* gdbarch.sh (SIGTRAMP_START, SIGTRAMP_END): New methods.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 #
471 F:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
472 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
473 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475 # MAP a GDB RAW register number onto a simulator register number. See
476 # also include/...-sim.h.
477 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
478 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
479 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
480 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
481 # setjmp/longjmp support.
482 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
483 #
484 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
485 # much better but at least they are vaguely consistent). The headers
486 # and body contain convoluted #if/#else sequences for determine how
487 # things should be compiled. Instead of trying to mimic that
488 # behaviour here (and hence entrench it further) gdbarch simply
489 # reqires that these methods be set up from the word go. This also
490 # avoids any potential problems with moving beyond multi-arch partial.
491 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
492 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
493 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
494 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
495 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
496 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
497 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
498 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
499 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
500 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
501 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
502 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
503 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
504 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
505 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
506 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
507 #
508 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
509 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
510 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
511 f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
512 #
513 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
514 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
516 #
517 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
518 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
519 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
520 #
521 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
522 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
523 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
524 #
525 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
526 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
527 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
528 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
529 f:2:POP_FRAME:void:pop_frame:void:-:::0
530 #
531 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
532 #
533 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
534 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
535 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
536 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
537 #
538 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
539 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
540 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
541 #
542 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
543 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
544 #
545 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
546 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
547 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
548 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
549 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
551 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
552 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
553 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554 #
555 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
556 #
557 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
558 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
559 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
560 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
562 # given frame is the outermost one and has no caller.
563 #
564 # XXXX - both default and alternate frame_chain_valid functions are
565 # deprecated. New code should use dummy frames and one of the generic
566 # functions.
567 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
568 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573 #
574 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
575 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
576 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
577 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
578 v:2:PARM_BOUNDARY:int:parm_boundary
579 #
580 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
581 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
582 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
583 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
584 # On some machines there are bits in addresses which are not really
585 # part of the address, but are used by the kernel, the hardware, etc.
586 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
587 # we get a "real" address such as one would find in a symbol table.
588 # This is used only for addresses of instructions, and even then I'm
589 # not sure it's used in all contexts. It exists to deal with there
590 # being a few stray bits in the PC which would mislead us, not as some
591 # sort of generic thing to handle alignment or segmentation (it's
592 # possible it should be in TARGET_READ_PC instead).
593 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
594 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
595 # ADDR_BITS_REMOVE.
596 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
598 # the target needs software single step. An ISA method to implement it.
599 #
600 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
601 # using the breakpoint system instead of blatting memory directly (as with rs6000).
602 #
603 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
604 # single step. If not, then implement single step using breakpoints.
605 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
606 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
607 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
608
609
610 # For SVR4 shared libraries, each call goes through a small piece of
611 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
612 # to nonzero if we are currently stopped in one of these.
613 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
614
615 # Some systems also have trampoline code for returning from shared libs.
616 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
617
618 # Sigtramp is a routine that the kernel calls (which then calls the
619 # signal handler). On most machines it is a library routine that is
620 # linked into the executable.
621 #
622 # This macro, given a program counter value and the name of the
623 # function in which that PC resides (which can be null if the name is
624 # not known), returns nonzero if the PC and name show that we are in
625 # sigtramp.
626 #
627 # On most machines just see if the name is sigtramp (and if we have
628 # no name, assume we are not in sigtramp).
629 #
630 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
631 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
632 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
633 # own local NAME lookup.
634 #
635 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
636 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
637 # does not.
638 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
639 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
640 f:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc:::::0
641 # A target might have problems with watchpoints as soon as the stack
642 # frame of the current function has been destroyed. This mostly happens
643 # as the first action in a funtion's epilogue. in_function_epilogue_p()
644 # is defined to return a non-zero value if either the given addr is one
645 # instruction after the stack destroying instruction up to the trailing
646 # return instruction or if we can figure out that the stack frame has
647 # already been invalidated regardless of the value of addr. Targets
648 # which don't suffer from that problem could just let this functionality
649 # untouched.
650 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
651 # Given a vector of command-line arguments, return a newly allocated
652 # string which, when passed to the create_inferior function, will be
653 # parsed (on Unix systems, by the shell) to yield the same vector.
654 # This function should call error() if the argument vector is not
655 # representable for this target or if this target does not support
656 # command-line arguments.
657 # ARGC is the number of elements in the vector.
658 # ARGV is an array of strings, one per argument.
659 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
660 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
661 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
662 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
663 EOF
664 }
665
666 #
667 # The .log file
668 #
669 exec > new-gdbarch.log
670 function_list | while do_read
671 do
672 cat <<EOF
673 ${class} ${macro}(${actual})
674 ${returntype} ${function} ($formal)${attrib}
675 EOF
676 for r in ${read}
677 do
678 eval echo \"\ \ \ \ ${r}=\${${r}}\"
679 done
680 # #fallbackdefault=${fallbackdefault}
681 # #valid_p=${valid_p}
682 #EOF
683 if class_is_predicate_p && fallback_default_p
684 then
685 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
686 kill $$
687 exit 1
688 fi
689 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
690 then
691 echo "Error: postdefault is useless when invalid_p=0" 1>&2
692 kill $$
693 exit 1
694 fi
695 if class_is_multiarch_p
696 then
697 if class_is_predicate_p ; then :
698 elif test "x${predefault}" = "x"
699 then
700 echo "Error: pure multi-arch function must have a predefault" 1>&2
701 kill $$
702 exit 1
703 fi
704 fi
705 echo ""
706 done
707
708 exec 1>&2
709 compare_new gdbarch.log
710
711
712 copyright ()
713 {
714 cat <<EOF
715 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
716
717 /* Dynamic architecture support for GDB, the GNU debugger.
718 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
719
720 This file is part of GDB.
721
722 This program is free software; you can redistribute it and/or modify
723 it under the terms of the GNU General Public License as published by
724 the Free Software Foundation; either version 2 of the License, or
725 (at your option) any later version.
726
727 This program is distributed in the hope that it will be useful,
728 but WITHOUT ANY WARRANTY; without even the implied warranty of
729 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
730 GNU General Public License for more details.
731
732 You should have received a copy of the GNU General Public License
733 along with this program; if not, write to the Free Software
734 Foundation, Inc., 59 Temple Place - Suite 330,
735 Boston, MA 02111-1307, USA. */
736
737 /* This file was created with the aid of \`\`gdbarch.sh''.
738
739 The Bourne shell script \`\`gdbarch.sh'' creates the files
740 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
741 against the existing \`\`gdbarch.[hc]''. Any differences found
742 being reported.
