3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2016 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL
=C
; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-
${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS
='' read line
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev
/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line
="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS
="${IFS}" ; IFS
="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\
${${r}}\" = \"\
\"
96 m
) staticdefault
="${predefault}" ;;
97 M
) staticdefault
="0" ;;
98 * ) test "${staticdefault}" || staticdefault
=0 ;;
103 case "${invalid_p}" in
105 if test -n "${predefault}"
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate
="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
111 predicate
="gdbarch->${function} != 0"
112 elif class_is_function_p
114 predicate
="gdbarch->${function} != NULL"
118 echo "Predicate function ${function} with invalid_p." 1>&2
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
132 if [ -n "${postdefault}" ]
134 fallbackdefault
="${postdefault}"
135 elif [ -n "${predefault}" ]
137 fallbackdefault
="${predefault}"
142 #NOT YET: See gdbarch.log for basic verification of
157 fallback_default_p
()
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 ||
[ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 class_is_variable_p
()
171 class_is_function_p
()
174 *f
* |
*F
* |
*m
* |
*M
* ) true
;;
179 class_is_multiarch_p
()
187 class_is_predicate_p
()
190 *F
* |
*V
* |
*M
* ) true
;;
204 # dump out/verify the doco
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
229 # For functions, the return type; for variables, the data type
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
257 # If STATICDEFAULT is empty, zero is used.
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
266 # If PREDEFAULT is empty, zero is used.
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
272 # A zero PREDEFAULT function will force the fallback to call
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
284 # If POSTDEFAULT is empty, no post update is performed.
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
316 # See also PREDEFAULT and POSTDEFAULT.
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
326 garbage_at_eol
) : ;;
328 # Catches stray fields.
331 echo "Bad field ${field}"
339 # See below (DOCO) for description of each field
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
386 # Returns the floating-point format to be used for values of length LENGTH.
387 # NAME, if non-NULL, is the type name, which may be used to distinguish
388 # different target formats of the same length.
389 m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0
391 # For most targets, a pointer on the target and its representation as an
392 # address in GDB have the same size and "look the same". For such a
393 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
394 # / addr_bit will be set from it.
396 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
397 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
398 # gdbarch_address_to_pointer as well.
400 # ptr_bit is the size of a pointer on the target
401 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
402 # addr_bit is the size of a target address as represented in gdb
403 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
405 # dwarf2_addr_size is the target address size as used in the Dwarf debug
406 # info. For .debug_frame FDEs, this is supposed to be the target address
407 # size from the associated CU header, and which is equivalent to the
408 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
409 # Unfortunately there is no good way to determine this value. Therefore
410 # dwarf2_addr_size simply defaults to the target pointer size.
412 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
413 # defined using the target's pointer size so far.
415 # Note that dwarf2_addr_size only needs to be redefined by a target if the
416 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
417 # and if Dwarf versions < 4 need to be supported.
418 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
420 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
421 v:int:char_signed:::1:-1:1
423 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
424 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
425 # Function for getting target's idea of a frame pointer. FIXME: GDB's
426 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
430 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
431 # Read a register into a new struct value. If the register is wholly
432 # or partly unavailable, this should call mark_value_bytes_unavailable
433 # as appropriate. If this is defined, then pseudo_register_read will
435 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
436 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
438 v:int:num_regs:::0:-1
439 # This macro gives the number of pseudo-registers that live in the
440 # register namespace but do not get fetched or stored on the target.
441 # These pseudo-registers may be aliases for other registers,
442 # combinations of other registers, or they may be computed by GDB.
443 v:int:num_pseudo_regs:::0:0::0
445 # Assemble agent expression bytecode to collect pseudo-register REG.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
449 # Assemble agent expression bytecode to push the value of pseudo-register
450 # REG on the interpreter stack.
451 # Return -1 if something goes wrong, 0 otherwise.
452 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
454 # Some targets/architectures can do extra processing/display of
455 # segmentation faults. E.g., Intel MPX boundary faults.
456 # Call the architecture dependent function to handle the fault.
457 # UIOUT is the output stream where the handler will place information.
458 M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
460 # GDB's standard (or well known) register numbers. These can map onto
461 # a real register or a pseudo (computed) register or not be defined at
463 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
464 v:int:sp_regnum:::-1:-1::0
465 v:int:pc_regnum:::-1:-1::0
466 v:int:ps_regnum:::-1:-1::0
467 v:int:fp0_regnum:::0:-1::0
468 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
469 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
470 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
471 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
472 # Convert from an sdb register number to an internal gdb register number.
473 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
474 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
475 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
476 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
477 m:const char *:register_name:int regnr:regnr::0
479 # Return the type of a register specified by the architecture. Only
480 # the register cache should call this function directly; others should
481 # use "register_type".
482 M:struct type *:register_type:int reg_nr:reg_nr
484 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
485 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
486 # deprecated_fp_regnum.
487 v:int:deprecated_fp_regnum:::-1:-1::0
489 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
490 v:int:call_dummy_location::::AT_ENTRY_POINT::0
491 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
493 # Return true if the code of FRAME is writable.
494 m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
496 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
497 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
498 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
499 # MAP a GDB RAW register number onto a simulator register number. See
500 # also include/...-sim.h.
501 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
502 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
503 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
505 # Determine the address where a longjmp will land and save this address
506 # in PC. Return nonzero on success.
508 # FRAME corresponds to the longjmp frame.
509 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
512 v:int:believe_pcc_promotion:::::::
514 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
515 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
516 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
517 # Construct a value representing the contents of register REGNUM in
518 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
519 # allocate and return a struct value with all value attributes
520 # (but not the value contents) filled in.
521 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
523 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
524 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
525 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
527 # Return the return-value convention that will be used by FUNCTION
528 # to return a value of type VALTYPE. FUNCTION may be NULL in which
529 # case the return convention is computed based only on VALTYPE.
531 # If READBUF is not NULL, extract the return value and save it in this buffer.
533 # If WRITEBUF is not NULL, it contains a return value which will be
534 # stored into the appropriate register. This can be used when we want
535 # to force the value returned by a function (see the "return" command
537 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
539 # Return true if the return value of function is stored in the first hidden
540 # parameter. In theory, this feature should be language-dependent, specified
541 # by language and its ABI, such as C++. Unfortunately, compiler may
542 # implement it to a target-dependent feature. So that we need such hook here
543 # to be aware of this in GDB.
544 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
546 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
547 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
548 # On some platforms, a single function may provide multiple entry points,
549 # e.g. one that is used for function-pointer calls and a different one
550 # that is used for direct function calls.
551 # In order to ensure that breakpoints set on the function will trigger
552 # no matter via which entry point the function is entered, a platform
553 # may provide the skip_entrypoint callback. It is called with IP set
554 # to the main entry point of a function (as determined by the symbol table),
555 # and should return the address of the innermost entry point, where the
556 # actual breakpoint needs to be set. Note that skip_entrypoint is used
557 # by GDB common code even when debugging optimized code, where skip_prologue
559 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
561 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
562 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:0:default_breakpoint_from_pc::0
564 # Return the breakpoint kind for this target based on *PCPTR.
