2003-04-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 # The dummy call frame SP should be set by push_dummy_call.
434 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
435 # Function for getting target's idea of a frame pointer. FIXME: GDB's
436 # whole scheme for dealing with "frames" and "frame pointers" needs a
437 # serious shakedown.
438 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
439 #
440 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
441 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
442 #
443 v:2:NUM_REGS:int:num_regs::::0:-1
444 # This macro gives the number of pseudo-registers that live in the
445 # register namespace but do not get fetched or stored on the target.
446 # These pseudo-registers may be aliases for other registers,
447 # combinations of other registers, or they may be computed by GDB.
448 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
449
450 # GDB's standard (or well known) register numbers. These can map onto
451 # a real register or a pseudo (computed) register or not be defined at
452 # all (-1).
453 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
454 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
455 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
456 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
457 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
458 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
459 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
460 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
462 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
464 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
465 # Convert from an sdb register number to an internal gdb register number.
466 # This should be defined in tm.h, if REGISTER_NAMES is not set up
467 # to map one to one onto the sdb register numbers.
468 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
469 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
470 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
471 v:2:REGISTER_SIZE:int:register_size::::0:-1
472 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
473 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
474 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
475 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
476 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
477 # by REGISTER_TYPE.
478 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
479 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
480 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
481 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
482 # by REGISTER_TYPE.
483 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
484 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
485 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
486 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
487 # by REGISTER_TYPE.
488 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
489 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
490 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
491 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
492 # by REGISTER_TYPE.
493 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
494 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
495 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
496 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
497 # by REGISTER_TYPE.
498 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
499 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
500 #
501 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
502 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
503 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
504 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
505 # MAP a GDB RAW register number onto a simulator register number. See
506 # also include/...-sim.h.
507 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
508 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
509 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
510 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
511 # setjmp/longjmp support.
512 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
513 #
514 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
515 # much better but at least they are vaguely consistent). The headers
516 # and body contain convoluted #if/#else sequences for determine how
517 # things should be compiled. Instead of trying to mimic that
518 # behaviour here (and hence entrench it further) gdbarch simply
519 # reqires that these methods be set up from the word go. This also
520 # avoids any potential problems with moving beyond multi-arch partial.
521 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
523 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
524 v::CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset
525 v::CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset
526 v::CALL_DUMMY_LENGTH:int:call_dummy_length
527 # NOTE: cagney/2002-11-24: This function with predicate has a valid
528 # (callable) initial value. As a consequence, even when the predicate
529 # is false, the corresponding function works. This simplifies the
530 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
531 # doesn't need to be modified.
532 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
533 v::CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
534 v::SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
535 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
536 F::FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
537 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
538 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
539 #
540 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
541 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
542 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
543 #
544 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
545 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
546 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
547 #
548 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
549 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
550 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
551 #
552 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
553 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
554 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
555 #
556 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
557 # Replaced by PUSH_DUMMY_CALL
558 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
559 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:struct regcache *regcache, CORE_ADDR dummy_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:regcache, dummy_addr, nargs, args, sp, struct_return, struct_addr
560 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
561 # NOTE: This can be handled directly in push_dummy_call.
562 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
563 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
564 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
565 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
566 #
567 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
568 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
569 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
570 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
571 #
572 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
573 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
574 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
575 #
576 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
577 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
578 #
579 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
580 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
581 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
582 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
583 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
584 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
585 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
586 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
587 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
588 #
589 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
590 #
591 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
592 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
593 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
594 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
595 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
596 # note, per UNWIND_PC's doco, that while the two have similar
597 # interfaces they have very different underlying implementations.
598 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
599 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
600 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
601 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
602 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
603 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
604 #
605 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
606 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
607 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
608 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
609 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
610 # FIXME: kettenis/2003-03-08: This should be replaced by a function
611 # parametrized with (at least) the regcache.
612 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
613 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
614 v:2:PARM_BOUNDARY:int:parm_boundary
615 #
616 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
617 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
618 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
619 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
620 # On some machines there are bits in addresses which are not really
621 # part of the address, but are used by the kernel, the hardware, etc.
622 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
623 # we get a "real" address such as one would find in a symbol table.
624 # This is used only for addresses of instructions, and even then I'm
625 # not sure it's used in all contexts. It exists to deal with there
626 # being a few stray bits in the PC which would mislead us, not as some
627 # sort of generic thing to handle alignment or segmentation (it's
628 # possible it should be in TARGET_READ_PC instead).
629 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
630 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
631 # ADDR_BITS_REMOVE.
632 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
633 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
634 # the target needs software single step. An ISA method to implement it.
635 #
636 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
637 # using the breakpoint system instead of blatting memory directly (as with rs6000).
638 #
639 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
640 # single step. If not, then implement single step using breakpoints.
641 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
642 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
643 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
644
645
646 # For SVR4 shared libraries, each call goes through a small piece of
647 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
648 # to nonzero if we are currently stopped in one of these.
649 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
650
651 # Some systems also have trampoline code for returning from shared libs.
652 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
653
654 # Sigtramp is a routine that the kernel calls (which then calls the
655 # signal handler). On most machines it is a library routine that is
656 # linked into the executable.
657 #
658 # This macro, given a program counter value and the name of the
659 # function in which that PC resides (which can be null if the name is
660 # not known), returns nonzero if the PC and name show that we are in
661 # sigtramp.
662 #
663 # On most machines just see if the name is sigtramp (and if we have
664 # no name, assume we are not in sigtramp).
665 #
666 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
667 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
668 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
669 # own local NAME lookup.
670 #
671 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
672 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
673 # does not.
674 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
675 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
676 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
677 # A target might have problems with watchpoints as soon as the stack
678 # frame of the current function has been destroyed. This mostly happens
679 # as the first action in a funtion's epilogue. in_function_epilogue_p()
680 # is defined to return a non-zero value if either the given addr is one
681 # instruction after the stack destroying instruction up to the trailing
682 # return instruction or if we can figure out that the stack frame has
683 # already been invalidated regardless of the value of addr. Targets
684 # which don't suffer from that problem could just let this functionality
685 # untouched.
686 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
687 # Given a vector of command-line arguments, return a newly allocated
688 # string which, when passed to the create_inferior function, will be
689 # parsed (on Unix systems, by the shell) to yield the same vector.
690 # This function should call error() if the argument vector is not
691 # representable for this target or if this target does not support
692 # command-line arguments.
693 # ARGC is the number of elements in the vector.
694 # ARGV is an array of strings, one per argument.
695 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
696 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
697 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
698 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
699 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
700 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
701 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
702 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
703 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
704 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
705 # Is a register in a group
706 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
707 EOF
708 }
709
710 #
711 # The .log file
712 #
713 exec > new-gdbarch.log
714 function_list | while do_read
715 do
716 cat <<EOF
717 ${class} ${macro}(${actual})
718 ${returntype} ${function} ($formal)${attrib}
719 EOF
720 for r in ${read}
721 do
722 eval echo \"\ \ \ \ ${r}=\${${r}}\"
723 done
724 if class_is_predicate_p && fallback_default_p
725 then
726 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
727 kill $$
728 exit 1
729 fi
730 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
731 then
732 echo "Error: postdefault is useless when invalid_p=0" 1>&2
733 kill $$
734 exit 1
735 fi
736 if class_is_multiarch_p
737 then
738 if class_is_predicate_p ; then :
739 elif test "x${predefault}" = "x"
740 then
741 echo "Error: pure multi-arch function must have a predefault" 1>&2
742 kill $$
743 exit 1
744 fi
745 fi
746 echo ""
747 done
748
749 exec 1>&2
750 compare_new gdbarch.log
751
752
753 copyright ()
754 {
755 cat <<EOF
756 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
757
758 /* Dynamic architecture support for GDB, the GNU debugger.