743
744 If editing this file, please also run gdbarch.sh and merge any
745 changes into that script. Conversely, when making sweeping changes
746 to this file, modifying gdbarch.sh and using its output may prove
747 easier. */
748
749 EOF
750 }
751
752 #
753 # The .h file
754 #
755
756 exec > new-gdbarch.h
757 copyright
758 cat <<EOF
759 #ifndef GDBARCH_H
760 #define GDBARCH_H
761
762 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
763 #if !GDB_MULTI_ARCH
764 /* Pull in function declarations refered to, indirectly, via macros. */
765 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
766 #include "inferior.h" /* For unsigned_address_to_pointer(). */
767 #endif
768
769 struct frame_info;
770 struct value;
771 struct objfile;
772 struct minimal_symbol;
773 struct regcache;
774
775 extern struct gdbarch *current_gdbarch;
776
777
778 /* If any of the following are defined, the target wasn't correctly
779 converted. */
780
781 #if GDB_MULTI_ARCH
782 #if defined (EXTRA_FRAME_INFO)
783 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
784 #endif
785 #endif
786
787 #if GDB_MULTI_ARCH
788 #if defined (FRAME_FIND_SAVED_REGS)
789 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
790 #endif
791 #endif
792
793 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
794 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
795 #endif
796 EOF
797
798 # function typedef's
799 printf "\n"
800 printf "\n"
801 printf "/* The following are pre-initialized by GDBARCH. */\n"
802 function_list | while do_read
803 do
804 if class_is_info_p
805 then
806 printf "\n"
807 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
808 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
809 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
810 printf "#error \"Non multi-arch definition of ${macro}\"\n"
811 printf "#endif\n"
812 printf "#if GDB_MULTI_ARCH\n"
813 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
814 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
815 printf "#endif\n"
816 printf "#endif\n"
817 fi
818 done
819
820 # function typedef's
821 printf "\n"
822 printf "\n"
823 printf "/* The following are initialized by the target dependent code. */\n"
824 function_list | while do_read
825 do
826 if [ -n "${comment}" ]
827 then
828 echo "${comment}" | sed \
829 -e '2 s,#,/*,' \
830 -e '3,$ s,#, ,' \
831 -e '$ s,$, */,'
832 fi
833 if class_is_multiarch_p
834 then
835 if class_is_predicate_p
836 then
837 printf "\n"
838 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
839 fi
840 else
841 if class_is_predicate_p
842 then
843 printf "\n"
844 printf "#if defined (${macro})\n"
845 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
846 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
847 printf "#if !defined (${macro}_P)\n"
848 printf "#define ${macro}_P() (1)\n"
849 printf "#endif\n"
850 printf "#endif\n"
851 printf "\n"
852 printf "/* Default predicate for non- multi-arch targets. */\n"
853 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
854 printf "#define ${macro}_P() (0)\n"
855 printf "#endif\n"
856 printf "\n"
857 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
858 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
859 printf "#error \"Non multi-arch definition of ${macro}\"\n"
860 printf "#endif\n"
861 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
862 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
863 printf "#endif\n"
864 fi
865 fi
866 if class_is_variable_p
867 then
868 if fallback_default_p || class_is_predicate_p
869 then
870 printf "\n"
871 printf "/* Default (value) for non- multi-arch platforms. */\n"
872 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
873 echo "#define ${macro} (${fallbackdefault})" \
874 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
875 printf "#endif\n"
876 fi
877 printf "\n"
878 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
879 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
880 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
881 printf "#error \"Non multi-arch definition of ${macro}\"\n"
882 printf "#endif\n"
883 printf "#if GDB_MULTI_ARCH\n"
884 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
885 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
886 printf "#endif\n"
887 printf "#endif\n"
888 fi
889 if class_is_function_p
890 then
891 if class_is_multiarch_p ; then :
892 elif fallback_default_p || class_is_predicate_p
893 then
894 printf "\n"
895 printf "/* Default (function) for non- multi-arch platforms. */\n"
896 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
897 if [ "x${fallbackdefault}" = "x0" ]
898 then
899 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
900 else
901 # FIXME: Should be passing current_gdbarch through!
902 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
903 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
904 fi
905 printf "#endif\n"
906 fi
907 printf "\n"
908 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
909 then
910 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
911 elif class_is_multiarch_p
912 then
913 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
914 else
915 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
916 fi
917 if [ "x${formal}" = "xvoid" ]
918 then
919 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
920 else
921 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
922 fi
923 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
924 if class_is_multiarch_p ; then :
925 else
926 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
927 printf "#error \"Non multi-arch definition of ${macro}\"\n"
928 printf "#endif\n"
929 printf "#if GDB_MULTI_ARCH\n"
930 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
931 if [ "x${actual}" = "x" ]
932 then
933 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
934 elif [ "x${actual}" = "x-" ]
935 then
936 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
937 else
938 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
939 fi
940 printf "#endif\n"
941 printf "#endif\n"
942 fi
943 fi
944 done
945
946 # close it off
947 cat <<EOF
948
949 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
950
951
952 /* Mechanism for co-ordinating the selection of a specific
953 architecture.
954
955 GDB targets (*-tdep.c) can register an interest in a specific
956 architecture. Other GDB components can register a need to maintain
957 per-architecture data.
958
959 The mechanisms below ensures that there is only a loose connection
960 between the set-architecture command and the various GDB
961 components. Each component can independently register their need
962 to maintain architecture specific data with gdbarch.
963
964 Pragmatics:
965
966 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
967 didn't scale.
968
969 The more traditional mega-struct containing architecture specific
970 data for all the various GDB components was also considered. Since
971 GDB is built from a variable number of (fairly independent)
972 components it was determined that the global aproach was not
973 applicable. */
974
975
976 /* Register a new architectural family with GDB.
977
978 Register support for the specified ARCHITECTURE with GDB. When
979 gdbarch determines that the specified architecture has been
980 selected, the corresponding INIT function is called.
981
982 --
983
984 The INIT function takes two parameters: INFO which contains the
985 information available to gdbarch about the (possibly new)
986 architecture; ARCHES which is a list of the previously created
987 \`\`struct gdbarch'' for this architecture.
988
989 The INFO parameter is, as far as possible, be pre-initialized with
990 information obtained from INFO.ABFD or the previously selected
991 architecture.
992
993 The ARCHES parameter is a linked list (sorted most recently used)
994 of all the previously created architures for this architecture
995 family. The (possibly NULL) ARCHES->gdbarch can used to access
996 values from the previously selected architecture for this
997 architecture family. The global \`\`current_gdbarch'' shall not be
998 used.
999
1000 The INIT function shall return any of: NULL - indicating that it
1001 doesn't recognize the selected architecture; an existing \`\`struct
1002 gdbarch'' from the ARCHES list - indicating that the new
1003 architecture is just a synonym for an earlier architecture (see
1004 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1005 - that describes the selected architecture (see gdbarch_alloc()).