565 m:int:breakpoint_kind_from_pc:CORE_ADDR *pcptr:pcptr::0:
567 # Return the software breakpoint from KIND. KIND can have target
568 # specific meaning like the Z0 kind parameter.
569 # SIZE is set to the software breakpoint's length in memory.
570 m:const gdb_byte *:sw_breakpoint_from_kind:int kind, int *size:kind, size::NULL::0
572 # Return the breakpoint kind for this target based on the current
573 # processor state (e.g. the current instruction mode on ARM) and the
574 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
575 m:int:breakpoint_kind_from_current_state:struct regcache *regcache, CORE_ADDR *pcptr:regcache, pcptr:0:default_breakpoint_kind_from_current_state::0
577 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
578 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
579 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
580 v:CORE_ADDR:decr_pc_after_break:::0:::0
582 # A function can be addressed by either it's "pointer" (possibly a
583 # descriptor address) or "entry point" (first executable instruction).
584 # The method "convert_from_func_ptr_addr" converting the former to the
585 # latter. gdbarch_deprecated_function_start_offset is being used to implement
586 # a simplified subset of that functionality - the function's address
587 # corresponds to the "function pointer" and the function's start
588 # corresponds to the "function entry point" - and hence is redundant.
590 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
592 # Return the remote protocol register number associated with this
593 # register. Normally the identity mapping.
594 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
596 # Fetch the target specific address used to represent a load module.
597 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
599 v:CORE_ADDR:frame_args_skip:::0:::0
600 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
601 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
602 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
603 # frame-base. Enable frame-base before frame-unwind.
604 F:int:frame_num_args:struct frame_info *frame:frame
606 M:CORE_ADDR:frame_align:CORE_ADDR address:address
607 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
608 v:int:frame_red_zone_size
610 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
611 # On some machines there are bits in addresses which are not really
612 # part of the address, but are used by the kernel, the hardware, etc.
613 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
614 # we get a "real" address such as one would find in a symbol table.
615 # This is used only for addresses of instructions, and even then I'm
616 # not sure it's used in all contexts. It exists to deal with there
617 # being a few stray bits in the PC which would mislead us, not as some
618 # sort of generic thing to handle alignment or segmentation (it's
619 # possible it should be in TARGET_READ_PC instead).
620 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
622 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
623 # indicates if the target needs software single step. An ISA method to
626 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
627 # target can single step. If not, then implement single step using breakpoints.
629 # Return a vector of addresses on which the software single step
630 # breakpoints should be inserted. NULL means software single step is
632 # Multiple breakpoints may be inserted for some instructions such as
633 # conditional branch. However, each implementation must always evaluate
634 # the condition and only put the breakpoint at the branch destination if
635 # the condition is true, so that we ensure forward progress when stepping
636 # past a conditional branch to self.
637 F:VEC (CORE_ADDR) *:software_single_step:struct frame_info *frame:frame
639 # Return non-zero if the processor is executing a delay slot and a
640 # further single-step is needed before the instruction finishes.
641 M:int:single_step_through_delay:struct frame_info *frame:frame
642 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
643 # disassembler. Perhaps objdump can handle it?
644 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
645 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
648 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
649 # evaluates non-zero, this is the address where the debugger will place
650 # a step-resume breakpoint to get us past the dynamic linker.
651 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
652 # Some systems also have trampoline code for returning from shared libs.
653 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
655 # A target might have problems with watchpoints as soon as the stack
656 # frame of the current function has been destroyed. This mostly happens
657 # as the first action in a function's epilogue. stack_frame_destroyed_p()
658 # is defined to return a non-zero value if either the given addr is one
659 # instruction after the stack destroying instruction up to the trailing
660 # return instruction or if we can figure out that the stack frame has
661 # already been invalidated regardless of the value of addr. Targets
662 # which don't suffer from that problem could just let this functionality
664 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
665 # Process an ELF symbol in the minimal symbol table in a backend-specific
666 # way. Normally this hook is supposed to do nothing, however if required,
667 # then this hook can be used to apply tranformations to symbols that are
668 # considered special in some way. For example the MIPS backend uses it
669 # to interpret \`st_other' information to mark compressed code symbols so
670 # that they can be treated in the appropriate manner in the processing of
671 # the main symbol table and DWARF-2 records.
672 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
673 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
674 # Process a symbol in the main symbol table in a backend-specific way.
675 # Normally this hook is supposed to do nothing, however if required,
676 # then this hook can be used to apply tranformations to symbols that
677 # are considered special in some way. This is currently used by the
678 # MIPS backend to make sure compressed code symbols have the ISA bit
679 # set. This in turn is needed for symbol values seen in GDB to match
680 # the values used at the runtime by the program itself, for function
681 # and label references.
682 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
683 # Adjust the address retrieved from a DWARF-2 record other than a line
684 # entry in a backend-specific way. Normally this hook is supposed to
685 # return the address passed unchanged, however if that is incorrect for
686 # any reason, then this hook can be used to fix the address up in the
687 # required manner. This is currently used by the MIPS backend to make
688 # sure addresses in FDE, range records, etc. referring to compressed
689 # code have the ISA bit set, matching line information and the symbol
691 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
692 # Adjust the address updated by a line entry in a backend-specific way.
693 # Normally this hook is supposed to return the address passed unchanged,
694 # however in the case of inconsistencies in these records, this hook can
695 # be used to fix them up in the required manner. This is currently used
696 # by the MIPS backend to make sure all line addresses in compressed code
697 # are presented with the ISA bit set, which is not always the case. This
698 # in turn ensures breakpoint addresses are correctly matched against the
700 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
701 v:int:cannot_step_breakpoint:::0:0::0
702 v:int:have_nonsteppable_watchpoint:::0:0::0
703 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
704 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
706 # Return the appropriate type_flags for the supplied address class.
707 # This function should return 1 if the address class was recognized and
708 # type_flags was set, zero otherwise.
709 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
710 # Is a register in a group
711 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
712 # Fetch the pointer to the ith function argument.
713 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
715 # Iterate over all supported register notes in a core file. For each
716 # supported register note section, the iterator must call CB and pass
717 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
718 # the supported register note sections based on the current register
719 # values. Otherwise it should enumerate all supported register note
721 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
723 # Create core file notes
724 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
726 # The elfcore writer hook to use to write Linux prpsinfo notes to core
727 # files. Most Linux architectures use the same prpsinfo32 or
728 # prpsinfo64 layouts, and so won't need to provide this hook, as we
729 # call the Linux generic routines in bfd to write prpsinfo notes by
731 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
733 # Find core file memory regions
734 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
736 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
737 # core file into buffer READBUF with length LEN. Return the number of bytes read
738 # (zero indicates failure).
739 # failed, otherwise, return the red length of READBUF.
740 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
742 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
743 # libraries list from core file into buffer READBUF with length LEN.
744 # Return the number of bytes read (zero indicates failure).
745 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
747 # How the core target converts a PTID from a core file to a string.
748 M:char *:core_pid_to_str:ptid_t ptid:ptid
750 # How the core target extracts the name of a thread from a core file.
751 M:const char *:core_thread_name:struct thread_info *thr:thr
753 # BFD target to use when generating a core file.
