Skip unwritable frames in command "finish"
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2016 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # Some targets/architectures can do extra processing/display of
450 # segmentation faults. E.g., Intel MPX boundary faults.
451 # Call the architecture dependent function to handle the fault.
452 # UIOUT is the output stream where the handler will place information.
453 M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
454
455 # GDB's standard (or well known) register numbers. These can map onto
456 # a real register or a pseudo (computed) register or not be defined at
457 # all (-1).
458 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
459 v:int:sp_regnum:::-1:-1::0
460 v:int:pc_regnum:::-1:-1::0
461 v:int:ps_regnum:::-1:-1::0
462 v:int:fp0_regnum:::0:-1::0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
467 # Convert from an sdb register number to an internal gdb register number.
468 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
469 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
470 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
471 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
472 m:const char *:register_name:int regnr:regnr::0
473
474 # Return the type of a register specified by the architecture. Only
475 # the register cache should call this function directly; others should
476 # use "register_type".
477 M:struct type *:register_type:int reg_nr:reg_nr
478
479 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
480 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
481 # deprecated_fp_regnum.
482 v:int:deprecated_fp_regnum:::-1:-1::0
483
484 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
485 v:int:call_dummy_location::::AT_ENTRY_POINT::0
486 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
487
488 # Return true if the code of FRAME is writable.
489 m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
490
491 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
492 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
493 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
494 # MAP a GDB RAW register number onto a simulator register number. See
495 # also include/...-sim.h.
496 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
497 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
498 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
499
500 # Determine the address where a longjmp will land and save this address
501 # in PC. Return nonzero on success.
502 #
503 # FRAME corresponds to the longjmp frame.
504 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
505
506 #
507 v:int:believe_pcc_promotion:::::::
508 #
509 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
510 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
511 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
512 # Construct a value representing the contents of register REGNUM in
513 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
514 # allocate and return a struct value with all value attributes
515 # (but not the value contents) filled in.
516 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
517 #
518 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
519 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
520 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
521
522 # Return the return-value convention that will be used by FUNCTION
523 # to return a value of type VALTYPE. FUNCTION may be NULL in which
524 # case the return convention is computed based only on VALTYPE.
525 #
526 # If READBUF is not NULL, extract the return value and save it in this buffer.
527 #
528 # If WRITEBUF is not NULL, it contains a return value which will be
529 # stored into the appropriate register. This can be used when we want
530 # to force the value returned by a function (see the "return" command
531 # for instance).
532 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
533
534 # Return true if the return value of function is stored in the first hidden
535 # parameter. In theory, this feature should be language-dependent, specified
536 # by language and its ABI, such as C++. Unfortunately, compiler may
537 # implement it to a target-dependent feature. So that we need such hook here
538 # to be aware of this in GDB.
539 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
540
541 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
542 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
543 # On some platforms, a single function may provide multiple entry points,
544 # e.g. one that is used for function-pointer calls and a different one
545 # that is used for direct function calls.
546 # In order to ensure that breakpoints set on the function will trigger
547 # no matter via which entry point the function is entered, a platform
548 # may provide the skip_entrypoint callback. It is called with IP set
549 # to the main entry point of a function (as determined by the symbol table),
550 # and should return the address of the innermost entry point, where the
551 # actual breakpoint needs to be set. Note that skip_entrypoint is used
552 # by GDB common code even when debugging optimized code, where skip_prologue
553 # is not used.
554 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
555
556 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
557 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
558 # Return the adjusted address and kind to use for Z0/Z1 packets.
559 # KIND is usually the memory length of the breakpoint, but may have a
560 # different target-specific meaning.
561 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
562 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
563 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
564 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
565 v:CORE_ADDR:decr_pc_after_break:::0:::0
566
567 # A function can be addressed by either it's "pointer" (possibly a
568 # descriptor address) or "entry point" (first executable instruction).
569 # The method "convert_from_func_ptr_addr" converting the former to the
570 # latter. gdbarch_deprecated_function_start_offset is being used to implement
571 # a simplified subset of that functionality - the function's address
572 # corresponds to the "function pointer" and the function's start
573 # corresponds to the "function entry point" - and hence is redundant.
574
575 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
576
577 # Return the remote protocol register number associated with this
578 # register. Normally the identity mapping.
579 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
580
581 # Fetch the target specific address used to represent a load module.
582 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
583 #
584 v:CORE_ADDR:frame_args_skip:::0:::0
585 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
586 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
587 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
588 # frame-base. Enable frame-base before frame-unwind.
589 F:int:frame_num_args:struct frame_info *frame:frame
590 #
591 M:CORE_ADDR:frame_align:CORE_ADDR address:address
592 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
593 v:int:frame_red_zone_size
594 #
595 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
596 # On some machines there are bits in addresses which are not really
597 # part of the address, but are used by the kernel, the hardware, etc.
598 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
599 # we get a "real" address such as one would find in a symbol table.
600 # This is used only for addresses of instructions, and even then I'm
601 # not sure it's used in all contexts. It exists to deal with there
602 # being a few stray bits in the PC which would mislead us, not as some
603 # sort of generic thing to handle alignment or segmentation (it's
604 # possible it should be in TARGET_READ_PC instead).
605 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
606
607 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
608 # indicates if the target needs software single step. An ISA method to
609 # implement it.
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612 # target can single step. If not, then implement single step using breakpoints.
613 #
614 # A return value of 1 means that the software_single_step breakpoints
615 # were inserted; 0 means they were not. Multiple breakpoints may be
616 # inserted for some instructions such as conditional branch. However,
617 # each implementation must always evaluate the condition and only put
618 # the breakpoint at the branch destination if the condition is true, so
619 # that we ensure forward progress when stepping past a conditional
620 # branch to self.
621 F:int:software_single_step:struct frame_info *frame:frame
622
623 # Return non-zero if the processor is executing a delay slot and a
624 # further single-step is needed before the instruction finishes.
625 M:int:single_step_through_delay:struct frame_info *frame:frame
626 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
627 # disassembler. Perhaps objdump can handle it?
628 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
629 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
630
631
632 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
633 # evaluates non-zero, this is the address where the debugger will place
634 # a step-resume breakpoint to get us past the dynamic linker.
635 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
636 # Some systems also have trampoline code for returning from shared libs.
637 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
638
639 # A target might have problems with watchpoints as soon as the stack
640 # frame of the current function has been destroyed. This mostly happens
641 # as the first action in a function's epilogue. stack_frame_destroyed_p()
642 # is defined to return a non-zero value if either the given addr is one
643 # instruction after the stack destroying instruction up to the trailing
644 # return instruction or if we can figure out that the stack frame has
645 # already been invalidated regardless of the value of addr. Targets
646 # which don't suffer from that problem could just let this functionality
647 # untouched.
648 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
649 # Process an ELF symbol in the minimal symbol table in a backend-specific
650 # way. Normally this hook is supposed to do nothing, however if required,
651 # then this hook can be used to apply tranformations to symbols that are
652 # considered special in some way. For example the MIPS backend uses it
653 # to interpret \`st_other' information to mark compressed code symbols so
654 # that they can be treated in the appropriate manner in the processing of
655 # the main symbol table and DWARF-2 records.
656 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
657 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
658 # Process a symbol in the main symbol table in a backend-specific way.
659 # Normally this hook is supposed to do nothing, however if required,
660 # then this hook can be used to apply tranformations to symbols that
661 # are considered special in some way. This is currently used by the
662 # MIPS backend to make sure compressed code symbols have the ISA bit
663 # set. This in turn is needed for symbol values seen in GDB to match
664 # the values used at the runtime by the program itself, for function
665 # and label references.
666 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
667 # Adjust the address retrieved from a DWARF-2 record other than a line
668 # entry in a backend-specific way. Normally this hook is supposed to
669 # return the address passed unchanged, however if that is incorrect for
670 # any reason, then this hook can be used to fix the address up in the
671 # required manner. This is currently used by the MIPS backend to make
672 # sure addresses in FDE, range records, etc. referring to compressed
673 # code have the ISA bit set, matching line information and the symbol
674 # table.
675 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
676 # Adjust the address updated by a line entry in a backend-specific way.
