2001-09-05 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
261
262 # A zero PREDEFAULT function will force the fallback to call
263 # internal_error().
264
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
267
268 postdefault ) : ;;
269
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
272 # value.
273
274 # If POSTDEFAULT is empty, no post update is performed.
275
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
279
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
283 # PREDEFAULT).
284
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
286
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
289
290 invalid_p ) : ;;
291
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
297 # is called.
298
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
301
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
304
305 # See also PREDEFAULT and POSTDEFAULT.
306
307 fmt ) : ;;
308
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
312
313 # If FMT is empty, ``%ld'' is used.
314
315 print ) : ;;
316
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
319
320 # If PRINT is empty, ``(long)'' is used.
321
322 print_p ) : ;;
323
324 # An optional indicator for any predicte to wrap around the
325 # print member code.
326
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
330
331 # If PRINT_P is empty, ``1'' is always used.
332
333 description ) : ;;
334
335 # Currently unused.
336
337 *) exit 1;;
338 esac
339 done
340
341
342 function_list ()
343 {
344 # See below (DOCO) for description of each field
345 cat <<EOF
346 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
347 #
348 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349 # Number of bits in a char or unsigned char for the target machine.
350 # Just like CHAR_BIT in <limits.h> but describes the target machine.
351 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
352 #
353 # Number of bits in a short or unsigned short for the target machine.
354 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355 # Number of bits in an int or unsigned int for the target machine.
356 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357 # Number of bits in a long or unsigned long for the target machine.
358 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long long or unsigned long long for the target
360 # machine.
361 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362 # Number of bits in a float for the target machine.
363 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364 # Number of bits in a double for the target machine.
365 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366 # Number of bits in a long double for the target machine.
367 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368 # For most targets, a pointer on the target and its representation as an
369 # address in GDB have the same size and "look the same". For such a
370 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371 # / addr_bit will be set from it.
372 #
373 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
375 #
376 # ptr_bit is the size of a pointer on the target
377 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378 # addr_bit is the size of a target address as represented in gdb
379 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380 # Number of bits in a BFD_VMA for the target object file format.
381 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
382 #
383 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
384 #
385 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391 # Function for getting target's idea of a frame pointer. FIXME: GDB's
392 # whole scheme for dealing with "frames" and "frame pointers" needs a
393 # serious shakedown.
394 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
395 #
396 M:::void:register_read:int regnum, char *buf:regnum, buf:
397 M:::void:register_write:int regnum, char *buf:regnum, buf:
398 #
399 v:2:NUM_REGS:int:num_regs::::0:-1
400 # This macro gives the number of pseudo-registers that live in the
401 # register namespace but do not get fetched or stored on the target.
402 # These pseudo-registers may be aliases for other registers,
403 # combinations of other registers, or they may be computed by GDB.
404 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
405 v:2:SP_REGNUM:int:sp_regnum::::0:-1
406 v:2:FP_REGNUM:int:fp_regnum::::0:-1
407 v:2:PC_REGNUM:int:pc_regnum::::0:-1
408 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
409 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
410 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
411 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
412 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
413 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
414 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
415 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
416 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
417 # Convert from an sdb register number to an internal gdb register number.
418 # This should be defined in tm.h, if REGISTER_NAMES is not set up
419 # to map one to one onto the sdb register numbers.
420 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
421 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
422 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
423 v:2:REGISTER_SIZE:int:register_size::::0:-1
424 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
425 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
426 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
427 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
428 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
429 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
430 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
431 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
432 # MAP a GDB RAW register number onto a simulator register number. See
433 # also include/...-sim.h.
434 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
435 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
436 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
437 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
438 #
439 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
440 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
441 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
442 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
443 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
444 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
445 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
446 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
447 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
448 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
449 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
450 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
451 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
452 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
453 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
454 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
455 #
456 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
457 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
458 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
459 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
460 #
461 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
462 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
463 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
464 # This function is called when the value of a pseudo-register needs to
465 # be updated. Typically it will be defined on a per-architecture
466 # basis.
467 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
468 # This function is called when the value of a pseudo-register needs to
469 # be set or stored. Typically it will be defined on a
470 # per-architecture basis.
471 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
472 #
473 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
474 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
475 #
476 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
477 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
478 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
479 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
480 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
481 f:2:POP_FRAME:void:pop_frame:void:-:::0
482 #
483 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
484 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
485 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
486 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
487 #
488 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
489 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
490 #
491 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
492 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
493 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
494 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
495 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
496 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
497 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
498 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
499 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
500 #
501 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
502 #
503 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
504 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
505 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
506 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
507 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
508 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
509 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
510 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
511 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
512 #
513 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
514 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
515 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
516 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
517 v:2:PARM_BOUNDARY:int:parm_boundary
518 #
519 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
520 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
521 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
522 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
533 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
534 # the target needs software single step. An ISA method to implement it.
535 #
536 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
537 # using the breakpoint system instead of blatting memory directly (as with rs6000).
538 #
539 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
540 # single step. If not, then implement single step using breakpoints.
541 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
542 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
543 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
544 EOF
545 }
546
547 #
548 # The .log file
549 #
550 exec > new-gdbarch.log
551 function_list | while do_read
552 do
553 cat <<EOF
554 ${class} ${macro}(${actual})
555 ${returntype} ${function} ($formal)${attrib}
556 EOF
557 for r in ${read}
558 do
559 eval echo \"\ \ \ \ ${r}=\${${r}}\"
560 done
561 # #fallbackdefault=${fallbackdefault}
562 # #valid_p=${valid_p}
563 #EOF
564 if class_is_predicate_p && fallback_default_p
565 then
566 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
567 kill $$
568 exit 1
569 fi
570 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
571 then
572 echo "Error: postdefault is useless when invalid_p=0" 1>&2
573 kill $$
574 exit 1
575 fi
576 echo ""
577 done
578
579 exec 1>&2
580 compare_new gdbarch.log
581
582
583 copyright ()
584 {
585 cat <<EOF
586 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
587
588 /* Dynamic architecture support for GDB, the GNU debugger.
589 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
590
591 This file is part of GDB.
592
593 This program is free software; you can redistribute it and/or modify
594 it under the terms of the GNU General Public License as published by
595 the Free Software Foundation; either version 2 of the License, or
596 (at your option) any later version.
597
598 This program is distributed in the hope that it will be useful,
599 but WITHOUT ANY WARRANTY; without even the implied warranty of
600 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
601 GNU General Public License for more details.
602
603 You should have received a copy of the GNU General Public License
604 along with this program; if not, write to the Free Software
605 Foundation, Inc., 59 Temple Place - Suite 330,
606 Boston, MA 02111-1307, USA. */
607
608 /* This file was created with the aid of \`\`gdbarch.sh''.
