* corelow.c (core_xfer_partial): Pass writebuf to
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
94 if test "x${macro}" = "x="
95 then
96 # Provide a UCASE version of function (for when there isn't MACRO)
97 macro="${FUNCTION}"
98 elif test "${macro}" = "${FUNCTION}"
99 then
100 echo "${function}: Specify = for macro field" 1>&2
101 kill $$
102 exit 1
103 fi
104
105 # Check that macro definition wasn't supplied for multi-arch
106 case "${class}" in
107 [mM] )
108 if test "${macro}" != ""
109 then
110 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
111 kill $$
112 exit 1
113 fi
114 esac
115
116 case "${class}" in
117 m ) staticdefault="${predefault}" ;;
118 M ) staticdefault="0" ;;
119 * ) test "${staticdefault}" || staticdefault=0 ;;
120 esac
121
122 case "${class}" in
123 F | V | M )
124 case "${invalid_p}" in
125 "" )
126 if test -n "${predefault}"
127 then
128 #invalid_p="gdbarch->${function} == ${predefault}"
129 predicate="gdbarch->${function} != ${predefault}"
130 elif class_is_variable_p
131 then
132 predicate="gdbarch->${function} != 0"
133 elif class_is_function_p
134 then
135 predicate="gdbarch->${function} != NULL"
136 fi
137 ;;
138 * )
139 echo "Predicate function ${function} with invalid_p." 1>&2
140 kill $$
141 exit 1
142 ;;
143 esac
144 esac
145
146 # PREDEFAULT is a valid fallback definition of MEMBER when
147 # multi-arch is not enabled. This ensures that the
148 # default value, when multi-arch is the same as the
149 # default value when not multi-arch. POSTDEFAULT is
150 # always a valid definition of MEMBER as this again
151 # ensures consistency.
152
153 if [ -n "${postdefault}" ]
154 then
155 fallbackdefault="${postdefault}"
156 elif [ -n "${predefault}" ]
157 then
158 fallbackdefault="${predefault}"
159 else
160 fallbackdefault="0"
161 fi
162
163 #NOT YET: See gdbarch.log for basic verification of
164 # database
165
166 break
167 fi
168 done
169 if [ -n "${class}" ]
170 then
171 true
172 else
173 false
174 fi
175 }
176
177
178 fallback_default_p ()
179 {
180 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
181 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
182 }
183
184 class_is_variable_p ()
185 {
186 case "${class}" in
187 *v* | *V* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_function_p ()
193 {
194 case "${class}" in
195 *f* | *F* | *m* | *M* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200 class_is_multiarch_p ()
201 {
202 case "${class}" in
203 *m* | *M* ) true ;;
204 * ) false ;;
205 esac
206 }
207
208 class_is_predicate_p ()
209 {
210 case "${class}" in
211 *F* | *V* | *M* ) true ;;
212 * ) false ;;
213 esac
214 }
215
216 class_is_info_p ()
217 {
218 case "${class}" in
219 *i* ) true ;;
220 * ) false ;;
221 esac
222 }
223
224
225 # dump out/verify the doco
226 for field in ${read}
227 do
228 case ${field} in
229
230 class ) : ;;
231
232 # # -> line disable
233 # f -> function
234 # hiding a function
235 # F -> function + predicate
236 # hiding a function + predicate to test function validity
237 # v -> variable
238 # hiding a variable
239 # V -> variable + predicate
240 # hiding a variable + predicate to test variables validity
241 # i -> set from info
242 # hiding something from the ``struct info'' object
243 # m -> multi-arch function
244 # hiding a multi-arch function (parameterised with the architecture)
245 # M -> multi-arch function + predicate
246 # hiding a multi-arch function + predicate to test function validity
247
248 macro ) : ;;
249
250 # The name of the legacy C macro by which this method can be
251 # accessed. If empty, no macro is defined. If "=", a macro
252 # formed from the upper-case function name is used.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 staticdefault ) : ;;
278
279 # To help with the GDB startup a static gdbarch object is
280 # created. STATICDEFAULT is the value to insert into that
281 # static gdbarch object. Since this a static object only
282 # simple expressions can be used.
283
284 # If STATICDEFAULT is empty, zero is used.
285
286 predefault ) : ;;
287
288 # An initial value to assign to MEMBER of the freshly
289 # malloc()ed gdbarch object. After initialization, the
290 # freshly malloc()ed object is passed to the target
291 # architecture code for further updates.
292
293 # If PREDEFAULT is empty, zero is used.
294
295 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
296 # INVALID_P are specified, PREDEFAULT will be used as the
297 # default for the non- multi-arch target.
298
299 # A zero PREDEFAULT function will force the fallback to call
300 # internal_error().
301
302 # Variable declarations can refer to ``gdbarch'' which will
303 # contain the current architecture. Care should be taken.
304
305 postdefault ) : ;;
306
307 # A value to assign to MEMBER of the new gdbarch object should
308 # the target architecture code fail to change the PREDEFAULT
309 # value.
310
311 # If POSTDEFAULT is empty, no post update is performed.
312
313 # If both INVALID_P and POSTDEFAULT are non-empty then
314 # INVALID_P will be used to determine if MEMBER should be
315 # changed to POSTDEFAULT.
316
317 # If a non-empty POSTDEFAULT and a zero INVALID_P are
318 # specified, POSTDEFAULT will be used as the default for the
319 # non- multi-arch target (regardless of the value of
320 # PREDEFAULT).
321
322 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
323
324 # Variable declarations can refer to ``current_gdbarch'' which
325 # will contain the current architecture. Care should be
326 # taken.
327
328 invalid_p ) : ;;
329
330 # A predicate equation that validates MEMBER. Non-zero is
331 # returned if the code creating the new architecture failed to
332 # initialize MEMBER or the initialized the member is invalid.
333 # If POSTDEFAULT is non-empty then MEMBER will be updated to
334 # that value. If POSTDEFAULT is empty then internal_error()
335 # is called.
336
337 # If INVALID_P is empty, a check that MEMBER is no longer
338 # equal to PREDEFAULT is used.
339
340 # The expression ``0'' disables the INVALID_P check making
341 # PREDEFAULT a legitimate value.
342
343 # See also PREDEFAULT and POSTDEFAULT.
344
345 print ) : ;;
346
347 # An optional expression that convers MEMBER to a value
348 # suitable for formatting using %s.
349
350 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
351 # (anything else) is used.
352
353 garbage_at_eol ) : ;;
354
355 # Catches stray fields.
356
357 *)
358 echo "Bad field ${field}"
359 exit 1;;
360 esac
361 done
362
363
364 function_list ()
365 {
366 # See below (DOCO) for description of each field
367 cat <<EOF
368 i::const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
369 #
370 i::int:byte_order:::BFD_ENDIAN_BIG
371 #
372 i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
373 #
374 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 #
379 # Number of bits in a short or unsigned short for the target machine.
380 v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
386 # machine.
387 v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
388
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
392 # Each format describes both the big and little endian layouts (if
393 # useful).
394
395 v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
396 v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
397 v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
398 v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
399 v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
400 v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
401
402 # For most targets, a pointer on the target and its representation as an
403 # address in GDB have the same size and "look the same". For such a
404 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
405 # / addr_bit will be set from it.
