2004-02-11 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
132 fi
133 ;;
134 * )
135 echo "Predicate function ${function} with invalid_p." 1>&2
136 kill $$
137 exit 1
138 ;;
139 esac
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
149 if [ -n "${postdefault}" ]
150 then
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
153 then
154 fallbackdefault="${predefault}"
155 else
156 fallbackdefault="0"
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
163 fi
164 done
165 if [ -n "${class}" ]
166 then
167 true
168 else
169 false
170 fi
171 }
172
173
174 fallback_default_p ()
175 {
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
178 }
179
180 class_is_variable_p ()
181 {
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
186 }
187
188 class_is_function_p ()
189 {
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194 }
195
196 class_is_multiarch_p ()
197 {
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
202 }
203
204 class_is_predicate_p ()
205 {
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
210 }
211
212 class_is_info_p ()
213 {
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
218 }
219
220
221 # dump out/verify the doco
222 for field in ${read}
223 do
224 case ${field} in
225
226 class ) : ;;
227
228 # # -> line disable
229 # f -> function
230 # hiding a function
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
233 # v -> variable
234 # hiding a variable
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
237 # i -> set from info
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
243
244 level ) : ;;
245
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
249
250 macro ) : ;;
251
252 # The name of the MACRO that this method is to be accessed by.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 attrib ) : ;;
278
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
281
282 staticdefault ) : ;;
283
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
288
289 # If STATICDEFAULT is empty, zero is used.
290
291 predefault ) : ;;
292
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
297
298 # If PREDEFAULT is empty, zero is used.
299
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
332
333 invalid_p ) : ;;
334
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
347
348 # See also PREDEFAULT and POSTDEFAULT.
349
350 fmt ) : ;;
351
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
356 # If FMT is empty, ``%ld'' is used.
357
358 print ) : ;;
359
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
363 # If PRINT is empty, ``(long)'' is used.
364
365 print_p ) : ;;
366
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
373
374 # If PRINT_P is empty, ``1'' is always used.
375
376 description ) : ;;
377
378 # Currently unused.
379
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
383 esac
384 done
385
386
387 function_list ()
388 {
389 # See below (DOCO) for description of each field
390 cat <<EOF
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
392 #
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
394 #
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
399 #
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
407 # machine.
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
419 #
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422 #
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
429 #
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
432 #
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 # Implement PUSH_RETURN_ADDRESS, and then merge in
523 # DEPRECATED_PUSH_RETURN_ADDRESS.
524 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
525 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527 # DEPRECATED_REGISTER_SIZE can be deleted.
528 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
530 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
531 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
532 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
533 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
534 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
535 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
536 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
537 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
538 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
539 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
540 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
541 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
542 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
543 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
544 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
545 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
546 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
547 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
548 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
549 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
550 # Implement PUSH_DUMMY_CALL, then delete
551 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
552 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
553
554 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
555 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
556 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
558 # MAP a GDB RAW register number onto a simulator register number. See
559 # also include/...-sim.h.
560 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
561 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
562 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
563 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
564 # setjmp/longjmp support.
565 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
566 # NOTE: cagney/2002-11-24: This function with predicate has a valid
567 # (callable) initial value. As a consequence, even when the predicate
568 # is false, the corresponding function works. This simplifies the
569 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
570 # doesn't need to be modified.
571 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
572 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
573 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
574 #
575 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
576 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
577 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
578 #
579 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580 # For raw <-> cooked register conversions, replaced by pseudo registers.
581 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
582 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
583 # For raw <-> cooked register conversions, replaced by pseudo registers.
584 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
585 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
586 # For raw <-> cooked register conversions, replaced by pseudo registers.
587 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
588 #
589 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
590 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
591 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
592 #
593 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
594 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
595 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
596 #
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600
601 # It has been suggested that this, well actually its predecessor,
602 # should take the type/value of the function to be called and not the
603 # return type. This is left as an exercise for the reader.
604
605 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
606
607 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
608 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
609 # into RETURN_VALUE.
610
611 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
612 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
613 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
614 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
615 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
616 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
617
618 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
619 # ABI suitable for the implementation of a robust extract
620 # struct-convention return-value address method (the sparc saves the
621 # address in the callers frame). All the other cases so far examined,
622 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
623 # erreneous - the code was incorrectly assuming that the return-value
624 # address, stored in a register, was preserved across the entire
625 # function call.
626
627 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
628 # the ABIs that are still to be analyzed - perhaps this should simply
629 # be deleted. The commented out extract_returned_value_address method
630 # is provided as a starting point for the 32-bit SPARC. It, or
631 # something like it, along with changes to both infcmd.c and stack.c
632 # will be needed for that case to work. NB: It is passed the callers
633 # frame since it is only after the callee has returned that this
634 # function is used.
635
636 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
637 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
638
639 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
640 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
641 #
642 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
643 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
644 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
645 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
646 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
647 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
648 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
649 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
650 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
651 #
652 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
653 #
654 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
655 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
656 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
657 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
658 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
659 # note, per UNWIND_PC's doco, that while the two have similar
660 # interfaces they have very different underlying implementations.
661 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
662 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
663 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
664 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
665 # frame-base. Enable frame-base before frame-unwind.
666 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
667 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
668 # frame-base. Enable frame-base before frame-unwind.
669 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
670 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
671 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
672 #
673 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
674 # to frame_align and the requirement that methods such as
675 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
676 # alignment.
677 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
678 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
679 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
680 # stabs_argument_has_addr.
681 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
682 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
683 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
684 v:2:PARM_BOUNDARY:int:parm_boundary
685 #
686 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
687 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
688 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
689 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
690 # On some machines there are bits in addresses which are not really
691 # part of the address, but are used by the kernel, the hardware, etc.
692 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
693 # we get a "real" address such as one would find in a symbol table.
694 # This is used only for addresses of instructions, and even then I'm
695 # not sure it's used in all contexts. It exists to deal with there
696 # being a few stray bits in the PC which would mislead us, not as some
697 # sort of generic thing to handle alignment or segmentation (it's
698 # possible it should be in TARGET_READ_PC instead).
699 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
700 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
701 # ADDR_BITS_REMOVE.
702 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
703 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
704 # the target needs software single step. An ISA method to implement it.
705 #
706 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
707 # using the breakpoint system instead of blatting memory directly (as with rs6000).
708 #
709 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
710 # single step. If not, then implement single step using breakpoints.
711 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
712 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
713 # disassembler. Perhaphs objdump can handle it?
714 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
715 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
716
717
718 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
719 # evaluates non-zero, this is the address where the debugger will place
720 # a step-resume breakpoint to get us past the dynamic linker.
721 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
722 # For SVR4 shared libraries, each call goes through a small piece of
723 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
724 # to nonzero if we are currently stopped in one of these.
725 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
726
727 # Some systems also have trampoline code for returning from shared libs.
