2002-08-09 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
471 m:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame:file, frame:::default_print_float_info::0
472 # MAP a GDB RAW register number onto a simulator register number. See
473 # also include/...-sim.h.
474 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
475 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
476 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
477 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
478 # setjmp/longjmp support.
479 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
480 #
481 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
482 # much better but at least they are vaguely consistent). The headers
483 # and body contain convoluted #if/#else sequences for determine how
484 # things should be compiled. Instead of trying to mimic that
485 # behaviour here (and hence entrench it further) gdbarch simply
486 # reqires that these methods be set up from the word go. This also
487 # avoids any potential problems with moving beyond multi-arch partial.
488 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
489 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
490 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
491 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
492 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
493 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
494 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
495 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
496 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
497 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
498 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
499 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
500 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
501 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
502 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
503 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
504 #
505 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
506 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
507 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
508 f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
509 #
510 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
511 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
512 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
513 #
514 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
515 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
516 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
517 #
518 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
519 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
520 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
521 #
522 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
523 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, char *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
524 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
525 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
526 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
527 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
528 f:2:POP_FRAME:void:pop_frame:void:-:::0
529 #
530 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
531 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
532 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
533 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
534 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
535 #
536 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
537 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
538 #
539 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
540 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
541 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
542 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
543 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
544 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
545 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
546 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
547 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
548 #
549 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
550 #
551 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
552 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
553 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
554 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
555 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
556 # given frame is the outermost one and has no caller.
557 #
558 # XXXX - both default and alternate frame_chain_valid functions are
559 # deprecated. New code should use dummy frames and one of the generic
560 # functions.
561 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
562 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
563 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
564 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
565 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
566 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
567 #
568 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
569 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
570 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
571 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
572 v:2:PARM_BOUNDARY:int:parm_boundary
573 #
574 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
575 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
576 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
577 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
578 # On some machines there are bits in addresses which are not really
579 # part of the address, but are used by the kernel, the hardware, etc.
580 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
581 # we get a "real" address such as one would find in a symbol table.
582 # This is used only for addresses of instructions, and even then I'm
583 # not sure it's used in all contexts. It exists to deal with there
584 # being a few stray bits in the PC which would mislead us, not as some
585 # sort of generic thing to handle alignment or segmentation (it's
586 # possible it should be in TARGET_READ_PC instead).
587 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
588 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
589 # ADDR_BITS_REMOVE.
590 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
591 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
592 # the target needs software single step. An ISA method to implement it.
593 #
594 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
595 # using the breakpoint system instead of blatting memory directly (as with rs6000).
596 #
597 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
598 # single step. If not, then implement single step using breakpoints.
599 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
600 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
601 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
602 # For SVR4 shared libraries, each call goes through a small piece of
603 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
604 # to nonzero if we are current stopped in one of these.
605 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
606 # Sigtramp is a routine that the kernel calls (which then calls the
607 # signal handler). On most machines it is a library routine that is
608 # linked into the executable.
609 #
610 # This macro, given a program counter value and the name of the
611 # function in which that PC resides (which can be null if the name is
612 # not known), returns nonzero if the PC and name show that we are in
613 # sigtramp.
614 #
615 # On most machines just see if the name is sigtramp (and if we have
616 # no name, assume we are not in sigtramp).
617 #
618 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
619 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
620 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
621 # own local NAME lookup.
622 #
623 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
624 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
625 # does not.
626 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
627 # A target might have problems with watchpoints as soon as the stack
628 # frame of the current function has been destroyed. This mostly happens
629 # as the first action in a funtion's epilogue. in_function_epilogue_p()
630 # is defined to return a non-zero value if either the given addr is one
631 # instruction after the stack destroying instruction up to the trailing
632 # return instruction or if we can figure out that the stack frame has
633 # already been invalidated regardless of the value of addr. Targets
634 # which don't suffer from that problem could just let this functionality
635 # untouched.
636 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
637 # Given a vector of command-line arguments, return a newly allocated
638 # string which, when passed to the create_inferior function, will be
639 # parsed (on Unix systems, by the shell) to yield the same vector.
640 # This function should call error() if the argument vector is not
641 # representable for this target or if this target does not support
642 # command-line arguments.
643 # ARGC is the number of elements in the vector.
644 # ARGV is an array of strings, one per argument.
645 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
646 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
647 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
648 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
649 EOF
650 }
651
652 #
653 # The .log file
654 #
655 exec > new-gdbarch.log
656 function_list | while do_read
657 do
658 cat <<EOF
659 ${class} ${macro}(${actual})
660 ${returntype} ${function} ($formal)${attrib}
661 EOF
662 for r in ${read}
663 do
664 eval echo \"\ \ \ \ ${r}=\${${r}}\"
665 done
666 # #fallbackdefault=${fallbackdefault}
667 # #valid_p=${valid_p}
668 #EOF
669 if class_is_predicate_p && fallback_default_p
670 then
671 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
672 kill $$
673 exit 1
674 fi
675 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
676 then
677 echo "Error: postdefault is useless when invalid_p=0" 1>&2
678 kill $$
679 exit 1
680 fi
681 if class_is_multiarch_p
682 then
683 if class_is_predicate_p ; then :
684 elif test "x${predefault}" = "x"
685 then
686 echo "Error: pure multi-arch function must have a predefault" 1>&2
687 kill $$
688 exit 1
689 fi
690 fi
691 echo ""
692 done
693
694 exec 1>&2
695 compare_new gdbarch.log
696
697
698 copyright ()
699 {
700 cat <<EOF
701 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
702
703 /* Dynamic architecture support for GDB, the GNU debugger.
704 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
705
706 This file is part of GDB.
707
708 This program is free software; you can redistribute it and/or modify
709 it under the terms of the GNU General Public License as published by
710 the Free Software Foundation; either version 2 of the License, or
711 (at your option) any later version.
712
713 This program is distributed in the hope that it will be useful,
714 but WITHOUT ANY WARRANTY; without even the implied warranty of
715 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
716 GNU General Public License for more details.
717
718 You should have received a copy of the GNU General Public License
719 along with this program; if not, write to the Free Software
720 Foundation, Inc., 59 Temple Place - Suite 330,
721 Boston, MA 02111-1307, USA. */
722
723 /* This file was created with the aid of \`\`gdbarch.sh''.
724
725 The Bourne shell script \`\`gdbarch.sh'' creates the files
726 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
727 against the existing \`\`gdbarch.[hc]''. Any differences found
728 being reported.
