2004-04-02 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
132 fi
133 ;;
134 * )
135 echo "Predicate function ${function} with invalid_p." 1>&2
136 kill $$
137 exit 1
138 ;;
139 esac
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
149 if [ -n "${postdefault}" ]
150 then
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
153 then
154 fallbackdefault="${predefault}"
155 else
156 fallbackdefault="0"
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
163 fi
164 done
165 if [ -n "${class}" ]
166 then
167 true
168 else
169 false
170 fi
171 }
172
173
174 fallback_default_p ()
175 {
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
178 }
179
180 class_is_variable_p ()
181 {
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
186 }
187
188 class_is_function_p ()
189 {
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194 }
195
196 class_is_multiarch_p ()
197 {
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
202 }
203
204 class_is_predicate_p ()
205 {
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
210 }
211
212 class_is_info_p ()
213 {
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
218 }
219
220
221 # dump out/verify the doco
222 for field in ${read}
223 do
224 case ${field} in
225
226 class ) : ;;
227
228 # # -> line disable
229 # f -> function
230 # hiding a function
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
233 # v -> variable
234 # hiding a variable
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
237 # i -> set from info
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
243
244 level ) : ;;
245
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
249
250 macro ) : ;;
251
252 # The name of the MACRO that this method is to be accessed by.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 attrib ) : ;;
278
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
281
282 staticdefault ) : ;;
283
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
288
289 # If STATICDEFAULT is empty, zero is used.
290
291 predefault ) : ;;
292
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
297
298 # If PREDEFAULT is empty, zero is used.
299
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
332
333 invalid_p ) : ;;
334
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
347
348 # See also PREDEFAULT and POSTDEFAULT.
349
350 fmt ) : ;;
351
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
356 # If FMT is empty, ``%ld'' is used.
357
358 print ) : ;;
359
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
363 # If PRINT is empty, ``(long)'' is used.
364
365 print_p ) : ;;
366
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
373
374 # If PRINT_P is empty, ``1'' is always used.
375
376 description ) : ;;
377
378 # Currently unused.
379
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
383 esac
384 done
385
386
387 function_list ()
388 {
389 # See below (DOCO) for description of each field
390 cat <<EOF
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
392 #
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
394 #
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
399 #
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
407 # machine.
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
419 #
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422 #
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
429 #
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
432 #
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 # Implement PUSH_RETURN_ADDRESS, and then merge in
523 # DEPRECATED_PUSH_RETURN_ADDRESS.
524 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
525 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527 # DEPRECATED_REGISTER_SIZE can be deleted.
528 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
541 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
542 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
543 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
544 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
545 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
546 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
547
548 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
549 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
550 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
551 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
552 # MAP a GDB RAW register number onto a simulator register number. See
553 # also include/...-sim.h.
554 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
555 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
556 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
557 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
558 # setjmp/longjmp support.
559 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
560 # NOTE: cagney/2002-11-24: This function with predicate has a valid
561 # (callable) initial value. As a consequence, even when the predicate
562 # is false, the corresponding function works. This simplifies the
563 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
564 # doesn't need to be modified.
565 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::deprecated_pc_in_call_dummy:deprecated_pc_in_call_dummy
566 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
567 #
568 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
569 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
570 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
571 #
572 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
573 # For raw <-> cooked register conversions, replaced by pseudo registers.
574 F::DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr
575 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
576 # For raw <-> cooked register conversions, replaced by pseudo registers.
577 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
581 #
582 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
583 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
584 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
585 #
586 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
587 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
588 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
589 #
590 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
591 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
592 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
593
594 # It has been suggested that this, well actually its predecessor,
595 # should take the type/value of the function to be called and not the
596 # return type. This is left as an exercise for the reader.
597
598 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
599
600 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
601 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
602 # into RETURN_VALUE.
603
604 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
605 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
606 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
607 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
608 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
609 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
610
611 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
612 # ABI suitable for the implementation of a robust extract
613 # struct-convention return-value address method (the sparc saves the
614 # address in the callers frame). All the other cases so far examined,
615 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
616 # erreneous - the code was incorrectly assuming that the return-value
617 # address, stored in a register, was preserved across the entire
618 # function call.
619
620 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
621 # the ABIs that are still to be analyzed - perhaps this should simply
622 # be deleted. The commented out extract_returned_value_address method
623 # is provided as a starting point for the 32-bit SPARC. It, or
624 # something like it, along with changes to both infcmd.c and stack.c
625 # will be needed for that case to work. NB: It is passed the callers
626 # frame since it is only after the callee has returned that this
627 # function is used.
628
629 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
630 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
631
632 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
633 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
634 #
635 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
636 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
637 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
638 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
639 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
640 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
641 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
642 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
643 #
644 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
645 #
646 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
647 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
648 # frame code works regardless of the type of frame - frameless,
649 # stackless, or normal.
650 F::DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
651 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
652 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
653 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
654 # note, per UNWIND_PC's doco, that while the two have similar
655 # interfaces they have very different underlying implementations.
656 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
657 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
658 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
659 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
660 # frame-base. Enable frame-base before frame-unwind.
661 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
662 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
663 # frame-base. Enable frame-base before frame-unwind.
664 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
665 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
666 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
667 #
668 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
669 # to frame_align and the requirement that methods such as
670 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
671 # alignment.
672 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
673 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
674 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
675 # stabs_argument_has_addr.
676 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
677 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
678 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
679 v:2:PARM_BOUNDARY:int:parm_boundary
680 #
681 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
682 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
683 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
684 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
685 # On some machines there are bits in addresses which are not really
686 # part of the address, but are used by the kernel, the hardware, etc.
687 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
688 # we get a "real" address such as one would find in a symbol table.
689 # This is used only for addresses of instructions, and even then I'm
690 # not sure it's used in all contexts. It exists to deal with there
691 # being a few stray bits in the PC which would mislead us, not as some
692 # sort of generic thing to handle alignment or segmentation (it's
693 # possible it should be in TARGET_READ_PC instead).
694 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
695 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
696 # ADDR_BITS_REMOVE.
697 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
698 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
699 # the target needs software single step. An ISA method to implement it.
700 #
701 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
702 # using the breakpoint system instead of blatting memory directly (as with rs6000).
703 #
704 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
705 # single step. If not, then implement single step using breakpoints.
706 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
707 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
708 # disassembler. Perhaphs objdump can handle it?
709 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
710 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
711
712
713 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
714 # evaluates non-zero, this is the address where the debugger will place
715 # a step-resume breakpoint to get us past the dynamic linker.
716 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
717 # For SVR4 shared libraries, each call goes through a small piece of
718 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
719 # to nonzero if we are currently stopped in one of these.
720 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
721
722 # Some systems also have trampoline code for returning from shared libs.
723 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
724
725 # NOTE: cagney/2004-03-23: DEPRECATED_SIGTRAMP_START,
726 # DEPRECATED_SIGTRAMP_END, and DEPRECATED_PC_IN_SIGTRAMP have all been
727 # superseeded by signal trampoline frame sniffers.
