2004-03-15 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
132 fi
133 ;;
134 * )
135 echo "Predicate function ${function} with invalid_p." 1>&2
136 kill $$
137 exit 1
138 ;;
139 esac
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
149 if [ -n "${postdefault}" ]
150 then
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
153 then
154 fallbackdefault="${predefault}"
155 else
156 fallbackdefault="0"
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
163 fi
164 done
165 if [ -n "${class}" ]
166 then
167 true
168 else
169 false
170 fi
171 }
172
173
174 fallback_default_p ()
175 {
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
178 }
179
180 class_is_variable_p ()
181 {
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
186 }
187
188 class_is_function_p ()
189 {
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194 }
195
196 class_is_multiarch_p ()
197 {
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
202 }
203
204 class_is_predicate_p ()
205 {
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
210 }
211
212 class_is_info_p ()
213 {
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
218 }
219
220
221 # dump out/verify the doco
222 for field in ${read}
223 do
224 case ${field} in
225
226 class ) : ;;
227
228 # # -> line disable
229 # f -> function
230 # hiding a function
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
233 # v -> variable
234 # hiding a variable
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
237 # i -> set from info
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
243
244 level ) : ;;
245
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
249
250 macro ) : ;;
251
252 # The name of the MACRO that this method is to be accessed by.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 attrib ) : ;;
278
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
281
282 staticdefault ) : ;;
283
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
288
289 # If STATICDEFAULT is empty, zero is used.
290
291 predefault ) : ;;
292
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
297
298 # If PREDEFAULT is empty, zero is used.
299
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
332
333 invalid_p ) : ;;
334
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
347
348 # See also PREDEFAULT and POSTDEFAULT.
349
350 fmt ) : ;;
351
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
356 # If FMT is empty, ``%ld'' is used.
357
358 print ) : ;;
359
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
363 # If PRINT is empty, ``(long)'' is used.
364
365 print_p ) : ;;
366
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
373
374 # If PRINT_P is empty, ``1'' is always used.
375
376 description ) : ;;
377
378 # Currently unused.
379
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
383 esac
384 done
385
386
387 function_list ()
388 {
389 # See below (DOCO) for description of each field
390 cat <<EOF
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
392 #
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
394 #
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
399 #
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
407 # machine.
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
419 #
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422 #
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
429 #
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
432 #
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 # Implement PUSH_RETURN_ADDRESS, and then merge in
523 # DEPRECATED_PUSH_RETURN_ADDRESS.
524 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
525 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527 # DEPRECATED_REGISTER_SIZE can be deleted.
528 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
541 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
542 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
543 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
544 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
545 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
546 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
547
548 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
549 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
550 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
551 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
552 # MAP a GDB RAW register number onto a simulator register number. See
553 # also include/...-sim.h.
554 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
555 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
556 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
557 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
558 # setjmp/longjmp support.
559 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
560 # NOTE: cagney/2002-11-24: This function with predicate has a valid
561 # (callable) initial value. As a consequence, even when the predicate
562 # is false, the corresponding function works. This simplifies the
563 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
564 # doesn't need to be modified.
565 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
566 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
567 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
568 #
569 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
570 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
571 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
572 #
573 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
574 # For raw <-> cooked register conversions, replaced by pseudo registers.
575 F::DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr
576 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
577 # For raw <-> cooked register conversions, replaced by pseudo registers.
578 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
579 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580 # For raw <-> cooked register conversions, replaced by pseudo registers.
581 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
582 #
583 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
584 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
585 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
586 #
587 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
588 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
589 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
590 #
591 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
592 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
593 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
594
595 # It has been suggested that this, well actually its predecessor,
596 # should take the type/value of the function to be called and not the
597 # return type. This is left as an exercise for the reader.
598
599 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
600
601 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
602 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
603 # into RETURN_VALUE.
604
605 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
606 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
607 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
608 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
609 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
610 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
611
612 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
613 # ABI suitable for the implementation of a robust extract
614 # struct-convention return-value address method (the sparc saves the
615 # address in the callers frame). All the other cases so far examined,
616 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
617 # erreneous - the code was incorrectly assuming that the return-value
618 # address, stored in a register, was preserved across the entire
619 # function call.
620
621 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
622 # the ABIs that are still to be analyzed - perhaps this should simply
623 # be deleted. The commented out extract_returned_value_address method
624 # is provided as a starting point for the 32-bit SPARC. It, or
625 # something like it, along with changes to both infcmd.c and stack.c
626 # will be needed for that case to work. NB: It is passed the callers
627 # frame since it is only after the callee has returned that this
628 # function is used.
629
630 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
631 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
632
633 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
634 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
635 #
636 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
637 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
638 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
639 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
640 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
641 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
642 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
643 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
644 #
645 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
646 #
647 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
648 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
649 # frame code works regardless of the type of frame - frameless,
650 # stackless, or normal.
651 F::DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
652 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
653 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
654 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
655 # note, per UNWIND_PC's doco, that while the two have similar
656 # interfaces they have very different underlying implementations.
657 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
658 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
659 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
660 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
661 # frame-base. Enable frame-base before frame-unwind.
662 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
663 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
664 # frame-base. Enable frame-base before frame-unwind.
665 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
666 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
667 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
668 #
669 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
670 # to frame_align and the requirement that methods such as
671 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
672 # alignment.
673 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
674 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
675 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
676 # stabs_argument_has_addr.
677 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
678 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
679 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
680 v:2:PARM_BOUNDARY:int:parm_boundary
681 #
682 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
683 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
684 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
685 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
686 # On some machines there are bits in addresses which are not really
687 # part of the address, but are used by the kernel, the hardware, etc.
688 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
689 # we get a "real" address such as one would find in a symbol table.
690 # This is used only for addresses of instructions, and even then I'm
691 # not sure it's used in all contexts. It exists to deal with there
692 # being a few stray bits in the PC which would mislead us, not as some
693 # sort of generic thing to handle alignment or segmentation (it's
694 # possible it should be in TARGET_READ_PC instead).
695 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
696 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
697 # ADDR_BITS_REMOVE.
698 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
699 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
700 # the target needs software single step. An ISA method to implement it.
701 #
702 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
703 # using the breakpoint system instead of blatting memory directly (as with rs6000).
704 #
705 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
706 # single step. If not, then implement single step using breakpoints.
707 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
708 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
709 # disassembler. Perhaphs objdump can handle it?
710 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
711 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
712
713
714 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
715 # evaluates non-zero, this is the address where the debugger will place
716 # a step-resume breakpoint to get us past the dynamic linker.
717 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
718 # For SVR4 shared libraries, each call goes through a small piece of
719 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
720 # to nonzero if we are currently stopped in one of these.
721 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
722
723 # Some systems also have trampoline code for returning from shared libs.
724 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
725
726 # Sigtramp is a routine that the kernel calls (which then calls the
727 # signal handler). On most machines it is a library routine that is
728 # linked into the executable.
