2003-06-08 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # This is simply not needed. See value_of_builtin_frame_fp_reg and
432 # call_function_by_hand.
433 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
434 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
435 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
436 # The dummy call frame SP should be set by push_dummy_call.
437 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
438 # Function for getting target's idea of a frame pointer. FIXME: GDB's
439 # whole scheme for dealing with "frames" and "frame pointers" needs a
440 # serious shakedown.
441 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
442 #
443 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
444 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
445 #
446 v:2:NUM_REGS:int:num_regs::::0:-1
447 # This macro gives the number of pseudo-registers that live in the
448 # register namespace but do not get fetched or stored on the target.
449 # These pseudo-registers may be aliases for other registers,
450 # combinations of other registers, or they may be computed by GDB.
451 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
452
453 # GDB's standard (or well known) register numbers. These can map onto
454 # a real register or a pseudo (computed) register or not be defined at
455 # all (-1).
456 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
457 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
458 # This is simply not needed. See value_of_builtin_frame_fp_reg and
459 # call_function_by_hand.
460 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
461 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
462 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
463 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
464 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
465 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
466 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
467 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
468 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
469 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
470 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
471 # Convert from an sdb register number to an internal gdb register number.
472 # This should be defined in tm.h, if REGISTER_NAMES is not set up
473 # to map one to one onto the sdb register numbers.
474 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
475 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
476 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
477 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
478 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
479 # NOTE: cagney/2002-05-02: This function with predicate has a valid
480 # (callable) initial value. As a consequence, even when the predicate
481 # is false, the corresponding function works. This simplifies the
482 # migration process - old code, calling REGISTER_BYTE, doesn't need to
483 # be modified.
484 F::REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
486 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
487 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
488 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
489 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
490 # MAX_REGISTER_SIZE (a constant).
491 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
492 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
493 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
494 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
495 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
496 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
497 # MAX_REGISTER_SIZE (a constant).
498 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
499 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
500 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
501 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
502 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
503 #
504 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
505 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
506 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
507 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
508 # MAP a GDB RAW register number onto a simulator register number. See
509 # also include/...-sim.h.
510 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
511 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
512 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
513 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
514 # setjmp/longjmp support.
515 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
516 #
517 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
518 # much better but at least they are vaguely consistent). The headers
519 # and body contain convoluted #if/#else sequences for determine how
520 # things should be compiled. Instead of trying to mimic that
521 # behaviour here (and hence entrench it further) gdbarch simply
522 # reqires that these methods be set up from the word go. This also
523 # avoids any potential problems with moving beyond multi-arch partial.
524 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
525 # Replaced by push_dummy_code.
526 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
527 # Replaced by push_dummy_code.
528 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
529 # Replaced by push_dummy_code.
530 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
531 # Replaced by push_dummy_code.
532 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
533 # Replaced by push_dummy_code.
534 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
535 # NOTE: cagney/2002-11-24: This function with predicate has a valid
536 # (callable) initial value. As a consequence, even when the predicate
537 # is false, the corresponding function works. This simplifies the
538 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
539 # doesn't need to be modified.
540 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
541 # Replaced by push_dummy_code.
542 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
543 # Replaced by push_dummy_code.
544 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
545 # Replaced by push_dummy_code.
546 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
547 # Replaced by push_dummy_code.
548 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
549 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
550 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
551 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
552 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
553 #
554 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
555 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
556 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
557 #
558 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
559 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
560 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
561 #
562 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
563 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
564 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
565 #
566 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
567 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
568 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
569 #
570 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
571 # Replaced by PUSH_DUMMY_CALL
572 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
573 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
574 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
575 # NOTE: This can be handled directly in push_dummy_call.
576 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
577 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
578 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
579 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
580 #
581 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
582 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
583 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
584 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
585 #
586 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
587 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
588 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
589 #
590 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
591 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
592 #
593 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
594 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
595 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
596 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
597 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
598 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
599 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
600 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
601 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
602 #
603 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
604 #
605 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
606 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
607 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
608 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
609 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
610 # note, per UNWIND_PC's doco, that while the two have similar
611 # interfaces they have very different underlying implementations.
612 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
613 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
614 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame:
615 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
616 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
617 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
618 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
619 #
620 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
621 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
622 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
623 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
624 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
625 # FIXME: kettenis/2003-03-08: This should be replaced by a function
626 # parametrized with (at least) the regcache.
627 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
628 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
629 v:2:PARM_BOUNDARY:int:parm_boundary
630 #
631 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
632 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
633 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
634 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
635 # On some machines there are bits in addresses which are not really
636 # part of the address, but are used by the kernel, the hardware, etc.
637 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
638 # we get a "real" address such as one would find in a symbol table.
639 # This is used only for addresses of instructions, and even then I'm
640 # not sure it's used in all contexts. It exists to deal with there
641 # being a few stray bits in the PC which would mislead us, not as some
642 # sort of generic thing to handle alignment or segmentation (it's
643 # possible it should be in TARGET_READ_PC instead).
644 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
645 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
646 # ADDR_BITS_REMOVE.
647 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
648 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
649 # the target needs software single step. An ISA method to implement it.
650 #
651 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
652 # using the breakpoint system instead of blatting memory directly (as with rs6000).
653 #
654 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
655 # single step. If not, then implement single step using breakpoints.
656 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
657 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
658 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
659
660
661 # For SVR4 shared libraries, each call goes through a small piece of
662 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
663 # to nonzero if we are currently stopped in one of these.
664 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
665
666 # Some systems also have trampoline code for returning from shared libs.
667 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
668
669 # Sigtramp is a routine that the kernel calls (which then calls the
670 # signal handler). On most machines it is a library routine that is
671 # linked into the executable.
672 #
673 # This macro, given a program counter value and the name of the
674 # function in which that PC resides (which can be null if the name is
675 # not known), returns nonzero if the PC and name show that we are in
676 # sigtramp.
677 #
678 # On most machines just see if the name is sigtramp (and if we have
679 # no name, assume we are not in sigtramp).
680 #
681 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
682 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
683 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
684 # own local NAME lookup.
685 #
686 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
687 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
688 # does not.
689 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
690 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
691 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
692 # A target might have problems with watchpoints as soon as the stack
693 # frame of the current function has been destroyed. This mostly happens
694 # as the first action in a funtion's epilogue. in_function_epilogue_p()
695 # is defined to return a non-zero value if either the given addr is one
696 # instruction after the stack destroying instruction up to the trailing
697 # return instruction or if we can figure out that the stack frame has
698 # already been invalidated regardless of the value of addr. Targets
699 # which don't suffer from that problem could just let this functionality
700 # untouched.
701 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
702 # Given a vector of command-line arguments, return a newly allocated
703 # string which, when passed to the create_inferior function, will be
704 # parsed (on Unix systems, by the shell) to yield the same vector.
705 # This function should call error() if the argument vector is not
706 # representable for this target or if this target does not support
707 # command-line arguments.
708 # ARGC is the number of elements in the vector.
709 # ARGV is an array of strings, one per argument.
710 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
711 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
712 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
713 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
714 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
715 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
716 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
717 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
718 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
719 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
720 # Is a register in a group
721 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
722 # Fetch the pointer to the ith function argument.