754 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
756 # If the elements of C++ vtables are in-place function descriptors rather
757 # than normal function pointers (which may point to code or a descriptor),
759 v:int:vtable_function_descriptors:::0:0::0
761 # Set if the least significant bit of the delta is used instead of the least
762 # significant bit of the pfn for pointers to virtual member functions.
763 v:int:vbit_in_delta:::0:0::0
765 # Advance PC to next instruction in order to skip a permanent breakpoint.
766 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
768 # The maximum length of an instruction on this architecture in bytes.
769 V:ULONGEST:max_insn_length:::0:0
771 # Copy the instruction at FROM to TO, and make any adjustments
772 # necessary to single-step it at that address.
774 # REGS holds the state the thread's registers will have before
775 # executing the copied instruction; the PC in REGS will refer to FROM,
776 # not the copy at TO. The caller should update it to point at TO later.
778 # Return a pointer to data of the architecture's choice to be passed
779 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
780 # the instruction's effects have been completely simulated, with the
781 # resulting state written back to REGS.
783 # For a general explanation of displaced stepping and how GDB uses it,
784 # see the comments in infrun.c.
786 # The TO area is only guaranteed to have space for
787 # gdbarch_max_insn_length (arch) bytes, so this function must not
788 # write more bytes than that to that area.
790 # If you do not provide this function, GDB assumes that the
791 # architecture does not support displaced stepping.
793 # If your architecture doesn't need to adjust instructions before
794 # single-stepping them, consider using simple_displaced_step_copy_insn
797 # If the instruction cannot execute out of line, return NULL. The
798 # core falls back to stepping past the instruction in-line instead in
800 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
802 # Return true if GDB should use hardware single-stepping to execute
803 # the displaced instruction identified by CLOSURE. If false,
804 # GDB will simply restart execution at the displaced instruction
805 # location, and it is up to the target to ensure GDB will receive
806 # control again (e.g. by placing a software breakpoint instruction
807 # into the displaced instruction buffer).
809 # The default implementation returns false on all targets that
810 # provide a gdbarch_software_single_step routine, and true otherwise.
811 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
813 # Fix up the state resulting from successfully single-stepping a
814 # displaced instruction, to give the result we would have gotten from
815 # stepping the instruction in its original location.
817 # REGS is the register state resulting from single-stepping the
818 # displaced instruction.
820 # CLOSURE is the result from the matching call to
821 # gdbarch_displaced_step_copy_insn.
823 # If you provide gdbarch_displaced_step_copy_insn.but not this
824 # function, then GDB assumes that no fixup is needed after
825 # single-stepping the instruction.
827 # For a general explanation of displaced stepping and how GDB uses it,
828 # see the comments in infrun.c.
829 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
831 # Free a closure returned by gdbarch_displaced_step_copy_insn.
833 # If you provide gdbarch_displaced_step_copy_insn, you must provide
834 # this function as well.
836 # If your architecture uses closures that don't need to be freed, then
837 # you can use simple_displaced_step_free_closure here.
839 # For a general explanation of displaced stepping and how GDB uses it,
840 # see the comments in infrun.c.
841 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
843 # Return the address of an appropriate place to put displaced
844 # instructions while we step over them. There need only be one such
845 # place, since we're only stepping one thread over a breakpoint at a
848 # For a general explanation of displaced stepping and how GDB uses it,
849 # see the comments in infrun.c.
850 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
852 # Relocate an instruction to execute at a different address. OLDLOC
853 # is the address in the inferior memory where the instruction to
854 # relocate is currently at. On input, TO points to the destination
855 # where we want the instruction to be copied (and possibly adjusted)
856 # to. On output, it points to one past the end of the resulting
857 # instruction(s). The effect of executing the instruction at TO shall
858 # be the same as if executing it at FROM. For example, call
859 # instructions that implicitly push the return address on the stack
860 # should be adjusted to return to the instruction after OLDLOC;
861 # relative branches, and other PC-relative instructions need the
862 # offset adjusted; etc.
863 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
865 # Refresh overlay mapped state for section OSECT.
866 F:void:overlay_update:struct obj_section *osect:osect
868 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
870 # Handle special encoding of static variables in stabs debug info.
871 F:const char *:static_transform_name:const char *name:name
872 # Set if the address in N_SO or N_FUN stabs may be zero.
873 v:int:sofun_address_maybe_missing:::0:0::0
875 # Parse the instruction at ADDR storing in the record execution log
876 # the registers REGCACHE and memory ranges that will be affected when
877 # the instruction executes, along with their current values.
878 # Return -1 if something goes wrong, 0 otherwise.
879 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
881 # Save process state after a signal.
882 # Return -1 if something goes wrong, 0 otherwise.
883 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
885 # Signal translation: translate inferior's signal (target's) number
886 # into GDB's representation. The implementation of this method must
887 # be host independent. IOW, don't rely on symbols of the NAT_FILE
888 # header (the nm-*.h files), the host <signal.h> header, or similar
889 # headers. This is mainly used when cross-debugging core files ---
890 # "Live" targets hide the translation behind the target interface
891 # (target_wait, target_resume, etc.).
892 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
894 # Signal translation: translate the GDB's internal signal number into
895 # the inferior's signal (target's) representation. The implementation
896 # of this method must be host independent. IOW, don't rely on symbols
897 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
898 # header, or similar headers.
899 # Return the target signal number if found, or -1 if the GDB internal
900 # signal number is invalid.
901 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
903 # Extra signal info inspection.
905 # Return a type suitable to inspect extra signal information.
906 M:struct type *:get_siginfo_type:void:
908 # Record architecture-specific information from the symbol table.
909 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
911 # Function for the 'catch syscall' feature.
913 # Get architecture-specific system calls information from registers.
914 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
916 # The filename of the XML syscall for this architecture.
917 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
919 # Information about system calls from this architecture
920 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
922 # SystemTap related fields and functions.
924 # A NULL-terminated array of prefixes used to mark an integer constant
925 # on the architecture's assembly.
926 # For example, on x86 integer constants are written as:
928 # \$10 ;; integer constant 10
930 # in this case, this prefix would be the character \`\$\'.
931 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
933 # A NULL-terminated array of suffixes used to mark an integer constant
934 # on the architecture's assembly.
935 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
937 # A NULL-terminated array of prefixes used to mark a register name on
938 # the architecture's assembly.
939 # For example, on x86 the register name is written as:
941 # \%eax ;; register eax
943 # in this case, this prefix would be the character \`\%\'.
944 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
946 # A NULL-terminated array of suffixes used to mark a register name on
947 # the architecture's assembly.
948 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
950 # A NULL-terminated array of prefixes used to mark a register
951 # indirection on the architecture's assembly.
952 # For example, on x86 the register indirection is written as:
954 # \(\%eax\) ;; indirecting eax
956 # in this case, this prefix would be the charater \`\(\'.
958 # Please note that we use the indirection prefix also for register
959 # displacement, e.g., \`4\(\%eax\)\' on x86.
960 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
962 # A NULL-terminated array of suffixes used to mark a register
963 # indirection on the architecture's assembly.
964 # For example, on x86 the register indirection is written as:
966 # \(\%eax\) ;; indirecting eax
968 # in this case, this prefix would be the charater \`\)\'.