759 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
760
761 This file is part of GDB.
762
763 This program is free software; you can redistribute it and/or modify
764 it under the terms of the GNU General Public License as published by
765 the Free Software Foundation; either version 2 of the License, or
766 (at your option) any later version.
767
768 This program is distributed in the hope that it will be useful,
769 but WITHOUT ANY WARRANTY; without even the implied warranty of
770 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
771 GNU General Public License for more details.
772
773 You should have received a copy of the GNU General Public License
774 along with this program; if not, write to the Free Software
775 Foundation, Inc., 59 Temple Place - Suite 330,
776 Boston, MA 02111-1307, USA. */
777
778 /* This file was created with the aid of \`\`gdbarch.sh''.
779
780 The Bourne shell script \`\`gdbarch.sh'' creates the files
781 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
782 against the existing \`\`gdbarch.[hc]''. Any differences found
783 being reported.
784
785 If editing this file, please also run gdbarch.sh and merge any
786 changes into that script. Conversely, when making sweeping changes
787 to this file, modifying gdbarch.sh and using its output may prove
788 easier. */
789
790 EOF
791 }
792
793 #
794 # The .h file
795 #
796
797 exec > new-gdbarch.h
798 copyright
799 cat <<EOF
800 #ifndef GDBARCH_H
801 #define GDBARCH_H
802
803 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
804 #if !GDB_MULTI_ARCH
805 /* Pull in function declarations refered to, indirectly, via macros. */
806 #include "inferior.h" /* For unsigned_address_to_pointer(). */
807 #include "symfile.h" /* For entry_point_address(). */
808 #endif
809
810 struct frame_info;
811 struct value;
812 struct objfile;
813 struct minimal_symbol;
814 struct regcache;
815 struct reggroup;
816
817 extern struct gdbarch *current_gdbarch;
818
819
820 /* If any of the following are defined, the target wasn't correctly
821 converted. */
822
823 #if GDB_MULTI_ARCH
824 #if defined (EXTRA_FRAME_INFO)
825 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
826 #endif
827 #endif
828
829 #if GDB_MULTI_ARCH
830 #if defined (FRAME_FIND_SAVED_REGS)
831 #error "FRAME_FIND_SAVED_REGS: replaced by DEPRECATED_FRAME_INIT_SAVED_REGS"
832 #endif
833 #endif
834
835 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
836 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
837 #endif
838 EOF
839
840 # function typedef's
841 printf "\n"
842 printf "\n"
843 printf "/* The following are pre-initialized by GDBARCH. */\n"
844 function_list | while do_read
845 do
846 if class_is_info_p
847 then
848 printf "\n"
849 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
850 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
851 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
852 printf "#error \"Non multi-arch definition of ${macro}\"\n"
853 printf "#endif\n"
854 printf "#if GDB_MULTI_ARCH\n"
855 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
856 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
857 printf "#endif\n"
858 printf "#endif\n"
859 fi
860 done
861
862 # function typedef's
863 printf "\n"
864 printf "\n"
865 printf "/* The following are initialized by the target dependent code. */\n"
866 function_list | while do_read
867 do
868 if [ -n "${comment}" ]
869 then
870 echo "${comment}" | sed \
871 -e '2 s,#,/*,' \
872 -e '3,$ s,#, ,' \
873 -e '$ s,$, */,'
874 fi
875 if class_is_multiarch_p
876 then
877 if class_is_predicate_p
878 then
879 printf "\n"
880 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
881 fi
882 else
883 if class_is_predicate_p
884 then
885 printf "\n"
886 printf "#if defined (${macro})\n"
887 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
888 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
889 printf "#if !defined (${macro}_P)\n"
890 printf "#define ${macro}_P() (1)\n"
891 printf "#endif\n"
892 printf "#endif\n"
893 printf "\n"
894 printf "/* Default predicate for non- multi-arch targets. */\n"
895 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
896 printf "#define ${macro}_P() (0)\n"
897 printf "#endif\n"
898 printf "\n"
899 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
900 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
901 printf "#error \"Non multi-arch definition of ${macro}\"\n"
902 printf "#endif\n"
903 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
904 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
905 printf "#endif\n"
906 fi
907 fi
908 if class_is_variable_p
909 then
910 if fallback_default_p || class_is_predicate_p
911 then
912 printf "\n"
913 printf "/* Default (value) for non- multi-arch platforms. */\n"
914 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
915 echo "#define ${macro} (${fallbackdefault})" \
916 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
917 printf "#endif\n"
918 fi
919 printf "\n"
920 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
921 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
922 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
923 printf "#error \"Non multi-arch definition of ${macro}\"\n"
924 printf "#endif\n"
925 if test "${level}" = ""
926 then
927 printf "#if !defined (${macro})\n"
928 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
929 printf "#endif\n"
930 else
931 printf "#if GDB_MULTI_ARCH\n"
932 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
933 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
934 printf "#endif\n"
935 printf "#endif\n"
936 fi
937 fi
938 if class_is_function_p
939 then
940 if class_is_multiarch_p ; then :
941 elif fallback_default_p || class_is_predicate_p
942 then
943 printf "\n"
944 printf "/* Default (function) for non- multi-arch platforms. */\n"
945 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
946 if [ "x${fallbackdefault}" = "x0" ]
947 then
948 if [ "x${actual}" = "x-" ]
949 then
950 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
951 else
952 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
953 fi
954 else
955 # FIXME: Should be passing current_gdbarch through!
956 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
957 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
958 fi
959 printf "#endif\n"
960 fi
961 printf "\n"
962 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
963 then
964 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
965 elif class_is_multiarch_p
966 then
967 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
968 else
969 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
970 fi
971 if [ "x${formal}" = "xvoid" ]
972 then
973 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
974 else
975 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
976 fi
977 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
978 if class_is_multiarch_p ; then :
979 else
980 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
981 printf "#error \"Non multi-arch definition of ${macro}\"\n"
982 printf "#endif\n"
983 printf "#if GDB_MULTI_ARCH\n"
984 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
985 if [ "x${actual}" = "x" ]
986 then
987 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
988 elif [ "x${actual}" = "x-" ]
989 then
990 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
991 else
992 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
993 fi
994 printf "#endif\n"
995 printf "#endif\n"
996 fi
997 fi
998 done
999
1000 # close it off
1001 cat <<EOF
1002
1003 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1004
1005
1006 /* Mechanism for co-ordinating the selection of a specific
1007 architecture.
1008
1009 GDB targets (*-tdep.c) can register an interest in a specific
1010 architecture. Other GDB components can register a need to maintain
1011 per-architecture data.
1012
1013 The mechanisms below ensures that there is only a loose connection
1014 between the set-architecture command and the various GDB
1015 components. Each component can independently register their need
1016 to maintain architecture specific data with gdbarch.
1017
1018 Pragmatics:
1019
1020 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1021 didn't scale.
1022
1023 The more traditional mega-struct containing architecture specific
1024 data for all the various GDB components was also considered. Since
1025 GDB is built from a variable number of (fairly independent)
1026 components it was determined that the global aproach was not
1027 applicable. */
1028
1029
1030 /* Register a new architectural family with GDB.
