* gdbarch.sh: Delete dwarf_reg_to_regnum.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364
365 # The ABI default bit-size and format for "float", "double", and "long
366 # double". These bit/format pairs should eventually be combined into
367 # a single object. For the moment, just initialize them as a pair.
368 # Each format describes both the big and little endian layouts (if
369 # useful).
370
371 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
372 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
373 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
374 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
375 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
376 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
377
378 # For most targets, a pointer on the target and its representation as an
379 # address in GDB have the same size and "look the same". For such a
380 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
381 # / addr_bit will be set from it.
382 #
383 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
384 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
385 # as well.
386 #
387 # ptr_bit is the size of a pointer on the target
388 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
389 # addr_bit is the size of a target address as represented in gdb
390 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
391 #
392 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
393 v:int:char_signed:::1:-1:1
394 #
395 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
396 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
397 # Function for getting target's idea of a frame pointer. FIXME: GDB's
398 # whole scheme for dealing with "frames" and "frame pointers" needs a
399 # serious shakedown.
400 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
401 #
402 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
403 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
404 #
405 v:int:num_regs:::0:-1
406 # This macro gives the number of pseudo-registers that live in the
407 # register namespace but do not get fetched or stored on the target.
408 # These pseudo-registers may be aliases for other registers,
409 # combinations of other registers, or they may be computed by GDB.
410 v:int:num_pseudo_regs:::0:0::0
411
412 # GDB's standard (or well known) register numbers. These can map onto
413 # a real register or a pseudo (computed) register or not be defined at
414 # all (-1).
415 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
416 v:int:sp_regnum:::-1:-1::0
417 v:int:pc_regnum:::-1:-1::0
418 v:int:ps_regnum:::-1:-1::0
419 v:int:fp0_regnum:::0:-1::0
420 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
421 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
422 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
423 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
424 # Convert from an sdb register number to an internal gdb register number.
425 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
426 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
427 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
428 m:const char *:register_name:int regnr:regnr::0
429
430 # Return the type of a register specified by the architecture. Only
431 # the register cache should call this function directly; others should
432 # use "register_type".
433 M:struct type *:register_type:int reg_nr:reg_nr
434
435 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
436 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
437 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
438 # deprecated_fp_regnum.
439 v:int:deprecated_fp_regnum:::-1:-1::0
440
441 # See gdbint.texinfo. See infcall.c.
442 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
443 v:int:call_dummy_location::::AT_ENTRY_POINT::0
444 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
445
446 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
447 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
448 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 # MAP a GDB RAW register number onto a simulator register number. See
450 # also include/...-sim.h.
451 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
452 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
453 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
454 # setjmp/longjmp support.
455 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
456 #
457 v:int:believe_pcc_promotion:::::::
458 #
459 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
460 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
461 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
462 # Construct a value representing the contents of register REGNUM in
463 # frame FRAME, interpreted as type TYPE. The routine needs to
464 # allocate and return a struct value with all value attributes
465 # (but not the value contents) filled in.
466 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
467 #
468 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
469 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
470 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
471
472 # Return the return-value convention that will be used by FUNCTYPE
473 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
474 # case the return convention is computed based only on VALTYPE.
475 #
476 # If READBUF is not NULL, extract the return value and save it in this buffer.
477 #
478 # If WRITEBUF is not NULL, it contains a return value which will be
479 # stored into the appropriate register. This can be used when we want
480 # to force the value returned by a function (see the "return" command
481 # for instance).
482 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
483
484 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
485 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
486 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
487 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
488 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
489 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
490 v:CORE_ADDR:decr_pc_after_break:::0:::0
491
492 # A function can be addressed by either it's "pointer" (possibly a
493 # descriptor address) or "entry point" (first executable instruction).
494 # The method "convert_from_func_ptr_addr" converting the former to the
495 # latter. gdbarch_deprecated_function_start_offset is being used to implement
496 # a simplified subset of that functionality - the function's address
497 # corresponds to the "function pointer" and the function's start
498 # corresponds to the "function entry point" - and hence is redundant.
499
500 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
501
502 # Return the remote protocol register number associated with this
503 # register. Normally the identity mapping.
504 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
505
506 # Fetch the target specific address used to represent a load module.