406 #
407 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
408 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
409 # as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
415 #
416 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
417 v::int:char_signed:::1:-1:1
418 #
419 F::CORE_ADDR:read_pc:struct regcache *regcache:regcache
420 F::void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 # serious shakedown.
424 f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
425 #
426 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
427 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
428 #
429 v::int:num_regs:::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v::int:num_pseudo_regs:::0:0::0
435
436 # GDB's standard (or well known) register numbers. These can map onto
437 # a real register or a pseudo (computed) register or not be defined at
438 # all (-1).
439 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
440 v::int:sp_regnum:::-1:-1::0
441 v::int:pc_regnum:::-1:-1::0
442 v::int:ps_regnum:::-1:-1::0
443 v::int:fp0_regnum:::0:-1::0
444 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
445 f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
446 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
447 f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
448 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
449 f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
450 # Convert from an sdb register number to an internal gdb register number.
451 f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
452 f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
453 f::const char *:register_name:int regnr:regnr
454
455 # Return the type of a register specified by the architecture. Only
456 # the register cache should call this function directly; others should
457 # use "register_type".
458 M::struct type *:register_type:int reg_nr:reg_nr
459
460 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
461 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
462 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
463 # deprecated_fp_regnum.
464 v::int:deprecated_fp_regnum:::-1:-1::0
465
466 # See gdbint.texinfo. See infcall.c.
467 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
468 v::int:call_dummy_location::::AT_ENTRY_POINT::0
469 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr, regcache
470
471 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
472 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
473 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 # MAP a GDB RAW register number onto a simulator register number. See
475 # also include/...-sim.h.
476 f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
477 f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
478 f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
479 # setjmp/longjmp support.
480 F::int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
481 #
482 v::int:believe_pcc_promotion:::::::
483 #
484 f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
485 f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
486 f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
487 # Construct a value representing the contents of register REGNUM in
488 # frame FRAME, interpreted as type TYPE. The routine needs to
489 # allocate and return a struct value with all value attributes
490 # (but not the value contents) filled in.
491 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
492 #
493 f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
494 f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
495 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
496
497 # It has been suggested that this, well actually its predecessor,
498 # should take the type/value of the function to be called and not the
499 # return type. This is left as an exercise for the reader.
500
501 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
502 # the predicate with default hack to avoid calling store_return_value
503 # (via legacy_return_value), when a small struct is involved.
504
505 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
506
507 # The deprecated methods extract_return_value, store_return_value,
508 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
509 # deprecated_use_struct_convention have all been folded into
510 # RETURN_VALUE.
511
512 f::void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
513 f::void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
514 f::int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
515
516 f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
517 f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
518 f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
519 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
520 f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
521 f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
522 v::CORE_ADDR:decr_pc_after_break:::0:::0
523
524 # A function can be addressed by either it's "pointer" (possibly a
525 # descriptor address) or "entry point" (first executable instruction).
526 # The method "convert_from_func_ptr_addr" converting the former to the
527 # latter. gdbarch_deprecated_function_start_offset is being used to implement
528 # a simplified subset of that functionality - the function's address
529 # corresponds to the "function pointer" and the function's start
530 # corresponds to the "function entry point" - and hence is redundant.
531
532 v::CORE_ADDR:deprecated_function_start_offset:::0:::0
533
534 # Return the remote protocol register number associated with this
535 # register. Normally the identity mapping.
536 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
537
538 # Fetch the target specific address used to represent a load module.
539 F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
540 #
541 v::CORE_ADDR:frame_args_skip:::0:::0
542 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
543 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
544 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
545 # frame-base. Enable frame-base before frame-unwind.
546 F::int:frame_num_args:struct frame_info *frame:frame
547 #
548 M::CORE_ADDR:frame_align:CORE_ADDR address:address
549 # deprecated_reg_struct_has_addr has been replaced by
550 # stabs_argument_has_addr.
551 F::int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
552 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
553 v::int:frame_red_zone_size
554 #
555 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
556 # On some machines there are bits in addresses which are not really
557 # part of the address, but are used by the kernel, the hardware, etc.
558 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
559 # we get a "real" address such as one would find in a symbol table.
560 # This is used only for addresses of instructions, and even then I'm
561 # not sure it's used in all contexts. It exists to deal with there
562 # being a few stray bits in the PC which would mislead us, not as some
563 # sort of generic thing to handle alignment or segmentation (it's
564 # possible it should be in TARGET_READ_PC instead).
565 f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
566 # It is not at all clear why gdbarch_smash_text_address is not folded into
567 # gdbarch_addr_bits_remove.
568 f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
569
570 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
571 # indicates if the target needs software single step. An ISA method to
572 # implement it.
573 #
574 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
575 # breakpoints using the breakpoint system instead of blatting memory directly
576 # (as with rs6000).
577 #
578 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
579 # target can single step. If not, then implement single step using breakpoints.
580 #
581 # A return value of 1 means that the software_single_step breakpoints
582 # were inserted; 0 means they were not.
583 F::int:software_single_step:struct frame_info *frame:frame
584
585 # Return non-zero if the processor is executing a delay slot and a
586 # further single-step is needed before the instruction finishes.
587 M::int:single_step_through_delay:struct frame_info *frame:frame
588 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
589 # disassembler. Perhaps objdump can handle it?
590 f::int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
591 f::CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
592
593
594 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
595 # evaluates non-zero, this is the address where the debugger will place
596 # a step-resume breakpoint to get us past the dynamic linker.
597 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
598 # Some systems also have trampoline code for returning from shared libs.
599 f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
600
601 # A target might have problems with watchpoints as soon as the stack
602 # frame of the current function has been destroyed. This mostly happens
603 # as the first action in a funtion's epilogue. in_function_epilogue_p()
604 # is defined to return a non-zero value if either the given addr is one
605 # instruction after the stack destroying instruction up to the trailing
606 # return instruction or if we can figure out that the stack frame has
607 # already been invalidated regardless of the value of addr. Targets
608 # which don't suffer from that problem could just let this functionality
609 # untouched.
610 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
611 # Given a vector of command-line arguments, return a newly allocated
612 # string which, when passed to the create_inferior function, will be
613 # parsed (on Unix systems, by the shell) to yield the same vector.
614 # This function should call error() if the argument vector is not
615 # representable for this target or if this target does not support
616 # command-line arguments.
617 # ARGC is the number of elements in the vector.
618 # ARGV is an array of strings, one per argument.
619 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
620 f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
621 f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
622 v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
623 v::int:cannot_step_breakpoint:::0:0::0
624 v::int:have_nonsteppable_watchpoint:::0:0::0
625 F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
626 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
627 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
628 # Is a register in a group
629 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
630 # Fetch the pointer to the ith function argument.
631 F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
632
633 # Return the appropriate register set for a core file section with
634 # name SECT_NAME and size SECT_SIZE.
635 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
636
637 # If the elements of C++ vtables are in-place function descriptors rather
638 # than normal function pointers (which may point to code or a descriptor),
639 # set this to one.
640 v::int:vtable_function_descriptors:::0:0::0
641
642 # Set if the least significant bit of the delta is used instead of the least
643 # significant bit of the pfn for pointers to virtual member functions.
644 v::int:vbit_in_delta:::0:0::0
645
646 # Advance PC to next instruction in order to skip a permanent breakpoint.
647 F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
648
649 # Refresh overlay mapped state for section OSECT.