728 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
729
730 # Sigtramp is a routine that the kernel calls (which then calls the
731 # signal handler). On most machines it is a library routine that is
732 # linked into the executable.
733 #
734 # This macro, given a program counter value and the name of the
735 # function in which that PC resides (which can be null if the name is
736 # not known), returns nonzero if the PC and name show that we are in
737 # sigtramp.
738 #
739 # On most machines just see if the name is sigtramp (and if we have
740 # no name, assume we are not in sigtramp).
741 #
742 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
743 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
744 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
745 # own local NAME lookup.
746 #
747 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
748 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
749 # does not.
750 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
751 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
752 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
753 # A target might have problems with watchpoints as soon as the stack
754 # frame of the current function has been destroyed. This mostly happens
755 # as the first action in a funtion's epilogue. in_function_epilogue_p()
756 # is defined to return a non-zero value if either the given addr is one
757 # instruction after the stack destroying instruction up to the trailing
758 # return instruction or if we can figure out that the stack frame has
759 # already been invalidated regardless of the value of addr. Targets
760 # which don't suffer from that problem could just let this functionality
761 # untouched.
762 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
763 # Given a vector of command-line arguments, return a newly allocated
764 # string which, when passed to the create_inferior function, will be
765 # parsed (on Unix systems, by the shell) to yield the same vector.
766 # This function should call error() if the argument vector is not
767 # representable for this target or if this target does not support
768 # command-line arguments.
769 # ARGC is the number of elements in the vector.
770 # ARGV is an array of strings, one per argument.
771 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
772 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
773 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
774 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
775 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
776 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
777 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
778 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
779 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
780 # Is a register in a group
781 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
782 # Fetch the pointer to the ith function argument.
783 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
784
785 # Return the appropriate register set for a core file section with
786 # name SECT_NAME and size SECT_SIZE.
787 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
788 EOF
789 }
790
791 #
792 # The .log file
793 #
794 exec > new-gdbarch.log
795 function_list | while do_read
796 do
797 cat <<EOF
798 ${class} ${macro}(${actual})
799 ${returntype} ${function} ($formal)${attrib}
800 EOF
801 for r in ${read}
802 do
803 eval echo \"\ \ \ \ ${r}=\${${r}}\"
804 done
805 if class_is_predicate_p && fallback_default_p
806 then
807 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
808 kill $$
809 exit 1
810 fi
811 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
812 then
813 echo "Error: postdefault is useless when invalid_p=0" 1>&2
814 kill $$
815 exit 1
816 fi
817 if class_is_multiarch_p
818 then
819 if class_is_predicate_p ; then :
820 elif test "x${predefault}" = "x"
821 then
822 echo "Error: pure multi-arch function must have a predefault" 1>&2
823 kill $$
824 exit 1
825 fi
826 fi
827 echo ""
828 done
829
830 exec 1>&2
831 compare_new gdbarch.log
832
833
834 copyright ()
835 {
836 cat <<EOF
837 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
838
839 /* Dynamic architecture support for GDB, the GNU debugger.
840
841 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
842 Software Foundation, Inc.
843
844 This file is part of GDB.
845
846 This program is free software; you can redistribute it and/or modify
847 it under the terms of the GNU General Public License as published by
848 the Free Software Foundation; either version 2 of the License, or
849 (at your option) any later version.
850
851 This program is distributed in the hope that it will be useful,
852 but WITHOUT ANY WARRANTY; without even the implied warranty of
853 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
854 GNU General Public License for more details.
855
856 You should have received a copy of the GNU General Public License
857 along with this program; if not, write to the Free Software
858 Foundation, Inc., 59 Temple Place - Suite 330,
859 Boston, MA 02111-1307, USA. */
860
861 /* This file was created with the aid of \`\`gdbarch.sh''.
862
863 The Bourne shell script \`\`gdbarch.sh'' creates the files
864 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
865 against the existing \`\`gdbarch.[hc]''. Any differences found
866 being reported.
867
868 If editing this file, please also run gdbarch.sh and merge any
869 changes into that script. Conversely, when making sweeping changes
870 to this file, modifying gdbarch.sh and using its output may prove
871 easier. */
872
873 EOF
874 }
875
876 #
877 # The .h file
878 #
879
880 exec > new-gdbarch.h
881 copyright
882 cat <<EOF
883 #ifndef GDBARCH_H
884 #define GDBARCH_H
885
886 struct floatformat;
887 struct ui_file;
888 struct frame_info;
889 struct value;
890 struct objfile;
891 struct minimal_symbol;
892 struct regcache;
893 struct reggroup;
894 struct regset;
895 struct disassemble_info;
896 struct target_ops;
897
898 extern struct gdbarch *current_gdbarch;
899
900
901 /* If any of the following are defined, the target wasn't correctly
902 converted. */
903
904 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
905 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
906 #endif
907 EOF
908
909 # function typedef's
910 printf "\n"
911 printf "\n"
912 printf "/* The following are pre-initialized by GDBARCH. */\n"
913 function_list | while do_read
914 do
915 if class_is_info_p
916 then
917 printf "\n"
918 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
919 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
920 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
921 printf "#error \"Non multi-arch definition of ${macro}\"\n"
922 printf "#endif\n"
923 printf "#if !defined (${macro})\n"
924 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
925 printf "#endif\n"
926 fi
927 done
928
929 # function typedef's
930 printf "\n"
931 printf "\n"
932 printf "/* The following are initialized by the target dependent code. */\n"
933 function_list | while do_read
934 do
935 if [ -n "${comment}" ]
936 then
937 echo "${comment}" | sed \
938 -e '2 s,#,/*,' \
939 -e '3,$ s,#, ,' \
940 -e '$ s,$, */,'
941 fi
942 if class_is_multiarch_p
943 then
944 if class_is_predicate_p
945 then
946 printf "\n"
947 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
948 fi
949 else
950 if class_is_predicate_p
951 then
952 printf "\n"
953 printf "#if defined (${macro})\n"
954 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
955 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
956 printf "#if !defined (${macro}_P)\n"
957 printf "#define ${macro}_P() (1)\n"
958 printf "#endif\n"
959 printf "#endif\n"
960 printf "\n"
961 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
962 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
963 printf "#error \"Non multi-arch definition of ${macro}\"\n"
964 printf "#endif\n"
965 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
966 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
967 printf "#endif\n"
968 fi
969 fi
970 if class_is_variable_p
971 then
972 printf "\n"
973 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
974 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
975 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
976 printf "#error \"Non multi-arch definition of ${macro}\"\n"
977 printf "#endif\n"
978 printf "#if !defined (${macro})\n"
979 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
980 printf "#endif\n"
981 fi
982 if class_is_function_p
983 then
984 printf "\n"
985 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
986 then
987 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
988 elif class_is_multiarch_p
989 then
990 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
991 else
992 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
993 fi
994 if [ "x${formal}" = "xvoid" ]
995 then
996 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
997 else
998 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
999 fi
1000 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1001 if class_is_multiarch_p ; then :
1002 else
1003 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
1004 printf "#error \"Non multi-arch definition of ${macro}\"\n"
1005 printf "#endif\n"
1006 if [ "x${actual}" = "x" ]
1007 then
1008 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
1009 elif [ "x${actual}" = "x-" ]
1010 then
1011 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1012 else
1013 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1014 fi
1015 printf "#if !defined (${macro})\n"
1016 if [ "x${actual}" = "x" ]
1017 then
1018 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1019 elif [ "x${actual}" = "x-" ]
1020 then
1021 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1022 else
1023 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1024 fi
1025 printf "#endif\n"
1026 fi
1027 fi
1028 done
1029
1030 # close it off
1031 cat <<EOF
1032
1033 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1034
1035
1036 /* Mechanism for co-ordinating the selection of a specific
1037 architecture.