728 F::DEPRECATED_PC_IN_SIGTRAMP:int:deprecated_pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp
729 F:2:DEPRECATED_SIGTRAMP_START:CORE_ADDR:deprecated_sigtramp_start:CORE_ADDR pc:pc
730 F:2:DEPRECATED_SIGTRAMP_END:CORE_ADDR:deprecated_sigtramp_end:CORE_ADDR pc:pc
731 # A target might have problems with watchpoints as soon as the stack
732 # frame of the current function has been destroyed. This mostly happens
733 # as the first action in a funtion's epilogue. in_function_epilogue_p()
734 # is defined to return a non-zero value if either the given addr is one
735 # instruction after the stack destroying instruction up to the trailing
736 # return instruction or if we can figure out that the stack frame has
737 # already been invalidated regardless of the value of addr. Targets
738 # which don't suffer from that problem could just let this functionality
739 # untouched.
740 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
741 # Given a vector of command-line arguments, return a newly allocated
742 # string which, when passed to the create_inferior function, will be
743 # parsed (on Unix systems, by the shell) to yield the same vector.
744 # This function should call error() if the argument vector is not
745 # representable for this target or if this target does not support
746 # command-line arguments.
747 # ARGC is the number of elements in the vector.
748 # ARGV is an array of strings, one per argument.
749 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
750 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
751 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
752 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
753 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
754 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
755 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
756 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
757 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
758 # Is a register in a group
759 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
760 # Fetch the pointer to the ith function argument.
761 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
762
763 # Return the appropriate register set for a core file section with
764 # name SECT_NAME and size SECT_SIZE.
765 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
766 EOF
767 }
768
769 #
770 # The .log file
771 #
772 exec > new-gdbarch.log
773 function_list | while do_read
774 do
775 cat <<EOF
776 ${class} ${macro}(${actual})
777 ${returntype} ${function} ($formal)${attrib}
778 EOF
779 for r in ${read}
780 do
781 eval echo \"\ \ \ \ ${r}=\${${r}}\"
782 done
783 if class_is_predicate_p && fallback_default_p
784 then
785 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
786 kill $$
787 exit 1
788 fi
789 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
790 then
791 echo "Error: postdefault is useless when invalid_p=0" 1>&2
792 kill $$
793 exit 1
794 fi
795 if class_is_multiarch_p
796 then
797 if class_is_predicate_p ; then :
798 elif test "x${predefault}" = "x"
799 then
800 echo "Error: pure multi-arch function must have a predefault" 1>&2
801 kill $$
802 exit 1
803 fi
804 fi
805 echo ""
806 done
807
808 exec 1>&2
809 compare_new gdbarch.log
810
811
812 copyright ()
813 {
814 cat <<EOF
815 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
816
817 /* Dynamic architecture support for GDB, the GNU debugger.
818
819 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
820 Software Foundation, Inc.
821
822 This file is part of GDB.
823
824 This program is free software; you can redistribute it and/or modify
825 it under the terms of the GNU General Public License as published by
826 the Free Software Foundation; either version 2 of the License, or
827 (at your option) any later version.
828
829 This program is distributed in the hope that it will be useful,
830 but WITHOUT ANY WARRANTY; without even the implied warranty of
831 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
832 GNU General Public License for more details.
833
834 You should have received a copy of the GNU General Public License
835 along with this program; if not, write to the Free Software
836 Foundation, Inc., 59 Temple Place - Suite 330,
837 Boston, MA 02111-1307, USA. */
838
839 /* This file was created with the aid of \`\`gdbarch.sh''.
840
841 The Bourne shell script \`\`gdbarch.sh'' creates the files
842 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
843 against the existing \`\`gdbarch.[hc]''. Any differences found
844 being reported.
845
846 If editing this file, please also run gdbarch.sh and merge any
847 changes into that script. Conversely, when making sweeping changes
848 to this file, modifying gdbarch.sh and using its output may prove
849 easier. */
850
851 EOF
852 }
853
854 #
855 # The .h file
856 #
857
858 exec > new-gdbarch.h
859 copyright
860 cat <<EOF
861 #ifndef GDBARCH_H
862 #define GDBARCH_H
863
864 struct floatformat;
865 struct ui_file;
866 struct frame_info;
867 struct value;
868 struct objfile;
869 struct minimal_symbol;
870 struct regcache;
871 struct reggroup;
872 struct regset;
873 struct disassemble_info;
874 struct target_ops;
875 struct obstack;
876
877 extern struct gdbarch *current_gdbarch;
878
879
880 /* If any of the following are defined, the target wasn't correctly
881 converted. */
882
883 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
884 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
885 #endif
886 EOF
887
888 # function typedef's
889 printf "\n"
890 printf "\n"
891 printf "/* The following are pre-initialized by GDBARCH. */\n"
892 function_list | while do_read
893 do
894 if class_is_info_p
895 then
896 printf "\n"
897 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
898 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
899 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
900 printf "#error \"Non multi-arch definition of ${macro}\"\n"
901 printf "#endif\n"
902 printf "#if !defined (${macro})\n"
903 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
904 printf "#endif\n"
905 fi
906 done
907
908 # function typedef's
909 printf "\n"
910 printf "\n"
911 printf "/* The following are initialized by the target dependent code. */\n"
912 function_list | while do_read
913 do
914 if [ -n "${comment}" ]
915 then
916 echo "${comment}" | sed \
917 -e '2 s,#,/*,' \
918 -e '3,$ s,#, ,' \
919 -e '$ s,$, */,'
920 fi
921 if class_is_multiarch_p
922 then
923 if class_is_predicate_p
924 then
925 printf "\n"
926 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
927 fi
928 else
929 if class_is_predicate_p
930 then
931 printf "\n"
932 printf "#if defined (${macro})\n"
933 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
934 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
935 printf "#if !defined (${macro}_P)\n"
936 printf "#define ${macro}_P() (1)\n"
937 printf "#endif\n"
938 printf "#endif\n"
939 printf "\n"
940 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
941 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
942 printf "#error \"Non multi-arch definition of ${macro}\"\n"
943 printf "#endif\n"
944 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
945 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
946 printf "#endif\n"
947 fi
948 fi
949 if class_is_variable_p
950 then
951 printf "\n"
952 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
953 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
954 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
955 printf "#error \"Non multi-arch definition of ${macro}\"\n"
956 printf "#endif\n"
957 printf "#if !defined (${macro})\n"
958 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
959 printf "#endif\n"
960 fi
961 if class_is_function_p
962 then
963 printf "\n"
964 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
965 then
966 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
967 elif class_is_multiarch_p
968 then
969 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
970 else
971 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
972 fi
973 if [ "x${formal}" = "xvoid" ]
974 then
975 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
976 else
977 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
978 fi
979 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
980 if class_is_multiarch_p ; then :
981 else
982 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
983 printf "#error \"Non multi-arch definition of ${macro}\"\n"
984 printf "#endif\n"
985 if [ "x${actual}" = "x" ]
986 then
987 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
988 elif [ "x${actual}" = "x-" ]
989 then
990 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
991 else
992 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
993 fi
994 printf "#if !defined (${macro})\n"
995 if [ "x${actual}" = "x" ]
996 then
997 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
998 elif [ "x${actual}" = "x-" ]
999 then
1000 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1001 else
1002 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1003 fi
1004 printf "#endif\n"
1005 fi
1006 fi
1007 done
1008
1009 # close it off
1010 cat <<EOF
1011
1012 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1013
1014
1015 /* Mechanism for co-ordinating the selection of a specific
1016 architecture.
