* arch-utils.h (legacy_register_to_value): Declare.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:register_read:int regnum, char *buf:regnum, buf:
432 M:::void:register_write:int regnum, char *buf:regnum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
451 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
452 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
453 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
454 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
455 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
456 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
457 # Convert from an sdb register number to an internal gdb register number.
458 # This should be defined in tm.h, if REGISTER_NAMES is not set up
459 # to map one to one onto the sdb register numbers.
460 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
461 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
462 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
463 v:2:REGISTER_SIZE:int:register_size::::0:-1
464 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
465 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
466 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
467 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
468 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
469 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
470 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
471 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
472 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
473 # MAP a GDB RAW register number onto a simulator register number. See
474 # also include/...-sim.h.
475 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
476 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
477 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
478 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
479 # setjmp/longjmp support.
480 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
481 #
482 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
483 # much better but at least they are vaguely consistent). The headers
484 # and body contain convoluted #if/#else sequences for determine how
485 # things should be compiled. Instead of trying to mimic that
486 # behaviour here (and hence entrench it further) gdbarch simply
487 # reqires that these methods be set up from the word go. This also
488 # avoids any potential problems with moving beyond multi-arch partial.
489 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
490 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
491 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
492 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
493 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
494 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
495 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
496 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
497 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
498 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
499 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
500 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
501 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
502 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
503 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
504 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
505 #
506 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
507 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
508 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
509 # GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
510 # old code has strange #ifdef interaction. So far no one has found
511 # that default_get_saved_register() is the default they are after.
512 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
513 #
514 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
515 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
516 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
517 #
518 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
519 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
520 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
521 # This function is called when the value of a pseudo-register needs to
522 # be updated. Typically it will be defined on a per-architecture
523 # basis.
524 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
525 # This function is called when the value of a pseudo-register needs to
526 # be set or stored. Typically it will be defined on a
527 # per-architecture basis.
528 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
529 #
530 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
531 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
532 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
533 #
534 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
535 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
536 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
537 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
538 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
539 f:2:POP_FRAME:void:pop_frame:void:-:::0
540 #
541 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
542 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
543 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
544 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
545 #
546 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
547 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
548 #
549 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
550 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
551 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
552 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
553 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
554 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
555 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
556 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
557 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
558 #
559 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
560 #
561 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
562 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
563 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
564 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
565 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
566 # given frame is the outermost one and has no caller.
567 #
568 # XXXX - both default and alternate frame_chain_valid functions are
569 # deprecated. New code should use dummy frames and one of the generic
570 # functions.
571 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::func_frame_chain_valid::0
572 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
573 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
574 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
575 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
576 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
577 #
578 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
579 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
580 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
581 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
582 v:2:PARM_BOUNDARY:int:parm_boundary
583 #
584 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
585 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
586 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
587 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
588 # On some machines there are bits in addresses which are not really
589 # part of the address, but are used by the kernel, the hardware, etc.
590 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
591 # we get a "real" address such as one would find in a symbol table.
592 # This is used only for addresses of instructions, and even then I'm
593 # not sure it's used in all contexts. It exists to deal with there
594 # being a few stray bits in the PC which would mislead us, not as some
595 # sort of generic thing to handle alignment or segmentation (it's
596 # possible it should be in TARGET_READ_PC instead).
597 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
598 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
599 # ADDR_BITS_REMOVE.
600 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
601 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
602 # the target needs software single step. An ISA method to implement it.
603 #
604 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
605 # using the breakpoint system instead of blatting memory directly (as with rs6000).
606 #
607 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
608 # single step. If not, then implement single step using breakpoints.
609 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
610 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
611 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
612 # For SVR4 shared libraries, each call goes through a small piece of
613 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
614 # to nonzero if we are current stopped in one of these.
615 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
616 # Sigtramp is a routine that the kernel calls (which then calls the
617 # signal handler). On most machines it is a library routine that is
618 # linked into the executable.
619 #
620 # This macro, given a program counter value and the name of the
621 # function in which that PC resides (which can be null if the name is
622 # not known), returns nonzero if the PC and name show that we are in
623 # sigtramp.
624 #
625 # On most machines just see if the name is sigtramp (and if we have
626 # no name, assume we are not in sigtramp).
627 #
628 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
629 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
630 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
631 # own local NAME lookup.
632 #
633 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
634 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
635 # does not.
636 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
637 # A target might have problems with watchpoints as soon as the stack
638 # frame of the current function has been destroyed. This mostly happens
639 # as the first action in a funtion's epilogue. in_function_epilogue_p()
640 # is defined to return a non-zero value if either the given addr is one
641 # instruction after the stack destroying instruction up to the trailing
642 # return instruction or if we can figure out that the stack frame has
643 # already been invalidated regardless of the value of addr. Targets
644 # which don't suffer from that problem could just let this functionality
645 # untouched.
646 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
647 # Given a vector of command-line arguments, return a newly allocated
648 # string which, when passed to the create_inferior function, will be
649 # parsed (on Unix systems, by the shell) to yield the same vector.
650 # This function should call error() if the argument vector is not
651 # representable for this target or if this target does not support
652 # command-line arguments.
653 # ARGC is the number of elements in the vector.
654 # ARGV is an array of strings, one per argument.
655 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
656 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
657 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
658 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
659 EOF
660 }
661
662 #
663 # The .log file
664 #
665 exec > new-gdbarch.log
666 function_list | while do_read
667 do
668 cat <<EOF
669 ${class} ${macro}(${actual})
670 ${returntype} ${function} ($formal)${attrib}
671 EOF
672 for r in ${read}
673 do
674 eval echo \"\ \ \ \ ${r}=\${${r}}\"
675 done
676 # #fallbackdefault=${fallbackdefault}
677 # #valid_p=${valid_p}
678 #EOF
679 if class_is_predicate_p && fallback_default_p
680 then
681 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
682 kill $$
683 exit 1
684 fi
685 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
686 then
687 echo "Error: postdefault is useless when invalid_p=0" 1>&2
688 kill $$
689 exit 1
690 fi
691 if class_is_multiarch_p
692 then
693 if class_is_predicate_p ; then :
694 elif test "x${predefault}" = "x"
695 then
696 echo "Error: pure multi-arch function must have a predefault" 1>&2
697 kill $$
698 exit 1
699 fi
700 fi
701 echo ""
702 done
703
704 exec 1>&2
705 compare_new gdbarch.log
706
707
708 copyright ()
709 {
710 cat <<EOF
711 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
712
713 /* Dynamic architecture support for GDB, the GNU debugger.
714 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
715
716 This file is part of GDB.
717
718 This program is free software; you can redistribute it and/or modify
719 it under the terms of the GNU General Public License as published by
720 the Free Software Foundation; either version 2 of the License, or
721 (at your option) any later version.
722
723 This program is distributed in the hope that it will be useful,
724 but WITHOUT ANY WARRANTY; without even the implied warranty of
725 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
726 GNU General Public License for more details.
727
728 You should have received a copy of the GNU General Public License
729 along with this program; if not, write to the Free Software
730 Foundation, Inc., 59 Temple Place - Suite 330,
731 Boston, MA 02111-1307, USA. */
732
733 /* This file was created with the aid of \`\`gdbarch.sh''.