1006
1007 The DUMP_TDEP function shall print out all target specific values.
1008 Care should be taken to ensure that the function works in both the
1009 multi-arch and non- multi-arch cases. */
1010
1011 struct gdbarch_list
1012 {
1013 struct gdbarch *gdbarch;
1014 struct gdbarch_list *next;
1015 };
1016
1017 struct gdbarch_info
1018 {
1019 /* Use default: NULL (ZERO). */
1020 const struct bfd_arch_info *bfd_arch_info;
1021
1022 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1023 int byte_order;
1024
1025 /* Use default: NULL (ZERO). */
1026 bfd *abfd;
1027
1028 /* Use default: NULL (ZERO). */
1029 struct gdbarch_tdep_info *tdep_info;
1030 };
1031
1032 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1033 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1034
1035 /* DEPRECATED - use gdbarch_register() */
1036 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1037
1038 extern void gdbarch_register (enum bfd_architecture architecture,
1039 gdbarch_init_ftype *,
1040 gdbarch_dump_tdep_ftype *);
1041
1042
1043 /* Return a freshly allocated, NULL terminated, array of the valid
1044 architecture names. Since architectures are registered during the
1045 _initialize phase this function only returns useful information
1046 once initialization has been completed. */
1047
1048 extern const char **gdbarch_printable_names (void);
1049
1050
1051 /* Helper function. Search the list of ARCHES for a GDBARCH that
1052 matches the information provided by INFO. */
1053
1054 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1055
1056
1057 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1058 basic initialization using values obtained from the INFO andTDEP
1059 parameters. set_gdbarch_*() functions are called to complete the
1060 initialization of the object. */
1061
1062 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1063
1064
1065 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1066 It is assumed that the caller freeds the \`\`struct
1067 gdbarch_tdep''. */
1068
1069 extern void gdbarch_free (struct gdbarch *);
1070
1071
1072 /* Helper function. Force an update of the current architecture.
1073
1074 The actual architecture selected is determined by INFO, \`\`(gdb) set
1075 architecture'' et.al., the existing architecture and BFD's default
1076 architecture. INFO should be initialized to zero and then selected
1077 fields should be updated.
1078
1079 Returns non-zero if the update succeeds */
1080
1081 extern int gdbarch_update_p (struct gdbarch_info info);
1082
1083
1084
1085 /* Register per-architecture data-pointer.
1086
1087 Reserve space for a per-architecture data-pointer. An identifier
1088 for the reserved data-pointer is returned. That identifer should
1089 be saved in a local static variable.
1090
1091 The per-architecture data-pointer is either initialized explicitly
1092 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1093 gdbarch_data()). FREE() is called to delete either an existing
1094 data-pointer overridden by set_gdbarch_data() or when the
1095 architecture object is being deleted.
1096
1097 When a previously created architecture is re-selected, the
1098 per-architecture data-pointer for that previous architecture is
1099 restored. INIT() is not re-called.
1100
1101 Multiple registrarants for any architecture are allowed (and
1102 strongly encouraged). */
1103
1104 struct gdbarch_data;
1105
1106 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1107 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1108 void *pointer);
1109 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1110 gdbarch_data_free_ftype *free);
1111 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1112 struct gdbarch_data *data,
1113 void *pointer);
1114
1115 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1116
1117
1118 /* Register per-architecture memory region.
1119
1120 Provide a memory-region swap mechanism. Per-architecture memory
1121 region are created. These memory regions are swapped whenever the
1122 architecture is changed. For a new architecture, the memory region
1123 is initialized with zero (0) and the INIT function is called.
1124
1125 Memory regions are swapped / initialized in the order that they are
1126 registered. NULL DATA and/or INIT values can be specified.
1127
1128 New code should use register_gdbarch_data(). */
1129
1130 typedef void (gdbarch_swap_ftype) (void);
1131 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1132 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1133
1134
1135
1136 /* The target-system-dependent byte order is dynamic */
1137
1138 extern int target_byte_order;
1139 #ifndef TARGET_BYTE_ORDER
1140 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1141 #endif
1142
1143 extern int target_byte_order_auto;
1144 #ifndef TARGET_BYTE_ORDER_AUTO
1145 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1146 #endif
1147
1148
1149
1150 /* The target-system-dependent BFD architecture is dynamic */
1151
1152 extern int target_architecture_auto;
1153 #ifndef TARGET_ARCHITECTURE_AUTO
1154 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1155 #endif
1156
1157 extern const struct bfd_arch_info *target_architecture;
1158 #ifndef TARGET_ARCHITECTURE
1159 #define TARGET_ARCHITECTURE (target_architecture + 0)
1160 #endif
1161
1162
1163 /* The target-system-dependent disassembler is semi-dynamic */
1164
1165 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1166 unsigned int len, disassemble_info *info);
1167
1168 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1169 disassemble_info *info);
1170
1171 extern void dis_asm_print_address (bfd_vma addr,
1172 disassemble_info *info);
1173
1174 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1175 extern disassemble_info tm_print_insn_info;
1176 #ifndef TARGET_PRINT_INSN_INFO
1177 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1178 #endif
1179
1180
1181
1182 /* Set the dynamic target-system-dependent parameters (architecture,
1183 byte-order, ...) using information found in the BFD */
1184
1185 extern void set_gdbarch_from_file (bfd *);
1186
1187
1188 /* Initialize the current architecture to the "first" one we find on
1189 our list. */
1190
1191 extern void initialize_current_architecture (void);
1192
1193 /* For non-multiarched targets, do any initialization of the default
1194 gdbarch object necessary after the _initialize_MODULE functions
1195 have run. */
1196 extern void initialize_non_multiarch (void);
1197
1198 /* gdbarch trace variable */
1199 extern int gdbarch_debug;
1200
1201 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1202
1203 #endif
1204 EOF
1205 exec 1>&2
1206 #../move-if-change new-gdbarch.h gdbarch.h
1207 compare_new gdbarch.h
1208
1209
1210 #
1211 # C file
1212 #
1213
1214 exec > new-gdbarch.c
1215 copyright
1216 cat <<EOF
1217
1218 #include "defs.h"
1219 #include "arch-utils.h"
1220
1221 #if GDB_MULTI_ARCH
1222 #include "gdbcmd.h"
1223 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1224 #else
1225 /* Just include everything in sight so that the every old definition
1226 of macro is visible. */
1227 #include "gdb_string.h"
1228 #include <ctype.h>
1229 #include "symtab.h"
1230 #include "frame.h"
1231 #include "inferior.h"
1232 #include "breakpoint.h"
1233 #include "gdb_wait.h"
1234 #include "gdbcore.h"
1235 #include "gdbcmd.h"
1236 #include "target.h"
1237 #include "gdbthread.h"
1238 #include "annotate.h"
1239 #include "symfile.h" /* for overlay functions */
1240 #include "value.h" /* For old tm.h/nm.h macros. */
1241 #endif
1242 #include "symcat.h"
1243
1244 #include "floatformat.h"
1245
1246 #include "gdb_assert.h"
1247 #include "gdb_string.h"
1248 #include "gdb-events.h"
1249
1250 /* Static function declarations */
1251
1252 static void verify_gdbarch (struct gdbarch *gdbarch);
1253 static void alloc_gdbarch_data (struct gdbarch *);
1254 static void free_gdbarch_data (struct gdbarch *);
1255 static void init_gdbarch_swap (struct gdbarch *);
1256 static void clear_gdbarch_swap (struct gdbarch *);
1257 static void swapout_gdbarch_swap (struct gdbarch *);
1258 static void swapin_gdbarch_swap (struct gdbarch *);
1259
1260 /* Non-zero if we want to trace architecture code. */
1261
1262 #ifndef GDBARCH_DEBUG
1263 #define GDBARCH_DEBUG 0
1264 #endif
1265 int gdbarch_debug = GDBARCH_DEBUG;
1266
1267 EOF
1268
1269 # gdbarch open the gdbarch object
1270 printf "\n"
1271 printf "/* Maintain the struct gdbarch object */\n"
1272 printf "\n"
1273 printf "struct gdbarch\n"
1274 printf "{\n"
1275 printf " /* Has this architecture been fully initialized? */\n"
1276 printf " int initialized_p;\n"
1277 printf " /* basic architectural information */\n"
1278 function_list | while do_read
1279 do
1280 if class_is_info_p
1281 then
1282 printf " ${returntype} ${function};\n"
1283 fi
1284 done
1285 printf "\n"
1286 printf " /* target specific vector. */\n"
1287 printf " struct gdbarch_tdep *tdep;\n"
1288 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1289 printf "\n"
1290 printf " /* per-architecture data-pointers */\n"
1291 printf " unsigned nr_data;\n"
1292 printf " void **data;\n"
1293 printf "\n"
1294 printf " /* per-architecture swap-regions */\n"
1295 printf " struct gdbarch_swap *swap;\n"
1296 printf "\n"
1297 cat <<EOF
1298 /* Multi-arch values.