729
730 If editing this file, please also run gdbarch.sh and merge any
731 changes into that script. Conversely, when making sweeping changes
732 to this file, modifying gdbarch.sh and using its output may prove
733 easier. */
734
735 EOF
736 }
737
738 #
739 # The .h file
740 #
741
742 exec > new-gdbarch.h
743 copyright
744 cat <<EOF
745 #ifndef GDBARCH_H
746 #define GDBARCH_H
747
748 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
749 #if !GDB_MULTI_ARCH
750 /* Pull in function declarations refered to, indirectly, via macros. */
751 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
752 #include "inferior.h" /* For unsigned_address_to_pointer(). */
753 #endif
754
755 struct frame_info;
756 struct value;
757 struct objfile;
758 struct minimal_symbol;
759 struct regcache;
760
761 extern struct gdbarch *current_gdbarch;
762
763
764 /* If any of the following are defined, the target wasn't correctly
765 converted. */
766
767 #if GDB_MULTI_ARCH
768 #if defined (EXTRA_FRAME_INFO)
769 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
770 #endif
771 #endif
772
773 #if GDB_MULTI_ARCH
774 #if defined (FRAME_FIND_SAVED_REGS)
775 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
776 #endif
777 #endif
778
779 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
780 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
781 #endif
782 EOF
783
784 # function typedef's
785 printf "\n"
786 printf "\n"
787 printf "/* The following are pre-initialized by GDBARCH. */\n"
788 function_list | while do_read
789 do
790 if class_is_info_p
791 then
792 printf "\n"
793 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
794 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
795 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
796 printf "#error \"Non multi-arch definition of ${macro}\"\n"
797 printf "#endif\n"
798 printf "#if GDB_MULTI_ARCH\n"
799 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
800 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
801 printf "#endif\n"
802 printf "#endif\n"
803 fi
804 done
805
806 # function typedef's
807 printf "\n"
808 printf "\n"
809 printf "/* The following are initialized by the target dependent code. */\n"
810 function_list | while do_read
811 do
812 if [ -n "${comment}" ]
813 then
814 echo "${comment}" | sed \
815 -e '2 s,#,/*,' \
816 -e '3,$ s,#, ,' \
817 -e '$ s,$, */,'
818 fi
819 if class_is_multiarch_p
820 then
821 if class_is_predicate_p
822 then
823 printf "\n"
824 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
825 fi
826 else
827 if class_is_predicate_p
828 then
829 printf "\n"
830 printf "#if defined (${macro})\n"
831 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
832 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
833 printf "#if !defined (${macro}_P)\n"
834 printf "#define ${macro}_P() (1)\n"
835 printf "#endif\n"
836 printf "#endif\n"
837 printf "\n"
838 printf "/* Default predicate for non- multi-arch targets. */\n"
839 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
840 printf "#define ${macro}_P() (0)\n"
841 printf "#endif\n"
842 printf "\n"
843 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
844 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
845 printf "#error \"Non multi-arch definition of ${macro}\"\n"
846 printf "#endif\n"
847 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
848 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
849 printf "#endif\n"
850 fi
851 fi
852 if class_is_variable_p
853 then
854 if fallback_default_p || class_is_predicate_p
855 then
856 printf "\n"
857 printf "/* Default (value) for non- multi-arch platforms. */\n"
858 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
859 echo "#define ${macro} (${fallbackdefault})" \
860 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
861 printf "#endif\n"
862 fi
863 printf "\n"
864 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
865 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
866 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
867 printf "#error \"Non multi-arch definition of ${macro}\"\n"
868 printf "#endif\n"
869 printf "#if GDB_MULTI_ARCH\n"
870 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
871 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
872 printf "#endif\n"
873 printf "#endif\n"
874 fi
875 if class_is_function_p
876 then
877 if class_is_multiarch_p ; then :
878 elif fallback_default_p || class_is_predicate_p
879 then
880 printf "\n"
881 printf "/* Default (function) for non- multi-arch platforms. */\n"
882 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
883 if [ "x${fallbackdefault}" = "x0" ]
884 then
885 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
886 else
887 # FIXME: Should be passing current_gdbarch through!
888 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
889 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
890 fi
891 printf "#endif\n"
892 fi
893 printf "\n"
894 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
895 then
896 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
897 elif class_is_multiarch_p
898 then
899 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
900 else
901 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
902 fi
903 if [ "x${formal}" = "xvoid" ]
904 then
905 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
906 else
907 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
908 fi
909 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
910 if class_is_multiarch_p ; then :
911 else
912 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
913 printf "#error \"Non multi-arch definition of ${macro}\"\n"
914 printf "#endif\n"
915 printf "#if GDB_MULTI_ARCH\n"
916 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
917 if [ "x${actual}" = "x" ]
918 then
919 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
920 elif [ "x${actual}" = "x-" ]
921 then
922 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
923 else
924 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
925 fi
926 printf "#endif\n"
927 printf "#endif\n"
928 fi
929 fi
930 done
931
932 # close it off
933 cat <<EOF
934
935 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
936
937
938 /* Mechanism for co-ordinating the selection of a specific
939 architecture.
940
941 GDB targets (*-tdep.c) can register an interest in a specific
942 architecture. Other GDB components can register a need to maintain
943 per-architecture data.
944
945 The mechanisms below ensures that there is only a loose connection
946 between the set-architecture command and the various GDB
947 components. Each component can independently register their need
948 to maintain architecture specific data with gdbarch.
949
950 Pragmatics:
951
952 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
953 didn't scale.
954
955 The more traditional mega-struct containing architecture specific
956 data for all the various GDB components was also considered. Since
957 GDB is built from a variable number of (fairly independent)
958 components it was determined that the global aproach was not
959 applicable. */
960
961
962 /* Register a new architectural family with GDB.
963
964 Register support for the specified ARCHITECTURE with GDB. When
965 gdbarch determines that the specified architecture has been
966 selected, the corresponding INIT function is called.
967
968 --
969
970 The INIT function takes two parameters: INFO which contains the
971 information available to gdbarch about the (possibly new)
972 architecture; ARCHES which is a list of the previously created
973 \`\`struct gdbarch'' for this architecture.
974
975 The INFO parameter is, as far as possible, be pre-initialized with
976 information obtained from INFO.ABFD or the previously selected
977 architecture.
978
979 The ARCHES parameter is a linked list (sorted most recently used)
980 of all the previously created architures for this architecture
981 family. The (possibly NULL) ARCHES->gdbarch can used to access
982 values from the previously selected architecture for this
983 architecture family. The global \`\`current_gdbarch'' shall not be
984 used.
985
986 The INIT function shall return any of: NULL - indicating that it
987 doesn't recognize the selected architecture; an existing \`\`struct
988 gdbarch'' from the ARCHES list - indicating that the new
989 architecture is just a synonym for an earlier architecture (see
990 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
991 - that describes the selected architecture (see gdbarch_alloc()).