650 F::void:overlay_update:struct obj_section *osect:osect
651 EOF
652 }
653
654 #
655 # The .log file
656 #
657 exec > new-gdbarch.log
658 function_list | while do_read
659 do
660 cat <<EOF
661 ${class} ${returntype} ${function} ($formal)
662 EOF
663 for r in ${read}
664 do
665 eval echo \"\ \ \ \ ${r}=\${${r}}\"
666 done
667 if class_is_predicate_p && fallback_default_p
668 then
669 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
670 kill $$
671 exit 1
672 fi
673 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
674 then
675 echo "Error: postdefault is useless when invalid_p=0" 1>&2
676 kill $$
677 exit 1
678 fi
679 if class_is_multiarch_p
680 then
681 if class_is_predicate_p ; then :
682 elif test "x${predefault}" = "x"
683 then
684 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
685 kill $$
686 exit 1
687 fi
688 fi
689 echo ""
690 done
691
692 exec 1>&2
693 compare_new gdbarch.log
694
695
696 copyright ()
697 {
698 cat <<EOF
699 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
700
701 /* Dynamic architecture support for GDB, the GNU debugger.
702
703 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
704 Free Software Foundation, Inc.
705
706 This file is part of GDB.
707
708 This program is free software; you can redistribute it and/or modify
709 it under the terms of the GNU General Public License as published by
710 the Free Software Foundation; either version 3 of the License, or
711 (at your option) any later version.
712
713 This program is distributed in the hope that it will be useful,
714 but WITHOUT ANY WARRANTY; without even the implied warranty of
715 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
716 GNU General Public License for more details.
717
718 You should have received a copy of the GNU General Public License
719 along with this program. If not, see <http://www.gnu.org/licenses/>. */
720
721 /* This file was created with the aid of \`\`gdbarch.sh''.
722
723 The Bourne shell script \`\`gdbarch.sh'' creates the files
724 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
725 against the existing \`\`gdbarch.[hc]''. Any differences found
726 being reported.
727
728 If editing this file, please also run gdbarch.sh and merge any
729 changes into that script. Conversely, when making sweeping changes
730 to this file, modifying gdbarch.sh and using its output may prove
731 easier. */
732
733 EOF
734 }
735
736 #
737 # The .h file
738 #
739
740 exec > new-gdbarch.h
741 copyright
742 cat <<EOF
743 #ifndef GDBARCH_H
744 #define GDBARCH_H
745
746 struct floatformat;
747 struct ui_file;
748 struct frame_info;
749 struct value;
750 struct objfile;
751 struct obj_section;
752 struct minimal_symbol;
753 struct regcache;
754 struct reggroup;
755 struct regset;
756 struct disassemble_info;
757 struct target_ops;
758 struct obstack;
759 struct bp_target_info;
760 struct target_desc;
761
762 extern struct gdbarch *current_gdbarch;
763 EOF
764
765 # function typedef's
766 printf "\n"
767 printf "\n"
768 printf "/* The following are pre-initialized by GDBARCH. */\n"
769 function_list | while do_read
770 do
771 if class_is_info_p
772 then
773 printf "\n"
774 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
775 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
776 if test -n "${macro}"
777 then
778 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
779 printf "#error \"Non multi-arch definition of ${macro}\"\n"
780 printf "#endif\n"
781 printf "#if !defined (${macro})\n"
782 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
783 printf "#endif\n"
784 fi
785 fi
786 done
787
788 # function typedef's
789 printf "\n"
790 printf "\n"
791 printf "/* The following are initialized by the target dependent code. */\n"
792 function_list | while do_read
793 do
794 if [ -n "${comment}" ]
795 then
796 echo "${comment}" | sed \
797 -e '2 s,#,/*,' \
798 -e '3,$ s,#, ,' \
799 -e '$ s,$, */,'
800 fi
801
802 if class_is_predicate_p
803 then
804 if test -n "${macro}"
805 then
806 printf "\n"
807 printf "#if defined (${macro})\n"
808 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
809 printf "#if !defined (${macro}_P)\n"
810 printf "#define ${macro}_P() (1)\n"
811 printf "#endif\n"
812 printf "#endif\n"
813 fi
814 printf "\n"
815 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
816 if test -n "${macro}"
817 then
818 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
819 printf "#error \"Non multi-arch definition of ${macro}\"\n"
820 printf "#endif\n"
821 printf "#if !defined (${macro}_P)\n"
822 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
823 printf "#endif\n"
824 fi
825 fi
826 if class_is_variable_p
827 then
828 printf "\n"
829 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
830 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
831 if test -n "${macro}"
832 then
833 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
834 printf "#error \"Non multi-arch definition of ${macro}\"\n"
835 printf "#endif\n"
836 printf "#if !defined (${macro})\n"
837 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
838 printf "#endif\n"
839 fi
840 fi
841 if class_is_function_p
842 then
843 printf "\n"
844 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
845 then
846 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
847 elif class_is_multiarch_p
848 then
849 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
850 else
851 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
852 fi
853 if [ "x${formal}" = "xvoid" ]
854 then
855 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
856 else
857 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
858 fi
859 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
860 if test -n "${macro}"
861 then
862 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
863 printf "#error \"Non multi-arch definition of ${macro}\"\n"
864 printf "#endif\n"
865 if [ "x${actual}" = "x" ]
866 then
867 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
868 elif [ "x${actual}" = "x-" ]
869 then
870 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
871 else
872 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
873 fi
874 printf "#if !defined (${macro})\n"
875 if [ "x${actual}" = "x" ]
876 then
877 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
878 elif [ "x${actual}" = "x-" ]
879 then
880 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
881 else
882 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
883 fi
884 printf "#endif\n"
885 fi
886 fi
887 done
888
889 # close it off
890 cat <<EOF
891
892 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
893
894
895 /* Mechanism for co-ordinating the selection of a specific
896 architecture.
897
898 GDB targets (*-tdep.c) can register an interest in a specific
899 architecture. Other GDB components can register a need to maintain
900 per-architecture data.
901
902 The mechanisms below ensures that there is only a loose connection
903 between the set-architecture command and the various GDB
904 components. Each component can independently register their need
905 to maintain architecture specific data with gdbarch.
906
907 Pragmatics:
908
909 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
910 didn't scale.
911
912 The more traditional mega-struct containing architecture specific
913 data for all the various GDB components was also considered. Since
914 GDB is built from a variable number of (fairly independent)
915 components it was determined that the global aproach was not
916 applicable. */
917
918
919 /* Register a new architectural family with GDB.
920
921 Register support for the specified ARCHITECTURE with GDB. When
922 gdbarch determines that the specified architecture has been
923 selected, the corresponding INIT function is called.
924
925 --
926
927 The INIT function takes two parameters: INFO which contains the
928 information available to gdbarch about the (possibly new)
929 architecture; ARCHES which is a list of the previously created
930 \`\`struct gdbarch'' for this architecture.
931
932 The INFO parameter is, as far as possible, be pre-initialized with
933 information obtained from INFO.ABFD or the global defaults.
934
935 The ARCHES parameter is a linked list (sorted most recently used)
936 of all the previously created architures for this architecture
937 family. The (possibly NULL) ARCHES->gdbarch can used to access
938 values from the previously selected architecture for this
939 architecture family. The global \`\`current_gdbarch'' shall not be
940 used.