1038
1039 GDB targets (*-tdep.c) can register an interest in a specific
1040 architecture. Other GDB components can register a need to maintain
1041 per-architecture data.
1042
1043 The mechanisms below ensures that there is only a loose connection
1044 between the set-architecture command and the various GDB
1045 components. Each component can independently register their need
1046 to maintain architecture specific data with gdbarch.
1047
1048 Pragmatics:
1049
1050 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1051 didn't scale.
1052
1053 The more traditional mega-struct containing architecture specific
1054 data for all the various GDB components was also considered. Since
1055 GDB is built from a variable number of (fairly independent)
1056 components it was determined that the global aproach was not
1057 applicable. */
1058
1059
1060 /* Register a new architectural family with GDB.
1061
1062 Register support for the specified ARCHITECTURE with GDB. When
1063 gdbarch determines that the specified architecture has been
1064 selected, the corresponding INIT function is called.
1065
1066 --
1067
1068 The INIT function takes two parameters: INFO which contains the
1069 information available to gdbarch about the (possibly new)
1070 architecture; ARCHES which is a list of the previously created
1071 \`\`struct gdbarch'' for this architecture.
1072
1073 The INFO parameter is, as far as possible, be pre-initialized with
1074 information obtained from INFO.ABFD or the previously selected
1075 architecture.
1076
1077 The ARCHES parameter is a linked list (sorted most recently used)
1078 of all the previously created architures for this architecture
1079 family. The (possibly NULL) ARCHES->gdbarch can used to access
1080 values from the previously selected architecture for this
1081 architecture family. The global \`\`current_gdbarch'' shall not be
1082 used.
1083
1084 The INIT function shall return any of: NULL - indicating that it
1085 doesn't recognize the selected architecture; an existing \`\`struct
1086 gdbarch'' from the ARCHES list - indicating that the new
1087 architecture is just a synonym for an earlier architecture (see
1088 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1089 - that describes the selected architecture (see gdbarch_alloc()).
1090
1091 The DUMP_TDEP function shall print out all target specific values.
1092 Care should be taken to ensure that the function works in both the
1093 multi-arch and non- multi-arch cases. */
1094
1095 struct gdbarch_list
1096 {
1097 struct gdbarch *gdbarch;
1098 struct gdbarch_list *next;
1099 };
1100
1101 struct gdbarch_info
1102 {
1103 /* Use default: NULL (ZERO). */
1104 const struct bfd_arch_info *bfd_arch_info;
1105
1106 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1107 int byte_order;
1108
1109 /* Use default: NULL (ZERO). */
1110 bfd *abfd;
1111
1112 /* Use default: NULL (ZERO). */
1113 struct gdbarch_tdep_info *tdep_info;
1114
1115 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1116 enum gdb_osabi osabi;
1117 };
1118
1119 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1120 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1121
1122 /* DEPRECATED - use gdbarch_register() */
1123 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1124
1125 extern void gdbarch_register (enum bfd_architecture architecture,
1126 gdbarch_init_ftype *,
1127 gdbarch_dump_tdep_ftype *);
1128
1129
1130 /* Return a freshly allocated, NULL terminated, array of the valid
1131 architecture names. Since architectures are registered during the
1132 _initialize phase this function only returns useful information
1133 once initialization has been completed. */
1134
1135 extern const char **gdbarch_printable_names (void);
1136
1137
1138 /* Helper function. Search the list of ARCHES for a GDBARCH that
1139 matches the information provided by INFO. */
1140
1141 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1142
1143
1144 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1145 basic initialization using values obtained from the INFO andTDEP
1146 parameters. set_gdbarch_*() functions are called to complete the
1147 initialization of the object. */
1148
1149 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1150
1151
1152 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1153 It is assumed that the caller freeds the \`\`struct
1154 gdbarch_tdep''. */
1155
1156 extern void gdbarch_free (struct gdbarch *);
1157
1158
1159 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1160 obstack. The memory is freed when the corresponding architecture
1161 is also freed. */
1162
1163 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1164 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1165 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1166
1167
1168 /* Helper function. Force an update of the current architecture.
1169
1170 The actual architecture selected is determined by INFO, \`\`(gdb) set
1171 architecture'' et.al., the existing architecture and BFD's default
1172 architecture. INFO should be initialized to zero and then selected
1173 fields should be updated.
1174
1175 Returns non-zero if the update succeeds */
1176
1177 extern int gdbarch_update_p (struct gdbarch_info info);
1178
1179
1180 /* Helper function. Find an architecture matching info.
1181
1182 INFO should be initialized using gdbarch_info_init, relevant fields
1183 set, and then finished using gdbarch_info_fill.
1184
1185 Returns the corresponding architecture, or NULL if no matching
1186 architecture was found. "current_gdbarch" is not updated. */
1187
1188 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1189
1190
1191 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1192
1193 FIXME: kettenis/20031124: Of the functions that follow, only
1194 gdbarch_from_bfd is supposed to survive. The others will
1195 dissappear since in the future GDB will (hopefully) be truly
1196 multi-arch. However, for now we're still stuck with the concept of
1197 a single active architecture. */
1198
1199 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1200
1201
1202 /* Register per-architecture data-pointer.
1203
1204 Reserve space for a per-architecture data-pointer. An identifier
1205 for the reserved data-pointer is returned. That identifer should
1206 be saved in a local static variable.
1207
1208 The per-architecture data-pointer is either initialized explicitly
1209 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1210 gdbarch_data()).
1211
1212 Memory for the per-architecture data shall be allocated using
1213 gdbarch_obstack_zalloc. That memory will be deleted when the
1214 corresponding architecture object is deleted.
1215
1216 When a previously created architecture is re-selected, the
1217 per-architecture data-pointer for that previous architecture is
1218 restored. INIT() is not re-called.
1219
1220 Multiple registrarants for any architecture are allowed (and
1221 strongly encouraged). */
1222
1223 struct gdbarch_data;
1224
1225 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1226 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1227 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1228 struct gdbarch_data *data,
1229 void *pointer);
1230
1231 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1232
1233
1234
1235 /* Register per-architecture memory region.
