class readable_regcache and pass readable_regcache to gdbarch pseudo_register_read...
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2018 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
353
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
361 # machine.
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
363 # Alignment of a long long or unsigned long long for the target
364 # machine.
365 v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
366
367 # The ABI default bit-size and format for "half", "float", "double", and
368 # "long double". These bit/format pairs should eventually be combined
369 # into a single object. For the moment, just initialize them as a pair.
370 # Each format describes both the big and little endian layouts (if
371 # useful).
372
373 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
374 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
375 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
376 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
377 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
378 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
379 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
380 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
381
382 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
383 # starting with C++11.
384 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
385 # One if \`wchar_t' is signed, zero if unsigned.
386 v;int;wchar_signed;;;1;-1;1
387
388 # Returns the floating-point format to be used for values of length LENGTH.
389 # NAME, if non-NULL, is the type name, which may be used to distinguish
390 # different target formats of the same length.
391 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
392
393 # For most targets, a pointer on the target and its representation as an
394 # address in GDB have the same size and "look the same". For such a
395 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
396 # / addr_bit will be set from it.
397 #
398 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
399 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
400 # gdbarch_address_to_pointer as well.
401 #
402 # ptr_bit is the size of a pointer on the target
403 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
404 # addr_bit is the size of a target address as represented in gdb
405 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
406 #
407 # dwarf2_addr_size is the target address size as used in the Dwarf debug
408 # info. For .debug_frame FDEs, this is supposed to be the target address
409 # size from the associated CU header, and which is equivalent to the
410 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
411 # Unfortunately there is no good way to determine this value. Therefore
412 # dwarf2_addr_size simply defaults to the target pointer size.
413 #
414 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
415 # defined using the target's pointer size so far.
416 #
417 # Note that dwarf2_addr_size only needs to be redefined by a target if the
418 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
419 # and if Dwarf versions < 4 need to be supported.
420 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
421 #
422 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
423 v;int;char_signed;;;1;-1;1
424 #
425 F;CORE_ADDR;read_pc;struct regcache *regcache;regcache
426 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
427 # Function for getting target's idea of a frame pointer. FIXME: GDB's
428 # whole scheme for dealing with "frames" and "frame pointers" needs a
429 # serious shakedown.
430 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
431 #
432 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
433 # Read a register into a new struct value. If the register is wholly
434 # or partly unavailable, this should call mark_value_bytes_unavailable
435 # as appropriate. If this is defined, then pseudo_register_read will
436 # never be called.
437 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
438 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
439 #
440 v;int;num_regs;;;0;-1
441 # This macro gives the number of pseudo-registers that live in the
442 # register namespace but do not get fetched or stored on the target.
443 # These pseudo-registers may be aliases for other registers,
444 # combinations of other registers, or they may be computed by GDB.
445 v;int;num_pseudo_regs;;;0;0;;0
446
447 # Assemble agent expression bytecode to collect pseudo-register REG.
448 # Return -1 if something goes wrong, 0 otherwise.
449 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
450
451 # Assemble agent expression bytecode to push the value of pseudo-register
452 # REG on the interpreter stack.
453 # Return -1 if something goes wrong, 0 otherwise.
454 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
455
456 # Some targets/architectures can do extra processing/display of
457 # segmentation faults. E.g., Intel MPX boundary faults.
458 # Call the architecture dependent function to handle the fault.
459 # UIOUT is the output stream where the handler will place information.
460 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
461
462 # GDB's standard (or well known) register numbers. These can map onto
463 # a real register or a pseudo (computed) register or not be defined at
464 # all (-1).
465 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
466 v;int;sp_regnum;;;-1;-1;;0
467 v;int;pc_regnum;;;-1;-1;;0
468 v;int;ps_regnum;;;-1;-1;;0
469 v;int;fp0_regnum;;;0;-1;;0
470 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
471 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
472 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
473 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
474 # Convert from an sdb register number to an internal gdb register number.
475 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
476 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
477 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
478 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
479 m;const char *;register_name;int regnr;regnr;;0
480
481 # Return the type of a register specified by the architecture. Only
482 # the register cache should call this function directly; others should
483 # use "register_type".
484 M;struct type *;register_type;int reg_nr;reg_nr
485
486 M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
487 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
488 # deprecated_fp_regnum.
489 v;int;deprecated_fp_regnum;;;-1;-1;;0
490
491 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
492 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
493 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
494
495 # Return true if the code of FRAME is writable.
496 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
497
498 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
499 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
500 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
501 # MAP a GDB RAW register number onto a simulator register number. See
502 # also include/...-sim.h.
503 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
504 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
505 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
506
507 # Determine the address where a longjmp will land and save this address
508 # in PC. Return nonzero on success.
509 #
510 # FRAME corresponds to the longjmp frame.
511 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
512
513 #
514 v;int;believe_pcc_promotion;;;;;;;
515 #
516 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
517 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
518 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
519 # Construct a value representing the contents of register REGNUM in
520 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
521 # allocate and return a struct value with all value attributes
522 # (but not the value contents) filled in.
523 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
524 #
525 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
526 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
527 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
528
529 # Return the return-value convention that will be used by FUNCTION
530 # to return a value of type VALTYPE. FUNCTION may be NULL in which
531 # case the return convention is computed based only on VALTYPE.
532 #
533 # If READBUF is not NULL, extract the return value and save it in this buffer.
534 #
535 # If WRITEBUF is not NULL, it contains a return value which will be
536 # stored into the appropriate register. This can be used when we want
537 # to force the value returned by a function (see the "return" command
538 # for instance).
539 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
540
541 # Return true if the return value of function is stored in the first hidden
542 # parameter. In theory, this feature should be language-dependent, specified
543 # by language and its ABI, such as C++. Unfortunately, compiler may
544 # implement it to a target-dependent feature. So that we need such hook here
545 # to be aware of this in GDB.
546 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
547
548 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
549 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
550 # On some platforms, a single function may provide multiple entry points,
551 # e.g. one that is used for function-pointer calls and a different one
552 # that is used for direct function calls.
553 # In order to ensure that breakpoints set on the function will trigger
554 # no matter via which entry point the function is entered, a platform
555 # may provide the skip_entrypoint callback. It is called with IP set
556 # to the main entry point of a function (as determined by the symbol table),
557 # and should return the address of the innermost entry point, where the
558 # actual breakpoint needs to be set. Note that skip_entrypoint is used
559 # by GDB common code even when debugging optimized code, where skip_prologue
560 # is not used.
561 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
562
563 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
564 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
565
566 # Return the breakpoint kind for this target based on *PCPTR.
567 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
568
569 # Return the software breakpoint from KIND. KIND can have target
570 # specific meaning like the Z0 kind parameter.
571 # SIZE is set to the software breakpoint's length in memory.
572 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
573
574 # Return the breakpoint kind for this target based on the current
575 # processor state (e.g. the current instruction mode on ARM) and the
576 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
577 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
578
579 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
580 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
581 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
582 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
583
584 # A function can be addressed by either it's "pointer" (possibly a
585 # descriptor address) or "entry point" (first executable instruction).
586 # The method "convert_from_func_ptr_addr" converting the former to the
587 # latter. gdbarch_deprecated_function_start_offset is being used to implement
588 # a simplified subset of that functionality - the function's address
589 # corresponds to the "function pointer" and the function's start
590 # corresponds to the "function entry point" - and hence is redundant.
591
592 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
593
594 # Return the remote protocol register number associated with this
595 # register. Normally the identity mapping.
596 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
597
598 # Fetch the target specific address used to represent a load module.
599 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
600 #
601 v;CORE_ADDR;frame_args_skip;;;0;;;0
602 M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
603 M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
604 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
605 # frame-base. Enable frame-base before frame-unwind.
606 F;int;frame_num_args;struct frame_info *frame;frame
607 #
608 M;CORE_ADDR;frame_align;CORE_ADDR address;address
609 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
610 v;int;frame_red_zone_size
611 #
612 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
613 # On some machines there are bits in addresses which are not really
614 # part of the address, but are used by the kernel, the hardware, etc.
615 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
616 # we get a "real" address such as one would find in a symbol table.
617 # This is used only for addresses of instructions, and even then I'm
618 # not sure it's used in all contexts. It exists to deal with there
619 # being a few stray bits in the PC which would mislead us, not as some
620 # sort of generic thing to handle alignment or segmentation (it's
621 # possible it should be in TARGET_READ_PC instead).
622 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
623
624 # On some machines, not all bits of an address word are significant.