734
735 The Bourne shell script \`\`gdbarch.sh'' creates the files
736 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
737 against the existing \`\`gdbarch.[hc]''. Any differences found
738 being reported.
739
740 If editing this file, please also run gdbarch.sh and merge any
741 changes into that script. Conversely, when making sweeping changes
742 to this file, modifying gdbarch.sh and using its output may prove
743 easier. */
744
745 EOF
746 }
747
748 #
749 # The .h file
750 #
751
752 exec > new-gdbarch.h
753 copyright
754 cat <<EOF
755 #ifndef GDBARCH_H
756 #define GDBARCH_H
757
758 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
759 #if !GDB_MULTI_ARCH
760 /* Pull in function declarations refered to, indirectly, via macros. */
761 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
762 #include "inferior.h" /* For unsigned_address_to_pointer(). */
763 #endif
764
765 struct frame_info;
766 struct value;
767 struct objfile;
768 struct minimal_symbol;
769
770 extern struct gdbarch *current_gdbarch;
771
772
773 /* If any of the following are defined, the target wasn't correctly
774 converted. */
775
776 #if GDB_MULTI_ARCH
777 #if defined (EXTRA_FRAME_INFO)
778 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
779 #endif
780 #endif
781
782 #if GDB_MULTI_ARCH
783 #if defined (FRAME_FIND_SAVED_REGS)
784 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
785 #endif
786 #endif
787
788 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
789 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
790 #endif
791 EOF
792
793 # function typedef's
794 printf "\n"
795 printf "\n"
796 printf "/* The following are pre-initialized by GDBARCH. */\n"
797 function_list | while do_read
798 do
799 if class_is_info_p
800 then
801 printf "\n"
802 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
803 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
804 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
805 printf "#error \"Non multi-arch definition of ${macro}\"\n"
806 printf "#endif\n"
807 printf "#if GDB_MULTI_ARCH\n"
808 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
809 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
810 printf "#endif\n"
811 printf "#endif\n"
812 fi
813 done
814
815 # function typedef's
816 printf "\n"
817 printf "\n"
818 printf "/* The following are initialized by the target dependent code. */\n"
819 function_list | while do_read
820 do
821 if [ -n "${comment}" ]
822 then
823 echo "${comment}" | sed \
824 -e '2 s,#,/*,' \
825 -e '3,$ s,#, ,' \
826 -e '$ s,$, */,'
827 fi
828 if class_is_multiarch_p
829 then
830 if class_is_predicate_p
831 then
832 printf "\n"
833 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
834 fi
835 else
836 if class_is_predicate_p
837 then
838 printf "\n"
839 printf "#if defined (${macro})\n"
840 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
841 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
842 printf "#if !defined (${macro}_P)\n"
843 printf "#define ${macro}_P() (1)\n"
844 printf "#endif\n"
845 printf "#endif\n"
846 printf "\n"
847 printf "/* Default predicate for non- multi-arch targets. */\n"
848 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
849 printf "#define ${macro}_P() (0)\n"
850 printf "#endif\n"
851 printf "\n"
852 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
853 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
854 printf "#error \"Non multi-arch definition of ${macro}\"\n"
855 printf "#endif\n"
856 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
857 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
858 printf "#endif\n"
859 fi
860 fi
861 if class_is_variable_p
862 then
863 if fallback_default_p || class_is_predicate_p
864 then
865 printf "\n"
866 printf "/* Default (value) for non- multi-arch platforms. */\n"
867 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
868 echo "#define ${macro} (${fallbackdefault})" \
869 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
870 printf "#endif\n"
871 fi
872 printf "\n"
873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
874 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
875 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
876 printf "#error \"Non multi-arch definition of ${macro}\"\n"
877 printf "#endif\n"
878 printf "#if GDB_MULTI_ARCH\n"
879 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
880 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
881 printf "#endif\n"
882 printf "#endif\n"
883 fi
884 if class_is_function_p
885 then
886 if class_is_multiarch_p ; then :
887 elif fallback_default_p || class_is_predicate_p
888 then
889 printf "\n"
890 printf "/* Default (function) for non- multi-arch platforms. */\n"
891 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
892 if [ "x${fallbackdefault}" = "x0" ]
893 then
894 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
895 else
896 # FIXME: Should be passing current_gdbarch through!
897 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
898 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
899 fi
900 printf "#endif\n"
901 fi
902 printf "\n"
903 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
904 then
905 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
906 elif class_is_multiarch_p
907 then
908 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
909 else
910 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
911 fi
912 if [ "x${formal}" = "xvoid" ]
913 then
914 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
915 else
916 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
917 fi
918 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
919 if class_is_multiarch_p ; then :
920 else
921 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
922 printf "#error \"Non multi-arch definition of ${macro}\"\n"
923 printf "#endif\n"
924 printf "#if GDB_MULTI_ARCH\n"
925 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
926 if [ "x${actual}" = "x" ]
927 then
928 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
929 elif [ "x${actual}" = "x-" ]
930 then
931 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
932 else
933 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
934 fi
935 printf "#endif\n"
936 printf "#endif\n"
937 fi
938 fi
939 done
940
941 # close it off
942 cat <<EOF
943
944 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
945
946
947 /* Mechanism for co-ordinating the selection of a specific
948 architecture.
949
950 GDB targets (*-tdep.c) can register an interest in a specific
951 architecture. Other GDB components can register a need to maintain
952 per-architecture data.
953
954 The mechanisms below ensures that there is only a loose connection
955 between the set-architecture command and the various GDB
956 components. Each component can independently register their need
957 to maintain architecture specific data with gdbarch.
958
959 Pragmatics:
960
961 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
962 didn't scale.
963
964 The more traditional mega-struct containing architecture specific
965 data for all the various GDB components was also considered. Since
966 GDB is built from a variable number of (fairly independent)
967 components it was determined that the global aproach was not
968 applicable. */
969
970
971 /* Register a new architectural family with GDB.
972
973 Register support for the specified ARCHITECTURE with GDB. When
974 gdbarch determines that the specified architecture has been
975 selected, the corresponding INIT function is called.
976
977 --
978
979 The INIT function takes two parameters: INFO which contains the
980 information available to gdbarch about the (possibly new)
981 architecture; ARCHES which is a list of the previously created
982 \`\`struct gdbarch'' for this architecture.
983
984 The INFO parameter is, as far as possible, be pre-initialized with
985 information obtained from INFO.ABFD or the previously selected
986 architecture.
987
988 The ARCHES parameter is a linked list (sorted most recently used)
989 of all the previously created architures for this architecture
990 family. The (possibly NULL) ARCHES->gdbarch can used to access
991 values from the previously selected architecture for this
992 architecture family. The global \`\`current_gdbarch'' shall not be
993 used.