1236
1237 Provide a memory-region swap mechanism. Per-architecture memory
1238 region are created. These memory regions are swapped whenever the
1239 architecture is changed. For a new architecture, the memory region
1240 is initialized with zero (0) and the INIT function is called.
1241
1242 Memory regions are swapped / initialized in the order that they are
1243 registered. NULL DATA and/or INIT values can be specified.
1244
1245 New code should use register_gdbarch_data(). */
1246
1247 typedef void (gdbarch_swap_ftype) (void);
1248 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1249 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1250
1251
1252
1253 /* Set the dynamic target-system-dependent parameters (architecture,
1254 byte-order, ...) using information found in the BFD */
1255
1256 extern void set_gdbarch_from_file (bfd *);
1257
1258
1259 /* Initialize the current architecture to the "first" one we find on
1260 our list. */
1261
1262 extern void initialize_current_architecture (void);
1263
1264 /* gdbarch trace variable */
1265 extern int gdbarch_debug;
1266
1267 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1268
1269 #endif
1270 EOF
1271 exec 1>&2
1272 #../move-if-change new-gdbarch.h gdbarch.h
1273 compare_new gdbarch.h
1274
1275
1276 #
1277 # C file
1278 #
1279
1280 exec > new-gdbarch.c
1281 copyright
1282 cat <<EOF
1283
1284 #include "defs.h"
1285 #include "arch-utils.h"
1286
1287 #include "gdbcmd.h"
1288 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1289 #include "symcat.h"
1290
1291 #include "floatformat.h"
1292
1293 #include "gdb_assert.h"
1294 #include "gdb_string.h"
1295 #include "gdb-events.h"
1296 #include "reggroups.h"
1297 #include "osabi.h"
1298 #include "symfile.h" /* For entry_point_address. */
1299 #include "gdb_obstack.h"
1300
1301 /* Static function declarations */
1302
1303 static void alloc_gdbarch_data (struct gdbarch *);
1304
1305 /* Non-zero if we want to trace architecture code. */
1306
1307 #ifndef GDBARCH_DEBUG
1308 #define GDBARCH_DEBUG 0
1309 #endif
1310 int gdbarch_debug = GDBARCH_DEBUG;
1311
1312 EOF
1313
1314 # gdbarch open the gdbarch object
1315 printf "\n"
1316 printf "/* Maintain the struct gdbarch object */\n"
1317 printf "\n"
1318 printf "struct gdbarch\n"
1319 printf "{\n"
1320 printf " /* Has this architecture been fully initialized? */\n"
1321 printf " int initialized_p;\n"
1322 printf "\n"
1323 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1324 printf " struct obstack *obstack;\n"
1325 printf "\n"
1326 printf " /* basic architectural information */\n"
1327 function_list | while do_read
1328 do
1329 if class_is_info_p
1330 then
1331 printf " ${returntype} ${function};\n"
1332 fi
1333 done
1334 printf "\n"
1335 printf " /* target specific vector. */\n"
1336 printf " struct gdbarch_tdep *tdep;\n"
1337 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1338 printf "\n"
1339 printf " /* per-architecture data-pointers */\n"
1340 printf " unsigned nr_data;\n"
1341 printf " void **data;\n"
1342 printf "\n"
1343 printf " /* per-architecture swap-regions */\n"
1344 printf " struct gdbarch_swap *swap;\n"
1345 printf "\n"
1346 cat <<EOF
1347 /* Multi-arch values.
1348
1349 When extending this structure you must:
1350
1351 Add the field below.
1352
1353 Declare set/get functions and define the corresponding
1354 macro in gdbarch.h.
1355
1356 gdbarch_alloc(): If zero/NULL is not a suitable default,
1357 initialize the new field.
1358
1359 verify_gdbarch(): Confirm that the target updated the field
1360 correctly.
1361
1362 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1363 field is dumped out
1364
1365 \`\`startup_gdbarch()'': Append an initial value to the static
1366 variable (base values on the host's c-type system).
1367
1368 get_gdbarch(): Implement the set/get functions (probably using
1369 the macro's as shortcuts).
1370
1371 */
1372
1373 EOF
1374 function_list | while do_read
1375 do
1376 if class_is_variable_p
1377 then
1378 printf " ${returntype} ${function};\n"
1379 elif class_is_function_p
1380 then
1381 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1382 fi
1383 done
1384 printf "};\n"
1385
1386 # A pre-initialized vector
1387 printf "\n"
1388 printf "\n"
1389 cat <<EOF
1390 /* The default architecture uses host values (for want of a better
1391 choice). */
1392 EOF
1393 printf "\n"
1394 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1395 printf "\n"
1396 printf "struct gdbarch startup_gdbarch =\n"
1397 printf "{\n"
1398 printf " 1, /* Always initialized. */\n"
1399 printf " NULL, /* The obstack. */\n"
1400 printf " /* basic architecture information */\n"
1401 function_list | while do_read
1402 do
1403 if class_is_info_p
1404 then
1405 printf " ${staticdefault}, /* ${function} */\n"
1406 fi
1407 done
1408 cat <<EOF
1409 /* target specific vector and its dump routine */
1410 NULL, NULL,
1411 /*per-architecture data-pointers and swap regions */
1412 0, NULL, NULL,
1413 /* Multi-arch values */
1414 EOF
1415 function_list | while do_read
1416 do
1417 if class_is_function_p || class_is_variable_p
1418 then
1419 printf " ${staticdefault}, /* ${function} */\n"
1420 fi
1421 done
1422 cat <<EOF
1423 /* startup_gdbarch() */
1424 };
1425
1426 struct gdbarch *current_gdbarch = &startup_gdbarch;
1427 EOF
1428
1429 # Create a new gdbarch struct
1430 cat <<EOF
1431
1432 /* Create a new \`\`struct gdbarch'' based on information provided by
1433 \`\`struct gdbarch_info''. */
1434 EOF
1435 printf "\n"
1436 cat <<EOF
1437 struct gdbarch *
1438 gdbarch_alloc (const struct gdbarch_info *info,
1439 struct gdbarch_tdep *tdep)
1440 {
1441 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1442 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1443 the current local architecture and not the previous global
1444 architecture. This ensures that the new architectures initial
1445 values are not influenced by the previous architecture. Once
1446 everything is parameterised with gdbarch, this will go away. */
1447 struct gdbarch *current_gdbarch;
1448
1449 /* Create an obstack for allocating all the per-architecture memory,
1450 then use that to allocate the architecture vector. */
1451 struct obstack *obstack = XMALLOC (struct obstack);
1452 obstack_init (obstack);
1453 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1454 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1455 current_gdbarch->obstack = obstack;
1456
1457 alloc_gdbarch_data (current_gdbarch);
1458
1459 current_gdbarch->tdep = tdep;
1460 EOF
1461 printf "\n"
1462 function_list | while do_read
1463 do
1464 if class_is_info_p
1465 then
1466 printf " current_gdbarch->${function} = info->${function};\n"
1467 fi
1468 done
1469 printf "\n"
1470 printf " /* Force the explicit initialization of these. */\n"
1471 function_list | while do_read
1472 do
1473 if class_is_function_p || class_is_variable_p
1474 then
1475 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1476 then
1477 printf " current_gdbarch->${function} = ${predefault};\n"
1478 fi
1479 fi
1480 done
1481 cat <<EOF
1482 /* gdbarch_alloc() */
1483
1484 return current_gdbarch;
1485 }
1486 EOF
1487
1488 # Free a gdbarch struct.