941
942 The INIT function shall return any of: NULL - indicating that it
943 doesn't recognize the selected architecture; an existing \`\`struct
944 gdbarch'' from the ARCHES list - indicating that the new
945 architecture is just a synonym for an earlier architecture (see
946 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
947 - that describes the selected architecture (see gdbarch_alloc()).
948
949 The DUMP_TDEP function shall print out all target specific values.
950 Care should be taken to ensure that the function works in both the
951 multi-arch and non- multi-arch cases. */
952
953 struct gdbarch_list
954 {
955 struct gdbarch *gdbarch;
956 struct gdbarch_list *next;
957 };
958
959 struct gdbarch_info
960 {
961 /* Use default: NULL (ZERO). */
962 const struct bfd_arch_info *bfd_arch_info;
963
964 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
965 int byte_order;
966
967 /* Use default: NULL (ZERO). */
968 bfd *abfd;
969
970 /* Use default: NULL (ZERO). */
971 struct gdbarch_tdep_info *tdep_info;
972
973 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
974 enum gdb_osabi osabi;
975
976 /* Use default: NULL (ZERO). */
977 const struct target_desc *target_desc;
978 };
979
980 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
981 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
982
983 /* DEPRECATED - use gdbarch_register() */
984 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
985
986 extern void gdbarch_register (enum bfd_architecture architecture,
987 gdbarch_init_ftype *,
988 gdbarch_dump_tdep_ftype *);
989
990
991 /* Return a freshly allocated, NULL terminated, array of the valid
992 architecture names. Since architectures are registered during the
993 _initialize phase this function only returns useful information
994 once initialization has been completed. */
995
996 extern const char **gdbarch_printable_names (void);
997
998
999 /* Helper function. Search the list of ARCHES for a GDBARCH that
1000 matches the information provided by INFO. */
1001
1002 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1003
1004
1005 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1006 basic initialization using values obtained from the INFO and TDEP
1007 parameters. set_gdbarch_*() functions are called to complete the
1008 initialization of the object. */
1009
1010 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1011
1012
1013 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1014 It is assumed that the caller freeds the \`\`struct
1015 gdbarch_tdep''. */
1016
1017 extern void gdbarch_free (struct gdbarch *);
1018
1019
1020 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1021 obstack. The memory is freed when the corresponding architecture
1022 is also freed. */
1023
1024 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1025 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1026 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1027
1028
1029 /* Helper function. Force an update of the current architecture.
1030
1031 The actual architecture selected is determined by INFO, \`\`(gdb) set
1032 architecture'' et.al., the existing architecture and BFD's default
1033 architecture. INFO should be initialized to zero and then selected
1034 fields should be updated.
1035
1036 Returns non-zero if the update succeeds */
1037
1038 extern int gdbarch_update_p (struct gdbarch_info info);
1039
1040
1041 /* Helper function. Find an architecture matching info.
1042
1043 INFO should be initialized using gdbarch_info_init, relevant fields
1044 set, and then finished using gdbarch_info_fill.
1045
1046 Returns the corresponding architecture, or NULL if no matching
1047 architecture was found. "current_gdbarch" is not updated. */
1048
1049 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1050
1051
1052 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1053
1054 FIXME: kettenis/20031124: Of the functions that follow, only
1055 gdbarch_from_bfd is supposed to survive. The others will
1056 dissappear since in the future GDB will (hopefully) be truly
1057 multi-arch. However, for now we're still stuck with the concept of
1058 a single active architecture. */
1059
1060 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1061
1062
1063 /* Register per-architecture data-pointer.
1064
1065 Reserve space for a per-architecture data-pointer. An identifier
1066 for the reserved data-pointer is returned. That identifer should
1067 be saved in a local static variable.
1068
1069 Memory for the per-architecture data shall be allocated using
1070 gdbarch_obstack_zalloc. That memory will be deleted when the
1071 corresponding architecture object is deleted.
1072
1073 When a previously created architecture is re-selected, the
1074 per-architecture data-pointer for that previous architecture is
1075 restored. INIT() is not re-called.
1076
1077 Multiple registrarants for any architecture are allowed (and
1078 strongly encouraged). */
1079
1080 struct gdbarch_data;
1081
1082 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1083 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1084 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1085 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1086 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1087 struct gdbarch_data *data,
1088 void *pointer);
1089
1090 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1091
1092
1093 /* Set the dynamic target-system-dependent parameters (architecture,
1094 byte-order, ...) using information found in the BFD */
1095
1096 extern void set_gdbarch_from_file (bfd *);
1097
1098
1099 /* Initialize the current architecture to the "first" one we find on
1100 our list. */
1101
1102 extern void initialize_current_architecture (void);
1103
1104 /* gdbarch trace variable */
1105 extern int gdbarch_debug;
1106
1107 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1108
1109 #endif
1110 EOF
1111 exec 1>&2
1112 #../move-if-change new-gdbarch.h gdbarch.h
1113 compare_new gdbarch.h
1114
1115
1116 #
1117 # C file
1118 #
1119
1120 exec > new-gdbarch.c
1121 copyright
1122 cat <<EOF
1123
1124 #include "defs.h"
1125 #include "arch-utils.h"
1126
1127 #include "gdbcmd.h"
1128 #include "inferior.h"
1129 #include "symcat.h"
1130
1131 #include "floatformat.h"
1132
1133 #include "gdb_assert.h"
1134 #include "gdb_string.h"
1135 #include "gdb-events.h"
1136 #include "reggroups.h"
1137 #include "osabi.h"
1138 #include "gdb_obstack.h"
1139
1140 /* Static function declarations */
1141
1142 static void alloc_gdbarch_data (struct gdbarch *);
1143
1144 /* Non-zero if we want to trace architecture code. */
1145
1146 #ifndef GDBARCH_DEBUG
1147 #define GDBARCH_DEBUG 0
1148 #endif
1149 int gdbarch_debug = GDBARCH_DEBUG;
1150 static void
1151 show_gdbarch_debug (struct ui_file *file, int from_tty,
1152 struct cmd_list_element *c, const char *value)
1153 {
1154 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1155 }
1156
1157 static const char *
1158 pformat (const struct floatformat **format)
1159 {
1160 if (format == NULL)
1161 return "(null)";
1162 else
1163 /* Just print out one of them - this is only for diagnostics. */
1164 return format[0]->name;
1165 }
1166
1167 EOF
1168
1169 # gdbarch open the gdbarch object
1170 printf "\n"
1171 printf "/* Maintain the struct gdbarch object */\n"
1172 printf "\n"
1173 printf "struct gdbarch\n"
1174 printf "{\n"
1175 printf " /* Has this architecture been fully initialized? */\n"
1176 printf " int initialized_p;\n"
1177 printf "\n"
1178 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1179 printf " struct obstack *obstack;\n"
1180 printf "\n"
1181 printf " /* basic architectural information */\n"
1182 function_list | while do_read
1183 do
1184 if class_is_info_p
1185 then
1186 printf " ${returntype} ${function};\n"
1187 fi
1188 done
1189 printf "\n"
1190 printf " /* target specific vector. */\n"
1191 printf " struct gdbarch_tdep *tdep;\n"
1192 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1193 printf "\n"
1194 printf " /* per-architecture data-pointers */\n"
1195 printf " unsigned nr_data;\n"
1196 printf " void **data;\n"
1197 printf "\n"
1198 printf " /* per-architecture swap-regions */\n"
1199 printf " struct gdbarch_swap *swap;\n"
1200 printf "\n"
1201 cat <<EOF
1202 /* Multi-arch values.