625 # For example, on AArch64, the top bits of an address known as the "tag"
626 # are ignored by the kernel, the hardware, etc. and can be regarded as
627 # additional data associated with the address.
628 v;int;significant_addr_bit;;;;;gdbarch_addr_bit (gdbarch);
629
630 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
631 # indicates if the target needs software single step. An ISA method to
632 # implement it.
633 #
634 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
635 # target can single step. If not, then implement single step using breakpoints.
636 #
637 # Return a vector of addresses on which the software single step
638 # breakpoints should be inserted. NULL means software single step is
639 # not used.
640 # Multiple breakpoints may be inserted for some instructions such as
641 # conditional branch. However, each implementation must always evaluate
642 # the condition and only put the breakpoint at the branch destination if
643 # the condition is true, so that we ensure forward progress when stepping
644 # past a conditional branch to self.
645 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
646
647 # Return non-zero if the processor is executing a delay slot and a
648 # further single-step is needed before the instruction finishes.
649 M;int;single_step_through_delay;struct frame_info *frame;frame
650 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
651 # disassembler. Perhaps objdump can handle it?
652 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
653 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
654
655
656 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
657 # evaluates non-zero, this is the address where the debugger will place
658 # a step-resume breakpoint to get us past the dynamic linker.
659 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
660 # Some systems also have trampoline code for returning from shared libs.
661 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
662
663 # A target might have problems with watchpoints as soon as the stack
664 # frame of the current function has been destroyed. This mostly happens
665 # as the first action in a function's epilogue. stack_frame_destroyed_p()
666 # is defined to return a non-zero value if either the given addr is one
667 # instruction after the stack destroying instruction up to the trailing
668 # return instruction or if we can figure out that the stack frame has
669 # already been invalidated regardless of the value of addr. Targets
670 # which don't suffer from that problem could just let this functionality
671 # untouched.
672 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
673 # Process an ELF symbol in the minimal symbol table in a backend-specific
674 # way. Normally this hook is supposed to do nothing, however if required,
675 # then this hook can be used to apply tranformations to symbols that are
676 # considered special in some way. For example the MIPS backend uses it
677 # to interpret \`st_other' information to mark compressed code symbols so
678 # that they can be treated in the appropriate manner in the processing of
679 # the main symbol table and DWARF-2 records.
680 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
681 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
682 # Process a symbol in the main symbol table in a backend-specific way.
683 # Normally this hook is supposed to do nothing, however if required,
684 # then this hook can be used to apply tranformations to symbols that
685 # are considered special in some way. This is currently used by the
686 # MIPS backend to make sure compressed code symbols have the ISA bit
687 # set. This in turn is needed for symbol values seen in GDB to match
688 # the values used at the runtime by the program itself, for function
689 # and label references.
690 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
691 # Adjust the address retrieved from a DWARF-2 record other than a line
692 # entry in a backend-specific way. Normally this hook is supposed to
693 # return the address passed unchanged, however if that is incorrect for
694 # any reason, then this hook can be used to fix the address up in the
695 # required manner. This is currently used by the MIPS backend to make
696 # sure addresses in FDE, range records, etc. referring to compressed
697 # code have the ISA bit set, matching line information and the symbol
698 # table.
699 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
700 # Adjust the address updated by a line entry in a backend-specific way.
701 # Normally this hook is supposed to return the address passed unchanged,
702 # however in the case of inconsistencies in these records, this hook can
703 # be used to fix them up in the required manner. This is currently used
704 # by the MIPS backend to make sure all line addresses in compressed code
705 # are presented with the ISA bit set, which is not always the case. This
706 # in turn ensures breakpoint addresses are correctly matched against the
707 # stop PC.
708 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
709 v;int;cannot_step_breakpoint;;;0;0;;0
710 v;int;have_nonsteppable_watchpoint;;;0;0;;0
711 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
712 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
713 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
714 # FS are passed from the generic execute_cfa_program function.
715 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
716
717 # Return the appropriate type_flags for the supplied address class.
718 # This function should return 1 if the address class was recognized and
719 # type_flags was set, zero otherwise.
720 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
721 # Is a register in a group
722 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
723 # Fetch the pointer to the ith function argument.
724 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
725
726 # Iterate over all supported register notes in a core file. For each
727 # supported register note section, the iterator must call CB and pass
728 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
729 # the supported register note sections based on the current register
730 # values. Otherwise it should enumerate all supported register note
731 # sections.
732 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
733
734 # Create core file notes
735 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
736
737 # Find core file memory regions
738 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
739
740 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
741 # core file into buffer READBUF with length LEN. Return the number of bytes read
742 # (zero indicates failure).
743 # failed, otherwise, return the red length of READBUF.
744 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
745
746 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
747 # libraries list from core file into buffer READBUF with length LEN.
748 # Return the number of bytes read (zero indicates failure).
749 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
750
751 # How the core target converts a PTID from a core file to a string.
752 M;const char *;core_pid_to_str;ptid_t ptid;ptid
753
754 # How the core target extracts the name of a thread from a core file.
755 M;const char *;core_thread_name;struct thread_info *thr;thr
756
757 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
758 # from core file into buffer READBUF with length LEN. Return the number
759 # of bytes read (zero indicates EOF, a negative value indicates failure).
760 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
761
762 # BFD target to use when generating a core file.
763 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
764
765 # If the elements of C++ vtables are in-place function descriptors rather
766 # than normal function pointers (which may point to code or a descriptor),
767 # set this to one.
768 v;int;vtable_function_descriptors;;;0;0;;0
769
770 # Set if the least significant bit of the delta is used instead of the least
771 # significant bit of the pfn for pointers to virtual member functions.
772 v;int;vbit_in_delta;;;0;0;;0
773
774 # Advance PC to next instruction in order to skip a permanent breakpoint.
775 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
776
777 # The maximum length of an instruction on this architecture in bytes.
778 V;ULONGEST;max_insn_length;;;0;0
779
780 # Copy the instruction at FROM to TO, and make any adjustments
781 # necessary to single-step it at that address.
782 #
783 # REGS holds the state the thread's registers will have before
784 # executing the copied instruction; the PC in REGS will refer to FROM,
785 # not the copy at TO. The caller should update it to point at TO later.
786 #
787 # Return a pointer to data of the architecture's choice to be passed
788 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
789 # the instruction's effects have been completely simulated, with the
790 # resulting state written back to REGS.
791 #
792 # For a general explanation of displaced stepping and how GDB uses it,
793 # see the comments in infrun.c.
794 #
795 # The TO area is only guaranteed to have space for
796 # gdbarch_max_insn_length (arch) bytes, so this function must not
797 # write more bytes than that to that area.
798 #
799 # If you do not provide this function, GDB assumes that the
800 # architecture does not support displaced stepping.
801 #
802 # If the instruction cannot execute out of line, return NULL. The
803 # core falls back to stepping past the instruction in-line instead in
804 # that case.
805 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
806
807 # Return true if GDB should use hardware single-stepping to execute
808 # the displaced instruction identified by CLOSURE. If false,
809 # GDB will simply restart execution at the displaced instruction
810 # location, and it is up to the target to ensure GDB will receive
811 # control again (e.g. by placing a software breakpoint instruction
812 # into the displaced instruction buffer).
813 #
814 # The default implementation returns false on all targets that
815 # provide a gdbarch_software_single_step routine, and true otherwise.
816 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
817
818 # Fix up the state resulting from successfully single-stepping a
819 # displaced instruction, to give the result we would have gotten from
820 # stepping the instruction in its original location.
821 #
822 # REGS is the register state resulting from single-stepping the
823 # displaced instruction.
824 #
825 # CLOSURE is the result from the matching call to
826 # gdbarch_displaced_step_copy_insn.
827 #
828 # If you provide gdbarch_displaced_step_copy_insn.but not this
829 # function, then GDB assumes that no fixup is needed after
830 # single-stepping the instruction.
831 #
832 # For a general explanation of displaced stepping and how GDB uses it,
833 # see the comments in infrun.c.
834 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
835
836 # Return the address of an appropriate place to put displaced
837 # instructions while we step over them. There need only be one such
838 # place, since we're only stepping one thread over a breakpoint at a
839 # time.
840 #
841 # For a general explanation of displaced stepping and how GDB uses it,
842 # see the comments in infrun.c.
843 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
844
845 # Relocate an instruction to execute at a different address. OLDLOC
846 # is the address in the inferior memory where the instruction to
847 # relocate is currently at. On input, TO points to the destination
848 # where we want the instruction to be copied (and possibly adjusted)
849 # to. On output, it points to one past the end of the resulting
850 # instruction(s). The effect of executing the instruction at TO shall
851 # be the same as if executing it at FROM. For example, call
852 # instructions that implicitly push the return address on the stack
853 # should be adjusted to return to the instruction after OLDLOC;
854 # relative branches, and other PC-relative instructions need the
855 # offset adjusted; etc.