677 # Normally this hook is supposed to return the address passed unchanged,
678 # however in the case of inconsistencies in these records, this hook can
679 # be used to fix them up in the required manner. This is currently used
680 # by the MIPS backend to make sure all line addresses in compressed code
681 # are presented with the ISA bit set, which is not always the case. This
682 # in turn ensures breakpoint addresses are correctly matched against the
683 # stop PC.
684 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
685 v:int:cannot_step_breakpoint:::0:0::0
686 v:int:have_nonsteppable_watchpoint:::0:0::0
687 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
688 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
689
690 # Return the appropriate type_flags for the supplied address class.
691 # This function should return 1 if the address class was recognized and
692 # type_flags was set, zero otherwise.
693 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
694 # Is a register in a group
695 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
696 # Fetch the pointer to the ith function argument.
697 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
698
699 # Iterate over all supported register notes in a core file. For each
700 # supported register note section, the iterator must call CB and pass
701 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
702 # the supported register note sections based on the current register
703 # values. Otherwise it should enumerate all supported register note
704 # sections.
705 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
706
707 # Create core file notes
708 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
709
710 # The elfcore writer hook to use to write Linux prpsinfo notes to core
711 # files. Most Linux architectures use the same prpsinfo32 or
712 # prpsinfo64 layouts, and so won't need to provide this hook, as we
713 # call the Linux generic routines in bfd to write prpsinfo notes by
714 # default.
715 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
716
717 # Find core file memory regions
718 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
719
720 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
721 # core file into buffer READBUF with length LEN. Return the number of bytes read
722 # (zero indicates failure).
723 # failed, otherwise, return the red length of READBUF.
724 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
725
726 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
727 # libraries list from core file into buffer READBUF with length LEN.
728 # Return the number of bytes read (zero indicates failure).
729 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
730
731 # How the core target converts a PTID from a core file to a string.
732 M:char *:core_pid_to_str:ptid_t ptid:ptid
733
734 # How the core target extracts the name of a thread from a core file.
735 M:const char *:core_thread_name:struct thread_info *thr:thr
736
737 # BFD target to use when generating a core file.
738 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
739
740 # If the elements of C++ vtables are in-place function descriptors rather
741 # than normal function pointers (which may point to code or a descriptor),
742 # set this to one.
743 v:int:vtable_function_descriptors:::0:0::0
744
745 # Set if the least significant bit of the delta is used instead of the least
746 # significant bit of the pfn for pointers to virtual member functions.
747 v:int:vbit_in_delta:::0:0::0
748
749 # Advance PC to next instruction in order to skip a permanent breakpoint.
750 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
751
752 # The maximum length of an instruction on this architecture in bytes.
753 V:ULONGEST:max_insn_length:::0:0
754
755 # Copy the instruction at FROM to TO, and make any adjustments
756 # necessary to single-step it at that address.
757 #
758 # REGS holds the state the thread's registers will have before
759 # executing the copied instruction; the PC in REGS will refer to FROM,
760 # not the copy at TO. The caller should update it to point at TO later.
761 #
762 # Return a pointer to data of the architecture's choice to be passed
763 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
764 # the instruction's effects have been completely simulated, with the
765 # resulting state written back to REGS.
766 #
767 # For a general explanation of displaced stepping and how GDB uses it,
768 # see the comments in infrun.c.
769 #
770 # The TO area is only guaranteed to have space for
771 # gdbarch_max_insn_length (arch) bytes, so this function must not
772 # write more bytes than that to that area.
773 #
774 # If you do not provide this function, GDB assumes that the
775 # architecture does not support displaced stepping.
776 #
777 # If your architecture doesn't need to adjust instructions before
778 # single-stepping them, consider using simple_displaced_step_copy_insn
779 # here.
780 #
781 # If the instruction cannot execute out of line, return NULL. The
782 # core falls back to stepping past the instruction in-line instead in
783 # that case.
784 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
785
786 # Return true if GDB should use hardware single-stepping to execute
787 # the displaced instruction identified by CLOSURE. If false,
788 # GDB will simply restart execution at the displaced instruction
789 # location, and it is up to the target to ensure GDB will receive
790 # control again (e.g. by placing a software breakpoint instruction
791 # into the displaced instruction buffer).
792 #
793 # The default implementation returns false on all targets that
794 # provide a gdbarch_software_single_step routine, and true otherwise.
795 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
796
797 # Fix up the state resulting from successfully single-stepping a
798 # displaced instruction, to give the result we would have gotten from
799 # stepping the instruction in its original location.
800 #
801 # REGS is the register state resulting from single-stepping the
802 # displaced instruction.
803 #
804 # CLOSURE is the result from the matching call to
805 # gdbarch_displaced_step_copy_insn.
806 #
807 # If you provide gdbarch_displaced_step_copy_insn.but not this
808 # function, then GDB assumes that no fixup is needed after
809 # single-stepping the instruction.
810 #
811 # For a general explanation of displaced stepping and how GDB uses it,
812 # see the comments in infrun.c.
813 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
814
815 # Free a closure returned by gdbarch_displaced_step_copy_insn.
816 #
817 # If you provide gdbarch_displaced_step_copy_insn, you must provide
818 # this function as well.
819 #
820 # If your architecture uses closures that don't need to be freed, then
821 # you can use simple_displaced_step_free_closure here.
822 #
823 # For a general explanation of displaced stepping and how GDB uses it,
824 # see the comments in infrun.c.
825 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
826
827 # Return the address of an appropriate place to put displaced
828 # instructions while we step over them. There need only be one such
829 # place, since we're only stepping one thread over a breakpoint at a
830 # time.
831 #
832 # For a general explanation of displaced stepping and how GDB uses it,
833 # see the comments in infrun.c.
834 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
835
836 # Relocate an instruction to execute at a different address. OLDLOC
837 # is the address in the inferior memory where the instruction to
838 # relocate is currently at. On input, TO points to the destination
839 # where we want the instruction to be copied (and possibly adjusted)
840 # to. On output, it points to one past the end of the resulting
841 # instruction(s). The effect of executing the instruction at TO shall
842 # be the same as if executing it at FROM. For example, call
843 # instructions that implicitly push the return address on the stack
844 # should be adjusted to return to the instruction after OLDLOC;
845 # relative branches, and other PC-relative instructions need the
846 # offset adjusted; etc.
847 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
848
849 # Refresh overlay mapped state for section OSECT.
850 F:void:overlay_update:struct obj_section *osect:osect
851
852 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
853
854 # Handle special encoding of static variables in stabs debug info.
855 F:const char *:static_transform_name:const char *name:name
856 # Set if the address in N_SO or N_FUN stabs may be zero.
857 v:int:sofun_address_maybe_missing:::0:0::0
858
859 # Parse the instruction at ADDR storing in the record execution log
860 # the registers REGCACHE and memory ranges that will be affected when
861 # the instruction executes, along with their current values.
862 # Return -1 if something goes wrong, 0 otherwise.
863 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
864
865 # Save process state after a signal.
866 # Return -1 if something goes wrong, 0 otherwise.
867 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
868
869 # Signal translation: translate inferior's signal (target's) number
870 # into GDB's representation. The implementation of this method must
871 # be host independent. IOW, don't rely on symbols of the NAT_FILE
872 # header (the nm-*.h files), the host <signal.h> header, or similar
873 # headers. This is mainly used when cross-debugging core files ---
874 # "Live" targets hide the translation behind the target interface
875 # (target_wait, target_resume, etc.).
876 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
877
878 # Signal translation: translate the GDB's internal signal number into
879 # the inferior's signal (target's) representation. The implementation
880 # of this method must be host independent. IOW, don't rely on symbols
881 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
882 # header, or similar headers.
883 # Return the target signal number if found, or -1 if the GDB internal
884 # signal number is invalid.
885 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
886
887 # Extra signal info inspection.
888 #
889 # Return a type suitable to inspect extra signal information.
890 M:struct type *:get_siginfo_type:void:
891
892 # Record architecture-specific information from the symbol table.
893 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
894
895 # Function for the 'catch syscall' feature.
896
897 # Get architecture-specific system calls information from registers.