1031
1032 Register support for the specified ARCHITECTURE with GDB. When
1033 gdbarch determines that the specified architecture has been
1034 selected, the corresponding INIT function is called.
1035
1036 --
1037
1038 The INIT function takes two parameters: INFO which contains the
1039 information available to gdbarch about the (possibly new)
1040 architecture; ARCHES which is a list of the previously created
1041 \`\`struct gdbarch'' for this architecture.
1042
1043 The INFO parameter is, as far as possible, be pre-initialized with
1044 information obtained from INFO.ABFD or the previously selected
1045 architecture.
1046
1047 The ARCHES parameter is a linked list (sorted most recently used)
1048 of all the previously created architures for this architecture
1049 family. The (possibly NULL) ARCHES->gdbarch can used to access
1050 values from the previously selected architecture for this
1051 architecture family. The global \`\`current_gdbarch'' shall not be
1052 used.
1053
1054 The INIT function shall return any of: NULL - indicating that it
1055 doesn't recognize the selected architecture; an existing \`\`struct
1056 gdbarch'' from the ARCHES list - indicating that the new
1057 architecture is just a synonym for an earlier architecture (see
1058 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1059 - that describes the selected architecture (see gdbarch_alloc()).
1060
1061 The DUMP_TDEP function shall print out all target specific values.
1062 Care should be taken to ensure that the function works in both the
1063 multi-arch and non- multi-arch cases. */
1064
1065 struct gdbarch_list
1066 {
1067 struct gdbarch *gdbarch;
1068 struct gdbarch_list *next;
1069 };
1070
1071 struct gdbarch_info
1072 {
1073 /* Use default: NULL (ZERO). */
1074 const struct bfd_arch_info *bfd_arch_info;
1075
1076 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1077 int byte_order;
1078
1079 /* Use default: NULL (ZERO). */
1080 bfd *abfd;
1081
1082 /* Use default: NULL (ZERO). */
1083 struct gdbarch_tdep_info *tdep_info;
1084
1085 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1086 enum gdb_osabi osabi;
1087 };
1088
1089 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1090 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1091
1092 /* DEPRECATED - use gdbarch_register() */
1093 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1094
1095 extern void gdbarch_register (enum bfd_architecture architecture,
1096 gdbarch_init_ftype *,
1097 gdbarch_dump_tdep_ftype *);
1098
1099
1100 /* Return a freshly allocated, NULL terminated, array of the valid
1101 architecture names. Since architectures are registered during the
1102 _initialize phase this function only returns useful information
1103 once initialization has been completed. */
1104
1105 extern const char **gdbarch_printable_names (void);
1106
1107
1108 /* Helper function. Search the list of ARCHES for a GDBARCH that
1109 matches the information provided by INFO. */
1110
1111 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1112
1113
1114 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1115 basic initialization using values obtained from the INFO andTDEP
1116 parameters. set_gdbarch_*() functions are called to complete the
1117 initialization of the object. */
1118
1119 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1120
1121
1122 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1123 It is assumed that the caller freeds the \`\`struct
1124 gdbarch_tdep''. */
1125
1126 extern void gdbarch_free (struct gdbarch *);
1127
1128
1129 /* Helper function. Force an update of the current architecture.
1130
1131 The actual architecture selected is determined by INFO, \`\`(gdb) set
1132 architecture'' et.al., the existing architecture and BFD's default
1133 architecture. INFO should be initialized to zero and then selected
1134 fields should be updated.
1135
1136 Returns non-zero if the update succeeds */
1137
1138 extern int gdbarch_update_p (struct gdbarch_info info);
1139
1140
1141
1142 /* Register per-architecture data-pointer.
1143
1144 Reserve space for a per-architecture data-pointer. An identifier
1145 for the reserved data-pointer is returned. That identifer should
1146 be saved in a local static variable.
1147
1148 The per-architecture data-pointer is either initialized explicitly
1149 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1150 gdbarch_data()). FREE() is called to delete either an existing
1151 data-pointer overridden by set_gdbarch_data() or when the
1152 architecture object is being deleted.
1153
1154 When a previously created architecture is re-selected, the
1155 per-architecture data-pointer for that previous architecture is
1156 restored. INIT() is not re-called.
1157
1158 Multiple registrarants for any architecture are allowed (and
1159 strongly encouraged). */
1160
1161 struct gdbarch_data;
1162
1163 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1164 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1165 void *pointer);
1166 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1167 gdbarch_data_free_ftype *free);
1168 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1169 struct gdbarch_data *data,
1170 void *pointer);
1171
1172 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1173
1174
1175 /* Register per-architecture memory region.
1176
1177 Provide a memory-region swap mechanism. Per-architecture memory
1178 region are created. These memory regions are swapped whenever the
1179 architecture is changed. For a new architecture, the memory region
1180 is initialized with zero (0) and the INIT function is called.
1181
1182 Memory regions are swapped / initialized in the order that they are
1183 registered. NULL DATA and/or INIT values can be specified.
1184
1185 New code should use register_gdbarch_data(). */
1186
1187 typedef void (gdbarch_swap_ftype) (void);
1188 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1189 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1190
1191
1192
1193 /* The target-system-dependent byte order is dynamic */
1194
1195 extern int target_byte_order;
1196 #ifndef TARGET_BYTE_ORDER
1197 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1198 #endif
1199
1200 extern int target_byte_order_auto;
1201 #ifndef TARGET_BYTE_ORDER_AUTO
1202 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1203 #endif
1204
1205
1206
1207 /* The target-system-dependent BFD architecture is dynamic */
1208
1209 extern int target_architecture_auto;
1210 #ifndef TARGET_ARCHITECTURE_AUTO
1211 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1212 #endif
1213
1214 extern const struct bfd_arch_info *target_architecture;
1215 #ifndef TARGET_ARCHITECTURE
1216 #define TARGET_ARCHITECTURE (target_architecture + 0)
1217 #endif
1218
1219
1220 /* The target-system-dependent disassembler is semi-dynamic */
1221
1222 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1223 unsigned int len, disassemble_info *info);
1224
1225 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1226 disassemble_info *info);
1227
1228 extern void dis_asm_print_address (bfd_vma addr,
1229 disassemble_info *info);
1230
1231 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1232 extern disassemble_info tm_print_insn_info;
1233 #ifndef TARGET_PRINT_INSN_INFO
1234 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1235 #endif
1236
1237
1238
1239 /* Set the dynamic target-system-dependent parameters (architecture,
1240 byte-order, ...) using information found in the BFD */
1241
1242 extern void set_gdbarch_from_file (bfd *);