723 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type:::::::::
724 EOF
725 }
726
727 #
728 # The .log file
729 #
730 exec > new-gdbarch.log
731 function_list | while do_read
732 do
733 cat <<EOF
734 ${class} ${macro}(${actual})
735 ${returntype} ${function} ($formal)${attrib}
736 EOF
737 for r in ${read}
738 do
739 eval echo \"\ \ \ \ ${r}=\${${r}}\"
740 done
741 if class_is_predicate_p && fallback_default_p
742 then
743 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
744 kill $$
745 exit 1
746 fi
747 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
748 then
749 echo "Error: postdefault is useless when invalid_p=0" 1>&2
750 kill $$
751 exit 1
752 fi
753 if class_is_multiarch_p
754 then
755 if class_is_predicate_p ; then :
756 elif test "x${predefault}" = "x"
757 then
758 echo "Error: pure multi-arch function must have a predefault" 1>&2
759 kill $$
760 exit 1
761 fi
762 fi
763 echo ""
764 done
765
766 exec 1>&2
767 compare_new gdbarch.log
768
769
770 copyright ()
771 {
772 cat <<EOF
773 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
774
775 /* Dynamic architecture support for GDB, the GNU debugger.
776 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
777
778 This file is part of GDB.
779
780 This program is free software; you can redistribute it and/or modify
781 it under the terms of the GNU General Public License as published by
782 the Free Software Foundation; either version 2 of the License, or
783 (at your option) any later version.
784
785 This program is distributed in the hope that it will be useful,
786 but WITHOUT ANY WARRANTY; without even the implied warranty of
787 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
788 GNU General Public License for more details.
789
790 You should have received a copy of the GNU General Public License
791 along with this program; if not, write to the Free Software
792 Foundation, Inc., 59 Temple Place - Suite 330,
793 Boston, MA 02111-1307, USA. */
794
795 /* This file was created with the aid of \`\`gdbarch.sh''.
796
797 The Bourne shell script \`\`gdbarch.sh'' creates the files
798 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
799 against the existing \`\`gdbarch.[hc]''. Any differences found
800 being reported.
801
802 If editing this file, please also run gdbarch.sh and merge any
803 changes into that script. Conversely, when making sweeping changes
804 to this file, modifying gdbarch.sh and using its output may prove
805 easier. */
806
807 EOF
808 }
809
810 #
811 # The .h file
812 #
813
814 exec > new-gdbarch.h
815 copyright
816 cat <<EOF
817 #ifndef GDBARCH_H
818 #define GDBARCH_H
819
820 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
821 #if !GDB_MULTI_ARCH
822 /* Pull in function declarations refered to, indirectly, via macros. */
823 #include "inferior.h" /* For unsigned_address_to_pointer(). */
824 #include "symfile.h" /* For entry_point_address(). */
825 #endif
826
827 struct floatformat;
828 struct ui_file;
829 struct frame_info;
830 struct value;
831 struct objfile;
832 struct minimal_symbol;
833 struct regcache;
834 struct reggroup;
835
836 extern struct gdbarch *current_gdbarch;
837
838
839 /* If any of the following are defined, the target wasn't correctly
840 converted. */
841
842 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
843 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
844 #endif
845 EOF
846
847 # function typedef's
848 printf "\n"
849 printf "\n"
850 printf "/* The following are pre-initialized by GDBARCH. */\n"
851 function_list | while do_read
852 do
853 if class_is_info_p
854 then
855 printf "\n"
856 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
857 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
858 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
859 printf "#error \"Non multi-arch definition of ${macro}\"\n"
860 printf "#endif\n"
861 printf "#if !defined (${macro})\n"
862 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
863 printf "#endif\n"
864 fi
865 done
866
867 # function typedef's
868 printf "\n"
869 printf "\n"
870 printf "/* The following are initialized by the target dependent code. */\n"
871 function_list | while do_read
872 do
873 if [ -n "${comment}" ]
874 then
875 echo "${comment}" | sed \
876 -e '2 s,#,/*,' \
877 -e '3,$ s,#, ,' \
878 -e '$ s,$, */,'
879 fi
880 if class_is_multiarch_p
881 then
882 if class_is_predicate_p
883 then
884 printf "\n"
885 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
886 fi
887 else
888 if class_is_predicate_p
889 then
890 printf "\n"
891 printf "#if defined (${macro})\n"
892 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
893 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
894 printf "#if !defined (${macro}_P)\n"
895 printf "#define ${macro}_P() (1)\n"
896 printf "#endif\n"
897 printf "#endif\n"
898 printf "\n"
899 printf "/* Default predicate for non- multi-arch targets. */\n"
900 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
901 printf "#define ${macro}_P() (0)\n"
902 printf "#endif\n"
903 printf "\n"
904 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
905 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
906 printf "#error \"Non multi-arch definition of ${macro}\"\n"
907 printf "#endif\n"
908 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
909 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
910 printf "#endif\n"
911 fi
912 fi
913 if class_is_variable_p
914 then
915 if fallback_default_p || class_is_predicate_p
916 then
917 printf "\n"
918 printf "/* Default (value) for non- multi-arch platforms. */\n"
919 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
920 echo "#define ${macro} (${fallbackdefault})" \
921 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
922 printf "#endif\n"
923 fi
924 printf "\n"
925 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
926 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
927 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
928 printf "#error \"Non multi-arch definition of ${macro}\"\n"
929 printf "#endif\n"
930 printf "#if !defined (${macro})\n"
931 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
932 printf "#endif\n"
933 fi
934 if class_is_function_p
935 then
936 if class_is_multiarch_p ; then :
937 elif fallback_default_p || class_is_predicate_p
938 then
939 printf "\n"
940 printf "/* Default (function) for non- multi-arch platforms. */\n"
941 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
942 if [ "x${fallbackdefault}" = "x0" ]
943 then
944 if [ "x${actual}" = "x-" ]
945 then
946 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
947 else
948 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
949 fi
950 else
951 # FIXME: Should be passing current_gdbarch through!
952 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
953 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
954 fi
955 printf "#endif\n"
956 fi
957 printf "\n"
958 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
959 then
960 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
961 elif class_is_multiarch_p
962 then
963 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
964 else
965 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
966 fi
967 if [ "x${formal}" = "xvoid" ]
968 then
969 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
970 else
971 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
972 fi
973 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
974 if class_is_multiarch_p ; then :
975 else
976 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
977 printf "#error \"Non multi-arch definition of ${macro}\"\n"
978 printf "#endif\n"
979 if [ "x${actual}" = "x" ]
980 then
981 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
982 elif [ "x${actual}" = "x-" ]
983 then
984 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
985 else
986 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
987 fi
988 printf "#if !defined (${macro})\n"
989 if [ "x${actual}" = "x" ]
990 then
991 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
992 elif [ "x${actual}" = "x-" ]
993 then
994 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
995 else
996 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
997 fi
998 printf "#endif\n"
999 fi
1000 fi
1001 done
1002
1003 # close it off
1004 cat <<EOF
1005
1006 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1007
1008
1009 /* Mechanism for co-ordinating the selection of a specific
1010 architecture.
1011
1012 GDB targets (*-tdep.c) can register an interest in a specific
1013 architecture. Other GDB components can register a need to maintain
1014 per-architecture data.
1015
1016 The mechanisms below ensures that there is only a loose connection
1017 between the set-architecture command and the various GDB
1018 components. Each component can independently register their need
1019 to maintain architecture specific data with gdbarch.
1020
1021 Pragmatics:
1022
1023 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1024 didn't scale.