729 #
730 # This macro, given a program counter value and the name of the
731 # function in which that PC resides (which can be null if the name is
732 # not known), returns nonzero if the PC and name show that we are in
733 # sigtramp.
734 #
735 # On most machines just see if the name is sigtramp (and if we have
736 # no name, assume we are not in sigtramp).
737 #
738 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
739 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
740 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
741 # own local NAME lookup.
742 #
743 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
744 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
745 # does not.
746 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
747 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
748 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
749 # A target might have problems with watchpoints as soon as the stack
750 # frame of the current function has been destroyed. This mostly happens
751 # as the first action in a funtion's epilogue. in_function_epilogue_p()
752 # is defined to return a non-zero value if either the given addr is one
753 # instruction after the stack destroying instruction up to the trailing
754 # return instruction or if we can figure out that the stack frame has
755 # already been invalidated regardless of the value of addr. Targets
756 # which don't suffer from that problem could just let this functionality
757 # untouched.
758 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
759 # Given a vector of command-line arguments, return a newly allocated
760 # string which, when passed to the create_inferior function, will be
761 # parsed (on Unix systems, by the shell) to yield the same vector.
762 # This function should call error() if the argument vector is not
763 # representable for this target or if this target does not support
764 # command-line arguments.
765 # ARGC is the number of elements in the vector.
766 # ARGV is an array of strings, one per argument.
767 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
768 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
769 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
770 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
771 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
772 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
773 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
774 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
775 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
776 # Is a register in a group
777 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
778 # Fetch the pointer to the ith function argument.
779 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
780
781 # Return the appropriate register set for a core file section with
782 # name SECT_NAME and size SECT_SIZE.
783 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
784 EOF
785 }
786
787 #
788 # The .log file
789 #
790 exec > new-gdbarch.log
791 function_list | while do_read
792 do
793 cat <<EOF
794 ${class} ${macro}(${actual})
795 ${returntype} ${function} ($formal)${attrib}
796 EOF
797 for r in ${read}
798 do
799 eval echo \"\ \ \ \ ${r}=\${${r}}\"
800 done
801 if class_is_predicate_p && fallback_default_p
802 then
803 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
804 kill $$
805 exit 1
806 fi
807 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
808 then
809 echo "Error: postdefault is useless when invalid_p=0" 1>&2
810 kill $$
811 exit 1
812 fi
813 if class_is_multiarch_p
814 then
815 if class_is_predicate_p ; then :
816 elif test "x${predefault}" = "x"
817 then
818 echo "Error: pure multi-arch function must have a predefault" 1>&2
819 kill $$
820 exit 1
821 fi
822 fi
823 echo ""
824 done
825
826 exec 1>&2
827 compare_new gdbarch.log
828
829
830 copyright ()
831 {
832 cat <<EOF
833 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
834
835 /* Dynamic architecture support for GDB, the GNU debugger.
836
837 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
838 Software Foundation, Inc.
839
840 This file is part of GDB.
841
842 This program is free software; you can redistribute it and/or modify
843 it under the terms of the GNU General Public License as published by
844 the Free Software Foundation; either version 2 of the License, or
845 (at your option) any later version.
846
847 This program is distributed in the hope that it will be useful,
848 but WITHOUT ANY WARRANTY; without even the implied warranty of
849 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
850 GNU General Public License for more details.
851
852 You should have received a copy of the GNU General Public License
853 along with this program; if not, write to the Free Software
854 Foundation, Inc., 59 Temple Place - Suite 330,
855 Boston, MA 02111-1307, USA. */
856
857 /* This file was created with the aid of \`\`gdbarch.sh''.
858
859 The Bourne shell script \`\`gdbarch.sh'' creates the files
860 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
861 against the existing \`\`gdbarch.[hc]''. Any differences found
862 being reported.
863
864 If editing this file, please also run gdbarch.sh and merge any
865 changes into that script. Conversely, when making sweeping changes
866 to this file, modifying gdbarch.sh and using its output may prove
867 easier. */
868
869 EOF
870 }
871
872 #
873 # The .h file
874 #
875
876 exec > new-gdbarch.h
877 copyright
878 cat <<EOF
879 #ifndef GDBARCH_H
880 #define GDBARCH_H
881
882 struct floatformat;
883 struct ui_file;
884 struct frame_info;
885 struct value;
886 struct objfile;
887 struct minimal_symbol;
888 struct regcache;
889 struct reggroup;
890 struct regset;
891 struct disassemble_info;
892 struct target_ops;
893 struct obstack;
894
895 extern struct gdbarch *current_gdbarch;
896
897
898 /* If any of the following are defined, the target wasn't correctly
899 converted. */
900
901 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
902 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
903 #endif
904 EOF
905
906 # function typedef's
907 printf "\n"
908 printf "\n"
909 printf "/* The following are pre-initialized by GDBARCH. */\n"
910 function_list | while do_read
911 do
912 if class_is_info_p
913 then
914 printf "\n"
915 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
916 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
917 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
918 printf "#error \"Non multi-arch definition of ${macro}\"\n"
919 printf "#endif\n"
920 printf "#if !defined (${macro})\n"
921 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
922 printf "#endif\n"
923 fi
924 done
925
926 # function typedef's
927 printf "\n"
928 printf "\n"
929 printf "/* The following are initialized by the target dependent code. */\n"
930 function_list | while do_read
931 do
932 if [ -n "${comment}" ]
933 then
934 echo "${comment}" | sed \
935 -e '2 s,#,/*,' \
936 -e '3,$ s,#, ,' \
937 -e '$ s,$, */,'
938 fi
939 if class_is_multiarch_p
940 then
941 if class_is_predicate_p
942 then
943 printf "\n"
944 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
945 fi
946 else
947 if class_is_predicate_p
948 then
949 printf "\n"
950 printf "#if defined (${macro})\n"
951 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
952 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
953 printf "#if !defined (${macro}_P)\n"
954 printf "#define ${macro}_P() (1)\n"
955 printf "#endif\n"
956 printf "#endif\n"
957 printf "\n"
958 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
959 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
960 printf "#error \"Non multi-arch definition of ${macro}\"\n"
961 printf "#endif\n"
962 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
963 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
964 printf "#endif\n"
965 fi
966 fi
967 if class_is_variable_p
968 then
969 printf "\n"
970 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
971 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
972 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
973 printf "#error \"Non multi-arch definition of ${macro}\"\n"
974 printf "#endif\n"
975 printf "#if !defined (${macro})\n"
976 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
977 printf "#endif\n"
978 fi
979 if class_is_function_p
980 then
981 printf "\n"
982 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
983 then
984 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
985 elif class_is_multiarch_p
986 then
987 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
988 else
989 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
990 fi
991 if [ "x${formal}" = "xvoid" ]
992 then
993 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
994 else
995 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
996 fi
997 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
998 if class_is_multiarch_p ; then :
999 else
1000 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
1001 printf "#error \"Non multi-arch definition of ${macro}\"\n"
1002 printf "#endif\n"
1003 if [ "x${actual}" = "x" ]
1004 then
1005 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
1006 elif [ "x${actual}" = "x-" ]
1007 then
1008 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1009 else
1010 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1011 fi
1012 printf "#if !defined (${macro})\n"
1013 if [ "x${actual}" = "x" ]
1014 then
1015 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1016 elif [ "x${actual}" = "x-" ]
1017 then
1018 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1019 else
1020 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1021 fi
1022 printf "#endif\n"
1023 fi
1024 fi
1025 done
1026
1027 # close it off
1028 cat <<EOF
1029
1030 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1031
1032
1033 /* Mechanism for co-ordinating the selection of a specific
1034 architecture.