1203
1204 When extending this structure you must:
1205
1206 Add the field below.
1207
1208 Declare set/get functions and define the corresponding
1209 macro in gdbarch.h.
1210
1211 gdbarch_alloc(): If zero/NULL is not a suitable default,
1212 initialize the new field.
1213
1214 verify_gdbarch(): Confirm that the target updated the field
1215 correctly.
1216
1217 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1218 field is dumped out
1219
1220 \`\`startup_gdbarch()'': Append an initial value to the static
1221 variable (base values on the host's c-type system).
1222
1223 get_gdbarch(): Implement the set/get functions (probably using
1224 the macro's as shortcuts).
1225
1226 */
1227
1228 EOF
1229 function_list | while do_read
1230 do
1231 if class_is_variable_p
1232 then
1233 printf " ${returntype} ${function};\n"
1234 elif class_is_function_p
1235 then
1236 printf " gdbarch_${function}_ftype *${function};\n"
1237 fi
1238 done
1239 printf "};\n"
1240
1241 # A pre-initialized vector
1242 printf "\n"
1243 printf "\n"
1244 cat <<EOF
1245 /* The default architecture uses host values (for want of a better
1246 choice). */
1247 EOF
1248 printf "\n"
1249 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1250 printf "\n"
1251 printf "struct gdbarch startup_gdbarch =\n"
1252 printf "{\n"
1253 printf " 1, /* Always initialized. */\n"
1254 printf " NULL, /* The obstack. */\n"
1255 printf " /* basic architecture information */\n"
1256 function_list | while do_read
1257 do
1258 if class_is_info_p
1259 then
1260 printf " ${staticdefault}, /* ${function} */\n"
1261 fi
1262 done
1263 cat <<EOF
1264 /* target specific vector and its dump routine */
1265 NULL, NULL,
1266 /*per-architecture data-pointers and swap regions */
1267 0, NULL, NULL,
1268 /* Multi-arch values */
1269 EOF
1270 function_list | while do_read
1271 do
1272 if class_is_function_p || class_is_variable_p
1273 then
1274 printf " ${staticdefault}, /* ${function} */\n"
1275 fi
1276 done
1277 cat <<EOF
1278 /* startup_gdbarch() */
1279 };
1280
1281 struct gdbarch *current_gdbarch = &startup_gdbarch;
1282 EOF
1283
1284 # Create a new gdbarch struct
1285 cat <<EOF
1286
1287 /* Create a new \`\`struct gdbarch'' based on information provided by
1288 \`\`struct gdbarch_info''. */
1289 EOF
1290 printf "\n"
1291 cat <<EOF
1292 struct gdbarch *
1293 gdbarch_alloc (const struct gdbarch_info *info,
1294 struct gdbarch_tdep *tdep)
1295 {
1296 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1297 so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
1298 the current local architecture and not the previous global
1299 architecture. This ensures that the new architectures initial
1300 values are not influenced by the previous architecture. Once
1301 everything is parameterised with gdbarch, this will go away. */
1302 struct gdbarch *current_gdbarch;
1303
1304 /* Create an obstack for allocating all the per-architecture memory,
1305 then use that to allocate the architecture vector. */
1306 struct obstack *obstack = XMALLOC (struct obstack);
1307 obstack_init (obstack);
1308 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1309 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1310 current_gdbarch->obstack = obstack;
1311
1312 alloc_gdbarch_data (current_gdbarch);
1313
1314 current_gdbarch->tdep = tdep;
1315 EOF
1316 printf "\n"
1317 function_list | while do_read
1318 do
1319 if class_is_info_p
1320 then
1321 printf " current_gdbarch->${function} = info->${function};\n"
1322 fi
1323 done
1324 printf "\n"
1325 printf " /* Force the explicit initialization of these. */\n"
1326 function_list | while do_read
1327 do
1328 if class_is_function_p || class_is_variable_p
1329 then
1330 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1331 then
1332 printf " current_gdbarch->${function} = ${predefault};\n"
1333 fi
1334 fi
1335 done
1336 cat <<EOF
1337 /* gdbarch_alloc() */
1338
1339 return current_gdbarch;
1340 }
1341 EOF
1342
1343 # Free a gdbarch struct.
1344 printf "\n"
1345 printf "\n"
1346 cat <<EOF
1347 /* Allocate extra space using the per-architecture obstack. */
1348
1349 void *
1350 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1351 {
1352 void *data = obstack_alloc (arch->obstack, size);
1353 memset (data, 0, size);
1354 return data;
1355 }
1356
1357
1358 /* Free a gdbarch struct. This should never happen in normal
1359 operation --- once you've created a gdbarch, you keep it around.
1360 However, if an architecture's init function encounters an error
1361 building the structure, it may need to clean up a partially
1362 constructed gdbarch. */
1363
1364 void
1365 gdbarch_free (struct gdbarch *arch)
1366 {
1367 struct obstack *obstack;
1368 gdb_assert (arch != NULL);
1369 gdb_assert (!arch->initialized_p);
1370 obstack = arch->obstack;
1371 obstack_free (obstack, 0); /* Includes the ARCH. */
1372 xfree (obstack);
1373 }
1374 EOF
1375
1376 # verify a new architecture
1377 cat <<EOF
1378
1379
1380 /* Ensure that all values in a GDBARCH are reasonable. */
1381
1382 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1383 just happens to match the global variable \`\`current_gdbarch''. That
1384 way macros refering to that variable get the local and not the global
1385 version - ulgh. Once everything is parameterised with gdbarch, this
1386 will go away. */
1387
1388 static void
1389 verify_gdbarch (struct gdbarch *current_gdbarch)
1390 {
1391 struct ui_file *log;
1392 struct cleanup *cleanups;
1393 long dummy;
1394 char *buf;
1395 log = mem_fileopen ();
1396 cleanups = make_cleanup_ui_file_delete (log);
1397 /* fundamental */
1398 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1399 fprintf_unfiltered (log, "\n\tbyte-order");
1400 if (current_gdbarch->bfd_arch_info == NULL)