1243
1244
1245 /* Initialize the current architecture to the "first" one we find on
1246 our list. */
1247
1248 extern void initialize_current_architecture (void);
1249
1250 /* For non-multiarched targets, do any initialization of the default
1251 gdbarch object necessary after the _initialize_MODULE functions
1252 have run. */
1253 extern void initialize_non_multiarch (void);
1254
1255 /* gdbarch trace variable */
1256 extern int gdbarch_debug;
1257
1258 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1259
1260 #endif
1261 EOF
1262 exec 1>&2
1263 #../move-if-change new-gdbarch.h gdbarch.h
1264 compare_new gdbarch.h
1265
1266
1267 #
1268 # C file
1269 #
1270
1271 exec > new-gdbarch.c
1272 copyright
1273 cat <<EOF
1274
1275 #include "defs.h"
1276 #include "arch-utils.h"
1277
1278 #if GDB_MULTI_ARCH
1279 #include "gdbcmd.h"
1280 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1281 #else
1282 /* Just include everything in sight so that the every old definition
1283 of macro is visible. */
1284 #include "gdb_string.h"
1285 #include <ctype.h>
1286 #include "symtab.h"
1287 #include "frame.h"
1288 #include "inferior.h"
1289 #include "breakpoint.h"
1290 #include "gdb_wait.h"
1291 #include "gdbcore.h"
1292 #include "gdbcmd.h"
1293 #include "target.h"
1294 #include "gdbthread.h"
1295 #include "annotate.h"
1296 #include "symfile.h" /* for overlay functions */
1297 #include "value.h" /* For old tm.h/nm.h macros. */
1298 #endif
1299 #include "symcat.h"
1300
1301 #include "floatformat.h"
1302
1303 #include "gdb_assert.h"
1304 #include "gdb_string.h"
1305 #include "gdb-events.h"
1306 #include "reggroups.h"
1307 #include "osabi.h"
1308 #include "symfile.h" /* For entry_point_address. */
1309
1310 /* Static function declarations */
1311
1312 static void verify_gdbarch (struct gdbarch *gdbarch);
1313 static void alloc_gdbarch_data (struct gdbarch *);
1314 static void free_gdbarch_data (struct gdbarch *);
1315 static void init_gdbarch_swap (struct gdbarch *);
1316 static void clear_gdbarch_swap (struct gdbarch *);
1317 static void swapout_gdbarch_swap (struct gdbarch *);
1318 static void swapin_gdbarch_swap (struct gdbarch *);
1319
1320 /* Non-zero if we want to trace architecture code. */
1321
1322 #ifndef GDBARCH_DEBUG
1323 #define GDBARCH_DEBUG 0
1324 #endif
1325 int gdbarch_debug = GDBARCH_DEBUG;
1326
1327 EOF
1328
1329 # gdbarch open the gdbarch object
1330 printf "\n"
1331 printf "/* Maintain the struct gdbarch object */\n"
1332 printf "\n"
1333 printf "struct gdbarch\n"
1334 printf "{\n"
1335 printf " /* Has this architecture been fully initialized? */\n"
1336 printf " int initialized_p;\n"
1337 printf " /* basic architectural information */\n"
1338 function_list | while do_read
1339 do
1340 if class_is_info_p
1341 then
1342 printf " ${returntype} ${function};\n"
1343 fi
1344 done
1345 printf "\n"
1346 printf " /* target specific vector. */\n"
1347 printf " struct gdbarch_tdep *tdep;\n"
1348 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1349 printf "\n"
1350 printf " /* per-architecture data-pointers */\n"
1351 printf " unsigned nr_data;\n"
1352 printf " void **data;\n"
1353 printf "\n"
1354 printf " /* per-architecture swap-regions */\n"
1355 printf " struct gdbarch_swap *swap;\n"
1356 printf "\n"
1357 cat <<EOF
1358 /* Multi-arch values.
1359
1360 When extending this structure you must:
1361
1362 Add the field below.
1363
1364 Declare set/get functions and define the corresponding
1365 macro in gdbarch.h.
1366
1367 gdbarch_alloc(): If zero/NULL is not a suitable default,
1368 initialize the new field.
1369
1370 verify_gdbarch(): Confirm that the target updated the field
1371 correctly.
1372
1373 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1374 field is dumped out
1375
1376 \`\`startup_gdbarch()'': Append an initial value to the static
1377 variable (base values on the host's c-type system).
1378
1379 get_gdbarch(): Implement the set/get functions (probably using
1380 the macro's as shortcuts).
1381
1382 */
1383
1384 EOF
1385 function_list | while do_read
1386 do
1387 if class_is_variable_p
1388 then
1389 printf " ${returntype} ${function};\n"
1390 elif class_is_function_p
1391 then
1392 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1393 fi
1394 done
1395 printf "};\n"
1396
1397 # A pre-initialized vector
1398 printf "\n"
1399 printf "\n"
1400 cat <<EOF
1401 /* The default architecture uses host values (for want of a better
1402 choice). */
1403 EOF
1404 printf "\n"
1405 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1406 printf "\n"
1407 printf "struct gdbarch startup_gdbarch =\n"
1408 printf "{\n"
1409 printf " 1, /* Always initialized. */\n"
1410 printf " /* basic architecture information */\n"
1411 function_list | while do_read
1412 do
1413 if class_is_info_p
1414 then
1415 printf " ${staticdefault},\n"
1416 fi
1417 done
1418 cat <<EOF
1419 /* target specific vector and its dump routine */
1420 NULL, NULL,
1421 /*per-architecture data-pointers and swap regions */
1422 0, NULL, NULL,
1423 /* Multi-arch values */
1424 EOF
1425 function_list | while do_read
1426 do
1427 if class_is_function_p || class_is_variable_p
1428 then
1429 printf " ${staticdefault},\n"
1430 fi
1431 done
1432 cat <<EOF
1433 /* startup_gdbarch() */
1434 };
1435
1436 struct gdbarch *current_gdbarch = &startup_gdbarch;
1437
1438 /* Do any initialization needed for a non-multiarch configuration
1439 after the _initialize_MODULE functions have been run. */
1440 void
1441 initialize_non_multiarch (void)
1442 {
1443 alloc_gdbarch_data (&startup_gdbarch);
1444 /* Ensure that all swap areas are zeroed so that they again think
1445 they are starting from scratch. */
1446 clear_gdbarch_swap (&startup_gdbarch);
1447 init_gdbarch_swap (&startup_gdbarch);
1448 }
1449 EOF
1450
1451 # Create a new gdbarch struct
1452 printf "\n"
1453 printf "\n"
1454 cat <<EOF
1455 /* Create a new \`\`struct gdbarch'' based on information provided by
1456 \`\`struct gdbarch_info''. */
1457 EOF
1458 printf "\n"
1459 cat <<EOF
1460 struct gdbarch *
1461 gdbarch_alloc (const struct gdbarch_info *info,
1462 struct gdbarch_tdep *tdep)
1463 {
1464 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1465 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1466 the current local architecture and not the previous global
1467 architecture. This ensures that the new architectures initial
1468 values are not influenced by the previous architecture. Once
1469 everything is parameterised with gdbarch, this will go away. */
1470 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1471 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1472
1473 alloc_gdbarch_data (current_gdbarch);
1474
1475 current_gdbarch->tdep = tdep;
1476 EOF
1477 printf "\n"
1478 function_list | while do_read
1479 do
1480 if class_is_info_p
1481 then
1482 printf " current_gdbarch->${function} = info->${function};\n"
1483 fi
1484 done
1485 printf "\n"
1486 printf " /* Force the explicit initialization of these. */\n"
1487 function_list | while do_read
1488 do
1489 if class_is_function_p || class_is_variable_p
1490 then
1491 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1492 then
1493 printf " current_gdbarch->${function} = ${predefault};\n"
1494 fi
1495 fi
1496 done
1497 cat <<EOF
1498 /* gdbarch_alloc() */
1499
1500 return current_gdbarch;
1501 }
1502 EOF
1503
1504 # Free a gdbarch struct.
1505 printf "\n"
1506 printf "\n"
1507 cat <<EOF
1508 /* Free a gdbarch struct. This should never happen in normal
1509 operation --- once you've created a gdbarch, you keep it around.