609
610 The Bourne shell script \`\`gdbarch.sh'' creates the files
611 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
612 against the existing \`\`gdbarch.[hc]''. Any differences found
613 being reported.
614
615 If editing this file, please also run gdbarch.sh and merge any
616 changes into that script. Conversely, when making sweeping changes
617 to this file, modifying gdbarch.sh and using its output may prove
618 easier. */
619
620 EOF
621 }
622
623 #
624 # The .h file
625 #
626
627 exec > new-gdbarch.h
628 copyright
629 cat <<EOF
630 #ifndef GDBARCH_H
631 #define GDBARCH_H
632
633 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
634
635 struct frame_info;
636 struct value;
637
638
639 extern struct gdbarch *current_gdbarch;
640
641
642 /* If any of the following are defined, the target wasn't correctly
643 converted. */
644
645 #if GDB_MULTI_ARCH
646 #if defined (EXTRA_FRAME_INFO)
647 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
648 #endif
649 #endif
650
651 #if GDB_MULTI_ARCH
652 #if defined (FRAME_FIND_SAVED_REGS)
653 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
654 #endif
655 #endif
656
657 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
658 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
659 #endif
660 EOF
661
662 # function typedef's
663 printf "\n"
664 printf "\n"
665 printf "/* The following are pre-initialized by GDBARCH. */\n"
666 function_list | while do_read
667 do
668 if class_is_info_p
669 then
670 printf "\n"
671 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
672 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
673 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
674 printf "#error \"Non multi-arch definition of ${macro}\"\n"
675 printf "#endif\n"
676 printf "#if GDB_MULTI_ARCH\n"
677 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
678 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
679 printf "#endif\n"
680 printf "#endif\n"
681 fi
682 done
683
684 # function typedef's
685 printf "\n"
686 printf "\n"
687 printf "/* The following are initialized by the target dependent code. */\n"
688 function_list | while do_read
689 do
690 if [ -n "${comment}" ]
691 then
692 echo "${comment}" | sed \
693 -e '2 s,#,/*,' \
694 -e '3,$ s,#, ,' \
695 -e '$ s,$, */,'
696 fi
697 if class_is_multiarch_p
698 then
699 if class_is_predicate_p
700 then
701 printf "\n"
702 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
703 fi
704 else
705 if class_is_predicate_p
706 then
707 printf "\n"
708 printf "#if defined (${macro})\n"
709 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
710 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
711 printf "#if !defined (${macro}_P)\n"
712 printf "#define ${macro}_P() (1)\n"
713 printf "#endif\n"
714 printf "#endif\n"
715 printf "\n"
716 printf "/* Default predicate for non- multi-arch targets. */\n"
717 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
718 printf "#define ${macro}_P() (0)\n"
719 printf "#endif\n"
720 printf "\n"
721 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
722 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
723 printf "#error \"Non multi-arch definition of ${macro}\"\n"
724 printf "#endif\n"
725 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
726 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
727 printf "#endif\n"
728 fi
729 fi
730 if class_is_variable_p
731 then
732 if fallback_default_p || class_is_predicate_p
733 then
734 printf "\n"
735 printf "/* Default (value) for non- multi-arch platforms. */\n"
736 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
737 echo "#define ${macro} (${fallbackdefault})" \
738 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
739 printf "#endif\n"
740 fi
741 printf "\n"
742 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
743 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
744 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
745 printf "#error \"Non multi-arch definition of ${macro}\"\n"
746 printf "#endif\n"
747 printf "#if GDB_MULTI_ARCH\n"
748 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
749 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
750 printf "#endif\n"
751 printf "#endif\n"
752 fi
753 if class_is_function_p
754 then
755 if class_is_multiarch_p ; then :
756 elif fallback_default_p || class_is_predicate_p
757 then
758 printf "\n"
759 printf "/* Default (function) for non- multi-arch platforms. */\n"
760 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
761 if [ "x${fallbackdefault}" = "x0" ]
762 then
763 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
764 else
765 # FIXME: Should be passing current_gdbarch through!
766 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
767 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
768 fi
769 printf "#endif\n"
770 fi
771 printf "\n"
772 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
773 then
774 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
775 elif class_is_multiarch_p
776 then
777 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
778 else
779 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
780 fi
781 if [ "x${formal}" = "xvoid" ]
782 then
783 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
784 else
785 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
786 fi
787 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
788 if class_is_multiarch_p ; then :
789 else
790 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
791 printf "#error \"Non multi-arch definition of ${macro}\"\n"
792 printf "#endif\n"
793 printf "#if GDB_MULTI_ARCH\n"
794 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
795 if [ "x${actual}" = "x" ]
796 then
797 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
798 elif [ "x${actual}" = "x-" ]
799 then
800 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
801 else
802 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
803 fi
804 printf "#endif\n"
805 printf "#endif\n"
806 fi
807 fi
808 done
809
810 # close it off
811 cat <<EOF
812
813 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
814
815
816 /* Mechanism for co-ordinating the selection of a specific
817 architecture.
818
819 GDB targets (*-tdep.c) can register an interest in a specific
820 architecture. Other GDB components can register a need to maintain
821 per-architecture data.
822
823 The mechanisms below ensures that there is only a loose connection
824 between the set-architecture command and the various GDB
825 components. Each component can independently register their need
826 to maintain architecture specific data with gdbarch.
827
828 Pragmatics:
829
830 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
831 didn't scale.
832
833 The more traditional mega-struct containing architecture specific
834 data for all the various GDB components was also considered. Since
835 GDB is built from a variable number of (fairly independent)
836 components it was determined that the global aproach was not
837 applicable. */
838
839
840 /* Register a new architectural family with GDB.
841
842 Register support for the specified ARCHITECTURE with GDB. When
843 gdbarch determines that the specified architecture has been
844 selected, the corresponding INIT function is called.
845
846 --
847
848 The INIT function takes two parameters: INFO which contains the
849 information available to gdbarch about the (possibly new)
850 architecture; ARCHES which is a list of the previously created
851 \`\`struct gdbarch'' for this architecture.
852
853 The INIT function parameter INFO shall, as far as possible, be
854 pre-initialized with information obtained from INFO.ABFD or
855 previously selected architecture (if similar). INIT shall ensure
856 that the INFO.BYTE_ORDER is non-zero.
857
858 The INIT function shall return any of: NULL - indicating that it
859 doesn't recognize the selected architecture; an existing \`\`struct
860 gdbarch'' from the ARCHES list - indicating that the new
861 architecture is just a synonym for an earlier architecture (see
862 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
863 - that describes the selected architecture (see gdbarch_alloc()).