1017
1018 GDB targets (*-tdep.c) can register an interest in a specific
1019 architecture. Other GDB components can register a need to maintain
1020 per-architecture data.
1021
1022 The mechanisms below ensures that there is only a loose connection
1023 between the set-architecture command and the various GDB
1024 components. Each component can independently register their need
1025 to maintain architecture specific data with gdbarch.
1026
1027 Pragmatics:
1028
1029 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1030 didn't scale.
1031
1032 The more traditional mega-struct containing architecture specific
1033 data for all the various GDB components was also considered. Since
1034 GDB is built from a variable number of (fairly independent)
1035 components it was determined that the global aproach was not
1036 applicable. */
1037
1038
1039 /* Register a new architectural family with GDB.
1040
1041 Register support for the specified ARCHITECTURE with GDB. When
1042 gdbarch determines that the specified architecture has been
1043 selected, the corresponding INIT function is called.
1044
1045 --
1046
1047 The INIT function takes two parameters: INFO which contains the
1048 information available to gdbarch about the (possibly new)
1049 architecture; ARCHES which is a list of the previously created
1050 \`\`struct gdbarch'' for this architecture.
1051
1052 The INFO parameter is, as far as possible, be pre-initialized with
1053 information obtained from INFO.ABFD or the previously selected
1054 architecture.
1055
1056 The ARCHES parameter is a linked list (sorted most recently used)
1057 of all the previously created architures for this architecture
1058 family. The (possibly NULL) ARCHES->gdbarch can used to access
1059 values from the previously selected architecture for this
1060 architecture family. The global \`\`current_gdbarch'' shall not be
1061 used.
1062
1063 The INIT function shall return any of: NULL - indicating that it
1064 doesn't recognize the selected architecture; an existing \`\`struct
1065 gdbarch'' from the ARCHES list - indicating that the new
1066 architecture is just a synonym for an earlier architecture (see
1067 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1068 - that describes the selected architecture (see gdbarch_alloc()).
1069
1070 The DUMP_TDEP function shall print out all target specific values.
1071 Care should be taken to ensure that the function works in both the
1072 multi-arch and non- multi-arch cases. */
1073
1074 struct gdbarch_list
1075 {
1076 struct gdbarch *gdbarch;
1077 struct gdbarch_list *next;
1078 };
1079
1080 struct gdbarch_info
1081 {
1082 /* Use default: NULL (ZERO). */
1083 const struct bfd_arch_info *bfd_arch_info;
1084
1085 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1086 int byte_order;
1087
1088 /* Use default: NULL (ZERO). */
1089 bfd *abfd;
1090
1091 /* Use default: NULL (ZERO). */
1092 struct gdbarch_tdep_info *tdep_info;
1093
1094 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1095 enum gdb_osabi osabi;
1096 };
1097
1098 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1099 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1100
1101 /* DEPRECATED - use gdbarch_register() */
1102 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1103
1104 extern void gdbarch_register (enum bfd_architecture architecture,
1105 gdbarch_init_ftype *,
1106 gdbarch_dump_tdep_ftype *);
1107
1108
1109 /* Return a freshly allocated, NULL terminated, array of the valid
1110 architecture names. Since architectures are registered during the
1111 _initialize phase this function only returns useful information
1112 once initialization has been completed. */
1113
1114 extern const char **gdbarch_printable_names (void);
1115
1116
1117 /* Helper function. Search the list of ARCHES for a GDBARCH that
1118 matches the information provided by INFO. */
1119
1120 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1121
1122
1123 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1124 basic initialization using values obtained from the INFO andTDEP
1125 parameters. set_gdbarch_*() functions are called to complete the
1126 initialization of the object. */
1127
1128 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1129
1130
1131 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1132 It is assumed that the caller freeds the \`\`struct
1133 gdbarch_tdep''. */
1134
1135 extern void gdbarch_free (struct gdbarch *);
1136
1137
1138 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1139 obstack. The memory is freed when the corresponding architecture
1140 is also freed. */
1141
1142 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1143 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1144 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1145
1146
1147 /* Helper function. Force an update of the current architecture.
1148
1149 The actual architecture selected is determined by INFO, \`\`(gdb) set
1150 architecture'' et.al., the existing architecture and BFD's default
1151 architecture. INFO should be initialized to zero and then selected
1152 fields should be updated.
1153
1154 Returns non-zero if the update succeeds */
1155
1156 extern int gdbarch_update_p (struct gdbarch_info info);
1157
1158
1159 /* Helper function. Find an architecture matching info.
1160
1161 INFO should be initialized using gdbarch_info_init, relevant fields
1162 set, and then finished using gdbarch_info_fill.
1163
1164 Returns the corresponding architecture, or NULL if no matching
1165 architecture was found. "current_gdbarch" is not updated. */
1166
1167 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1168
1169
1170 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1171
1172 FIXME: kettenis/20031124: Of the functions that follow, only
1173 gdbarch_from_bfd is supposed to survive. The others will
1174 dissappear since in the future GDB will (hopefully) be truly
1175 multi-arch. However, for now we're still stuck with the concept of
1176 a single active architecture. */
1177
1178 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1179
1180
1181 /* Register per-architecture data-pointer.
1182
1183 Reserve space for a per-architecture data-pointer. An identifier
1184 for the reserved data-pointer is returned. That identifer should
1185 be saved in a local static variable.
1186
1187 Memory for the per-architecture data shall be allocated using
1188 gdbarch_obstack_zalloc. That memory will be deleted when the
1189 corresponding architecture object is deleted.
1190
1191 When a previously created architecture is re-selected, the
1192 per-architecture data-pointer for that previous architecture is
1193 restored. INIT() is not re-called.
1194
1195 Multiple registrarants for any architecture are allowed (and
1196 strongly encouraged). */
1197
1198 struct gdbarch_data;
1199
1200 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1201 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1202 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1203 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1204 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1205 struct gdbarch_data *data,
1206 void *pointer);
1207
1208 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1209
1210
1211
1212 /* Register per-architecture memory region.
1213
1214 Provide a memory-region swap mechanism. Per-architecture memory
1215 region are created. These memory regions are swapped whenever the
1216 architecture is changed. For a new architecture, the memory region
1217 is initialized with zero (0) and the INIT function is called.
1218
1219 Memory regions are swapped / initialized in the order that they are
1220 registered. NULL DATA and/or INIT values can be specified.