992
993 The DUMP_TDEP function shall print out all target specific values.
994 Care should be taken to ensure that the function works in both the
995 multi-arch and non- multi-arch cases. */
996
997 struct gdbarch_list
998 {
999 struct gdbarch *gdbarch;
1000 struct gdbarch_list *next;
1001 };
1002
1003 struct gdbarch_info
1004 {
1005 /* Use default: NULL (ZERO). */
1006 const struct bfd_arch_info *bfd_arch_info;
1007
1008 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1009 int byte_order;
1010
1011 /* Use default: NULL (ZERO). */
1012 bfd *abfd;
1013
1014 /* Use default: NULL (ZERO). */
1015 struct gdbarch_tdep_info *tdep_info;
1016 };
1017
1018 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1019 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1020
1021 /* DEPRECATED - use gdbarch_register() */
1022 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1023
1024 extern void gdbarch_register (enum bfd_architecture architecture,
1025 gdbarch_init_ftype *,
1026 gdbarch_dump_tdep_ftype *);
1027
1028
1029 /* Return a freshly allocated, NULL terminated, array of the valid
1030 architecture names. Since architectures are registered during the
1031 _initialize phase this function only returns useful information
1032 once initialization has been completed. */
1033
1034 extern const char **gdbarch_printable_names (void);
1035
1036
1037 /* Helper function. Search the list of ARCHES for a GDBARCH that
1038 matches the information provided by INFO. */
1039
1040 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1041
1042
1043 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1044 basic initialization using values obtained from the INFO andTDEP
1045 parameters. set_gdbarch_*() functions are called to complete the
1046 initialization of the object. */
1047
1048 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1049
1050
1051 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1052 It is assumed that the caller freeds the \`\`struct
1053 gdbarch_tdep''. */
1054
1055 extern void gdbarch_free (struct gdbarch *);
1056
1057
1058 /* Helper function. Force an update of the current architecture.
1059
1060 The actual architecture selected is determined by INFO, \`\`(gdb) set
1061 architecture'' et.al., the existing architecture and BFD's default
1062 architecture. INFO should be initialized to zero and then selected
1063 fields should be updated.
1064
1065 Returns non-zero if the update succeeds */
1066
1067 extern int gdbarch_update_p (struct gdbarch_info info);
1068
1069
1070
1071 /* Register per-architecture data-pointer.
1072
1073 Reserve space for a per-architecture data-pointer. An identifier
1074 for the reserved data-pointer is returned. That identifer should
1075 be saved in a local static variable.
1076
1077 The per-architecture data-pointer is either initialized explicitly
1078 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1079 gdbarch_data()). FREE() is called to delete either an existing
1080 data-pointer overridden by set_gdbarch_data() or when the
1081 architecture object is being deleted.
1082
1083 When a previously created architecture is re-selected, the
1084 per-architecture data-pointer for that previous architecture is
1085 restored. INIT() is not re-called.
1086
1087 Multiple registrarants for any architecture are allowed (and
1088 strongly encouraged). */
1089
1090 struct gdbarch_data;
1091
1092 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1093 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1094 void *pointer);
1095 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1096 gdbarch_data_free_ftype *free);
1097 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1098 struct gdbarch_data *data,
1099 void *pointer);
1100
1101 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1102
1103
1104 /* Register per-architecture memory region.
1105
1106 Provide a memory-region swap mechanism. Per-architecture memory
1107 region are created. These memory regions are swapped whenever the
1108 architecture is changed. For a new architecture, the memory region
1109 is initialized with zero (0) and the INIT function is called.
1110
1111 Memory regions are swapped / initialized in the order that they are
1112 registered. NULL DATA and/or INIT values can be specified.
1113
1114 New code should use register_gdbarch_data(). */
1115
1116 typedef void (gdbarch_swap_ftype) (void);
1117 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1118 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1119
1120
1121
1122 /* The target-system-dependent byte order is dynamic */
1123
1124 extern int target_byte_order;
1125 #ifndef TARGET_BYTE_ORDER
1126 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1127 #endif
1128
1129 extern int target_byte_order_auto;
1130 #ifndef TARGET_BYTE_ORDER_AUTO
1131 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1132 #endif
1133
1134
1135
1136 /* The target-system-dependent BFD architecture is dynamic */
1137
1138 extern int target_architecture_auto;
1139 #ifndef TARGET_ARCHITECTURE_AUTO
1140 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1141 #endif
1142
1143 extern const struct bfd_arch_info *target_architecture;
1144 #ifndef TARGET_ARCHITECTURE
1145 #define TARGET_ARCHITECTURE (target_architecture + 0)
1146 #endif
1147
1148
1149 /* The target-system-dependent disassembler is semi-dynamic */
1150
1151 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1152 unsigned int len, disassemble_info *info);
1153
1154 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1155 disassemble_info *info);
1156
1157 extern void dis_asm_print_address (bfd_vma addr,
1158 disassemble_info *info);
1159
1160 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1161 extern disassemble_info tm_print_insn_info;
1162 #ifndef TARGET_PRINT_INSN_INFO
1163 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1164 #endif
1165
1166
1167
1168 /* Set the dynamic target-system-dependent parameters (architecture,
1169 byte-order, ...) using information found in the BFD */
1170
1171 extern void set_gdbarch_from_file (bfd *);
1172
1173
1174 /* Initialize the current architecture to the "first" one we find on
1175 our list. */
1176
1177 extern void initialize_current_architecture (void);
1178
1179 /* For non-multiarched targets, do any initialization of the default
1180 gdbarch object necessary after the _initialize_MODULE functions
1181 have run. */
1182 extern void initialize_non_multiarch (void);
1183
1184 /* gdbarch trace variable */
1185 extern int gdbarch_debug;
1186
1187 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1188
1189 #endif
1190 EOF
1191 exec 1>&2
1192 #../move-if-change new-gdbarch.h gdbarch.h
1193 compare_new gdbarch.h
1194
1195
1196 #
1197 # C file
1198 #
1199
1200 exec > new-gdbarch.c
1201 copyright
1202 cat <<EOF
1203
1204 #include "defs.h"
1205 #include "arch-utils.h"
1206
1207 #if GDB_MULTI_ARCH
1208 #include "gdbcmd.h"
1209 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1210 #else
1211 /* Just include everything in sight so that the every old definition
1212 of macro is visible. */
1213 #include "gdb_string.h"
1214 #include <ctype.h>
1215 #include "symtab.h"
1216 #include "frame.h"
1217 #include "inferior.h"
1218 #include "breakpoint.h"
1219 #include "gdb_wait.h"
1220 #include "gdbcore.h"
1221 #include "gdbcmd.h"
1222 #include "target.h"
1223 #include "gdbthread.h"
1224 #include "annotate.h"
1225 #include "symfile.h" /* for overlay functions */
1226 #include "value.h" /* For old tm.h/nm.h macros. */
1227 #endif
1228 #include "symcat.h"
1229
1230 #include "floatformat.h"
1231
1232 #include "gdb_assert.h"
1233 #include "gdb_string.h"
1234 #include "gdb-events.h"
1235
1236 /* Static function declarations */
1237
1238 static void verify_gdbarch (struct gdbarch *gdbarch);
1239 static void alloc_gdbarch_data (struct gdbarch *);
1240 static void free_gdbarch_data (struct gdbarch *);
1241 static void init_gdbarch_swap (struct gdbarch *);
1242 static void clear_gdbarch_swap (struct gdbarch *);
1243 static void swapout_gdbarch_swap (struct gdbarch *);
1244 static void swapin_gdbarch_swap (struct gdbarch *);
1245
1246 /* Non-zero if we want to trace architecture code. */
1247
1248 #ifndef GDBARCH_DEBUG
1249 #define GDBARCH_DEBUG 0
1250 #endif
1251 int gdbarch_debug = GDBARCH_DEBUG;
1252
1253 EOF
1254
1255 # gdbarch open the gdbarch object
1256 printf "\n"
1257 printf "/* Maintain the struct gdbarch object */\n"
1258 printf "\n"
1259 printf "struct gdbarch\n"
1260 printf "{\n"
1261 printf " /* Has this architecture been fully initialized? */\n"
1262 printf " int initialized_p;\n"
1263 printf " /* basic architectural information */\n"
1264 function_list | while do_read
1265 do
1266 if class_is_info_p
1267 then
1268 printf " ${returntype} ${function};\n"
1269 fi
1270 done
1271 printf "\n"
1272 printf " /* target specific vector. */\n"
1273 printf " struct gdbarch_tdep *tdep;\n"
1274 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1275 printf "\n"
1276 printf " /* per-architecture data-pointers */\n"
1277 printf " unsigned nr_data;\n"
1278 printf " void **data;\n"
1279 printf "\n"
1280 printf " /* per-architecture swap-regions */\n"
1281 printf " struct gdbarch_swap *swap;\n"
1282 printf "\n"
1283 cat <<EOF
1284 /* Multi-arch values.