898 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
899
900 # The filename of the XML syscall for this architecture.
901 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
902
903 # Information about system calls from this architecture
904 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
905
906 # SystemTap related fields and functions.
907
908 # A NULL-terminated array of prefixes used to mark an integer constant
909 # on the architecture's assembly.
910 # For example, on x86 integer constants are written as:
911 #
912 # \$10 ;; integer constant 10
913 #
914 # in this case, this prefix would be the character \`\$\'.
915 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
916
917 # A NULL-terminated array of suffixes used to mark an integer constant
918 # on the architecture's assembly.
919 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
920
921 # A NULL-terminated array of prefixes used to mark a register name on
922 # the architecture's assembly.
923 # For example, on x86 the register name is written as:
924 #
925 # \%eax ;; register eax
926 #
927 # in this case, this prefix would be the character \`\%\'.
928 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
929
930 # A NULL-terminated array of suffixes used to mark a register name on
931 # the architecture's assembly.
932 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
933
934 # A NULL-terminated array of prefixes used to mark a register
935 # indirection on the architecture's assembly.
936 # For example, on x86 the register indirection is written as:
937 #
938 # \(\%eax\) ;; indirecting eax
939 #
940 # in this case, this prefix would be the charater \`\(\'.
941 #
942 # Please note that we use the indirection prefix also for register
943 # displacement, e.g., \`4\(\%eax\)\' on x86.
944 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
945
946 # A NULL-terminated array of suffixes used to mark a register
947 # indirection on the architecture's assembly.
948 # For example, on x86 the register indirection is written as:
949 #
950 # \(\%eax\) ;; indirecting eax
951 #
952 # in this case, this prefix would be the charater \`\)\'.
953 #
954 # Please note that we use the indirection suffix also for register
955 # displacement, e.g., \`4\(\%eax\)\' on x86.
956 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
957
958 # Prefix(es) used to name a register using GDB's nomenclature.
959 #
960 # For example, on PPC a register is represented by a number in the assembly
961 # language (e.g., \`10\' is the 10th general-purpose register). However,
962 # inside GDB this same register has an \`r\' appended to its name, so the 10th
963 # register would be represented as \`r10\' internally.
964 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
965
966 # Suffix used to name a register using GDB's nomenclature.
967 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
968
969 # Check if S is a single operand.
970 #
971 # Single operands can be:
972 # \- Literal integers, e.g. \`\$10\' on x86
973 # \- Register access, e.g. \`\%eax\' on x86
974 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
975 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
976 #
977 # This function should check for these patterns on the string
978 # and return 1 if some were found, or zero otherwise. Please try to match
979 # as much info as you can from the string, i.e., if you have to match
980 # something like \`\(\%\', do not match just the \`\(\'.
981 M:int:stap_is_single_operand:const char *s:s
982
983 # Function used to handle a "special case" in the parser.
984 #
985 # A "special case" is considered to be an unknown token, i.e., a token
986 # that the parser does not know how to parse. A good example of special
987 # case would be ARM's register displacement syntax:
988 #
989 # [R0, #4] ;; displacing R0 by 4
990 #
991 # Since the parser assumes that a register displacement is of the form:
992 #
993 # <number> <indirection_prefix> <register_name> <indirection_suffix>
994 #
995 # it means that it will not be able to recognize and parse this odd syntax.
996 # Therefore, we should add a special case function that will handle this token.
997 #
998 # This function should generate the proper expression form of the expression
999 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1000 # and so on). It should also return 1 if the parsing was successful, or zero
1001 # if the token was not recognized as a special token (in this case, returning
1002 # zero means that the special parser is deferring the parsing to the generic
1003 # parser), and should advance the buffer pointer (p->arg).
1004 M:int:stap_parse_special_token:struct stap_parse_info *p:p
1005
1006 # DTrace related functions.
1007
1008 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1009 # NARG must be >= 0.
1010 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1011
1012 # True if the given ADDR does not contain the instruction sequence
1013 # corresponding to a disabled DTrace is-enabled probe.
1014 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1015
1016 # Enable a DTrace is-enabled probe at ADDR.
1017 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1018
1019 # Disable a DTrace is-enabled probe at ADDR.
1020 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1021
1022 # True if the list of shared libraries is one and only for all
1023 # processes, as opposed to a list of shared libraries per inferior.
1024 # This usually means that all processes, although may or may not share
1025 # an address space, will see the same set of symbols at the same
1026 # addresses.
1027 v:int:has_global_solist:::0:0::0
1028
1029 # On some targets, even though each inferior has its own private
1030 # address space, the debug interface takes care of making breakpoints
1031 # visible to all address spaces automatically. For such cases,
1032 # this property should be set to true.
1033 v:int:has_global_breakpoints:::0:0::0
1034
1035 # True if inferiors share an address space (e.g., uClinux).
1036 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1037
1038 # True if a fast tracepoint can be set at an address.
1039 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1040
1041 # Guess register state based on tracepoint location. Used for tracepoints
1042 # where no registers have been collected, but there's only one location,
1043 # allowing us to guess the PC value, and perhaps some other registers.
1044 # On entry, regcache has all registers marked as unavailable.
1045 m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1046
1047 # Return the "auto" target charset.
1048 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1049 # Return the "auto" target wide charset.
1050 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1051
1052 # If non-empty, this is a file extension that will be opened in place
1053 # of the file extension reported by the shared library list.
1054 #
1055 # This is most useful for toolchains that use a post-linker tool,
1056 # where the names of the files run on the target differ in extension
1057 # compared to the names of the files GDB should load for debug info.
1058 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1059
1060 # If true, the target OS has DOS-based file system semantics. That
1061 # is, absolute paths include a drive name, and the backslash is
1062 # considered a directory separator.
1063 v:int:has_dos_based_file_system:::0:0::0
1064
1065 # Generate bytecodes to collect the return address in a frame.
1066 # Since the bytecodes run on the target, possibly with GDB not even
1067 # connected, the full unwinding machinery is not available, and
1068 # typically this function will issue bytecodes for one or more likely
1069 # places that the return address may be found.
1070 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1071
1072 # Implement the "info proc" command.
1073 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1074
1075 # Implement the "info proc" command for core files. Noe that there
1076 # are two "info_proc"-like methods on gdbarch -- one for core files,
1077 # one for live targets.
1078 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1079
1080 # Iterate over all objfiles in the order that makes the most sense
1081 # for the architecture to make global symbol searches.
1082 #
1083 # CB is a callback function where OBJFILE is the objfile to be searched,
1084 # and CB_DATA a pointer to user-defined data (the same data that is passed
1085 # when calling this gdbarch method). The iteration stops if this function
1086 # returns nonzero.
1087 #
1088 # CB_DATA is a pointer to some user-defined data to be passed to
1089 # the callback.
1090 #
1091 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1092 # inspected when the symbol search was requested.
1093 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1094
1095 # Ravenscar arch-dependent ops.
1096 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1097
1098 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1099 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1100
1101 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1102 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1103
1104 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1105 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1106
1107 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1108 # Return 0 if *READPTR is already at the end of the buffer.
1109 # Return -1 if there is insufficient buffer for a whole entry.
1110 # Return 1 if an entry was read into *TYPEP and *VALP.
1111 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1112
1113 # Find the address range of the current inferior's vsyscall/vDSO, and
1114 # write it to *RANGE. If the vsyscall's length can't be determined, a
1115 # range with zero length is returned. Returns true if the vsyscall is
1116 # found, false otherwise.
1117 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1118
1119 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1120 # PROT has GDB_MMAP_PROT_* bitmask format.
1121 # Throw an error if it is not possible. Returned address is always valid.
1122 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1123
1124 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1125 # Print a warning if it is not possible.
1126 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1127
1128 # Return string (caller has to use xfree for it) with options for GCC
1129 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1130 # These options are put before CU's DW_AT_producer compilation options so that
1131 # they can override it. Method may also return NULL.
1132 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1133
1134 # Return a regular expression that matches names used by this
1135 # architecture in GNU configury triplets. The result is statically
1136 # allocated and must not be freed. The default implementation simply
1137 # returns the BFD architecture name, which is correct in nearly every
1138 # case.