1221
1222 New code should use gdbarch_data_register_*(). */
1223
1224 typedef void (gdbarch_swap_ftype) (void);
1225 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1226 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1227
1228
1229
1230 /* Set the dynamic target-system-dependent parameters (architecture,
1231 byte-order, ...) using information found in the BFD */
1232
1233 extern void set_gdbarch_from_file (bfd *);
1234
1235
1236 /* Initialize the current architecture to the "first" one we find on
1237 our list. */
1238
1239 extern void initialize_current_architecture (void);
1240
1241 /* gdbarch trace variable */
1242 extern int gdbarch_debug;
1243
1244 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1245
1246 #endif
1247 EOF
1248 exec 1>&2
1249 #../move-if-change new-gdbarch.h gdbarch.h
1250 compare_new gdbarch.h
1251
1252
1253 #
1254 # C file
1255 #
1256
1257 exec > new-gdbarch.c
1258 copyright
1259 cat <<EOF
1260
1261 #include "defs.h"
1262 #include "arch-utils.h"
1263
1264 #include "gdbcmd.h"
1265 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1266 #include "symcat.h"
1267
1268 #include "floatformat.h"
1269
1270 #include "gdb_assert.h"
1271 #include "gdb_string.h"
1272 #include "gdb-events.h"
1273 #include "reggroups.h"
1274 #include "osabi.h"
1275 #include "gdb_obstack.h"
1276
1277 /* Static function declarations */
1278
1279 static void alloc_gdbarch_data (struct gdbarch *);
1280
1281 /* Non-zero if we want to trace architecture code. */
1282
1283 #ifndef GDBARCH_DEBUG
1284 #define GDBARCH_DEBUG 0
1285 #endif
1286 int gdbarch_debug = GDBARCH_DEBUG;
1287
1288 EOF
1289
1290 # gdbarch open the gdbarch object
1291 printf "\n"
1292 printf "/* Maintain the struct gdbarch object */\n"
1293 printf "\n"
1294 printf "struct gdbarch\n"
1295 printf "{\n"
1296 printf " /* Has this architecture been fully initialized? */\n"
1297 printf " int initialized_p;\n"
1298 printf "\n"
1299 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1300 printf " struct obstack *obstack;\n"
1301 printf "\n"
1302 printf " /* basic architectural information */\n"
1303 function_list | while do_read
1304 do
1305 if class_is_info_p
1306 then
1307 printf " ${returntype} ${function};\n"
1308 fi
1309 done
1310 printf "\n"
1311 printf " /* target specific vector. */\n"
1312 printf " struct gdbarch_tdep *tdep;\n"
1313 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1314 printf "\n"
1315 printf " /* per-architecture data-pointers */\n"
1316 printf " unsigned nr_data;\n"
1317 printf " void **data;\n"
1318 printf "\n"
1319 printf " /* per-architecture swap-regions */\n"
1320 printf " struct gdbarch_swap *swap;\n"
1321 printf "\n"
1322 cat <<EOF
1323 /* Multi-arch values.
1324
1325 When extending this structure you must:
1326
1327 Add the field below.
1328
1329 Declare set/get functions and define the corresponding
1330 macro in gdbarch.h.
1331
1332 gdbarch_alloc(): If zero/NULL is not a suitable default,
1333 initialize the new field.
1334
1335 verify_gdbarch(): Confirm that the target updated the field
1336 correctly.
1337
1338 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1339 field is dumped out
1340
1341 \`\`startup_gdbarch()'': Append an initial value to the static
1342 variable (base values on the host's c-type system).
1343
1344 get_gdbarch(): Implement the set/get functions (probably using
1345 the macro's as shortcuts).
1346
1347 */
1348
1349 EOF
1350 function_list | while do_read
1351 do
1352 if class_is_variable_p
1353 then
1354 printf " ${returntype} ${function};\n"
1355 elif class_is_function_p
1356 then
1357 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1358 fi
1359 done
1360 printf "};\n"
1361
1362 # A pre-initialized vector
1363 printf "\n"
1364 printf "\n"
1365 cat <<EOF
1366 /* The default architecture uses host values (for want of a better
1367 choice). */
1368 EOF
1369 printf "\n"
1370 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1371 printf "\n"
1372 printf "struct gdbarch startup_gdbarch =\n"
1373 printf "{\n"
1374 printf " 1, /* Always initialized. */\n"
1375 printf " NULL, /* The obstack. */\n"
1376 printf " /* basic architecture information */\n"
1377 function_list | while do_read
1378 do
1379 if class_is_info_p
1380 then
1381 printf " ${staticdefault}, /* ${function} */\n"
1382 fi
1383 done
1384 cat <<EOF
1385 /* target specific vector and its dump routine */
1386 NULL, NULL,
1387 /*per-architecture data-pointers and swap regions */
1388 0, NULL, NULL,
1389 /* Multi-arch values */
1390 EOF
1391 function_list | while do_read
1392 do
1393 if class_is_function_p || class_is_variable_p
1394 then
1395 printf " ${staticdefault}, /* ${function} */\n"
1396 fi
1397 done
1398 cat <<EOF
1399 /* startup_gdbarch() */
1400 };
1401
1402 struct gdbarch *current_gdbarch = &startup_gdbarch;
1403 EOF
1404
1405 # Create a new gdbarch struct
1406 cat <<EOF
1407
1408 /* Create a new \`\`struct gdbarch'' based on information provided by
1409 \`\`struct gdbarch_info''. */
1410 EOF
1411 printf "\n"
1412 cat <<EOF
1413 struct gdbarch *
1414 gdbarch_alloc (const struct gdbarch_info *info,
1415 struct gdbarch_tdep *tdep)
1416 {
1417 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1418 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1419 the current local architecture and not the previous global
1420 architecture. This ensures that the new architectures initial
1421 values are not influenced by the previous architecture. Once
1422 everything is parameterised with gdbarch, this will go away. */
1423 struct gdbarch *current_gdbarch;
1424
1425 /* Create an obstack for allocating all the per-architecture memory,
1426 then use that to allocate the architecture vector. */
1427 struct obstack *obstack = XMALLOC (struct obstack);
1428 obstack_init (obstack);
1429 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1430 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1431 current_gdbarch->obstack = obstack;
1432
1433 alloc_gdbarch_data (current_gdbarch);
1434
1435 current_gdbarch->tdep = tdep;
1436 EOF
1437 printf "\n"
1438 function_list | while do_read
1439 do
1440 if class_is_info_p
1441 then
1442 printf " current_gdbarch->${function} = info->${function};\n"
1443 fi
1444 done
1445 printf "\n"
1446 printf " /* Force the explicit initialization of these. */\n"
1447 function_list | while do_read
1448 do
1449 if class_is_function_p || class_is_variable_p
1450 then
1451 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1452 then
1453 printf " current_gdbarch->${function} = ${predefault};\n"
1454 fi
1455 fi
1456 done
1457 cat <<EOF
1458 /* gdbarch_alloc() */
1459
1460 return current_gdbarch;
1461 }
1462 EOF
1463
1464 # Free a gdbarch struct.