1489 printf "\n"
1490 printf "\n"
1491 cat <<EOF
1492 /* Allocate extra space using the per-architecture obstack. */
1493
1494 void *
1495 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1496 {
1497 void *data = obstack_alloc (arch->obstack, size);
1498 memset (data, 0, size);
1499 return data;
1500 }
1501
1502
1503 /* Free a gdbarch struct. This should never happen in normal
1504 operation --- once you've created a gdbarch, you keep it around.
1505 However, if an architecture's init function encounters an error
1506 building the structure, it may need to clean up a partially
1507 constructed gdbarch. */
1508
1509 void
1510 gdbarch_free (struct gdbarch *arch)
1511 {
1512 struct obstack *obstack;
1513 gdb_assert (arch != NULL);
1514 gdb_assert (!arch->initialized_p);
1515 obstack = arch->obstack;
1516 obstack_free (obstack, 0); /* Includes the ARCH. */
1517 xfree (obstack);
1518 }
1519 EOF
1520
1521 # verify a new architecture
1522 cat <<EOF
1523
1524
1525 /* Ensure that all values in a GDBARCH are reasonable. */
1526
1527 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1528 just happens to match the global variable \`\`current_gdbarch''. That
1529 way macros refering to that variable get the local and not the global
1530 version - ulgh. Once everything is parameterised with gdbarch, this
1531 will go away. */
1532
1533 static void
1534 verify_gdbarch (struct gdbarch *current_gdbarch)
1535 {
1536 struct ui_file *log;
1537 struct cleanup *cleanups;
1538 long dummy;
1539 char *buf;
1540 log = mem_fileopen ();
1541 cleanups = make_cleanup_ui_file_delete (log);
1542 /* fundamental */
1543 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1544 fprintf_unfiltered (log, "\n\tbyte-order");
1545 if (current_gdbarch->bfd_arch_info == NULL)
1546 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1547 /* Check those that need to be defined for the given multi-arch level. */
1548 EOF
1549 function_list | while do_read
1550 do
1551 if class_is_function_p || class_is_variable_p
1552 then
1553 if [ "x${invalid_p}" = "x0" ]
1554 then
1555 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1556 elif class_is_predicate_p
1557 then
1558 printf " /* Skip verify of ${function}, has predicate */\n"
1559 # FIXME: See do_read for potential simplification
1560 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1561 then
1562 printf " if (${invalid_p})\n"
1563 printf " current_gdbarch->${function} = ${postdefault};\n"
1564 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1565 then
1566 printf " if (current_gdbarch->${function} == ${predefault})\n"
1567 printf " current_gdbarch->${function} = ${postdefault};\n"
1568 elif [ -n "${postdefault}" ]
1569 then
1570 printf " if (current_gdbarch->${function} == 0)\n"
1571 printf " current_gdbarch->${function} = ${postdefault};\n"
1572 elif [ -n "${invalid_p}" ]
1573 then
1574 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1575 printf " && (${invalid_p}))\n"
1576 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1577 elif [ -n "${predefault}" ]
1578 then
1579 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1580 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1581 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1582 fi
1583 fi
1584 done
1585 cat <<EOF
1586 buf = ui_file_xstrdup (log, &dummy);
1587 make_cleanup (xfree, buf);
1588 if (strlen (buf) > 0)
1589 internal_error (__FILE__, __LINE__,
1590 "verify_gdbarch: the following are invalid ...%s",
1591 buf);
1592 do_cleanups (cleanups);
1593 }
1594 EOF
1595
1596 # dump the structure
1597 printf "\n"
1598 printf "\n"
1599 cat <<EOF
1600 /* Print out the details of the current architecture. */
1601
1602 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1603 just happens to match the global variable \`\`current_gdbarch''. That
1604 way macros refering to that variable get the local and not the global
1605 version - ulgh. Once everything is parameterised with gdbarch, this
1606 will go away. */
1607
1608 void
1609 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1610 {
1611 fprintf_unfiltered (file,
1612 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1613 GDB_MULTI_ARCH);
1614 EOF
1615 function_list | sort -t: -k 3 | while do_read
1616 do
1617 # First the predicate
1618 if class_is_predicate_p
1619 then
1620 if class_is_multiarch_p
1621 then
1622 printf " fprintf_unfiltered (file,\n"
1623 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1624 printf " gdbarch_${function}_p (current_gdbarch));\n"
1625 else
1626 printf "#ifdef ${macro}_P\n"
1627 printf " fprintf_unfiltered (file,\n"
1628 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1629 printf " \"${macro}_P()\",\n"
1630 printf " XSTRING (${macro}_P ()));\n"
1631 printf " fprintf_unfiltered (file,\n"
1632 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1633 printf " ${macro}_P ());\n"
1634 printf "#endif\n"
1635 fi
1636 fi
1637 # multiarch functions don't have macros.
1638 if class_is_multiarch_p
1639 then
1640 printf " fprintf_unfiltered (file,\n"
1641 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1642 printf " (long) current_gdbarch->${function});\n"
1643 continue
1644 fi
1645 # Print the macro definition.