1139 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1140
1141 # Return the size in 8-bit bytes of an addressable memory unit on this
1142 # architecture. This corresponds to the number of 8-bit bytes associated to
1143 # each address in memory.
1144 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1145
1146 EOF
1147 }
1148
1149 #
1150 # The .log file
1151 #
1152 exec > new-gdbarch.log
1153 function_list | while do_read
1154 do
1155 cat <<EOF
1156 ${class} ${returntype} ${function} ($formal)
1157 EOF
1158 for r in ${read}
1159 do
1160 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1161 done
1162 if class_is_predicate_p && fallback_default_p
1163 then
1164 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1165 kill $$
1166 exit 1
1167 fi
1168 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1169 then
1170 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1171 kill $$
1172 exit 1
1173 fi
1174 if class_is_multiarch_p
1175 then
1176 if class_is_predicate_p ; then :
1177 elif test "x${predefault}" = "x"
1178 then
1179 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1180 kill $$
1181 exit 1
1182 fi
1183 fi
1184 echo ""
1185 done
1186
1187 exec 1>&2
1188 compare_new gdbarch.log
1189
1190
1191 copyright ()
1192 {
1193 cat <<EOF
1194 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1195 /* vi:set ro: */
1196
1197 /* Dynamic architecture support for GDB, the GNU debugger.
1198
1199 Copyright (C) 1998-2016 Free Software Foundation, Inc.
1200
1201 This file is part of GDB.
1202
1203 This program is free software; you can redistribute it and/or modify
1204 it under the terms of the GNU General Public License as published by
1205 the Free Software Foundation; either version 3 of the License, or
1206 (at your option) any later version.
1207
1208 This program is distributed in the hope that it will be useful,
1209 but WITHOUT ANY WARRANTY; without even the implied warranty of
1210 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1211 GNU General Public License for more details.
1212
1213 You should have received a copy of the GNU General Public License
1214 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1215
1216 /* This file was created with the aid of \`\`gdbarch.sh''.
1217
1218 The Bourne shell script \`\`gdbarch.sh'' creates the files
1219 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1220 against the existing \`\`gdbarch.[hc]''. Any differences found
1221 being reported.
1222
1223 If editing this file, please also run gdbarch.sh and merge any
1224 changes into that script. Conversely, when making sweeping changes
1225 to this file, modifying gdbarch.sh and using its output may prove
1226 easier. */
1227
1228 EOF
1229 }
1230
1231 #
1232 # The .h file
1233 #
1234
1235 exec > new-gdbarch.h
1236 copyright
1237 cat <<EOF
1238 #ifndef GDBARCH_H
1239 #define GDBARCH_H
1240
1241 #include "frame.h"
1242
1243 struct floatformat;
1244 struct ui_file;
1245 struct value;
1246 struct objfile;
1247 struct obj_section;
1248 struct minimal_symbol;
1249 struct regcache;
1250 struct reggroup;
1251 struct regset;
1252 struct disassemble_info;
1253 struct target_ops;
1254 struct obstack;
1255 struct bp_target_info;
1256 struct target_desc;
1257 struct objfile;
1258 struct symbol;
1259 struct displaced_step_closure;
1260 struct syscall;
1261 struct agent_expr;
1262 struct axs_value;
1263 struct stap_parse_info;
1264 struct parser_state;
1265 struct ravenscar_arch_ops;
1266 struct elf_internal_linux_prpsinfo;
1267 struct mem_range;
1268 struct syscalls_info;
1269 struct thread_info;
1270 struct ui_out;
1271
1272 #include "regcache.h"
1273
1274 /* The architecture associated with the inferior through the
1275 connection to the target.
1276
1277 The architecture vector provides some information that is really a
1278 property of the inferior, accessed through a particular target:
1279 ptrace operations; the layout of certain RSP packets; the solib_ops
1280 vector; etc. To differentiate architecture accesses to
1281 per-inferior/target properties from
1282 per-thread/per-frame/per-objfile properties, accesses to
1283 per-inferior/target properties should be made through this
1284 gdbarch. */
1285
1286 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1287 extern struct gdbarch *target_gdbarch (void);
1288
1289 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1290 gdbarch method. */
1291
1292 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1293 (struct objfile *objfile, void *cb_data);
1294
1295 /* Callback type for regset section iterators. The callback usually
1296 invokes the REGSET's supply or collect method, to which it must
1297 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1298 section name, and HUMAN_NAME is used for diagnostic messages.
1299 CB_DATA should have been passed unchanged through the iterator. */
1300
1301 typedef void (iterate_over_regset_sections_cb)
1302 (const char *sect_name, int size, const struct regset *regset,
1303 const char *human_name, void *cb_data);
1304 EOF
1305
1306 # function typedef's
1307 printf "\n"
1308 printf "\n"
1309 printf "/* The following are pre-initialized by GDBARCH. */\n"
1310 function_list | while do_read
1311 do
1312 if class_is_info_p
1313 then
1314 printf "\n"
1315 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1316 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1317 fi
1318 done
1319
1320 # function typedef's
1321 printf "\n"
1322 printf "\n"
1323 printf "/* The following are initialized by the target dependent code. */\n"
1324 function_list | while do_read
1325 do
1326 if [ -n "${comment}" ]
1327 then
1328 echo "${comment}" | sed \
1329 -e '2 s,#,/*,' \
1330 -e '3,$ s,#, ,' \
1331 -e '$ s,$, */,'
1332 fi
1333
1334 if class_is_predicate_p
1335 then
1336 printf "\n"
1337 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1338 fi
1339 if class_is_variable_p
1340 then
1341 printf "\n"
1342 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1343 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1344 fi
1345 if class_is_function_p
1346 then
1347 printf "\n"
1348 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1349 then
1350 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1351 elif class_is_multiarch_p
1352 then
1353 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1354 else
1355 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1356 fi
1357 if [ "x${formal}" = "xvoid" ]
1358 then
1359 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1360 else
1361 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1362 fi
1363 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1364 fi
1365 done
1366
1367 # close it off
1368 cat <<EOF
1369
1370 /* Definition for an unknown syscall, used basically in error-cases. */
1371 #define UNKNOWN_SYSCALL (-1)
1372
1373 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1374
1375
1376 /* Mechanism for co-ordinating the selection of a specific
1377 architecture.
1378
1379 GDB targets (*-tdep.c) can register an interest in a specific
1380 architecture. Other GDB components can register a need to maintain
1381 per-architecture data.
1382
1383 The mechanisms below ensures that there is only a loose connection
1384 between the set-architecture command and the various GDB
1385 components. Each component can independently register their need
1386 to maintain architecture specific data with gdbarch.
1387
1388 Pragmatics:
1389
1390 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1391 didn't scale.
1392
1393 The more traditional mega-struct containing architecture specific
1394 data for all the various GDB components was also considered. Since
1395 GDB is built from a variable number of (fairly independent)
1396 components it was determined that the global aproach was not
1397 applicable. */
1398
1399
1400 /* Register a new architectural family with GDB.
1401
1402 Register support for the specified ARCHITECTURE with GDB. When
1403 gdbarch determines that the specified architecture has been
1404 selected, the corresponding INIT function is called.
1405
1406 --
1407
1408 The INIT function takes two parameters: INFO which contains the
1409 information available to gdbarch about the (possibly new)
1410 architecture; ARCHES which is a list of the previously created
1411 \`\`struct gdbarch'' for this architecture.
1412
1413 The INFO parameter is, as far as possible, be pre-initialized with
1414 information obtained from INFO.ABFD or the global defaults.
1415
1416 The ARCHES parameter is a linked list (sorted most recently used)
1417 of all the previously created architures for this architecture
1418 family. The (possibly NULL) ARCHES->gdbarch can used to access
1419 values from the previously selected architecture for this
1420 architecture family.
1421
1422 The INIT function shall return any of: NULL - indicating that it
1423 doesn't recognize the selected architecture; an existing \`\`struct
1424 gdbarch'' from the ARCHES list - indicating that the new
1425 architecture is just a synonym for an earlier architecture (see
1426 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1427 - that describes the selected architecture (see gdbarch_alloc()).