1465 printf "\n"
1466 printf "\n"
1467 cat <<EOF
1468 /* Allocate extra space using the per-architecture obstack. */
1469
1470 void *
1471 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1472 {
1473 void *data = obstack_alloc (arch->obstack, size);
1474 memset (data, 0, size);
1475 return data;
1476 }
1477
1478
1479 /* Free a gdbarch struct. This should never happen in normal
1480 operation --- once you've created a gdbarch, you keep it around.
1481 However, if an architecture's init function encounters an error
1482 building the structure, it may need to clean up a partially
1483 constructed gdbarch. */
1484
1485 void
1486 gdbarch_free (struct gdbarch *arch)
1487 {
1488 struct obstack *obstack;
1489 gdb_assert (arch != NULL);
1490 gdb_assert (!arch->initialized_p);
1491 obstack = arch->obstack;
1492 obstack_free (obstack, 0); /* Includes the ARCH. */
1493 xfree (obstack);
1494 }
1495 EOF
1496
1497 # verify a new architecture
1498 cat <<EOF
1499
1500
1501 /* Ensure that all values in a GDBARCH are reasonable. */
1502
1503 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1504 just happens to match the global variable \`\`current_gdbarch''. That
1505 way macros refering to that variable get the local and not the global
1506 version - ulgh. Once everything is parameterised with gdbarch, this
1507 will go away. */
1508
1509 static void
1510 verify_gdbarch (struct gdbarch *current_gdbarch)
1511 {
1512 struct ui_file *log;
1513 struct cleanup *cleanups;
1514 long dummy;
1515 char *buf;
1516 log = mem_fileopen ();
1517 cleanups = make_cleanup_ui_file_delete (log);
1518 /* fundamental */
1519 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1520 fprintf_unfiltered (log, "\n\tbyte-order");
1521 if (current_gdbarch->bfd_arch_info == NULL)
1522 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1523 /* Check those that need to be defined for the given multi-arch level. */
1524 EOF
1525 function_list | while do_read
1526 do
1527 if class_is_function_p || class_is_variable_p
1528 then
1529 if [ "x${invalid_p}" = "x0" ]
1530 then
1531 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1532 elif class_is_predicate_p
1533 then
1534 printf " /* Skip verify of ${function}, has predicate */\n"
1535 # FIXME: See do_read for potential simplification
1536 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1537 then
1538 printf " if (${invalid_p})\n"
1539 printf " current_gdbarch->${function} = ${postdefault};\n"
1540 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1541 then
1542 printf " if (current_gdbarch->${function} == ${predefault})\n"
1543 printf " current_gdbarch->${function} = ${postdefault};\n"
1544 elif [ -n "${postdefault}" ]
1545 then
1546 printf " if (current_gdbarch->${function} == 0)\n"
1547 printf " current_gdbarch->${function} = ${postdefault};\n"
1548 elif [ -n "${invalid_p}" ]
1549 then
1550 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1551 printf " && (${invalid_p}))\n"
1552 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1553 elif [ -n "${predefault}" ]
1554 then
1555 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1556 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1557 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1558 fi
1559 fi
1560 done
1561 cat <<EOF
1562 buf = ui_file_xstrdup (log, &dummy);
1563 make_cleanup (xfree, buf);
1564 if (strlen (buf) > 0)
1565 internal_error (__FILE__, __LINE__,
1566 "verify_gdbarch: the following are invalid ...%s",
1567 buf);
1568 do_cleanups (cleanups);
1569 }
1570 EOF
1571
1572 # dump the structure
1573 printf "\n"
1574 printf "\n"
1575 cat <<EOF
1576 /* Print out the details of the current architecture. */
1577
1578 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1579 just happens to match the global variable \`\`current_gdbarch''. That
1580 way macros refering to that variable get the local and not the global
1581 version - ulgh. Once everything is parameterised with gdbarch, this
1582 will go away. */
1583
1584 void
1585 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1586 {
1587 fprintf_unfiltered (file,
1588 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1589 GDB_MULTI_ARCH);
1590 EOF
1591 function_list | sort -t: -k 3 | while do_read
1592 do
1593 # First the predicate
1594 if class_is_predicate_p
1595 then
1596 if class_is_multiarch_p
1597 then
1598 printf " fprintf_unfiltered (file,\n"
1599 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1600 printf " gdbarch_${function}_p (current_gdbarch));\n"
1601 else
1602 printf "#ifdef ${macro}_P\n"
1603 printf " fprintf_unfiltered (file,\n"
1604 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1605 printf " \"${macro}_P()\",\n"
1606 printf " XSTRING (${macro}_P ()));\n"
1607 printf " fprintf_unfiltered (file,\n"
1608 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1609 printf " ${macro}_P ());\n"
1610 printf "#endif\n"
1611 fi
1612 fi
1613 # multiarch functions don't have macros.
1614 if class_is_multiarch_p
1615 then
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1618 printf " (long) current_gdbarch->${function});\n"
1619 continue
1620 fi
1621 # Print the macro definition.
1622 printf "#ifdef ${macro}\n"
1623 if class_is_function_p
1624 then
1625 printf " fprintf_unfiltered (file,\n"
1626 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1627 printf " \"${macro}(${actual})\",\n"
1628 printf " XSTRING (${macro} (${actual})));\n"
1629 else
1630 printf " fprintf_unfiltered (file,\n"
1631 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1632 printf " XSTRING (${macro}));\n"
1633 fi
1634 if [ "x${print_p}" = "x()" ]
1635 then
1636 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1637 elif [ "x${print_p}" = "x0" ]
1638 then
1639 printf " /* skip print of ${macro}, print_p == 0. */\n"
1640 elif [ -n "${print_p}" ]
1641 then
1642 printf " if (${print_p})\n"
1643 printf " fprintf_unfiltered (file,\n"
1644 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1645 printf " ${print});\n"
1646 elif class_is_function_p
1647 then
1648 printf " fprintf_unfiltered (file,\n"
1649 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1650 printf " (long) current_gdbarch->${function}\n"
1651 printf " /*${macro} ()*/);\n"
1652 else
1653 printf " fprintf_unfiltered (file,\n"
1654 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1655 printf " ${print});\n"
1656 fi
1657 printf "#endif\n"
1658 done
1659 cat <<EOF
1660 if (current_gdbarch->dump_tdep != NULL)
1661 current_gdbarch->dump_tdep (current_gdbarch, file);
1662 }
1663 EOF
1664
1665
1666 # GET/SET
1667 printf "\n"
1668 cat <<EOF
1669 struct gdbarch_tdep *
1670 gdbarch_tdep (struct gdbarch *gdbarch)
1671 {
1672 if (gdbarch_debug >= 2)
1673 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1674 return gdbarch->tdep;
1675 }
1676 EOF
1677 printf "\n"
1678 function_list | while do_read
1679 do
1680 if class_is_predicate_p
1681 then
1682 printf "\n"
1683 printf "int\n"
1684 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1685 printf "{\n"
1686 printf " gdb_assert (gdbarch != NULL);\n"
1687 printf " return ${predicate};\n"
1688 printf "}\n"
1689 fi
1690 if class_is_function_p
1691 then
1692 printf "\n"
1693 printf "${returntype}\n"
1694 if [ "x${formal}" = "xvoid" ]
1695 then
1696 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1697 else
1698 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1699 fi
1700 printf "{\n"
1701 printf " gdb_assert (gdbarch != NULL);\n"
1702 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1703 if class_is_predicate_p && test -n "${predefault}"
1704 then
1705 # Allow a call to a function with a predicate.