1035
1036 GDB targets (*-tdep.c) can register an interest in a specific
1037 architecture. Other GDB components can register a need to maintain
1038 per-architecture data.
1039
1040 The mechanisms below ensures that there is only a loose connection
1041 between the set-architecture command and the various GDB
1042 components. Each component can independently register their need
1043 to maintain architecture specific data with gdbarch.
1044
1045 Pragmatics:
1046
1047 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1048 didn't scale.
1049
1050 The more traditional mega-struct containing architecture specific
1051 data for all the various GDB components was also considered. Since
1052 GDB is built from a variable number of (fairly independent)
1053 components it was determined that the global aproach was not
1054 applicable. */
1055
1056
1057 /* Register a new architectural family with GDB.
1058
1059 Register support for the specified ARCHITECTURE with GDB. When
1060 gdbarch determines that the specified architecture has been
1061 selected, the corresponding INIT function is called.
1062
1063 --
1064
1065 The INIT function takes two parameters: INFO which contains the
1066 information available to gdbarch about the (possibly new)
1067 architecture; ARCHES which is a list of the previously created
1068 \`\`struct gdbarch'' for this architecture.
1069
1070 The INFO parameter is, as far as possible, be pre-initialized with
1071 information obtained from INFO.ABFD or the previously selected
1072 architecture.
1073
1074 The ARCHES parameter is a linked list (sorted most recently used)
1075 of all the previously created architures for this architecture
1076 family. The (possibly NULL) ARCHES->gdbarch can used to access
1077 values from the previously selected architecture for this
1078 architecture family. The global \`\`current_gdbarch'' shall not be
1079 used.
1080
1081 The INIT function shall return any of: NULL - indicating that it
1082 doesn't recognize the selected architecture; an existing \`\`struct
1083 gdbarch'' from the ARCHES list - indicating that the new
1084 architecture is just a synonym for an earlier architecture (see
1085 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1086 - that describes the selected architecture (see gdbarch_alloc()).
1087
1088 The DUMP_TDEP function shall print out all target specific values.
1089 Care should be taken to ensure that the function works in both the
1090 multi-arch and non- multi-arch cases. */
1091
1092 struct gdbarch_list
1093 {
1094 struct gdbarch *gdbarch;
1095 struct gdbarch_list *next;
1096 };
1097
1098 struct gdbarch_info
1099 {
1100 /* Use default: NULL (ZERO). */
1101 const struct bfd_arch_info *bfd_arch_info;
1102
1103 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1104 int byte_order;
1105
1106 /* Use default: NULL (ZERO). */
1107 bfd *abfd;
1108
1109 /* Use default: NULL (ZERO). */
1110 struct gdbarch_tdep_info *tdep_info;
1111
1112 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1113 enum gdb_osabi osabi;
1114 };
1115
1116 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1117 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1118
1119 /* DEPRECATED - use gdbarch_register() */
1120 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1121
1122 extern void gdbarch_register (enum bfd_architecture architecture,
1123 gdbarch_init_ftype *,
1124 gdbarch_dump_tdep_ftype *);
1125
1126
1127 /* Return a freshly allocated, NULL terminated, array of the valid
1128 architecture names. Since architectures are registered during the
1129 _initialize phase this function only returns useful information
1130 once initialization has been completed. */
1131
1132 extern const char **gdbarch_printable_names (void);
1133
1134
1135 /* Helper function. Search the list of ARCHES for a GDBARCH that
1136 matches the information provided by INFO. */
1137
1138 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1139
1140
1141 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1142 basic initialization using values obtained from the INFO andTDEP
1143 parameters. set_gdbarch_*() functions are called to complete the
1144 initialization of the object. */
1145
1146 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1147
1148
1149 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1150 It is assumed that the caller freeds the \`\`struct
1151 gdbarch_tdep''. */
1152
1153 extern void gdbarch_free (struct gdbarch *);
1154
1155
1156 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1157 obstack. The memory is freed when the corresponding architecture
1158 is also freed. */
1159
1160 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1161 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1162 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1163
1164
1165 /* Helper function. Force an update of the current architecture.
1166
1167 The actual architecture selected is determined by INFO, \`\`(gdb) set
1168 architecture'' et.al., the existing architecture and BFD's default
1169 architecture. INFO should be initialized to zero and then selected
1170 fields should be updated.
1171
1172 Returns non-zero if the update succeeds */
1173
1174 extern int gdbarch_update_p (struct gdbarch_info info);
1175
1176
1177 /* Helper function. Find an architecture matching info.
1178
1179 INFO should be initialized using gdbarch_info_init, relevant fields
1180 set, and then finished using gdbarch_info_fill.
1181
1182 Returns the corresponding architecture, or NULL if no matching
1183 architecture was found. "current_gdbarch" is not updated. */
1184
1185 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1186
1187
1188 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1189
1190 FIXME: kettenis/20031124: Of the functions that follow, only
1191 gdbarch_from_bfd is supposed to survive. The others will
1192 dissappear since in the future GDB will (hopefully) be truly
1193 multi-arch. However, for now we're still stuck with the concept of
1194 a single active architecture. */
1195
1196 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1197
1198
1199 /* Register per-architecture data-pointer.
1200
1201 Reserve space for a per-architecture data-pointer. An identifier
1202 for the reserved data-pointer is returned. That identifer should
1203 be saved in a local static variable.
1204
1205 Memory for the per-architecture data shall be allocated using
1206 gdbarch_obstack_zalloc. That memory will be deleted when the
1207 corresponding architecture object is deleted.
1208
1209 When a previously created architecture is re-selected, the
1210 per-architecture data-pointer for that previous architecture is
1211 restored. INIT() is not re-called.
1212
1213 Multiple registrarants for any architecture are allowed (and
1214 strongly encouraged). */
1215
1216 struct gdbarch_data;
1217
1218 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1219 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1220 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1221 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1222 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1223 struct gdbarch_data *data,
1224 void *pointer);
1225
1226 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1227
1228
1229
1230 /* Register per-architecture memory region.
1231
1232 Provide a memory-region swap mechanism. Per-architecture memory
1233 region are created. These memory regions are swapped whenever the
1234 architecture is changed. For a new architecture, the memory region
1235 is initialized with zero (0) and the INIT function is called.
1236
1237 Memory regions are swapped / initialized in the order that they are
1238 registered. NULL DATA and/or INIT values can be specified.