507 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
508 #
509 v:CORE_ADDR:frame_args_skip:::0:::0
510 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
511 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
512 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
513 # frame-base. Enable frame-base before frame-unwind.
514 F:int:frame_num_args:struct frame_info *frame:frame
515 #
516 M:CORE_ADDR:frame_align:CORE_ADDR address:address
517 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
518 v:int:frame_red_zone_size
519 #
520 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
521 # On some machines there are bits in addresses which are not really
522 # part of the address, but are used by the kernel, the hardware, etc.
523 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
524 # we get a "real" address such as one would find in a symbol table.
525 # This is used only for addresses of instructions, and even then I'm
526 # not sure it's used in all contexts. It exists to deal with there
527 # being a few stray bits in the PC which would mislead us, not as some
528 # sort of generic thing to handle alignment or segmentation (it's
529 # possible it should be in TARGET_READ_PC instead).
530 f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
531 # It is not at all clear why gdbarch_smash_text_address is not folded into
532 # gdbarch_addr_bits_remove.
533 f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
534
535 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
536 # indicates if the target needs software single step. An ISA method to
537 # implement it.
538 #
539 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
540 # breakpoints using the breakpoint system instead of blatting memory directly
541 # (as with rs6000).
542 #
543 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
544 # target can single step. If not, then implement single step using breakpoints.
545 #
546 # A return value of 1 means that the software_single_step breakpoints
547 # were inserted; 0 means they were not.
548 F:int:software_single_step:struct frame_info *frame:frame
549
550 # Return non-zero if the processor is executing a delay slot and a
551 # further single-step is needed before the instruction finishes.
552 M:int:single_step_through_delay:struct frame_info *frame:frame
553 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
554 # disassembler. Perhaps objdump can handle it?
555 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
556 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
557
558
559 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
560 # evaluates non-zero, this is the address where the debugger will place
561 # a step-resume breakpoint to get us past the dynamic linker.
562 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
563 # Some systems also have trampoline code for returning from shared libs.
564 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
565
566 # A target might have problems with watchpoints as soon as the stack
567 # frame of the current function has been destroyed. This mostly happens
568 # as the first action in a funtion's epilogue. in_function_epilogue_p()
569 # is defined to return a non-zero value if either the given addr is one
570 # instruction after the stack destroying instruction up to the trailing
571 # return instruction or if we can figure out that the stack frame has
572 # already been invalidated regardless of the value of addr. Targets
573 # which don't suffer from that problem could just let this functionality
574 # untouched.
575 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
576 # Given a vector of command-line arguments, return a newly allocated
577 # string which, when passed to the create_inferior function, will be
578 # parsed (on Unix systems, by the shell) to yield the same vector.
579 # This function should call error() if the argument vector is not
580 # representable for this target or if this target does not support
581 # command-line arguments.
582 # ARGC is the number of elements in the vector.
583 # ARGV is an array of strings, one per argument.
584 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
585 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
586 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
587 v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
588 v:int:cannot_step_breakpoint:::0:0::0
589 v:int:have_nonsteppable_watchpoint:::0:0::0
590 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
591 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
592 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
593 # Is a register in a group
594 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
595 # Fetch the pointer to the ith function argument.
596 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
597
598 # Return the appropriate register set for a core file section with
599 # name SECT_NAME and size SECT_SIZE.
600 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
601
602 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
603 # core file into buffer READBUF with length LEN.
604 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
605
606 # If the elements of C++ vtables are in-place function descriptors rather
607 # than normal function pointers (which may point to code or a descriptor),
608 # set this to one.
609 v:int:vtable_function_descriptors:::0:0::0
610
611 # Set if the least significant bit of the delta is used instead of the least
612 # significant bit of the pfn for pointers to virtual member functions.
613 v:int:vbit_in_delta:::0:0::0
614
615 # Advance PC to next instruction in order to skip a permanent breakpoint.
616 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
617
618 # The maximum length of an instruction on this architecture.
619 V:ULONGEST:max_insn_length:::0:0
620
621 # Copy the instruction at FROM to TO, and make any adjustments
622 # necessary to single-step it at that address.