856 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
857
858 # Refresh overlay mapped state for section OSECT.
859 F;void;overlay_update;struct obj_section *osect;osect
860
861 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
862
863 # Handle special encoding of static variables in stabs debug info.
864 F;const char *;static_transform_name;const char *name;name
865 # Set if the address in N_SO or N_FUN stabs may be zero.
866 v;int;sofun_address_maybe_missing;;;0;0;;0
867
868 # Parse the instruction at ADDR storing in the record execution log
869 # the registers REGCACHE and memory ranges that will be affected when
870 # the instruction executes, along with their current values.
871 # Return -1 if something goes wrong, 0 otherwise.
872 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
873
874 # Save process state after a signal.
875 # Return -1 if something goes wrong, 0 otherwise.
876 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
877
878 # Signal translation: translate inferior's signal (target's) number
879 # into GDB's representation. The implementation of this method must
880 # be host independent. IOW, don't rely on symbols of the NAT_FILE
881 # header (the nm-*.h files), the host <signal.h> header, or similar
882 # headers. This is mainly used when cross-debugging core files ---
883 # "Live" targets hide the translation behind the target interface
884 # (target_wait, target_resume, etc.).
885 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
886
887 # Signal translation: translate the GDB's internal signal number into
888 # the inferior's signal (target's) representation. The implementation
889 # of this method must be host independent. IOW, don't rely on symbols
890 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
891 # header, or similar headers.
892 # Return the target signal number if found, or -1 if the GDB internal
893 # signal number is invalid.
894 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
895
896 # Extra signal info inspection.
897 #
898 # Return a type suitable to inspect extra signal information.
899 M;struct type *;get_siginfo_type;void;
900
901 # Record architecture-specific information from the symbol table.
902 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
903
904 # Function for the 'catch syscall' feature.
905
906 # Get architecture-specific system calls information from registers.
907 M;LONGEST;get_syscall_number;ptid_t ptid;ptid
908
909 # The filename of the XML syscall for this architecture.
910 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
911
912 # Information about system calls from this architecture
913 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
914
915 # SystemTap related fields and functions.
916
917 # A NULL-terminated array of prefixes used to mark an integer constant
918 # on the architecture's assembly.
919 # For example, on x86 integer constants are written as:
920 #
921 # \$10 ;; integer constant 10
922 #
923 # in this case, this prefix would be the character \`\$\'.
924 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
925
926 # A NULL-terminated array of suffixes used to mark an integer constant
927 # on the architecture's assembly.
928 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
929
930 # A NULL-terminated array of prefixes used to mark a register name on
931 # the architecture's assembly.
932 # For example, on x86 the register name is written as:
933 #
934 # \%eax ;; register eax
935 #
936 # in this case, this prefix would be the character \`\%\'.
937 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
938
939 # A NULL-terminated array of suffixes used to mark a register name on
940 # the architecture's assembly.
941 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
942
943 # A NULL-terminated array of prefixes used to mark a register
944 # indirection on the architecture's assembly.
945 # For example, on x86 the register indirection is written as:
946 #
947 # \(\%eax\) ;; indirecting eax
948 #
949 # in this case, this prefix would be the charater \`\(\'.
950 #
951 # Please note that we use the indirection prefix also for register
952 # displacement, e.g., \`4\(\%eax\)\' on x86.
953 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
954
955 # A NULL-terminated array of suffixes used to mark a register
956 # indirection on the architecture's assembly.
957 # For example, on x86 the register indirection is written as:
958 #
959 # \(\%eax\) ;; indirecting eax
960 #
961 # in this case, this prefix would be the charater \`\)\'.
962 #
963 # Please note that we use the indirection suffix also for register
964 # displacement, e.g., \`4\(\%eax\)\' on x86.
965 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
966
967 # Prefix(es) used to name a register using GDB's nomenclature.
968 #
969 # For example, on PPC a register is represented by a number in the assembly
970 # language (e.g., \`10\' is the 10th general-purpose register). However,
971 # inside GDB this same register has an \`r\' appended to its name, so the 10th
972 # register would be represented as \`r10\' internally.
973 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
974
975 # Suffix used to name a register using GDB's nomenclature.
976 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
977
978 # Check if S is a single operand.
979 #
980 # Single operands can be:
981 # \- Literal integers, e.g. \`\$10\' on x86
982 # \- Register access, e.g. \`\%eax\' on x86
983 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
984 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
985 #
986 # This function should check for these patterns on the string
987 # and return 1 if some were found, or zero otherwise. Please try to match
988 # as much info as you can from the string, i.e., if you have to match
989 # something like \`\(\%\', do not match just the \`\(\'.
990 M;int;stap_is_single_operand;const char *s;s
991
992 # Function used to handle a "special case" in the parser.
993 #
994 # A "special case" is considered to be an unknown token, i.e., a token
995 # that the parser does not know how to parse. A good example of special
996 # case would be ARM's register displacement syntax:
997 #
998 # [R0, #4] ;; displacing R0 by 4
999 #
1000 # Since the parser assumes that a register displacement is of the form:
1001 #
1002 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1003 #
1004 # it means that it will not be able to recognize and parse this odd syntax.
1005 # Therefore, we should add a special case function that will handle this token.
1006 #
1007 # This function should generate the proper expression form of the expression
1008 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1009 # and so on). It should also return 1 if the parsing was successful, or zero
1010 # if the token was not recognized as a special token (in this case, returning
1011 # zero means that the special parser is deferring the parsing to the generic
1012 # parser), and should advance the buffer pointer (p->arg).
1013 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1014
1015 # DTrace related functions.
1016
1017 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1018 # NARG must be >= 0.
1019 M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1020
1021 # True if the given ADDR does not contain the instruction sequence
1022 # corresponding to a disabled DTrace is-enabled probe.
1023 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1024
1025 # Enable a DTrace is-enabled probe at ADDR.
1026 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1027
1028 # Disable a DTrace is-enabled probe at ADDR.
1029 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1030
1031 # True if the list of shared libraries is one and only for all
1032 # processes, as opposed to a list of shared libraries per inferior.
1033 # This usually means that all processes, although may or may not share
1034 # an address space, will see the same set of symbols at the same
1035 # addresses.
1036 v;int;has_global_solist;;;0;0;;0
1037
1038 # On some targets, even though each inferior has its own private
1039 # address space, the debug interface takes care of making breakpoints
1040 # visible to all address spaces automatically. For such cases,
1041 # this property should be set to true.
1042 v;int;has_global_breakpoints;;;0;0;;0
1043
1044 # True if inferiors share an address space (e.g., uClinux).
1045 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1046
1047 # True if a fast tracepoint can be set at an address.
1048 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, char **msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1049
1050 # Guess register state based on tracepoint location. Used for tracepoints
1051 # where no registers have been collected, but there's only one location,
1052 # allowing us to guess the PC value, and perhaps some other registers.
1053 # On entry, regcache has all registers marked as unavailable.
1054 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1055
1056 # Return the "auto" target charset.
1057 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1058 # Return the "auto" target wide charset.
1059 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1060
1061 # If non-empty, this is a file extension that will be opened in place
1062 # of the file extension reported by the shared library list.
1063 #
1064 # This is most useful for toolchains that use a post-linker tool,
1065 # where the names of the files run on the target differ in extension
1066 # compared to the names of the files GDB should load for debug info.
1067 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1068
1069 # If true, the target OS has DOS-based file system semantics. That
1070 # is, absolute paths include a drive name, and the backslash is
1071 # considered a directory separator.
1072 v;int;has_dos_based_file_system;;;0;0;;0
1073
1074 # Generate bytecodes to collect the return address in a frame.
1075 # Since the bytecodes run on the target, possibly with GDB not even
1076 # connected, the full unwinding machinery is not available, and
1077 # typically this function will issue bytecodes for one or more likely
1078 # places that the return address may be found.
1079 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1080
1081 # Implement the "info proc" command.
1082 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1083
1084 # Implement the "info proc" command for core files. Noe that there
1085 # are two "info_proc"-like methods on gdbarch -- one for core files,
1086 # one for live targets.
1087 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1088
1089 # Iterate over all objfiles in the order that makes the most sense
1090 # for the architecture to make global symbol searches.