1239
1240 New code should use gdbarch_data_register_*(). */
1241
1242 typedef void (gdbarch_swap_ftype) (void);
1243 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1244 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1245
1246
1247
1248 /* Set the dynamic target-system-dependent parameters (architecture,
1249 byte-order, ...) using information found in the BFD */
1250
1251 extern void set_gdbarch_from_file (bfd *);
1252
1253
1254 /* Initialize the current architecture to the "first" one we find on
1255 our list. */
1256
1257 extern void initialize_current_architecture (void);
1258
1259 /* gdbarch trace variable */
1260 extern int gdbarch_debug;
1261
1262 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1263
1264 #endif
1265 EOF
1266 exec 1>&2
1267 #../move-if-change new-gdbarch.h gdbarch.h
1268 compare_new gdbarch.h
1269
1270
1271 #
1272 # C file
1273 #
1274
1275 exec > new-gdbarch.c
1276 copyright
1277 cat <<EOF
1278
1279 #include "defs.h"
1280 #include "arch-utils.h"
1281
1282 #include "gdbcmd.h"
1283 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1284 #include "symcat.h"
1285
1286 #include "floatformat.h"
1287
1288 #include "gdb_assert.h"
1289 #include "gdb_string.h"
1290 #include "gdb-events.h"
1291 #include "reggroups.h"
1292 #include "osabi.h"
1293 #include "gdb_obstack.h"
1294
1295 /* Static function declarations */
1296
1297 static void alloc_gdbarch_data (struct gdbarch *);
1298
1299 /* Non-zero if we want to trace architecture code. */
1300
1301 #ifndef GDBARCH_DEBUG
1302 #define GDBARCH_DEBUG 0
1303 #endif
1304 int gdbarch_debug = GDBARCH_DEBUG;
1305
1306 EOF
1307
1308 # gdbarch open the gdbarch object
1309 printf "\n"
1310 printf "/* Maintain the struct gdbarch object */\n"
1311 printf "\n"
1312 printf "struct gdbarch\n"
1313 printf "{\n"
1314 printf " /* Has this architecture been fully initialized? */\n"
1315 printf " int initialized_p;\n"
1316 printf "\n"
1317 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1318 printf " struct obstack *obstack;\n"
1319 printf "\n"
1320 printf " /* basic architectural information */\n"
1321 function_list | while do_read
1322 do
1323 if class_is_info_p
1324 then
1325 printf " ${returntype} ${function};\n"
1326 fi
1327 done
1328 printf "\n"
1329 printf " /* target specific vector. */\n"
1330 printf " struct gdbarch_tdep *tdep;\n"
1331 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1332 printf "\n"
1333 printf " /* per-architecture data-pointers */\n"
1334 printf " unsigned nr_data;\n"
1335 printf " void **data;\n"
1336 printf "\n"
1337 printf " /* per-architecture swap-regions */\n"
1338 printf " struct gdbarch_swap *swap;\n"
1339 printf "\n"
1340 cat <<EOF
1341 /* Multi-arch values.
1342
1343 When extending this structure you must:
1344
1345 Add the field below.
1346
1347 Declare set/get functions and define the corresponding
1348 macro in gdbarch.h.
1349
1350 gdbarch_alloc(): If zero/NULL is not a suitable default,
1351 initialize the new field.
1352
1353 verify_gdbarch(): Confirm that the target updated the field
1354 correctly.
1355
1356 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1357 field is dumped out
1358
1359 \`\`startup_gdbarch()'': Append an initial value to the static
1360 variable (base values on the host's c-type system).
1361
1362 get_gdbarch(): Implement the set/get functions (probably using
1363 the macro's as shortcuts).
1364
1365 */
1366
1367 EOF
1368 function_list | while do_read
1369 do
1370 if class_is_variable_p
1371 then
1372 printf " ${returntype} ${function};\n"
1373 elif class_is_function_p
1374 then
1375 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1376 fi
1377 done
1378 printf "};\n"
1379
1380 # A pre-initialized vector
1381 printf "\n"
1382 printf "\n"
1383 cat <<EOF
1384 /* The default architecture uses host values (for want of a better
1385 choice). */
1386 EOF
1387 printf "\n"
1388 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1389 printf "\n"
1390 printf "struct gdbarch startup_gdbarch =\n"
1391 printf "{\n"
1392 printf " 1, /* Always initialized. */\n"
1393 printf " NULL, /* The obstack. */\n"
1394 printf " /* basic architecture information */\n"
1395 function_list | while do_read
1396 do
1397 if class_is_info_p
1398 then
1399 printf " ${staticdefault}, /* ${function} */\n"
1400 fi
1401 done
1402 cat <<EOF
1403 /* target specific vector and its dump routine */
1404 NULL, NULL,
1405 /*per-architecture data-pointers and swap regions */
1406 0, NULL, NULL,
1407 /* Multi-arch values */
1408 EOF
1409 function_list | while do_read
1410 do
1411 if class_is_function_p || class_is_variable_p
1412 then
1413 printf " ${staticdefault}, /* ${function} */\n"
1414 fi
1415 done
1416 cat <<EOF
1417 /* startup_gdbarch() */
1418 };
1419
1420 struct gdbarch *current_gdbarch = &startup_gdbarch;
1421 EOF
1422
1423 # Create a new gdbarch struct
1424 cat <<EOF
1425
1426 /* Create a new \`\`struct gdbarch'' based on information provided by
1427 \`\`struct gdbarch_info''. */
1428 EOF
1429 printf "\n"
1430 cat <<EOF
1431 struct gdbarch *
1432 gdbarch_alloc (const struct gdbarch_info *info,
1433 struct gdbarch_tdep *tdep)
1434 {
1435 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1436 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1437 the current local architecture and not the previous global
1438 architecture. This ensures that the new architectures initial
1439 values are not influenced by the previous architecture. Once
1440 everything is parameterised with gdbarch, this will go away. */
1441 struct gdbarch *current_gdbarch;
1442
1443 /* Create an obstack for allocating all the per-architecture memory,
1444 then use that to allocate the architecture vector. */
1445 struct obstack *obstack = XMALLOC (struct obstack);
1446 obstack_init (obstack);
1447 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1448 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1449 current_gdbarch->obstack = obstack;
1450
1451 alloc_gdbarch_data (current_gdbarch);
1452
1453 current_gdbarch->tdep = tdep;
1454 EOF
1455 printf "\n"
1456 function_list | while do_read
1457 do
1458 if class_is_info_p
1459 then
1460 printf " current_gdbarch->${function} = info->${function};\n"
1461 fi
1462 done
1463 printf "\n"
1464 printf " /* Force the explicit initialization of these. */\n"
1465 function_list | while do_read
1466 do
1467 if class_is_function_p || class_is_variable_p
1468 then
1469 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1470 then
1471 printf " current_gdbarch->${function} = ${predefault};\n"
1472 fi
1473 fi
1474 done
1475 cat <<EOF
1476 /* gdbarch_alloc() */
1477
1478 return current_gdbarch;
1479 }
1480 EOF
1481
1482 # Free a gdbarch struct.