623 #
624 # REGS holds the state the thread's registers will have before
625 # executing the copied instruction; the PC in REGS will refer to FROM,
626 # not the copy at TO. The caller should update it to point at TO later.
627 #
628 # Return a pointer to data of the architecture's choice to be passed
629 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
630 # the instruction's effects have been completely simulated, with the
631 # resulting state written back to REGS.
632 #
633 # For a general explanation of displaced stepping and how GDB uses it,
634 # see the comments in infrun.c.
635 #
636 # The TO area is only guaranteed to have space for
637 # gdbarch_max_insn_length (arch) bytes, so this function must not
638 # write more bytes than that to that area.
639 #
640 # If you do not provide this function, GDB assumes that the
641 # architecture does not support displaced stepping.
642 #
643 # If your architecture doesn't need to adjust instructions before
644 # single-stepping them, consider using simple_displaced_step_copy_insn
645 # here.
646 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
647
648 # Fix up the state resulting from successfully single-stepping a
649 # displaced instruction, to give the result we would have gotten from
650 # stepping the instruction in its original location.
651 #
652 # REGS is the register state resulting from single-stepping the
653 # displaced instruction.
654 #
655 # CLOSURE is the result from the matching call to
656 # gdbarch_displaced_step_copy_insn.
657 #
658 # If you provide gdbarch_displaced_step_copy_insn.but not this
659 # function, then GDB assumes that no fixup is needed after
660 # single-stepping the instruction.
661 #
662 # For a general explanation of displaced stepping and how GDB uses it,
663 # see the comments in infrun.c.
664 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
665
666 # Free a closure returned by gdbarch_displaced_step_copy_insn.
667 #
668 # If you provide gdbarch_displaced_step_copy_insn, you must provide
669 # this function as well.
670 #
671 # If your architecture uses closures that don't need to be freed, then
672 # you can use simple_displaced_step_free_closure here.
673 #
674 # For a general explanation of displaced stepping and how GDB uses it,
675 # see the comments in infrun.c.
676 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
677
678 # Return the address of an appropriate place to put displaced
679 # instructions while we step over them. There need only be one such
680 # place, since we're only stepping one thread over a breakpoint at a
681 # time.
682 #
683 # For a general explanation of displaced stepping and how GDB uses it,
684 # see the comments in infrun.c.
685 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
686
687 # Refresh overlay mapped state for section OSECT.
688 F:void:overlay_update:struct obj_section *osect:osect
689
690 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
691
692 # Handle special encoding of static variables in stabs debug info.
693 F:char *:static_transform_name:char *name:name
694 # Set if the address in N_SO or N_FUN stabs may be zero.
695 v:int:sofun_address_maybe_missing:::0:0::0
696
697 # Signal translation: translate inferior's signal (host's) number into
698 # GDB's representation.
699 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
700 # Signal translation: translate GDB's signal number into inferior's host
701 # signal number.
702 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
703
704 # Record architecture-specific information from the symbol table.
705 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
706 EOF
707 }
708
709 #
710 # The .log file
711 #
712 exec > new-gdbarch.log
713 function_list | while do_read
714 do
715 cat <<EOF
716 ${class} ${returntype} ${function} ($formal)
717 EOF
718 for r in ${read}
719 do
720 eval echo \"\ \ \ \ ${r}=\${${r}}\"
721 done
722 if class_is_predicate_p && fallback_default_p
723 then
724 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
725 kill $$
726 exit 1
727 fi
728 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
729 then
730 echo "Error: postdefault is useless when invalid_p=0" 1>&2
731 kill $$
732 exit 1
733 fi
734 if class_is_multiarch_p
735 then
736 if class_is_predicate_p ; then :
737 elif test "x${predefault}" = "x"
738 then
739 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
740 kill $$
741 exit 1
742 fi
743 fi
744 echo ""
745 done
746
747 exec 1>&2
748 compare_new gdbarch.log
749
750
751 copyright ()
752 {
753 cat <<EOF
754 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
755
756 /* Dynamic architecture support for GDB, the GNU debugger.
757
758 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
759 Free Software Foundation, Inc.
760
761 This file is part of GDB.
762
763 This program is free software; you can redistribute it and/or modify
764 it under the terms of the GNU General Public License as published by
765 the Free Software Foundation; either version 3 of the License, or
766 (at your option) any later version.