994
995 The INIT function shall return any of: NULL - indicating that it
996 doesn't recognize the selected architecture; an existing \`\`struct
997 gdbarch'' from the ARCHES list - indicating that the new
998 architecture is just a synonym for an earlier architecture (see
999 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1000 - that describes the selected architecture (see gdbarch_alloc()).
1001
1002 The DUMP_TDEP function shall print out all target specific values.
1003 Care should be taken to ensure that the function works in both the
1004 multi-arch and non- multi-arch cases. */
1005
1006 struct gdbarch_list
1007 {
1008 struct gdbarch *gdbarch;
1009 struct gdbarch_list *next;
1010 };
1011
1012 struct gdbarch_info
1013 {
1014 /* Use default: NULL (ZERO). */
1015 const struct bfd_arch_info *bfd_arch_info;
1016
1017 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1018 int byte_order;
1019
1020 /* Use default: NULL (ZERO). */
1021 bfd *abfd;
1022
1023 /* Use default: NULL (ZERO). */
1024 struct gdbarch_tdep_info *tdep_info;
1025 };
1026
1027 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1028 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1029
1030 /* DEPRECATED - use gdbarch_register() */
1031 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1032
1033 extern void gdbarch_register (enum bfd_architecture architecture,
1034 gdbarch_init_ftype *,
1035 gdbarch_dump_tdep_ftype *);
1036
1037
1038 /* Return a freshly allocated, NULL terminated, array of the valid
1039 architecture names. Since architectures are registered during the
1040 _initialize phase this function only returns useful information
1041 once initialization has been completed. */
1042
1043 extern const char **gdbarch_printable_names (void);
1044
1045
1046 /* Helper function. Search the list of ARCHES for a GDBARCH that
1047 matches the information provided by INFO. */
1048
1049 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1050
1051
1052 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1053 basic initialization using values obtained from the INFO andTDEP
1054 parameters. set_gdbarch_*() functions are called to complete the
1055 initialization of the object. */
1056
1057 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1058
1059
1060 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1061 It is assumed that the caller freeds the \`\`struct
1062 gdbarch_tdep''. */
1063
1064 extern void gdbarch_free (struct gdbarch *);
1065
1066
1067 /* Helper function. Force an update of the current architecture.
1068
1069 The actual architecture selected is determined by INFO, \`\`(gdb) set
1070 architecture'' et.al., the existing architecture and BFD's default
1071 architecture. INFO should be initialized to zero and then selected
1072 fields should be updated.
1073
1074 Returns non-zero if the update succeeds */
1075
1076 extern int gdbarch_update_p (struct gdbarch_info info);
1077
1078
1079
1080 /* Register per-architecture data-pointer.
1081
1082 Reserve space for a per-architecture data-pointer. An identifier
1083 for the reserved data-pointer is returned. That identifer should
1084 be saved in a local static variable.
1085
1086 The per-architecture data-pointer can be initialized in one of two
1087 ways: The value can be set explicitly using a call to
1088 set_gdbarch_data(); the value can be set implicitly using the value
1089 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1090 called after the basic architecture vector has been created.
1091
1092 When a previously created architecture is re-selected, the
1093 per-architecture data-pointer for that previous architecture is
1094 restored. INIT() is not called.
1095
1096 During initialization, multiple assignments of the data-pointer are
1097 allowed, non-NULL values are deleted by calling FREE(). If the
1098 architecture is deleted using gdbarch_free() all non-NULL data
1099 pointers are also deleted using FREE().
1100
1101 Multiple registrarants for any architecture are allowed (and
1102 strongly encouraged). */
1103
1104 struct gdbarch_data;
1105
1106 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1107 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1108 void *pointer);
1109 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1110 gdbarch_data_free_ftype *free);
1111 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1112 struct gdbarch_data *data,
1113 void *pointer);
1114
1115 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1116
1117
1118 /* Register per-architecture memory region.
1119
1120 Provide a memory-region swap mechanism. Per-architecture memory
1121 region are created. These memory regions are swapped whenever the
1122 architecture is changed. For a new architecture, the memory region
1123 is initialized with zero (0) and the INIT function is called.
1124
1125 Memory regions are swapped / initialized in the order that they are
1126 registered. NULL DATA and/or INIT values can be specified.
1127
1128 New code should use register_gdbarch_data(). */
1129
1130 typedef void (gdbarch_swap_ftype) (void);
1131 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1132 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1133
1134
1135
1136 /* The target-system-dependent byte order is dynamic */
1137
1138 extern int target_byte_order;
1139 #ifndef TARGET_BYTE_ORDER
1140 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1141 #endif
1142
1143 extern int target_byte_order_auto;
1144 #ifndef TARGET_BYTE_ORDER_AUTO
1145 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1146 #endif
1147
1148
1149
1150 /* The target-system-dependent BFD architecture is dynamic */
1151
1152 extern int target_architecture_auto;
1153 #ifndef TARGET_ARCHITECTURE_AUTO
1154 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1155 #endif
1156
1157 extern const struct bfd_arch_info *target_architecture;
1158 #ifndef TARGET_ARCHITECTURE
1159 #define TARGET_ARCHITECTURE (target_architecture + 0)
1160 #endif
1161
1162
1163 /* The target-system-dependent disassembler is semi-dynamic */
1164
1165 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1166 unsigned int len, disassemble_info *info);
1167
1168 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1169 disassemble_info *info);
1170
1171 extern void dis_asm_print_address (bfd_vma addr,
1172 disassemble_info *info);
1173
1174 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1175 extern disassemble_info tm_print_insn_info;
1176 #ifndef TARGET_PRINT_INSN_INFO
1177 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1178 #endif
1179
1180
1181
1182 /* Set the dynamic target-system-dependent parameters (architecture,
1183 byte-order, ...) using information found in the BFD */
1184
1185 extern void set_gdbarch_from_file (bfd *);
1186
1187
1188 /* Initialize the current architecture to the "first" one we find on
1189 our list. */
1190
1191 extern void initialize_current_architecture (void);
1192
1193 /* For non-multiarched targets, do any initialization of the default
1194 gdbarch object necessary after the _initialize_MODULE functions