1299
1300 When extending this structure you must:
1301
1302 Add the field below.
1303
1304 Declare set/get functions and define the corresponding
1305 macro in gdbarch.h.
1306
1307 gdbarch_alloc(): If zero/NULL is not a suitable default,
1308 initialize the new field.
1309
1310 verify_gdbarch(): Confirm that the target updated the field
1311 correctly.
1312
1313 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1314 field is dumped out
1315
1316 \`\`startup_gdbarch()'': Append an initial value to the static
1317 variable (base values on the host's c-type system).
1318
1319 get_gdbarch(): Implement the set/get functions (probably using
1320 the macro's as shortcuts).
1321
1322 */
1323
1324 EOF
1325 function_list | while do_read
1326 do
1327 if class_is_variable_p
1328 then
1329 printf " ${returntype} ${function};\n"
1330 elif class_is_function_p
1331 then
1332 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1333 fi
1334 done
1335 printf "};\n"
1336
1337 # A pre-initialized vector
1338 printf "\n"
1339 printf "\n"
1340 cat <<EOF
1341 /* The default architecture uses host values (for want of a better
1342 choice). */
1343 EOF
1344 printf "\n"
1345 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1346 printf "\n"
1347 printf "struct gdbarch startup_gdbarch =\n"
1348 printf "{\n"
1349 printf " 1, /* Always initialized. */\n"
1350 printf " /* basic architecture information */\n"
1351 function_list | while do_read
1352 do
1353 if class_is_info_p
1354 then
1355 printf " ${staticdefault},\n"
1356 fi
1357 done
1358 cat <<EOF
1359 /* target specific vector and its dump routine */
1360 NULL, NULL,
1361 /*per-architecture data-pointers and swap regions */
1362 0, NULL, NULL,
1363 /* Multi-arch values */
1364 EOF
1365 function_list | while do_read
1366 do
1367 if class_is_function_p || class_is_variable_p
1368 then
1369 printf " ${staticdefault},\n"
1370 fi
1371 done
1372 cat <<EOF
1373 /* startup_gdbarch() */
1374 };
1375
1376 struct gdbarch *current_gdbarch = &startup_gdbarch;
1377
1378 /* Do any initialization needed for a non-multiarch configuration
1379 after the _initialize_MODULE functions have been run. */
1380 void
1381 initialize_non_multiarch (void)
1382 {
1383 alloc_gdbarch_data (&startup_gdbarch);
1384 /* Ensure that all swap areas are zeroed so that they again think
1385 they are starting from scratch. */
1386 clear_gdbarch_swap (&startup_gdbarch);
1387 init_gdbarch_swap (&startup_gdbarch);
1388 }
1389 EOF
1390
1391 # Create a new gdbarch struct
1392 printf "\n"
1393 printf "\n"
1394 cat <<EOF
1395 /* Create a new \`\`struct gdbarch'' based on information provided by
1396 \`\`struct gdbarch_info''. */
1397 EOF
1398 printf "\n"
1399 cat <<EOF
1400 struct gdbarch *
1401 gdbarch_alloc (const struct gdbarch_info *info,
1402 struct gdbarch_tdep *tdep)
1403 {
1404 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1405 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1406 the current local architecture and not the previous global
1407 architecture. This ensures that the new architectures initial
1408 values are not influenced by the previous architecture. Once
1409 everything is parameterised with gdbarch, this will go away. */
1410 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1411 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1412
1413 alloc_gdbarch_data (current_gdbarch);
1414
1415 current_gdbarch->tdep = tdep;
1416 EOF
1417 printf "\n"
1418 function_list | while do_read
1419 do
1420 if class_is_info_p
1421 then
1422 printf " current_gdbarch->${function} = info->${function};\n"
1423 fi
1424 done
1425 printf "\n"
1426 printf " /* Force the explicit initialization of these. */\n"
1427 function_list | while do_read
1428 do
1429 if class_is_function_p || class_is_variable_p
1430 then
1431 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1432 then
1433 printf " current_gdbarch->${function} = ${predefault};\n"
1434 fi
1435 fi
1436 done
1437 cat <<EOF
1438 /* gdbarch_alloc() */
1439
1440 return current_gdbarch;
1441 }
1442 EOF
1443
1444 # Free a gdbarch struct.
1445 printf "\n"
1446 printf "\n"
1447 cat <<EOF
1448 /* Free a gdbarch struct. This should never happen in normal
1449 operation --- once you've created a gdbarch, you keep it around.