970 # Please note that we use the indirection suffix also for register
971 # displacement, e.g., \`4\(\%eax\)\' on x86.
972 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
974 # Prefix(es) used to name a register using GDB's nomenclature.
976 # For example, on PPC a register is represented by a number in the assembly
977 # language (e.g., \`10\' is the 10th general-purpose register). However,
978 # inside GDB this same register has an \`r\' appended to its name, so the 10th
979 # register would be represented as \`r10\' internally.
980 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
982 # Suffix used to name a register using GDB's nomenclature.
983 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
985 # Check if S is a single operand.
987 # Single operands can be:
988 # \- Literal integers, e.g. \`\$10\' on x86
989 # \- Register access, e.g. \`\%eax\' on x86
990 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
991 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
993 # This function should check for these patterns on the string
994 # and return 1 if some were found, or zero otherwise. Please try to match
995 # as much info as you can from the string, i.e., if you have to match
996 # something like \`\(\%\', do not match just the \`\(\'.
997 M:int:stap_is_single_operand:const char *s:s
999 # Function used to handle a "special case" in the parser.
1001 # A "special case" is considered to be an unknown token, i.e., a token
1002 # that the parser does not know how to parse. A good example of special
1003 # case would be ARM's register displacement syntax:
1005 # [R0, #4] ;; displacing R0 by 4
1007 # Since the parser assumes that a register displacement is of the form:
1009 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1011 # it means that it will not be able to recognize and parse this odd syntax.
1012 # Therefore, we should add a special case function that will handle this token.
1014 # This function should generate the proper expression form of the expression
1015 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1016 # and so on). It should also return 1 if the parsing was successful, or zero
1017 # if the token was not recognized as a special token (in this case, returning
1018 # zero means that the special parser is deferring the parsing to the generic
1019 # parser), and should advance the buffer pointer (p->arg).
1020 M:int:stap_parse_special_token:struct stap_parse_info *p:p
1022 # DTrace related functions.
1024 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1025 # NARG must be >= 0.
1026 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1028 # True if the given ADDR does not contain the instruction sequence
1029 # corresponding to a disabled DTrace is-enabled probe.
1030 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1032 # Enable a DTrace is-enabled probe at ADDR.
1033 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1035 # Disable a DTrace is-enabled probe at ADDR.
1036 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1038 # True if the list of shared libraries is one and only for all
1039 # processes, as opposed to a list of shared libraries per inferior.
1040 # This usually means that all processes, although may or may not share
1041 # an address space, will see the same set of symbols at the same
1043 v:int:has_global_solist:::0:0::0
1045 # On some targets, even though each inferior has its own private
1046 # address space, the debug interface takes care of making breakpoints
1047 # visible to all address spaces automatically. For such cases,
1048 # this property should be set to true.
1049 v:int:has_global_breakpoints:::0:0::0
1051 # True if inferiors share an address space (e.g., uClinux).
1052 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1054 # True if a fast tracepoint can be set at an address.
1055 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1057 # Guess register state based on tracepoint location. Used for tracepoints
1058 # where no registers have been collected, but there's only one location,
1059 # allowing us to guess the PC value, and perhaps some other registers.
1060 # On entry, regcache has all registers marked as unavailable.
1061 m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1063 # Return the "auto" target charset.
1064 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1065 # Return the "auto" target wide charset.
1066 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1068 # If non-empty, this is a file extension that will be opened in place
1069 # of the file extension reported by the shared library list.
1071 # This is most useful for toolchains that use a post-linker tool,
1072 # where the names of the files run on the target differ in extension
1073 # compared to the names of the files GDB should load for debug info.
1074 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1076 # If true, the target OS has DOS-based file system semantics. That
1077 # is, absolute paths include a drive name, and the backslash is
1078 # considered a directory separator.
1079 v:int:has_dos_based_file_system:::0:0::0
1081 # Generate bytecodes to collect the return address in a frame.
1082 # Since the bytecodes run on the target, possibly with GDB not even
1083 # connected, the full unwinding machinery is not available, and
1084 # typically this function will issue bytecodes for one or more likely
1085 # places that the return address may be found.
1086 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1088 # Implement the "info proc" command.
1089 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1091 # Implement the "info proc" command for core files. Noe that there
1092 # are two "info_proc"-like methods on gdbarch -- one for core files,
1093 # one for live targets.
1094 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1096 # Iterate over all objfiles in the order that makes the most sense
1097 # for the architecture to make global symbol searches.
1099 # CB is a callback function where OBJFILE is the objfile to be searched,
1100 # and CB_DATA a pointer to user-defined data (the same data that is passed
1101 # when calling this gdbarch method). The iteration stops if this function
1104 # CB_DATA is a pointer to some user-defined data to be passed to
1107 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1108 # inspected when the symbol search was requested.
1109 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1111 # Ravenscar arch-dependent ops.
1112 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1114 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1115 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1117 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1118 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1120 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1121 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1123 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1124 # Return 0 if *READPTR is already at the end of the buffer.
1125 # Return -1 if there is insufficient buffer for a whole entry.
1126 # Return 1 if an entry was read into *TYPEP and *VALP.
1127 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1129 # Print the description of a single auxv entry described by TYPE and VAL
1131 m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
1133 # Find the address range of the current inferior's vsyscall/vDSO, and
1134 # write it to *RANGE. If the vsyscall's length can't be determined, a
1135 # range with zero length is returned. Returns true if the vsyscall is
1136 # found, false otherwise.
1137 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1139 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1140 # PROT has GDB_MMAP_PROT_* bitmask format.
1141 # Throw an error if it is not possible. Returned address is always valid.
1142 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1144 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1145 # Print a warning if it is not possible.
1146 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1148 # Return string (caller has to use xfree for it) with options for GCC
1149 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1150 # These options are put before CU's DW_AT_producer compilation options so that
1151 # they can override it. Method may also return NULL.
1152 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1154 # Return a regular expression that matches names used by this
1155 # architecture in GNU configury triplets. The result is statically
1156 # allocated and must not be freed. The default implementation simply
1157 # returns the BFD architecture name, which is correct in nearly every
1159 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1161 # Return the size in 8-bit bytes of an addressable memory unit on this
1162 # architecture. This corresponds to the number of 8-bit bytes associated to
1163 # each address in memory.
1164 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1172 exec > new-gdbarch.log
1173 function_list |
while do_read
1176 ${class} ${returntype} ${function} ($formal)
1180 eval echo \"\ \ \ \
${r}=\
${${r}}\"
1182 if class_is_predicate_p
&& fallback_default_p
1184 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1188 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1190 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1194 if class_is_multiarch_p
1196 if class_is_predicate_p
; then :
1197 elif test "x${predefault}" = "x"
1199 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1208 compare_new gdbarch.log
1214 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1217 /* Dynamic architecture support for GDB, the GNU debugger.
1219 Copyright (C) 1998-2016 Free Software Foundation, Inc.
1221 This file is part of GDB.
1223 This program is free software; you can redistribute it and/or modify
1224 it under the terms of the GNU General Public License as published by
1225 the Free Software Foundation; either version 3 of the License, or
1226 (at your option) any later version.