1646 printf "#ifdef ${macro}\n"
1647 if class_is_function_p
1648 then
1649 printf " fprintf_unfiltered (file,\n"
1650 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1651 printf " \"${macro}(${actual})\",\n"
1652 printf " XSTRING (${macro} (${actual})));\n"
1653 else
1654 printf " fprintf_unfiltered (file,\n"
1655 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1656 printf " XSTRING (${macro}));\n"
1657 fi
1658 if [ "x${print_p}" = "x()" ]
1659 then
1660 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1661 elif [ "x${print_p}" = "x0" ]
1662 then
1663 printf " /* skip print of ${macro}, print_p == 0. */\n"
1664 elif [ -n "${print_p}" ]
1665 then
1666 printf " if (${print_p})\n"
1667 printf " fprintf_unfiltered (file,\n"
1668 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1669 printf " ${print});\n"
1670 elif class_is_function_p
1671 then
1672 printf " fprintf_unfiltered (file,\n"
1673 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1674 printf " (long) current_gdbarch->${function}\n"
1675 printf " /*${macro} ()*/);\n"
1676 else
1677 printf " fprintf_unfiltered (file,\n"
1678 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1679 printf " ${print});\n"
1680 fi
1681 printf "#endif\n"
1682 done
1683 cat <<EOF
1684 if (current_gdbarch->dump_tdep != NULL)
1685 current_gdbarch->dump_tdep (current_gdbarch, file);
1686 }
1687 EOF
1688
1689
1690 # GET/SET
1691 printf "\n"
1692 cat <<EOF
1693 struct gdbarch_tdep *
1694 gdbarch_tdep (struct gdbarch *gdbarch)
1695 {
1696 if (gdbarch_debug >= 2)
1697 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1698 return gdbarch->tdep;
1699 }
1700 EOF
1701 printf "\n"
1702 function_list | while do_read
1703 do
1704 if class_is_predicate_p
1705 then
1706 printf "\n"
1707 printf "int\n"
1708 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1709 printf "{\n"
1710 printf " gdb_assert (gdbarch != NULL);\n"
1711 printf " return ${predicate};\n"
1712 printf "}\n"
1713 fi
1714 if class_is_function_p
1715 then
1716 printf "\n"
1717 printf "${returntype}\n"
1718 if [ "x${formal}" = "xvoid" ]
1719 then
1720 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1721 else
1722 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1723 fi
1724 printf "{\n"
1725 printf " gdb_assert (gdbarch != NULL);\n"
1726 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1727 if class_is_predicate_p && test -n "${predefault}"
1728 then
1729 # Allow a call to a function with a predicate.
1730 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1731 fi
1732 printf " if (gdbarch_debug >= 2)\n"
1733 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1734 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1735 then
1736 if class_is_multiarch_p
1737 then
1738 params="gdbarch"
1739 else
1740 params=""
1741 fi
1742 else
1743 if class_is_multiarch_p
1744 then
1745 params="gdbarch, ${actual}"
1746 else
1747 params="${actual}"
1748 fi
1749 fi
1750 if [ "x${returntype}" = "xvoid" ]
1751 then
1752 printf " gdbarch->${function} (${params});\n"
1753 else
1754 printf " return gdbarch->${function} (${params});\n"
1755 fi
1756 printf "}\n"
1757 printf "\n"
1758 printf "void\n"
1759 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1760 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1761 printf "{\n"
1762 printf " gdbarch->${function} = ${function};\n"
1763 printf "}\n"
1764 elif class_is_variable_p
1765 then
1766 printf "\n"
1767 printf "${returntype}\n"
1768 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1769 printf "{\n"
1770 printf " gdb_assert (gdbarch != NULL);\n"
1771 if [ "x${invalid_p}" = "x0" ]
1772 then
1773 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1774 elif [ -n "${invalid_p}" ]
1775 then
1776 printf " /* Check variable is valid. */\n"
1777 printf " gdb_assert (!(${invalid_p}));\n"
1778 elif [ -n "${predefault}" ]
1779 then
1780 printf " /* Check variable changed from pre-default. */\n"
1781 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1782 fi
1783 printf " if (gdbarch_debug >= 2)\n"
1784 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1785 printf " return gdbarch->${function};\n"
1786 printf "}\n"
1787 printf "\n"
1788 printf "void\n"
1789 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1790 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1791 printf "{\n"
1792 printf " gdbarch->${function} = ${function};\n"
1793 printf "}\n"
1794 elif class_is_info_p
1795 then
1796 printf "\n"
1797 printf "${returntype}\n"
1798 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1799 printf "{\n"
1800 printf " gdb_assert (gdbarch != NULL);\n"
1801 printf " if (gdbarch_debug >= 2)\n"
1802 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1803 printf " return gdbarch->${function};\n"
1804 printf "}\n"
1805 fi
1806 done
1807
1808 # All the trailing guff
1809 cat <<EOF
1810
1811
1812 /* Keep a registry of per-architecture data-pointers required by GDB
1813 modules. */
1814
1815 struct gdbarch_data
1816 {
1817 unsigned index;
1818 int init_p;
1819 gdbarch_data_init_ftype *init;
1820 };
1821
1822 struct gdbarch_data_registration
1823 {
1824 struct gdbarch_data *data;
1825 struct gdbarch_data_registration *next;
1826 };
1827
1828 struct gdbarch_data_registry
1829 {
1830 unsigned nr;
1831 struct gdbarch_data_registration *registrations;
1832 };
1833
1834 struct gdbarch_data_registry gdbarch_data_registry =
1835 {
1836 0, NULL,
1837 };
1838
1839 struct gdbarch_data *
1840 register_gdbarch_data (gdbarch_data_init_ftype *init)
1841 {
1842 struct gdbarch_data_registration **curr;
1843 /* Append the new registraration. */
1844 for (curr = &gdbarch_data_registry.registrations;
1845 (*curr) != NULL;
1846 curr = &(*curr)->next);
1847 (*curr) = XMALLOC (struct gdbarch_data_registration);
1848 (*curr)->next = NULL;
1849 (*curr)->data = XMALLOC (struct gdbarch_data);
1850 (*curr)->data->index = gdbarch_data_registry.nr++;
1851 (*curr)->data->init = init;
1852 (*curr)->data->init_p = 1;
1853 return (*curr)->data;
1854 }
1855
1856
1857 /* Create/delete the gdbarch data vector. */
1858
1859 static void
1860 alloc_gdbarch_data (struct gdbarch *gdbarch)
1861 {
1862 gdb_assert (gdbarch->data == NULL);
1863 gdbarch->nr_data = gdbarch_data_registry.nr;
1864 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1865 }
1866
1867 /* Initialize the current value of the specified per-architecture
1868 data-pointer. */
1869
1870 void
1871 set_gdbarch_data (struct gdbarch *gdbarch,
1872 struct gdbarch_data *data,
1873 void *pointer)
1874 {
1875 gdb_assert (data->index < gdbarch->nr_data);
1876 gdb_assert (gdbarch->data[data->index] == NULL);
1877 gdbarch->data[data->index] = pointer;
1878 }
1879
1880 /* Return the current value of the specified per-architecture
1881 data-pointer. */
1882
1883 void *