1450 However, if an architecture's init function encounters an error
1451 building the structure, it may need to clean up a partially
1452 constructed gdbarch. */
1453
1454 void
1455 gdbarch_free (struct gdbarch *arch)
1456 {
1457 gdb_assert (arch != NULL);
1458 free_gdbarch_data (arch);
1459 xfree (arch);
1460 }
1461 EOF
1462
1463 # verify a new architecture
1464 printf "\n"
1465 printf "\n"
1466 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1467 printf "\n"
1468 cat <<EOF
1469 static void
1470 verify_gdbarch (struct gdbarch *gdbarch)
1471 {
1472 struct ui_file *log;
1473 struct cleanup *cleanups;
1474 long dummy;
1475 char *buf;
1476 /* Only perform sanity checks on a multi-arch target. */
1477 if (!GDB_MULTI_ARCH)
1478 return;
1479 log = mem_fileopen ();
1480 cleanups = make_cleanup_ui_file_delete (log);
1481 /* fundamental */
1482 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1483 fprintf_unfiltered (log, "\n\tbyte-order");
1484 if (gdbarch->bfd_arch_info == NULL)
1485 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1486 /* Check those that need to be defined for the given multi-arch level. */
1487 EOF
1488 function_list | while do_read
1489 do
1490 if class_is_function_p || class_is_variable_p
1491 then
1492 if [ "x${invalid_p}" = "x0" ]
1493 then
1494 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1495 elif class_is_predicate_p
1496 then
1497 printf " /* Skip verify of ${function}, has predicate */\n"
1498 # FIXME: See do_read for potential simplification
1499 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1500 then
1501 printf " if (${invalid_p})\n"
1502 printf " gdbarch->${function} = ${postdefault};\n"
1503 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1504 then
1505 printf " if (gdbarch->${function} == ${predefault})\n"
1506 printf " gdbarch->${function} = ${postdefault};\n"
1507 elif [ -n "${postdefault}" ]
1508 then
1509 printf " if (gdbarch->${function} == 0)\n"
1510 printf " gdbarch->${function} = ${postdefault};\n"
1511 elif [ -n "${invalid_p}" ]
1512 then
1513 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1514 printf " && (${invalid_p}))\n"
1515 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1516 elif [ -n "${predefault}" ]
1517 then
1518 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1519 printf " && (gdbarch->${function} == ${predefault}))\n"
1520 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1521 fi
1522 fi
1523 done
1524 cat <<EOF
1525 buf = ui_file_xstrdup (log, &dummy);
1526 make_cleanup (xfree, buf);
1527 if (strlen (buf) > 0)
1528 internal_error (__FILE__, __LINE__,
1529 "verify_gdbarch: the following are invalid ...%s",
1530 buf);
1531 do_cleanups (cleanups);
1532 }
1533 EOF
1534
1535 # dump the structure
1536 printf "\n"
1537 printf "\n"
1538 cat <<EOF
1539 /* Print out the details of the current architecture. */
1540
1541 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1542 just happens to match the global variable \`\`current_gdbarch''. That
1543 way macros refering to that variable get the local and not the global
1544 version - ulgh. Once everything is parameterised with gdbarch, this
1545 will go away. */
1546
1547 void
1548 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1549 {
1550 fprintf_unfiltered (file,
1551 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1552 GDB_MULTI_ARCH);
1553 EOF
1554 function_list | sort -t: +2 | while do_read
1555 do
1556 # multiarch functions don't have macros.
1557 if class_is_multiarch_p
1558 then
1559 printf " if (GDB_MULTI_ARCH)\n"
1560 printf " fprintf_unfiltered (file,\n"
1561 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1562 printf " (long) current_gdbarch->${function});\n"
1563 continue
1564 fi
1565 # Print the macro definition.
1566 printf "#ifdef ${macro}\n"
1567 if [ "x${returntype}" = "xvoid" ]
1568 then
1569 printf "#if GDB_MULTI_ARCH\n"
1570 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1571 fi
1572 if class_is_function_p
1573 then
1574 printf " fprintf_unfiltered (file,\n"
1575 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1576 printf " \"${macro}(${actual})\",\n"
1577 printf " XSTRING (${macro} (${actual})));\n"
1578 else
1579 printf " fprintf_unfiltered (file,\n"
1580 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1581 printf " XSTRING (${macro}));\n"
1582 fi
1583 # Print the architecture vector value
1584 if [ "x${returntype}" = "xvoid" ]
1585 then
1586 printf "#endif\n"
1587 fi
1588 if [ "x${print_p}" = "x()" ]
1589 then
1590 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1591 elif [ "x${print_p}" = "x0" ]
1592 then
1593 printf " /* skip print of ${macro}, print_p == 0. */\n"
1594 elif [ -n "${print_p}" ]
1595 then
1596 printf " if (${print_p})\n"
1597 printf " fprintf_unfiltered (file,\n"
1598 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1599 printf " ${print});\n"
1600 elif class_is_function_p
1601 then
1602 printf " if (GDB_MULTI_ARCH)\n"
1603 printf " fprintf_unfiltered (file,\n"
1604 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1605 printf " (long) current_gdbarch->${function}\n"
1606 printf " /*${macro} ()*/);\n"
1607 else
1608 printf " fprintf_unfiltered (file,\n"
1609 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1610 printf " ${print});\n"
1611 fi
1612 printf "#endif\n"
1613 done
1614 cat <<EOF
1615 if (current_gdbarch->dump_tdep != NULL)
1616 current_gdbarch->dump_tdep (current_gdbarch, file);
1617 }
1618 EOF
1619
1620
1621 # GET/SET
1622 printf "\n"
1623 cat <<EOF
1624 struct gdbarch_tdep *
1625 gdbarch_tdep (struct gdbarch *gdbarch)
1626 {
1627 if (gdbarch_debug >= 2)
1628 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1629 return gdbarch->tdep;
1630 }
1631 EOF
1632 printf "\n"
1633 function_list | while do_read
1634 do
1635 if class_is_predicate_p
1636 then
1637 printf "\n"
1638 printf "int\n"
1639 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1640 printf "{\n"
1641 printf " gdb_assert (gdbarch != NULL);\n"
1642 if [ -n "${valid_p}" ]
1643 then
1644 printf " return ${valid_p};\n"
1645 else
1646 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1647 fi
1648 printf "}\n"
1649 fi
1650 if class_is_function_p
1651 then
1652 printf "\n"
1653 printf "${returntype}\n"
1654 if [ "x${formal}" = "xvoid" ]
1655 then
1656 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1657 else
1658 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1659 fi
1660 printf "{\n"
1661 printf " gdb_assert (gdbarch != NULL);\n"
1662 printf " if (gdbarch->${function} == 0)\n"
1663 printf " internal_error (__FILE__, __LINE__,\n"
1664 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1665 printf " if (gdbarch_debug >= 2)\n"