1401 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1402 /* Check those that need to be defined for the given multi-arch level. */
1403 EOF
1404 function_list | while do_read
1405 do
1406 if class_is_function_p || class_is_variable_p
1407 then
1408 if [ "x${invalid_p}" = "x0" ]
1409 then
1410 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1411 elif class_is_predicate_p
1412 then
1413 printf " /* Skip verify of ${function}, has predicate */\n"
1414 # FIXME: See do_read for potential simplification
1415 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1416 then
1417 printf " if (${invalid_p})\n"
1418 printf " current_gdbarch->${function} = ${postdefault};\n"
1419 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1420 then
1421 printf " if (current_gdbarch->${function} == ${predefault})\n"
1422 printf " current_gdbarch->${function} = ${postdefault};\n"
1423 elif [ -n "${postdefault}" ]
1424 then
1425 printf " if (current_gdbarch->${function} == 0)\n"
1426 printf " current_gdbarch->${function} = ${postdefault};\n"
1427 elif [ -n "${invalid_p}" ]
1428 then
1429 printf " if (${invalid_p})\n"
1430 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1431 elif [ -n "${predefault}" ]
1432 then
1433 printf " if (current_gdbarch->${function} == ${predefault})\n"
1434 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1435 fi
1436 fi
1437 done
1438 cat <<EOF
1439 buf = ui_file_xstrdup (log, &dummy);
1440 make_cleanup (xfree, buf);
1441 if (strlen (buf) > 0)
1442 internal_error (__FILE__, __LINE__,
1443 _("verify_gdbarch: the following are invalid ...%s"),
1444 buf);
1445 do_cleanups (cleanups);
1446 }
1447 EOF
1448
1449 # dump the structure
1450 printf "\n"
1451 printf "\n"
1452 cat <<EOF
1453 /* Print out the details of the current architecture. */
1454
1455 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1456 just happens to match the global variable \`\`current_gdbarch''. That
1457 way macros refering to that variable get the local and not the global
1458 version - ulgh. Once everything is parameterised with gdbarch, this
1459 will go away. */
1460
1461 void
1462 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1463 {
1464 const char *gdb_xm_file = "<not-defined>";
1465 const char *gdb_nm_file = "<not-defined>";
1466 const char *gdb_tm_file = "<not-defined>";
1467 #if defined (GDB_XM_FILE)
1468 gdb_xm_file = GDB_XM_FILE;
1469 #endif
1470 fprintf_unfiltered (file,
1471 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1472 gdb_xm_file);
1473 #if defined (GDB_NM_FILE)
1474 gdb_nm_file = GDB_NM_FILE;
1475 #endif
1476 fprintf_unfiltered (file,
1477 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1478 gdb_nm_file);
1479 #if defined (GDB_TM_FILE)
1480 gdb_tm_file = GDB_TM_FILE;
1481 #endif
1482 fprintf_unfiltered (file,
1483 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1484 gdb_tm_file);
1485 EOF
1486 function_list | sort -t: -k 4 | while do_read
1487 do
1488 # First the predicate
1489 if class_is_predicate_p
1490 then
1491 if test -n "${macro}"
1492 then
1493 printf "#ifdef ${macro}_P\n"
1494 printf " fprintf_unfiltered (file,\n"
1495 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1496 printf " \"${macro}_P()\",\n"
1497 printf " XSTRING (${macro}_P ()));\n"
1498 printf "#endif\n"
1499 fi
1500 printf " fprintf_unfiltered (file,\n"
1501 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1502 printf " gdbarch_${function}_p (current_gdbarch));\n"
1503 fi
1504 # Print the macro definition.
1505 if test -n "${macro}"
1506 then
1507 printf "#ifdef ${macro}\n"
1508 if class_is_function_p
1509 then
1510 printf " fprintf_unfiltered (file,\n"
1511 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1512 printf " \"${macro}(${actual})\",\n"
1513 printf " XSTRING (${macro} (${actual})));\n"
1514 else
1515 printf " fprintf_unfiltered (file,\n"
1516 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1517 printf " XSTRING (${macro}));\n"
1518 fi
1519 printf "#endif\n"
1520 fi
1521 # Print the corresponding value.
1522 if class_is_function_p
1523 then
1524 printf " fprintf_unfiltered (file,\n"
1525 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1526 printf " (long) current_gdbarch->${function});\n"
1527 else
1528 # It is a variable
1529 case "${print}:${returntype}" in
1530 :CORE_ADDR )
1531 fmt="0x%s"
1532 print="paddr_nz (current_gdbarch->${function})"
1533 ;;
1534 :* )
1535 fmt="%s"
1536 print="paddr_d (current_gdbarch->${function})"
1537 ;;
1538 * )
1539 fmt="%s"
1540 ;;
1541 esac
1542 printf " fprintf_unfiltered (file,\n"
1543 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1544 printf " ${print});\n"
1545 fi
1546 done
1547 cat <<EOF
1548 if (current_gdbarch->dump_tdep != NULL)
1549 current_gdbarch->dump_tdep (current_gdbarch, file);
1550 }
1551 EOF
1552
1553
1554 # GET/SET
1555 printf "\n"
1556 cat <<EOF
1557 struct gdbarch_tdep *
1558 gdbarch_tdep (struct gdbarch *gdbarch)
1559 {
1560 if (gdbarch_debug >= 2)
1561 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1562 return gdbarch->tdep;
1563 }
1564 EOF
1565 printf "\n"
1566 function_list | while do_read
1567 do
1568 if class_is_predicate_p
1569 then
1570 printf "\n"
1571 printf "int\n"
1572 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1573 printf "{\n"
1574 printf " gdb_assert (gdbarch != NULL);\n"
1575 printf " return ${predicate};\n"
1576 printf "}\n"
1577 fi
1578 if class_is_function_p
1579 then
1580 printf "\n"
1581 printf "${returntype}\n"
1582 if [ "x${formal}" = "xvoid" ]
1583 then
1584 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1585 else
1586 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1587 fi
1588 printf "{\n"
1589 printf " gdb_assert (gdbarch != NULL);\n"
1590 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1591 if class_is_predicate_p && test -n "${predefault}"
1592 then
1593 # Allow a call to a function with a predicate.