1483 printf "\n"
1484 printf "\n"
1485 cat <<EOF
1486 /* Allocate extra space using the per-architecture obstack. */
1487
1488 void *
1489 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1490 {
1491 void *data = obstack_alloc (arch->obstack, size);
1492 memset (data, 0, size);
1493 return data;
1494 }
1495
1496
1497 /* Free a gdbarch struct. This should never happen in normal
1498 operation --- once you've created a gdbarch, you keep it around.
1499 However, if an architecture's init function encounters an error
1500 building the structure, it may need to clean up a partially
1501 constructed gdbarch. */
1502
1503 void
1504 gdbarch_free (struct gdbarch *arch)
1505 {
1506 struct obstack *obstack;
1507 gdb_assert (arch != NULL);
1508 gdb_assert (!arch->initialized_p);
1509 obstack = arch->obstack;
1510 obstack_free (obstack, 0); /* Includes the ARCH. */
1511 xfree (obstack);
1512 }
1513 EOF
1514
1515 # verify a new architecture
1516 cat <<EOF
1517
1518
1519 /* Ensure that all values in a GDBARCH are reasonable. */
1520
1521 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1522 just happens to match the global variable \`\`current_gdbarch''. That
1523 way macros refering to that variable get the local and not the global
1524 version - ulgh. Once everything is parameterised with gdbarch, this
1525 will go away. */
1526
1527 static void
1528 verify_gdbarch (struct gdbarch *current_gdbarch)
1529 {
1530 struct ui_file *log;
1531 struct cleanup *cleanups;
1532 long dummy;
1533 char *buf;
1534 log = mem_fileopen ();
1535 cleanups = make_cleanup_ui_file_delete (log);
1536 /* fundamental */
1537 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1538 fprintf_unfiltered (log, "\n\tbyte-order");
1539 if (current_gdbarch->bfd_arch_info == NULL)
1540 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1541 /* Check those that need to be defined for the given multi-arch level. */
1542 EOF
1543 function_list | while do_read
1544 do
1545 if class_is_function_p || class_is_variable_p
1546 then
1547 if [ "x${invalid_p}" = "x0" ]
1548 then
1549 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1550 elif class_is_predicate_p
1551 then
1552 printf " /* Skip verify of ${function}, has predicate */\n"
1553 # FIXME: See do_read for potential simplification
1554 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1555 then
1556 printf " if (${invalid_p})\n"
1557 printf " current_gdbarch->${function} = ${postdefault};\n"
1558 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1559 then
1560 printf " if (current_gdbarch->${function} == ${predefault})\n"
1561 printf " current_gdbarch->${function} = ${postdefault};\n"
1562 elif [ -n "${postdefault}" ]
1563 then
1564 printf " if (current_gdbarch->${function} == 0)\n"
1565 printf " current_gdbarch->${function} = ${postdefault};\n"
1566 elif [ -n "${invalid_p}" ]
1567 then
1568 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1569 printf " && (${invalid_p}))\n"
1570 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1571 elif [ -n "${predefault}" ]
1572 then
1573 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1574 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1575 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1576 fi
1577 fi
1578 done
1579 cat <<EOF
1580 buf = ui_file_xstrdup (log, &dummy);
1581 make_cleanup (xfree, buf);
1582 if (strlen (buf) > 0)
1583 internal_error (__FILE__, __LINE__,
1584 "verify_gdbarch: the following are invalid ...%s",
1585 buf);
1586 do_cleanups (cleanups);
1587 }
1588 EOF
1589
1590 # dump the structure
1591 printf "\n"
1592 printf "\n"
1593 cat <<EOF
1594 /* Print out the details of the current architecture. */
1595
1596 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1597 just happens to match the global variable \`\`current_gdbarch''. That
1598 way macros refering to that variable get the local and not the global
1599 version - ulgh. Once everything is parameterised with gdbarch, this
1600 will go away. */
1601
1602 void
1603 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1604 {
1605 fprintf_unfiltered (file,
1606 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1607 GDB_MULTI_ARCH);
1608 EOF
1609 function_list | sort -t: -k 3 | while do_read
1610 do
1611 # First the predicate
1612 if class_is_predicate_p
1613 then
1614 if class_is_multiarch_p
1615 then
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1618 printf " gdbarch_${function}_p (current_gdbarch));\n"
1619 else
1620 printf "#ifdef ${macro}_P\n"
1621 printf " fprintf_unfiltered (file,\n"
1622 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1623 printf " \"${macro}_P()\",\n"
1624 printf " XSTRING (${macro}_P ()));\n"
1625 printf " fprintf_unfiltered (file,\n"
1626 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1627 printf " ${macro}_P ());\n"
1628 printf "#endif\n"
1629 fi
1630 fi
1631 # multiarch functions don't have macros.
1632 if class_is_multiarch_p
1633 then
1634 printf " fprintf_unfiltered (file,\n"
1635 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1636 printf " (long) current_gdbarch->${function});\n"
1637 continue
1638 fi
1639 # Print the macro definition.
1640 printf "#ifdef ${macro}\n"
1641 if class_is_function_p
1642 then
1643 printf " fprintf_unfiltered (file,\n"
1644 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1645 printf " \"${macro}(${actual})\",\n"
1646 printf " XSTRING (${macro} (${actual})));\n"
1647 else
1648 printf " fprintf_unfiltered (file,\n"
1649 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1650 printf " XSTRING (${macro}));\n"
1651 fi
1652 if [ "x${print_p}" = "x()" ]
1653 then
1654 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1655 elif [ "x${print_p}" = "x0" ]
1656 then
1657 printf " /* skip print of ${macro}, print_p == 0. */\n"
1658 elif [ -n "${print_p}" ]
1659 then
1660 printf " if (${print_p})\n"
1661 printf " fprintf_unfiltered (file,\n"
1662 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1663 printf " ${print});\n"
1664 elif class_is_function_p
1665 then
1666 printf " fprintf_unfiltered (file,\n"
1667 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1668 printf " (long) current_gdbarch->${function}\n"
1669 printf " /*${macro} ()*/);\n"
1670 else
1671 printf " fprintf_unfiltered (file,\n"
1672 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1673 printf " ${print});\n"
1674 fi
1675 printf "#endif\n"
1676 done
1677 cat <<EOF
1678 if (current_gdbarch->dump_tdep != NULL)
1679 current_gdbarch->dump_tdep (current_gdbarch, file);
1680 }
1681 EOF
1682
1683
1684 # GET/SET
1685 printf "\n"
1686 cat <<EOF
1687 struct gdbarch_tdep *
1688 gdbarch_tdep (struct gdbarch *gdbarch)
1689 {
1690 if (gdbarch_debug >= 2)
1691 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1692 return gdbarch->tdep;
1693 }
1694 EOF
1695 printf "\n"
1696 function_list | while do_read
1697 do
1698 if class_is_predicate_p
1699 then
1700 printf "\n"
1701 printf "int\n"
1702 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1703 printf "{\n"
1704 printf " gdb_assert (gdbarch != NULL);\n"
1705 printf " return ${predicate};\n"
1706 printf "}\n"
1707 fi
1708 if class_is_function_p
1709 then
1710 printf "\n"
1711 printf "${returntype}\n"
1712 if [ "x${formal}" = "xvoid" ]
1713 then
1714 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1715 else
1716 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1717 fi
1718 printf "{\n"
1719 printf " gdb_assert (gdbarch != NULL);\n"
1720 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1721 if class_is_predicate_p && test -n "${predefault}"
1722 then
1723 # Allow a call to a function with a predicate.