1510 However, if an architecture's init function encounters an error
1511 building the structure, it may need to clean up a partially
1512 constructed gdbarch. */
1513
1514 void
1515 gdbarch_free (struct gdbarch *arch)
1516 {
1517 gdb_assert (arch != NULL);
1518 free_gdbarch_data (arch);
1519 xfree (arch);
1520 }
1521 EOF
1522
1523 # verify a new architecture
1524 printf "\n"
1525 printf "\n"
1526 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1527 printf "\n"
1528 cat <<EOF
1529 static void
1530 verify_gdbarch (struct gdbarch *gdbarch)
1531 {
1532 struct ui_file *log;
1533 struct cleanup *cleanups;
1534 long dummy;
1535 char *buf;
1536 /* Only perform sanity checks on a multi-arch target. */
1537 if (!GDB_MULTI_ARCH)
1538 return;
1539 log = mem_fileopen ();
1540 cleanups = make_cleanup_ui_file_delete (log);
1541 /* fundamental */
1542 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1543 fprintf_unfiltered (log, "\n\tbyte-order");
1544 if (gdbarch->bfd_arch_info == NULL)
1545 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1546 /* Check those that need to be defined for the given multi-arch level. */
1547 EOF
1548 function_list | while do_read
1549 do
1550 if class_is_function_p || class_is_variable_p
1551 then
1552 if [ "x${invalid_p}" = "x0" ]
1553 then
1554 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1555 elif class_is_predicate_p
1556 then
1557 printf " /* Skip verify of ${function}, has predicate */\n"
1558 # FIXME: See do_read for potential simplification
1559 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1560 then
1561 printf " if (${invalid_p})\n"
1562 printf " gdbarch->${function} = ${postdefault};\n"
1563 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1564 then
1565 printf " if (gdbarch->${function} == ${predefault})\n"
1566 printf " gdbarch->${function} = ${postdefault};\n"
1567 elif [ -n "${postdefault}" ]
1568 then
1569 printf " if (gdbarch->${function} == 0)\n"
1570 printf " gdbarch->${function} = ${postdefault};\n"
1571 elif [ -n "${invalid_p}" ]
1572 then
1573 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1574 printf " && (${invalid_p}))\n"
1575 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1576 elif [ -n "${predefault}" ]
1577 then
1578 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1579 printf " && (gdbarch->${function} == ${predefault}))\n"
1580 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1581 fi
1582 fi
1583 done
1584 cat <<EOF
1585 buf = ui_file_xstrdup (log, &dummy);
1586 make_cleanup (xfree, buf);
1587 if (strlen (buf) > 0)
1588 internal_error (__FILE__, __LINE__,
1589 "verify_gdbarch: the following are invalid ...%s",
1590 buf);
1591 do_cleanups (cleanups);
1592 }
1593 EOF
1594
1595 # dump the structure
1596 printf "\n"
1597 printf "\n"
1598 cat <<EOF
1599 /* Print out the details of the current architecture. */
1600
1601 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1602 just happens to match the global variable \`\`current_gdbarch''. That
1603 way macros refering to that variable get the local and not the global
1604 version - ulgh. Once everything is parameterised with gdbarch, this
1605 will go away. */
1606
1607 void
1608 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1609 {
1610 fprintf_unfiltered (file,
1611 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1612 GDB_MULTI_ARCH);
1613 EOF
1614 function_list | sort -t: -k 3 | while do_read
1615 do
1616 # First the predicate
1617 if class_is_predicate_p
1618 then
1619 if class_is_multiarch_p
1620 then
1621 printf " if (GDB_MULTI_ARCH)\n"
1622 printf " fprintf_unfiltered (file,\n"
1623 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1624 printf " gdbarch_${function}_p (current_gdbarch));\n"
1625 else
1626 printf "#ifdef ${macro}_P\n"
1627 printf " fprintf_unfiltered (file,\n"
1628 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1629 printf " \"${macro}_P()\",\n"
1630 printf " XSTRING (${macro}_P ()));\n"
1631 printf " fprintf_unfiltered (file,\n"
1632 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1633 printf " ${macro}_P ());\n"
1634 printf "#endif\n"
1635 fi
1636 fi
1637 # multiarch functions don't have macros.
1638 if class_is_multiarch_p
1639 then
1640 printf " if (GDB_MULTI_ARCH)\n"
1641 printf " fprintf_unfiltered (file,\n"
1642 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1643 printf " (long) current_gdbarch->${function});\n"
1644 continue
1645 fi
1646 # Print the macro definition.
1647 printf "#ifdef ${macro}\n"
1648 if [ "x${returntype}" = "xvoid" ]
1649 then
1650 printf "#if GDB_MULTI_ARCH\n"
1651 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1652 fi
1653 if class_is_function_p
1654 then
1655 printf " fprintf_unfiltered (file,\n"
1656 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1657 printf " \"${macro}(${actual})\",\n"
1658 printf " XSTRING (${macro} (${actual})));\n"
1659 else
1660 printf " fprintf_unfiltered (file,\n"
1661 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1662 printf " XSTRING (${macro}));\n"
1663 fi
1664 # Print the architecture vector value
1665 if [ "x${returntype}" = "xvoid" ]
1666 then
1667 printf "#endif\n"
1668 fi
1669 if [ "x${print_p}" = "x()" ]
1670 then
1671 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1672 elif [ "x${print_p}" = "x0" ]
1673 then
1674 printf " /* skip print of ${macro}, print_p == 0. */\n"
1675 elif [ -n "${print_p}" ]
1676 then
1677 printf " if (${print_p})\n"
1678 printf " fprintf_unfiltered (file,\n"
1679 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1680 printf " ${print});\n"
1681 elif class_is_function_p
1682 then
1683 printf " if (GDB_MULTI_ARCH)\n"
1684 printf " fprintf_unfiltered (file,\n"
1685 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1686 printf " (long) current_gdbarch->${function}\n"
1687 printf " /*${macro} ()*/);\n"
1688 else
1689 printf " fprintf_unfiltered (file,\n"
1690 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1691 printf " ${print});\n"
1692 fi
1693 printf "#endif\n"
1694 done
1695 cat <<EOF
1696 if (current_gdbarch->dump_tdep != NULL)
1697 current_gdbarch->dump_tdep (current_gdbarch, file);
1698 }
1699 EOF
1700
1701
1702 # GET/SET
1703 printf "\n"
1704 cat <<EOF
1705 struct gdbarch_tdep *
1706 gdbarch_tdep (struct gdbarch *gdbarch)
1707 {
1708 if (gdbarch_debug >= 2)
1709 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1710 return gdbarch->tdep;
1711 }
1712 EOF
1713 printf "\n"
1714 function_list | while do_read
1715 do
1716 if class_is_predicate_p
1717 then
1718 printf "\n"
1719 printf "int\n"
1720 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1721 printf "{\n"
1722 printf " gdb_assert (gdbarch != NULL);\n"
1723 if [ -n "${predicate}" ]
1724 then
1725 printf " return ${predicate};\n"
1726 else
1727 printf " return gdbarch->${function} != 0;\n"
1728 fi
1729 printf "}\n"
1730 fi
1731 if class_is_function_p
1732 then
1733 printf "\n"
1734 printf "${returntype}\n"
1735 if [ "x${formal}" = "xvoid" ]
1736 then
1737 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1738 else
1739 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1740 fi
1741 printf "{\n"
1742 printf " gdb_assert (gdbarch != NULL);\n"
1743 printf " if (gdbarch->${function} == 0)\n"
1744 printf " internal_error (__FILE__, __LINE__,\n"
1745 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1746 if class_is_predicate_p && test -n "${predicate}"
1747 then
1748 # Allow a call to a function with a predicate.