1666 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1667 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1668 then
1669 if class_is_multiarch_p
1670 then
1671 params="gdbarch"
1672 else
1673 params=""
1674 fi
1675 else
1676 if class_is_multiarch_p
1677 then
1678 params="gdbarch, ${actual}"
1679 else
1680 params="${actual}"
1681 fi
1682 fi
1683 if [ "x${returntype}" = "xvoid" ]
1684 then
1685 printf " gdbarch->${function} (${params});\n"
1686 else
1687 printf " return gdbarch->${function} (${params});\n"
1688 fi
1689 printf "}\n"
1690 printf "\n"
1691 printf "void\n"
1692 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1693 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1694 printf "{\n"
1695 printf " gdbarch->${function} = ${function};\n"
1696 printf "}\n"
1697 elif class_is_variable_p
1698 then
1699 printf "\n"
1700 printf "${returntype}\n"
1701 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1702 printf "{\n"
1703 printf " gdb_assert (gdbarch != NULL);\n"
1704 if [ "x${invalid_p}" = "x0" ]
1705 then
1706 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1707 elif [ -n "${invalid_p}" ]
1708 then
1709 printf " if (${invalid_p})\n"
1710 printf " internal_error (__FILE__, __LINE__,\n"
1711 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1712 elif [ -n "${predefault}" ]
1713 then
1714 printf " if (gdbarch->${function} == ${predefault})\n"
1715 printf " internal_error (__FILE__, __LINE__,\n"
1716 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1717 fi
1718 printf " if (gdbarch_debug >= 2)\n"
1719 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1720 printf " return gdbarch->${function};\n"
1721 printf "}\n"
1722 printf "\n"
1723 printf "void\n"
1724 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1725 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1726 printf "{\n"
1727 printf " gdbarch->${function} = ${function};\n"
1728 printf "}\n"
1729 elif class_is_info_p
1730 then
1731 printf "\n"
1732 printf "${returntype}\n"
1733 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1734 printf "{\n"
1735 printf " gdb_assert (gdbarch != NULL);\n"
1736 printf " if (gdbarch_debug >= 2)\n"
1737 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1738 printf " return gdbarch->${function};\n"
1739 printf "}\n"
1740 fi
1741 done
1742
1743 # All the trailing guff
1744 cat <<EOF
1745
1746
1747 /* Keep a registry of per-architecture data-pointers required by GDB
1748 modules. */
1749
1750 struct gdbarch_data
1751 {
1752 unsigned index;
1753 int init_p;
1754 gdbarch_data_init_ftype *init;
1755 gdbarch_data_free_ftype *free;
1756 };
1757
1758 struct gdbarch_data_registration
1759 {
1760 struct gdbarch_data *data;
1761 struct gdbarch_data_registration *next;
1762 };
1763
1764 struct gdbarch_data_registry
1765 {
1766 unsigned nr;
1767 struct gdbarch_data_registration *registrations;
1768 };
1769
1770 struct gdbarch_data_registry gdbarch_data_registry =
1771 {
1772 0, NULL,
1773 };
1774
1775 struct gdbarch_data *
1776 register_gdbarch_data (gdbarch_data_init_ftype *init,
1777 gdbarch_data_free_ftype *free)
1778 {
1779 struct gdbarch_data_registration **curr;
1780 /* Append the new registraration. */
1781 for (curr = &gdbarch_data_registry.registrations;
1782 (*curr) != NULL;
1783 curr = &(*curr)->next);
1784 (*curr) = XMALLOC (struct gdbarch_data_registration);
1785 (*curr)->next = NULL;
1786 (*curr)->data = XMALLOC (struct gdbarch_data);
1787 (*curr)->data->index = gdbarch_data_registry.nr++;
1788 (*curr)->data->init = init;
1789 (*curr)->data->init_p = 1;
1790 (*curr)->data->free = free;
1791 return (*curr)->data;
1792 }
1793
1794
1795 /* Create/delete the gdbarch data vector. */
1796
1797 static void
1798 alloc_gdbarch_data (struct gdbarch *gdbarch)
1799 {
1800 gdb_assert (gdbarch->data == NULL);
1801 gdbarch->nr_data = gdbarch_data_registry.nr;
1802 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1803 }
1804
1805 static void
1806 free_gdbarch_data (struct gdbarch *gdbarch)
1807 {
1808 struct gdbarch_data_registration *rego;
1809 gdb_assert (gdbarch->data != NULL);
1810 for (rego = gdbarch_data_registry.registrations;
1811 rego != NULL;
1812 rego = rego->next)
1813 {
1814 struct gdbarch_data *data = rego->data;
1815 gdb_assert (data->index < gdbarch->nr_data);
1816 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1817 {
1818 data->free (gdbarch, gdbarch->data[data->index]);
1819 gdbarch->data[data->index] = NULL;
1820 }
1821 }
1822 xfree (gdbarch->data);
1823 gdbarch->data = NULL;
1824 }
1825
1826
1827 /* Initialize the current value of the specified per-architecture
1828 data-pointer. */
1829
1830 void
1831 set_gdbarch_data (struct gdbarch *gdbarch,
1832 struct gdbarch_data *data,
1833 void *pointer)
1834 {
1835 gdb_assert (data->index < gdbarch->nr_data);
1836 if (gdbarch->data[data->index] != NULL)
1837 {
1838 gdb_assert (data->free != NULL);
1839 data->free (gdbarch, gdbarch->data[data->index]);
1840 }
1841 gdbarch->data[data->index] = pointer;
1842 }
1843
1844 /* Return the current value of the specified per-architecture
1845 data-pointer. */
1846
1847 void *
1848 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1849 {
1850 gdb_assert (data->index < gdbarch->nr_data);
1851 /* The data-pointer isn't initialized, call init() to get a value but
1852 only if the architecture initializaiton has completed. Otherwise
1853 punt - hope that the caller knows what they are doing. */
1854 if (gdbarch->data[data->index] == NULL
1855 && gdbarch->initialized_p)
1856 {
1857 /* Be careful to detect an initialization cycle. */
1858 gdb_assert (data->init_p);
1859 data->init_p = 0;
1860 gdb_assert (data->init != NULL);
1861 gdbarch->data[data->index] = data->init (gdbarch);
1862 data->init_p = 1;
1863 gdb_assert (gdbarch->data[data->index] != NULL);
1864 }
1865 return gdbarch->data[data->index];
1866 }
1867
1868
1869
1870 /* Keep a registry of swapped data required by GDB modules. */
1871
1872 struct gdbarch_swap
1873 {
1874 void *swap;
1875 struct gdbarch_swap_registration *source;
1876 struct gdbarch_swap *next;
1877 };
1878
1879 struct gdbarch_swap_registration
1880 {
1881 void *data;
1882 unsigned long sizeof_data;
1883 gdbarch_swap_ftype *init;
1884 struct gdbarch_swap_registration *next;
1885 };
1886
1887 struct gdbarch_swap_registry
1888 {
1889 int nr;
1890 struct gdbarch_swap_registration *registrations;
1891 };
1892
1893 struct gdbarch_swap_registry gdbarch_swap_registry =
1894 {
1895 0, NULL,
1896 };
1897
1898 void
1899 register_gdbarch_swap (void *data,
1900 unsigned long sizeof_data,
1901 gdbarch_swap_ftype *init)
1902 {
1903 struct gdbarch_swap_registration **rego;