1724 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1725 fi
1726 printf " if (gdbarch_debug >= 2)\n"
1727 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1728 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1729 then
1730 if class_is_multiarch_p
1731 then
1732 params="gdbarch"
1733 else
1734 params=""
1735 fi
1736 else
1737 if class_is_multiarch_p
1738 then
1739 params="gdbarch, ${actual}"
1740 else
1741 params="${actual}"
1742 fi
1743 fi
1744 if [ "x${returntype}" = "xvoid" ]
1745 then
1746 printf " gdbarch->${function} (${params});\n"
1747 else
1748 printf " return gdbarch->${function} (${params});\n"
1749 fi
1750 printf "}\n"
1751 printf "\n"
1752 printf "void\n"
1753 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1754 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1755 printf "{\n"
1756 printf " gdbarch->${function} = ${function};\n"
1757 printf "}\n"
1758 elif class_is_variable_p
1759 then
1760 printf "\n"
1761 printf "${returntype}\n"
1762 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1763 printf "{\n"
1764 printf " gdb_assert (gdbarch != NULL);\n"
1765 if [ "x${invalid_p}" = "x0" ]
1766 then
1767 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1768 elif [ -n "${invalid_p}" ]
1769 then
1770 printf " /* Check variable is valid. */\n"
1771 printf " gdb_assert (!(${invalid_p}));\n"
1772 elif [ -n "${predefault}" ]
1773 then
1774 printf " /* Check variable changed from pre-default. */\n"
1775 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1776 fi
1777 printf " if (gdbarch_debug >= 2)\n"
1778 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1779 printf " return gdbarch->${function};\n"
1780 printf "}\n"
1781 printf "\n"
1782 printf "void\n"
1783 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1784 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1785 printf "{\n"
1786 printf " gdbarch->${function} = ${function};\n"
1787 printf "}\n"
1788 elif class_is_info_p
1789 then
1790 printf "\n"
1791 printf "${returntype}\n"
1792 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1793 printf "{\n"
1794 printf " gdb_assert (gdbarch != NULL);\n"
1795 printf " if (gdbarch_debug >= 2)\n"
1796 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1797 printf " return gdbarch->${function};\n"
1798 printf "}\n"
1799 fi
1800 done
1801
1802 # All the trailing guff
1803 cat <<EOF
1804
1805
1806 /* Keep a registry of per-architecture data-pointers required by GDB
1807 modules. */
1808
1809 struct gdbarch_data
1810 {
1811 unsigned index;
1812 int init_p;
1813 gdbarch_data_pre_init_ftype *pre_init;
1814 gdbarch_data_post_init_ftype *post_init;
1815 };
1816
1817 struct gdbarch_data_registration
1818 {
1819 struct gdbarch_data *data;
1820 struct gdbarch_data_registration *next;
1821 };
1822
1823 struct gdbarch_data_registry
1824 {
1825 unsigned nr;
1826 struct gdbarch_data_registration *registrations;
1827 };
1828
1829 struct gdbarch_data_registry gdbarch_data_registry =
1830 {
1831 0, NULL,
1832 };
1833
1834 static struct gdbarch_data *
1835 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1836 gdbarch_data_post_init_ftype *post_init)
1837 {
1838 struct gdbarch_data_registration **curr;
1839 /* Append the new registraration. */
1840 for (curr = &gdbarch_data_registry.registrations;
1841 (*curr) != NULL;
1842 curr = &(*curr)->next);
1843 (*curr) = XMALLOC (struct gdbarch_data_registration);
1844 (*curr)->next = NULL;
1845 (*curr)->data = XMALLOC (struct gdbarch_data);
1846 (*curr)->data->index = gdbarch_data_registry.nr++;
1847 (*curr)->data->pre_init = pre_init;
1848 (*curr)->data->post_init = post_init;
1849 (*curr)->data->init_p = 1;
1850 return (*curr)->data;
1851 }
1852
1853 struct gdbarch_data *
1854 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1855 {
1856 return gdbarch_data_register (pre_init, NULL);
1857 }
1858
1859 struct gdbarch_data *
1860 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1861 {
1862 return gdbarch_data_register (NULL, post_init);
1863 }
1864
1865 /* Create/delete the gdbarch data vector. */
1866
1867 static void
1868 alloc_gdbarch_data (struct gdbarch *gdbarch)
1869 {
1870 gdb_assert (gdbarch->data == NULL);
1871 gdbarch->nr_data = gdbarch_data_registry.nr;
1872 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1873 }
1874
1875 /* Initialize the current value of the specified per-architecture
1876 data-pointer. */
1877
1878 void
1879 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1880 struct gdbarch_data *data,
1881 void *pointer)
1882 {
1883 gdb_assert (data->index < gdbarch->nr_data);
1884 gdb_assert (gdbarch->data[data->index] == NULL);
1885 gdb_assert (data->pre_init == NULL);
1886 gdbarch->data[data->index] = pointer;
1887 }
1888
1889 /* Return the current value of the specified per-architecture
1890 data-pointer. */
1891
1892 void *
1893 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1894 {
1895 gdb_assert (data->index < gdbarch->nr_data);
1896 if (gdbarch->data[data->index] == NULL)
1897 {
1898 /* The data-pointer isn't initialized, call init() to get a
1899 value. */
1900 if (data->pre_init != NULL)
1901 /* Mid architecture creation: pass just the obstack, and not
1902 the entire architecture, as that way it isn't possible for
1903 pre-init code to refer to undefined architecture
1904 fields. */
1905 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1906 else if (gdbarch->initialized_p
1907 && data->post_init != NULL)
1908 /* Post architecture creation: pass the entire architecture
1909 (as all fields are valid), but be careful to also detect
1910 recursive references. */
1911 {
1912 gdb_assert (data->init_p);
1913 data->init_p = 0;
1914 gdbarch->data[data->index] = data->post_init (gdbarch);
1915 data->init_p = 1;
1916 }
1917 else
1918 /* The architecture initialization hasn't completed - punt -
1919 hope that the caller knows what they are doing. Once
1920 deprecated_set_gdbarch_data has been initialized, this can be
1921 changed to an internal error. */
1922 return NULL;
1923 gdb_assert (gdbarch->data[data->index] != NULL);
1924 }
1925 return gdbarch->data[data->index];
1926 }
1927
1928
1929
1930 /* Keep a registry of swapped data required by GDB modules. */
1931
1932 struct gdbarch_swap
1933 {
1934 void *swap;
1935 struct gdbarch_swap_registration *source;