1025
1026 The more traditional mega-struct containing architecture specific
1027 data for all the various GDB components was also considered. Since
1028 GDB is built from a variable number of (fairly independent)
1029 components it was determined that the global aproach was not
1030 applicable. */
1031
1032
1033 /* Register a new architectural family with GDB.
1034
1035 Register support for the specified ARCHITECTURE with GDB. When
1036 gdbarch determines that the specified architecture has been
1037 selected, the corresponding INIT function is called.
1038
1039 --
1040
1041 The INIT function takes two parameters: INFO which contains the
1042 information available to gdbarch about the (possibly new)
1043 architecture; ARCHES which is a list of the previously created
1044 \`\`struct gdbarch'' for this architecture.
1045
1046 The INFO parameter is, as far as possible, be pre-initialized with
1047 information obtained from INFO.ABFD or the previously selected
1048 architecture.
1049
1050 The ARCHES parameter is a linked list (sorted most recently used)
1051 of all the previously created architures for this architecture
1052 family. The (possibly NULL) ARCHES->gdbarch can used to access
1053 values from the previously selected architecture for this
1054 architecture family. The global \`\`current_gdbarch'' shall not be
1055 used.
1056
1057 The INIT function shall return any of: NULL - indicating that it
1058 doesn't recognize the selected architecture; an existing \`\`struct
1059 gdbarch'' from the ARCHES list - indicating that the new
1060 architecture is just a synonym for an earlier architecture (see
1061 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1062 - that describes the selected architecture (see gdbarch_alloc()).
1063
1064 The DUMP_TDEP function shall print out all target specific values.
1065 Care should be taken to ensure that the function works in both the
1066 multi-arch and non- multi-arch cases. */
1067
1068 struct gdbarch_list
1069 {
1070 struct gdbarch *gdbarch;
1071 struct gdbarch_list *next;
1072 };
1073
1074 struct gdbarch_info
1075 {
1076 /* Use default: NULL (ZERO). */
1077 const struct bfd_arch_info *bfd_arch_info;
1078
1079 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1080 int byte_order;
1081
1082 /* Use default: NULL (ZERO). */
1083 bfd *abfd;
1084
1085 /* Use default: NULL (ZERO). */
1086 struct gdbarch_tdep_info *tdep_info;
1087
1088 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1089 enum gdb_osabi osabi;
1090 };
1091
1092 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1093 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1094
1095 /* DEPRECATED - use gdbarch_register() */
1096 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1097
1098 extern void gdbarch_register (enum bfd_architecture architecture,
1099 gdbarch_init_ftype *,
1100 gdbarch_dump_tdep_ftype *);
1101
1102
1103 /* Return a freshly allocated, NULL terminated, array of the valid
1104 architecture names. Since architectures are registered during the
1105 _initialize phase this function only returns useful information
1106 once initialization has been completed. */
1107
1108 extern const char **gdbarch_printable_names (void);
1109
1110
1111 /* Helper function. Search the list of ARCHES for a GDBARCH that
1112 matches the information provided by INFO. */
1113
1114 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1115
1116
1117 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1118 basic initialization using values obtained from the INFO andTDEP
1119 parameters. set_gdbarch_*() functions are called to complete the
1120 initialization of the object. */
1121
1122 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1123
1124
1125 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1126 It is assumed that the caller freeds the \`\`struct
1127 gdbarch_tdep''. */
1128
1129 extern void gdbarch_free (struct gdbarch *);
1130
1131
1132 /* Helper function. Force an update of the current architecture.
1133
1134 The actual architecture selected is determined by INFO, \`\`(gdb) set
1135 architecture'' et.al., the existing architecture and BFD's default
1136 architecture. INFO should be initialized to zero and then selected
1137 fields should be updated.
1138
1139 Returns non-zero if the update succeeds */
1140
1141 extern int gdbarch_update_p (struct gdbarch_info info);
1142
1143
1144
1145 /* Register per-architecture data-pointer.
1146
1147 Reserve space for a per-architecture data-pointer. An identifier
1148 for the reserved data-pointer is returned. That identifer should
1149 be saved in a local static variable.
1150
1151 The per-architecture data-pointer is either initialized explicitly
1152 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1153 gdbarch_data()). FREE() is called to delete either an existing
1154 data-pointer overridden by set_gdbarch_data() or when the
1155 architecture object is being deleted.
1156
1157 When a previously created architecture is re-selected, the
1158 per-architecture data-pointer for that previous architecture is
1159 restored. INIT() is not re-called.
1160
1161 Multiple registrarants for any architecture are allowed (and
1162 strongly encouraged). */
1163
1164 struct gdbarch_data;
1165
1166 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1167 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1168 void *pointer);
1169 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1170 gdbarch_data_free_ftype *free);
1171 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1172 struct gdbarch_data *data,
1173 void *pointer);
1174
1175 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1176
1177
1178 /* Register per-architecture memory region.
1179
1180 Provide a memory-region swap mechanism. Per-architecture memory
1181 region are created. These memory regions are swapped whenever the
1182 architecture is changed. For a new architecture, the memory region
1183 is initialized with zero (0) and the INIT function is called.
1184
1185 Memory regions are swapped / initialized in the order that they are
1186 registered. NULL DATA and/or INIT values can be specified.
1187
1188 New code should use register_gdbarch_data(). */
1189
1190 typedef void (gdbarch_swap_ftype) (void);
1191 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1192 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1193
1194
1195
1196 /* The target-system-dependent byte order is dynamic */
1197
1198 extern int target_byte_order;
1199 #ifndef TARGET_BYTE_ORDER
1200 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1201 #endif
1202
1203 extern int target_byte_order_auto;
1204 #ifndef TARGET_BYTE_ORDER_AUTO
1205 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1206 #endif
1207
1208
1209
1210 /* The target-system-dependent BFD architecture is dynamic */
1211
1212 extern int target_architecture_auto;
1213 #ifndef TARGET_ARCHITECTURE_AUTO
1214 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1215 #endif
1216
1217 extern const struct bfd_arch_info *target_architecture;
1218 #ifndef TARGET_ARCHITECTURE
1219 #define TARGET_ARCHITECTURE (target_architecture + 0)
1220 #endif
1221
1222
1223 /* The target-system-dependent disassembler is semi-dynamic */
1224
1225 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1226 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1227
1228 /* Use set_gdbarch_print_insn instead. */
1229 extern disassemble_info deprecated_tm_print_insn_info;
1230
1231 /* Set the dynamic target-system-dependent parameters (architecture,
1232 byte-order, ...) using information found in the BFD */
1233
1234 extern void set_gdbarch_from_file (bfd *);