1091 #
1092 # CB is a callback function where OBJFILE is the objfile to be searched,
1093 # and CB_DATA a pointer to user-defined data (the same data that is passed
1094 # when calling this gdbarch method). The iteration stops if this function
1095 # returns nonzero.
1096 #
1097 # CB_DATA is a pointer to some user-defined data to be passed to
1098 # the callback.
1099 #
1100 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1101 # inspected when the symbol search was requested.
1102 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1103
1104 # Ravenscar arch-dependent ops.
1105 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1106
1107 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1108 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1109
1110 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1111 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1112
1113 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1114 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1115
1116 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1117 # Return 0 if *READPTR is already at the end of the buffer.
1118 # Return -1 if there is insufficient buffer for a whole entry.
1119 # Return 1 if an entry was read into *TYPEP and *VALP.
1120 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1121
1122 # Print the description of a single auxv entry described by TYPE and VAL
1123 # to FILE.
1124 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1125
1126 # Find the address range of the current inferior's vsyscall/vDSO, and
1127 # write it to *RANGE. If the vsyscall's length can't be determined, a
1128 # range with zero length is returned. Returns true if the vsyscall is
1129 # found, false otherwise.
1130 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1131
1132 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1133 # PROT has GDB_MMAP_PROT_* bitmask format.
1134 # Throw an error if it is not possible. Returned address is always valid.
1135 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1136
1137 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1138 # Print a warning if it is not possible.
1139 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1140
1141 # Return string (caller has to use xfree for it) with options for GCC
1142 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1143 # These options are put before CU's DW_AT_producer compilation options so that
1144 # they can override it. Method may also return NULL.
1145 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1146
1147 # Return a regular expression that matches names used by this
1148 # architecture in GNU configury triplets. The result is statically
1149 # allocated and must not be freed. The default implementation simply
1150 # returns the BFD architecture name, which is correct in nearly every
1151 # case.
1152 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1153
1154 # Return the size in 8-bit bytes of an addressable memory unit on this
1155 # architecture. This corresponds to the number of 8-bit bytes associated to
1156 # each address in memory.
1157 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1158
1159 # Functions for allowing a target to modify its disassembler options.
1160 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1161 v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1162
1163 EOF
1164 }
1165
1166 #
1167 # The .log file
1168 #
1169 exec > new-gdbarch.log
1170 function_list | while do_read
1171 do
1172 cat <<EOF
1173 ${class} ${returntype} ${function} ($formal)
1174 EOF
1175 for r in ${read}
1176 do
1177 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1178 done
1179 if class_is_predicate_p && fallback_default_p
1180 then
1181 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1182 kill $$
1183 exit 1
1184 fi
1185 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1186 then
1187 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1188 kill $$
1189 exit 1
1190 fi
1191 if class_is_multiarch_p
1192 then
1193 if class_is_predicate_p ; then :
1194 elif test "x${predefault}" = "x"
1195 then
1196 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1197 kill $$
1198 exit 1
1199 fi
1200 fi
1201 echo ""
1202 done
1203
1204 exec 1>&2
1205 compare_new gdbarch.log
1206
1207
1208 copyright ()
1209 {
1210 cat <<EOF
1211 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1212 /* vi:set ro: */
1213
1214 /* Dynamic architecture support for GDB, the GNU debugger.
1215
1216 Copyright (C) 1998-2018 Free Software Foundation, Inc.
1217
1218 This file is part of GDB.
1219
1220 This program is free software; you can redistribute it and/or modify
1221 it under the terms of the GNU General Public License as published by
1222 the Free Software Foundation; either version 3 of the License, or
1223 (at your option) any later version.
1224
1225 This program is distributed in the hope that it will be useful,
1226 but WITHOUT ANY WARRANTY; without even the implied warranty of
1227 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1228 GNU General Public License for more details.
1229
1230 You should have received a copy of the GNU General Public License
1231 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1232
1233 /* This file was created with the aid of \`\`gdbarch.sh''.
1234
1235 The Bourne shell script \`\`gdbarch.sh'' creates the files
1236 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1237 against the existing \`\`gdbarch.[hc]''. Any differences found
1238 being reported.
1239
1240 If editing this file, please also run gdbarch.sh and merge any
1241 changes into that script. Conversely, when making sweeping changes
1242 to this file, modifying gdbarch.sh and using its output may prove
1243 easier. */
1244
1245 EOF
1246 }
1247
1248 #
1249 # The .h file
1250 #
1251
1252 exec > new-gdbarch.h
1253 copyright
1254 cat <<EOF
1255 #ifndef GDBARCH_H
1256 #define GDBARCH_H
1257
1258 #include <vector>
1259 #include "frame.h"
1260 #include "dis-asm.h"
1261
1262 struct floatformat;
1263 struct ui_file;
1264 struct value;
1265 struct objfile;
1266 struct obj_section;
1267 struct minimal_symbol;
1268 struct regcache;
1269 struct reggroup;
1270 struct regset;
1271 struct disassemble_info;
1272 struct target_ops;
1273 struct obstack;
1274 struct bp_target_info;
1275 struct target_desc;
1276 struct symbol;
1277 struct displaced_step_closure;
1278 struct syscall;
1279 struct agent_expr;
1280 struct axs_value;
1281 struct stap_parse_info;
1282 struct parser_state;
1283 struct ravenscar_arch_ops;
1284 struct mem_range;
1285 struct syscalls_info;
1286 struct thread_info;
1287 struct ui_out;
1288
1289 #include "regcache.h"
1290
1291 /* The architecture associated with the inferior through the
1292 connection to the target.
1293
1294 The architecture vector provides some information that is really a
1295 property of the inferior, accessed through a particular target:
1296 ptrace operations; the layout of certain RSP packets; the solib_ops
1297 vector; etc. To differentiate architecture accesses to
1298 per-inferior/target properties from
1299 per-thread/per-frame/per-objfile properties, accesses to
1300 per-inferior/target properties should be made through this
1301 gdbarch. */
1302
1303 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1304 extern struct gdbarch *target_gdbarch (void);
1305
1306 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1307 gdbarch method. */
1308
1309 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1310 (struct objfile *objfile, void *cb_data);
1311
1312 /* Callback type for regset section iterators. The callback usually
1313 invokes the REGSET's supply or collect method, to which it must
1314 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1315 section name, and HUMAN_NAME is used for diagnostic messages.
1316 CB_DATA should have been passed unchanged through the iterator. */
1317
1318 typedef void (iterate_over_regset_sections_cb)
1319 (const char *sect_name, int size, const struct regset *regset,
1320 const char *human_name, void *cb_data);
1321 EOF
1322
1323 # function typedef's
1324 printf "\n"
1325 printf "\n"
1326 printf "/* The following are pre-initialized by GDBARCH. */\n"
1327 function_list | while do_read
1328 do
1329 if class_is_info_p
1330 then
1331 printf "\n"
1332 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1333 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1334 fi
1335 done
1336
1337 # function typedef's
1338 printf "\n"
1339 printf "\n"
1340 printf "/* The following are initialized by the target dependent code. */\n"
1341 function_list | while do_read
1342 do
1343 if [ -n "${comment}" ]
1344 then
1345 echo "${comment}" | sed \
1346 -e '2 s,#,/*,' \
1347 -e '3,$ s,#, ,' \
1348 -e '$ s,$, */,'
1349 fi
1350
1351 if class_is_predicate_p
1352 then
1353 printf "\n"
1354 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1355 fi
1356 if class_is_variable_p
1357 then
1358 printf "\n"
1359 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1360 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1361 fi
1362 if class_is_function_p
1363 then
1364 printf "\n"
1365 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1366 then
1367 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1368 elif class_is_multiarch_p
1369 then
1370 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1371 else
1372 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1373 fi
1374 if [ "x${formal}" = "xvoid" ]
1375 then
1376 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1377 else
1378 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1379 fi
1380 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1381 fi
1382 done
1383
1384 # close it off
1385 cat <<EOF
1386
1387 /* Definition for an unknown syscall, used basically in error-cases. */
1388 #define UNKNOWN_SYSCALL (-1)
1389
1390 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1391
1392
1393 /* Mechanism for co-ordinating the selection of a specific
1394 architecture.
1395
1396 GDB targets (*-tdep.c) can register an interest in a specific
1397 architecture. Other GDB components can register a need to maintain
1398 per-architecture data.
1399
1400 The mechanisms below ensures that there is only a loose connection
1401 between the set-architecture command and the various GDB
1402 components. Each component can independently register their need
1403 to maintain architecture specific data with gdbarch.
1404
1405 Pragmatics:
1406
1407 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1408 didn't scale.