1228 This program is distributed in the hope that it will be useful,
1229 but WITHOUT ANY WARRANTY; without even the implied warranty of
1230 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1231 GNU General Public License for more details.
1233 You should have received a copy of the GNU General Public License
1234 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1236 /* This file was created with the aid of \`\`gdbarch.sh''.
1238 The Bourne shell script \`\`gdbarch.sh'' creates the files
1239 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1240 against the existing \`\`gdbarch.[hc]''. Any differences found
1243 If editing this file, please also run gdbarch.sh and merge any
1244 changes into that script. Conversely, when making sweeping changes
1245 to this file, modifying gdbarch.sh and using its output may prove
1255 exec > new-gdbarch.h
1268 struct minimal_symbol;
1272 struct disassemble_info;
1275 struct bp_target_info;
1279 struct displaced_step_closure;
1283 struct stap_parse_info;
1284 struct parser_state;
1285 struct ravenscar_arch_ops;
1286 struct elf_internal_linux_prpsinfo;
1288 struct syscalls_info;
1292 #include "regcache.h"
1294 /* The architecture associated with the inferior through the
1295 connection to the target.
1297 The architecture vector provides some information that is really a
1298 property of the inferior, accessed through a particular target:
1299 ptrace operations; the layout of certain RSP packets; the solib_ops
1300 vector; etc. To differentiate architecture accesses to
1301 per-inferior/target properties from
1302 per-thread/per-frame/per-objfile properties, accesses to
1303 per-inferior/target properties should be made through this
1306 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1307 extern struct gdbarch *target_gdbarch (void);
1309 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1312 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1313 (struct objfile *objfile, void *cb_data);
1315 /* Callback type for regset section iterators. The callback usually
1316 invokes the REGSET's supply or collect method, to which it must
1317 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1318 section name, and HUMAN_NAME is used for diagnostic messages.
1319 CB_DATA should have been passed unchanged through the iterator. */
1321 typedef void (iterate_over_regset_sections_cb)
1322 (const char *sect_name, int size, const struct regset *regset,
1323 const char *human_name, void *cb_data);
1326 # function typedef's
1329 printf "/* The following are pre-initialized by GDBARCH. */\n"
1330 function_list |
while do_read
1335 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1336 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1340 # function typedef's
1343 printf "/* The following are initialized by the target dependent code. */\n"
1344 function_list |
while do_read
1346 if [ -n "${comment}" ]
1348 echo "${comment}" |
sed \
1354 if class_is_predicate_p
1357 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1359 if class_is_variable_p
1362 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1363 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1365 if class_is_function_p
1368 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1370 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1371 elif class_is_multiarch_p
1373 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1375 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1377 if [ "x${formal}" = "xvoid" ]
1379 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1381 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1383 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1390 /* Definition for an unknown syscall, used basically in error-cases. */
1391 #define UNKNOWN_SYSCALL (-1)
1393 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1396 /* Mechanism for co-ordinating the selection of a specific
1399 GDB targets (*-tdep.c) can register an interest in a specific
1400 architecture. Other GDB components can register a need to maintain
1401 per-architecture data.
1403 The mechanisms below ensures that there is only a loose connection
1404 between the set-architecture command and the various GDB
1405 components. Each component can independently register their need
1406 to maintain architecture specific data with gdbarch.
1410 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1413 The more traditional mega-struct containing architecture specific
1414 data for all the various GDB components was also considered. Since
1415 GDB is built from a variable number of (fairly independent)
1416 components it was determined that the global aproach was not
1420 /* Register a new architectural family with GDB.
1422 Register support for the specified ARCHITECTURE with GDB. When
1423 gdbarch determines that the specified architecture has been
1424 selected, the corresponding INIT function is called.
1428 The INIT function takes two parameters: INFO which contains the
1429 information available to gdbarch about the (possibly new)
1430 architecture; ARCHES which is a list of the previously created
1431 \`\`struct gdbarch'' for this architecture.
1433 The INFO parameter is, as far as possible, be pre-initialized with
1434 information obtained from INFO.ABFD or the global defaults.
1436 The ARCHES parameter is a linked list (sorted most recently used)
1437 of all the previously created architures for this architecture
1438 family. The (possibly NULL) ARCHES->gdbarch can used to access
1439 values from the previously selected architecture for this
1440 architecture family.
1442 The INIT function shall return any of: NULL - indicating that it
1443 doesn't recognize the selected architecture; an existing \`\`struct
1444 gdbarch'' from the ARCHES list - indicating that the new
1445 architecture is just a synonym for an earlier architecture (see
1446 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1447 - that describes the selected architecture (see gdbarch_alloc()).
1449 The DUMP_TDEP function shall print out all target specific values.
1450 Care should be taken to ensure that the function works in both the
1451 multi-arch and non- multi-arch cases. */
1455 struct gdbarch *gdbarch;
1456 struct gdbarch_list *next;
1461 /* Use default: NULL (ZERO). */
1462 const struct bfd_arch_info *bfd_arch_info;
1464 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1465 enum bfd_endian byte_order;
1467 enum bfd_endian byte_order_for_code;
1469 /* Use default: NULL (ZERO). */
1472 /* Use default: NULL (ZERO). */
1475 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1476 enum gdb_osabi osabi;
1478 /* Use default: NULL (ZERO). */
1479 const struct target_desc *target_desc;
1482 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1483 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1485 /* DEPRECATED - use gdbarch_register() */
1486 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1488 extern void gdbarch_register (enum bfd_architecture architecture,
1489 gdbarch_init_ftype *,
1490 gdbarch_dump_tdep_ftype *);
1493 /* Return a freshly allocated, NULL terminated, array of the valid
1494 architecture names. Since architectures are registered during the
1495 _initialize phase this function only returns useful information
1496 once initialization has been completed. */
1498 extern const char **gdbarch_printable_names (void);
1501 /* Helper function. Search the list of ARCHES for a GDBARCH that
1502 matches the information provided by INFO. */
1504 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1507 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1508 basic initialization using values obtained from the INFO and TDEP
1509 parameters. set_gdbarch_*() functions are called to complete the
1510 initialization of the object. */
1512 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1515 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1516 It is assumed that the caller freeds the \`\`struct
1519 extern void gdbarch_free (struct gdbarch *);
1522 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1523 obstack. The memory is freed when the corresponding architecture
1526 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1527 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1528 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1530 /* Duplicate STRING, returning an equivalent string that's allocated on the
1531 obstack associated with GDBARCH. The string is freed when the corresponding
1532 architecture is also freed. */
1534 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1536 /* Helper function. Force an update of the current architecture.
1538 The actual architecture selected is determined by INFO, \`\`(gdb) set
1539 architecture'' et.al., the existing architecture and BFD's default
1540 architecture. INFO should be initialized to zero and then selected
1541 fields should be updated.
1543 Returns non-zero if the update succeeds. */
1545 extern int gdbarch_update_p (struct gdbarch_info info);
1548 /* Helper function. Find an architecture matching info.
1550 INFO should be initialized using gdbarch_info_init, relevant fields
1551 set, and then finished using gdbarch_info_fill.