767
768 This program is distributed in the hope that it will be useful,
769 but WITHOUT ANY WARRANTY; without even the implied warranty of
770 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
771 GNU General Public License for more details.
772
773 You should have received a copy of the GNU General Public License
774 along with this program. If not, see <http://www.gnu.org/licenses/>. */
775
776 /* This file was created with the aid of \`\`gdbarch.sh''.
777
778 The Bourne shell script \`\`gdbarch.sh'' creates the files
779 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
780 against the existing \`\`gdbarch.[hc]''. Any differences found
781 being reported.
782
783 If editing this file, please also run gdbarch.sh and merge any
784 changes into that script. Conversely, when making sweeping changes
785 to this file, modifying gdbarch.sh and using its output may prove
786 easier. */
787
788 EOF
789 }
790
791 #
792 # The .h file
793 #
794
795 exec > new-gdbarch.h
796 copyright
797 cat <<EOF
798 #ifndef GDBARCH_H
799 #define GDBARCH_H
800
801 struct floatformat;
802 struct ui_file;
803 struct frame_info;
804 struct value;
805 struct objfile;
806 struct obj_section;
807 struct minimal_symbol;
808 struct regcache;
809 struct reggroup;
810 struct regset;
811 struct disassemble_info;
812 struct target_ops;
813 struct obstack;
814 struct bp_target_info;
815 struct target_desc;
816 struct displaced_step_closure;
817
818 extern struct gdbarch *current_gdbarch;
819 EOF
820
821 # function typedef's
822 printf "\n"
823 printf "\n"
824 printf "/* The following are pre-initialized by GDBARCH. */\n"
825 function_list | while do_read
826 do
827 if class_is_info_p
828 then
829 printf "\n"
830 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
831 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
832 fi
833 done
834
835 # function typedef's
836 printf "\n"
837 printf "\n"
838 printf "/* The following are initialized by the target dependent code. */\n"
839 function_list | while do_read
840 do
841 if [ -n "${comment}" ]
842 then
843 echo "${comment}" | sed \
844 -e '2 s,#,/*,' \
845 -e '3,$ s,#, ,' \
846 -e '$ s,$, */,'
847 fi
848
849 if class_is_predicate_p
850 then
851 printf "\n"
852 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
853 fi
854 if class_is_variable_p
855 then
856 printf "\n"
857 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
858 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
859 fi
860 if class_is_function_p
861 then
862 printf "\n"
863 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
864 then
865 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
866 elif class_is_multiarch_p
867 then
868 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
869 else
870 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
871 fi
872 if [ "x${formal}" = "xvoid" ]
873 then
874 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
875 else
876 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
877 fi
878 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
879 fi
880 done
881
882 # close it off
883 cat <<EOF
884
885 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
886
887
888 /* Mechanism for co-ordinating the selection of a specific
889 architecture.
890
891 GDB targets (*-tdep.c) can register an interest in a specific
892 architecture. Other GDB components can register a need to maintain
893 per-architecture data.
894
895 The mechanisms below ensures that there is only a loose connection
896 between the set-architecture command and the various GDB
897 components. Each component can independently register their need
898 to maintain architecture specific data with gdbarch.
899
900 Pragmatics:
901
902 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
903 didn't scale.
904
905 The more traditional mega-struct containing architecture specific
906 data for all the various GDB components was also considered. Since
907 GDB is built from a variable number of (fairly independent)
908 components it was determined that the global aproach was not
909 applicable. */
910
911
912 /* Register a new architectural family with GDB.
913
914 Register support for the specified ARCHITECTURE with GDB. When
915 gdbarch determines that the specified architecture has been
916 selected, the corresponding INIT function is called.
917
918 --
919
920 The INIT function takes two parameters: INFO which contains the
921 information available to gdbarch about the (possibly new)
922 architecture; ARCHES which is a list of the previously created
923 \`\`struct gdbarch'' for this architecture.
924
925 The INFO parameter is, as far as possible, be pre-initialized with
926 information obtained from INFO.ABFD or the global defaults.