1235
1236
1237 /* Initialize the current architecture to the "first" one we find on
1238 our list. */
1239
1240 extern void initialize_current_architecture (void);
1241
1242 /* For non-multiarched targets, do any initialization of the default
1243 gdbarch object necessary after the _initialize_MODULE functions
1244 have run. */
1245 extern void initialize_non_multiarch (void);
1246
1247 /* gdbarch trace variable */
1248 extern int gdbarch_debug;
1249
1250 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1251
1252 #endif
1253 EOF
1254 exec 1>&2
1255 #../move-if-change new-gdbarch.h gdbarch.h
1256 compare_new gdbarch.h
1257
1258
1259 #
1260 # C file
1261 #
1262
1263 exec > new-gdbarch.c
1264 copyright
1265 cat <<EOF
1266
1267 #include "defs.h"
1268 #include "arch-utils.h"
1269
1270 #if GDB_MULTI_ARCH
1271 #include "gdbcmd.h"
1272 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1273 #else
1274 /* Just include everything in sight so that the every old definition
1275 of macro is visible. */
1276 #include "gdb_string.h"
1277 #include <ctype.h>
1278 #include "symtab.h"
1279 #include "frame.h"
1280 #include "inferior.h"
1281 #include "breakpoint.h"
1282 #include "gdb_wait.h"
1283 #include "gdbcore.h"
1284 #include "gdbcmd.h"
1285 #include "target.h"
1286 #include "gdbthread.h"
1287 #include "annotate.h"
1288 #include "symfile.h" /* for overlay functions */
1289 #include "value.h" /* For old tm.h/nm.h macros. */
1290 #endif
1291 #include "symcat.h"
1292
1293 #include "floatformat.h"
1294
1295 #include "gdb_assert.h"
1296 #include "gdb_string.h"
1297 #include "gdb-events.h"
1298 #include "reggroups.h"
1299 #include "osabi.h"
1300 #include "symfile.h" /* For entry_point_address. */
1301
1302 /* Static function declarations */
1303
1304 static void verify_gdbarch (struct gdbarch *gdbarch);
1305 static void alloc_gdbarch_data (struct gdbarch *);
1306 static void free_gdbarch_data (struct gdbarch *);
1307 static void init_gdbarch_swap (struct gdbarch *);
1308 static void clear_gdbarch_swap (struct gdbarch *);
1309 static void swapout_gdbarch_swap (struct gdbarch *);
1310 static void swapin_gdbarch_swap (struct gdbarch *);
1311
1312 /* Non-zero if we want to trace architecture code. */
1313
1314 #ifndef GDBARCH_DEBUG
1315 #define GDBARCH_DEBUG 0
1316 #endif
1317 int gdbarch_debug = GDBARCH_DEBUG;
1318
1319 EOF
1320
1321 # gdbarch open the gdbarch object
1322 printf "\n"
1323 printf "/* Maintain the struct gdbarch object */\n"
1324 printf "\n"
1325 printf "struct gdbarch\n"
1326 printf "{\n"
1327 printf " /* Has this architecture been fully initialized? */\n"
1328 printf " int initialized_p;\n"
1329 printf " /* basic architectural information */\n"
1330 function_list | while do_read
1331 do
1332 if class_is_info_p
1333 then
1334 printf " ${returntype} ${function};\n"
1335 fi
1336 done
1337 printf "\n"
1338 printf " /* target specific vector. */\n"
1339 printf " struct gdbarch_tdep *tdep;\n"
1340 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1341 printf "\n"
1342 printf " /* per-architecture data-pointers */\n"
1343 printf " unsigned nr_data;\n"
1344 printf " void **data;\n"
1345 printf "\n"
1346 printf " /* per-architecture swap-regions */\n"
1347 printf " struct gdbarch_swap *swap;\n"
1348 printf "\n"
1349 cat <<EOF
1350 /* Multi-arch values.
1351
1352 When extending this structure you must:
1353
1354 Add the field below.
1355
1356 Declare set/get functions and define the corresponding
1357 macro in gdbarch.h.
1358
1359 gdbarch_alloc(): If zero/NULL is not a suitable default,
1360 initialize the new field.
1361
1362 verify_gdbarch(): Confirm that the target updated the field
1363 correctly.
1364
1365 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1366 field is dumped out
1367
1368 \`\`startup_gdbarch()'': Append an initial value to the static
1369 variable (base values on the host's c-type system).
1370
1371 get_gdbarch(): Implement the set/get functions (probably using
1372 the macro's as shortcuts).
1373
1374 */
1375
1376 EOF
1377 function_list | while do_read
1378 do
1379 if class_is_variable_p
1380 then
1381 printf " ${returntype} ${function};\n"
1382 elif class_is_function_p
1383 then
1384 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1385 fi
1386 done
1387 printf "};\n"
1388
1389 # A pre-initialized vector
1390 printf "\n"
1391 printf "\n"
1392 cat <<EOF
1393 /* The default architecture uses host values (for want of a better
1394 choice). */
1395 EOF
1396 printf "\n"
1397 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1398 printf "\n"
1399 printf "struct gdbarch startup_gdbarch =\n"
1400 printf "{\n"
1401 printf " 1, /* Always initialized. */\n"
1402 printf " /* basic architecture information */\n"
1403 function_list | while do_read
1404 do
1405 if class_is_info_p
1406 then
1407 printf " ${staticdefault}, /* ${function} */\n"
1408 fi
1409 done
1410 cat <<EOF
1411 /* target specific vector and its dump routine */
1412 NULL, NULL,
1413 /*per-architecture data-pointers and swap regions */
1414 0, NULL, NULL,
1415 /* Multi-arch values */
1416 EOF
1417 function_list | while do_read
1418 do
1419 if class_is_function_p || class_is_variable_p
1420 then
1421 printf " ${staticdefault}, /* ${function} */\n"
1422 fi
1423 done
1424 cat <<EOF
1425 /* startup_gdbarch() */
1426 };
1427
1428 struct gdbarch *current_gdbarch = &startup_gdbarch;
1429
1430 /* Do any initialization needed for a non-multiarch configuration
1431 after the _initialize_MODULE functions have been run. */
1432 void
1433 initialize_non_multiarch (void)
1434 {
1435 alloc_gdbarch_data (&startup_gdbarch);
1436 /* Ensure that all swap areas are zeroed so that they again think
1437 they are starting from scratch. */
1438 clear_gdbarch_swap (&startup_gdbarch);
1439 init_gdbarch_swap (&startup_gdbarch);
1440 }
1441 EOF
1442
1443 # Create a new gdbarch struct
1444 printf "\n"
1445 printf "\n"
1446 cat <<EOF
1447 /* Create a new \`\`struct gdbarch'' based on information provided by
1448 \`\`struct gdbarch_info''. */
1449 EOF
1450 printf "\n"
1451 cat <<EOF
1452 struct gdbarch *
1453 gdbarch_alloc (const struct gdbarch_info *info,
1454 struct gdbarch_tdep *tdep)
1455 {
1456 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1457 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1458 the current local architecture and not the previous global
1459 architecture. This ensures that the new architectures initial
1460 values are not influenced by the previous architecture. Once
1461 everything is parameterised with gdbarch, this will go away. */
1462 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1463 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1464
1465 alloc_gdbarch_data (current_gdbarch);
1466
1467 current_gdbarch->tdep = tdep;
1468 EOF
1469 printf "\n"
1470 function_list | while do_read
1471 do
1472 if class_is_info_p
1473 then
1474 printf " current_gdbarch->${function} = info->${function};\n"
1475 fi
1476 done
1477 printf "\n"
1478 printf " /* Force the explicit initialization of these. */\n"
1479 function_list | while do_read
1480 do
1481 if class_is_function_p || class_is_variable_p
1482 then
1483 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1484 then
1485 printf " current_gdbarch->${function} = ${predefault};\n"
1486 fi
1487 fi
1488 done
1489 cat <<EOF
1490 /* gdbarch_alloc() */
1491
1492 return current_gdbarch;
1493 }
1494 EOF
1495
1496 # Free a gdbarch struct.
1497 printf "\n"
1498 printf "\n"
1499 cat <<EOF
1500 /* Free a gdbarch struct. This should never happen in normal
1501 operation --- once you've created a gdbarch, you keep it around.