1195 have run. */
1196 extern void initialize_non_multiarch ();
1197
1198 /* gdbarch trace variable */
1199 extern int gdbarch_debug;
1200
1201 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1202
1203 #endif
1204 EOF
1205 exec 1>&2
1206 #../move-if-change new-gdbarch.h gdbarch.h
1207 compare_new gdbarch.h
1208
1209
1210 #
1211 # C file
1212 #
1213
1214 exec > new-gdbarch.c
1215 copyright
1216 cat <<EOF
1217
1218 #include "defs.h"
1219 #include "arch-utils.h"
1220
1221 #if GDB_MULTI_ARCH
1222 #include "gdbcmd.h"
1223 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1224 #else
1225 /* Just include everything in sight so that the every old definition
1226 of macro is visible. */
1227 #include "gdb_string.h"
1228 #include <ctype.h>
1229 #include "symtab.h"
1230 #include "frame.h"
1231 #include "inferior.h"
1232 #include "breakpoint.h"
1233 #include "gdb_wait.h"
1234 #include "gdbcore.h"
1235 #include "gdbcmd.h"
1236 #include "target.h"
1237 #include "gdbthread.h"
1238 #include "annotate.h"
1239 #include "symfile.h" /* for overlay functions */
1240 #include "value.h" /* For old tm.h/nm.h macros. */
1241 #endif
1242 #include "symcat.h"
1243
1244 #include "floatformat.h"
1245
1246 #include "gdb_assert.h"
1247 #include "gdb-events.h"
1248
1249 /* Static function declarations */
1250
1251 static void verify_gdbarch (struct gdbarch *gdbarch);
1252 static void alloc_gdbarch_data (struct gdbarch *);
1253 static void init_gdbarch_data (struct gdbarch *);
1254 static void free_gdbarch_data (struct gdbarch *);
1255 static void init_gdbarch_swap (struct gdbarch *);
1256 static void clear_gdbarch_swap (struct gdbarch *);
1257 static void swapout_gdbarch_swap (struct gdbarch *);
1258 static void swapin_gdbarch_swap (struct gdbarch *);
1259
1260 /* Non-zero if we want to trace architecture code. */
1261
1262 #ifndef GDBARCH_DEBUG
1263 #define GDBARCH_DEBUG 0
1264 #endif
1265 int gdbarch_debug = GDBARCH_DEBUG;
1266
1267 EOF
1268
1269 # gdbarch open the gdbarch object
1270 printf "\n"
1271 printf "/* Maintain the struct gdbarch object */\n"
1272 printf "\n"
1273 printf "struct gdbarch\n"
1274 printf "{\n"
1275 printf " /* basic architectural information */\n"
1276 function_list | while do_read
1277 do
1278 if class_is_info_p
1279 then
1280 printf " ${returntype} ${function};\n"
1281 fi
1282 done
1283 printf "\n"
1284 printf " /* target specific vector. */\n"
1285 printf " struct gdbarch_tdep *tdep;\n"
1286 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1287 printf "\n"
1288 printf " /* per-architecture data-pointers */\n"
1289 printf " unsigned nr_data;\n"
1290 printf " void **data;\n"
1291 printf "\n"
1292 printf " /* per-architecture swap-regions */\n"
1293 printf " struct gdbarch_swap *swap;\n"
1294 printf "\n"
1295 cat <<EOF
1296 /* Multi-arch values.
1297
1298 When extending this structure you must:
1299
1300 Add the field below.
1301
1302 Declare set/get functions and define the corresponding
1303 macro in gdbarch.h.
1304
1305 gdbarch_alloc(): If zero/NULL is not a suitable default,
1306 initialize the new field.
1307
1308 verify_gdbarch(): Confirm that the target updated the field
1309 correctly.
1310
1311 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1312 field is dumped out
1313
1314 \`\`startup_gdbarch()'': Append an initial value to the static
1315 variable (base values on the host's c-type system).
1316
1317 get_gdbarch(): Implement the set/get functions (probably using
1318 the macro's as shortcuts).
1319
1320 */
1321
1322 EOF
1323 function_list | while do_read
1324 do
1325 if class_is_variable_p
1326 then
1327 printf " ${returntype} ${function};\n"
1328 elif class_is_function_p
1329 then
1330 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1331 fi
1332 done
1333 printf "};\n"
1334
1335 # A pre-initialized vector
1336 printf "\n"
1337 printf "\n"
1338 cat <<EOF
1339 /* The default architecture uses host values (for want of a better
1340 choice). */
1341 EOF
1342 printf "\n"
1343 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1344 printf "\n"
1345 printf "struct gdbarch startup_gdbarch =\n"
1346 printf "{\n"
1347 printf " /* basic architecture information */\n"
1348 function_list | while do_read
1349 do
1350 if class_is_info_p
1351 then
1352 printf " ${staticdefault},\n"
1353 fi
1354 done
1355 cat <<EOF
1356 /* target specific vector and its dump routine */
1357 NULL, NULL,
1358 /*per-architecture data-pointers and swap regions */
1359 0, NULL, NULL,
1360 /* Multi-arch values */
1361 EOF
1362 function_list | while do_read
1363 do
1364 if class_is_function_p || class_is_variable_p
1365 then
1366 printf " ${staticdefault},\n"
1367 fi
1368 done
1369 cat <<EOF
1370 /* startup_gdbarch() */
1371 };
1372
1373 struct gdbarch *current_gdbarch = &startup_gdbarch;
1374
1375 /* Do any initialization needed for a non-multiarch configuration
1376 after the _initialize_MODULE functions have been run. */
1377 void
1378 initialize_non_multiarch ()
1379 {
1380 alloc_gdbarch_data (&startup_gdbarch);
1381 /* Ensure that all swap areas are zeroed so that they again think
1382 they are starting from scratch. */
1383 clear_gdbarch_swap (&startup_gdbarch);
1384 init_gdbarch_swap (&startup_gdbarch);
1385 init_gdbarch_data (&startup_gdbarch);
1386 }
1387 EOF
1388
1389 # Create a new gdbarch struct
1390 printf "\n"
1391 printf "\n"
1392 cat <<EOF
1393 /* Create a new \`\`struct gdbarch'' based on information provided by
1394 \`\`struct gdbarch_info''. */
1395 EOF
1396 printf "\n"
1397 cat <<EOF
1398 struct gdbarch *
1399 gdbarch_alloc (const struct gdbarch_info *info,
1400 struct gdbarch_tdep *tdep)
1401 {
1402 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1403 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1404 the current local architecture and not the previous global
1405 architecture. This ensures that the new architectures initial
1406 values are not influenced by the previous architecture. Once
1407 everything is parameterised with gdbarch, this will go away. */
1408 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1409 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1410
1411 alloc_gdbarch_data (current_gdbarch);
1412
1413 current_gdbarch->tdep = tdep;
1414 EOF
1415 printf "\n"
1416 function_list | while do_read
1417 do
1418 if class_is_info_p
1419 then
1420 printf " current_gdbarch->${function} = info->${function};\n"
1421 fi
1422 done
1423 printf "\n"
1424 printf " /* Force the explicit initialization of these. */\n"
1425 function_list | while do_read
1426 do
1427 if class_is_function_p || class_is_variable_p
1428 then
1429 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1430 then
1431 printf " current_gdbarch->${function} = ${predefault};\n"
1432 fi
1433 fi
1434 done
1435 cat <<EOF
1436 /* gdbarch_alloc() */
1437
1438 return current_gdbarch;
1439 }
1440 EOF
1441
1442 # Free a gdbarch struct.
1443 printf "\n"
1444 printf "\n"
1445 cat <<EOF
1446 /* Free a gdbarch struct. This should never happen in normal
1447 operation --- once you've created a gdbarch, you keep it around.