864
865 The DUMP_TDEP function shall print out all target specific values.
866 Care should be taken to ensure that the function works in both the
867 multi-arch and non- multi-arch cases. */
868
869 struct gdbarch_list
870 {
871 struct gdbarch *gdbarch;
872 struct gdbarch_list *next;
873 };
874
875 struct gdbarch_info
876 {
877 /* Use default: NULL (ZERO). */
878 const struct bfd_arch_info *bfd_arch_info;
879
880 /* Use default: 0 (ZERO). */
881 int byte_order;
882
883 /* Use default: NULL (ZERO). */
884 bfd *abfd;
885
886 /* Use default: NULL (ZERO). */
887 struct gdbarch_tdep_info *tdep_info;
888 };
889
890 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
891 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
892
893 /* DEPRECATED - use gdbarch_register() */
894 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
895
896 extern void gdbarch_register (enum bfd_architecture architecture,
897 gdbarch_init_ftype *,
898 gdbarch_dump_tdep_ftype *);
899
900
901 /* Return a freshly allocated, NULL terminated, array of the valid
902 architecture names. Since architectures are registered during the
903 _initialize phase this function only returns useful information
904 once initialization has been completed. */
905
906 extern const char **gdbarch_printable_names (void);
907
908
909 /* Helper function. Search the list of ARCHES for a GDBARCH that
910 matches the information provided by INFO. */
911
912 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
913
914
915 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
916 basic initialization using values obtained from the INFO andTDEP
917 parameters. set_gdbarch_*() functions are called to complete the
918 initialization of the object. */
919
920 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
921
922
923 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
924 It is assumed that the caller freeds the \`\`struct
925 gdbarch_tdep''. */
926
927 extern void gdbarch_free (struct gdbarch *);
928
929
930 /* Helper function. Force an update of the current architecture.
931
932 The actual architecture selected is determined by INFO, \`\`(gdb) set
933 architecture'' et.al., the existing architecture and BFD's default
934 architecture. INFO should be initialized to zero and then selected
935 fields should be updated.
936
937 Returns non-zero if the update succeeds */
938
939 extern int gdbarch_update_p (struct gdbarch_info info);
940
941
942
943 /* Register per-architecture data-pointer.
944
945 Reserve space for a per-architecture data-pointer. An identifier
946 for the reserved data-pointer is returned. That identifer should
947 be saved in a local static variable.
948
949 The per-architecture data-pointer can be initialized in one of two
950 ways: The value can be set explicitly using a call to
951 set_gdbarch_data(); the value can be set implicitly using the value
952 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
953 called after the basic architecture vector has been created.
954
955 When a previously created architecture is re-selected, the
956 per-architecture data-pointer for that previous architecture is
957 restored. INIT() is not called.
958
959 During initialization, multiple assignments of the data-pointer are
960 allowed, non-NULL values are deleted by calling FREE(). If the
961 architecture is deleted using gdbarch_free() all non-NULL data
962 pointers are also deleted using FREE().
963
964 Multiple registrarants for any architecture are allowed (and
965 strongly encouraged). */
966
967 struct gdbarch_data;
968
969 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
970 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
971 void *pointer);
972 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
973 gdbarch_data_free_ftype *free);
974 extern void set_gdbarch_data (struct gdbarch *gdbarch,
975 struct gdbarch_data *data,
976 void *pointer);
977
978 extern void *gdbarch_data (struct gdbarch_data*);
979
980
981 /* Register per-architecture memory region.
982
983 Provide a memory-region swap mechanism. Per-architecture memory
984 region are created. These memory regions are swapped whenever the
985 architecture is changed. For a new architecture, the memory region
986 is initialized with zero (0) and the INIT function is called.
987
988 Memory regions are swapped / initialized in the order that they are
989 registered. NULL DATA and/or INIT values can be specified.
990
991 New code should use register_gdbarch_data(). */
992
993 typedef void (gdbarch_swap_ftype) (void);
994 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
995 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
996
997
998
999 /* The target-system-dependent byte order is dynamic */
1000
1001 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
1002 is selectable at runtime. The user can use the \`\`set endian''
1003 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1004 target_byte_order should be auto-detected (from the program image
1005 say). */
1006
1007 #if GDB_MULTI_ARCH
1008 /* Multi-arch GDB is always bi-endian. */
1009 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1010 #endif
1011
1012 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1013 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1014 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1015 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1016 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1017 #else
1018 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1019 #endif
1020 #endif
1021
1022 extern int target_byte_order;
1023 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1024 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1025 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1026 #undef TARGET_BYTE_ORDER
1027 #endif
1028 #ifndef TARGET_BYTE_ORDER
1029 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1030 #endif
1031
1032 extern int target_byte_order_auto;
1033 #ifndef TARGET_BYTE_ORDER_AUTO
1034 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1035 #endif
1036
1037
1038
1039 /* The target-system-dependent BFD architecture is dynamic */
1040
1041 extern int target_architecture_auto;
1042 #ifndef TARGET_ARCHITECTURE_AUTO
1043 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1044 #endif
1045
1046 extern const struct bfd_arch_info *target_architecture;
1047 #ifndef TARGET_ARCHITECTURE
1048 #define TARGET_ARCHITECTURE (target_architecture + 0)
1049 #endif
1050
1051
1052 /* The target-system-dependent disassembler is semi-dynamic */
1053
1054 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1055 unsigned int len, disassemble_info *info);
1056
1057 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1058 disassemble_info *info);
1059
1060 extern void dis_asm_print_address (bfd_vma addr,
1061 disassemble_info *info);
1062
1063 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1064 extern disassemble_info tm_print_insn_info;