1904 for (rego = &gdbarch_swap_registry.registrations;
1905 (*rego) != NULL;
1906 rego = &(*rego)->next);
1907 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1908 (*rego)->next = NULL;
1909 (*rego)->init = init;
1910 (*rego)->data = data;
1911 (*rego)->sizeof_data = sizeof_data;
1912 }
1913
1914 static void
1915 clear_gdbarch_swap (struct gdbarch *gdbarch)
1916 {
1917 struct gdbarch_swap *curr;
1918 for (curr = gdbarch->swap;
1919 curr != NULL;
1920 curr = curr->next)
1921 {
1922 memset (curr->source->data, 0, curr->source->sizeof_data);
1923 }
1924 }
1925
1926 static void
1927 init_gdbarch_swap (struct gdbarch *gdbarch)
1928 {
1929 struct gdbarch_swap_registration *rego;
1930 struct gdbarch_swap **curr = &gdbarch->swap;
1931 for (rego = gdbarch_swap_registry.registrations;
1932 rego != NULL;
1933 rego = rego->next)
1934 {
1935 if (rego->data != NULL)
1936 {
1937 (*curr) = XMALLOC (struct gdbarch_swap);
1938 (*curr)->source = rego;
1939 (*curr)->swap = xmalloc (rego->sizeof_data);
1940 (*curr)->next = NULL;
1941 curr = &(*curr)->next;
1942 }
1943 if (rego->init != NULL)
1944 rego->init ();
1945 }
1946 }
1947
1948 static void
1949 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1950 {
1951 struct gdbarch_swap *curr;
1952 for (curr = gdbarch->swap;
1953 curr != NULL;
1954 curr = curr->next)
1955 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1956 }
1957
1958 static void
1959 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1960 {
1961 struct gdbarch_swap *curr;
1962 for (curr = gdbarch->swap;
1963 curr != NULL;
1964 curr = curr->next)
1965 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1966 }
1967
1968
1969 /* Keep a registry of the architectures known by GDB. */
1970
1971 struct gdbarch_registration
1972 {
1973 enum bfd_architecture bfd_architecture;
1974 gdbarch_init_ftype *init;
1975 gdbarch_dump_tdep_ftype *dump_tdep;
1976 struct gdbarch_list *arches;
1977 struct gdbarch_registration *next;
1978 };
1979
1980 static struct gdbarch_registration *gdbarch_registry = NULL;
1981
1982 static void
1983 append_name (const char ***buf, int *nr, const char *name)
1984 {
1985 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1986 (*buf)[*nr] = name;
1987 *nr += 1;
1988 }
1989
1990 const char **
1991 gdbarch_printable_names (void)
1992 {
1993 if (GDB_MULTI_ARCH)
1994 {
1995 /* Accumulate a list of names based on the registed list of
1996 architectures. */
1997 enum bfd_architecture a;
1998 int nr_arches = 0;
1999 const char **arches = NULL;
2000 struct gdbarch_registration *rego;
2001 for (rego = gdbarch_registry;
2002 rego != NULL;
2003 rego = rego->next)
2004 {
2005 const struct bfd_arch_info *ap;
2006 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2007 if (ap == NULL)
2008 internal_error (__FILE__, __LINE__,
2009 "gdbarch_architecture_names: multi-arch unknown");
2010 do
2011 {
2012 append_name (&arches, &nr_arches, ap->printable_name);
2013 ap = ap->next;
2014 }
2015 while (ap != NULL);
2016 }
2017 append_name (&arches, &nr_arches, NULL);
2018 return arches;
2019 }
2020 else
2021 /* Just return all the architectures that BFD knows. Assume that
2022 the legacy architecture framework supports them. */
2023 return bfd_arch_list ();
2024 }
2025
2026
2027 void
2028 gdbarch_register (enum bfd_architecture bfd_architecture,
2029 gdbarch_init_ftype *init,
2030 gdbarch_dump_tdep_ftype *dump_tdep)
2031 {
2032 struct gdbarch_registration **curr;
2033 const struct bfd_arch_info *bfd_arch_info;
2034 /* Check that BFD recognizes this architecture */
2035 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2036 if (bfd_arch_info == NULL)
2037 {
2038 internal_error (__FILE__, __LINE__,
2039 "gdbarch: Attempt to register unknown architecture (%d)",
2040 bfd_architecture);
2041 }
2042 /* Check that we haven't seen this architecture before */
2043 for (curr = &gdbarch_registry;
2044 (*curr) != NULL;
2045 curr = &(*curr)->next)
2046 {
2047 if (bfd_architecture == (*curr)->bfd_architecture)
2048 internal_error (__FILE__, __LINE__,
2049 "gdbarch: Duplicate registraration of architecture (%s)",
2050 bfd_arch_info->printable_name);
2051 }
2052 /* log it */
2053 if (gdbarch_debug)
2054 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2055 bfd_arch_info->printable_name,
2056 (long) init);
2057 /* Append it */
2058 (*curr) = XMALLOC (struct gdbarch_registration);
2059 (*curr)->bfd_architecture = bfd_architecture;
2060 (*curr)->init = init;
2061 (*curr)->dump_tdep = dump_tdep;
2062 (*curr)->arches = NULL;
2063 (*curr)->next = NULL;
2064 /* When non- multi-arch, install whatever target dump routine we've
2065 been provided - hopefully that routine has been written correctly
2066 and works regardless of multi-arch. */
2067 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2068 && startup_gdbarch.dump_tdep == NULL)
2069 startup_gdbarch.dump_tdep = dump_tdep;
2070 }
2071
2072 void
2073 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2074 gdbarch_init_ftype *init)
2075 {
2076 gdbarch_register (bfd_architecture, init, NULL);
2077 }
2078
2079
2080 /* Look for an architecture using gdbarch_info. Base search on only
2081 BFD_ARCH_INFO and BYTE_ORDER. */
2082
2083 struct gdbarch_list *
2084 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2085 const struct gdbarch_info *info)
2086 {
2087 for (; arches != NULL; arches = arches->next)
2088 {
2089 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2090 continue;
2091 if (info->byte_order != arches->gdbarch->byte_order)
2092 continue;
2093 return arches;
2094 }
2095 return NULL;
2096 }
2097
2098
2099 /* Update the current architecture. Return ZERO if the update request
2100 failed. */
2101
2102 int
2103 gdbarch_update_p (struct gdbarch_info info)
2104 {
2105 struct gdbarch *new_gdbarch;
2106 struct gdbarch *old_gdbarch;
2107 struct gdbarch_registration *rego;
2108
2109 /* Fill in missing parts of the INFO struct using a number of
2110 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2111
2112 /* \`\`(gdb) set architecture ...'' */
2113 if (info.bfd_arch_info == NULL
2114 && !TARGET_ARCHITECTURE_AUTO)
2115 info.bfd_arch_info = TARGET_ARCHITECTURE;
2116 if (info.bfd_arch_info == NULL
2117 && info.abfd != NULL
2118 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2119 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2120 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2121 if (info.bfd_arch_info == NULL)
2122 info.bfd_arch_info = TARGET_ARCHITECTURE;
2123
2124 /* \`\`(gdb) set byte-order ...'' */
2125 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2126 && !TARGET_BYTE_ORDER_AUTO)
2127 info.byte_order = TARGET_BYTE_ORDER;
2128 /* From the INFO struct. */