1448 However, if an architecture's init function encounters an error
1449 building the structure, it may need to clean up a partially
1450 constructed gdbarch. */
1451
1452 void
1453 gdbarch_free (struct gdbarch *arch)
1454 {
1455 gdb_assert (arch != NULL);
1456 free_gdbarch_data (arch);
1457 xfree (arch);
1458 }
1459 EOF
1460
1461 # verify a new architecture
1462 printf "\n"
1463 printf "\n"
1464 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1465 printf "\n"
1466 cat <<EOF
1467 static void
1468 verify_gdbarch (struct gdbarch *gdbarch)
1469 {
1470 struct ui_file *log;
1471 struct cleanup *cleanups;
1472 long dummy;
1473 char *buf;
1474 /* Only perform sanity checks on a multi-arch target. */
1475 if (!GDB_MULTI_ARCH)
1476 return;
1477 log = mem_fileopen ();
1478 cleanups = make_cleanup_ui_file_delete (log);
1479 /* fundamental */
1480 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1481 fprintf_unfiltered (log, "\n\tbyte-order");
1482 if (gdbarch->bfd_arch_info == NULL)
1483 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1484 /* Check those that need to be defined for the given multi-arch level. */
1485 EOF
1486 function_list | while do_read
1487 do
1488 if class_is_function_p || class_is_variable_p
1489 then
1490 if [ "x${invalid_p}" = "x0" ]
1491 then
1492 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1493 elif class_is_predicate_p
1494 then
1495 printf " /* Skip verify of ${function}, has predicate */\n"
1496 # FIXME: See do_read for potential simplification
1497 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1498 then
1499 printf " if (${invalid_p})\n"
1500 printf " gdbarch->${function} = ${postdefault};\n"
1501 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1502 then
1503 printf " if (gdbarch->${function} == ${predefault})\n"
1504 printf " gdbarch->${function} = ${postdefault};\n"
1505 elif [ -n "${postdefault}" ]
1506 then
1507 printf " if (gdbarch->${function} == 0)\n"
1508 printf " gdbarch->${function} = ${postdefault};\n"
1509 elif [ -n "${invalid_p}" ]
1510 then
1511 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1512 printf " && (${invalid_p}))\n"
1513 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1514 elif [ -n "${predefault}" ]
1515 then
1516 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1517 printf " && (gdbarch->${function} == ${predefault}))\n"
1518 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1519 fi
1520 fi
1521 done
1522 cat <<EOF
1523 buf = ui_file_xstrdup (log, &dummy);
1524 make_cleanup (xfree, buf);
1525 if (strlen (buf) > 0)
1526 internal_error (__FILE__, __LINE__,
1527 "verify_gdbarch: the following are invalid ...%s",
1528 buf);
1529 do_cleanups (cleanups);
1530 }
1531 EOF
1532
1533 # dump the structure
1534 printf "\n"
1535 printf "\n"
1536 cat <<EOF
1537 /* Print out the details of the current architecture. */
1538
1539 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1540 just happens to match the global variable \`\`current_gdbarch''. That
1541 way macros refering to that variable get the local and not the global
1542 version - ulgh. Once everything is parameterised with gdbarch, this
1543 will go away. */
1544
1545 void
1546 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1547 {
1548 fprintf_unfiltered (file,
1549 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1550 GDB_MULTI_ARCH);
1551 EOF
1552 function_list | sort -t: +2 | while do_read
1553 do
1554 # multiarch functions don't have macros.
1555 if class_is_multiarch_p
1556 then
1557 printf " if (GDB_MULTI_ARCH)\n"
1558 printf " fprintf_unfiltered (file,\n"
1559 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1560 printf " (long) current_gdbarch->${function});\n"
1561 continue
1562 fi
1563 # Print the macro definition.
1564 printf "#ifdef ${macro}\n"
1565 if [ "x${returntype}" = "xvoid" ]
1566 then
1567 printf "#if GDB_MULTI_ARCH\n"
1568 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1569 fi
1570 if class_is_function_p
1571 then
1572 printf " fprintf_unfiltered (file,\n"
1573 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1574 printf " \"${macro}(${actual})\",\n"
1575 printf " XSTRING (${macro} (${actual})));\n"
1576 else
1577 printf " fprintf_unfiltered (file,\n"
1578 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1579 printf " XSTRING (${macro}));\n"
1580 fi
1581 # Print the architecture vector value
1582 if [ "x${returntype}" = "xvoid" ]
1583 then
1584 printf "#endif\n"
1585 fi
1586 if [ "x${print_p}" = "x()" ]
1587 then
1588 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1589 elif [ "x${print_p}" = "x0" ]
1590 then
1591 printf " /* skip print of ${macro}, print_p == 0. */\n"
1592 elif [ -n "${print_p}" ]
1593 then
1594 printf " if (${print_p})\n"
1595 printf " fprintf_unfiltered (file,\n"
1596 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1597 printf " ${print});\n"
1598 elif class_is_function_p
1599 then
1600 printf " if (GDB_MULTI_ARCH)\n"
1601 printf " fprintf_unfiltered (file,\n"
1602 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1603 printf " (long) current_gdbarch->${function}\n"
1604 printf " /*${macro} ()*/);\n"
1605 else
1606 printf " fprintf_unfiltered (file,\n"
1607 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1608 printf " ${print});\n"
1609 fi
1610 printf "#endif\n"
1611 done
1612 cat <<EOF
1613 if (current_gdbarch->dump_tdep != NULL)
1614 current_gdbarch->dump_tdep (current_gdbarch, file);
1615 }
1616 EOF
1617
1618
1619 # GET/SET
1620 printf "\n"
1621 cat <<EOF
1622 struct gdbarch_tdep *
1623 gdbarch_tdep (struct gdbarch *gdbarch)
1624 {
1625 if (gdbarch_debug >= 2)
1626 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1627 return gdbarch->tdep;
1628 }
1629 EOF
1630 printf "\n"
1631 function_list | while do_read
1632 do
1633 if class_is_predicate_p
1634 then
1635 printf "\n"
1636 printf "int\n"
1637 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1638 printf "{\n"
1639 printf " gdb_assert (gdbarch != NULL);\n"
1640 if [ -n "${valid_p}" ]
1641 then
1642 printf " return ${valid_p};\n"
1643 else
1644 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1645 fi
1646 printf "}\n"
1647 fi
1648 if class_is_function_p
1649 then
1650 printf "\n"
1651 printf "${returntype}\n"
1652 if [ "x${formal}" = "xvoid" ]
1653 then
1654 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1655 else
1656 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1657 fi
1658 printf "{\n"
1659 printf " gdb_assert (gdbarch != NULL);\n"
1660 printf " if (gdbarch->${function} == 0)\n"
1661 printf " internal_error (__FILE__, __LINE__,\n"
1662 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1663 printf " if (gdbarch_debug >= 2)\n"