1706 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1707 fi
1708 printf " if (gdbarch_debug >= 2)\n"
1709 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1710 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1711 then
1712 if class_is_multiarch_p
1713 then
1714 params="gdbarch"
1715 else
1716 params=""
1717 fi
1718 else
1719 if class_is_multiarch_p
1720 then
1721 params="gdbarch, ${actual}"
1722 else
1723 params="${actual}"
1724 fi
1725 fi
1726 if [ "x${returntype}" = "xvoid" ]
1727 then
1728 printf " gdbarch->${function} (${params});\n"
1729 else
1730 printf " return gdbarch->${function} (${params});\n"
1731 fi
1732 printf "}\n"
1733 printf "\n"
1734 printf "void\n"
1735 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1736 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1737 printf "{\n"
1738 printf " gdbarch->${function} = ${function};\n"
1739 printf "}\n"
1740 elif class_is_variable_p
1741 then
1742 printf "\n"
1743 printf "${returntype}\n"
1744 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1745 printf "{\n"
1746 printf " gdb_assert (gdbarch != NULL);\n"
1747 if [ "x${invalid_p}" = "x0" ]
1748 then
1749 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1750 elif [ -n "${invalid_p}" ]
1751 then
1752 printf " /* Check variable is valid. */\n"
1753 printf " gdb_assert (!(${invalid_p}));\n"
1754 elif [ -n "${predefault}" ]
1755 then
1756 printf " /* Check variable changed from pre-default. */\n"
1757 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1758 fi
1759 printf " if (gdbarch_debug >= 2)\n"
1760 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1761 printf " return gdbarch->${function};\n"
1762 printf "}\n"
1763 printf "\n"
1764 printf "void\n"
1765 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1766 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1767 printf "{\n"
1768 printf " gdbarch->${function} = ${function};\n"
1769 printf "}\n"
1770 elif class_is_info_p
1771 then
1772 printf "\n"
1773 printf "${returntype}\n"
1774 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1775 printf "{\n"
1776 printf " gdb_assert (gdbarch != NULL);\n"
1777 printf " if (gdbarch_debug >= 2)\n"
1778 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1779 printf " return gdbarch->${function};\n"
1780 printf "}\n"
1781 fi
1782 done
1783
1784 # All the trailing guff
1785 cat <<EOF
1786
1787
1788 /* Keep a registry of per-architecture data-pointers required by GDB
1789 modules. */
1790
1791 struct gdbarch_data
1792 {
1793 unsigned index;
1794 int init_p;
1795 gdbarch_data_pre_init_ftype *pre_init;
1796 gdbarch_data_post_init_ftype *post_init;
1797 };
1798
1799 struct gdbarch_data_registration
1800 {
1801 struct gdbarch_data *data;
1802 struct gdbarch_data_registration *next;
1803 };
1804
1805 struct gdbarch_data_registry
1806 {
1807 unsigned nr;
1808 struct gdbarch_data_registration *registrations;
1809 };
1810
1811 struct gdbarch_data_registry gdbarch_data_registry =
1812 {
1813 0, NULL,
1814 };
1815
1816 static struct gdbarch_data *
1817 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1818 gdbarch_data_post_init_ftype *post_init)
1819 {
1820 struct gdbarch_data_registration **curr;
1821 /* Append the new registraration. */
1822 for (curr = &gdbarch_data_registry.registrations;
1823 (*curr) != NULL;
1824 curr = &(*curr)->next);
1825 (*curr) = XMALLOC (struct gdbarch_data_registration);
1826 (*curr)->next = NULL;
1827 (*curr)->data = XMALLOC (struct gdbarch_data);
1828 (*curr)->data->index = gdbarch_data_registry.nr++;
1829 (*curr)->data->pre_init = pre_init;
1830 (*curr)->data->post_init = post_init;
1831 (*curr)->data->init_p = 1;
1832 return (*curr)->data;
1833 }
1834
1835 struct gdbarch_data *
1836 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1837 {
1838 return gdbarch_data_register (pre_init, NULL);
1839 }
1840
1841 struct gdbarch_data *
1842 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1843 {
1844 return gdbarch_data_register (NULL, post_init);
1845 }
1846
1847 /* Create/delete the gdbarch data vector. */
1848
1849 static void
1850 alloc_gdbarch_data (struct gdbarch *gdbarch)
1851 {
1852 gdb_assert (gdbarch->data == NULL);
1853 gdbarch->nr_data = gdbarch_data_registry.nr;
1854 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1855 }
1856
1857 /* Initialize the current value of the specified per-architecture
1858 data-pointer. */
1859
1860 void
1861 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1862 struct gdbarch_data *data,
1863 void *pointer)
1864 {
1865 gdb_assert (data->index < gdbarch->nr_data);
1866 gdb_assert (gdbarch->data[data->index] == NULL);
1867 gdb_assert (data->pre_init == NULL);
1868 gdbarch->data[data->index] = pointer;
1869 }
1870
1871 /* Return the current value of the specified per-architecture
1872 data-pointer. */
1873
1874 void *
1875 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1876 {
1877 gdb_assert (data->index < gdbarch->nr_data);
1878 if (gdbarch->data[data->index] == NULL)
1879 {
1880 /* The data-pointer isn't initialized, call init() to get a
1881 value. */
1882 if (data->pre_init != NULL)
1883 /* Mid architecture creation: pass just the obstack, and not
1884 the entire architecture, as that way it isn't possible for
1885 pre-init code to refer to undefined architecture
1886 fields. */
1887 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1888 else if (gdbarch->initialized_p
1889 && data->post_init != NULL)
1890 /* Post architecture creation: pass the entire architecture
1891 (as all fields are valid), but be careful to also detect
1892 recursive references. */
1893 {
1894 gdb_assert (data->init_p);
1895 data->init_p = 0;
1896 gdbarch->data[data->index] = data->post_init (gdbarch);
1897 data->init_p = 1;
1898 }
1899 else
1900 /* The architecture initialization hasn't completed - punt -
1901 hope that the caller knows what they are doing. Once
1902 deprecated_set_gdbarch_data has been initialized, this can be
1903 changed to an internal error. */
1904 return NULL;
1905 gdb_assert (gdbarch->data[data->index] != NULL);
1906 }
1907 return gdbarch->data[data->index];
1908 }
1909
1910
1911
1912 /* Keep a registry of swapped data required by GDB modules. */
1913
1914 struct gdbarch_swap
1915 {
1916 void *swap;
1917 struct gdbarch_swap_registration *source;
1918 struct gdbarch_swap *next;