1553 Returns the corresponding architecture, or NULL if no matching
1554 architecture was found. */
1556 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1559 /* Helper function. Set the target gdbarch to "gdbarch". */
1561 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1564 /* Register per-architecture data-pointer.
1566 Reserve space for a per-architecture data-pointer. An identifier
1567 for the reserved data-pointer is returned. That identifer should
1568 be saved in a local static variable.
1570 Memory for the per-architecture data shall be allocated using
1571 gdbarch_obstack_zalloc. That memory will be deleted when the
1572 corresponding architecture object is deleted.
1574 When a previously created architecture is re-selected, the
1575 per-architecture data-pointer for that previous architecture is
1576 restored. INIT() is not re-called.
1578 Multiple registrarants for any architecture are allowed (and
1579 strongly encouraged). */
1581 struct gdbarch_data;
1583 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1584 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1585 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1586 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1587 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1588 struct gdbarch_data *data,
1591 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1594 /* Set the dynamic target-system-dependent parameters (architecture,
1595 byte-order, ...) using information found in the BFD. */
1597 extern void set_gdbarch_from_file (bfd *);
1600 /* Initialize the current architecture to the "first" one we find on
1603 extern void initialize_current_architecture (void);
1605 /* gdbarch trace variable */
1606 extern unsigned int gdbarch_debug;
1608 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1613 #../move-if-change new-gdbarch.h gdbarch.h
1614 compare_new gdbarch.h
1621 exec > new-gdbarch.c
1626 #include "arch-utils.h"
1629 #include "inferior.h"
1632 #include "floatformat.h"
1633 #include "reggroups.h"
1635 #include "gdb_obstack.h"
1636 #include "observer.h"
1637 #include "regcache.h"
1638 #include "objfiles.h"
1641 /* Static function declarations */
1643 static void alloc_gdbarch_data (struct gdbarch *);
1645 /* Non-zero if we want to trace architecture code. */
1647 #ifndef GDBARCH_DEBUG
1648 #define GDBARCH_DEBUG 0
1650 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1652 show_gdbarch_debug (struct ui_file *file, int from_tty,
1653 struct cmd_list_element *c, const char *value)
1655 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1659 pformat (const struct floatformat **format)
1664 /* Just print out one of them - this is only for diagnostics. */
1665 return format[0]->name;
1669 pstring (const char *string)
1676 /* Helper function to print a list of strings, represented as "const
1677 char *const *". The list is printed comma-separated. */
1680 pstring_list (const char *const *list)
1682 static char ret[100];
1683 const char *const *p;
1690 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1692 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1698 gdb_assert (offset - 2 < sizeof (ret));
1699 ret[offset - 2] = '\0';
1707 # gdbarch open the gdbarch object
1709 printf "/* Maintain the struct gdbarch object. */\n"
1711 printf "struct gdbarch\n"
1713 printf " /* Has this architecture been fully initialized? */\n"
1714 printf " int initialized_p;\n"
1716 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1717 printf " struct obstack *obstack;\n"
1719 printf " /* basic architectural information. */\n"
1720 function_list |
while do_read
1724 printf " ${returntype} ${function};\n"
1728 printf " /* target specific vector. */\n"
1729 printf " struct gdbarch_tdep *tdep;\n"
1730 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1732 printf " /* per-architecture data-pointers. */\n"
1733 printf " unsigned nr_data;\n"
1734 printf " void **data;\n"
1737 /* Multi-arch values.
1739 When extending this structure you must:
1741 Add the field below.
1743 Declare set/get functions and define the corresponding
1746 gdbarch_alloc(): If zero/NULL is not a suitable default,
1747 initialize the new field.
1749 verify_gdbarch(): Confirm that the target updated the field
1752 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1755 get_gdbarch(): Implement the set/get functions (probably using
1756 the macro's as shortcuts).
1761 function_list |
while do_read
1763 if class_is_variable_p
1765 printf " ${returntype} ${function};\n"
1766 elif class_is_function_p
1768 printf " gdbarch_${function}_ftype *${function};\n"
1773 # Create a new gdbarch struct
1776 /* Create a new \`\`struct gdbarch'' based on information provided by
1777 \`\`struct gdbarch_info''. */
1782 gdbarch_alloc (const struct gdbarch_info *info,
1783 struct gdbarch_tdep *tdep)
1785 struct gdbarch *gdbarch;
1787 /* Create an obstack for allocating all the per-architecture memory,
1788 then use that to allocate the architecture vector. */
1789 struct obstack *obstack = XNEW (struct obstack);
1790 obstack_init (obstack);
1791 gdbarch = XOBNEW (obstack, struct gdbarch);
1792 memset (gdbarch, 0, sizeof (*gdbarch));
1793 gdbarch->obstack = obstack;
1795 alloc_gdbarch_data (gdbarch);
1797 gdbarch->tdep = tdep;
1800 function_list |
while do_read
1804 printf " gdbarch->${function} = info->${function};\n"
1808 printf " /* Force the explicit initialization of these. */\n"
1809 function_list |
while do_read
1811 if class_is_function_p || class_is_variable_p
1813 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1815 printf " gdbarch->${function} = ${predefault};\n"
1820 /* gdbarch_alloc() */
1826 # Free a gdbarch struct.
1830 /* Allocate extra space using the per-architecture obstack. */
1833 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1835 void *data = obstack_alloc (arch->obstack, size);
1837 memset (data, 0, size);
1841 /* See gdbarch.h. */
1844 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1846 return obstack_strdup (arch->obstack, string);
1850 /* Free a gdbarch struct. This should never happen in normal
1851 operation --- once you've created a gdbarch, you keep it around.
1852 However, if an architecture's init function encounters an error
1853 building the structure, it may need to clean up a partially
1854 constructed gdbarch. */
1857 gdbarch_free (struct gdbarch *arch)
1859 struct obstack *obstack;
1861 gdb_assert (arch != NULL);
1862 gdb_assert (!arch->initialized_p);
1863 obstack = arch->obstack;
1864 obstack_free (obstack, 0); /* Includes the ARCH. */
1869 # verify a new architecture
1873 /* Ensure that all values in a GDBARCH are reasonable. */
1876 verify_gdbarch (struct gdbarch *gdbarch)
1878 struct ui_file *log;
1879 struct cleanup *cleanups;
1882 log = mem_fileopen ();
1883 cleanups = make_cleanup_ui_file_delete (log);
1885 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1886 fprintf_unfiltered (log, "\n\tbyte-order");
1887 if (gdbarch->bfd_arch_info == NULL)
1888 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1889 /* Check those that need to be defined for the given multi-arch level. */
1891 function_list |
while do_read
1893 if class_is_function_p || class_is_variable_p
1895 if [ "x${invalid_p}" = "x0" ]
1897 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1898 elif class_is_predicate_p
1900 printf " /* Skip verify of ${function}, has predicate. */\n"
1901 # FIXME: See do_read for potential simplification
1902 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1904 printf " if (${invalid_p})\n"
1905 printf " gdbarch->${function} = ${postdefault};\n"
1906 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1908 printf " if (gdbarch->${function} == ${predefault})\n"
1909 printf " gdbarch->${function} = ${postdefault};\n"
1910 elif [ -n "${postdefault}" ]
1912 printf " if (gdbarch->${function} == 0)\n"
1913 printf " gdbarch->${function} = ${postdefault};\n"
1914 elif [ -n "${invalid_p}" ]
1916 printf " if (${invalid_p})\n"
1917 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1918 elif [ -n "${predefault}" ]
1920 printf " if (gdbarch->${function} == ${predefault})\n"
1921 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1926 std::string buf = ui_file_as_string (log);
1928 internal_error (__FILE__, __LINE__,
1929 _("verify_gdbarch: the following are invalid ...%s"),
1931 do_cleanups (cleanups);
1935 # dump the structure
1939 /* Print out the details of the current architecture. */
1942 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1944 const char *gdb_nm_file = "<not-defined>";
1946 #if defined (GDB_NM_FILE)
1947 gdb_nm_file = GDB_NM_FILE;
1949 fprintf_unfiltered (file,
1950 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1953 function_list |
sort -t: -k 3 |
while do_read
1955 # First the predicate
1956 if class_is_predicate_p
1958 printf " fprintf_unfiltered (file,\n"
1959 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1960 printf " gdbarch_${function}_p (gdbarch));\n"
1962 # Print the corresponding value.