1664 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1665 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1666 then
1667 if class_is_multiarch_p
1668 then
1669 params="gdbarch"
1670 else
1671 params=""
1672 fi
1673 else
1674 if class_is_multiarch_p
1675 then
1676 params="gdbarch, ${actual}"
1677 else
1678 params="${actual}"
1679 fi
1680 fi
1681 if [ "x${returntype}" = "xvoid" ]
1682 then
1683 printf " gdbarch->${function} (${params});\n"
1684 else
1685 printf " return gdbarch->${function} (${params});\n"
1686 fi
1687 printf "}\n"
1688 printf "\n"
1689 printf "void\n"
1690 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1691 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1692 printf "{\n"
1693 printf " gdbarch->${function} = ${function};\n"
1694 printf "}\n"
1695 elif class_is_variable_p
1696 then
1697 printf "\n"
1698 printf "${returntype}\n"
1699 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1700 printf "{\n"
1701 printf " gdb_assert (gdbarch != NULL);\n"
1702 if [ "x${invalid_p}" = "x0" ]
1703 then
1704 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1705 elif [ -n "${invalid_p}" ]
1706 then
1707 printf " if (${invalid_p})\n"
1708 printf " internal_error (__FILE__, __LINE__,\n"
1709 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1710 elif [ -n "${predefault}" ]
1711 then
1712 printf " if (gdbarch->${function} == ${predefault})\n"
1713 printf " internal_error (__FILE__, __LINE__,\n"
1714 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1715 fi
1716 printf " if (gdbarch_debug >= 2)\n"
1717 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1718 printf " return gdbarch->${function};\n"
1719 printf "}\n"
1720 printf "\n"
1721 printf "void\n"
1722 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1723 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1724 printf "{\n"
1725 printf " gdbarch->${function} = ${function};\n"
1726 printf "}\n"
1727 elif class_is_info_p
1728 then
1729 printf "\n"
1730 printf "${returntype}\n"
1731 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1732 printf "{\n"
1733 printf " gdb_assert (gdbarch != NULL);\n"
1734 printf " if (gdbarch_debug >= 2)\n"
1735 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1736 printf " return gdbarch->${function};\n"
1737 printf "}\n"
1738 fi
1739 done
1740
1741 # All the trailing guff
1742 cat <<EOF
1743
1744
1745 /* Keep a registry of per-architecture data-pointers required by GDB
1746 modules. */
1747
1748 struct gdbarch_data
1749 {
1750 unsigned index;
1751 gdbarch_data_init_ftype *init;
1752 gdbarch_data_free_ftype *free;
1753 };
1754
1755 struct gdbarch_data_registration
1756 {
1757 struct gdbarch_data *data;
1758 struct gdbarch_data_registration *next;
1759 };
1760
1761 struct gdbarch_data_registry
1762 {
1763 unsigned nr;
1764 struct gdbarch_data_registration *registrations;
1765 };
1766
1767 struct gdbarch_data_registry gdbarch_data_registry =
1768 {
1769 0, NULL,
1770 };
1771
1772 struct gdbarch_data *
1773 register_gdbarch_data (gdbarch_data_init_ftype *init,
1774 gdbarch_data_free_ftype *free)
1775 {
1776 struct gdbarch_data_registration **curr;
1777 for (curr = &gdbarch_data_registry.registrations;
1778 (*curr) != NULL;
1779 curr = &(*curr)->next);
1780 (*curr) = XMALLOC (struct gdbarch_data_registration);
1781 (*curr)->next = NULL;
1782 (*curr)->data = XMALLOC (struct gdbarch_data);
1783 (*curr)->data->index = gdbarch_data_registry.nr++;
1784 (*curr)->data->init = init;
1785 (*curr)->data->free = free;
1786 return (*curr)->data;
1787 }
1788
1789
1790 /* Walk through all the registered users initializing each in turn. */
1791
1792 static void
1793 init_gdbarch_data (struct gdbarch *gdbarch)
1794 {
1795 struct gdbarch_data_registration *rego;
1796 for (rego = gdbarch_data_registry.registrations;
1797 rego != NULL;
1798 rego = rego->next)
1799 {
1800 struct gdbarch_data *data = rego->data;
1801 gdb_assert (data->index < gdbarch->nr_data);
1802 if (data->init != NULL)
1803 {
1804 void *pointer = data->init (gdbarch);
1805 set_gdbarch_data (gdbarch, data, pointer);
1806 }
1807 }
1808 }
1809
1810 /* Create/delete the gdbarch data vector. */
1811
1812 static void
1813 alloc_gdbarch_data (struct gdbarch *gdbarch)
1814 {
1815 gdb_assert (gdbarch->data == NULL);
1816 gdbarch->nr_data = gdbarch_data_registry.nr;
1817 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1818 }
1819
1820 static void
1821 free_gdbarch_data (struct gdbarch *gdbarch)
1822 {
1823 struct gdbarch_data_registration *rego;
1824 gdb_assert (gdbarch->data != NULL);
1825 for (rego = gdbarch_data_registry.registrations;
1826 rego != NULL;
1827 rego = rego->next)
1828 {
1829 struct gdbarch_data *data = rego->data;
1830 gdb_assert (data->index < gdbarch->nr_data);
1831 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1832 {
1833 data->free (gdbarch, gdbarch->data[data->index]);
1834 gdbarch->data[data->index] = NULL;
1835 }
1836 }
1837 xfree (gdbarch->data);
1838 gdbarch->data = NULL;
1839 }
1840
1841
1842 /* Initialize the current value of thee specified per-architecture
1843 data-pointer. */
1844
1845 void
1846 set_gdbarch_data (struct gdbarch *gdbarch,
1847 struct gdbarch_data *data,
1848 void *pointer)
1849 {
1850 gdb_assert (data->index < gdbarch->nr_data);
1851 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1852 data->free (gdbarch, gdbarch->data[data->index]);
1853 gdbarch->data[data->index] = pointer;
1854 }
1855
1856 /* Return the current value of the specified per-architecture
1857 data-pointer. */
1858
1859 void *
1860 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1861 {
1862 gdb_assert (data->index < gdbarch->nr_data);
1863 return gdbarch->data[data->index];
1864 }
1865
1866
1867
1868 /* Keep a registry of swapped data required by GDB modules. */
1869
1870 struct gdbarch_swap
1871 {
1872 void *swap;
1873 struct gdbarch_swap_registration *source;
1874 struct gdbarch_swap *next;
1875 };
1876
1877 struct gdbarch_swap_registration
1878 {
1879 void *data;
1880 unsigned long sizeof_data;
1881 gdbarch_swap_ftype *init;
1882 struct gdbarch_swap_registration *next;
1883 };
1884
1885 struct gdbarch_swap_registry
1886 {
1887 int nr;
1888 struct gdbarch_swap_registration *registrations;
1889 };
1890
1891 struct gdbarch_swap_registry gdbarch_swap_registry =
1892 {
1893 0, NULL,
1894 };
1895
1896 void
1897 register_gdbarch_swap (void *data,
1898 unsigned long sizeof_data,
1899 gdbarch_swap_ftype *init)
1900 {
1901 struct gdbarch_swap_registration **rego;
1902 for (rego = &gdbarch_swap_registry.registrations;
1903 (*rego) != NULL;
1904 rego = &(*rego)->next);
