1977 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1978 bfd_arch_info->printable_name,
1979 (long) init);
1980 /* Append it */
1981 (*curr) = XMALLOC (struct gdbarch_registration);
1982 (*curr)->bfd_architecture = bfd_architecture;
1983 (*curr)->init = init;
1984 (*curr)->dump_tdep = dump_tdep;
1985 (*curr)->arches = NULL;
1986 (*curr)->next = NULL;
1987 /* When non- multi-arch, install whatever target dump routine we've
1988 been provided - hopefully that routine has been written correctly
1989 and works regardless of multi-arch. */
1990 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1991 && startup_gdbarch.dump_tdep == NULL)
1992 startup_gdbarch.dump_tdep = dump_tdep;
1993 }
1994
1995 void
1996 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1997 gdbarch_init_ftype *init)
1998 {
1999 gdbarch_register (bfd_architecture, init, NULL);
2000 }
2001
2002
2003 /* Look for an architecture using gdbarch_info. Base search on only
2004 BFD_ARCH_INFO and BYTE_ORDER. */
2005
2006 struct gdbarch_list *
2007 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2008 const struct gdbarch_info *info)
2009 {
2010 for (; arches != NULL; arches = arches->next)
2011 {
2012 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2013 continue;
2014 if (info->byte_order != arches->gdbarch->byte_order)
2015 continue;
2016 return arches;
2017 }
2018 return NULL;
2019 }
2020
2021
2022 /* Update the current architecture. Return ZERO if the update request
2023 failed. */
2024
2025 int
2026 gdbarch_update_p (struct gdbarch_info info)
2027 {
2028 struct gdbarch *new_gdbarch;
2029 struct gdbarch_list **list;
2030 struct gdbarch_registration *rego;
2031
2032 /* Fill in missing parts of the INFO struct using a number of
2033 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2034
2035 /* \`\`(gdb) set architecture ...'' */
2036 if (info.bfd_arch_info == NULL
2037 && !TARGET_ARCHITECTURE_AUTO)
2038 info.bfd_arch_info = TARGET_ARCHITECTURE;
2039 if (info.bfd_arch_info == NULL
2040 && info.abfd != NULL
2041 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2042 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2043 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2044 if (info.bfd_arch_info == NULL)
2045 info.bfd_arch_info = TARGET_ARCHITECTURE;
2046
2047 /* \`\`(gdb) set byte-order ...'' */
2048 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2049 && !TARGET_BYTE_ORDER_AUTO)
2050 info.byte_order = TARGET_BYTE_ORDER;
2051 /* From the INFO struct. */
2052 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2053 && info.abfd != NULL)
2054 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2055 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2056 : BFD_ENDIAN_UNKNOWN);
2057 /* From the current target. */
2058 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2059 info.byte_order = TARGET_BYTE_ORDER;
2060
2061 /* Must have found some sort of architecture. */
2062 gdb_assert (info.bfd_arch_info != NULL);
2063
2064 if (gdbarch_debug)
2065 {
2066 fprintf_unfiltered (gdb_stdlog,
2067 "gdbarch_update: info.bfd_arch_info %s\n",
2068 (info.bfd_arch_info != NULL
2069 ? info.bfd_arch_info->printable_name
2070 : "(null)"));
2071 fprintf_unfiltered (gdb_stdlog,
2072 "gdbarch_update: info.byte_order %d (%s)\n",
2073 info.byte_order,
2074 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2075 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2076 : "default"));
2077 fprintf_unfiltered (gdb_stdlog,
2078 "gdbarch_update: info.abfd 0x%lx\n",
2079 (long) info.abfd);
2080 fprintf_unfiltered (gdb_stdlog,
2081 "gdbarch_update: info.tdep_info 0x%lx\n",
2082 (long) info.tdep_info);
2083 }
2084
2085 /* Find the target that knows about this architecture. */
2086 for (rego = gdbarch_registry;
2087 rego != NULL;
2088 rego = rego->next)
2089 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2090 break;
2091 if (rego == NULL)
2092 {
2093 if (gdbarch_debug)
2094 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2095 return 0;