1409
1410 The more traditional mega-struct containing architecture specific
1411 data for all the various GDB components was also considered. Since
1412 GDB is built from a variable number of (fairly independent)
1413 components it was determined that the global aproach was not
1414 applicable. */
1415
1416
1417 /* Register a new architectural family with GDB.
1418
1419 Register support for the specified ARCHITECTURE with GDB. When
1420 gdbarch determines that the specified architecture has been
1421 selected, the corresponding INIT function is called.
1422
1423 --
1424
1425 The INIT function takes two parameters: INFO which contains the
1426 information available to gdbarch about the (possibly new)
1427 architecture; ARCHES which is a list of the previously created
1428 \`\`struct gdbarch'' for this architecture.
1429
1430 The INFO parameter is, as far as possible, be pre-initialized with
1431 information obtained from INFO.ABFD or the global defaults.
1432
1433 The ARCHES parameter is a linked list (sorted most recently used)
1434 of all the previously created architures for this architecture
1435 family. The (possibly NULL) ARCHES->gdbarch can used to access
1436 values from the previously selected architecture for this
1437 architecture family.
1438
1439 The INIT function shall return any of: NULL - indicating that it
1440 doesn't recognize the selected architecture; an existing \`\`struct
1441 gdbarch'' from the ARCHES list - indicating that the new
1442 architecture is just a synonym for an earlier architecture (see
1443 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1444 - that describes the selected architecture (see gdbarch_alloc()).
1445
1446 The DUMP_TDEP function shall print out all target specific values.
1447 Care should be taken to ensure that the function works in both the
1448 multi-arch and non- multi-arch cases. */
1449
1450 struct gdbarch_list
1451 {
1452 struct gdbarch *gdbarch;
1453 struct gdbarch_list *next;
1454 };
1455
1456 struct gdbarch_info
1457 {
1458 /* Use default: NULL (ZERO). */
1459 const struct bfd_arch_info *bfd_arch_info;
1460
1461 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1462 enum bfd_endian byte_order;
1463
1464 enum bfd_endian byte_order_for_code;
1465
1466 /* Use default: NULL (ZERO). */
1467 bfd *abfd;
1468
1469 /* Use default: NULL (ZERO). */
1470 union
1471 {
1472 /* Architecture-specific information. The generic form for targets
1473 that have extra requirements. */
1474 struct gdbarch_tdep_info *tdep_info;
1475
1476 /* Architecture-specific target description data. Numerous targets
1477 need only this, so give them an easy way to hold it. */
1478 struct tdesc_arch_data *tdesc_data;
1479
1480 /* SPU file system ID. This is a single integer, so using the
1481 generic form would only complicate code. Other targets may
1482 reuse this member if suitable. */
1483 int *id;
1484 };
1485
1486 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1487 enum gdb_osabi osabi;
1488
1489 /* Use default: NULL (ZERO). */
1490 const struct target_desc *target_desc;
1491 };
1492
1493 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1494 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1495
1496 /* DEPRECATED - use gdbarch_register() */
1497 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1498
1499 extern void gdbarch_register (enum bfd_architecture architecture,
1500 gdbarch_init_ftype *,
1501 gdbarch_dump_tdep_ftype *);
1502
1503
1504 /* Return a freshly allocated, NULL terminated, array of the valid
1505 architecture names. Since architectures are registered during the
1506 _initialize phase this function only returns useful information
1507 once initialization has been completed. */
1508
1509 extern const char **gdbarch_printable_names (void);
1510
1511
1512 /* Helper function. Search the list of ARCHES for a GDBARCH that
1513 matches the information provided by INFO. */
1514
1515 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1516
1517
1518 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1519 basic initialization using values obtained from the INFO and TDEP
1520 parameters. set_gdbarch_*() functions are called to complete the
1521 initialization of the object. */
1522
1523 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1524
1525
1526 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1527 It is assumed that the caller freeds the \`\`struct
1528 gdbarch_tdep''. */
1529
1530 extern void gdbarch_free (struct gdbarch *);
1531
1532
1533 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1534 obstack. The memory is freed when the corresponding architecture
1535 is also freed. */
1536
1537 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1538 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1539 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1540
1541 /* Duplicate STRING, returning an equivalent string that's allocated on the
1542 obstack associated with GDBARCH. The string is freed when the corresponding
1543 architecture is also freed. */
1544
1545 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1546
1547 /* Helper function. Force an update of the current architecture.
1548
1549 The actual architecture selected is determined by INFO, \`\`(gdb) set
1550 architecture'' et.al., the existing architecture and BFD's default
1551 architecture. INFO should be initialized to zero and then selected
1552 fields should be updated.
1553
1554 Returns non-zero if the update succeeds. */
1555
1556 extern int gdbarch_update_p (struct gdbarch_info info);
1557
1558
1559 /* Helper function. Find an architecture matching info.
1560
1561 INFO should be initialized using gdbarch_info_init, relevant fields
1562 set, and then finished using gdbarch_info_fill.
1563
1564 Returns the corresponding architecture, or NULL if no matching
1565 architecture was found. */
1566
1567 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1568
1569
1570 /* Helper function. Set the target gdbarch to "gdbarch". */
1571
1572 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1573
1574
1575 /* Register per-architecture data-pointer.
1576
1577 Reserve space for a per-architecture data-pointer. An identifier
1578 for the reserved data-pointer is returned. That identifer should
1579 be saved in a local static variable.
1580
1581 Memory for the per-architecture data shall be allocated using
1582 gdbarch_obstack_zalloc. That memory will be deleted when the
1583 corresponding architecture object is deleted.
1584
1585 When a previously created architecture is re-selected, the
1586 per-architecture data-pointer for that previous architecture is
1587 restored. INIT() is not re-called.
1588
1589 Multiple registrarants for any architecture are allowed (and
1590 strongly encouraged). */
1591
1592 struct gdbarch_data;
1593
1594 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1595 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1596 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1597 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1598 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1599 struct gdbarch_data *data,
1600 void *pointer);
1601
1602 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1603
1604
1605 /* Set the dynamic target-system-dependent parameters (architecture,
1606 byte-order, ...) using information found in the BFD. */
1607
1608 extern void set_gdbarch_from_file (bfd *);
1609
1610
1611 /* Initialize the current architecture to the "first" one we find on
1612 our list. */
1613
1614 extern void initialize_current_architecture (void);
1615
1616 /* gdbarch trace variable */
1617 extern unsigned int gdbarch_debug;
1618
1619 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1620
1621 #endif
1622 EOF
1623 exec 1>&2
1624 #../move-if-change new-gdbarch.h gdbarch.h
1625 compare_new gdbarch.h
1626
1627
1628 #
1629 # C file
1630 #
1631
1632 exec > new-gdbarch.c
1633 copyright
1634 cat <<EOF
1635
1636 #include "defs.h"
1637 #include "arch-utils.h"
1638
1639 #include "gdbcmd.h"
1640 #include "inferior.h"
1641 #include "symcat.h"
1642
1643 #include "floatformat.h"
1644 #include "reggroups.h"
1645 #include "osabi.h"
1646 #include "gdb_obstack.h"
1647 #include "observer.h"
1648 #include "regcache.h"
1649 #include "objfiles.h"
1650 #include "auxv.h"
1651
1652 /* Static function declarations */
1653
1654 static void alloc_gdbarch_data (struct gdbarch *);
1655
1656 /* Non-zero if we want to trace architecture code. */
1657
1658 #ifndef GDBARCH_DEBUG
1659 #define GDBARCH_DEBUG 0
1660 #endif
1661 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1662 static void
1663 show_gdbarch_debug (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c, const char *value)
1665 {
1666 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1667 }
1668
1669 static const char *
1670 pformat (const struct floatformat **format)
1671 {
1672 if (format == NULL)
1673 return "(null)";
1674 else
1675 /* Just print out one of them - this is only for diagnostics. */
1676 return format[0]->name;
1677 }
1678
1679 static const char *
1680 pstring (const char *string)
1681 {
1682 if (string == NULL)
1683 return "(null)";
1684 return string;
1685 }
1686
1687 static const char *
1688 pstring_ptr (char **string)
1689 {
1690 if (string == NULL || *string == NULL)
1691 return "(null)";
1692 return *string;
1693 }
1694
1695 /* Helper function to print a list of strings, represented as "const
1696 char *const *". The list is printed comma-separated. */
1697
1698 static const char *
1699 pstring_list (const char *const *list)
1700 {
1701 static char ret[100];
1702 const char *const *p;
1703 size_t offset = 0;
1704
1705 if (list == NULL)
1706 return "(null)";
1707
1708 ret[0] = '\0';
1709 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1710 {
1711 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1712 offset += 2 + s;
1713 }
1714
1715 if (offset > 0)
1716 {
1717 gdb_assert (offset - 2 < sizeof (ret));
1718 ret[offset - 2] = '\0';
1719 }
1720
1721 return ret;
1722 }
1723
1724 EOF
1725
1726 # gdbarch open the gdbarch object
1727 printf "\n"
1728 printf "/* Maintain the struct gdbarch object. */\n"
1729 printf "\n"
1730 printf "struct gdbarch\n"
1731 printf "{\n"
1732 printf " /* Has this architecture been fully initialized? */\n"
1733 printf " int initialized_p;\n"
1734 printf "\n"
1735 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1736 printf " struct obstack *obstack;\n"
1737 printf "\n"
1738 printf " /* basic architectural information. */\n"
1739 function_list | while do_read
1740 do
1741 if class_is_info_p
1742 then
1743 printf " ${returntype} ${function};\n"
1744 fi
1745 done
1746 printf "\n"
1747 printf " /* target specific vector. */\n"
1748 printf " struct gdbarch_tdep *tdep;\n"
1749 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1750 printf "\n"
1751 printf " /* per-architecture data-pointers. */\n"
1752 printf " unsigned nr_data;\n"
1753 printf " void **data;\n"
1754 printf "\n"
1755 cat <<EOF
1756 /* Multi-arch values.