1065 #ifndef TARGET_PRINT_INSN_INFO
1066 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1067 #endif
1068
1069
1070
1071 /* Set the dynamic target-system-dependent parameters (architecture,
1072 byte-order, ...) using information found in the BFD */
1073
1074 extern void set_gdbarch_from_file (bfd *);
1075
1076
1077 /* Initialize the current architecture to the "first" one we find on
1078 our list. */
1079
1080 extern void initialize_current_architecture (void);
1081
1082 /* For non-multiarched targets, do any initialization of the default
1083 gdbarch object necessary after the _initialize_MODULE functions
1084 have run. */
1085 extern void initialize_non_multiarch ();
1086
1087 /* gdbarch trace variable */
1088 extern int gdbarch_debug;
1089
1090 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1091
1092 #endif
1093 EOF
1094 exec 1>&2
1095 #../move-if-change new-gdbarch.h gdbarch.h
1096 compare_new gdbarch.h
1097
1098
1099 #
1100 # C file
1101 #
1102
1103 exec > new-gdbarch.c
1104 copyright
1105 cat <<EOF
1106
1107 #include "defs.h"
1108 #include "arch-utils.h"
1109
1110 #if GDB_MULTI_ARCH
1111 #include "gdbcmd.h"
1112 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1113 #else
1114 /* Just include everything in sight so that the every old definition
1115 of macro is visible. */
1116 #include "gdb_string.h"
1117 #include <ctype.h>
1118 #include "symtab.h"
1119 #include "frame.h"
1120 #include "inferior.h"
1121 #include "breakpoint.h"
1122 #include "gdb_wait.h"
1123 #include "gdbcore.h"
1124 #include "gdbcmd.h"
1125 #include "target.h"
1126 #include "gdbthread.h"
1127 #include "annotate.h"
1128 #include "symfile.h" /* for overlay functions */
1129 #endif
1130 #include "symcat.h"
1131
1132 #include "floatformat.h"
1133
1134 #include "gdb_assert.h"
1135 #include "gdb-events.h"
1136
1137 /* Static function declarations */
1138
1139 static void verify_gdbarch (struct gdbarch *gdbarch);
1140 static void alloc_gdbarch_data (struct gdbarch *);
1141 static void init_gdbarch_data (struct gdbarch *);
1142 static void free_gdbarch_data (struct gdbarch *);
1143 static void init_gdbarch_swap (struct gdbarch *);
1144 static void swapout_gdbarch_swap (struct gdbarch *);
1145 static void swapin_gdbarch_swap (struct gdbarch *);
1146
1147 /* Convenience macro for allocting typesafe memory. */
1148
1149 #ifndef XMALLOC
1150 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1151 #endif
1152
1153
1154 /* Non-zero if we want to trace architecture code. */
1155
1156 #ifndef GDBARCH_DEBUG
1157 #define GDBARCH_DEBUG 0
1158 #endif
1159 int gdbarch_debug = GDBARCH_DEBUG;
1160
1161 EOF
1162
1163 # gdbarch open the gdbarch object
1164 printf "\n"
1165 printf "/* Maintain the struct gdbarch object */\n"
1166 printf "\n"
1167 printf "struct gdbarch\n"
1168 printf "{\n"
1169 printf " /* basic architectural information */\n"
1170 function_list | while do_read
1171 do
1172 if class_is_info_p
1173 then
1174 printf " ${returntype} ${function};\n"
1175 fi
1176 done
1177 printf "\n"
1178 printf " /* target specific vector. */\n"
1179 printf " struct gdbarch_tdep *tdep;\n"
1180 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1181 printf "\n"
1182 printf " /* per-architecture data-pointers */\n"
1183 printf " unsigned nr_data;\n"
1184 printf " void **data;\n"
1185 printf "\n"
1186 printf " /* per-architecture swap-regions */\n"
1187 printf " struct gdbarch_swap *swap;\n"
1188 printf "\n"
1189 cat <<EOF
1190 /* Multi-arch values.
1191
1192 When extending this structure you must:
1193
1194 Add the field below.
1195
1196 Declare set/get functions and define the corresponding
1197 macro in gdbarch.h.
1198
1199 gdbarch_alloc(): If zero/NULL is not a suitable default,
1200 initialize the new field.
1201
1202 verify_gdbarch(): Confirm that the target updated the field
1203 correctly.
1204
1205 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1206 field is dumped out
1207
1208 \`\`startup_gdbarch()'': Append an initial value to the static
1209 variable (base values on the host's c-type system).
1210
1211 get_gdbarch(): Implement the set/get functions (probably using
1212 the macro's as shortcuts).
1213
1214 */
1215
1216 EOF
1217 function_list | while do_read
1218 do
1219 if class_is_variable_p
1220 then
1221 printf " ${returntype} ${function};\n"
1222 elif class_is_function_p
1223 then
1224 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1225 fi
1226 done
1227 printf "};\n"
1228
1229 # A pre-initialized vector
1230 printf "\n"
1231 printf "\n"
1232 cat <<EOF
1233 /* The default architecture uses host values (for want of a better
1234 choice). */
1235 EOF
1236 printf "\n"
1237 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1238 printf "\n"
1239 printf "struct gdbarch startup_gdbarch =\n"
1240 printf "{\n"
1241 printf " /* basic architecture information */\n"
1242 function_list | while do_read
1243 do
1244 if class_is_info_p
1245 then
1246 printf " ${staticdefault},\n"
1247 fi
1248 done
1249 cat <<EOF
1250 /* target specific vector and its dump routine */
1251 NULL, NULL,
1252 /*per-architecture data-pointers and swap regions */
1253 0, NULL, NULL,
1254 /* Multi-arch values */
1255 EOF
1256 function_list | while do_read
1257 do
1258 if class_is_function_p || class_is_variable_p
1259 then
1260 printf " ${staticdefault},\n"
1261 fi
1262 done
1263 cat <<EOF
1264 /* startup_gdbarch() */
1265 };
1266
1267 struct gdbarch *current_gdbarch = &startup_gdbarch;
1268
1269 /* Do any initialization needed for a non-multiarch configuration
1270 after the _initialize_MODULE functions have been run. */
1271 void
1272 initialize_non_multiarch ()
1273 {
1274 alloc_gdbarch_data (&startup_gdbarch);
1275 init_gdbarch_data (&startup_gdbarch);
1276 }
1277 EOF
1278
1279 # Create a new gdbarch struct
1280 printf "\n"
1281 printf "\n"
1282 cat <<EOF
1283 /* Create a new \`\`struct gdbarch'' based on information provided by
1284 \`\`struct gdbarch_info''. */
1285 EOF
1286 printf "\n"
1287 cat <<EOF
1288 struct gdbarch *
1289 gdbarch_alloc (const struct gdbarch_info *info,
1290 struct gdbarch_tdep *tdep)
1291 {
1292 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1293 memset (gdbarch, 0, sizeof (*gdbarch));
1294
1295 alloc_gdbarch_data (gdbarch);
1296
1297 gdbarch->tdep = tdep;
1298 EOF
1299 printf "\n"
1300 function_list | while do_read
1301 do
1302 if class_is_info_p
1303 then
1304 printf " gdbarch->${function} = info->${function};\n"
1305 fi
1306 done
1307 printf "\n"
1308 printf " /* Force the explicit initialization of these. */\n"
1309 function_list | while do_read
1310 do
1311 if class_is_function_p || class_is_variable_p
1312 then
1313 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1314 then
1315 printf " gdbarch->${function} = ${predefault};\n"
1316 fi
1317 fi
1318 done
1319 cat <<EOF
1320 /* gdbarch_alloc() */
1321
1322 return gdbarch;
1323 }
1324 EOF
1325
1326 # Free a gdbarch struct.