1502 However, if an architecture's init function encounters an error
1503 building the structure, it may need to clean up a partially
1504 constructed gdbarch. */
1505
1506 void
1507 gdbarch_free (struct gdbarch *arch)
1508 {
1509 gdb_assert (arch != NULL);
1510 free_gdbarch_data (arch);
1511 xfree (arch);
1512 }
1513 EOF
1514
1515 # verify a new architecture
1516 printf "\n"
1517 printf "\n"
1518 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1519 printf "\n"
1520 cat <<EOF
1521 static void
1522 verify_gdbarch (struct gdbarch *gdbarch)
1523 {
1524 struct ui_file *log;
1525 struct cleanup *cleanups;
1526 long dummy;
1527 char *buf;
1528 /* Only perform sanity checks on a multi-arch target. */
1529 if (!GDB_MULTI_ARCH)
1530 return;
1531 log = mem_fileopen ();
1532 cleanups = make_cleanup_ui_file_delete (log);
1533 /* fundamental */
1534 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1535 fprintf_unfiltered (log, "\n\tbyte-order");
1536 if (gdbarch->bfd_arch_info == NULL)
1537 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1538 /* Check those that need to be defined for the given multi-arch level. */
1539 EOF
1540 function_list | while do_read
1541 do
1542 if class_is_function_p || class_is_variable_p
1543 then
1544 if [ "x${invalid_p}" = "x0" ]
1545 then
1546 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1547 elif class_is_predicate_p
1548 then
1549 printf " /* Skip verify of ${function}, has predicate */\n"
1550 # FIXME: See do_read for potential simplification
1551 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1552 then
1553 printf " if (${invalid_p})\n"
1554 printf " gdbarch->${function} = ${postdefault};\n"
1555 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1556 then
1557 printf " if (gdbarch->${function} == ${predefault})\n"
1558 printf " gdbarch->${function} = ${postdefault};\n"
1559 elif [ -n "${postdefault}" ]
1560 then
1561 printf " if (gdbarch->${function} == 0)\n"
1562 printf " gdbarch->${function} = ${postdefault};\n"
1563 elif [ -n "${invalid_p}" ]
1564 then
1565 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1566 printf " && (${invalid_p}))\n"
1567 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1568 elif [ -n "${predefault}" ]
1569 then
1570 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1571 printf " && (gdbarch->${function} == ${predefault}))\n"
1572 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1573 fi
1574 fi
1575 done
1576 cat <<EOF
1577 buf = ui_file_xstrdup (log, &dummy);
1578 make_cleanup (xfree, buf);
1579 if (strlen (buf) > 0)
1580 internal_error (__FILE__, __LINE__,
1581 "verify_gdbarch: the following are invalid ...%s",
1582 buf);
1583 do_cleanups (cleanups);
1584 }
1585 EOF
1586
1587 # dump the structure
1588 printf "\n"
1589 printf "\n"
1590 cat <<EOF
1591 /* Print out the details of the current architecture. */
1592
1593 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1594 just happens to match the global variable \`\`current_gdbarch''. That
1595 way macros refering to that variable get the local and not the global
1596 version - ulgh. Once everything is parameterised with gdbarch, this
1597 will go away. */
1598
1599 void
1600 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1601 {
1602 fprintf_unfiltered (file,
1603 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1604 GDB_MULTI_ARCH);
1605 EOF
1606 function_list | sort -t: -k 3 | while do_read
1607 do
1608 # First the predicate
1609 if class_is_predicate_p
1610 then
1611 if class_is_multiarch_p
1612 then
1613 printf " if (GDB_MULTI_ARCH)\n"
1614 printf " fprintf_unfiltered (file,\n"
1615 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1616 printf " gdbarch_${function}_p (current_gdbarch));\n"
1617 else
1618 printf "#ifdef ${macro}_P\n"
1619 printf " fprintf_unfiltered (file,\n"
1620 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1621 printf " \"${macro}_P()\",\n"
1622 printf " XSTRING (${macro}_P ()));\n"
1623 printf " fprintf_unfiltered (file,\n"
1624 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1625 printf " ${macro}_P ());\n"
1626 printf "#endif\n"
1627 fi
1628 fi
1629 # multiarch functions don't have macros.
1630 if class_is_multiarch_p
1631 then
1632 printf " if (GDB_MULTI_ARCH)\n"
1633 printf " fprintf_unfiltered (file,\n"
1634 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1635 printf " (long) current_gdbarch->${function});\n"
1636 continue
1637 fi
1638 # Print the macro definition.
1639 printf "#ifdef ${macro}\n"
1640 if [ "x${returntype}" = "xvoid" ]
1641 then
1642 printf "#if GDB_MULTI_ARCH\n"
1643 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1644 fi
1645 if class_is_function_p
1646 then
1647 printf " fprintf_unfiltered (file,\n"
1648 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1649 printf " \"${macro}(${actual})\",\n"
1650 printf " XSTRING (${macro} (${actual})));\n"
1651 else
1652 printf " fprintf_unfiltered (file,\n"
1653 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1654 printf " XSTRING (${macro}));\n"
1655 fi
1656 # Print the architecture vector value
1657 if [ "x${returntype}" = "xvoid" ]
1658 then
1659 printf "#endif\n"
1660 fi
1661 if [ "x${print_p}" = "x()" ]
1662 then
1663 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1664 elif [ "x${print_p}" = "x0" ]
1665 then
1666 printf " /* skip print of ${macro}, print_p == 0. */\n"
1667 elif [ -n "${print_p}" ]
1668 then
1669 printf " if (${print_p})\n"
1670 printf " fprintf_unfiltered (file,\n"
1671 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1672 printf " ${print});\n"
1673 elif class_is_function_p
1674 then
1675 printf " if (GDB_MULTI_ARCH)\n"
1676 printf " fprintf_unfiltered (file,\n"
1677 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1678 printf " (long) current_gdbarch->${function}\n"
1679 printf " /*${macro} ()*/);\n"
1680 else
1681 printf " fprintf_unfiltered (file,\n"
1682 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1683 printf " ${print});\n"
1684 fi
1685 printf "#endif\n"
1686 done
1687 cat <<EOF
1688 if (current_gdbarch->dump_tdep != NULL)
1689 current_gdbarch->dump_tdep (current_gdbarch, file);
1690 }
1691 EOF
1692
1693
1694 # GET/SET
1695 printf "\n"
1696 cat <<EOF
1697 struct gdbarch_tdep *
1698 gdbarch_tdep (struct gdbarch *gdbarch)
1699 {
1700 if (gdbarch_debug >= 2)
1701 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1702 return gdbarch->tdep;
1703 }
1704 EOF
1705 printf "\n"
1706 function_list | while do_read
1707 do
1708 if class_is_predicate_p
1709 then
1710 printf "\n"
1711 printf "int\n"
1712 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1713 printf "{\n"
1714 printf " gdb_assert (gdbarch != NULL);\n"
1715 if [ -n "${predicate}" ]
1716 then
1717 printf " return ${predicate};\n"
1718 else
1719 printf " return gdbarch->${function} != 0;\n"
1720 fi
1721 printf "}\n"
1722 fi
1723 if class_is_function_p
1724 then
1725 printf "\n"
1726 printf "${returntype}\n"
1727 if [ "x${formal}" = "xvoid" ]
1728 then
1729 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1730 else
1731 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1732 fi
1733 printf "{\n"
1734 printf " gdb_assert (gdbarch != NULL);\n"
1735 printf " if (gdbarch->${function} == 0)\n"
1736 printf " internal_error (__FILE__, __LINE__,\n"
1737 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1738 if class_is_predicate_p && test -n "${predicate}"
1739 then
1740 # Allow a call to a function with a predicate.