1749 printf " /* Ignore predicate (${predicate}). */\n"
1750 fi
1751 printf " if (gdbarch_debug >= 2)\n"
1752 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1753 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1754 then
1755 if class_is_multiarch_p
1756 then
1757 params="gdbarch"
1758 else
1759 params=""
1760 fi
1761 else
1762 if class_is_multiarch_p
1763 then
1764 params="gdbarch, ${actual}"
1765 else
1766 params="${actual}"
1767 fi
1768 fi
1769 if [ "x${returntype}" = "xvoid" ]
1770 then
1771 printf " gdbarch->${function} (${params});\n"
1772 else
1773 printf " return gdbarch->${function} (${params});\n"
1774 fi
1775 printf "}\n"
1776 printf "\n"
1777 printf "void\n"
1778 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1779 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1780 printf "{\n"
1781 printf " gdbarch->${function} = ${function};\n"
1782 printf "}\n"
1783 elif class_is_variable_p
1784 then
1785 printf "\n"
1786 printf "${returntype}\n"
1787 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1788 printf "{\n"
1789 printf " gdb_assert (gdbarch != NULL);\n"
1790 if [ "x${invalid_p}" = "x0" ]
1791 then
1792 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1793 elif [ -n "${invalid_p}" ]
1794 then
1795 printf " if (${invalid_p})\n"
1796 printf " internal_error (__FILE__, __LINE__,\n"
1797 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1798 elif [ -n "${predefault}" ]
1799 then
1800 printf " if (gdbarch->${function} == ${predefault})\n"
1801 printf " internal_error (__FILE__, __LINE__,\n"
1802 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1803 fi
1804 printf " if (gdbarch_debug >= 2)\n"
1805 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1806 printf " return gdbarch->${function};\n"
1807 printf "}\n"
1808 printf "\n"
1809 printf "void\n"
1810 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1811 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1812 printf "{\n"
1813 printf " gdbarch->${function} = ${function};\n"
1814 printf "}\n"
1815 elif class_is_info_p
1816 then
1817 printf "\n"
1818 printf "${returntype}\n"
1819 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1820 printf "{\n"
1821 printf " gdb_assert (gdbarch != NULL);\n"
1822 printf " if (gdbarch_debug >= 2)\n"
1823 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1824 printf " return gdbarch->${function};\n"
1825 printf "}\n"
1826 fi
1827 done
1828
1829 # All the trailing guff
1830 cat <<EOF
1831
1832
1833 /* Keep a registry of per-architecture data-pointers required by GDB
1834 modules. */
1835
1836 struct gdbarch_data
1837 {
1838 unsigned index;
1839 int init_p;
1840 gdbarch_data_init_ftype *init;
1841 gdbarch_data_free_ftype *free;
1842 };
1843
1844 struct gdbarch_data_registration
1845 {
1846 struct gdbarch_data *data;
1847 struct gdbarch_data_registration *next;
1848 };
1849
1850 struct gdbarch_data_registry
1851 {
1852 unsigned nr;
1853 struct gdbarch_data_registration *registrations;
1854 };
1855
1856 struct gdbarch_data_registry gdbarch_data_registry =
1857 {
1858 0, NULL,
1859 };
1860
1861 struct gdbarch_data *
1862 register_gdbarch_data (gdbarch_data_init_ftype *init,
1863 gdbarch_data_free_ftype *free)
1864 {
1865 struct gdbarch_data_registration **curr;
1866 /* Append the new registraration. */
1867 for (curr = &gdbarch_data_registry.registrations;
1868 (*curr) != NULL;
1869 curr = &(*curr)->next);
1870 (*curr) = XMALLOC (struct gdbarch_data_registration);
1871 (*curr)->next = NULL;
1872 (*curr)->data = XMALLOC (struct gdbarch_data);
1873 (*curr)->data->index = gdbarch_data_registry.nr++;
1874 (*curr)->data->init = init;
1875 (*curr)->data->init_p = 1;
1876 (*curr)->data->free = free;
1877 return (*curr)->data;
1878 }
1879
1880
1881 /* Create/delete the gdbarch data vector. */
1882
1883 static void
1884 alloc_gdbarch_data (struct gdbarch *gdbarch)
1885 {
1886 gdb_assert (gdbarch->data == NULL);
1887 gdbarch->nr_data = gdbarch_data_registry.nr;
1888 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1889 }
1890
1891 static void
1892 free_gdbarch_data (struct gdbarch *gdbarch)
1893 {
1894 struct gdbarch_data_registration *rego;
1895 gdb_assert (gdbarch->data != NULL);
1896 for (rego = gdbarch_data_registry.registrations;
1897 rego != NULL;
1898 rego = rego->next)
1899 {
1900 struct gdbarch_data *data = rego->data;
1901 gdb_assert (data->index < gdbarch->nr_data);
1902 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1903 {
1904 data->free (gdbarch, gdbarch->data[data->index]);
1905 gdbarch->data[data->index] = NULL;
1906 }
1907 }
1908 xfree (gdbarch->data);
1909 gdbarch->data = NULL;
1910 }
1911
1912
1913 /* Initialize the current value of the specified per-architecture
1914 data-pointer. */
1915
1916 void
1917 set_gdbarch_data (struct gdbarch *gdbarch,
1918 struct gdbarch_data *data,
1919 void *pointer)
1920 {
1921 gdb_assert (data->index < gdbarch->nr_data);
1922 if (gdbarch->data[data->index] != NULL)
1923 {
1924 gdb_assert (data->free != NULL);
1925 data->free (gdbarch, gdbarch->data[data->index]);
1926 }
1927 gdbarch->data[data->index] = pointer;
1928 }
1929
1930 /* Return the current value of the specified per-architecture
1931 data-pointer. */
1932
1933 void *
1934 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1935 {
1936 gdb_assert (data->index < gdbarch->nr_data);
1937 /* The data-pointer isn't initialized, call init() to get a value but
1938 only if the architecture initializaiton has completed. Otherwise
1939 punt - hope that the caller knows what they are doing. */
1940 if (gdbarch->data[data->index] == NULL
1941 && gdbarch->initialized_p)
1942 {
1943 /* Be careful to detect an initialization cycle. */
1944 gdb_assert (data->init_p);
1945 data->init_p = 0;
1946 gdb_assert (data->init != NULL);
1947 gdbarch->data[data->index] = data->init (gdbarch);
1948 data->init_p = 1;
1949 gdb_assert (gdbarch->data[data->index] != NULL);
1950 }
1951 return gdbarch->data[data->index];
1952 }
1953
1954
1955
1956 /* Keep a registry of swapped data required by GDB modules. */
1957
1958 struct gdbarch_swap
1959 {
1960 void *swap;
1961 struct gdbarch_swap_registration *source;
1962 struct gdbarch_swap *next;
1963 };
1964
1965 struct gdbarch_swap_registration
1966 {
1967 void *data;
1968 unsigned long sizeof_data;
1969 gdbarch_swap_ftype *init;
1970 struct gdbarch_swap_registration *next;
1971 };
1972
1973 struct gdbarch_swap_registry
1974 {
1975 int nr;
1976 struct gdbarch_swap_registration *registrations;
1977 };
1978
1979 struct gdbarch_swap_registry gdbarch_swap_registry =
1980 {
1981 0, NULL,
1982 };
1983
1984 void
1985 register_gdbarch_swap (void *data,
1986 unsigned long sizeof_data,
1987 gdbarch_swap_ftype *init)
1988 {
1989 struct gdbarch_swap_registration **rego;
1990 for (rego = &gdbarch_swap_registry.registrations;
1991 (*rego) != NULL;
1992 rego = &(*rego)->next);