2096 }
2097
2098 /* Ask the target for a replacement architecture. */
2099 new_gdbarch = rego->init (info, rego->arches);
2100
2101 /* Did the target like it? No. Reject the change. */
2102 if (new_gdbarch == NULL)
2103 {
2104 if (gdbarch_debug)
2105 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2106 return 0;
2107 }
2108
2109 /* Did the architecture change? No. Do nothing. */
2110 if (current_gdbarch == new_gdbarch)
2111 {
2112 if (gdbarch_debug)
2113 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2114 (long) new_gdbarch,
2115 new_gdbarch->bfd_arch_info->printable_name);
2116 return 1;
2117 }
2118
2119 /* Swap all data belonging to the old target out */
2120 swapout_gdbarch_swap (current_gdbarch);
2121
2122 /* Is this a pre-existing architecture? Yes. Swap it in. */
2123 for (list = &rego->arches;
2124 (*list) != NULL;
2125 list = &(*list)->next)
2126 {
2127 if ((*list)->gdbarch == new_gdbarch)
2128 {
2129 if (gdbarch_debug)
2130 fprintf_unfiltered (gdb_stdlog,
2131 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2132 (long) new_gdbarch,
2133 new_gdbarch->bfd_arch_info->printable_name);
2134 current_gdbarch = new_gdbarch;
2135 swapin_gdbarch_swap (new_gdbarch);
2136 architecture_changed_event ();
2137 return 1;
2138 }
2139 }
2140
2141 /* Append this new architecture to this targets list. */
2142 (*list) = XMALLOC (struct gdbarch_list);
2143 (*list)->next = NULL;
2144 (*list)->gdbarch = new_gdbarch;
2145
2146 /* Switch to this new architecture. Dump it out. */
2147 current_gdbarch = new_gdbarch;
2148 if (gdbarch_debug)
2149 {
2150 fprintf_unfiltered (gdb_stdlog,
2151 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2152 (long) new_gdbarch,
2153 new_gdbarch->bfd_arch_info->printable_name);
2154 }
2155
2156 /* Check that the newly installed architecture is valid. Plug in
2157 any post init values. */
2158 new_gdbarch->dump_tdep = rego->dump_tdep;
2159 verify_gdbarch (new_gdbarch);
2160
2161 /* Initialize the per-architecture memory (swap) areas.
2162 CURRENT_GDBARCH must be update before these modules are
2163 called. */
2164 init_gdbarch_swap (new_gdbarch);
2165
2166 /* Initialize the per-architecture data-pointer of all parties that
2167 registered an interest in this architecture. CURRENT_GDBARCH
2168 must be updated before these modules are called. */
2169 init_gdbarch_data (new_gdbarch);
2170 architecture_changed_event ();
2171
2172 if (gdbarch_debug)
2173 gdbarch_dump (current_gdbarch, gdb_stdlog);
2174
2175 return 1;
2176 }
2177
2178
2179 /* Disassembler */
2180
2181 /* Pointer to the target-dependent disassembly function. */
2182 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2183 disassemble_info tm_print_insn_info;
2184
2185
2186 extern void _initialize_gdbarch (void);
2187
2188 void
2189 _initialize_gdbarch (void)
2190 {
2191 struct cmd_list_element *c;
2192
2193 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2194 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2195 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2196 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2197 tm_print_insn_info.print_address_func = dis_asm_print_address;
2198
2199 add_show_from_set (add_set_cmd ("arch",
2200 class_maintenance,
2201 var_zinteger,
2202 (char *)&gdbarch_debug,
2203 "Set architecture debugging.\\n\\
2204 When non-zero, architecture debugging is enabled.", &setdebuglist),
2205 &showdebuglist);
2206 c = add_set_cmd ("archdebug",
2207 class_maintenance,
2208 var_zinteger,
2209 (char *)&gdbarch_debug,
2210 "Set architecture debugging.\\n\\
2211 When non-zero, architecture debugging is enabled.", &setlist);
2212
2213 deprecate_cmd (c, "set debug arch");
2214 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2215 }
2216 EOF
2217
2218 # close things off
2219 exec 1>&2
2220 #../move-if-change new-gdbarch.c gdbarch.c
2221 compare_new gdbarch.c
This page took 0.081131 seconds and 4 git commands to generate.