1428
1429 The DUMP_TDEP function shall print out all target specific values.
1430 Care should be taken to ensure that the function works in both the
1431 multi-arch and non- multi-arch cases. */
1432
1433 struct gdbarch_list
1434 {
1435 struct gdbarch *gdbarch;
1436 struct gdbarch_list *next;
1437 };
1438
1439 struct gdbarch_info
1440 {
1441 /* Use default: NULL (ZERO). */
1442 const struct bfd_arch_info *bfd_arch_info;
1443
1444 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1445 enum bfd_endian byte_order;
1446
1447 enum bfd_endian byte_order_for_code;
1448
1449 /* Use default: NULL (ZERO). */
1450 bfd *abfd;
1451
1452 /* Use default: NULL (ZERO). */
1453 void *tdep_info;
1454
1455 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1456 enum gdb_osabi osabi;
1457
1458 /* Use default: NULL (ZERO). */
1459 const struct target_desc *target_desc;
1460 };
1461
1462 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1463 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1464
1465 /* DEPRECATED - use gdbarch_register() */
1466 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1467
1468 extern void gdbarch_register (enum bfd_architecture architecture,
1469 gdbarch_init_ftype *,
1470 gdbarch_dump_tdep_ftype *);
1471
1472
1473 /* Return a freshly allocated, NULL terminated, array of the valid
1474 architecture names. Since architectures are registered during the
1475 _initialize phase this function only returns useful information
1476 once initialization has been completed. */
1477
1478 extern const char **gdbarch_printable_names (void);
1479
1480
1481 /* Helper function. Search the list of ARCHES for a GDBARCH that
1482 matches the information provided by INFO. */
1483
1484 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1485
1486
1487 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1488 basic initialization using values obtained from the INFO and TDEP
1489 parameters. set_gdbarch_*() functions are called to complete the
1490 initialization of the object. */
1491
1492 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1493
1494
1495 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1496 It is assumed that the caller freeds the \`\`struct
1497 gdbarch_tdep''. */
1498
1499 extern void gdbarch_free (struct gdbarch *);
1500
1501
1502 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1503 obstack. The memory is freed when the corresponding architecture
1504 is also freed. */
1505
1506 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1507 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1508 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1509
1510 /* Duplicate STRING, returning an equivalent string that's allocated on the
1511 obstack associated with GDBARCH. The string is freed when the corresponding
1512 architecture is also freed. */
1513
1514 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1515
1516 /* Helper function. Force an update of the current architecture.
1517
1518 The actual architecture selected is determined by INFO, \`\`(gdb) set
1519 architecture'' et.al., the existing architecture and BFD's default
1520 architecture. INFO should be initialized to zero and then selected
1521 fields should be updated.
1522
1523 Returns non-zero if the update succeeds. */
1524
1525 extern int gdbarch_update_p (struct gdbarch_info info);
1526
1527
1528 /* Helper function. Find an architecture matching info.
1529
1530 INFO should be initialized using gdbarch_info_init, relevant fields
1531 set, and then finished using gdbarch_info_fill.
1532
1533 Returns the corresponding architecture, or NULL if no matching
1534 architecture was found. */
1535
1536 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1537
1538
1539 /* Helper function. Set the target gdbarch to "gdbarch". */
1540
1541 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1542
1543
1544 /* Register per-architecture data-pointer.
1545
1546 Reserve space for a per-architecture data-pointer. An identifier
1547 for the reserved data-pointer is returned. That identifer should
1548 be saved in a local static variable.
1549
1550 Memory for the per-architecture data shall be allocated using
1551 gdbarch_obstack_zalloc. That memory will be deleted when the
1552 corresponding architecture object is deleted.
1553
1554 When a previously created architecture is re-selected, the
1555 per-architecture data-pointer for that previous architecture is
1556 restored. INIT() is not re-called.
1557
1558 Multiple registrarants for any architecture are allowed (and
1559 strongly encouraged). */
1560
1561 struct gdbarch_data;
1562
1563 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1564 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1565 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1566 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1567 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1568 struct gdbarch_data *data,
1569 void *pointer);
1570
1571 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1572
1573
1574 /* Set the dynamic target-system-dependent parameters (architecture,
1575 byte-order, ...) using information found in the BFD. */
1576
1577 extern void set_gdbarch_from_file (bfd *);
1578
1579
1580 /* Initialize the current architecture to the "first" one we find on
1581 our list. */
1582
1583 extern void initialize_current_architecture (void);
1584
1585 /* gdbarch trace variable */
1586 extern unsigned int gdbarch_debug;
1587
1588 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1589
1590 #endif
1591 EOF
1592 exec 1>&2
1593 #../move-if-change new-gdbarch.h gdbarch.h
1594 compare_new gdbarch.h
1595
1596
1597 #
1598 # C file
1599 #
1600
1601 exec > new-gdbarch.c
1602 copyright
1603 cat <<EOF
1604
1605 #include "defs.h"
1606 #include "arch-utils.h"
1607
1608 #include "gdbcmd.h"
1609 #include "inferior.h"
1610 #include "symcat.h"
1611
1612 #include "floatformat.h"
1613 #include "reggroups.h"
1614 #include "osabi.h"
1615 #include "gdb_obstack.h"
1616 #include "observer.h"
1617 #include "regcache.h"
1618 #include "objfiles.h"
1619
1620 /* Static function declarations */
1621
1622 static void alloc_gdbarch_data (struct gdbarch *);
1623
1624 /* Non-zero if we want to trace architecture code. */
1625
1626 #ifndef GDBARCH_DEBUG
1627 #define GDBARCH_DEBUG 0
1628 #endif
1629 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1630 static void
1631 show_gdbarch_debug (struct ui_file *file, int from_tty,
1632 struct cmd_list_element *c, const char *value)
1633 {
1634 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1635 }
1636
1637 static const char *
1638 pformat (const struct floatformat **format)
1639 {
1640 if (format == NULL)
1641 return "(null)";
1642 else
1643 /* Just print out one of them - this is only for diagnostics. */
1644 return format[0]->name;
1645 }
1646
1647 static const char *
1648 pstring (const char *string)
1649 {
1650 if (string == NULL)
1651 return "(null)";
1652 return string;
1653 }
1654
1655 /* Helper function to print a list of strings, represented as "const
1656 char *const *". The list is printed comma-separated. */
1657
1658 static char *
1659 pstring_list (const char *const *list)
1660 {
1661 static char ret[100];
1662 const char *const *p;
1663 size_t offset = 0;
1664
1665 if (list == NULL)
1666 return "(null)";
1667
1668 ret[0] = '\0';
1669 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1670 {
1671 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1672 offset += 2 + s;
1673 }
1674
1675 if (offset > 0)
1676 {
1677 gdb_assert (offset - 2 < sizeof (ret));
1678 ret[offset - 2] = '\0';
1679 }
1680
1681 return ret;
1682 }
1683
1684 EOF
1685
1686 # gdbarch open the gdbarch object
1687 printf "\n"
1688 printf "/* Maintain the struct gdbarch object. */\n"
1689 printf "\n"
1690 printf "struct gdbarch\n"
1691 printf "{\n"
1692 printf " /* Has this architecture been fully initialized? */\n"
1693 printf " int initialized_p;\n"
1694 printf "\n"
1695 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1696 printf " struct obstack *obstack;\n"
1697 printf "\n"
1698 printf " /* basic architectural information. */\n"
1699 function_list | while do_read
1700 do
1701 if class_is_info_p
1702 then
1703 printf " ${returntype} ${function};\n"
1704 fi
1705 done
1706 printf "\n"
1707 printf " /* target specific vector. */\n"
1708 printf " struct gdbarch_tdep *tdep;\n"
1709 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1710 printf "\n"
1711 printf " /* per-architecture data-pointers. */\n"
1712 printf " unsigned nr_data;\n"
1713 printf " void **data;\n"
1714 printf "\n"
1715 cat <<EOF
1716 /* Multi-arch values.
1717
1718 When extending this structure you must:
1719
1720 Add the field below.
1721
1722 Declare set/get functions and define the corresponding
1723 macro in gdbarch.h.