1285
1286 When extending this structure you must:
1287
1288 Add the field below.
1289
1290 Declare set/get functions and define the corresponding
1291 macro in gdbarch.h.
1292
1293 gdbarch_alloc(): If zero/NULL is not a suitable default,
1294 initialize the new field.
1295
1296 verify_gdbarch(): Confirm that the target updated the field
1297 correctly.
1298
1299 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1300 field is dumped out
1301
1302 \`\`startup_gdbarch()'': Append an initial value to the static
1303 variable (base values on the host's c-type system).
1304
1305 get_gdbarch(): Implement the set/get functions (probably using
1306 the macro's as shortcuts).
1307
1308 */
1309
1310 EOF
1311 function_list | while do_read
1312 do
1313 if class_is_variable_p
1314 then
1315 printf " ${returntype} ${function};\n"
1316 elif class_is_function_p
1317 then
1318 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1319 fi
1320 done
1321 printf "};\n"
1322
1323 # A pre-initialized vector
1324 printf "\n"
1325 printf "\n"
1326 cat <<EOF
1327 /* The default architecture uses host values (for want of a better
1328 choice). */
1329 EOF
1330 printf "\n"
1331 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1332 printf "\n"
1333 printf "struct gdbarch startup_gdbarch =\n"
1334 printf "{\n"
1335 printf " 1, /* Always initialized. */\n"
1336 printf " /* basic architecture information */\n"
1337 function_list | while do_read
1338 do
1339 if class_is_info_p
1340 then
1341 printf " ${staticdefault},\n"
1342 fi
1343 done
1344 cat <<EOF
1345 /* target specific vector and its dump routine */
1346 NULL, NULL,
1347 /*per-architecture data-pointers and swap regions */
1348 0, NULL, NULL,
1349 /* Multi-arch values */
1350 EOF
1351 function_list | while do_read
1352 do
1353 if class_is_function_p || class_is_variable_p
1354 then
1355 printf " ${staticdefault},\n"
1356 fi
1357 done
1358 cat <<EOF
1359 /* startup_gdbarch() */
1360 };
1361
1362 struct gdbarch *current_gdbarch = &startup_gdbarch;
1363
1364 /* Do any initialization needed for a non-multiarch configuration
1365 after the _initialize_MODULE functions have been run. */
1366 void
1367 initialize_non_multiarch (void)
1368 {
1369 alloc_gdbarch_data (&startup_gdbarch);
1370 /* Ensure that all swap areas are zeroed so that they again think
1371 they are starting from scratch. */
1372 clear_gdbarch_swap (&startup_gdbarch);
1373 init_gdbarch_swap (&startup_gdbarch);
1374 }
1375 EOF
1376
1377 # Create a new gdbarch struct
1378 printf "\n"
1379 printf "\n"
1380 cat <<EOF
1381 /* Create a new \`\`struct gdbarch'' based on information provided by
1382 \`\`struct gdbarch_info''. */
1383 EOF
1384 printf "\n"
1385 cat <<EOF
1386 struct gdbarch *
1387 gdbarch_alloc (const struct gdbarch_info *info,
1388 struct gdbarch_tdep *tdep)
1389 {
1390 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1391 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1392 the current local architecture and not the previous global
1393 architecture. This ensures that the new architectures initial
1394 values are not influenced by the previous architecture. Once
1395 everything is parameterised with gdbarch, this will go away. */
1396 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1397 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1398
1399 alloc_gdbarch_data (current_gdbarch);
1400
1401 current_gdbarch->tdep = tdep;
1402 EOF
1403 printf "\n"
1404 function_list | while do_read
1405 do
1406 if class_is_info_p
1407 then
1408 printf " current_gdbarch->${function} = info->${function};\n"
1409 fi
1410 done
1411 printf "\n"
1412 printf " /* Force the explicit initialization of these. */\n"
1413 function_list | while do_read
1414 do
1415 if class_is_function_p || class_is_variable_p
1416 then
1417 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1418 then
1419 printf " current_gdbarch->${function} = ${predefault};\n"
1420 fi
1421 fi
1422 done
1423 cat <<EOF
1424 /* gdbarch_alloc() */
1425
1426 return current_gdbarch;
1427 }
1428 EOF
1429
1430 # Free a gdbarch struct.
1431 printf "\n"
1432 printf "\n"
1433 cat <<EOF
1434 /* Free a gdbarch struct. This should never happen in normal
1435 operation --- once you've created a gdbarch, you keep it around.