1905 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1906 (*rego)->next = NULL;
1907 (*rego)->init = init;
1908 (*rego)->data = data;
1909 (*rego)->sizeof_data = sizeof_data;
1910 }
1911
1912 static void
1913 clear_gdbarch_swap (struct gdbarch *gdbarch)
1914 {
1915 struct gdbarch_swap *curr;
1916 for (curr = gdbarch->swap;
1917 curr != NULL;
1918 curr = curr->next)
1919 {
1920 memset (curr->source->data, 0, curr->source->sizeof_data);
1921 }
1922 }
1923
1924 static void
1925 init_gdbarch_swap (struct gdbarch *gdbarch)
1926 {
1927 struct gdbarch_swap_registration *rego;
1928 struct gdbarch_swap **curr = &gdbarch->swap;
1929 for (rego = gdbarch_swap_registry.registrations;
1930 rego != NULL;
1931 rego = rego->next)
1932 {
1933 if (rego->data != NULL)
1934 {
1935 (*curr) = XMALLOC (struct gdbarch_swap);
1936 (*curr)->source = rego;
1937 (*curr)->swap = xmalloc (rego->sizeof_data);
1938 (*curr)->next = NULL;
1939 curr = &(*curr)->next;
1940 }
1941 if (rego->init != NULL)
1942 rego->init ();
1943 }
1944 }
1945
1946 static void
1947 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1948 {
1949 struct gdbarch_swap *curr;
1950 for (curr = gdbarch->swap;
1951 curr != NULL;
1952 curr = curr->next)
1953 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1954 }
1955
1956 static void
1957 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1958 {
1959 struct gdbarch_swap *curr;
1960 for (curr = gdbarch->swap;
1961 curr != NULL;
1962 curr = curr->next)
1963 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1964 }
1965
1966
1967 /* Keep a registry of the architectures known by GDB. */
1968
1969 struct gdbarch_registration
1970 {
1971 enum bfd_architecture bfd_architecture;
1972 gdbarch_init_ftype *init;
1973 gdbarch_dump_tdep_ftype *dump_tdep;
1974 struct gdbarch_list *arches;
1975 struct gdbarch_registration *next;
1976 };
1977
1978 static struct gdbarch_registration *gdbarch_registry = NULL;
1979
1980 static void
1981 append_name (const char ***buf, int *nr, const char *name)
1982 {
1983 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1984 (*buf)[*nr] = name;
1985 *nr += 1;
1986 }
1987
1988 const char **
1989 gdbarch_printable_names (void)
1990 {
1991 if (GDB_MULTI_ARCH)
1992 {
1993 /* Accumulate a list of names based on the registed list of
1994 architectures. */
1995 enum bfd_architecture a;
1996 int nr_arches = 0;
1997 const char **arches = NULL;
1998 struct gdbarch_registration *rego;
1999 for (rego = gdbarch_registry;
2000 rego != NULL;
2001 rego = rego->next)
2002 {
2003 const struct bfd_arch_info *ap;
2004 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2005 if (ap == NULL)
2006 internal_error (__FILE__, __LINE__,
2007 "gdbarch_architecture_names: multi-arch unknown");
2008 do
2009 {
2010 append_name (&arches, &nr_arches, ap->printable_name);
2011 ap = ap->next;
2012 }
2013 while (ap != NULL);
2014 }
2015 append_name (&arches, &nr_arches, NULL);
2016 return arches;
2017 }
2018 else
2019 /* Just return all the architectures that BFD knows. Assume that
2020 the legacy architecture framework supports them. */
2021 return bfd_arch_list ();
2022 }
2023
2024
2025 void
2026 gdbarch_register (enum bfd_architecture bfd_architecture,
2027 gdbarch_init_ftype *init,
2028 gdbarch_dump_tdep_ftype *dump_tdep)
2029 {
2030 struct gdbarch_registration **curr;
2031 const struct bfd_arch_info *bfd_arch_info;
2032 /* Check that BFD recognizes this architecture */
2033 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2034 if (bfd_arch_info == NULL)
2035 {
2036 internal_error (__FILE__, __LINE__,
2037 "gdbarch: Attempt to register unknown architecture (%d)",
2038 bfd_architecture);
2039 }
2040 /* Check that we haven't seen this architecture before */
2041 for (curr = &gdbarch_registry;
2042 (*curr) != NULL;
2043 curr = &(*curr)->next)
2044 {
2045 if (bfd_architecture == (*curr)->bfd_architecture)
2046 internal_error (__FILE__, __LINE__,
2047 "gdbarch: Duplicate registraration of architecture (%s)",
2048 bfd_arch_info->printable_name);
2049 }
2050 /* log it */
2051 if (gdbarch_debug)
2052 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2053 bfd_arch_info->printable_name,
2054 (long) init);
2055 /* Append it */
2056 (*curr) = XMALLOC (struct gdbarch_registration);
2057 (*curr)->bfd_architecture = bfd_architecture;
2058 (*curr)->init = init;
2059 (*curr)->dump_tdep = dump_tdep;
2060 (*curr)->arches = NULL;
2061 (*curr)->next = NULL;
2062 /* When non- multi-arch, install whatever target dump routine we've
2063 been provided - hopefully that routine has been written correctly
2064 and works regardless of multi-arch. */
2065 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2066 && startup_gdbarch.dump_tdep == NULL)
2067 startup_gdbarch.dump_tdep = dump_tdep;
2068 }
2069
2070 void
2071 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2072 gdbarch_init_ftype *init)
2073 {
2074 gdbarch_register (bfd_architecture, init, NULL);
2075 }
2076
2077
2078 /* Look for an architecture using gdbarch_info. Base search on only
2079 BFD_ARCH_INFO and BYTE_ORDER. */
2080
2081 struct gdbarch_list *
2082 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2083 const struct gdbarch_info *info)
2084 {
2085 for (; arches != NULL; arches = arches->next)
2086 {
2087 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2088 continue;
2089 if (info->byte_order != arches->gdbarch->byte_order)
2090 continue;
2091 return arches;
2092 }
2093 return NULL;
2094 }
2095
2096
2097 /* Update the current architecture. Return ZERO if the update request
2098 failed. */
2099
2100 int
2101 gdbarch_update_p (struct gdbarch_info info)
2102 {
2103 struct gdbarch *new_gdbarch;
2104 struct gdbarch *old_gdbarch;
2105 struct gdbarch_registration *rego;
2106
2107 /* Fill in missing parts of the INFO struct using a number of
2108 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2109
2110 /* \`\`(gdb) set architecture ...'' */
2111 if (info.bfd_arch_info == NULL
2112 && !TARGET_ARCHITECTURE_AUTO)
2113 info.bfd_arch_info = TARGET_ARCHITECTURE;
2114 if (info.bfd_arch_info == NULL
2115 && info.abfd != NULL
2116 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2117 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2118 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2119 if (info.bfd_arch_info == NULL)
2120 info.bfd_arch_info = TARGET_ARCHITECTURE;
2121
2122 /* \`\`(gdb) set byte-order ...'' */
2123 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2124 && !TARGET_BYTE_ORDER_AUTO)
2125 info.byte_order = TARGET_BYTE_ORDER;
2126 /* From the INFO struct. */
2127 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2128 && info.abfd != NULL)