1724
1725 gdbarch_alloc(): If zero/NULL is not a suitable default,
1726 initialize the new field.
1727
1728 verify_gdbarch(): Confirm that the target updated the field
1729 correctly.
1730
1731 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1732 field is dumped out
1733
1734 get_gdbarch(): Implement the set/get functions (probably using
1735 the macro's as shortcuts).
1736
1737 */
1738
1739 EOF
1740 function_list | while do_read
1741 do
1742 if class_is_variable_p
1743 then
1744 printf " ${returntype} ${function};\n"
1745 elif class_is_function_p
1746 then
1747 printf " gdbarch_${function}_ftype *${function};\n"
1748 fi
1749 done
1750 printf "};\n"
1751
1752 # Create a new gdbarch struct
1753 cat <<EOF
1754
1755 /* Create a new \`\`struct gdbarch'' based on information provided by
1756 \`\`struct gdbarch_info''. */
1757 EOF
1758 printf "\n"
1759 cat <<EOF
1760 struct gdbarch *
1761 gdbarch_alloc (const struct gdbarch_info *info,
1762 struct gdbarch_tdep *tdep)
1763 {
1764 struct gdbarch *gdbarch;
1765
1766 /* Create an obstack for allocating all the per-architecture memory,
1767 then use that to allocate the architecture vector. */
1768 struct obstack *obstack = XNEW (struct obstack);
1769 obstack_init (obstack);
1770 gdbarch = XOBNEW (obstack, struct gdbarch);
1771 memset (gdbarch, 0, sizeof (*gdbarch));
1772 gdbarch->obstack = obstack;
1773
1774 alloc_gdbarch_data (gdbarch);
1775
1776 gdbarch->tdep = tdep;
1777 EOF
1778 printf "\n"
1779 function_list | while do_read
1780 do
1781 if class_is_info_p
1782 then
1783 printf " gdbarch->${function} = info->${function};\n"
1784 fi
1785 done
1786 printf "\n"
1787 printf " /* Force the explicit initialization of these. */\n"
1788 function_list | while do_read
1789 do
1790 if class_is_function_p || class_is_variable_p
1791 then
1792 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1793 then
1794 printf " gdbarch->${function} = ${predefault};\n"
1795 fi
1796 fi
1797 done
1798 cat <<EOF
1799 /* gdbarch_alloc() */
1800
1801 return gdbarch;
1802 }
1803 EOF
1804
1805 # Free a gdbarch struct.
1806 printf "\n"
1807 printf "\n"
1808 cat <<EOF
1809 /* Allocate extra space using the per-architecture obstack. */
1810
1811 void *
1812 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1813 {
1814 void *data = obstack_alloc (arch->obstack, size);
1815
1816 memset (data, 0, size);
1817 return data;
1818 }
1819
1820 /* See gdbarch.h. */
1821
1822 char *
1823 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1824 {
1825 return obstack_strdup (arch->obstack, string);
1826 }
1827
1828
1829 /* Free a gdbarch struct. This should never happen in normal
1830 operation --- once you've created a gdbarch, you keep it around.
1831 However, if an architecture's init function encounters an error
1832 building the structure, it may need to clean up a partially
1833 constructed gdbarch. */
1834
1835 void
1836 gdbarch_free (struct gdbarch *arch)
1837 {
1838 struct obstack *obstack;
1839
1840 gdb_assert (arch != NULL);
1841 gdb_assert (!arch->initialized_p);
1842 obstack = arch->obstack;
1843 obstack_free (obstack, 0); /* Includes the ARCH. */
1844 xfree (obstack);
1845 }
1846 EOF
1847
1848 # verify a new architecture
1849 cat <<EOF
1850
1851
1852 /* Ensure that all values in a GDBARCH are reasonable. */
1853
1854 static void
1855 verify_gdbarch (struct gdbarch *gdbarch)
1856 {
1857 struct ui_file *log;
1858 struct cleanup *cleanups;
1859 long length;
1860 char *buf;
1861
1862 log = mem_fileopen ();
1863 cleanups = make_cleanup_ui_file_delete (log);
1864 /* fundamental */
1865 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1866 fprintf_unfiltered (log, "\n\tbyte-order");
1867 if (gdbarch->bfd_arch_info == NULL)
1868 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1869 /* Check those that need to be defined for the given multi-arch level. */
1870 EOF
1871 function_list | while do_read
1872 do
1873 if class_is_function_p || class_is_variable_p
1874 then
1875 if [ "x${invalid_p}" = "x0" ]
1876 then
1877 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1878 elif class_is_predicate_p
1879 then
1880 printf " /* Skip verify of ${function}, has predicate. */\n"
1881 # FIXME: See do_read for potential simplification
1882 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1883 then
1884 printf " if (${invalid_p})\n"
1885 printf " gdbarch->${function} = ${postdefault};\n"
1886 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1887 then
1888 printf " if (gdbarch->${function} == ${predefault})\n"
1889 printf " gdbarch->${function} = ${postdefault};\n"
1890 elif [ -n "${postdefault}" ]
1891 then
1892 printf " if (gdbarch->${function} == 0)\n"
1893 printf " gdbarch->${function} = ${postdefault};\n"
1894 elif [ -n "${invalid_p}" ]
1895 then
1896 printf " if (${invalid_p})\n"
1897 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1898 elif [ -n "${predefault}" ]
1899 then
1900 printf " if (gdbarch->${function} == ${predefault})\n"
1901 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1902 fi
1903 fi
1904 done
1905 cat <<EOF
1906 buf = ui_file_xstrdup (log, &length);
1907 make_cleanup (xfree, buf);
1908 if (length > 0)
1909 internal_error (__FILE__, __LINE__,
1910 _("verify_gdbarch: the following are invalid ...%s"),
1911 buf);
1912 do_cleanups (cleanups);
1913 }
1914 EOF
1915
1916 # dump the structure
1917 printf "\n"
1918 printf "\n"
1919 cat <<EOF
1920 /* Print out the details of the current architecture. */
1921
1922 void
1923 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1924 {
1925 const char *gdb_nm_file = "<not-defined>";
1926
1927 #if defined (GDB_NM_FILE)
1928 gdb_nm_file = GDB_NM_FILE;
1929 #endif
1930 fprintf_unfiltered (file,
1931 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1932 gdb_nm_file);
1933 EOF
1934 function_list | sort -t: -k 3 | while do_read
1935 do
1936 # First the predicate
1937 if class_is_predicate_p
1938 then
1939 printf " fprintf_unfiltered (file,\n"
1940 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1941 printf " gdbarch_${function}_p (gdbarch));\n"
1942 fi
1943 # Print the corresponding value.
1944 if class_is_function_p
1945 then
1946 printf " fprintf_unfiltered (file,\n"
1947 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1948 printf " host_address_to_string (gdbarch->${function}));\n"
1949 else
1950 # It is a variable
1951 case "${print}:${returntype}" in
1952 :CORE_ADDR )
1953 fmt="%s"
1954 print="core_addr_to_string_nz (gdbarch->${function})"
1955 ;;
1956 :* )
1957 fmt="%s"
1958 print="plongest (gdbarch->${function})"
1959 ;;
1960 * )
1961 fmt="%s"
1962 ;;
1963 esac
1964 printf " fprintf_unfiltered (file,\n"
1965 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1966 printf " ${print});\n"
1967 fi
1968 done
1969 cat <<EOF
1970 if (gdbarch->dump_tdep != NULL)
1971 gdbarch->dump_tdep (gdbarch, file);
1972 }
1973 EOF
1974
1975
1976 # GET/SET
1977 printf "\n"
1978 cat <<EOF
1979 struct gdbarch_tdep *
1980 gdbarch_tdep (struct gdbarch *gdbarch)
1981 {
1982 if (gdbarch_debug >= 2)
1983 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1984 return gdbarch->tdep;
1985 }
1986 EOF
1987 printf "\n"
1988 function_list | while do_read
1989 do
1990 if class_is_predicate_p
1991 then
1992 printf "\n"
1993 printf "int\n"
1994 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1995 printf "{\n"
1996 printf " gdb_assert (gdbarch != NULL);\n"
1997 printf " return ${predicate};\n"
1998 printf "}\n"
1999 fi
2000 if class_is_function_p
2001 then
2002 printf "\n"
2003 printf "${returntype}\n"
2004 if [ "x${formal}" = "xvoid" ]
2005 then
2006 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2007 else
2008 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2009 fi
2010 printf "{\n"
2011 printf " gdb_assert (gdbarch != NULL);\n"
2012 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2013 if class_is_predicate_p && test -n "${predefault}"
2014 then
2015 # Allow a call to a function with a predicate.