1436 However, if an architecture's init function encounters an error
1437 building the structure, it may need to clean up a partially
1438 constructed gdbarch. */
1439
1440 void
1441 gdbarch_free (struct gdbarch *arch)
1442 {
1443 gdb_assert (arch != NULL);
1444 free_gdbarch_data (arch);
1445 xfree (arch);
1446 }
1447 EOF
1448
1449 # verify a new architecture
1450 printf "\n"
1451 printf "\n"
1452 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1453 printf "\n"
1454 cat <<EOF
1455 static void
1456 verify_gdbarch (struct gdbarch *gdbarch)
1457 {
1458 struct ui_file *log;
1459 struct cleanup *cleanups;
1460 long dummy;
1461 char *buf;
1462 /* Only perform sanity checks on a multi-arch target. */
1463 if (!GDB_MULTI_ARCH)
1464 return;
1465 log = mem_fileopen ();
1466 cleanups = make_cleanup_ui_file_delete (log);
1467 /* fundamental */
1468 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1469 fprintf_unfiltered (log, "\n\tbyte-order");
1470 if (gdbarch->bfd_arch_info == NULL)
1471 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1472 /* Check those that need to be defined for the given multi-arch level. */
1473 EOF
1474 function_list | while do_read
1475 do
1476 if class_is_function_p || class_is_variable_p
1477 then
1478 if [ "x${invalid_p}" = "x0" ]
1479 then
1480 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1481 elif class_is_predicate_p
1482 then
1483 printf " /* Skip verify of ${function}, has predicate */\n"
1484 # FIXME: See do_read for potential simplification
1485 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1486 then
1487 printf " if (${invalid_p})\n"
1488 printf " gdbarch->${function} = ${postdefault};\n"
1489 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1490 then
1491 printf " if (gdbarch->${function} == ${predefault})\n"
1492 printf " gdbarch->${function} = ${postdefault};\n"
1493 elif [ -n "${postdefault}" ]
1494 then
1495 printf " if (gdbarch->${function} == 0)\n"
1496 printf " gdbarch->${function} = ${postdefault};\n"
1497 elif [ -n "${invalid_p}" ]
1498 then
1499 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1500 printf " && (${invalid_p}))\n"
1501 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1502 elif [ -n "${predefault}" ]
1503 then
1504 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1505 printf " && (gdbarch->${function} == ${predefault}))\n"
1506 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1507 fi
1508 fi
1509 done
1510 cat <<EOF
1511 buf = ui_file_xstrdup (log, &dummy);
1512 make_cleanup (xfree, buf);
1513 if (strlen (buf) > 0)
1514 internal_error (__FILE__, __LINE__,
1515 "verify_gdbarch: the following are invalid ...%s",
1516 buf);
1517 do_cleanups (cleanups);
1518 }
1519 EOF
1520
1521 # dump the structure
1522 printf "\n"
1523 printf "\n"
1524 cat <<EOF
1525 /* Print out the details of the current architecture. */
1526
1527 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1528 just happens to match the global variable \`\`current_gdbarch''. That
1529 way macros refering to that variable get the local and not the global
1530 version - ulgh. Once everything is parameterised with gdbarch, this
1531 will go away. */
1532
1533 void
1534 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1535 {
1536 fprintf_unfiltered (file,
1537 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1538 GDB_MULTI_ARCH);
1539 EOF
1540 function_list | sort -t: +2 | while do_read
1541 do
1542 # multiarch functions don't have macros.
1543 if class_is_multiarch_p
1544 then
1545 printf " if (GDB_MULTI_ARCH)\n"
1546 printf " fprintf_unfiltered (file,\n"
1547 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1548 printf " (long) current_gdbarch->${function});\n"
1549 continue
1550 fi
1551 # Print the macro definition.
1552 printf "#ifdef ${macro}\n"
1553 if [ "x${returntype}" = "xvoid" ]
1554 then
1555 printf "#if GDB_MULTI_ARCH\n"
1556 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1557 fi
1558 if class_is_function_p
1559 then
1560 printf " fprintf_unfiltered (file,\n"
1561 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1562 printf " \"${macro}(${actual})\",\n"
1563 printf " XSTRING (${macro} (${actual})));\n"
1564 else
1565 printf " fprintf_unfiltered (file,\n"
1566 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1567 printf " XSTRING (${macro}));\n"
1568 fi
1569 # Print the architecture vector value
1570 if [ "x${returntype}" = "xvoid" ]
1571 then
1572 printf "#endif\n"
1573 fi
1574 if [ "x${print_p}" = "x()" ]
1575 then
1576 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1577 elif [ "x${print_p}" = "x0" ]
1578 then
1579 printf " /* skip print of ${macro}, print_p == 0. */\n"
1580 elif [ -n "${print_p}" ]
1581 then
1582 printf " if (${print_p})\n"
1583 printf " fprintf_unfiltered (file,\n"
1584 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1585 printf " ${print});\n"
1586 elif class_is_function_p
1587 then
1588 printf " if (GDB_MULTI_ARCH)\n"
1589 printf " fprintf_unfiltered (file,\n"
1590 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1591 printf " (long) current_gdbarch->${function}\n"
1592 printf " /*${macro} ()*/);\n"
1593 else
1594 printf " fprintf_unfiltered (file,\n"
1595 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1596 printf " ${print});\n"
1597 fi
1598 printf "#endif\n"
1599 done
1600 cat <<EOF
1601 if (current_gdbarch->dump_tdep != NULL)
1602 current_gdbarch->dump_tdep (current_gdbarch, file);
1603 }
1604 EOF
1605
1606
1607 # GET/SET
1608 printf "\n"
1609 cat <<EOF
1610 struct gdbarch_tdep *
1611 gdbarch_tdep (struct gdbarch *gdbarch)
1612 {
1613 if (gdbarch_debug >= 2)
1614 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1615 return gdbarch->tdep;
1616 }
1617 EOF
1618 printf "\n"
1619 function_list | while do_read
1620 do
1621 if class_is_predicate_p
1622 then
1623 printf "\n"
1624 printf "int\n"
1625 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1626 printf "{\n"
1627 printf " gdb_assert (gdbarch != NULL);\n"
1628 if [ -n "${valid_p}" ]
1629 then
1630 printf " return ${valid_p};\n"
1631 else
1632 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1633 fi
1634 printf "}\n"
1635 fi
1636 if class_is_function_p
1637 then
1638 printf "\n"
1639 printf "${returntype}\n"
1640 if [ "x${formal}" = "xvoid" ]
1641 then
1642 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1643 else
1644 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1645 fi
1646 printf "{\n"
1647 printf " gdb_assert (gdbarch != NULL);\n"
1648 printf " if (gdbarch->${function} == 0)\n"
1649 printf " internal_error (__FILE__, __LINE__,\n"
1650 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1651 printf " if (gdbarch_debug >= 2)\n"