1327 printf "\n"
1328 printf "\n"
1329 cat <<EOF
1330 /* Free a gdbarch struct. This should never happen in normal
1331 operation --- once you've created a gdbarch, you keep it around.
1332 However, if an architecture's init function encounters an error
1333 building the structure, it may need to clean up a partially
1334 constructed gdbarch. */
1335
1336 void
1337 gdbarch_free (struct gdbarch *arch)
1338 {
1339 gdb_assert (arch != NULL);
1340 free_gdbarch_data (arch);
1341 xfree (arch);
1342 }
1343 EOF
1344
1345 # verify a new architecture
1346 printf "\n"
1347 printf "\n"
1348 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1349 printf "\n"
1350 cat <<EOF
1351 static void
1352 verify_gdbarch (struct gdbarch *gdbarch)
1353 {
1354 /* Only perform sanity checks on a multi-arch target. */
1355 if (!GDB_MULTI_ARCH)
1356 return;
1357 /* fundamental */
1358 if (gdbarch->byte_order == 0)
1359 internal_error (__FILE__, __LINE__,
1360 "verify_gdbarch: byte-order unset");
1361 if (gdbarch->bfd_arch_info == NULL)
1362 internal_error (__FILE__, __LINE__,
1363 "verify_gdbarch: bfd_arch_info unset");
1364 /* Check those that need to be defined for the given multi-arch level. */
1365 EOF
1366 function_list | while do_read
1367 do
1368 if class_is_function_p || class_is_variable_p
1369 then
1370 if [ "x${invalid_p}" = "x0" ]
1371 then
1372 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1373 elif class_is_predicate_p
1374 then
1375 printf " /* Skip verify of ${function}, has predicate */\n"
1376 # FIXME: See do_read for potential simplification
1377 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1378 then
1379 printf " if (${invalid_p})\n"
1380 printf " gdbarch->${function} = ${postdefault};\n"
1381 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1382 then
1383 printf " if (gdbarch->${function} == ${predefault})\n"
1384 printf " gdbarch->${function} = ${postdefault};\n"
1385 elif [ -n "${postdefault}" ]
1386 then
1387 printf " if (gdbarch->${function} == 0)\n"
1388 printf " gdbarch->${function} = ${postdefault};\n"
1389 elif [ -n "${invalid_p}" ]
1390 then
1391 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1392 printf " && (${invalid_p}))\n"
1393 printf " internal_error (__FILE__, __LINE__,\n"
1394 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1395 elif [ -n "${predefault}" ]
1396 then
1397 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1398 printf " && (gdbarch->${function} == ${predefault}))\n"
1399 printf " internal_error (__FILE__, __LINE__,\n"
1400 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1401 fi
1402 fi
1403 done
1404 cat <<EOF
1405 }
1406 EOF
1407
1408 # dump the structure
1409 printf "\n"
1410 printf "\n"
1411 cat <<EOF
1412 /* Print out the details of the current architecture. */
1413
1414 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1415 just happens to match the global variable \`\`current_gdbarch''. That
1416 way macros refering to that variable get the local and not the global
1417 version - ulgh. Once everything is parameterised with gdbarch, this
1418 will go away. */
1419
1420 void
1421 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1422 {
1423 fprintf_unfiltered (file,
1424 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1425 GDB_MULTI_ARCH);
1426 EOF
1427 function_list | while do_read
1428 do
1429 # multiarch functions don't have macros.
1430 class_is_multiarch_p && continue
1431 if [ "x${returntype}" = "xvoid" ]
1432 then
1433 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1434 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1435 else
1436 printf "#ifdef ${macro}\n"
1437 fi
1438 if class_is_function_p
1439 then
1440 printf " fprintf_unfiltered (file,\n"
1441 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1442 printf " \"${macro}(${actual})\",\n"
1443 printf " XSTRING (${macro} (${actual})));\n"
1444 else
1445 printf " fprintf_unfiltered (file,\n"
1446 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1447 printf " XSTRING (${macro}));\n"
1448 fi
1449 printf "#endif\n"
1450 done
1451 function_list | while do_read
1452 do
1453 if class_is_multiarch_p
1454 then
1455 printf " if (GDB_MULTI_ARCH)\n"
1456 printf " fprintf_unfiltered (file,\n"
1457 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1458 printf " (long) current_gdbarch->${function});\n"
1459 continue
1460 fi
1461 printf "#ifdef ${macro}\n"
1462 if [ "x${print_p}" = "x()" ]
1463 then
1464 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1465 elif [ "x${print_p}" = "x0" ]
1466 then
1467 printf " /* skip print of ${macro}, print_p == 0. */\n"
1468 elif [ -n "${print_p}" ]
1469 then
1470 printf " if (${print_p})\n"
1471 printf " fprintf_unfiltered (file,\n"
1472 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1473 printf " ${print});\n"
1474 elif class_is_function_p
1475 then
1476 printf " if (GDB_MULTI_ARCH)\n"
1477 printf " fprintf_unfiltered (file,\n"
1478 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1479 printf " (long) current_gdbarch->${function}\n"
1480 printf " /*${macro} ()*/);\n"
1481 else
1482 printf " fprintf_unfiltered (file,\n"
1483 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1484 printf " ${print});\n"
1485 fi
1486 printf "#endif\n"
1487 done
1488 cat <<EOF
1489 if (current_gdbarch->dump_tdep != NULL)
1490 current_gdbarch->dump_tdep (current_gdbarch, file);
1491 }
1492 EOF
1493
1494
1495 # GET/SET
1496 printf "\n"
1497 cat <<EOF
1498 struct gdbarch_tdep *
1499 gdbarch_tdep (struct gdbarch *gdbarch)
1500 {
1501 if (gdbarch_debug >= 2)
1502 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1503 return gdbarch->tdep;
1504 }
1505 EOF
1506 printf "\n"
1507 function_list | while do_read
1508 do
1509 if class_is_predicate_p
1510 then
1511 printf "\n"
1512 printf "int\n"
1513 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1514 printf "{\n"
1515 if [ -n "${valid_p}" ]
1516 then
1517 printf " return ${valid_p};\n"
1518 else
1519 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1520 fi
1521 printf "}\n"
1522 fi
1523 if class_is_function_p
1524 then
1525 printf "\n"
1526 printf "${returntype}\n"
1527 if [ "x${formal}" = "xvoid" ]
1528 then