2016 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2017 fi
2018 printf " if (gdbarch_debug >= 2)\n"
2019 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2020 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2021 then
2022 if class_is_multiarch_p
2023 then
2024 params="gdbarch"
2025 else
2026 params=""
2027 fi
2028 else
2029 if class_is_multiarch_p
2030 then
2031 params="gdbarch, ${actual}"
2032 else
2033 params="${actual}"
2034 fi
2035 fi
2036 if [ "x${returntype}" = "xvoid" ]
2037 then
2038 printf " gdbarch->${function} (${params});\n"
2039 else
2040 printf " return gdbarch->${function} (${params});\n"
2041 fi
2042 printf "}\n"
2043 printf "\n"
2044 printf "void\n"
2045 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2046 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2047 printf "{\n"
2048 printf " gdbarch->${function} = ${function};\n"
2049 printf "}\n"
2050 elif class_is_variable_p
2051 then
2052 printf "\n"
2053 printf "${returntype}\n"
2054 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2055 printf "{\n"
2056 printf " gdb_assert (gdbarch != NULL);\n"
2057 if [ "x${invalid_p}" = "x0" ]
2058 then
2059 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2060 elif [ -n "${invalid_p}" ]
2061 then
2062 printf " /* Check variable is valid. */\n"
2063 printf " gdb_assert (!(${invalid_p}));\n"
2064 elif [ -n "${predefault}" ]
2065 then
2066 printf " /* Check variable changed from pre-default. */\n"
2067 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2068 fi
2069 printf " if (gdbarch_debug >= 2)\n"
2070 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2071 printf " return gdbarch->${function};\n"
2072 printf "}\n"
2073 printf "\n"
2074 printf "void\n"
2075 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2076 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2077 printf "{\n"
2078 printf " gdbarch->${function} = ${function};\n"
2079 printf "}\n"
2080 elif class_is_info_p
2081 then
2082 printf "\n"
2083 printf "${returntype}\n"
2084 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2085 printf "{\n"
2086 printf " gdb_assert (gdbarch != NULL);\n"
2087 printf " if (gdbarch_debug >= 2)\n"
2088 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2089 printf " return gdbarch->${function};\n"
2090 printf "}\n"
2091 fi
2092 done
2093
2094 # All the trailing guff
2095 cat <<EOF
2096
2097
2098 /* Keep a registry of per-architecture data-pointers required by GDB
2099 modules. */
2100
2101 struct gdbarch_data
2102 {
2103 unsigned index;
2104 int init_p;
2105 gdbarch_data_pre_init_ftype *pre_init;
2106 gdbarch_data_post_init_ftype *post_init;
2107 };
2108
2109 struct gdbarch_data_registration
2110 {
2111 struct gdbarch_data *data;
2112 struct gdbarch_data_registration *next;
2113 };
2114
2115 struct gdbarch_data_registry
2116 {
2117 unsigned nr;
2118 struct gdbarch_data_registration *registrations;
2119 };
2120
2121 struct gdbarch_data_registry gdbarch_data_registry =
2122 {
2123 0, NULL,
2124 };
2125
2126 static struct gdbarch_data *
2127 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2128 gdbarch_data_post_init_ftype *post_init)
2129 {
2130 struct gdbarch_data_registration **curr;
2131
2132 /* Append the new registration. */
2133 for (curr = &gdbarch_data_registry.registrations;
2134 (*curr) != NULL;
2135 curr = &(*curr)->next);
2136 (*curr) = XNEW (struct gdbarch_data_registration);
2137 (*curr)->next = NULL;
2138 (*curr)->data = XNEW (struct gdbarch_data);
2139 (*curr)->data->index = gdbarch_data_registry.nr++;
2140 (*curr)->data->pre_init = pre_init;
2141 (*curr)->data->post_init = post_init;
2142 (*curr)->data->init_p = 1;
2143 return (*curr)->data;
2144 }
2145
2146 struct gdbarch_data *
2147 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2148 {
2149 return gdbarch_data_register (pre_init, NULL);
2150 }
2151
2152 struct gdbarch_data *
2153 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2154 {
2155 return gdbarch_data_register (NULL, post_init);
2156 }
2157
2158 /* Create/delete the gdbarch data vector. */
2159
2160 static void
2161 alloc_gdbarch_data (struct gdbarch *gdbarch)
2162 {
2163 gdb_assert (gdbarch->data == NULL);
2164 gdbarch->nr_data = gdbarch_data_registry.nr;
2165 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2166 }
2167
2168 /* Initialize the current value of the specified per-architecture
2169 data-pointer. */
2170
2171 void
2172 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2173 struct gdbarch_data *data,
2174 void *pointer)
2175 {
2176 gdb_assert (data->index < gdbarch->nr_data);
2177 gdb_assert (gdbarch->data[data->index] == NULL);
2178 gdb_assert (data->pre_init == NULL);
2179 gdbarch->data[data->index] = pointer;
2180 }
2181
2182 /* Return the current value of the specified per-architecture
2183 data-pointer. */
2184
2185 void *
2186 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2187 {
2188 gdb_assert (data->index < gdbarch->nr_data);
2189 if (gdbarch->data[data->index] == NULL)
2190 {
2191 /* The data-pointer isn't initialized, call init() to get a
2192 value. */
2193 if (data->pre_init != NULL)
2194 /* Mid architecture creation: pass just the obstack, and not
2195 the entire architecture, as that way it isn't possible for
2196 pre-init code to refer to undefined architecture
2197 fields. */
2198 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2199 else if (gdbarch->initialized_p
2200 && data->post_init != NULL)
2201 /* Post architecture creation: pass the entire architecture
2202 (as all fields are valid), but be careful to also detect
2203 recursive references. */
2204 {
2205 gdb_assert (data->init_p);
2206 data->init_p = 0;
2207 gdbarch->data[data->index] = data->post_init (gdbarch);
2208 data->init_p = 1;
2209 }
2210 else
2211 /* The architecture initialization hasn't completed - punt -
2212 hope that the caller knows what they are doing. Once
2213 deprecated_set_gdbarch_data has been initialized, this can be
2214 changed to an internal error. */
2215 return NULL;
2216 gdb_assert (gdbarch->data[data->index] != NULL);
2217 }
2218 return gdbarch->data[data->index];
2219 }
2220
2221
2222 /* Keep a registry of the architectures known by GDB. */
2223
2224 struct gdbarch_registration
2225 {
2226 enum bfd_architecture bfd_architecture;
2227 gdbarch_init_ftype *init;
2228 gdbarch_dump_tdep_ftype *dump_tdep;
2229 struct gdbarch_list *arches;
2230 struct gdbarch_registration *next;
2231 };
2232
2233 static struct gdbarch_registration *gdbarch_registry = NULL;
2234
2235 static void
2236 append_name (const char ***buf, int *nr, const char *name)
2237 {
2238 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2239 (*buf)[*nr] = name;
2240 *nr += 1;
2241 }
2242
2243 const char **
2244 gdbarch_printable_names (void)
2245 {
2246 /* Accumulate a list of names based on the registed list of
2247 architectures. */
2248 int nr_arches = 0;
2249 const char **arches = NULL;
2250 struct gdbarch_registration *rego;
2251
2252 for (rego = gdbarch_registry;
2253 rego != NULL;
2254 rego = rego->next)
2255 {
2256 const struct bfd_arch_info *ap;
2257 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2258 if (ap == NULL)
2259 internal_error (__FILE__, __LINE__,
2260 _("gdbarch_architecture_names: multi-arch unknown"));
2261 do
2262 {
2263 append_name (&arches, &nr_arches, ap->printable_name);
2264 ap = ap->next;
2265 }
2266 while (ap != NULL);
2267 }
2268 append_name (&arches, &nr_arches, NULL);
2269 return arches;