1919 };
1920
1921 struct gdbarch_swap_registration
1922 {
1923 void *data;
1924 unsigned long sizeof_data;
1925 gdbarch_swap_ftype *init;
1926 struct gdbarch_swap_registration *next;
1927 };
1928
1929 struct gdbarch_swap_registry
1930 {
1931 int nr;
1932 struct gdbarch_swap_registration *registrations;
1933 };
1934
1935 struct gdbarch_swap_registry gdbarch_swap_registry =
1936 {
1937 0, NULL,
1938 };
1939
1940 void
1941 deprecated_register_gdbarch_swap (void *data,
1942 unsigned long sizeof_data,
1943 gdbarch_swap_ftype *init)
1944 {
1945 struct gdbarch_swap_registration **rego;
1946 for (rego = &gdbarch_swap_registry.registrations;
1947 (*rego) != NULL;
1948 rego = &(*rego)->next);
1949 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1950 (*rego)->next = NULL;
1951 (*rego)->init = init;
1952 (*rego)->data = data;
1953 (*rego)->sizeof_data = sizeof_data;
1954 }
1955
1956 static void
1957 current_gdbarch_swap_init_hack (void)
1958 {
1959 struct gdbarch_swap_registration *rego;
1960 struct gdbarch_swap **curr = &current_gdbarch->swap;
1961 for (rego = gdbarch_swap_registry.registrations;
1962 rego != NULL;
1963 rego = rego->next)
1964 {
1965 if (rego->data != NULL)
1966 {
1967 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1968 struct gdbarch_swap);
1969 (*curr)->source = rego;
1970 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1971 rego->sizeof_data);
1972 (*curr)->next = NULL;
1973 curr = &(*curr)->next;
1974 }
1975 if (rego->init != NULL)
1976 rego->init ();
1977 }
1978 }
1979
1980 static struct gdbarch *
1981 current_gdbarch_swap_out_hack (void)
1982 {
1983 struct gdbarch *old_gdbarch = current_gdbarch;
1984 struct gdbarch_swap *curr;
1985
1986 gdb_assert (old_gdbarch != NULL);
1987 for (curr = old_gdbarch->swap;
1988 curr != NULL;
1989 curr = curr->next)
1990 {
1991 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1992 memset (curr->source->data, 0, curr->source->sizeof_data);
1993 }
1994 current_gdbarch = NULL;
1995 return old_gdbarch;
1996 }
1997
1998 static void
1999 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
2000 {
2001 struct gdbarch_swap *curr;
2002
2003 gdb_assert (current_gdbarch == NULL);
2004 for (curr = new_gdbarch->swap;
2005 curr != NULL;
2006 curr = curr->next)
2007 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2008 current_gdbarch = new_gdbarch;
2009 }
2010
2011
2012 /* Keep a registry of the architectures known by GDB. */
2013
2014 struct gdbarch_registration
2015 {
2016 enum bfd_architecture bfd_architecture;
2017 gdbarch_init_ftype *init;
2018 gdbarch_dump_tdep_ftype *dump_tdep;
2019 struct gdbarch_list *arches;
2020 struct gdbarch_registration *next;
2021 };
2022
2023 static struct gdbarch_registration *gdbarch_registry = NULL;
2024
2025 static void
2026 append_name (const char ***buf, int *nr, const char *name)
2027 {
2028 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2029 (*buf)[*nr] = name;
2030 *nr += 1;
2031 }
2032
2033 const char **
2034 gdbarch_printable_names (void)
2035 {
2036 /* Accumulate a list of names based on the registed list of
2037 architectures. */
2038 enum bfd_architecture a;
2039 int nr_arches = 0;
2040 const char **arches = NULL;
2041 struct gdbarch_registration *rego;
2042 for (rego = gdbarch_registry;
2043 rego != NULL;
2044 rego = rego->next)
2045 {
2046 const struct bfd_arch_info *ap;
2047 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2048 if (ap == NULL)
2049 internal_error (__FILE__, __LINE__,
2050 "gdbarch_architecture_names: multi-arch unknown");
2051 do
2052 {
2053 append_name (&arches, &nr_arches, ap->printable_name);
2054 ap = ap->next;
2055 }
2056 while (ap != NULL);
2057 }
2058 append_name (&arches, &nr_arches, NULL);
2059 return arches;
2060 }
2061
2062
2063 void
2064 gdbarch_register (enum bfd_architecture bfd_architecture,
2065 gdbarch_init_ftype *init,
2066 gdbarch_dump_tdep_ftype *dump_tdep)
2067 {
2068 struct gdbarch_registration **curr;
2069 const struct bfd_arch_info *bfd_arch_info;
2070 /* Check that BFD recognizes this architecture */
2071 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2072 if (bfd_arch_info == NULL)
2073 {
2074 internal_error (__FILE__, __LINE__,
2075 "gdbarch: Attempt to register unknown architecture (%d)",
2076 bfd_architecture);
2077 }
2078 /* Check that we haven't seen this architecture before */
2079 for (curr = &gdbarch_registry;
2080 (*curr) != NULL;
2081 curr = &(*curr)->next)
2082 {
2083 if (bfd_architecture == (*curr)->bfd_architecture)
2084 internal_error (__FILE__, __LINE__,
2085 "gdbarch: Duplicate registraration of architecture (%s)",
2086 bfd_arch_info->printable_name);
2087 }
2088 /* log it */
2089 if (gdbarch_debug)
2090 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2091 bfd_arch_info->printable_name,
2092 (long) init);
2093 /* Append it */
2094 (*curr) = XMALLOC (struct gdbarch_registration);
2095 (*curr)->bfd_architecture = bfd_architecture;
2096 (*curr)->init = init;
2097 (*curr)->dump_tdep = dump_tdep;
2098 (*curr)->arches = NULL;
2099 (*curr)->next = NULL;
2100 }
2101
2102 void
2103 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2104 gdbarch_init_ftype *init)
2105 {
2106 gdbarch_register (bfd_architecture, init, NULL);
2107 }
2108
2109
2110 /* Look for an architecture using gdbarch_info. Base search on only
2111 BFD_ARCH_INFO and BYTE_ORDER. */
2112
2113 struct gdbarch_list *
2114 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2115 const struct gdbarch_info *info)
2116 {
2117 for (; arches != NULL; arches = arches->next)
2118 {
2119 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2120 continue;
2121 if (info->byte_order != arches->gdbarch->byte_order)
2122 continue;
2123 if (info->osabi != arches->gdbarch->osabi)
2124 continue;
2125 return arches;
2126 }
2127 return NULL;
2128 }
2129
2130
2131 /* Find an architecture that matches the specified INFO. Create a new
2132 architecture if needed. Return that new architecture. Assumes
2133 that there is no current architecture. */
2134
2135 static struct gdbarch *
2136 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2137 {
2138 struct gdbarch *new_gdbarch;
2139 struct gdbarch_registration *rego;
2140
2141 /* The existing architecture has been swapped out - all this code
2142 works from a clean slate. */
2143 gdb_assert (current_gdbarch == NULL);