1529 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1530 else
1531 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1532 fi
1533 printf "{\n"
1534 printf " if (gdbarch->${function} == 0)\n"
1535 printf " internal_error (__FILE__, __LINE__,\n"
1536 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1537 printf " if (gdbarch_debug >= 2)\n"
1538 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1539 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1540 then
1541 if class_is_multiarch_p
1542 then
1543 params="gdbarch"
1544 else
1545 params=""
1546 fi
1547 else
1548 if class_is_multiarch_p
1549 then
1550 params="gdbarch, ${actual}"
1551 else
1552 params="${actual}"
1553 fi
1554 fi
1555 if [ "x${returntype}" = "xvoid" ]
1556 then
1557 printf " gdbarch->${function} (${params});\n"
1558 else
1559 printf " return gdbarch->${function} (${params});\n"
1560 fi
1561 printf "}\n"
1562 printf "\n"
1563 printf "void\n"
1564 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1565 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1566 printf "{\n"
1567 printf " gdbarch->${function} = ${function};\n"
1568 printf "}\n"
1569 elif class_is_variable_p
1570 then
1571 printf "\n"
1572 printf "${returntype}\n"
1573 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1574 printf "{\n"
1575 if [ "x${invalid_p}" = "x0" ]
1576 then
1577 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1578 elif [ -n "${invalid_p}" ]
1579 then
1580 printf " if (${invalid_p})\n"
1581 printf " internal_error (__FILE__, __LINE__,\n"
1582 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1583 elif [ -n "${predefault}" ]
1584 then
1585 printf " if (gdbarch->${function} == ${predefault})\n"
1586 printf " internal_error (__FILE__, __LINE__,\n"
1587 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1588 fi
1589 printf " if (gdbarch_debug >= 2)\n"
1590 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1591 printf " return gdbarch->${function};\n"
1592 printf "}\n"
1593 printf "\n"
1594 printf "void\n"
1595 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1596 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1597 printf "{\n"
1598 printf " gdbarch->${function} = ${function};\n"
1599 printf "}\n"
1600 elif class_is_info_p
1601 then
1602 printf "\n"
1603 printf "${returntype}\n"
1604 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1605 printf "{\n"
1606 printf " if (gdbarch_debug >= 2)\n"
1607 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1608 printf " return gdbarch->${function};\n"
1609 printf "}\n"
1610 fi
1611 done
1612
1613 # All the trailing guff
1614 cat <<EOF
1615
1616
1617 /* Keep a registry of per-architecture data-pointers required by GDB
1618 modules. */
1619
1620 struct gdbarch_data
1621 {
1622 unsigned index;
1623 gdbarch_data_init_ftype *init;
1624 gdbarch_data_free_ftype *free;
1625 };
1626
1627 struct gdbarch_data_registration
1628 {
1629 struct gdbarch_data *data;
1630 struct gdbarch_data_registration *next;
1631 };
1632
1633 struct gdbarch_data_registry
1634 {
1635 unsigned nr;
1636 struct gdbarch_data_registration *registrations;
1637 };
1638
1639 struct gdbarch_data_registry gdbarch_data_registry =
1640 {
1641 0, NULL,
1642 };
1643
1644 struct gdbarch_data *
1645 register_gdbarch_data (gdbarch_data_init_ftype *init,
1646 gdbarch_data_free_ftype *free)
1647 {
1648 struct gdbarch_data_registration **curr;
1649 for (curr = &gdbarch_data_registry.registrations;
1650 (*curr) != NULL;
1651 curr = &(*curr)->next);
1652 (*curr) = XMALLOC (struct gdbarch_data_registration);
1653 (*curr)->next = NULL;
1654 (*curr)->data = XMALLOC (struct gdbarch_data);
1655 (*curr)->data->index = gdbarch_data_registry.nr++;
1656 (*curr)->data->init = init;
1657 (*curr)->data->free = free;
1658 return (*curr)->data;
1659 }
1660
1661
1662 /* Walk through all the registered users initializing each in turn. */
1663
1664 static void
1665 init_gdbarch_data (struct gdbarch *gdbarch)
1666 {
1667 struct gdbarch_data_registration *rego;
1668 for (rego = gdbarch_data_registry.registrations;
1669 rego != NULL;
1670 rego = rego->next)
1671 {
1672 struct gdbarch_data *data = rego->data;
1673 gdb_assert (data->index < gdbarch->nr_data);
1674 if (data->init != NULL)
1675 {
1676 void *pointer = data->init (gdbarch);
1677 set_gdbarch_data (gdbarch, data, pointer);
1678 }
1679 }
1680 }
1681
1682 /* Create/delete the gdbarch data vector. */
1683
1684 static void
1685 alloc_gdbarch_data (struct gdbarch *gdbarch)
1686 {
1687 gdb_assert (gdbarch->data == NULL);
1688 gdbarch->nr_data = gdbarch_data_registry.nr;
1689 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1690 }
1691
1692 static void
1693 free_gdbarch_data (struct gdbarch *gdbarch)
1694 {
1695 struct gdbarch_data_registration *rego;
1696 gdb_assert (gdbarch->data != NULL);
1697 for (rego = gdbarch_data_registry.registrations;
1698 rego != NULL;
1699 rego = rego->next)
1700 {
1701 struct gdbarch_data *data = rego->data;
1702 gdb_assert (data->index < gdbarch->nr_data);
1703 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1704 {
1705 data->free (gdbarch, gdbarch->data[data->index]);
1706 gdbarch->data[data->index] = NULL;
1707 }
1708 }
1709 xfree (gdbarch->data);
1710 gdbarch->data = NULL;
1711 }
1712
1713
1714 /* Initialize the current value of thee specified per-architecture
1715 data-pointer. */
1716
1717 void
1718 set_gdbarch_data (struct gdbarch *gdbarch,
1719 struct gdbarch_data *data,
1720 void *pointer)
1721 {
1722 gdb_assert (data->index < gdbarch->nr_data);
1723 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1724 data->free (gdbarch, gdbarch->data[data->index]);
1725 gdbarch->data[data->index] = pointer;
1726 }
1727
1728 /* Return the current value of the specified per-architecture
1729 data-pointer. */
1730
1731 void *
1732 gdbarch_data (struct gdbarch_data *data)
1733 {
1734 gdb_assert (data->index < current_gdbarch->nr_data);
1735 return current_gdbarch->data[data->index];
1736 }
1737
1738
1739
1740 /* Keep a registry of swapped data required by GDB modules. */
1741
1742 struct gdbarch_swap
1743 {
1744 void *swap;
1745 struct gdbarch_swap_registration *source;
1746 struct gdbarch_swap *next;