1741 printf " /* Ignore predicate (${predicate}). */\n"
1742 fi
1743 printf " if (gdbarch_debug >= 2)\n"
1744 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1745 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1746 then
1747 if class_is_multiarch_p
1748 then
1749 params="gdbarch"
1750 else
1751 params=""
1752 fi
1753 else
1754 if class_is_multiarch_p
1755 then
1756 params="gdbarch, ${actual}"
1757 else
1758 params="${actual}"
1759 fi
1760 fi
1761 if [ "x${returntype}" = "xvoid" ]
1762 then
1763 printf " gdbarch->${function} (${params});\n"
1764 else
1765 printf " return gdbarch->${function} (${params});\n"
1766 fi
1767 printf "}\n"
1768 printf "\n"
1769 printf "void\n"
1770 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1771 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1772 printf "{\n"
1773 printf " gdbarch->${function} = ${function};\n"
1774 printf "}\n"
1775 elif class_is_variable_p
1776 then
1777 printf "\n"
1778 printf "${returntype}\n"
1779 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1780 printf "{\n"
1781 printf " gdb_assert (gdbarch != NULL);\n"
1782 if [ "x${invalid_p}" = "x0" ]
1783 then
1784 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1785 elif [ -n "${invalid_p}" ]
1786 then
1787 printf " if (${invalid_p})\n"
1788 printf " internal_error (__FILE__, __LINE__,\n"
1789 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1790 elif [ -n "${predefault}" ]
1791 then
1792 printf " if (gdbarch->${function} == ${predefault})\n"
1793 printf " internal_error (__FILE__, __LINE__,\n"
1794 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1795 fi
1796 printf " if (gdbarch_debug >= 2)\n"
1797 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1798 printf " return gdbarch->${function};\n"
1799 printf "}\n"
1800 printf "\n"
1801 printf "void\n"
1802 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1803 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1804 printf "{\n"
1805 printf " gdbarch->${function} = ${function};\n"
1806 printf "}\n"
1807 elif class_is_info_p
1808 then
1809 printf "\n"
1810 printf "${returntype}\n"
1811 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1812 printf "{\n"
1813 printf " gdb_assert (gdbarch != NULL);\n"
1814 printf " if (gdbarch_debug >= 2)\n"
1815 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1816 printf " return gdbarch->${function};\n"
1817 printf "}\n"
1818 fi
1819 done
1820
1821 # All the trailing guff
1822 cat <<EOF
1823
1824
1825 /* Keep a registry of per-architecture data-pointers required by GDB
1826 modules. */
1827
1828 struct gdbarch_data
1829 {
1830 unsigned index;
1831 int init_p;
1832 gdbarch_data_init_ftype *init;
1833 gdbarch_data_free_ftype *free;
1834 };
1835
1836 struct gdbarch_data_registration
1837 {
1838 struct gdbarch_data *data;
1839 struct gdbarch_data_registration *next;
1840 };
1841
1842 struct gdbarch_data_registry
1843 {
1844 unsigned nr;
1845 struct gdbarch_data_registration *registrations;
1846 };
1847
1848 struct gdbarch_data_registry gdbarch_data_registry =
1849 {
1850 0, NULL,
1851 };
1852
1853 struct gdbarch_data *
1854 register_gdbarch_data (gdbarch_data_init_ftype *init,
1855 gdbarch_data_free_ftype *free)
1856 {
1857 struct gdbarch_data_registration **curr;
1858 /* Append the new registraration. */
1859 for (curr = &gdbarch_data_registry.registrations;
1860 (*curr) != NULL;
1861 curr = &(*curr)->next);
1862 (*curr) = XMALLOC (struct gdbarch_data_registration);
1863 (*curr)->next = NULL;
1864 (*curr)->data = XMALLOC (struct gdbarch_data);
1865 (*curr)->data->index = gdbarch_data_registry.nr++;
1866 (*curr)->data->init = init;
1867 (*curr)->data->init_p = 1;
1868 (*curr)->data->free = free;
1869 return (*curr)->data;
1870 }
1871
1872
1873 /* Create/delete the gdbarch data vector. */
1874
1875 static void
1876 alloc_gdbarch_data (struct gdbarch *gdbarch)
1877 {
1878 gdb_assert (gdbarch->data == NULL);
1879 gdbarch->nr_data = gdbarch_data_registry.nr;
1880 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1881 }
1882
1883 static void
1884 free_gdbarch_data (struct gdbarch *gdbarch)
1885 {
1886 struct gdbarch_data_registration *rego;
1887 gdb_assert (gdbarch->data != NULL);
1888 for (rego = gdbarch_data_registry.registrations;
1889 rego != NULL;
1890 rego = rego->next)
1891 {
1892 struct gdbarch_data *data = rego->data;
1893 gdb_assert (data->index < gdbarch->nr_data);
1894 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1895 {
1896 data->free (gdbarch, gdbarch->data[data->index]);
1897 gdbarch->data[data->index] = NULL;
1898 }
1899 }
1900 xfree (gdbarch->data);
1901 gdbarch->data = NULL;
1902 }
1903
1904
1905 /* Initialize the current value of the specified per-architecture
1906 data-pointer. */
1907
1908 void
1909 set_gdbarch_data (struct gdbarch *gdbarch,
1910 struct gdbarch_data *data,
1911 void *pointer)
1912 {
1913 gdb_assert (data->index < gdbarch->nr_data);
1914 if (gdbarch->data[data->index] != NULL)
1915 {
1916 gdb_assert (data->free != NULL);
1917 data->free (gdbarch, gdbarch->data[data->index]);
1918 }
1919 gdbarch->data[data->index] = pointer;
1920 }
1921
1922 /* Return the current value of the specified per-architecture
1923 data-pointer. */
1924
1925 void *
1926 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1927 {
1928 gdb_assert (data->index < gdbarch->nr_data);
1929 /* The data-pointer isn't initialized, call init() to get a value but
1930 only if the architecture initializaiton has completed. Otherwise
1931 punt - hope that the caller knows what they are doing. */
1932 if (gdbarch->data[data->index] == NULL
1933 && gdbarch->initialized_p)
1934 {
1935 /* Be careful to detect an initialization cycle. */
1936 gdb_assert (data->init_p);
1937 data->init_p = 0;
1938 gdb_assert (data->init != NULL);
1939 gdbarch->data[data->index] = data->init (gdbarch);
1940 data->init_p = 1;
1941 gdb_assert (gdbarch->data[data->index] != NULL);
1942 }
1943 return gdbarch->data[data->index];
1944 }
1945
1946
1947
1948 /* Keep a registry of swapped data required by GDB modules. */
1949
1950 struct gdbarch_swap
1951 {
1952 void *swap;
1953 struct gdbarch_swap_registration *source;
1954 struct gdbarch_swap *next;
1955 };
1956
1957 struct gdbarch_swap_registration
1958 {
1959 void *data;
1960 unsigned long sizeof_data;
1961 gdbarch_swap_ftype *init;
1962 struct gdbarch_swap_registration *next;
1963 };
1964
1965 struct gdbarch_swap_registry
1966 {
1967 int nr;
1968 struct gdbarch_swap_registration *registrations;
1969 };
1970
1971 struct gdbarch_swap_registry gdbarch_swap_registry =
1972 {
1973 0, NULL,
1974 };
1975
1976 void
1977 register_gdbarch_swap (void *data,
1978 unsigned long sizeof_data,
1979 gdbarch_swap_ftype *init)
1980 {
1981 struct gdbarch_swap_registration **rego;