1594 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1595 fi
1596 printf " if (gdbarch_debug >= 2)\n"
1597 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1598 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1599 then
1600 if class_is_multiarch_p
1601 then
1602 params="gdbarch"
1603 else
1604 params=""
1605 fi
1606 else
1607 if class_is_multiarch_p
1608 then
1609 params="gdbarch, ${actual}"
1610 else
1611 params="${actual}"
1612 fi
1613 fi
1614 if [ "x${returntype}" = "xvoid" ]
1615 then
1616 printf " gdbarch->${function} (${params});\n"
1617 else
1618 printf " return gdbarch->${function} (${params});\n"
1619 fi
1620 printf "}\n"
1621 printf "\n"
1622 printf "void\n"
1623 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1624 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1625 printf "{\n"
1626 printf " gdbarch->${function} = ${function};\n"
1627 printf "}\n"
1628 elif class_is_variable_p
1629 then
1630 printf "\n"
1631 printf "${returntype}\n"
1632 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1633 printf "{\n"
1634 printf " gdb_assert (gdbarch != NULL);\n"
1635 if [ "x${invalid_p}" = "x0" ]
1636 then
1637 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1638 elif [ -n "${invalid_p}" ]
1639 then
1640 printf " /* Check variable is valid. */\n"
1641 printf " gdb_assert (!(${invalid_p}));\n"
1642 elif [ -n "${predefault}" ]
1643 then
1644 printf " /* Check variable changed from pre-default. */\n"
1645 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1646 fi
1647 printf " if (gdbarch_debug >= 2)\n"
1648 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1649 printf " return gdbarch->${function};\n"
1650 printf "}\n"
1651 printf "\n"
1652 printf "void\n"
1653 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1654 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1655 printf "{\n"
1656 printf " gdbarch->${function} = ${function};\n"
1657 printf "}\n"
1658 elif class_is_info_p
1659 then
1660 printf "\n"
1661 printf "${returntype}\n"
1662 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1663 printf "{\n"
1664 printf " gdb_assert (gdbarch != NULL);\n"
1665 printf " if (gdbarch_debug >= 2)\n"
1666 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1667 printf " return gdbarch->${function};\n"
1668 printf "}\n"
1669 fi
1670 done
1671
1672 # All the trailing guff
1673 cat <<EOF
1674
1675
1676 /* Keep a registry of per-architecture data-pointers required by GDB
1677 modules. */
1678
1679 struct gdbarch_data
1680 {
1681 unsigned index;
1682 int init_p;
1683 gdbarch_data_pre_init_ftype *pre_init;
1684 gdbarch_data_post_init_ftype *post_init;
1685 };
1686
1687 struct gdbarch_data_registration
1688 {
1689 struct gdbarch_data *data;
1690 struct gdbarch_data_registration *next;
1691 };
1692
1693 struct gdbarch_data_registry
1694 {
1695 unsigned nr;
1696 struct gdbarch_data_registration *registrations;
1697 };
1698
1699 struct gdbarch_data_registry gdbarch_data_registry =
1700 {
1701 0, NULL,
1702 };
1703
1704 static struct gdbarch_data *
1705 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1706 gdbarch_data_post_init_ftype *post_init)
1707 {
1708 struct gdbarch_data_registration **curr;
1709 /* Append the new registraration. */
1710 for (curr = &gdbarch_data_registry.registrations;
1711 (*curr) != NULL;
1712 curr = &(*curr)->next);
1713 (*curr) = XMALLOC (struct gdbarch_data_registration);
1714 (*curr)->next = NULL;
1715 (*curr)->data = XMALLOC (struct gdbarch_data);
1716 (*curr)->data->index = gdbarch_data_registry.nr++;
1717 (*curr)->data->pre_init = pre_init;
1718 (*curr)->data->post_init = post_init;
1719 (*curr)->data->init_p = 1;
1720 return (*curr)->data;
1721 }
1722
1723 struct gdbarch_data *
1724 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1725 {
1726 return gdbarch_data_register (pre_init, NULL);
1727 }
1728
1729 struct gdbarch_data *
1730 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1731 {
1732 return gdbarch_data_register (NULL, post_init);
1733 }
1734
1735 /* Create/delete the gdbarch data vector. */
1736
1737 static void
1738 alloc_gdbarch_data (struct gdbarch *gdbarch)
1739 {
1740 gdb_assert (gdbarch->data == NULL);
1741 gdbarch->nr_data = gdbarch_data_registry.nr;
1742 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1743 }
1744
1745 /* Initialize the current value of the specified per-architecture
1746 data-pointer. */
1747
1748 void
1749 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1750 struct gdbarch_data *data,
1751 void *pointer)
1752 {
1753 gdb_assert (data->index < gdbarch->nr_data);
1754 gdb_assert (gdbarch->data[data->index] == NULL);
1755 gdb_assert (data->pre_init == NULL);
1756 gdbarch->data[data->index] = pointer;
1757 }
1758
1759 /* Return the current value of the specified per-architecture
1760 data-pointer. */
1761
1762 void *
1763 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1764 {
1765 gdb_assert (data->index < gdbarch->nr_data);
1766 if (gdbarch->data[data->index] == NULL)
1767 {
1768 /* The data-pointer isn't initialized, call init() to get a
1769 value. */
1770 if (data->pre_init != NULL)
1771 /* Mid architecture creation: pass just the obstack, and not
1772 the entire architecture, as that way it isn't possible for
1773 pre-init code to refer to undefined architecture
1774 fields. */
1775 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1776 else if (gdbarch->initialized_p
1777 && data->post_init != NULL)
1778 /* Post architecture creation: pass the entire architecture
1779 (as all fields are valid), but be careful to also detect
1780 recursive references. */
1781 {
1782 gdb_assert (data->init_p);
1783 data->init_p = 0;
1784 gdbarch->data[data->index] = data->post_init (gdbarch);
1785 data->init_p = 1;
1786 }
1787 else
1788 /* The architecture initialization hasn't completed - punt -
1789 hope that the caller knows what they are doing. Once
1790 deprecated_set_gdbarch_data has been initialized, this can be
1791 changed to an internal error. */
1792 return NULL;
1793 gdb_assert (gdbarch->data[data->index] != NULL);
1794 }
1795 return gdbarch->data[data->index];
1796 }
1797
1798
1799 /* Keep a registry of the architectures known by GDB. */
1800
1801 struct gdbarch_registration
1802 {
1803 enum bfd_architecture bfd_architecture;
1804 gdbarch_init_ftype *init;
1805 gdbarch_dump_tdep_ftype *dump_tdep;
1806 struct gdbarch_list *arches;
1807 struct gdbarch_registration *next;
1808 };
1809
1810 static struct gdbarch_registration *gdbarch_registry = NULL;
1811
1812 static void
1813 append_name (const char ***buf, int *nr, const char *name)
1814 {
1815 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1816 (*buf)[*nr] = name;
1817 *nr += 1;
1818 }
1819
1820 const char **
1821 gdbarch_printable_names (void)
1822 {
1823 /* Accumulate a list of names based on the registed list of
1824 architectures. */
1825 enum bfd_architecture a;
1826 int nr_arches = 0;
1827 const char **arches = NULL;
1828 struct gdbarch_registration *rego;
1829 for (rego = gdbarch_registry;
1830 rego != NULL;
1831 rego = rego->next)
1832 {
1833 const struct bfd_arch_info *ap;
1834 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1835 if (ap == NULL)
1836 internal_error (__FILE__, __LINE__,
1837 _("gdbarch_architecture_names: multi-arch unknown"));
1838 do
1839 {
1840 append_name (&arches, &nr_arches, ap->printable_name);
1841 ap = ap->next;
1842 }
1843 while (ap != NULL);
1844 }
1845 append_name (&arches, &nr_arches, NULL);
1846 return arches;
1847 }
1848
1849
1850 void
1851 gdbarch_register (enum bfd_architecture bfd_architecture,
1852 gdbarch_init_ftype *init,
1853 gdbarch_dump_tdep_ftype *dump_tdep)
1854 {
1855 struct gdbarch_registration **curr;
1856 const struct bfd_arch_info *bfd_arch_info;
1857 /* Check that BFD recognizes this architecture */
1858 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1859 if (bfd_arch_info == NULL)