1757
1758 When extending this structure you must:
1759
1760 Add the field below.
1761
1762 Declare set/get functions and define the corresponding
1763 macro in gdbarch.h.
1764
1765 gdbarch_alloc(): If zero/NULL is not a suitable default,
1766 initialize the new field.
1767
1768 verify_gdbarch(): Confirm that the target updated the field
1769 correctly.
1770
1771 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1772 field is dumped out
1773
1774 get_gdbarch(): Implement the set/get functions (probably using
1775 the macro's as shortcuts).
1776
1777 */
1778
1779 EOF
1780 function_list | while do_read
1781 do
1782 if class_is_variable_p
1783 then
1784 printf " ${returntype} ${function};\n"
1785 elif class_is_function_p
1786 then
1787 printf " gdbarch_${function}_ftype *${function};\n"
1788 fi
1789 done
1790 printf "};\n"
1791
1792 # Create a new gdbarch struct
1793 cat <<EOF
1794
1795 /* Create a new \`\`struct gdbarch'' based on information provided by
1796 \`\`struct gdbarch_info''. */
1797 EOF
1798 printf "\n"
1799 cat <<EOF
1800 struct gdbarch *
1801 gdbarch_alloc (const struct gdbarch_info *info,
1802 struct gdbarch_tdep *tdep)
1803 {
1804 struct gdbarch *gdbarch;
1805
1806 /* Create an obstack for allocating all the per-architecture memory,
1807 then use that to allocate the architecture vector. */
1808 struct obstack *obstack = XNEW (struct obstack);
1809 obstack_init (obstack);
1810 gdbarch = XOBNEW (obstack, struct gdbarch);
1811 memset (gdbarch, 0, sizeof (*gdbarch));
1812 gdbarch->obstack = obstack;
1813
1814 alloc_gdbarch_data (gdbarch);
1815
1816 gdbarch->tdep = tdep;
1817 EOF
1818 printf "\n"
1819 function_list | while do_read
1820 do
1821 if class_is_info_p
1822 then
1823 printf " gdbarch->${function} = info->${function};\n"
1824 fi
1825 done
1826 printf "\n"
1827 printf " /* Force the explicit initialization of these. */\n"
1828 function_list | while do_read
1829 do
1830 if class_is_function_p || class_is_variable_p
1831 then
1832 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1833 then
1834 printf " gdbarch->${function} = ${predefault};\n"
1835 fi
1836 fi
1837 done
1838 cat <<EOF
1839 /* gdbarch_alloc() */
1840
1841 return gdbarch;
1842 }
1843 EOF
1844
1845 # Free a gdbarch struct.
1846 printf "\n"
1847 printf "\n"
1848 cat <<EOF
1849 /* Allocate extra space using the per-architecture obstack. */
1850
1851 void *
1852 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1853 {
1854 void *data = obstack_alloc (arch->obstack, size);
1855
1856 memset (data, 0, size);
1857 return data;
1858 }
1859
1860 /* See gdbarch.h. */
1861
1862 char *
1863 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1864 {
1865 return obstack_strdup (arch->obstack, string);
1866 }
1867
1868
1869 /* Free a gdbarch struct. This should never happen in normal
1870 operation --- once you've created a gdbarch, you keep it around.
1871 However, if an architecture's init function encounters an error
1872 building the structure, it may need to clean up a partially
1873 constructed gdbarch. */
1874
1875 void
1876 gdbarch_free (struct gdbarch *arch)
1877 {
1878 struct obstack *obstack;
1879
1880 gdb_assert (arch != NULL);
1881 gdb_assert (!arch->initialized_p);
1882 obstack = arch->obstack;
1883 obstack_free (obstack, 0); /* Includes the ARCH. */
1884 xfree (obstack);
1885 }
1886 EOF
1887
1888 # verify a new architecture
1889 cat <<EOF
1890
1891
1892 /* Ensure that all values in a GDBARCH are reasonable. */
1893
1894 static void
1895 verify_gdbarch (struct gdbarch *gdbarch)
1896 {
1897 string_file log;
1898
1899 /* fundamental */
1900 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1901 log.puts ("\n\tbyte-order");
1902 if (gdbarch->bfd_arch_info == NULL)
1903 log.puts ("\n\tbfd_arch_info");
1904 /* Check those that need to be defined for the given multi-arch level. */
1905 EOF
1906 function_list | while do_read
1907 do
1908 if class_is_function_p || class_is_variable_p
1909 then
1910 if [ "x${invalid_p}" = "x0" ]
1911 then
1912 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1913 elif class_is_predicate_p
1914 then
1915 printf " /* Skip verify of ${function}, has predicate. */\n"
1916 # FIXME: See do_read for potential simplification
1917 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1918 then
1919 printf " if (${invalid_p})\n"
1920 printf " gdbarch->${function} = ${postdefault};\n"
1921 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1922 then
1923 printf " if (gdbarch->${function} == ${predefault})\n"
1924 printf " gdbarch->${function} = ${postdefault};\n"
1925 elif [ -n "${postdefault}" ]
1926 then
1927 printf " if (gdbarch->${function} == 0)\n"
1928 printf " gdbarch->${function} = ${postdefault};\n"
1929 elif [ -n "${invalid_p}" ]
1930 then
1931 printf " if (${invalid_p})\n"
1932 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1933 elif [ -n "${predefault}" ]
1934 then
1935 printf " if (gdbarch->${function} == ${predefault})\n"
1936 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1937 fi
1938 fi
1939 done
1940 cat <<EOF
1941 if (!log.empty ())
1942 internal_error (__FILE__, __LINE__,
1943 _("verify_gdbarch: the following are invalid ...%s"),
1944 log.c_str ());
1945 }
1946 EOF
1947
1948 # dump the structure
1949 printf "\n"
1950 printf "\n"
1951 cat <<EOF
1952 /* Print out the details of the current architecture. */
1953
1954 void
1955 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1956 {
1957 const char *gdb_nm_file = "<not-defined>";
1958
1959 #if defined (GDB_NM_FILE)
1960 gdb_nm_file = GDB_NM_FILE;
1961 #endif
1962 fprintf_unfiltered (file,
1963 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1964 gdb_nm_file);
1965 EOF
1966 function_list | sort '-t;' -k 3 | while do_read
1967 do
1968 # First the predicate
1969 if class_is_predicate_p
1970 then
1971 printf " fprintf_unfiltered (file,\n"
1972 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1973 printf " gdbarch_${function}_p (gdbarch));\n"
1974 fi
1975 # Print the corresponding value.