1652 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1653 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1654 then
1655 if class_is_multiarch_p
1656 then
1657 params="gdbarch"
1658 else
1659 params=""
1660 fi
1661 else
1662 if class_is_multiarch_p
1663 then
1664 params="gdbarch, ${actual}"
1665 else
1666 params="${actual}"
1667 fi
1668 fi
1669 if [ "x${returntype}" = "xvoid" ]
1670 then
1671 printf " gdbarch->${function} (${params});\n"
1672 else
1673 printf " return gdbarch->${function} (${params});\n"
1674 fi
1675 printf "}\n"
1676 printf "\n"
1677 printf "void\n"
1678 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1679 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1680 printf "{\n"
1681 printf " gdbarch->${function} = ${function};\n"
1682 printf "}\n"
1683 elif class_is_variable_p
1684 then
1685 printf "\n"
1686 printf "${returntype}\n"
1687 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1688 printf "{\n"
1689 printf " gdb_assert (gdbarch != NULL);\n"
1690 if [ "x${invalid_p}" = "x0" ]
1691 then
1692 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1693 elif [ -n "${invalid_p}" ]
1694 then
1695 printf " if (${invalid_p})\n"
1696 printf " internal_error (__FILE__, __LINE__,\n"
1697 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1698 elif [ -n "${predefault}" ]
1699 then
1700 printf " if (gdbarch->${function} == ${predefault})\n"
1701 printf " internal_error (__FILE__, __LINE__,\n"
1702 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1703 fi
1704 printf " if (gdbarch_debug >= 2)\n"
1705 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1706 printf " return gdbarch->${function};\n"
1707 printf "}\n"
1708 printf "\n"
1709 printf "void\n"
1710 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1711 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1712 printf "{\n"
1713 printf " gdbarch->${function} = ${function};\n"
1714 printf "}\n"
1715 elif class_is_info_p
1716 then
1717 printf "\n"
1718 printf "${returntype}\n"
1719 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1720 printf "{\n"
1721 printf " gdb_assert (gdbarch != NULL);\n"
1722 printf " if (gdbarch_debug >= 2)\n"
1723 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1724 printf " return gdbarch->${function};\n"
1725 printf "}\n"
1726 fi
1727 done
1728
1729 # All the trailing guff
1730 cat <<EOF
1731
1732
1733 /* Keep a registry of per-architecture data-pointers required by GDB
1734 modules. */
1735
1736 struct gdbarch_data
1737 {
1738 unsigned index;
1739 int init_p;
1740 gdbarch_data_init_ftype *init;
1741 gdbarch_data_free_ftype *free;
1742 };
1743
1744 struct gdbarch_data_registration
1745 {
1746 struct gdbarch_data *data;
1747 struct gdbarch_data_registration *next;
1748 };
1749
1750 struct gdbarch_data_registry
1751 {
1752 unsigned nr;
1753 struct gdbarch_data_registration *registrations;
1754 };
1755
1756 struct gdbarch_data_registry gdbarch_data_registry =
1757 {
1758 0, NULL,
1759 };
1760
1761 struct gdbarch_data *
1762 register_gdbarch_data (gdbarch_data_init_ftype *init,
1763 gdbarch_data_free_ftype *free)
1764 {
1765 struct gdbarch_data_registration **curr;
1766 /* Append the new registraration. */
1767 for (curr = &gdbarch_data_registry.registrations;
1768 (*curr) != NULL;
1769 curr = &(*curr)->next);
1770 (*curr) = XMALLOC (struct gdbarch_data_registration);
1771 (*curr)->next = NULL;
1772 (*curr)->data = XMALLOC (struct gdbarch_data);
1773 (*curr)->data->index = gdbarch_data_registry.nr++;
1774 (*curr)->data->init = init;
1775 (*curr)->data->init_p = 1;
1776 (*curr)->data->free = free;
1777 return (*curr)->data;
1778 }
1779
1780
1781 /* Create/delete the gdbarch data vector. */
1782
1783 static void
1784 alloc_gdbarch_data (struct gdbarch *gdbarch)
1785 {
1786 gdb_assert (gdbarch->data == NULL);
1787 gdbarch->nr_data = gdbarch_data_registry.nr;
1788 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1789 }
1790
1791 static void
1792 free_gdbarch_data (struct gdbarch *gdbarch)
1793 {
1794 struct gdbarch_data_registration *rego;
1795 gdb_assert (gdbarch->data != NULL);
1796 for (rego = gdbarch_data_registry.registrations;
1797 rego != NULL;
1798 rego = rego->next)
1799 {
1800 struct gdbarch_data *data = rego->data;
1801 gdb_assert (data->index < gdbarch->nr_data);
1802 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1803 {
1804 data->free (gdbarch, gdbarch->data[data->index]);
1805 gdbarch->data[data->index] = NULL;
1806 }
1807 }
1808 xfree (gdbarch->data);
1809 gdbarch->data = NULL;
1810 }
1811
1812
1813 /* Initialize the current value of the specified per-architecture
1814 data-pointer. */
1815
1816 void
1817 set_gdbarch_data (struct gdbarch *gdbarch,
1818 struct gdbarch_data *data,
1819 void *pointer)
1820 {
1821 gdb_assert (data->index < gdbarch->nr_data);
1822 if (gdbarch->data[data->index] != NULL)
1823 {
1824 gdb_assert (data->free != NULL);
1825 data->free (gdbarch, gdbarch->data[data->index]);
1826 }
1827 gdbarch->data[data->index] = pointer;
1828 }
1829
1830 /* Return the current value of the specified per-architecture
1831 data-pointer. */
1832
1833 void *
1834 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1835 {
1836 gdb_assert (data->index < gdbarch->nr_data);
1837 /* The data-pointer isn't initialized, call init() to get a value but
1838 only if the architecture initializaiton has completed. Otherwise
1839 punt - hope that the caller knows what they are doing. */
1840 if (gdbarch->data[data->index] == NULL
1841 && gdbarch->initialized_p)
1842 {
1843 /* Be careful to detect an initialization cycle. */
1844 gdb_assert (data->init_p);
1845 data->init_p = 0;
1846 gdb_assert (data->init != NULL);
1847 gdbarch->data[data->index] = data->init (gdbarch);
1848 data->init_p = 1;
1849 gdb_assert (gdbarch->data[data->index] != NULL);
1850 }
1851 return gdbarch->data[data->index];
1852 }
1853
1854
1855
1856 /* Keep a registry of swapped data required by GDB modules. */
1857
1858 struct gdbarch_swap
1859 {
1860 void *swap;
1861 struct gdbarch_swap_registration *source;
1862 struct gdbarch_swap *next;
1863 };
1864
1865 struct gdbarch_swap_registration
1866 {
1867 void *data;
1868 unsigned long sizeof_data;
1869 gdbarch_swap_ftype *init;
1870 struct gdbarch_swap_registration *next;
1871 };
1872
1873 struct gdbarch_swap_registry
1874 {
1875 int nr;
1876 struct gdbarch_swap_registration *registrations;
1877 };
1878
1879 struct gdbarch_swap_registry gdbarch_swap_registry =
1880 {
1881 0, NULL,
1882 };
1883
1884 void
1885 register_gdbarch_swap (void *data,
1886 unsigned long sizeof_data,
1887 gdbarch_swap_ftype *init)
1888 {
1889 struct gdbarch_swap_registration **rego;