1982 for (rego = &gdbarch_swap_registry.registrations;
1983 (*rego) != NULL;
1984 rego = &(*rego)->next);
1985 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1986 (*rego)->next = NULL;
1987 (*rego)->init = init;
1988 (*rego)->data = data;
1989 (*rego)->sizeof_data = sizeof_data;
1990 }
1991
1992 static void
1993 clear_gdbarch_swap (struct gdbarch *gdbarch)
1994 {
1995 struct gdbarch_swap *curr;
1996 for (curr = gdbarch->swap;
1997 curr != NULL;
1998 curr = curr->next)
1999 {
2000 memset (curr->source->data, 0, curr->source->sizeof_data);
2001 }
2002 }
2003
2004 static void
2005 init_gdbarch_swap (struct gdbarch *gdbarch)
2006 {
2007 struct gdbarch_swap_registration *rego;
2008 struct gdbarch_swap **curr = &gdbarch->swap;
2009 for (rego = gdbarch_swap_registry.registrations;
2010 rego != NULL;
2011 rego = rego->next)
2012 {
2013 if (rego->data != NULL)
2014 {
2015 (*curr) = XMALLOC (struct gdbarch_swap);
2016 (*curr)->source = rego;
2017 (*curr)->swap = xmalloc (rego->sizeof_data);
2018 (*curr)->next = NULL;
2019 curr = &(*curr)->next;
2020 }
2021 if (rego->init != NULL)
2022 rego->init ();
2023 }
2024 }
2025
2026 static void
2027 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2028 {
2029 struct gdbarch_swap *curr;
2030 for (curr = gdbarch->swap;
2031 curr != NULL;
2032 curr = curr->next)
2033 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2034 }
2035
2036 static void
2037 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2038 {
2039 struct gdbarch_swap *curr;
2040 for (curr = gdbarch->swap;
2041 curr != NULL;
2042 curr = curr->next)
2043 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2044 }
2045
2046
2047 /* Keep a registry of the architectures known by GDB. */
2048
2049 struct gdbarch_registration
2050 {
2051 enum bfd_architecture bfd_architecture;
2052 gdbarch_init_ftype *init;
2053 gdbarch_dump_tdep_ftype *dump_tdep;
2054 struct gdbarch_list *arches;
2055 struct gdbarch_registration *next;
2056 };
2057
2058 static struct gdbarch_registration *gdbarch_registry = NULL;
2059
2060 static void
2061 append_name (const char ***buf, int *nr, const char *name)
2062 {
2063 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2064 (*buf)[*nr] = name;
2065 *nr += 1;
2066 }
2067
2068 const char **
2069 gdbarch_printable_names (void)
2070 {
2071 if (GDB_MULTI_ARCH)
2072 {
2073 /* Accumulate a list of names based on the registed list of
2074 architectures. */
2075 enum bfd_architecture a;
2076 int nr_arches = 0;
2077 const char **arches = NULL;
2078 struct gdbarch_registration *rego;
2079 for (rego = gdbarch_registry;
2080 rego != NULL;
2081 rego = rego->next)
2082 {
2083 const struct bfd_arch_info *ap;
2084 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2085 if (ap == NULL)
2086 internal_error (__FILE__, __LINE__,
2087 "gdbarch_architecture_names: multi-arch unknown");
2088 do
2089 {
2090 append_name (&arches, &nr_arches, ap->printable_name);
2091 ap = ap->next;
2092 }
2093 while (ap != NULL);
2094 }
2095 append_name (&arches, &nr_arches, NULL);
2096 return arches;
2097 }
2098 else
2099 /* Just return all the architectures that BFD knows. Assume that
2100 the legacy architecture framework supports them. */
2101 return bfd_arch_list ();
2102 }
2103
2104
2105 void
2106 gdbarch_register (enum bfd_architecture bfd_architecture,
2107 gdbarch_init_ftype *init,
2108 gdbarch_dump_tdep_ftype *dump_tdep)
2109 {
2110 struct gdbarch_registration **curr;
2111 const struct bfd_arch_info *bfd_arch_info;
2112 /* Check that BFD recognizes this architecture */
2113 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2114 if (bfd_arch_info == NULL)
2115 {
2116 internal_error (__FILE__, __LINE__,
2117 "gdbarch: Attempt to register unknown architecture (%d)",
2118 bfd_architecture);
2119 }
2120 /* Check that we haven't seen this architecture before */
2121 for (curr = &gdbarch_registry;
2122 (*curr) != NULL;
2123 curr = &(*curr)->next)
2124 {
2125 if (bfd_architecture == (*curr)->bfd_architecture)
2126 internal_error (__FILE__, __LINE__,
2127 "gdbarch: Duplicate registraration of architecture (%s)",
2128 bfd_arch_info->printable_name);
2129 }
2130 /* log it */
2131 if (gdbarch_debug)
2132 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2133 bfd_arch_info->printable_name,
2134 (long) init);
2135 /* Append it */
2136 (*curr) = XMALLOC (struct gdbarch_registration);
2137 (*curr)->bfd_architecture = bfd_architecture;
2138 (*curr)->init = init;
2139 (*curr)->dump_tdep = dump_tdep;
2140 (*curr)->arches = NULL;
2141 (*curr)->next = NULL;
2142 /* When non- multi-arch, install whatever target dump routine we've
2143 been provided - hopefully that routine has been written correctly
2144 and works regardless of multi-arch. */
2145 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2146 && startup_gdbarch.dump_tdep == NULL)
2147 startup_gdbarch.dump_tdep = dump_tdep;
2148 }
2149
2150 void
2151 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2152 gdbarch_init_ftype *init)
2153 {
2154 gdbarch_register (bfd_architecture, init, NULL);
2155 }
2156
2157
2158 /* Look for an architecture using gdbarch_info. Base search on only
2159 BFD_ARCH_INFO and BYTE_ORDER. */
2160
2161 struct gdbarch_list *
2162 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2163 const struct gdbarch_info *info)
2164 {
2165 for (; arches != NULL; arches = arches->next)
2166 {
2167 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2168 continue;
2169 if (info->byte_order != arches->gdbarch->byte_order)
2170 continue;
2171 if (info->osabi != arches->gdbarch->osabi)
2172 continue;
2173 return arches;
2174 }
2175 return NULL;
2176 }
2177
2178
2179 /* Update the current architecture. Return ZERO if the update request
2180 failed. */
2181
2182 int
2183 gdbarch_update_p (struct gdbarch_info info)
2184 {
2185 struct gdbarch *new_gdbarch;
2186 struct gdbarch *old_gdbarch;
2187 struct gdbarch_registration *rego;
2188
2189 /* Fill in missing parts of the INFO struct using a number of
2190 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2191
2192 /* \`\`(gdb) set architecture ...'' */
2193 if (info.bfd_arch_info == NULL
2194 && !TARGET_ARCHITECTURE_AUTO)
2195 info.bfd_arch_info = TARGET_ARCHITECTURE;
2196 if (info.bfd_arch_info == NULL
2197 && info.abfd != NULL
2198 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2199 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2200 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2201 if (info.bfd_arch_info == NULL)
2202 info.bfd_arch_info = TARGET_ARCHITECTURE;
2203
2204 /* \`\`(gdb) set byte-order ...'' */
2205 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2206 && !TARGET_BYTE_ORDER_AUTO)
2207 info.byte_order = TARGET_BYTE_ORDER;
2208 /* From the INFO struct. */