1936 struct gdbarch_swap *next;
1937 };
1938
1939 struct gdbarch_swap_registration
1940 {
1941 void *data;
1942 unsigned long sizeof_data;
1943 gdbarch_swap_ftype *init;
1944 struct gdbarch_swap_registration *next;
1945 };
1946
1947 struct gdbarch_swap_registry
1948 {
1949 int nr;
1950 struct gdbarch_swap_registration *registrations;
1951 };
1952
1953 struct gdbarch_swap_registry gdbarch_swap_registry =
1954 {
1955 0, NULL,
1956 };
1957
1958 void
1959 deprecated_register_gdbarch_swap (void *data,
1960 unsigned long sizeof_data,
1961 gdbarch_swap_ftype *init)
1962 {
1963 struct gdbarch_swap_registration **rego;
1964 for (rego = &gdbarch_swap_registry.registrations;
1965 (*rego) != NULL;
1966 rego = &(*rego)->next);
1967 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1968 (*rego)->next = NULL;
1969 (*rego)->init = init;
1970 (*rego)->data = data;
1971 (*rego)->sizeof_data = sizeof_data;
1972 }
1973
1974 static void
1975 current_gdbarch_swap_init_hack (void)
1976 {
1977 struct gdbarch_swap_registration *rego;
1978 struct gdbarch_swap **curr = &current_gdbarch->swap;
1979 for (rego = gdbarch_swap_registry.registrations;
1980 rego != NULL;
1981 rego = rego->next)
1982 {
1983 if (rego->data != NULL)
1984 {
1985 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1986 struct gdbarch_swap);
1987 (*curr)->source = rego;
1988 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1989 rego->sizeof_data);
1990 (*curr)->next = NULL;
1991 curr = &(*curr)->next;
1992 }
1993 if (rego->init != NULL)
1994 rego->init ();
1995 }
1996 }
1997
1998 static struct gdbarch *
1999 current_gdbarch_swap_out_hack (void)
2000 {
2001 struct gdbarch *old_gdbarch = current_gdbarch;
2002 struct gdbarch_swap *curr;
2003
2004 gdb_assert (old_gdbarch != NULL);
2005 for (curr = old_gdbarch->swap;
2006 curr != NULL;
2007 curr = curr->next)
2008 {
2009 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2010 memset (curr->source->data, 0, curr->source->sizeof_data);
2011 }
2012 current_gdbarch = NULL;
2013 return old_gdbarch;
2014 }
2015
2016 static void
2017 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
2018 {
2019 struct gdbarch_swap *curr;
2020
2021 gdb_assert (current_gdbarch == NULL);
2022 for (curr = new_gdbarch->swap;
2023 curr != NULL;
2024 curr = curr->next)
2025 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2026 current_gdbarch = new_gdbarch;
2027 }
2028
2029
2030 /* Keep a registry of the architectures known by GDB. */
2031
2032 struct gdbarch_registration
2033 {
2034 enum bfd_architecture bfd_architecture;
2035 gdbarch_init_ftype *init;
2036 gdbarch_dump_tdep_ftype *dump_tdep;
2037 struct gdbarch_list *arches;
2038 struct gdbarch_registration *next;
2039 };
2040
2041 static struct gdbarch_registration *gdbarch_registry = NULL;
2042
2043 static void
2044 append_name (const char ***buf, int *nr, const char *name)
2045 {
2046 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2047 (*buf)[*nr] = name;
2048 *nr += 1;
2049 }
2050
2051 const char **
2052 gdbarch_printable_names (void)
2053 {
2054 /* Accumulate a list of names based on the registed list of
2055 architectures. */
2056 enum bfd_architecture a;
2057 int nr_arches = 0;
2058 const char **arches = NULL;
2059 struct gdbarch_registration *rego;
2060 for (rego = gdbarch_registry;
2061 rego != NULL;
2062 rego = rego->next)
2063 {
2064 const struct bfd_arch_info *ap;
2065 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2066 if (ap == NULL)
2067 internal_error (__FILE__, __LINE__,
2068 "gdbarch_architecture_names: multi-arch unknown");
2069 do
2070 {
2071 append_name (&arches, &nr_arches, ap->printable_name);
2072 ap = ap->next;
2073 }
2074 while (ap != NULL);
2075 }
2076 append_name (&arches, &nr_arches, NULL);
2077 return arches;
2078 }
2079
2080
2081 void
2082 gdbarch_register (enum bfd_architecture bfd_architecture,
2083 gdbarch_init_ftype *init,
2084 gdbarch_dump_tdep_ftype *dump_tdep)
2085 {
2086 struct gdbarch_registration **curr;
2087 const struct bfd_arch_info *bfd_arch_info;
2088 /* Check that BFD recognizes this architecture */
2089 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2090 if (bfd_arch_info == NULL)
2091 {
2092 internal_error (__FILE__, __LINE__,
2093 "gdbarch: Attempt to register unknown architecture (%d)",
2094 bfd_architecture);
2095 }
2096 /* Check that we haven't seen this architecture before */
2097 for (curr = &gdbarch_registry;
2098 (*curr) != NULL;
2099 curr = &(*curr)->next)
2100 {
2101 if (bfd_architecture == (*curr)->bfd_architecture)
2102 internal_error (__FILE__, __LINE__,
2103 "gdbarch: Duplicate registraration of architecture (%s)",
2104 bfd_arch_info->printable_name);
2105 }
2106 /* log it */
2107 if (gdbarch_debug)
2108 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2109 bfd_arch_info->printable_name,
2110 (long) init);
2111 /* Append it */
2112 (*curr) = XMALLOC (struct gdbarch_registration);
2113 (*curr)->bfd_architecture = bfd_architecture;
2114 (*curr)->init = init;
2115 (*curr)->dump_tdep = dump_tdep;
2116 (*curr)->arches = NULL;
2117 (*curr)->next = NULL;
2118 }
2119
2120 void
2121 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2122 gdbarch_init_ftype *init)
2123 {
2124 gdbarch_register (bfd_architecture, init, NULL);
2125 }
2126
2127
2128 /* Look for an architecture using gdbarch_info. Base search on only
2129 BFD_ARCH_INFO and BYTE_ORDER. */
2130
2131 struct gdbarch_list *
2132 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2133 const struct gdbarch_info *info)
2134 {
2135 for (; arches != NULL; arches = arches->next)
2136 {
2137 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2138 continue;
2139 if (info->byte_order != arches->gdbarch->byte_order)
2140 continue;
2141 if (info->osabi != arches->gdbarch->osabi)
2142 continue;
2143 return arches;
2144 }
2145 return NULL;
2146 }
2147
2148
2149 /* Find an architecture that matches the specified INFO. Create a new
2150 architecture if needed. Return that new architecture. Assumes
2151 that there is no current architecture. */
2152
2153 static struct gdbarch *
2154 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2155 {
2156 struct gdbarch *new_gdbarch;
2157 struct gdbarch_registration *rego;
2158
2159 /* The existing architecture has been swapped out - all this code
2160 works from a clean slate. */
2161 gdb_assert (current_gdbarch == NULL);