2270 }
2271
2272
2273 void
2274 gdbarch_register (enum bfd_architecture bfd_architecture,
2275 gdbarch_init_ftype *init,
2276 gdbarch_dump_tdep_ftype *dump_tdep)
2277 {
2278 struct gdbarch_registration **curr;
2279 const struct bfd_arch_info *bfd_arch_info;
2280
2281 /* Check that BFD recognizes this architecture */
2282 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2283 if (bfd_arch_info == NULL)
2284 {
2285 internal_error (__FILE__, __LINE__,
2286 _("gdbarch: Attempt to register "
2287 "unknown architecture (%d)"),
2288 bfd_architecture);
2289 }
2290 /* Check that we haven't seen this architecture before. */
2291 for (curr = &gdbarch_registry;
2292 (*curr) != NULL;
2293 curr = &(*curr)->next)
2294 {
2295 if (bfd_architecture == (*curr)->bfd_architecture)
2296 internal_error (__FILE__, __LINE__,
2297 _("gdbarch: Duplicate registration "
2298 "of architecture (%s)"),
2299 bfd_arch_info->printable_name);
2300 }
2301 /* log it */
2302 if (gdbarch_debug)
2303 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2304 bfd_arch_info->printable_name,
2305 host_address_to_string (init));
2306 /* Append it */
2307 (*curr) = XNEW (struct gdbarch_registration);
2308 (*curr)->bfd_architecture = bfd_architecture;
2309 (*curr)->init = init;
2310 (*curr)->dump_tdep = dump_tdep;
2311 (*curr)->arches = NULL;
2312 (*curr)->next = NULL;
2313 }
2314
2315 void
2316 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2317 gdbarch_init_ftype *init)
2318 {
2319 gdbarch_register (bfd_architecture, init, NULL);
2320 }
2321
2322
2323 /* Look for an architecture using gdbarch_info. */
2324
2325 struct gdbarch_list *
2326 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2327 const struct gdbarch_info *info)
2328 {
2329 for (; arches != NULL; arches = arches->next)
2330 {
2331 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2332 continue;
2333 if (info->byte_order != arches->gdbarch->byte_order)
2334 continue;
2335 if (info->osabi != arches->gdbarch->osabi)
2336 continue;
2337 if (info->target_desc != arches->gdbarch->target_desc)
2338 continue;
2339 return arches;
2340 }
2341 return NULL;
2342 }
2343
2344
2345 /* Find an architecture that matches the specified INFO. Create a new
2346 architecture if needed. Return that new architecture. */
2347
2348 struct gdbarch *
2349 gdbarch_find_by_info (struct gdbarch_info info)
2350 {
2351 struct gdbarch *new_gdbarch;
2352 struct gdbarch_registration *rego;
2353
2354 /* Fill in missing parts of the INFO struct using a number of
2355 sources: "set ..."; INFOabfd supplied; and the global
2356 defaults. */
2357 gdbarch_info_fill (&info);
2358
2359 /* Must have found some sort of architecture. */
2360 gdb_assert (info.bfd_arch_info != NULL);
2361
2362 if (gdbarch_debug)
2363 {
2364 fprintf_unfiltered (gdb_stdlog,
2365 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2366 (info.bfd_arch_info != NULL
2367 ? info.bfd_arch_info->printable_name
2368 : "(null)"));
2369 fprintf_unfiltered (gdb_stdlog,
2370 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2371 info.byte_order,
2372 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2373 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2374 : "default"));
2375 fprintf_unfiltered (gdb_stdlog,
2376 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2377 info.osabi, gdbarch_osabi_name (info.osabi));
2378 fprintf_unfiltered (gdb_stdlog,
2379 "gdbarch_find_by_info: info.abfd %s\n",
2380 host_address_to_string (info.abfd));
2381 fprintf_unfiltered (gdb_stdlog,
2382 "gdbarch_find_by_info: info.tdep_info %s\n",
2383 host_address_to_string (info.tdep_info));
2384 }
2385
2386 /* Find the tdep code that knows about this architecture. */
2387 for (rego = gdbarch_registry;
2388 rego != NULL;
2389 rego = rego->next)
2390 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2391 break;
2392 if (rego == NULL)
2393 {
2394 if (gdbarch_debug)
2395 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2396 "No matching architecture\n");
2397 return 0;
2398 }
2399
2400 /* Ask the tdep code for an architecture that matches "info". */
2401 new_gdbarch = rego->init (info, rego->arches);
2402
2403 /* Did the tdep code like it? No. Reject the change and revert to
2404 the old architecture. */
2405 if (new_gdbarch == NULL)
2406 {
2407 if (gdbarch_debug)
2408 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2409 "Target rejected architecture\n");
2410 return NULL;
2411 }
2412
2413 /* Is this a pre-existing architecture (as determined by already
2414 being initialized)? Move it to the front of the architecture
2415 list (keeping the list sorted Most Recently Used). */
2416 if (new_gdbarch->initialized_p)
2417 {
2418 struct gdbarch_list **list;
2419 struct gdbarch_list *self;
2420 if (gdbarch_debug)
2421 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2422 "Previous architecture %s (%s) selected\n",
2423 host_address_to_string (new_gdbarch),
2424 new_gdbarch->bfd_arch_info->printable_name);
2425 /* Find the existing arch in the list. */
2426 for (list = &rego->arches;
2427 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2428 list = &(*list)->next);
2429 /* It had better be in the list of architectures. */
2430 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2431 /* Unlink SELF. */
2432 self = (*list);
2433 (*list) = self->next;
2434 /* Insert SELF at the front. */
2435 self->next = rego->arches;
2436 rego->arches = self;
2437 /* Return it. */
2438 return new_gdbarch;
2439 }
2440
2441 /* It's a new architecture. */
2442 if (gdbarch_debug)
2443 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2444 "New architecture %s (%s) selected\n",
2445 host_address_to_string (new_gdbarch),
2446 new_gdbarch->bfd_arch_info->printable_name);
2447
2448 /* Insert the new architecture into the front of the architecture
2449 list (keep the list sorted Most Recently Used). */
2450 {
2451 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2452 self->next = rego->arches;
2453 self->gdbarch = new_gdbarch;
2454 rego->arches = self;
2455 }
2456
2457 /* Check that the newly installed architecture is valid. Plug in
2458 any post init values. */
2459 new_gdbarch->dump_tdep = rego->dump_tdep;
2460 verify_gdbarch (new_gdbarch);
2461 new_gdbarch->initialized_p = 1;
2462
2463 if (gdbarch_debug)
2464 gdbarch_dump (new_gdbarch, gdb_stdlog);
2465
2466 return new_gdbarch;
2467 }
2468
2469 /* Make the specified architecture current. */
2470
2471 void
2472 set_target_gdbarch (struct gdbarch *new_gdbarch)
2473 {
2474 gdb_assert (new_gdbarch != NULL);
2475 gdb_assert (new_gdbarch->initialized_p);
2476 current_inferior ()->gdbarch = new_gdbarch;
2477 observer_notify_architecture_changed (new_gdbarch);
2478 registers_changed ();
2479 }
2480
2481 /* Return the current inferior's arch. */
2482
2483 struct gdbarch *
2484 target_gdbarch (void)
2485 {
2486 return current_inferior ()->gdbarch;
2487 }
2488
2489 extern void _initialize_gdbarch (void);
2490
2491 void
2492 _initialize_gdbarch (void)
2493 {
2494 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2495 Set architecture debugging."), _("\\
2496 Show architecture debugging."), _("\\
2497 When non-zero, architecture debugging is enabled."),
2498 NULL,
2499 show_gdbarch_debug,
2500 &setdebuglist, &showdebuglist);
2501 }
2502 EOF
2503
2504 # close things off
2505 exec 1>&2
2506 #../move-if-change new-gdbarch.c gdbarch.c
2507 compare_new gdbarch.c
This page took 0.0936 seconds and 5 git commands to generate.