2129 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2130 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2131 : BFD_ENDIAN_UNKNOWN);
2132 /* From the current target. */
2133 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2134 info.byte_order = TARGET_BYTE_ORDER;
2135
2136 /* Must have found some sort of architecture. */
2137 gdb_assert (info.bfd_arch_info != NULL);
2138
2139 if (gdbarch_debug)
2140 {
2141 fprintf_unfiltered (gdb_stdlog,
2142 "gdbarch_update: info.bfd_arch_info %s\n",
2143 (info.bfd_arch_info != NULL
2144 ? info.bfd_arch_info->printable_name
2145 : "(null)"));
2146 fprintf_unfiltered (gdb_stdlog,
2147 "gdbarch_update: info.byte_order %d (%s)\n",
2148 info.byte_order,
2149 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2150 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2151 : "default"));
2152 fprintf_unfiltered (gdb_stdlog,
2153 "gdbarch_update: info.abfd 0x%lx\n",
2154 (long) info.abfd);
2155 fprintf_unfiltered (gdb_stdlog,
2156 "gdbarch_update: info.tdep_info 0x%lx\n",
2157 (long) info.tdep_info);
2158 }
2159
2160 /* Find the target that knows about this architecture. */
2161 for (rego = gdbarch_registry;
2162 rego != NULL;
2163 rego = rego->next)
2164 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2165 break;
2166 if (rego == NULL)
2167 {
2168 if (gdbarch_debug)
2169 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2170 return 0;
2171 }
2172
2173 /* Swap the data belonging to the old target out setting the
2174 installed data to zero. This stops the ->init() function trying
2175 to refer to the previous architecture's global data structures. */
2176 swapout_gdbarch_swap (current_gdbarch);
2177 clear_gdbarch_swap (current_gdbarch);
2178
2179 /* Save the previously selected architecture, setting the global to
2180 NULL. This stops ->init() trying to use the previous
2181 architecture's configuration. The previous architecture may not
2182 even be of the same architecture family. The most recent
2183 architecture of the same family is found at the head of the
2184 rego->arches list. */
2185 old_gdbarch = current_gdbarch;
2186 current_gdbarch = NULL;
2187
2188 /* Ask the target for a replacement architecture. */
2189 new_gdbarch = rego->init (info, rego->arches);
2190
2191 /* Did the target like it? No. Reject the change and revert to the
2192 old architecture. */
2193 if (new_gdbarch == NULL)
2194 {
2195 if (gdbarch_debug)
2196 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2197 swapin_gdbarch_swap (old_gdbarch);
2198 current_gdbarch = old_gdbarch;
2199 return 0;
2200 }
2201
2202 /* Did the architecture change? No. Oops, put the old architecture
2203 back. */
2204 if (old_gdbarch == new_gdbarch)
2205 {
2206 if (gdbarch_debug)
2207 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2208 (long) new_gdbarch,
2209 new_gdbarch->bfd_arch_info->printable_name);
2210 swapin_gdbarch_swap (old_gdbarch);
2211 current_gdbarch = old_gdbarch;
2212 return 1;
2213 }
2214
2215 /* Is this a pre-existing architecture? Yes. Move it to the front
2216 of the list of architectures (keeping the list sorted Most
2217 Recently Used) and then copy it in. */
2218 {
2219 struct gdbarch_list **list;
2220 for (list = &rego->arches;
2221 (*list) != NULL;
2222 list = &(*list)->next)
2223 {
2224 if ((*list)->gdbarch == new_gdbarch)
2225 {
2226 struct gdbarch_list *this;
2227 if (gdbarch_debug)
2228 fprintf_unfiltered (gdb_stdlog,
2229 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2230 (long) new_gdbarch,
2231 new_gdbarch->bfd_arch_info->printable_name);
2232 /* Unlink this. */
2233 this = (*list);
2234 (*list) = this->next;
2235 /* Insert in the front. */
2236 this->next = rego->arches;
2237 rego->arches = this;
2238 /* Copy the new architecture in. */
2239 current_gdbarch = new_gdbarch;
2240 swapin_gdbarch_swap (new_gdbarch);
2241 architecture_changed_event ();
2242 return 1;
2243 }
2244 }
2245 }
2246
2247 /* Prepend this new architecture to the architecture list (keep the
2248 list sorted Most Recently Used). */
2249 {
2250 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2251 this->next = rego->arches;
2252 this->gdbarch = new_gdbarch;
2253 rego->arches = this;
2254 }
2255
2256 /* Switch to this new architecture. Dump it out. */
2257 current_gdbarch = new_gdbarch;
2258 if (gdbarch_debug)
2259 {
2260 fprintf_unfiltered (gdb_stdlog,
2261 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2262 (long) new_gdbarch,
2263 new_gdbarch->bfd_arch_info->printable_name);
2264 }
2265
2266 /* Check that the newly installed architecture is valid. Plug in
2267 any post init values. */
2268 new_gdbarch->dump_tdep = rego->dump_tdep;
2269 verify_gdbarch (new_gdbarch);
2270
2271 /* Initialize the per-architecture memory (swap) areas.
2272 CURRENT_GDBARCH must be update before these modules are
2273 called. */
2274 init_gdbarch_swap (new_gdbarch);
2275
2276 /* Initialize the per-architecture data-pointer of all parties that
2277 registered an interest in this architecture. CURRENT_GDBARCH
2278 must be updated before these modules are called. */
2279 init_gdbarch_data (new_gdbarch);
2280 architecture_changed_event ();
2281
2282 if (gdbarch_debug)
2283 gdbarch_dump (current_gdbarch, gdb_stdlog);
2284
2285 return 1;
2286 }
2287
2288
2289 /* Disassembler */
2290
2291 /* Pointer to the target-dependent disassembly function. */
2292 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2293 disassemble_info tm_print_insn_info;
2294
2295
2296 extern void _initialize_gdbarch (void);
2297
2298 void
2299 _initialize_gdbarch (void)
2300 {
2301 struct cmd_list_element *c;
2302
2303 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2304 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2305 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2306 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2307 tm_print_insn_info.print_address_func = dis_asm_print_address;
2308
2309 add_show_from_set (add_set_cmd ("arch",
2310 class_maintenance,
2311 var_zinteger,
2312 (char *)&gdbarch_debug,
2313 "Set architecture debugging.\\n\\
2314 When non-zero, architecture debugging is enabled.", &setdebuglist),
2315 &showdebuglist);
2316 c = add_set_cmd ("archdebug",
2317 class_maintenance,
2318 var_zinteger,
2319 (char *)&gdbarch_debug,
2320 "Set architecture debugging.\\n\\
2321 When non-zero, architecture debugging is enabled.", &setlist);
2322
2323 deprecate_cmd (c, "set debug arch");
2324 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2325 }
2326 EOF
2327
2328 # close things off
2329 exec 1>&2
2330 #../move-if-change new-gdbarch.c gdbarch.c
2331 compare_new gdbarch.c
This page took 0.111717 seconds and 5 git commands to generate.