2129 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2130 && info.abfd != NULL)
2131 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2132 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2133 : BFD_ENDIAN_UNKNOWN);
2134 /* From the current target. */
2135 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2136 info.byte_order = TARGET_BYTE_ORDER;
2137
2138 /* Must have found some sort of architecture. */
2139 gdb_assert (info.bfd_arch_info != NULL);
2140
2141 if (gdbarch_debug)
2142 {
2143 fprintf_unfiltered (gdb_stdlog,
2144 "gdbarch_update: info.bfd_arch_info %s\n",
2145 (info.bfd_arch_info != NULL
2146 ? info.bfd_arch_info->printable_name
2147 : "(null)"));
2148 fprintf_unfiltered (gdb_stdlog,
2149 "gdbarch_update: info.byte_order %d (%s)\n",
2150 info.byte_order,
2151 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2152 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2153 : "default"));
2154 fprintf_unfiltered (gdb_stdlog,
2155 "gdbarch_update: info.abfd 0x%lx\n",
2156 (long) info.abfd);
2157 fprintf_unfiltered (gdb_stdlog,
2158 "gdbarch_update: info.tdep_info 0x%lx\n",
2159 (long) info.tdep_info);
2160 }
2161
2162 /* Find the target that knows about this architecture. */
2163 for (rego = gdbarch_registry;
2164 rego != NULL;
2165 rego = rego->next)
2166 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2167 break;
2168 if (rego == NULL)
2169 {
2170 if (gdbarch_debug)
2171 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2172 return 0;
2173 }
2174
2175 /* Swap the data belonging to the old target out setting the
2176 installed data to zero. This stops the ->init() function trying
2177 to refer to the previous architecture's global data structures. */
2178 swapout_gdbarch_swap (current_gdbarch);
2179 clear_gdbarch_swap (current_gdbarch);
2180
2181 /* Save the previously selected architecture, setting the global to
2182 NULL. This stops ->init() trying to use the previous
2183 architecture's configuration. The previous architecture may not
2184 even be of the same architecture family. The most recent
2185 architecture of the same family is found at the head of the
2186 rego->arches list. */
2187 old_gdbarch = current_gdbarch;
2188 current_gdbarch = NULL;
2189
2190 /* Ask the target for a replacement architecture. */
2191 new_gdbarch = rego->init (info, rego->arches);
2192
2193 /* Did the target like it? No. Reject the change and revert to the
2194 old architecture. */
2195 if (new_gdbarch == NULL)
2196 {
2197 if (gdbarch_debug)
2198 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2199 swapin_gdbarch_swap (old_gdbarch);
2200 current_gdbarch = old_gdbarch;
2201 return 0;
2202 }
2203
2204 /* Did the architecture change? No. Oops, put the old architecture
2205 back. */
2206 if (old_gdbarch == new_gdbarch)
2207 {
2208 if (gdbarch_debug)
2209 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2210 (long) new_gdbarch,
2211 new_gdbarch->bfd_arch_info->printable_name);
2212 swapin_gdbarch_swap (old_gdbarch);
2213 current_gdbarch = old_gdbarch;
2214 return 1;
2215 }
2216
2217 /* Is this a pre-existing architecture? Yes. Move it to the front
2218 of the list of architectures (keeping the list sorted Most
2219 Recently Used) and then copy it in. */
2220 {
2221 struct gdbarch_list **list;
2222 for (list = &rego->arches;
2223 (*list) != NULL;
2224 list = &(*list)->next)
2225 {
2226 if ((*list)->gdbarch == new_gdbarch)
2227 {
2228 struct gdbarch_list *this;
2229 if (gdbarch_debug)
2230 fprintf_unfiltered (gdb_stdlog,
2231 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2232 (long) new_gdbarch,
2233 new_gdbarch->bfd_arch_info->printable_name);
2234 /* Unlink this. */
2235 this = (*list);
2236 (*list) = this->next;
2237 /* Insert in the front. */
2238 this->next = rego->arches;
2239 rego->arches = this;
2240 /* Copy the new architecture in. */
2241 current_gdbarch = new_gdbarch;
2242 swapin_gdbarch_swap (new_gdbarch);
2243 architecture_changed_event ();
2244 return 1;
2245 }
2246 }
2247 }
2248
2249 /* Prepend this new architecture to the architecture list (keep the
2250 list sorted Most Recently Used). */
2251 {
2252 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2253 this->next = rego->arches;
2254 this->gdbarch = new_gdbarch;
2255 rego->arches = this;
2256 }
2257
2258 /* Switch to this new architecture marking it initialized. */
2259 current_gdbarch = new_gdbarch;
2260 current_gdbarch->initialized_p = 1;
2261 if (gdbarch_debug)
2262 {
2263 fprintf_unfiltered (gdb_stdlog,
2264 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2265 (long) new_gdbarch,
2266 new_gdbarch->bfd_arch_info->printable_name);
2267 }
2268
2269 /* Check that the newly installed architecture is valid. Plug in
2270 any post init values. */
2271 new_gdbarch->dump_tdep = rego->dump_tdep;
2272 verify_gdbarch (new_gdbarch);
2273
2274 /* Initialize the per-architecture memory (swap) areas.
2275 CURRENT_GDBARCH must be update before these modules are
2276 called. */
2277 init_gdbarch_swap (new_gdbarch);
2278
2279 /* Initialize the per-architecture data. CURRENT_GDBARCH
2280 must be updated before these modules are called. */
2281 architecture_changed_event ();
2282
2283 if (gdbarch_debug)
2284 gdbarch_dump (current_gdbarch, gdb_stdlog);
2285
2286 return 1;
2287 }
2288
2289
2290 /* Disassembler */
2291
2292 /* Pointer to the target-dependent disassembly function. */
2293 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2294 disassemble_info tm_print_insn_info;
2295
2296
2297 extern void _initialize_gdbarch (void);
2298
2299 void
2300 _initialize_gdbarch (void)
2301 {
2302 struct cmd_list_element *c;
2303
2304 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2305 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2306 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2307 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2308 tm_print_insn_info.print_address_func = dis_asm_print_address;
2309
2310 add_show_from_set (add_set_cmd ("arch",
2311 class_maintenance,
2312 var_zinteger,
2313 (char *)&gdbarch_debug,
2314 "Set architecture debugging.\\n\\
2315 When non-zero, architecture debugging is enabled.", &setdebuglist),
2316 &showdebuglist);
2317 c = add_set_cmd ("archdebug",
2318 class_maintenance,
2319 var_zinteger,
2320 (char *)&gdbarch_debug,
2321 "Set architecture debugging.\\n\\
2322 When non-zero, architecture debugging is enabled.", &setlist);
2323
2324 deprecate_cmd (c, "set debug arch");
2325 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2326 }
2327 EOF
2328
2329 # close things off
2330 exec 1>&2
2331 #../move-if-change new-gdbarch.c gdbarch.c
2332 compare_new gdbarch.c
This page took 0.084194 seconds and 4 git commands to generate.