2162
2163 /* Fill in missing parts of the INFO struct using a number of
2164 sources: "set ..."; INFOabfd supplied; and the existing
2165 architecture. */
2166 gdbarch_info_fill (old_gdbarch, &info);
2167
2168 /* Must have found some sort of architecture. */
2169 gdb_assert (info.bfd_arch_info != NULL);
2170
2171 if (gdbarch_debug)
2172 {
2173 fprintf_unfiltered (gdb_stdlog,
2174 "find_arch_by_info: info.bfd_arch_info %s\n",
2175 (info.bfd_arch_info != NULL
2176 ? info.bfd_arch_info->printable_name
2177 : "(null)"));
2178 fprintf_unfiltered (gdb_stdlog,
2179 "find_arch_by_info: info.byte_order %d (%s)\n",
2180 info.byte_order,
2181 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2182 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2183 : "default"));
2184 fprintf_unfiltered (gdb_stdlog,
2185 "find_arch_by_info: info.osabi %d (%s)\n",
2186 info.osabi, gdbarch_osabi_name (info.osabi));
2187 fprintf_unfiltered (gdb_stdlog,
2188 "find_arch_by_info: info.abfd 0x%lx\n",
2189 (long) info.abfd);
2190 fprintf_unfiltered (gdb_stdlog,
2191 "find_arch_by_info: info.tdep_info 0x%lx\n",
2192 (long) info.tdep_info);
2193 }
2194
2195 /* Find the tdep code that knows about this architecture. */
2196 for (rego = gdbarch_registry;
2197 rego != NULL;
2198 rego = rego->next)
2199 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2200 break;
2201 if (rego == NULL)
2202 {
2203 if (gdbarch_debug)
2204 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2205 "No matching architecture\n");
2206 return 0;
2207 }
2208
2209 /* Ask the tdep code for an architecture that matches "info". */
2210 new_gdbarch = rego->init (info, rego->arches);
2211
2212 /* Did the tdep code like it? No. Reject the change and revert to
2213 the old architecture. */
2214 if (new_gdbarch == NULL)
2215 {
2216 if (gdbarch_debug)
2217 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2218 "Target rejected architecture\n");
2219 return NULL;
2220 }
2221
2222 /* Is this a pre-existing architecture (as determined by already
2223 being initialized)? Move it to the front of the architecture
2224 list (keeping the list sorted Most Recently Used). */
2225 if (new_gdbarch->initialized_p)
2226 {
2227 struct gdbarch_list **list;
2228 struct gdbarch_list *this;
2229 if (gdbarch_debug)
2230 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2231 "Previous architecture 0x%08lx (%s) selected\n",
2232 (long) new_gdbarch,
2233 new_gdbarch->bfd_arch_info->printable_name);
2234 /* Find the existing arch in the list. */
2235 for (list = &rego->arches;
2236 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2237 list = &(*list)->next);
2238 /* It had better be in the list of architectures. */
2239 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2240 /* Unlink THIS. */
2241 this = (*list);
2242 (*list) = this->next;
2243 /* Insert THIS at the front. */
2244 this->next = rego->arches;
2245 rego->arches = this;
2246 /* Return it. */
2247 return new_gdbarch;
2248 }
2249
2250 /* It's a new architecture. */
2251 if (gdbarch_debug)
2252 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2253 "New architecture 0x%08lx (%s) selected\n",
2254 (long) new_gdbarch,
2255 new_gdbarch->bfd_arch_info->printable_name);
2256
2257 /* Insert the new architecture into the front of the architecture
2258 list (keep the list sorted Most Recently Used). */
2259 {
2260 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2261 this->next = rego->arches;
2262 this->gdbarch = new_gdbarch;
2263 rego->arches = this;
2264 }
2265
2266 /* Check that the newly installed architecture is valid. Plug in
2267 any post init values. */
2268 new_gdbarch->dump_tdep = rego->dump_tdep;
2269 verify_gdbarch (new_gdbarch);
2270 new_gdbarch->initialized_p = 1;
2271
2272 /* Initialize any per-architecture swap areas. This phase requires
2273 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2274 swap the entire architecture out. */
2275 current_gdbarch = new_gdbarch;
2276 current_gdbarch_swap_init_hack ();
2277 current_gdbarch_swap_out_hack ();
2278
2279 if (gdbarch_debug)
2280 gdbarch_dump (new_gdbarch, gdb_stdlog);
2281
2282 return new_gdbarch;
2283 }
2284
2285 struct gdbarch *
2286 gdbarch_find_by_info (struct gdbarch_info info)
2287 {
2288 /* Save the previously selected architecture, setting the global to
2289 NULL. This stops things like gdbarch->init() trying to use the
2290 previous architecture's configuration. The previous architecture
2291 may not even be of the same architecture family. The most recent
2292 architecture of the same family is found at the head of the
2293 rego->arches list. */
2294 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2295
2296 /* Find the specified architecture. */
2297 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2298
2299 /* Restore the existing architecture. */
2300 gdb_assert (current_gdbarch == NULL);
2301 current_gdbarch_swap_in_hack (old_gdbarch);
2302
2303 return new_gdbarch;
2304 }
2305
2306 /* Make the specified architecture current, swapping the existing one
2307 out. */
2308
2309 void
2310 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2311 {
2312 gdb_assert (new_gdbarch != NULL);
2313 gdb_assert (current_gdbarch != NULL);
2314 gdb_assert (new_gdbarch->initialized_p);
2315 current_gdbarch_swap_out_hack ();
2316 current_gdbarch_swap_in_hack (new_gdbarch);
2317 architecture_changed_event ();
2318 }
2319
2320 extern void _initialize_gdbarch (void);
2321
2322 void
2323 _initialize_gdbarch (void)
2324 {
2325 struct cmd_list_element *c;
2326
2327 add_show_from_set (add_set_cmd ("arch",
2328 class_maintenance,
2329 var_zinteger,
2330 (char *)&gdbarch_debug,
2331 "Set architecture debugging.\\n\\
2332 When non-zero, architecture debugging is enabled.", &setdebuglist),
2333 &showdebuglist);
2334 c = add_set_cmd ("archdebug",
2335 class_maintenance,
2336 var_zinteger,
2337 (char *)&gdbarch_debug,
2338 "Set architecture debugging.\\n\\
2339 When non-zero, architecture debugging is enabled.", &setlist);
2340
2341 deprecate_cmd (c, "set debug arch");
2342 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2343 }
2344 EOF
2345
2346 # close things off
2347 exec 1>&2
2348 #../move-if-change new-gdbarch.c gdbarch.c
2349 compare_new gdbarch.c
This page took 0.09019 seconds and 4 git commands to generate.