1963 if class_is_function_p
1965 printf " fprintf_unfiltered (file,\n"
1966 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1967 printf " host_address_to_string (gdbarch->${function}));\n"
1970 case "${print}:${returntype}" in
1973 print
="core_addr_to_string_nz (gdbarch->${function})"
1977 print
="plongest (gdbarch->${function})"
1983 printf " fprintf_unfiltered (file,\n"
1984 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1985 printf " ${print});\n"
1989 if (gdbarch->dump_tdep != NULL)
1990 gdbarch->dump_tdep (gdbarch, file);
1998 struct gdbarch_tdep *
1999 gdbarch_tdep (struct gdbarch *gdbarch)
2001 if (gdbarch_debug >= 2)
2002 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2003 return gdbarch->tdep;
2007 function_list |
while do_read
2009 if class_is_predicate_p
2013 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2015 printf " gdb_assert (gdbarch != NULL);\n"
2016 printf " return ${predicate};\n"
2019 if class_is_function_p
2022 printf "${returntype}\n"
2023 if [ "x${formal}" = "xvoid" ]
2025 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2027 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2030 printf " gdb_assert (gdbarch != NULL);\n"
2031 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2032 if class_is_predicate_p
&& test -n "${predefault}"
2034 # Allow a call to a function with a predicate.
2035 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2037 printf " if (gdbarch_debug >= 2)\n"
2038 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2039 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2041 if class_is_multiarch_p
2048 if class_is_multiarch_p
2050 params
="gdbarch, ${actual}"
2055 if [ "x${returntype}" = "xvoid" ]
2057 printf " gdbarch->${function} (${params});\n"
2059 printf " return gdbarch->${function} (${params});\n"
2064 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2065 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2067 printf " gdbarch->${function} = ${function};\n"
2069 elif class_is_variable_p
2072 printf "${returntype}\n"
2073 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2075 printf " gdb_assert (gdbarch != NULL);\n"
2076 if [ "x${invalid_p}" = "x0" ]
2078 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2079 elif [ -n "${invalid_p}" ]
2081 printf " /* Check variable is valid. */\n"
2082 printf " gdb_assert (!(${invalid_p}));\n"
2083 elif [ -n "${predefault}" ]
2085 printf " /* Check variable changed from pre-default. */\n"
2086 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2088 printf " if (gdbarch_debug >= 2)\n"
2089 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2090 printf " return gdbarch->${function};\n"
2094 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2095 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2097 printf " gdbarch->${function} = ${function};\n"
2099 elif class_is_info_p
2102 printf "${returntype}\n"
2103 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2105 printf " gdb_assert (gdbarch != NULL);\n"
2106 printf " if (gdbarch_debug >= 2)\n"
2107 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2108 printf " return gdbarch->${function};\n"
2113 # All the trailing guff
2117 /* Keep a registry of per-architecture data-pointers required by GDB
2124 gdbarch_data_pre_init_ftype *pre_init;
2125 gdbarch_data_post_init_ftype *post_init;
2128 struct gdbarch_data_registration
2130 struct gdbarch_data *data;
2131 struct gdbarch_data_registration *next;
2134 struct gdbarch_data_registry
2137 struct gdbarch_data_registration *registrations;
2140 struct gdbarch_data_registry gdbarch_data_registry =
2145 static struct gdbarch_data *
2146 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2147 gdbarch_data_post_init_ftype *post_init)
2149 struct gdbarch_data_registration **curr;
2151 /* Append the new registration. */
2152 for (curr = &gdbarch_data_registry.registrations;
2154 curr = &(*curr)->next);
2155 (*curr) = XNEW (struct gdbarch_data_registration);
2156 (*curr)->next = NULL;
2157 (*curr)->data = XNEW (struct gdbarch_data);
2158 (*curr)->data->index = gdbarch_data_registry.nr++;
2159 (*curr)->data->pre_init = pre_init;
2160 (*curr)->data->post_init = post_init;
2161 (*curr)->data->init_p = 1;
2162 return (*curr)->data;
2165 struct gdbarch_data *
2166 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2168 return gdbarch_data_register (pre_init, NULL);
2171 struct gdbarch_data *
2172 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2174 return gdbarch_data_register (NULL, post_init);
2177 /* Create/delete the gdbarch data vector. */
2180 alloc_gdbarch_data (struct gdbarch *gdbarch)
2182 gdb_assert (gdbarch->data == NULL);
2183 gdbarch->nr_data = gdbarch_data_registry.nr;
2184 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2187 /* Initialize the current value of the specified per-architecture
2191 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2192 struct gdbarch_data *data,
2195 gdb_assert (data->index < gdbarch->nr_data);
2196 gdb_assert (gdbarch->data[data->index] == NULL);
2197 gdb_assert (data->pre_init == NULL);
2198 gdbarch->data[data->index] = pointer;
2201 /* Return the current value of the specified per-architecture
2205 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2207 gdb_assert (data->index < gdbarch->nr_data);
2208 if (gdbarch->data[data->index] == NULL)
2210 /* The data-pointer isn't initialized, call init() to get a
2212 if (data->pre_init != NULL)
2213 /* Mid architecture creation: pass just the obstack, and not
2214 the entire architecture, as that way it isn't possible for
2215 pre-init code to refer to undefined architecture
2217 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2218 else if (gdbarch->initialized_p
2219 && data->post_init != NULL)
2220 /* Post architecture creation: pass the entire architecture
2221 (as all fields are valid), but be careful to also detect
2222 recursive references. */
2224 gdb_assert (data->init_p);
2226 gdbarch->data[data->index] = data->post_init (gdbarch);
2230 /* The architecture initialization hasn't completed - punt -
2231 hope that the caller knows what they are doing. Once
2232 deprecated_set_gdbarch_data has been initialized, this can be
2233 changed to an internal error. */
2235 gdb_assert (gdbarch->data[data->index] != NULL);
2237 return gdbarch->data[data->index];
2241 /* Keep a registry of the architectures known by GDB. */
2243 struct gdbarch_registration
2245 enum bfd_architecture bfd_architecture;
2246 gdbarch_init_ftype *init;
2247 gdbarch_dump_tdep_ftype *dump_tdep;
2248 struct gdbarch_list *arches;
2249 struct gdbarch_registration *next;
2252 static struct gdbarch_registration *gdbarch_registry = NULL;
2255 append_name (const char ***buf, int *nr, const char *name)