1890 for (rego = &gdbarch_swap_registry.registrations;
1891 (*rego) != NULL;
1892 rego = &(*rego)->next);
1893 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1894 (*rego)->next = NULL;
1895 (*rego)->init = init;
1896 (*rego)->data = data;
1897 (*rego)->sizeof_data = sizeof_data;
1898 }
1899
1900 static void
1901 clear_gdbarch_swap (struct gdbarch *gdbarch)
1902 {
1903 struct gdbarch_swap *curr;
1904 for (curr = gdbarch->swap;
1905 curr != NULL;
1906 curr = curr->next)
1907 {
1908 memset (curr->source->data, 0, curr->source->sizeof_data);
1909 }
1910 }
1911
1912 static void
1913 init_gdbarch_swap (struct gdbarch *gdbarch)
1914 {
1915 struct gdbarch_swap_registration *rego;
1916 struct gdbarch_swap **curr = &gdbarch->swap;
1917 for (rego = gdbarch_swap_registry.registrations;
1918 rego != NULL;
1919 rego = rego->next)
1920 {
1921 if (rego->data != NULL)
1922 {
1923 (*curr) = XMALLOC (struct gdbarch_swap);
1924 (*curr)->source = rego;
1925 (*curr)->swap = xmalloc (rego->sizeof_data);
1926 (*curr)->next = NULL;
1927 curr = &(*curr)->next;
1928 }
1929 if (rego->init != NULL)
1930 rego->init ();
1931 }
1932 }
1933
1934 static void
1935 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1936 {
1937 struct gdbarch_swap *curr;
1938 for (curr = gdbarch->swap;
1939 curr != NULL;
1940 curr = curr->next)
1941 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1942 }
1943
1944 static void
1945 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1946 {
1947 struct gdbarch_swap *curr;
1948 for (curr = gdbarch->swap;
1949 curr != NULL;
1950 curr = curr->next)
1951 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1952 }
1953
1954
1955 /* Keep a registry of the architectures known by GDB. */
1956
1957 struct gdbarch_registration
1958 {
1959 enum bfd_architecture bfd_architecture;
1960 gdbarch_init_ftype *init;
1961 gdbarch_dump_tdep_ftype *dump_tdep;
1962 struct gdbarch_list *arches;
1963 struct gdbarch_registration *next;
1964 };
1965
1966 static struct gdbarch_registration *gdbarch_registry = NULL;
1967
1968 static void
1969 append_name (const char ***buf, int *nr, const char *name)
1970 {
1971 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1972 (*buf)[*nr] = name;
1973 *nr += 1;
1974 }
1975
1976 const char **
1977 gdbarch_printable_names (void)
1978 {
1979 if (GDB_MULTI_ARCH)
1980 {
1981 /* Accumulate a list of names based on the registed list of
1982 architectures. */
1983 enum bfd_architecture a;
1984 int nr_arches = 0;
1985 const char **arches = NULL;
1986 struct gdbarch_registration *rego;
1987 for (rego = gdbarch_registry;
1988 rego != NULL;
1989 rego = rego->next)
1990 {
1991 const struct bfd_arch_info *ap;
1992 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1993 if (ap == NULL)
1994 internal_error (__FILE__, __LINE__,
1995 "gdbarch_architecture_names: multi-arch unknown");
1996 do
1997 {
1998 append_name (&arches, &nr_arches, ap->printable_name);
1999 ap = ap->next;
2000 }
2001 while (ap != NULL);
2002 }
2003 append_name (&arches, &nr_arches, NULL);
2004 return arches;
2005 }
2006 else
2007 /* Just return all the architectures that BFD knows. Assume that
2008 the legacy architecture framework supports them. */
2009 return bfd_arch_list ();
2010 }
2011
2012
2013 void
2014 gdbarch_register (enum bfd_architecture bfd_architecture,
2015 gdbarch_init_ftype *init,
2016 gdbarch_dump_tdep_ftype *dump_tdep)
2017 {
2018 struct gdbarch_registration **curr;
2019 const struct bfd_arch_info *bfd_arch_info;
2020 /* Check that BFD recognizes this architecture */
2021 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2022 if (bfd_arch_info == NULL)
2023 {
2024 internal_error (__FILE__, __LINE__,
2025 "gdbarch: Attempt to register unknown architecture (%d)",
2026 bfd_architecture);
2027 }
2028 /* Check that we haven't seen this architecture before */
2029 for (curr = &gdbarch_registry;
2030 (*curr) != NULL;
2031 curr = &(*curr)->next)
2032 {
2033 if (bfd_architecture == (*curr)->bfd_architecture)
2034 internal_error (__FILE__, __LINE__,
2035 "gdbarch: Duplicate registraration of architecture (%s)",
2036 bfd_arch_info->printable_name);
2037 }
2038 /* log it */
2039 if (gdbarch_debug)
2040 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2041 bfd_arch_info->printable_name,
2042 (long) init);
2043 /* Append it */
2044 (*curr) = XMALLOC (struct gdbarch_registration);
2045 (*curr)->bfd_architecture = bfd_architecture;
2046 (*curr)->init = init;
2047 (*curr)->dump_tdep = dump_tdep;
2048 (*curr)->arches = NULL;
2049 (*curr)->next = NULL;
2050 /* When non- multi-arch, install whatever target dump routine we've
2051 been provided - hopefully that routine has been written correctly
2052 and works regardless of multi-arch. */
2053 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2054 && startup_gdbarch.dump_tdep == NULL)
2055 startup_gdbarch.dump_tdep = dump_tdep;
2056 }
2057
2058 void
2059 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2060 gdbarch_init_ftype *init)
2061 {
2062 gdbarch_register (bfd_architecture, init, NULL);
2063 }
2064
2065
2066 /* Look for an architecture using gdbarch_info. Base search on only
2067 BFD_ARCH_INFO and BYTE_ORDER. */
2068
2069 struct gdbarch_list *
2070 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2071 const struct gdbarch_info *info)
2072 {
2073 for (; arches != NULL; arches = arches->next)
2074 {
2075 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2076 continue;
2077 if (info->byte_order != arches->gdbarch->byte_order)
2078 continue;
2079 return arches;
2080 }
2081 return NULL;
2082 }
2083
2084
2085 /* Update the current architecture. Return ZERO if the update request
2086 failed. */
2087
2088 int
2089 gdbarch_update_p (struct gdbarch_info info)
2090 {
2091 struct gdbarch *new_gdbarch;
2092 struct gdbarch *old_gdbarch;
2093 struct gdbarch_registration *rego;
2094
2095 /* Fill in missing parts of the INFO struct using a number of
2096 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2097
2098 /* \`\`(gdb) set architecture ...'' */
2099 if (info.bfd_arch_info == NULL
2100 && !TARGET_ARCHITECTURE_AUTO)
2101 info.bfd_arch_info = TARGET_ARCHITECTURE;
2102 if (info.bfd_arch_info == NULL
2103 && info.abfd != NULL
2104 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2105 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2106 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2107 if (info.bfd_arch_info == NULL)
2108 info.bfd_arch_info = TARGET_ARCHITECTURE;
2109
2110 /* \`\`(gdb) set byte-order ...'' */
2111 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2112 && !TARGET_BYTE_ORDER_AUTO)
2113 info.byte_order = TARGET_BYTE_ORDER;
2114 /* From the INFO struct. */