1993 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1994 (*rego)->next = NULL;
1995 (*rego)->init = init;
1996 (*rego)->data = data;
1997 (*rego)->sizeof_data = sizeof_data;
1998 }
1999
2000 static void
2001 clear_gdbarch_swap (struct gdbarch *gdbarch)
2002 {
2003 struct gdbarch_swap *curr;
2004 for (curr = gdbarch->swap;
2005 curr != NULL;
2006 curr = curr->next)
2007 {
2008 memset (curr->source->data, 0, curr->source->sizeof_data);
2009 }
2010 }
2011
2012 static void
2013 init_gdbarch_swap (struct gdbarch *gdbarch)
2014 {
2015 struct gdbarch_swap_registration *rego;
2016 struct gdbarch_swap **curr = &gdbarch->swap;
2017 for (rego = gdbarch_swap_registry.registrations;
2018 rego != NULL;
2019 rego = rego->next)
2020 {
2021 if (rego->data != NULL)
2022 {
2023 (*curr) = XMALLOC (struct gdbarch_swap);
2024 (*curr)->source = rego;
2025 (*curr)->swap = xmalloc (rego->sizeof_data);
2026 (*curr)->next = NULL;
2027 curr = &(*curr)->next;
2028 }
2029 if (rego->init != NULL)
2030 rego->init ();
2031 }
2032 }
2033
2034 static void
2035 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2036 {
2037 struct gdbarch_swap *curr;
2038 for (curr = gdbarch->swap;
2039 curr != NULL;
2040 curr = curr->next)
2041 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2042 }
2043
2044 static void
2045 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2046 {
2047 struct gdbarch_swap *curr;
2048 for (curr = gdbarch->swap;
2049 curr != NULL;
2050 curr = curr->next)
2051 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2052 }
2053
2054
2055 /* Keep a registry of the architectures known by GDB. */
2056
2057 struct gdbarch_registration
2058 {
2059 enum bfd_architecture bfd_architecture;
2060 gdbarch_init_ftype *init;
2061 gdbarch_dump_tdep_ftype *dump_tdep;
2062 struct gdbarch_list *arches;
2063 struct gdbarch_registration *next;
2064 };
2065
2066 static struct gdbarch_registration *gdbarch_registry = NULL;
2067
2068 static void
2069 append_name (const char ***buf, int *nr, const char *name)
2070 {
2071 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2072 (*buf)[*nr] = name;
2073 *nr += 1;
2074 }
2075
2076 const char **
2077 gdbarch_printable_names (void)
2078 {
2079 if (GDB_MULTI_ARCH)
2080 {
2081 /* Accumulate a list of names based on the registed list of
2082 architectures. */
2083 enum bfd_architecture a;
2084 int nr_arches = 0;
2085 const char **arches = NULL;
2086 struct gdbarch_registration *rego;
2087 for (rego = gdbarch_registry;
2088 rego != NULL;
2089 rego = rego->next)
2090 {
2091 const struct bfd_arch_info *ap;
2092 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2093 if (ap == NULL)
2094 internal_error (__FILE__, __LINE__,
2095 "gdbarch_architecture_names: multi-arch unknown");
2096 do
2097 {
2098 append_name (&arches, &nr_arches, ap->printable_name);
2099 ap = ap->next;
2100 }
2101 while (ap != NULL);
2102 }
2103 append_name (&arches, &nr_arches, NULL);
2104 return arches;
2105 }
2106 else
2107 /* Just return all the architectures that BFD knows. Assume that
2108 the legacy architecture framework supports them. */
2109 return bfd_arch_list ();
2110 }
2111
2112
2113 void
2114 gdbarch_register (enum bfd_architecture bfd_architecture,
2115 gdbarch_init_ftype *init,
2116 gdbarch_dump_tdep_ftype *dump_tdep)
2117 {
2118 struct gdbarch_registration **curr;
2119 const struct bfd_arch_info *bfd_arch_info;
2120 /* Check that BFD recognizes this architecture */
2121 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2122 if (bfd_arch_info == NULL)
2123 {
2124 internal_error (__FILE__, __LINE__,
2125 "gdbarch: Attempt to register unknown architecture (%d)",
2126 bfd_architecture);
2127 }
2128 /* Check that we haven't seen this architecture before */
2129 for (curr = &gdbarch_registry;
2130 (*curr) != NULL;
2131 curr = &(*curr)->next)
2132 {
2133 if (bfd_architecture == (*curr)->bfd_architecture)
2134 internal_error (__FILE__, __LINE__,
2135 "gdbarch: Duplicate registraration of architecture (%s)",
2136 bfd_arch_info->printable_name);
2137 }
2138 /* log it */
2139 if (gdbarch_debug)
2140 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2141 bfd_arch_info->printable_name,
2142 (long) init);
2143 /* Append it */
2144 (*curr) = XMALLOC (struct gdbarch_registration);
2145 (*curr)->bfd_architecture = bfd_architecture;
2146 (*curr)->init = init;
2147 (*curr)->dump_tdep = dump_tdep;
2148 (*curr)->arches = NULL;
2149 (*curr)->next = NULL;
2150 /* When non- multi-arch, install whatever target dump routine we've
2151 been provided - hopefully that routine has been written correctly
2152 and works regardless of multi-arch. */
2153 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2154 && startup_gdbarch.dump_tdep == NULL)
2155 startup_gdbarch.dump_tdep = dump_tdep;
2156 }
2157
2158 void
2159 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2160 gdbarch_init_ftype *init)
2161 {
2162 gdbarch_register (bfd_architecture, init, NULL);
2163 }
2164
2165
2166 /* Look for an architecture using gdbarch_info. Base search on only
2167 BFD_ARCH_INFO and BYTE_ORDER. */
2168
2169 struct gdbarch_list *
2170 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2171 const struct gdbarch_info *info)
2172 {
2173 for (; arches != NULL; arches = arches->next)
2174 {
2175 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2176 continue;
2177 if (info->byte_order != arches->gdbarch->byte_order)
2178 continue;
2179 if (info->osabi != arches->gdbarch->osabi)
2180 continue;
2181 return arches;
2182 }
2183 return NULL;
2184 }
2185
2186
2187 /* Update the current architecture. Return ZERO if the update request
2188 failed. */
2189
2190 int
2191 gdbarch_update_p (struct gdbarch_info info)
2192 {
2193 struct gdbarch *new_gdbarch;
2194 struct gdbarch *old_gdbarch;
2195 struct gdbarch_registration *rego;
2196
2197 /* Fill in missing parts of the INFO struct using a number of
2198 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2199
2200 /* \`\`(gdb) set architecture ...'' */
2201 if (info.bfd_arch_info == NULL
2202 && !TARGET_ARCHITECTURE_AUTO)
2203 info.bfd_arch_info = TARGET_ARCHITECTURE;
2204 if (info.bfd_arch_info == NULL
2205 && info.abfd != NULL
2206 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2207 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2208 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2209 if (info.bfd_arch_info == NULL)
2210 info.bfd_arch_info = TARGET_ARCHITECTURE;
2211
2212 /* \`\`(gdb) set byte-order ...'' */
2213 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2214 && !TARGET_BYTE_ORDER_AUTO)
2215 info.byte_order = TARGET_BYTE_ORDER;
2216 /* From the INFO struct. */
2217 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2218 && info.abfd != NULL)
2219 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2220 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2221 : BFD_ENDIAN_UNKNOWN);