2257 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2263 gdbarch_printable_names (void)
2265 /* Accumulate a list of names based on the registed list of
2268 const char **arches = NULL;
2269 struct gdbarch_registration *rego;
2271 for (rego = gdbarch_registry;
2275 const struct bfd_arch_info *ap;
2276 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2278 internal_error (__FILE__, __LINE__,
2279 _("gdbarch_architecture_names: multi-arch unknown"));
2282 append_name (&arches, &nr_arches, ap->printable_name);
2287 append_name (&arches, &nr_arches, NULL);
2293 gdbarch_register (enum bfd_architecture bfd_architecture,
2294 gdbarch_init_ftype *init,
2295 gdbarch_dump_tdep_ftype *dump_tdep)
2297 struct gdbarch_registration **curr;
2298 const struct bfd_arch_info *bfd_arch_info;
2300 /* Check that BFD recognizes this architecture */
2301 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2302 if (bfd_arch_info == NULL)
2304 internal_error (__FILE__, __LINE__,
2305 _("gdbarch: Attempt to register "
2306 "unknown architecture (%d)"),
2309 /* Check that we haven't seen this architecture before. */
2310 for (curr = &gdbarch_registry;
2312 curr = &(*curr)->next)
2314 if (bfd_architecture == (*curr)->bfd_architecture)
2315 internal_error (__FILE__, __LINE__,
2316 _("gdbarch: Duplicate registration "
2317 "of architecture (%s)"),
2318 bfd_arch_info->printable_name);
2322 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2323 bfd_arch_info->printable_name,
2324 host_address_to_string (init));
2326 (*curr) = XNEW (struct gdbarch_registration);
2327 (*curr)->bfd_architecture = bfd_architecture;
2328 (*curr)->init = init;
2329 (*curr)->dump_tdep = dump_tdep;
2330 (*curr)->arches = NULL;
2331 (*curr)->next = NULL;
2335 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2336 gdbarch_init_ftype *init)
2338 gdbarch_register (bfd_architecture, init, NULL);
2342 /* Look for an architecture using gdbarch_info. */
2344 struct gdbarch_list *
2345 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2346 const struct gdbarch_info *info)
2348 for (; arches != NULL; arches = arches->next)
2350 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2352 if (info->byte_order != arches->gdbarch->byte_order)
2354 if (info->osabi != arches->gdbarch->osabi)
2356 if (info->target_desc != arches->gdbarch->target_desc)
2364 /* Find an architecture that matches the specified INFO. Create a new
2365 architecture if needed. Return that new architecture. */
2368 gdbarch_find_by_info (struct gdbarch_info info)
2370 struct gdbarch *new_gdbarch;
2371 struct gdbarch_registration *rego;
2373 /* Fill in missing parts of the INFO struct using a number of
2374 sources: "set ..."; INFOabfd supplied; and the global
2376 gdbarch_info_fill (&info);
2378 /* Must have found some sort of architecture. */
2379 gdb_assert (info.bfd_arch_info != NULL);
2383 fprintf_unfiltered (gdb_stdlog,
2384 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2385 (info.bfd_arch_info != NULL
2386 ? info.bfd_arch_info->printable_name
2388 fprintf_unfiltered (gdb_stdlog,
2389 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2391 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2392 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2394 fprintf_unfiltered (gdb_stdlog,
2395 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2396 info.osabi, gdbarch_osabi_name (info.osabi));
2397 fprintf_unfiltered (gdb_stdlog,
2398 "gdbarch_find_by_info: info.abfd %s\n",
2399 host_address_to_string (info.abfd));
2400 fprintf_unfiltered (gdb_stdlog,
2401 "gdbarch_find_by_info: info.tdep_info %s\n",
2402 host_address_to_string (info.tdep_info));
2405 /* Find the tdep code that knows about this architecture. */
2406 for (rego = gdbarch_registry;
2409 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2414 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2415 "No matching architecture\n");
2419 /* Ask the tdep code for an architecture that matches "info". */
2420 new_gdbarch = rego->init (info, rego->arches);
2422 /* Did the tdep code like it? No. Reject the change and revert to
2423 the old architecture. */
2424 if (new_gdbarch == NULL)
2427 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2428 "Target rejected architecture\n");
2432 /* Is this a pre-existing architecture (as determined by already
2433 being initialized)? Move it to the front of the architecture
2434 list (keeping the list sorted Most Recently Used). */
2435 if (new_gdbarch->initialized_p)
2437 struct gdbarch_list **list;
2438 struct gdbarch_list *self;
2440 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2441 "Previous architecture %s (%s) selected\n",
2442 host_address_to_string (new_gdbarch),
2443 new_gdbarch->bfd_arch_info->printable_name);
2444 /* Find the existing arch in the list. */
2445 for (list = ®o->arches;
2446 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2447 list = &(*list)->next);
2448 /* It had better be in the list of architectures. */
2449 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2452 (*list) = self->next;
2453 /* Insert SELF at the front. */
2454 self->next = rego->arches;
2455 rego->arches = self;
2460 /* It's a new architecture. */
2462 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2463 "New architecture %s (%s) selected\n",
2464 host_address_to_string (new_gdbarch),
2465 new_gdbarch->bfd_arch_info->printable_name);
2467 /* Insert the new architecture into the front of the architecture
2468 list (keep the list sorted Most Recently Used). */
2470 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2471 self->next = rego->arches;
2472 self->gdbarch = new_gdbarch;
2473 rego->arches = self;
2476 /* Check that the newly installed architecture is valid. Plug in
2477 any post init values. */
2478 new_gdbarch->dump_tdep = rego->dump_tdep;
2479 verify_gdbarch (new_gdbarch);
2480 new_gdbarch->initialized_p = 1;
2483 gdbarch_dump (new_gdbarch, gdb_stdlog);
2488 /* Make the specified architecture current. */
2491 set_target_gdbarch (struct gdbarch *new_gdbarch)
2493 gdb_assert (new_gdbarch != NULL);
2494 gdb_assert (new_gdbarch->initialized_p);
2495 current_inferior ()->gdbarch = new_gdbarch;
2496 observer_notify_architecture_changed (new_gdbarch);
2497 registers_changed ();
2500 /* Return the current inferior's arch. */
2503 target_gdbarch (void)
2505 return current_inferior ()->gdbarch;
2508 extern void _initialize_gdbarch (void);
2511 _initialize_gdbarch (void)
2513 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2514 Set architecture debugging."), _("\\
2515 Show architecture debugging."), _("\\
2516 When non-zero, architecture debugging is enabled."),
2519 &setdebuglist, &showdebuglist);
2525 #../move-if-change new-gdbarch.c gdbarch.c
2526 compare_new gdbarch.c