1747 };
1748
1749 struct gdbarch_swap_registration
1750 {
1751 void *data;
1752 unsigned long sizeof_data;
1753 gdbarch_swap_ftype *init;
1754 struct gdbarch_swap_registration *next;
1755 };
1756
1757 struct gdbarch_swap_registry
1758 {
1759 int nr;
1760 struct gdbarch_swap_registration *registrations;
1761 };
1762
1763 struct gdbarch_swap_registry gdbarch_swap_registry =
1764 {
1765 0, NULL,
1766 };
1767
1768 void
1769 register_gdbarch_swap (void *data,
1770 unsigned long sizeof_data,
1771 gdbarch_swap_ftype *init)
1772 {
1773 struct gdbarch_swap_registration **rego;
1774 for (rego = &gdbarch_swap_registry.registrations;
1775 (*rego) != NULL;
1776 rego = &(*rego)->next);
1777 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1778 (*rego)->next = NULL;
1779 (*rego)->init = init;
1780 (*rego)->data = data;
1781 (*rego)->sizeof_data = sizeof_data;
1782 }
1783
1784
1785 static void
1786 init_gdbarch_swap (struct gdbarch *gdbarch)
1787 {
1788 struct gdbarch_swap_registration *rego;
1789 struct gdbarch_swap **curr = &gdbarch->swap;
1790 for (rego = gdbarch_swap_registry.registrations;
1791 rego != NULL;
1792 rego = rego->next)
1793 {
1794 if (rego->data != NULL)
1795 {
1796 (*curr) = XMALLOC (struct gdbarch_swap);
1797 (*curr)->source = rego;
1798 (*curr)->swap = xmalloc (rego->sizeof_data);
1799 (*curr)->next = NULL;
1800 memset (rego->data, 0, rego->sizeof_data);
1801 curr = &(*curr)->next;
1802 }
1803 if (rego->init != NULL)
1804 rego->init ();
1805 }
1806 }
1807
1808 static void
1809 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1810 {
1811 struct gdbarch_swap *curr;
1812 for (curr = gdbarch->swap;
1813 curr != NULL;
1814 curr = curr->next)
1815 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1816 }
1817
1818 static void
1819 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1820 {
1821 struct gdbarch_swap *curr;
1822 for (curr = gdbarch->swap;
1823 curr != NULL;
1824 curr = curr->next)
1825 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1826 }
1827
1828
1829 /* Keep a registry of the architectures known by GDB. */
1830
1831 struct gdbarch_registration
1832 {
1833 enum bfd_architecture bfd_architecture;
1834 gdbarch_init_ftype *init;
1835 gdbarch_dump_tdep_ftype *dump_tdep;
1836 struct gdbarch_list *arches;
1837 struct gdbarch_registration *next;
1838 };
1839
1840 static struct gdbarch_registration *gdbarch_registry = NULL;
1841
1842 static void
1843 append_name (const char ***buf, int *nr, const char *name)
1844 {
1845 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1846 (*buf)[*nr] = name;
1847 *nr += 1;
1848 }
1849
1850 const char **
1851 gdbarch_printable_names (void)
1852 {
1853 if (GDB_MULTI_ARCH)
1854 {
1855 /* Accumulate a list of names based on the registed list of
1856 architectures. */
1857 enum bfd_architecture a;
1858 int nr_arches = 0;
1859 const char **arches = NULL;
1860 struct gdbarch_registration *rego;
1861 for (rego = gdbarch_registry;
1862 rego != NULL;
1863 rego = rego->next)
1864 {
1865 const struct bfd_arch_info *ap;
1866 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1867 if (ap == NULL)
1868 internal_error (__FILE__, __LINE__,
1869 "gdbarch_architecture_names: multi-arch unknown");
1870 do
1871 {
1872 append_name (&arches, &nr_arches, ap->printable_name);
1873 ap = ap->next;
1874 }
1875 while (ap != NULL);
1876 }
1877 append_name (&arches, &nr_arches, NULL);
1878 return arches;
1879 }
1880 else
1881 /* Just return all the architectures that BFD knows. Assume that
1882 the legacy architecture framework supports them. */
1883 return bfd_arch_list ();
1884 }
1885
1886
1887 void
1888 gdbarch_register (enum bfd_architecture bfd_architecture,
1889 gdbarch_init_ftype *init,
1890 gdbarch_dump_tdep_ftype *dump_tdep)
1891 {
1892 struct gdbarch_registration **curr;
1893 const struct bfd_arch_info *bfd_arch_info;
1894 /* Check that BFD recognizes this architecture */
1895 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1896 if (bfd_arch_info == NULL)
1897 {
1898 internal_error (__FILE__, __LINE__,
1899 "gdbarch: Attempt to register unknown architecture (%d)",
1900 bfd_architecture);
1901 }
1902 /* Check that we haven't seen this architecture before */
1903 for (curr = &gdbarch_registry;
1904 (*curr) != NULL;
1905 curr = &(*curr)->next)
1906 {
1907 if (bfd_architecture == (*curr)->bfd_architecture)
1908 internal_error (__FILE__, __LINE__,
1909 "gdbarch: Duplicate registraration of architecture (%s)",
1910 bfd_arch_info->printable_name);
1911 }
1912 /* log it */
1913 if (gdbarch_debug)
1914 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1915 bfd_arch_info->printable_name,
1916 (long) init);
1917 /* Append it */
1918 (*curr) = XMALLOC (struct gdbarch_registration);
1919 (*curr)->bfd_architecture = bfd_architecture;
1920 (*curr)->init = init;
1921 (*curr)->dump_tdep = dump_tdep;
1922 (*curr)->arches = NULL;
1923 (*curr)->next = NULL;
1924 /* When non- multi-arch, install whatever target dump routine we've
1925 been provided - hopefully that routine has been written correctly
1926 and works regardless of multi-arch. */
1927 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1928 && startup_gdbarch.dump_tdep == NULL)
1929 startup_gdbarch.dump_tdep = dump_tdep;
1930 }
1931
1932 void
1933 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1934 gdbarch_init_ftype *init)
1935 {
1936 gdbarch_register (bfd_architecture, init, NULL);
1937 }
1938
1939
1940 /* Look for an architecture using gdbarch_info. Base search on only
1941 BFD_ARCH_INFO and BYTE_ORDER. */
1942
1943 struct gdbarch_list *
1944 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1945 const struct gdbarch_info *info)
1946 {
1947 for (; arches != NULL; arches = arches->next)
1948 {
1949 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1950 continue;
1951 if (info->byte_order != arches->gdbarch->byte_order)
1952 continue;
1953 return arches;
1954 }
1955 return NULL;
1956 }
1957
1958
1959 /* Update the current architecture. Return ZERO if the update request
1960 failed. */
1961
1962 int
1963 gdbarch_update_p (struct gdbarch_info info)
1964 {
1965 struct gdbarch *new_gdbarch;
1966 struct gdbarch_list **list;