1976 if class_is_function_p
1977 then
1978 printf " fprintf_unfiltered (file,\n"
1979 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1980 printf " host_address_to_string (gdbarch->${function}));\n"
1981 else
1982 # It is a variable
1983 case "${print}:${returntype}" in
1984 :CORE_ADDR )
1985 fmt="%s"
1986 print="core_addr_to_string_nz (gdbarch->${function})"
1987 ;;
1988 :* )
1989 fmt="%s"
1990 print="plongest (gdbarch->${function})"
1991 ;;
1992 * )
1993 fmt="%s"
1994 ;;
1995 esac
1996 printf " fprintf_unfiltered (file,\n"
1997 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1998 printf " ${print});\n"
1999 fi
2000 done
2001 cat <<EOF
2002 if (gdbarch->dump_tdep != NULL)
2003 gdbarch->dump_tdep (gdbarch, file);
2004 }
2005 EOF
2006
2007
2008 # GET/SET
2009 printf "\n"
2010 cat <<EOF
2011 struct gdbarch_tdep *
2012 gdbarch_tdep (struct gdbarch *gdbarch)
2013 {
2014 if (gdbarch_debug >= 2)
2015 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2016 return gdbarch->tdep;
2017 }
2018 EOF
2019 printf "\n"
2020 function_list | while do_read
2021 do
2022 if class_is_predicate_p
2023 then
2024 printf "\n"
2025 printf "int\n"
2026 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2027 printf "{\n"
2028 printf " gdb_assert (gdbarch != NULL);\n"
2029 printf " return ${predicate};\n"
2030 printf "}\n"
2031 fi
2032 if class_is_function_p
2033 then
2034 printf "\n"
2035 printf "${returntype}\n"
2036 if [ "x${formal}" = "xvoid" ]
2037 then
2038 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2039 else
2040 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2041 fi
2042 printf "{\n"
2043 printf " gdb_assert (gdbarch != NULL);\n"
2044 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2045 if class_is_predicate_p && test -n "${predefault}"
2046 then
2047 # Allow a call to a function with a predicate.
2048 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2049 fi
2050 printf " if (gdbarch_debug >= 2)\n"
2051 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2052 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2053 then
2054 if class_is_multiarch_p
2055 then
2056 params="gdbarch"
2057 else
2058 params=""
2059 fi
2060 else
2061 if class_is_multiarch_p
2062 then
2063 params="gdbarch, ${actual}"
2064 else
2065 params="${actual}"
2066 fi
2067 fi
2068 if [ "x${returntype}" = "xvoid" ]
2069 then
2070 printf " gdbarch->${function} (${params});\n"
2071 else
2072 printf " return gdbarch->${function} (${params});\n"
2073 fi
2074 printf "}\n"
2075 printf "\n"
2076 printf "void\n"
2077 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2078 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2079 printf "{\n"
2080 printf " gdbarch->${function} = ${function};\n"
2081 printf "}\n"
2082 elif class_is_variable_p
2083 then
2084 printf "\n"
2085 printf "${returntype}\n"
2086 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2087 printf "{\n"
2088 printf " gdb_assert (gdbarch != NULL);\n"
2089 if [ "x${invalid_p}" = "x0" ]
2090 then
2091 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2092 elif [ -n "${invalid_p}" ]
2093 then
2094 printf " /* Check variable is valid. */\n"
2095 printf " gdb_assert (!(${invalid_p}));\n"
2096 elif [ -n "${predefault}" ]
2097 then
2098 printf " /* Check variable changed from pre-default. */\n"
2099 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2100 fi
2101 printf " if (gdbarch_debug >= 2)\n"
2102 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2103 printf " return gdbarch->${function};\n"
2104 printf "}\n"
2105 printf "\n"
2106 printf "void\n"
2107 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2108 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2109 printf "{\n"
2110 printf " gdbarch->${function} = ${function};\n"
2111 printf "}\n"
2112 elif class_is_info_p
2113 then
2114 printf "\n"
2115 printf "${returntype}\n"
2116 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2117 printf "{\n"
2118 printf " gdb_assert (gdbarch != NULL);\n"
2119 printf " if (gdbarch_debug >= 2)\n"
2120 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2121 printf " return gdbarch->${function};\n"
2122 printf "}\n"
2123 fi
2124 done
2125
2126 # All the trailing guff
2127 cat <<EOF
2128
2129
2130 /* Keep a registry of per-architecture data-pointers required by GDB
2131 modules. */
2132
2133 struct gdbarch_data
2134 {
2135 unsigned index;
2136 int init_p;
2137 gdbarch_data_pre_init_ftype *pre_init;
2138 gdbarch_data_post_init_ftype *post_init;
2139 };
2140
2141 struct gdbarch_data_registration
2142 {
2143 struct gdbarch_data *data;
2144 struct gdbarch_data_registration *next;
2145 };
2146
2147 struct gdbarch_data_registry
2148 {
2149 unsigned nr;
2150 struct gdbarch_data_registration *registrations;
2151 };
2152
2153 struct gdbarch_data_registry gdbarch_data_registry =
2154 {
2155 0, NULL,
2156 };
2157
2158 static struct gdbarch_data *
2159 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2160 gdbarch_data_post_init_ftype *post_init)
2161 {
2162 struct gdbarch_data_registration **curr;
2163
2164 /* Append the new registration. */
2165 for (curr = &gdbarch_data_registry.registrations;
2166 (*curr) != NULL;
2167 curr = &(*curr)->next);
2168 (*curr) = XNEW (struct gdbarch_data_registration);
2169 (*curr)->next = NULL;
2170 (*curr)->data = XNEW (struct gdbarch_data);
2171 (*curr)->data->index = gdbarch_data_registry.nr++;
2172 (*curr)->data->pre_init = pre_init;
2173 (*curr)->data->post_init = post_init;
2174 (*curr)->data->init_p = 1;
2175 return (*curr)->data;
2176 }
2177
2178 struct gdbarch_data *
2179 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2180 {
2181 return gdbarch_data_register (pre_init, NULL);
2182 }
2183
2184 struct gdbarch_data *
2185 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2186 {
2187 return gdbarch_data_register (NULL, post_init);
2188 }
2189
2190 /* Create/delete the gdbarch data vector. */
2191
2192 static void
2193 alloc_gdbarch_data (struct gdbarch *gdbarch)
2194 {
2195 gdb_assert (gdbarch->data == NULL);
2196 gdbarch->nr_data = gdbarch_data_registry.nr;
2197 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2198 }
2199
2200 /* Initialize the current value of the specified per-architecture
2201 data-pointer. */
2202
2203 void
2204 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2205 struct gdbarch_data *data,
2206 void *pointer)
2207 {
2208 gdb_assert (data->index < gdbarch->nr_data);
2209 gdb_assert (gdbarch->data[data->index] == NULL);
2210 gdb_assert (data->pre_init == NULL);
2211 gdbarch->data[data->index] = pointer;
2212 }
2213
2214 /* Return the current value of the specified per-architecture
2215 data-pointer. */
2216
2217 void *
2218 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2219 {
2220 gdb_assert (data->index < gdbarch->nr_data);
2221 if (gdbarch->data[data->index] == NULL)
2222 {
2223 /* The data-pointer isn't initialized, call init() to get a
2224 value. */
2225 if (data->pre_init != NULL)
2226 /* Mid architecture creation: pass just the obstack, and not
2227 the entire architecture, as that way it isn't possible for
2228 pre-init code to refer to undefined architecture
2229 fields. */
2230 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2231 else if (gdbarch->initialized_p
2232 && data->post_init != NULL)
2233 /* Post architecture creation: pass the entire architecture
2234 (as all fields are valid), but be careful to also detect
2235 recursive references. */
2236 {
2237 gdb_assert (data->init_p);
2238 data->init_p = 0;
2239 gdbarch->data[data->index] = data->post_init (gdbarch);
2240 data->init_p = 1;
2241 }
2242 else
2243 /* The architecture initialization hasn't completed - punt -
2244 hope that the caller knows what they are doing. Once
2245 deprecated_set_gdbarch_data has been initialized, this can be
2246 changed to an internal error. */
2247 return NULL;
2248 gdb_assert (gdbarch->data[data->index] != NULL);
2249 }
2250 return gdbarch->data[data->index];
2251 }
2252
2253
2254 /* Keep a registry of the architectures known by GDB. */
2255
2256 struct gdbarch_registration
2257 {
2258 enum bfd_architecture bfd_architecture;
2259 gdbarch_init_ftype *init;
2260 gdbarch_dump_tdep_ftype *dump_tdep;
2261 struct gdbarch_list *arches;
2262 struct gdbarch_registration *next;
2263 };
2264
2265 static struct gdbarch_registration *gdbarch_registry = NULL;
2266