2144
2145 /* Fill in missing parts of the INFO struct using a number of
2146 sources: "set ..."; INFOabfd supplied; and the existing
2147 architecture. */
2148 gdbarch_info_fill (old_gdbarch, &info);
2149
2150 /* Must have found some sort of architecture. */
2151 gdb_assert (info.bfd_arch_info != NULL);
2152
2153 if (gdbarch_debug)
2154 {
2155 fprintf_unfiltered (gdb_stdlog,
2156 "find_arch_by_info: info.bfd_arch_info %s\n",
2157 (info.bfd_arch_info != NULL
2158 ? info.bfd_arch_info->printable_name
2159 : "(null)"));
2160 fprintf_unfiltered (gdb_stdlog,
2161 "find_arch_by_info: info.byte_order %d (%s)\n",
2162 info.byte_order,
2163 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2164 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2165 : "default"));
2166 fprintf_unfiltered (gdb_stdlog,
2167 "find_arch_by_info: info.osabi %d (%s)\n",
2168 info.osabi, gdbarch_osabi_name (info.osabi));
2169 fprintf_unfiltered (gdb_stdlog,
2170 "find_arch_by_info: info.abfd 0x%lx\n",
2171 (long) info.abfd);
2172 fprintf_unfiltered (gdb_stdlog,
2173 "find_arch_by_info: info.tdep_info 0x%lx\n",
2174 (long) info.tdep_info);
2175 }
2176
2177 /* Find the tdep code that knows about this architecture. */
2178 for (rego = gdbarch_registry;
2179 rego != NULL;
2180 rego = rego->next)
2181 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2182 break;
2183 if (rego == NULL)
2184 {
2185 if (gdbarch_debug)
2186 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2187 "No matching architecture\n");
2188 return 0;
2189 }
2190
2191 /* Ask the tdep code for an architecture that matches "info". */
2192 new_gdbarch = rego->init (info, rego->arches);
2193
2194 /* Did the tdep code like it? No. Reject the change and revert to
2195 the old architecture. */
2196 if (new_gdbarch == NULL)
2197 {
2198 if (gdbarch_debug)
2199 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2200 "Target rejected architecture\n");
2201 return NULL;
2202 }
2203
2204 /* Is this a pre-existing architecture (as determined by already
2205 being initialized)? Move it to the front of the architecture
2206 list (keeping the list sorted Most Recently Used). */
2207 if (new_gdbarch->initialized_p)
2208 {
2209 struct gdbarch_list **list;
2210 struct gdbarch_list *this;
2211 if (gdbarch_debug)
2212 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2213 "Previous architecture 0x%08lx (%s) selected\n",
2214 (long) new_gdbarch,
2215 new_gdbarch->bfd_arch_info->printable_name);
2216 /* Find the existing arch in the list. */
2217 for (list = &rego->arches;
2218 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2219 list = &(*list)->next);
2220 /* It had better be in the list of architectures. */
2221 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2222 /* Unlink THIS. */
2223 this = (*list);
2224 (*list) = this->next;
2225 /* Insert THIS at the front. */
2226 this->next = rego->arches;
2227 rego->arches = this;
2228 /* Return it. */
2229 return new_gdbarch;
2230 }
2231
2232 /* It's a new architecture. */
2233 if (gdbarch_debug)
2234 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2235 "New architecture 0x%08lx (%s) selected\n",
2236 (long) new_gdbarch,
2237 new_gdbarch->bfd_arch_info->printable_name);
2238
2239 /* Insert the new architecture into the front of the architecture
2240 list (keep the list sorted Most Recently Used). */
2241 {
2242 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2243 this->next = rego->arches;
2244 this->gdbarch = new_gdbarch;
2245 rego->arches = this;
2246 }
2247
2248 /* Check that the newly installed architecture is valid. Plug in
2249 any post init values. */
2250 new_gdbarch->dump_tdep = rego->dump_tdep;
2251 verify_gdbarch (new_gdbarch);
2252 new_gdbarch->initialized_p = 1;
2253
2254 /* Initialize any per-architecture swap areas. This phase requires
2255 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2256 swap the entire architecture out. */
2257 current_gdbarch = new_gdbarch;
2258 current_gdbarch_swap_init_hack ();
2259 current_gdbarch_swap_out_hack ();
2260
2261 if (gdbarch_debug)
2262 gdbarch_dump (new_gdbarch, gdb_stdlog);
2263
2264 return new_gdbarch;
2265 }
2266
2267 struct gdbarch *
2268 gdbarch_find_by_info (struct gdbarch_info info)
2269 {
2270 /* Save the previously selected architecture, setting the global to
2271 NULL. This stops things like gdbarch->init() trying to use the
2272 previous architecture's configuration. The previous architecture
2273 may not even be of the same architecture family. The most recent
2274 architecture of the same family is found at the head of the
2275 rego->arches list. */
2276 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2277
2278 /* Find the specified architecture. */
2279 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2280
2281 /* Restore the existing architecture. */
2282 gdb_assert (current_gdbarch == NULL);
2283 current_gdbarch_swap_in_hack (old_gdbarch);
2284
2285 return new_gdbarch;
2286 }
2287
2288 /* Make the specified architecture current, swapping the existing one
2289 out. */
2290
2291 void
2292 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2293 {
2294 gdb_assert (new_gdbarch != NULL);
2295 gdb_assert (current_gdbarch != NULL);
2296 gdb_assert (new_gdbarch->initialized_p);
2297 current_gdbarch_swap_out_hack ();
2298 current_gdbarch_swap_in_hack (new_gdbarch);
2299 architecture_changed_event ();
2300 }
2301
2302 extern void _initialize_gdbarch (void);
2303
2304 void
2305 _initialize_gdbarch (void)
2306 {
2307 struct cmd_list_element *c;
2308
2309 add_show_from_set (add_set_cmd ("arch",
2310 class_maintenance,
2311 var_zinteger,
2312 (char *)&gdbarch_debug,
2313 "Set architecture debugging.\\n\\
2314 When non-zero, architecture debugging is enabled.", &setdebuglist),
2315 &showdebuglist);
2316 c = add_set_cmd ("archdebug",
2317 class_maintenance,
2318 var_zinteger,
2319 (char *)&gdbarch_debug,
2320 "Set architecture debugging.\\n\\
2321 When non-zero, architecture debugging is enabled.", &setlist);
2322
2323 deprecate_cmd (c, "set debug arch");
2324 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2325 }
2326 EOF
2327
2328 # close things off
2329 exec 1>&2
2330 #../move-if-change new-gdbarch.c gdbarch.c
2331 compare_new gdbarch.c
This page took 0.117577 seconds and 5 git commands to generate.