1860 {
1861 internal_error (__FILE__, __LINE__,
1862 _("gdbarch: Attempt to register unknown architecture (%d)"),
1863 bfd_architecture);
1864 }
1865 /* Check that we haven't seen this architecture before */
1866 for (curr = &gdbarch_registry;
1867 (*curr) != NULL;
1868 curr = &(*curr)->next)
1869 {
1870 if (bfd_architecture == (*curr)->bfd_architecture)
1871 internal_error (__FILE__, __LINE__,
1872 _("gdbarch: Duplicate registraration of architecture (%s)"),
1873 bfd_arch_info->printable_name);
1874 }
1875 /* log it */
1876 if (gdbarch_debug)
1877 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1878 bfd_arch_info->printable_name,
1879 (long) init);
1880 /* Append it */
1881 (*curr) = XMALLOC (struct gdbarch_registration);
1882 (*curr)->bfd_architecture = bfd_architecture;
1883 (*curr)->init = init;
1884 (*curr)->dump_tdep = dump_tdep;
1885 (*curr)->arches = NULL;
1886 (*curr)->next = NULL;
1887 }
1888
1889 void
1890 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1891 gdbarch_init_ftype *init)
1892 {
1893 gdbarch_register (bfd_architecture, init, NULL);
1894 }
1895
1896
1897 /* Look for an architecture using gdbarch_info. */
1898
1899 struct gdbarch_list *
1900 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1901 const struct gdbarch_info *info)
1902 {
1903 for (; arches != NULL; arches = arches->next)
1904 {
1905 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1906 continue;
1907 if (info->byte_order != arches->gdbarch->byte_order)
1908 continue;
1909 if (info->osabi != arches->gdbarch->osabi)
1910 continue;
1911 if (info->target_desc != arches->gdbarch->target_desc)
1912 continue;
1913 return arches;
1914 }
1915 return NULL;
1916 }
1917
1918
1919 /* Find an architecture that matches the specified INFO. Create a new
1920 architecture if needed. Return that new architecture. Assumes
1921 that there is no current architecture. */
1922
1923 static struct gdbarch *
1924 find_arch_by_info (struct gdbarch_info info)
1925 {
1926 struct gdbarch *new_gdbarch;
1927 struct gdbarch_registration *rego;
1928
1929 /* The existing architecture has been swapped out - all this code
1930 works from a clean slate. */
1931 gdb_assert (current_gdbarch == NULL);
1932
1933 /* Fill in missing parts of the INFO struct using a number of
1934 sources: "set ..."; INFOabfd supplied; and the global
1935 defaults. */
1936 gdbarch_info_fill (&info);
1937
1938 /* Must have found some sort of architecture. */
1939 gdb_assert (info.bfd_arch_info != NULL);
1940
1941 if (gdbarch_debug)
1942 {
1943 fprintf_unfiltered (gdb_stdlog,
1944 "find_arch_by_info: info.bfd_arch_info %s\n",
1945 (info.bfd_arch_info != NULL
1946 ? info.bfd_arch_info->printable_name
1947 : "(null)"));
1948 fprintf_unfiltered (gdb_stdlog,
1949 "find_arch_by_info: info.byte_order %d (%s)\n",
1950 info.byte_order,
1951 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1952 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1953 : "default"));
1954 fprintf_unfiltered (gdb_stdlog,
1955 "find_arch_by_info: info.osabi %d (%s)\n",
1956 info.osabi, gdbarch_osabi_name (info.osabi));
1957 fprintf_unfiltered (gdb_stdlog,
1958 "find_arch_by_info: info.abfd 0x%lx\n",
1959 (long) info.abfd);
1960 fprintf_unfiltered (gdb_stdlog,
1961 "find_arch_by_info: info.tdep_info 0x%lx\n",
1962 (long) info.tdep_info);
1963 }
1964
1965 /* Find the tdep code that knows about this architecture. */
1966 for (rego = gdbarch_registry;
1967 rego != NULL;
1968 rego = rego->next)
1969 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1970 break;
1971 if (rego == NULL)
1972 {
1973 if (gdbarch_debug)
1974 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1975 "No matching architecture\n");
1976 return 0;
1977 }
1978
1979 /* Ask the tdep code for an architecture that matches "info". */
1980 new_gdbarch = rego->init (info, rego->arches);
1981
1982 /* Did the tdep code like it? No. Reject the change and revert to
1983 the old architecture. */
1984 if (new_gdbarch == NULL)
1985 {
1986 if (gdbarch_debug)
1987 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1988 "Target rejected architecture\n");
1989 return NULL;
1990 }
1991
1992 /* Is this a pre-existing architecture (as determined by already
1993 being initialized)? Move it to the front of the architecture
1994 list (keeping the list sorted Most Recently Used). */
1995 if (new_gdbarch->initialized_p)
1996 {
1997 struct gdbarch_list **list;
1998 struct gdbarch_list *this;
1999 if (gdbarch_debug)
2000 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2001 "Previous architecture 0x%08lx (%s) selected\n",
2002 (long) new_gdbarch,
2003 new_gdbarch->bfd_arch_info->printable_name);
2004 /* Find the existing arch in the list. */
2005 for (list = &rego->arches;
2006 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2007 list = &(*list)->next);
2008 /* It had better be in the list of architectures. */
2009 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2010 /* Unlink THIS. */
2011 this = (*list);
2012 (*list) = this->next;
2013 /* Insert THIS at the front. */
2014 this->next = rego->arches;
2015 rego->arches = this;
2016 /* Return it. */
2017 return new_gdbarch;
2018 }
2019
2020 /* It's a new architecture. */
2021 if (gdbarch_debug)
2022 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2023 "New architecture 0x%08lx (%s) selected\n",
2024 (long) new_gdbarch,
2025 new_gdbarch->bfd_arch_info->printable_name);
2026
2027 /* Insert the new architecture into the front of the architecture
2028 list (keep the list sorted Most Recently Used). */
2029 {
2030 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2031 this->next = rego->arches;
2032 this->gdbarch = new_gdbarch;
2033 rego->arches = this;
2034 }
2035
2036 /* Check that the newly installed architecture is valid. Plug in
2037 any post init values. */
2038 new_gdbarch->dump_tdep = rego->dump_tdep;
2039 verify_gdbarch (new_gdbarch);
2040 new_gdbarch->initialized_p = 1;
2041
2042 if (gdbarch_debug)
2043 gdbarch_dump (new_gdbarch, gdb_stdlog);
2044
2045 return new_gdbarch;
2046 }
2047
2048 struct gdbarch *
2049 gdbarch_find_by_info (struct gdbarch_info info)
2050 {
2051 struct gdbarch *new_gdbarch;
2052
2053 /* Save the previously selected architecture, setting the global to
2054 NULL. This stops things like gdbarch->init() trying to use the
2055 previous architecture's configuration. The previous architecture
2056 may not even be of the same architecture family. The most recent
2057 architecture of the same family is found at the head of the
2058 rego->arches list. */
2059 struct gdbarch *old_gdbarch = current_gdbarch;
2060 current_gdbarch = NULL;
2061
2062 /* Find the specified architecture. */
2063 new_gdbarch = find_arch_by_info (info);
2064
2065 /* Restore the existing architecture. */
2066 gdb_assert (current_gdbarch == NULL);
2067 current_gdbarch = old_gdbarch;
2068
2069 return new_gdbarch;
2070 }
2071
2072 /* Make the specified architecture current. */
2073
2074 void
2075 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2076 {
2077 gdb_assert (new_gdbarch != NULL);
2078 gdb_assert (current_gdbarch != NULL);
2079 gdb_assert (new_gdbarch->initialized_p);
2080 current_gdbarch = new_gdbarch;
2081 architecture_changed_event ();
2082 reinit_frame_cache ();
2083 }
2084
2085 extern void _initialize_gdbarch (void);
2086
2087 void
2088 _initialize_gdbarch (void)
2089 {
2090 struct cmd_list_element *c;
2091
2092 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2093 Set architecture debugging."), _("\\
2094 Show architecture debugging."), _("\\
2095 When non-zero, architecture debugging is enabled."),
2096 NULL,
2097 show_gdbarch_debug,
2098 &setdebuglist, &showdebuglist);
2099 }
2100 EOF
2101
2102 # close things off
2103 exec 1>&2
2104 #../move-if-change new-gdbarch.c gdbarch.c
2105 compare_new gdbarch.c
This page took 0.07999 seconds and 5 git commands to generate.