1967 struct gdbarch_registration *rego;
1968
1969 /* Fill in missing parts of the INFO struct using a number of
1970 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1971
1972 /* \`\`(gdb) set architecture ...'' */
1973 if (info.bfd_arch_info == NULL
1974 && !TARGET_ARCHITECTURE_AUTO)
1975 info.bfd_arch_info = TARGET_ARCHITECTURE;
1976 if (info.bfd_arch_info == NULL
1977 && info.abfd != NULL
1978 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1979 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1980 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1981 if (info.bfd_arch_info == NULL)
1982 info.bfd_arch_info = TARGET_ARCHITECTURE;
1983
1984 /* \`\`(gdb) set byte-order ...'' */
1985 if (info.byte_order == 0
1986 && !TARGET_BYTE_ORDER_AUTO)
1987 info.byte_order = TARGET_BYTE_ORDER;
1988 /* From the INFO struct. */
1989 if (info.byte_order == 0
1990 && info.abfd != NULL)
1991 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1992 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1993 : 0);
1994 /* From the current target. */
1995 if (info.byte_order == 0)
1996 info.byte_order = TARGET_BYTE_ORDER;
1997
1998 /* Must have found some sort of architecture. */
1999 gdb_assert (info.bfd_arch_info != NULL);
2000
2001 if (gdbarch_debug)
2002 {
2003 fprintf_unfiltered (gdb_stdlog,
2004 "gdbarch_update: info.bfd_arch_info %s\n",
2005 (info.bfd_arch_info != NULL
2006 ? info.bfd_arch_info->printable_name
2007 : "(null)"));
2008 fprintf_unfiltered (gdb_stdlog,
2009 "gdbarch_update: info.byte_order %d (%s)\n",
2010 info.byte_order,
2011 (info.byte_order == BIG_ENDIAN ? "big"
2012 : info.byte_order == LITTLE_ENDIAN ? "little"
2013 : "default"));
2014 fprintf_unfiltered (gdb_stdlog,
2015 "gdbarch_update: info.abfd 0x%lx\n",
2016 (long) info.abfd);
2017 fprintf_unfiltered (gdb_stdlog,
2018 "gdbarch_update: info.tdep_info 0x%lx\n",
2019 (long) info.tdep_info);
2020 }
2021
2022 /* Find the target that knows about this architecture. */
2023 for (rego = gdbarch_registry;
2024 rego != NULL;
2025 rego = rego->next)
2026 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2027 break;
2028 if (rego == NULL)
2029 {
2030 if (gdbarch_debug)
2031 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2032 return 0;
2033 }
2034
2035 /* Ask the target for a replacement architecture. */
2036 new_gdbarch = rego->init (info, rego->arches);
2037
2038 /* Did the target like it? No. Reject the change. */
2039 if (new_gdbarch == NULL)
2040 {
2041 if (gdbarch_debug)
2042 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2043 return 0;
2044 }
2045
2046 /* Did the architecture change? No. Do nothing. */
2047 if (current_gdbarch == new_gdbarch)
2048 {
2049 if (gdbarch_debug)
2050 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2051 (long) new_gdbarch,
2052 new_gdbarch->bfd_arch_info->printable_name);
2053 return 1;
2054 }
2055
2056 /* Swap all data belonging to the old target out */
2057 swapout_gdbarch_swap (current_gdbarch);
2058
2059 /* Is this a pre-existing architecture? Yes. Swap it in. */
2060 for (list = &rego->arches;
2061 (*list) != NULL;
2062 list = &(*list)->next)
2063 {
2064 if ((*list)->gdbarch == new_gdbarch)
2065 {
2066 if (gdbarch_debug)
2067 fprintf_unfiltered (gdb_stdlog,
2068 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2069 (long) new_gdbarch,
2070 new_gdbarch->bfd_arch_info->printable_name);
2071 current_gdbarch = new_gdbarch;
2072 swapin_gdbarch_swap (new_gdbarch);
2073 architecture_changed_event ();
2074 return 1;
2075 }
2076 }
2077
2078 /* Append this new architecture to this targets list. */
2079 (*list) = XMALLOC (struct gdbarch_list);
2080 (*list)->next = NULL;
2081 (*list)->gdbarch = new_gdbarch;
2082
2083 /* Switch to this new architecture. Dump it out. */
2084 current_gdbarch = new_gdbarch;
2085 if (gdbarch_debug)
2086 {
2087 fprintf_unfiltered (gdb_stdlog,
2088 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2089 (long) new_gdbarch,
2090 new_gdbarch->bfd_arch_info->printable_name);
2091 }
2092
2093 /* Check that the newly installed architecture is valid. Plug in
2094 any post init values. */
2095 new_gdbarch->dump_tdep = rego->dump_tdep;
2096 verify_gdbarch (new_gdbarch);
2097
2098 /* Initialize the per-architecture memory (swap) areas.
2099 CURRENT_GDBARCH must be update before these modules are
2100 called. */
2101 init_gdbarch_swap (new_gdbarch);
2102
2103 /* Initialize the per-architecture data-pointer of all parties that
2104 registered an interest in this architecture. CURRENT_GDBARCH
2105 must be updated before these modules are called. */
2106 init_gdbarch_data (new_gdbarch);
2107 architecture_changed_event ();
2108
2109 if (gdbarch_debug)
2110 gdbarch_dump (current_gdbarch, gdb_stdlog);
2111
2112 return 1;
2113 }
2114
2115
2116 /* Disassembler */
2117
2118 /* Pointer to the target-dependent disassembly function. */
2119 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2120 disassemble_info tm_print_insn_info;
2121
2122
2123 extern void _initialize_gdbarch (void);
2124
2125 void
2126 _initialize_gdbarch (void)
2127 {
2128 struct cmd_list_element *c;
2129
2130 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2131 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2132 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2133 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2134 tm_print_insn_info.print_address_func = dis_asm_print_address;
2135
2136 add_show_from_set (add_set_cmd ("arch",
2137 class_maintenance,
2138 var_zinteger,
2139 (char *)&gdbarch_debug,
2140 "Set architecture debugging.\\n\\
2141 When non-zero, architecture debugging is enabled.", &setdebuglist),
2142 &showdebuglist);
2143 c = add_set_cmd ("archdebug",
2144 class_maintenance,
2145 var_zinteger,
2146 (char *)&gdbarch_debug,
2147 "Set architecture debugging.\\n\\
2148 When non-zero, architecture debugging is enabled.", &setlist);
2149
2150 deprecate_cmd (c, "set debug arch");
2151 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2152 }
2153 EOF
2154
2155 # close things off
2156 exec 1>&2
2157 #../move-if-change new-gdbarch.c gdbarch.c
2158 compare_new gdbarch.c
This page took 0.07915 seconds and 5 git commands to generate.