2222 /* From the current target. */
2223 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2224 info.byte_order = TARGET_BYTE_ORDER;
2225
2226 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2227 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2228 info.osabi = gdbarch_lookup_osabi (info.abfd);
2229 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2230 info.osabi = current_gdbarch->osabi;
2231
2232 /* Must have found some sort of architecture. */
2233 gdb_assert (info.bfd_arch_info != NULL);
2234
2235 if (gdbarch_debug)
2236 {
2237 fprintf_unfiltered (gdb_stdlog,
2238 "gdbarch_update: info.bfd_arch_info %s\n",
2239 (info.bfd_arch_info != NULL
2240 ? info.bfd_arch_info->printable_name
2241 : "(null)"));
2242 fprintf_unfiltered (gdb_stdlog,
2243 "gdbarch_update: info.byte_order %d (%s)\n",
2244 info.byte_order,
2245 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2246 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2247 : "default"));
2248 fprintf_unfiltered (gdb_stdlog,
2249 "gdbarch_update: info.osabi %d (%s)\n",
2250 info.osabi, gdbarch_osabi_name (info.osabi));
2251 fprintf_unfiltered (gdb_stdlog,
2252 "gdbarch_update: info.abfd 0x%lx\n",
2253 (long) info.abfd);
2254 fprintf_unfiltered (gdb_stdlog,
2255 "gdbarch_update: info.tdep_info 0x%lx\n",
2256 (long) info.tdep_info);
2257 }
2258
2259 /* Find the target that knows about this architecture. */
2260 for (rego = gdbarch_registry;
2261 rego != NULL;
2262 rego = rego->next)
2263 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2264 break;
2265 if (rego == NULL)
2266 {
2267 if (gdbarch_debug)
2268 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2269 return 0;
2270 }
2271
2272 /* Swap the data belonging to the old target out setting the
2273 installed data to zero. This stops the ->init() function trying
2274 to refer to the previous architecture's global data structures. */
2275 swapout_gdbarch_swap (current_gdbarch);
2276 clear_gdbarch_swap (current_gdbarch);
2277
2278 /* Save the previously selected architecture, setting the global to
2279 NULL. This stops ->init() trying to use the previous
2280 architecture's configuration. The previous architecture may not
2281 even be of the same architecture family. The most recent
2282 architecture of the same family is found at the head of the
2283 rego->arches list. */
2284 old_gdbarch = current_gdbarch;
2285 current_gdbarch = NULL;
2286
2287 /* Ask the target for a replacement architecture. */
2288 new_gdbarch = rego->init (info, rego->arches);
2289
2290 /* Did the target like it? No. Reject the change and revert to the
2291 old architecture. */
2292 if (new_gdbarch == NULL)
2293 {
2294 if (gdbarch_debug)
2295 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2296 swapin_gdbarch_swap (old_gdbarch);
2297 current_gdbarch = old_gdbarch;
2298 return 0;
2299 }
2300
2301 /* Did the architecture change? No. Oops, put the old architecture
2302 back. */
2303 if (old_gdbarch == new_gdbarch)
2304 {
2305 if (gdbarch_debug)
2306 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2307 (long) new_gdbarch,
2308 new_gdbarch->bfd_arch_info->printable_name);
2309 swapin_gdbarch_swap (old_gdbarch);
2310 current_gdbarch = old_gdbarch;
2311 return 1;
2312 }
2313
2314 /* Is this a pre-existing architecture? Yes. Move it to the front
2315 of the list of architectures (keeping the list sorted Most
2316 Recently Used) and then copy it in. */
2317 {
2318 struct gdbarch_list **list;
2319 for (list = &rego->arches;
2320 (*list) != NULL;
2321 list = &(*list)->next)
2322 {
2323 if ((*list)->gdbarch == new_gdbarch)
2324 {
2325 struct gdbarch_list *this;
2326 if (gdbarch_debug)
2327 fprintf_unfiltered (gdb_stdlog,
2328 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2329 (long) new_gdbarch,
2330 new_gdbarch->bfd_arch_info->printable_name);
2331 /* Unlink this. */
2332 this = (*list);
2333 (*list) = this->next;
2334 /* Insert in the front. */
2335 this->next = rego->arches;
2336 rego->arches = this;
2337 /* Copy the new architecture in. */
2338 current_gdbarch = new_gdbarch;
2339 swapin_gdbarch_swap (new_gdbarch);
2340 architecture_changed_event ();
2341 return 1;
2342 }
2343 }
2344 }
2345
2346 /* Prepend this new architecture to the architecture list (keep the
2347 list sorted Most Recently Used). */
2348 {
2349 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2350 this->next = rego->arches;
2351 this->gdbarch = new_gdbarch;
2352 rego->arches = this;
2353 }
2354
2355 /* Switch to this new architecture marking it initialized. */
2356 current_gdbarch = new_gdbarch;
2357 current_gdbarch->initialized_p = 1;
2358 if (gdbarch_debug)
2359 {
2360 fprintf_unfiltered (gdb_stdlog,
2361 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2362 (long) new_gdbarch,
2363 new_gdbarch->bfd_arch_info->printable_name);
2364 }
2365
2366 /* Check that the newly installed architecture is valid. Plug in
2367 any post init values. */
2368 new_gdbarch->dump_tdep = rego->dump_tdep;
2369 verify_gdbarch (new_gdbarch);
2370
2371 /* Initialize the per-architecture memory (swap) areas.
2372 CURRENT_GDBARCH must be update before these modules are
2373 called. */
2374 init_gdbarch_swap (new_gdbarch);
2375
2376 /* Initialize the per-architecture data. CURRENT_GDBARCH
2377 must be updated before these modules are called. */
2378 architecture_changed_event ();
2379
2380 if (gdbarch_debug)
2381 gdbarch_dump (current_gdbarch, gdb_stdlog);
2382
2383 return 1;
2384 }
2385
2386
2387 /* Disassembler */
2388
2389 /* Pointer to the target-dependent disassembly function. */
2390 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2391 disassemble_info tm_print_insn_info;
2392
2393
2394 extern void _initialize_gdbarch (void);
2395
2396 void
2397 _initialize_gdbarch (void)
2398 {
2399 struct cmd_list_element *c;
2400
2401 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2402 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2403 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2404 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2405 tm_print_insn_info.print_address_func = dis_asm_print_address;
2406
2407 add_show_from_set (add_set_cmd ("arch",
2408 class_maintenance,
2409 var_zinteger,
2410 (char *)&gdbarch_debug,
2411 "Set architecture debugging.\\n\\
2412 When non-zero, architecture debugging is enabled.", &setdebuglist),
2413 &showdebuglist);
2414 c = add_set_cmd ("archdebug",
2415 class_maintenance,
2416 var_zinteger,
2417 (char *)&gdbarch_debug,
2418 "Set architecture debugging.\\n\\
2419 When non-zero, architecture debugging is enabled.", &setlist);
2420
2421 deprecate_cmd (c, "set debug arch");
2422 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2423 }
2424 EOF
2425
2426 # close things off
2427 exec 1>&2
2428 #../move-if-change new-gdbarch.c gdbarch.c
2429 compare_new gdbarch.c
This page took 0.084606 seconds and 5 git commands to generate.