1884 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1885 {
1886 gdb_assert (data->index < gdbarch->nr_data);
1887 /* The data-pointer isn't initialized, call init() to get a value but
1888 only if the architecture initializaiton has completed. Otherwise
1889 punt - hope that the caller knows what they are doing. */
1890 if (gdbarch->data[data->index] == NULL
1891 && gdbarch->initialized_p)
1892 {
1893 /* Be careful to detect an initialization cycle. */
1894 gdb_assert (data->init_p);
1895 data->init_p = 0;
1896 gdb_assert (data->init != NULL);
1897 gdbarch->data[data->index] = data->init (gdbarch);
1898 data->init_p = 1;
1899 gdb_assert (gdbarch->data[data->index] != NULL);
1900 }
1901 return gdbarch->data[data->index];
1902 }
1903
1904
1905
1906 /* Keep a registry of swapped data required by GDB modules. */
1907
1908 struct gdbarch_swap
1909 {
1910 void *swap;
1911 struct gdbarch_swap_registration *source;
1912 struct gdbarch_swap *next;
1913 };
1914
1915 struct gdbarch_swap_registration
1916 {
1917 void *data;
1918 unsigned long sizeof_data;
1919 gdbarch_swap_ftype *init;
1920 struct gdbarch_swap_registration *next;
1921 };
1922
1923 struct gdbarch_swap_registry
1924 {
1925 int nr;
1926 struct gdbarch_swap_registration *registrations;
1927 };
1928
1929 struct gdbarch_swap_registry gdbarch_swap_registry =
1930 {
1931 0, NULL,
1932 };
1933
1934 void
1935 register_gdbarch_swap (void *data,
1936 unsigned long sizeof_data,
1937 gdbarch_swap_ftype *init)
1938 {
1939 struct gdbarch_swap_registration **rego;
1940 for (rego = &gdbarch_swap_registry.registrations;
1941 (*rego) != NULL;
1942 rego = &(*rego)->next);
1943 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1944 (*rego)->next = NULL;
1945 (*rego)->init = init;
1946 (*rego)->data = data;
1947 (*rego)->sizeof_data = sizeof_data;
1948 }
1949
1950 static void
1951 current_gdbarch_swap_init_hack (void)
1952 {
1953 struct gdbarch_swap_registration *rego;
1954 struct gdbarch_swap **curr = &current_gdbarch->swap;
1955 for (rego = gdbarch_swap_registry.registrations;
1956 rego != NULL;
1957 rego = rego->next)
1958 {
1959 if (rego->data != NULL)
1960 {
1961 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1962 struct gdbarch_swap);
1963 (*curr)->source = rego;
1964 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1965 rego->sizeof_data);
1966 (*curr)->next = NULL;
1967 curr = &(*curr)->next;
1968 }
1969 if (rego->init != NULL)
1970 rego->init ();
1971 }
1972 }
1973
1974 static struct gdbarch *
1975 current_gdbarch_swap_out_hack (void)
1976 {
1977 struct gdbarch *old_gdbarch = current_gdbarch;
1978 struct gdbarch_swap *curr;
1979
1980 gdb_assert (old_gdbarch != NULL);
1981 for (curr = old_gdbarch->swap;
1982 curr != NULL;
1983 curr = curr->next)
1984 {
1985 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1986 memset (curr->source->data, 0, curr->source->sizeof_data);
1987 }
1988 current_gdbarch = NULL;
1989 return old_gdbarch;
1990 }
1991
1992 static void
1993 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1994 {
1995 struct gdbarch_swap *curr;
1996
1997 gdb_assert (current_gdbarch == NULL);
1998 for (curr = new_gdbarch->swap;
1999 curr != NULL;
2000 curr = curr->next)
2001 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2002 current_gdbarch = new_gdbarch;
2003 }
2004
2005
2006 /* Keep a registry of the architectures known by GDB. */
2007
2008 struct gdbarch_registration
2009 {
2010 enum bfd_architecture bfd_architecture;
2011 gdbarch_init_ftype *init;
2012 gdbarch_dump_tdep_ftype *dump_tdep;
2013 struct gdbarch_list *arches;
2014 struct gdbarch_registration *next;
2015 };
2016
2017 static struct gdbarch_registration *gdbarch_registry = NULL;
2018
2019 static void
2020 append_name (const char ***buf, int *nr, const char *name)
2021 {
2022 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2023 (*buf)[*nr] = name;
2024 *nr += 1;
2025 }
2026
2027 const char **
2028 gdbarch_printable_names (void)
2029 {
2030 /* Accumulate a list of names based on the registed list of
2031 architectures. */
2032 enum bfd_architecture a;
2033 int nr_arches = 0;
2034 const char **arches = NULL;
2035 struct gdbarch_registration *rego;
2036 for (rego = gdbarch_registry;
2037 rego != NULL;
2038 rego = rego->next)
2039 {
2040 const struct bfd_arch_info *ap;
2041 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2042 if (ap == NULL)
2043 internal_error (__FILE__, __LINE__,
2044 "gdbarch_architecture_names: multi-arch unknown");
2045 do
2046 {
2047 append_name (&arches, &nr_arches, ap->printable_name);
2048 ap = ap->next;
2049 }
2050 while (ap != NULL);
2051 }
2052 append_name (&arches, &nr_arches, NULL);
2053 return arches;
2054 }
2055
2056
2057 void
2058 gdbarch_register (enum bfd_architecture bfd_architecture,
2059 gdbarch_init_ftype *init,
2060 gdbarch_dump_tdep_ftype *dump_tdep)
2061 {
2062 struct gdbarch_registration **curr;
2063 const struct bfd_arch_info *bfd_arch_info;
2064 /* Check that BFD recognizes this architecture */
2065 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2066 if (bfd_arch_info == NULL)
2067 {
2068 internal_error (__FILE__, __LINE__,
2069 "gdbarch: Attempt to register unknown architecture (%d)",
2070 bfd_architecture);
2071 }
2072 /* Check that we haven't seen this architecture before */
2073 for (curr = &gdbarch_registry;
2074 (*curr) != NULL;
2075 curr = &(*curr)->next)
2076 {
2077 if (bfd_architecture == (*curr)->bfd_architecture)
2078 internal_error (__FILE__, __LINE__,
2079 "gdbarch: Duplicate registraration of architecture (%s)",
2080 bfd_arch_info->printable_name);
2081 }
2082 /* log it */
2083 if (gdbarch_debug)
2084 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2085 bfd_arch_info->printable_name,
2086 (long) init);
2087 /* Append it */
2088 (*curr) = XMALLOC (struct gdbarch_registration);
2089 (*curr)->bfd_architecture = bfd_architecture;
2090 (*curr)->init = init;
2091 (*curr)->dump_tdep = dump_tdep;
2092 (*curr)->arches = NULL;
2093 (*curr)->next = NULL;
2094 }
2095
2096 void
2097 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2098 gdbarch_init_ftype *init)
2099 {
2100 gdbarch_register (bfd_architecture, init, NULL);
2101 }
2102
2103
2104 /* Look for an architecture using gdbarch_info. Base search on only
2105 BFD_ARCH_INFO and BYTE_ORDER. */
2106
2107 struct gdbarch_list *
2108 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2109 const struct gdbarch_info *info)
2110 {
2111 for (; arches != NULL; arches = arches->next)
2112 {
2113 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2114 continue;
2115 if (info->byte_order != arches->gdbarch->byte_order)
2116 continue;
2117 if (info->osabi != arches->gdbarch->osabi)
2118 continue;
2119 return arches;
2120 }
2121 return NULL;
2122 }
2123
2124