2115 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2116 && info.abfd != NULL)
2117 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2118 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2119 : BFD_ENDIAN_UNKNOWN);
2120 /* From the current target. */
2121 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2122 info.byte_order = TARGET_BYTE_ORDER;
2123
2124 /* Must have found some sort of architecture. */
2125 gdb_assert (info.bfd_arch_info != NULL);
2126
2127 if (gdbarch_debug)
2128 {
2129 fprintf_unfiltered (gdb_stdlog,
2130 "gdbarch_update: info.bfd_arch_info %s\n",
2131 (info.bfd_arch_info != NULL
2132 ? info.bfd_arch_info->printable_name
2133 : "(null)"));
2134 fprintf_unfiltered (gdb_stdlog,
2135 "gdbarch_update: info.byte_order %d (%s)\n",
2136 info.byte_order,
2137 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2138 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2139 : "default"));
2140 fprintf_unfiltered (gdb_stdlog,
2141 "gdbarch_update: info.abfd 0x%lx\n",
2142 (long) info.abfd);
2143 fprintf_unfiltered (gdb_stdlog,
2144 "gdbarch_update: info.tdep_info 0x%lx\n",
2145 (long) info.tdep_info);
2146 }
2147
2148 /* Find the target that knows about this architecture. */
2149 for (rego = gdbarch_registry;
2150 rego != NULL;
2151 rego = rego->next)
2152 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2153 break;
2154 if (rego == NULL)
2155 {
2156 if (gdbarch_debug)
2157 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2158 return 0;
2159 }
2160
2161 /* Swap the data belonging to the old target out setting the
2162 installed data to zero. This stops the ->init() function trying
2163 to refer to the previous architecture's global data structures. */
2164 swapout_gdbarch_swap (current_gdbarch);
2165 clear_gdbarch_swap (current_gdbarch);
2166
2167 /* Save the previously selected architecture, setting the global to
2168 NULL. This stops ->init() trying to use the previous
2169 architecture's configuration. The previous architecture may not
2170 even be of the same architecture family. The most recent
2171 architecture of the same family is found at the head of the
2172 rego->arches list. */
2173 old_gdbarch = current_gdbarch;
2174 current_gdbarch = NULL;
2175
2176 /* Ask the target for a replacement architecture. */
2177 new_gdbarch = rego->init (info, rego->arches);
2178
2179 /* Did the target like it? No. Reject the change and revert to the
2180 old architecture. */
2181 if (new_gdbarch == NULL)
2182 {
2183 if (gdbarch_debug)
2184 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2185 swapin_gdbarch_swap (old_gdbarch);
2186 current_gdbarch = old_gdbarch;
2187 return 0;
2188 }
2189
2190 /* Did the architecture change? No. Oops, put the old architecture
2191 back. */
2192 if (old_gdbarch == new_gdbarch)
2193 {
2194 if (gdbarch_debug)
2195 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2196 (long) new_gdbarch,
2197 new_gdbarch->bfd_arch_info->printable_name);
2198 swapin_gdbarch_swap (old_gdbarch);
2199 current_gdbarch = old_gdbarch;
2200 return 1;
2201 }
2202
2203 /* Is this a pre-existing architecture? Yes. Move it to the front
2204 of the list of architectures (keeping the list sorted Most
2205 Recently Used) and then copy it in. */
2206 {
2207 struct gdbarch_list **list;
2208 for (list = &rego->arches;
2209 (*list) != NULL;
2210 list = &(*list)->next)
2211 {
2212 if ((*list)->gdbarch == new_gdbarch)
2213 {
2214 struct gdbarch_list *this;
2215 if (gdbarch_debug)
2216 fprintf_unfiltered (gdb_stdlog,
2217 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2218 (long) new_gdbarch,
2219 new_gdbarch->bfd_arch_info->printable_name);
2220 /* Unlink this. */
2221 this = (*list);
2222 (*list) = this->next;
2223 /* Insert in the front. */
2224 this->next = rego->arches;
2225 rego->arches = this;
2226 /* Copy the new architecture in. */
2227 current_gdbarch = new_gdbarch;
2228 swapin_gdbarch_swap (new_gdbarch);
2229 architecture_changed_event ();
2230 return 1;
2231 }
2232 }
2233 }
2234
2235 /* Prepend this new architecture to the architecture list (keep the
2236 list sorted Most Recently Used). */
2237 {
2238 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2239 this->next = rego->arches;
2240 this->gdbarch = new_gdbarch;
2241 rego->arches = this;
2242 }
2243
2244 /* Switch to this new architecture marking it initialized. */
2245 current_gdbarch = new_gdbarch;
2246 current_gdbarch->initialized_p = 1;
2247 if (gdbarch_debug)
2248 {
2249 fprintf_unfiltered (gdb_stdlog,
2250 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2251 (long) new_gdbarch,
2252 new_gdbarch->bfd_arch_info->printable_name);
2253 }
2254
2255 /* Check that the newly installed architecture is valid. Plug in
2256 any post init values. */
2257 new_gdbarch->dump_tdep = rego->dump_tdep;
2258 verify_gdbarch (new_gdbarch);
2259
2260 /* Initialize the per-architecture memory (swap) areas.
2261 CURRENT_GDBARCH must be update before these modules are
2262 called. */
2263 init_gdbarch_swap (new_gdbarch);
2264
2265 /* Initialize the per-architecture data. CURRENT_GDBARCH
2266 must be updated before these modules are called. */
2267 architecture_changed_event ();
2268
2269 if (gdbarch_debug)
2270 gdbarch_dump (current_gdbarch, gdb_stdlog);
2271
2272 return 1;
2273 }
2274
2275
2276 /* Disassembler */
2277
2278 /* Pointer to the target-dependent disassembly function. */
2279 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2280 disassemble_info tm_print_insn_info;
2281
2282
2283 extern void _initialize_gdbarch (void);
2284
2285 void
2286 _initialize_gdbarch (void)
2287 {
2288 struct cmd_list_element *c;
2289
2290 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2291 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2292 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2293 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2294 tm_print_insn_info.print_address_func = dis_asm_print_address;
2295
2296 add_show_from_set (add_set_cmd ("arch",
2297 class_maintenance,
2298 var_zinteger,
2299 (char *)&gdbarch_debug,
2300 "Set architecture debugging.\\n\\
2301 When non-zero, architecture debugging is enabled.", &setdebuglist),
2302 &showdebuglist);
2303 c = add_set_cmd ("archdebug",
2304 class_maintenance,
2305 var_zinteger,
2306 (char *)&gdbarch_debug,
2307 "Set architecture debugging.\\n\\
2308 When non-zero, architecture debugging is enabled.", &setlist);
2309
2310 deprecate_cmd (c, "set debug arch");
2311 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2312 }
2313 EOF
2314
2315 # close things off
2316 exec 1>&2
2317 #../move-if-change new-gdbarch.c gdbarch.c
2318 compare_new gdbarch.c
This page took 0.081715 seconds and 5 git commands to generate.