2267 static void
2268 append_name (const char ***buf, int *nr, const char *name)
2269 {
2270 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2271 (*buf)[*nr] = name;
2272 *nr += 1;
2273 }
2274
2275 const char **
2276 gdbarch_printable_names (void)
2277 {
2278 /* Accumulate a list of names based on the registed list of
2279 architectures. */
2280 int nr_arches = 0;
2281 const char **arches = NULL;
2282 struct gdbarch_registration *rego;
2283
2284 for (rego = gdbarch_registry;
2285 rego != NULL;
2286 rego = rego->next)
2287 {
2288 const struct bfd_arch_info *ap;
2289 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2290 if (ap == NULL)
2291 internal_error (__FILE__, __LINE__,
2292 _("gdbarch_architecture_names: multi-arch unknown"));
2293 do
2294 {
2295 append_name (&arches, &nr_arches, ap->printable_name);
2296 ap = ap->next;
2297 }
2298 while (ap != NULL);
2299 }
2300 append_name (&arches, &nr_arches, NULL);
2301 return arches;
2302 }
2303
2304
2305 void
2306 gdbarch_register (enum bfd_architecture bfd_architecture,
2307 gdbarch_init_ftype *init,
2308 gdbarch_dump_tdep_ftype *dump_tdep)
2309 {
2310 struct gdbarch_registration **curr;
2311 const struct bfd_arch_info *bfd_arch_info;
2312
2313 /* Check that BFD recognizes this architecture */
2314 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2315 if (bfd_arch_info == NULL)
2316 {
2317 internal_error (__FILE__, __LINE__,
2318 _("gdbarch: Attempt to register "
2319 "unknown architecture (%d)"),
2320 bfd_architecture);
2321 }
2322 /* Check that we haven't seen this architecture before. */
2323 for (curr = &gdbarch_registry;
2324 (*curr) != NULL;
2325 curr = &(*curr)->next)
2326 {
2327 if (bfd_architecture == (*curr)->bfd_architecture)
2328 internal_error (__FILE__, __LINE__,
2329 _("gdbarch: Duplicate registration "
2330 "of architecture (%s)"),
2331 bfd_arch_info->printable_name);
2332 }
2333 /* log it */
2334 if (gdbarch_debug)
2335 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2336 bfd_arch_info->printable_name,
2337 host_address_to_string (init));
2338 /* Append it */
2339 (*curr) = XNEW (struct gdbarch_registration);
2340 (*curr)->bfd_architecture = bfd_architecture;
2341 (*curr)->init = init;
2342 (*curr)->dump_tdep = dump_tdep;
2343 (*curr)->arches = NULL;
2344 (*curr)->next = NULL;
2345 }
2346
2347 void
2348 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2349 gdbarch_init_ftype *init)
2350 {
2351 gdbarch_register (bfd_architecture, init, NULL);
2352 }
2353
2354
2355 /* Look for an architecture using gdbarch_info. */
2356
2357 struct gdbarch_list *
2358 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2359 const struct gdbarch_info *info)
2360 {
2361 for (; arches != NULL; arches = arches->next)
2362 {
2363 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2364 continue;
2365 if (info->byte_order != arches->gdbarch->byte_order)
2366 continue;
2367 if (info->osabi != arches->gdbarch->osabi)
2368 continue;
2369 if (info->target_desc != arches->gdbarch->target_desc)
2370 continue;
2371 return arches;
2372 }
2373 return NULL;
2374 }
2375
2376
2377 /* Find an architecture that matches the specified INFO. Create a new
2378 architecture if needed. Return that new architecture. */
2379
2380 struct gdbarch *
2381 gdbarch_find_by_info (struct gdbarch_info info)
2382 {
2383 struct gdbarch *new_gdbarch;
2384 struct gdbarch_registration *rego;
2385
2386 /* Fill in missing parts of the INFO struct using a number of
2387 sources: "set ..."; INFOabfd supplied; and the global
2388 defaults. */
2389 gdbarch_info_fill (&info);
2390
2391 /* Must have found some sort of architecture. */
2392 gdb_assert (info.bfd_arch_info != NULL);
2393
2394 if (gdbarch_debug)
2395 {
2396 fprintf_unfiltered (gdb_stdlog,
2397 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2398 (info.bfd_arch_info != NULL
2399 ? info.bfd_arch_info->printable_name
2400 : "(null)"));
2401 fprintf_unfiltered (gdb_stdlog,
2402 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2403 info.byte_order,
2404 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2405 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2406 : "default"));
2407 fprintf_unfiltered (gdb_stdlog,
2408 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2409 info.osabi, gdbarch_osabi_name (info.osabi));
2410 fprintf_unfiltered (gdb_stdlog,
2411 "gdbarch_find_by_info: info.abfd %s\n",
2412 host_address_to_string (info.abfd));
2413 fprintf_unfiltered (gdb_stdlog,
2414 "gdbarch_find_by_info: info.tdep_info %s\n",
2415 host_address_to_string (info.tdep_info));
2416 }
2417
2418 /* Find the tdep code that knows about this architecture. */
2419 for (rego = gdbarch_registry;
2420 rego != NULL;
2421 rego = rego->next)
2422 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2423 break;
2424 if (rego == NULL)
2425 {
2426 if (gdbarch_debug)
2427 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2428 "No matching architecture\n");
2429 return 0;
2430 }
2431
2432 /* Ask the tdep code for an architecture that matches "info". */
2433 new_gdbarch = rego->init (info, rego->arches);
2434
2435 /* Did the tdep code like it? No. Reject the change and revert to
2436 the old architecture. */
2437 if (new_gdbarch == NULL)
2438 {
2439 if (gdbarch_debug)
2440 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2441 "Target rejected architecture\n");
2442 return NULL;
2443 }
2444
2445 /* Is this a pre-existing architecture (as determined by already
2446 being initialized)? Move it to the front of the architecture
2447 list (keeping the list sorted Most Recently Used). */
2448 if (new_gdbarch->initialized_p)
2449 {
2450 struct gdbarch_list **list;
2451 struct gdbarch_list *self;
2452 if (gdbarch_debug)
2453 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2454 "Previous architecture %s (%s) selected\n",
2455 host_address_to_string (new_gdbarch),
2456 new_gdbarch->bfd_arch_info->printable_name);
2457 /* Find the existing arch in the list. */
2458 for (list = &rego->arches;
2459 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2460 list = &(*list)->next);
2461 /* It had better be in the list of architectures. */
2462 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2463 /* Unlink SELF. */
2464 self = (*list);
2465 (*list) = self->next;
2466 /* Insert SELF at the front. */
2467 self->next = rego->arches;
2468 rego->arches = self;
2469 /* Return it. */
2470 return new_gdbarch;
2471 }
2472
2473 /* It's a new architecture. */
2474 if (gdbarch_debug)
2475 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2476 "New architecture %s (%s) selected\n",
2477 host_address_to_string (new_gdbarch),
2478 new_gdbarch->bfd_arch_info->printable_name);
2479
2480 /* Insert the new architecture into the front of the architecture
2481 list (keep the list sorted Most Recently Used). */
2482 {
2483 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2484 self->next = rego->arches;
2485 self->gdbarch = new_gdbarch;
2486 rego->arches = self;
2487 }
2488
2489 /* Check that the newly installed architecture is valid. Plug in
2490 any post init values. */
2491 new_gdbarch->dump_tdep = rego->dump_tdep;
2492 verify_gdbarch (new_gdbarch);
2493 new_gdbarch->initialized_p = 1;
2494
2495 if (gdbarch_debug)
2496 gdbarch_dump (new_gdbarch, gdb_stdlog);
2497
2498 return new_gdbarch;
2499 }
2500
2501 /* Make the specified architecture current. */
2502
2503 void
2504 set_target_gdbarch (struct gdbarch *new_gdbarch)
2505 {
2506 gdb_assert (new_gdbarch != NULL);
2507 gdb_assert (new_gdbarch->initialized_p);
2508 current_inferior ()->gdbarch = new_gdbarch;
2509 observer_notify_architecture_changed (new_gdbarch);
2510 registers_changed ();
2511 }
2512
2513 /* Return the current inferior's arch. */
2514
2515 struct gdbarch *
2516 target_gdbarch (void)
2517 {
2518 return current_inferior ()->gdbarch;
2519 }
2520
2521 void
2522 _initialize_gdbarch (void)
2523 {
2524 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2525 Set architecture debugging."), _("\\
2526 Show architecture debugging."), _("\\
2527 When non-zero, architecture debugging is enabled."),
2528 NULL,
2529 show_gdbarch_debug,
2530 &setdebuglist, &showdebuglist);
2531 }
2532 EOF
2533
2534 # close things off
2535 exec 1>&2
2536 #../move-if-change new-gdbarch.c gdbarch.c
2537 compare_new gdbarch.c
This page took 0.089416 seconds and 5 git commands to generate.