2125 /* Find an architecture that matches the specified INFO. Create a new
2126 architecture if needed. Return that new architecture. Assumes
2127 that there is no current architecture. */
2128
2129 static struct gdbarch *
2130 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2131 {
2132 struct gdbarch *new_gdbarch;
2133 struct gdbarch_registration *rego;
2134
2135 /* The existing architecture has been swapped out - all this code
2136 works from a clean slate. */
2137 gdb_assert (current_gdbarch == NULL);
2138
2139 /* Fill in missing parts of the INFO struct using a number of
2140 sources: "set ..."; INFOabfd supplied; and the existing
2141 architecture. */
2142 gdbarch_info_fill (old_gdbarch, &info);
2143
2144 /* Must have found some sort of architecture. */
2145 gdb_assert (info.bfd_arch_info != NULL);
2146
2147 if (gdbarch_debug)
2148 {
2149 fprintf_unfiltered (gdb_stdlog,
2150 "find_arch_by_info: info.bfd_arch_info %s\n",
2151 (info.bfd_arch_info != NULL
2152 ? info.bfd_arch_info->printable_name
2153 : "(null)"));
2154 fprintf_unfiltered (gdb_stdlog,
2155 "find_arch_by_info: info.byte_order %d (%s)\n",
2156 info.byte_order,
2157 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2158 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2159 : "default"));
2160 fprintf_unfiltered (gdb_stdlog,
2161 "find_arch_by_info: info.osabi %d (%s)\n",
2162 info.osabi, gdbarch_osabi_name (info.osabi));
2163 fprintf_unfiltered (gdb_stdlog,
2164 "find_arch_by_info: info.abfd 0x%lx\n",
2165 (long) info.abfd);
2166 fprintf_unfiltered (gdb_stdlog,
2167 "find_arch_by_info: info.tdep_info 0x%lx\n",
2168 (long) info.tdep_info);
2169 }
2170
2171 /* Find the tdep code that knows about this architecture. */
2172 for (rego = gdbarch_registry;
2173 rego != NULL;
2174 rego = rego->next)
2175 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2176 break;
2177 if (rego == NULL)
2178 {
2179 if (gdbarch_debug)
2180 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2181 "No matching architecture\n");
2182 return 0;
2183 }
2184
2185 /* Ask the tdep code for an architecture that matches "info". */
2186 new_gdbarch = rego->init (info, rego->arches);
2187
2188 /* Did the tdep code like it? No. Reject the change and revert to
2189 the old architecture. */
2190 if (new_gdbarch == NULL)
2191 {
2192 if (gdbarch_debug)
2193 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2194 "Target rejected architecture\n");
2195 return NULL;
2196 }
2197
2198 /* Is this a pre-existing architecture (as determined by already
2199 being initialized)? Move it to the front of the architecture
2200 list (keeping the list sorted Most Recently Used). */
2201 if (new_gdbarch->initialized_p)
2202 {
2203 struct gdbarch_list **list;
2204 struct gdbarch_list *this;
2205 if (gdbarch_debug)
2206 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2207 "Previous architecture 0x%08lx (%s) selected\n",
2208 (long) new_gdbarch,
2209 new_gdbarch->bfd_arch_info->printable_name);
2210 /* Find the existing arch in the list. */
2211 for (list = &rego->arches;
2212 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2213 list = &(*list)->next);
2214 /* It had better be in the list of architectures. */
2215 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2216 /* Unlink THIS. */
2217 this = (*list);
2218 (*list) = this->next;
2219 /* Insert THIS at the front. */
2220 this->next = rego->arches;
2221 rego->arches = this;
2222 /* Return it. */
2223 return new_gdbarch;
2224 }
2225
2226 /* It's a new architecture. */
2227 if (gdbarch_debug)
2228 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2229 "New architecture 0x%08lx (%s) selected\n",
2230 (long) new_gdbarch,
2231 new_gdbarch->bfd_arch_info->printable_name);
2232
2233 /* Insert the new architecture into the front of the architecture
2234 list (keep the list sorted Most Recently Used). */
2235 {
2236 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2237 this->next = rego->arches;
2238 this->gdbarch = new_gdbarch;
2239 rego->arches = this;
2240 }
2241
2242 /* Check that the newly installed architecture is valid. Plug in
2243 any post init values. */
2244 new_gdbarch->dump_tdep = rego->dump_tdep;
2245 verify_gdbarch (new_gdbarch);
2246 new_gdbarch->initialized_p = 1;
2247
2248 /* Initialize any per-architecture swap areas. This phase requires
2249 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2250 swap the entire architecture out. */
2251 current_gdbarch = new_gdbarch;
2252 current_gdbarch_swap_init_hack ();
2253 current_gdbarch_swap_out_hack ();
2254
2255 if (gdbarch_debug)
2256 gdbarch_dump (new_gdbarch, gdb_stdlog);
2257
2258 return new_gdbarch;
2259 }
2260
2261 struct gdbarch *
2262 gdbarch_find_by_info (struct gdbarch_info info)
2263 {
2264 /* Save the previously selected architecture, setting the global to
2265 NULL. This stops things like gdbarch->init() trying to use the
2266 previous architecture's configuration. The previous architecture
2267 may not even be of the same architecture family. The most recent
2268 architecture of the same family is found at the head of the
2269 rego->arches list. */
2270 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2271
2272 /* Find the specified architecture. */
2273 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2274
2275 /* Restore the existing architecture. */
2276 gdb_assert (current_gdbarch == NULL);
2277 current_gdbarch_swap_in_hack (old_gdbarch);
2278
2279 return new_gdbarch;
2280 }
2281
2282 /* Make the specified architecture current, swapping the existing one
2283 out. */
2284
2285 void
2286 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2287 {
2288 gdb_assert (new_gdbarch != NULL);
2289 gdb_assert (current_gdbarch != NULL);
2290 gdb_assert (new_gdbarch->initialized_p);
2291 current_gdbarch_swap_out_hack ();
2292 current_gdbarch_swap_in_hack (new_gdbarch);
2293 architecture_changed_event ();
2294 }
2295
2296 extern void _initialize_gdbarch (void);
2297
2298 void
2299 _initialize_gdbarch (void)
2300 {
2301 struct cmd_list_element *c;
2302
2303 add_show_from_set (add_set_cmd ("arch",
2304 class_maintenance,
2305 var_zinteger,
2306 (char *)&gdbarch_debug,
2307 "Set architecture debugging.\\n\\
2308 When non-zero, architecture debugging is enabled.", &setdebuglist),
2309 &showdebuglist);
2310 c = add_set_cmd ("archdebug",
2311 class_maintenance,
2312 var_zinteger,
2313 (char *)&gdbarch_debug,
2314 "Set architecture debugging.\\n\\
2315 When non-zero, architecture debugging is enabled.", &setlist);
2316
2317 deprecate_cmd (c, "set debug arch");
2318 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2319 }
2320 EOF
2321
2322 # close things off
2323 exec 1>&2
2324 #../move-if-change new-gdbarch.c gdbarch.c
2325 compare_new gdbarch.c
This page took 0.083264 seconds and 5 git commands to generate.