2209 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2210 && info.abfd != NULL)
2211 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2212 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2213 : BFD_ENDIAN_UNKNOWN);
2214 /* From the current target. */
2215 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2216 info.byte_order = TARGET_BYTE_ORDER;
2217
2218 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2219 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2220 info.osabi = gdbarch_lookup_osabi (info.abfd);
2221 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2222 info.osabi = current_gdbarch->osabi;
2223
2224 /* Must have found some sort of architecture. */
2225 gdb_assert (info.bfd_arch_info != NULL);
2226
2227 if (gdbarch_debug)
2228 {
2229 fprintf_unfiltered (gdb_stdlog,
2230 "gdbarch_update: info.bfd_arch_info %s\n",
2231 (info.bfd_arch_info != NULL
2232 ? info.bfd_arch_info->printable_name
2233 : "(null)"));
2234 fprintf_unfiltered (gdb_stdlog,
2235 "gdbarch_update: info.byte_order %d (%s)\n",
2236 info.byte_order,
2237 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2238 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2239 : "default"));
2240 fprintf_unfiltered (gdb_stdlog,
2241 "gdbarch_update: info.osabi %d (%s)\n",
2242 info.osabi, gdbarch_osabi_name (info.osabi));
2243 fprintf_unfiltered (gdb_stdlog,
2244 "gdbarch_update: info.abfd 0x%lx\n",
2245 (long) info.abfd);
2246 fprintf_unfiltered (gdb_stdlog,
2247 "gdbarch_update: info.tdep_info 0x%lx\n",
2248 (long) info.tdep_info);
2249 }
2250
2251 /* Find the target that knows about this architecture. */
2252 for (rego = gdbarch_registry;
2253 rego != NULL;
2254 rego = rego->next)
2255 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2256 break;
2257 if (rego == NULL)
2258 {
2259 if (gdbarch_debug)
2260 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2261 return 0;
2262 }
2263
2264 /* Swap the data belonging to the old target out setting the
2265 installed data to zero. This stops the ->init() function trying
2266 to refer to the previous architecture's global data structures. */
2267 swapout_gdbarch_swap (current_gdbarch);
2268 clear_gdbarch_swap (current_gdbarch);
2269
2270 /* Save the previously selected architecture, setting the global to
2271 NULL. This stops ->init() trying to use the previous
2272 architecture's configuration. The previous architecture may not
2273 even be of the same architecture family. The most recent
2274 architecture of the same family is found at the head of the
2275 rego->arches list. */
2276 old_gdbarch = current_gdbarch;
2277 current_gdbarch = NULL;
2278
2279 /* Ask the target for a replacement architecture. */
2280 new_gdbarch = rego->init (info, rego->arches);
2281
2282 /* Did the target like it? No. Reject the change and revert to the
2283 old architecture. */
2284 if (new_gdbarch == NULL)
2285 {
2286 if (gdbarch_debug)
2287 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2288 swapin_gdbarch_swap (old_gdbarch);
2289 current_gdbarch = old_gdbarch;
2290 return 0;
2291 }
2292
2293 /* Did the architecture change? No. Oops, put the old architecture
2294 back. */
2295 if (old_gdbarch == new_gdbarch)
2296 {
2297 if (gdbarch_debug)
2298 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2299 (long) new_gdbarch,
2300 new_gdbarch->bfd_arch_info->printable_name);
2301 swapin_gdbarch_swap (old_gdbarch);
2302 current_gdbarch = old_gdbarch;
2303 return 1;
2304 }
2305
2306 /* Is this a pre-existing architecture? Yes. Move it to the front
2307 of the list of architectures (keeping the list sorted Most
2308 Recently Used) and then copy it in. */
2309 {
2310 struct gdbarch_list **list;
2311 for (list = &rego->arches;
2312 (*list) != NULL;
2313 list = &(*list)->next)
2314 {
2315 if ((*list)->gdbarch == new_gdbarch)
2316 {
2317 struct gdbarch_list *this;
2318 if (gdbarch_debug)
2319 fprintf_unfiltered (gdb_stdlog,
2320 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2321 (long) new_gdbarch,
2322 new_gdbarch->bfd_arch_info->printable_name);
2323 /* Unlink this. */
2324 this = (*list);
2325 (*list) = this->next;
2326 /* Insert in the front. */
2327 this->next = rego->arches;
2328 rego->arches = this;
2329 /* Copy the new architecture in. */
2330 current_gdbarch = new_gdbarch;
2331 swapin_gdbarch_swap (new_gdbarch);
2332 architecture_changed_event ();
2333 return 1;
2334 }
2335 }
2336 }
2337
2338 /* Prepend this new architecture to the architecture list (keep the
2339 list sorted Most Recently Used). */
2340 {
2341 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2342 this->next = rego->arches;
2343 this->gdbarch = new_gdbarch;
2344 rego->arches = this;
2345 }
2346
2347 /* Switch to this new architecture marking it initialized. */
2348 current_gdbarch = new_gdbarch;
2349 current_gdbarch->initialized_p = 1;
2350 if (gdbarch_debug)
2351 {
2352 fprintf_unfiltered (gdb_stdlog,
2353 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2354 (long) new_gdbarch,
2355 new_gdbarch->bfd_arch_info->printable_name);
2356 }
2357
2358 /* Check that the newly installed architecture is valid. Plug in
2359 any post init values. */
2360 new_gdbarch->dump_tdep = rego->dump_tdep;
2361 verify_gdbarch (new_gdbarch);
2362
2363 /* Initialize the per-architecture memory (swap) areas.
2364 CURRENT_GDBARCH must be update before these modules are
2365 called. */
2366 init_gdbarch_swap (new_gdbarch);
2367
2368 /* Initialize the per-architecture data. CURRENT_GDBARCH
2369 must be updated before these modules are called. */
2370 architecture_changed_event ();
2371
2372 if (gdbarch_debug)
2373 gdbarch_dump (current_gdbarch, gdb_stdlog);
2374
2375 return 1;
2376 }
2377
2378
2379 /* Disassembler */
2380
2381 /* Pointer to the target-dependent disassembly function. */
2382 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2383
2384 extern void _initialize_gdbarch (void);
2385
2386 void
2387 _initialize_gdbarch (void)
2388 {
2389 struct cmd_list_element *c;
2390
2391 add_show_from_set (add_set_cmd ("arch",
2392 class_maintenance,
2393 var_zinteger,
2394 (char *)&gdbarch_debug,
2395 "Set architecture debugging.\\n\\
2396 When non-zero, architecture debugging is enabled.", &setdebuglist),
2397 &showdebuglist);
2398 c = add_set_cmd ("archdebug",
2399 class_maintenance,
2400 var_zinteger,
2401 (char *)&gdbarch_debug,
2402 "Set architecture debugging.\\n\\
2403 When non-zero, architecture debugging is enabled.", &setlist);
2404
2405 deprecate_cmd (c, "set debug arch");
2406 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2407 }
2408 EOF
2409
2410 # close things off
2411 exec 1>&2
2412 #../move-if-change new-gdbarch.c gdbarch.c
2413 compare_new gdbarch.c
This page took 0.099968 seconds and 5 git commands to generate.