927
928 The ARCHES parameter is a linked list (sorted most recently used)
929 of all the previously created architures for this architecture
930 family. The (possibly NULL) ARCHES->gdbarch can used to access
931 values from the previously selected architecture for this
932 architecture family. The global \`\`current_gdbarch'' shall not be
933 used.
934
935 The INIT function shall return any of: NULL - indicating that it
936 doesn't recognize the selected architecture; an existing \`\`struct
937 gdbarch'' from the ARCHES list - indicating that the new
938 architecture is just a synonym for an earlier architecture (see
939 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
940 - that describes the selected architecture (see gdbarch_alloc()).
941
942 The DUMP_TDEP function shall print out all target specific values.
943 Care should be taken to ensure that the function works in both the
944 multi-arch and non- multi-arch cases. */
945
946 struct gdbarch_list
947 {
948 struct gdbarch *gdbarch;
949 struct gdbarch_list *next;
950 };
951
952 struct gdbarch_info
953 {
954 /* Use default: NULL (ZERO). */
955 const struct bfd_arch_info *bfd_arch_info;
956
957 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
958 int byte_order;
959
960 /* Use default: NULL (ZERO). */
961 bfd *abfd;
962
963 /* Use default: NULL (ZERO). */
964 struct gdbarch_tdep_info *tdep_info;
965
966 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
967 enum gdb_osabi osabi;
968
969 /* Use default: NULL (ZERO). */
970 const struct target_desc *target_desc;
971 };
972
973 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
974 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
975
976 /* DEPRECATED - use gdbarch_register() */
977 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
978
979 extern void gdbarch_register (enum bfd_architecture architecture,
980 gdbarch_init_ftype *,
981 gdbarch_dump_tdep_ftype *);
982
983
984 /* Return a freshly allocated, NULL terminated, array of the valid
985 architecture names. Since architectures are registered during the
986 _initialize phase this function only returns useful information
987 once initialization has been completed. */
988
989 extern const char **gdbarch_printable_names (void);
990
991
992 /* Helper function. Search the list of ARCHES for a GDBARCH that
993 matches the information provided by INFO. */
994
995 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
996
997
998 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
999 basic initialization using values obtained from the INFO and TDEP
1000 parameters. set_gdbarch_*() functions are called to complete the
1001 initialization of the object. */
1002
1003 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1004
1005
1006 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1007 It is assumed that the caller freeds the \`\`struct
1008 gdbarch_tdep''. */
1009
1010 extern void gdbarch_free (struct gdbarch *);
1011
1012
1013 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1014 obstack. The memory is freed when the corresponding architecture
1015 is also freed. */
1016
1017 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1018 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1019 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1020
1021
1022 /* Helper function. Force an update of the current architecture.
1023
1024 The actual architecture selected is determined by INFO, \`\`(gdb) set
1025 architecture'' et.al., the existing architecture and BFD's default
1026 architecture. INFO should be initialized to zero and then selected
1027 fields should be updated.
1028
1029 Returns non-zero if the update succeeds */
1030
1031 extern int gdbarch_update_p (struct gdbarch_info info);
1032
1033
1034 /* Helper function. Find an architecture matching info.
1035
1036 INFO should be initialized using gdbarch_info_init, relevant fields
1037 set, and then finished using gdbarch_info_fill.
1038
1039 Returns the corresponding architecture, or NULL if no matching
1040 architecture was found. "current_gdbarch" is not updated. */
1041
1042 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1043
1044
1045 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1046
1047 FIXME: kettenis/20031124: Of the functions that follow, only
1048 gdbarch_from_bfd is supposed to survive. The others will
1049 dissappear since in the future GDB will (hopefully) be truly
1050 multi-arch. However, for now we're still stuck with the concept of
1051 a single active architecture. */
1052
1053 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1054
1055
1056 /* Register per-architecture data-pointer.
1057
1058 Reserve space for a per-architecture data-pointer. An identifier
1059 for the reserved data-pointer is returned. That identifer should
1060 be saved in a local static variable.
1061
1062 Memory for the per-architecture data shall be allocated using
1063 gdbarch_obstack_zalloc. That memory will be deleted when the
1064 corresponding architecture object is deleted.
1065
1066 When a previously created architecture is re-selected, the
1067 per-architecture data-pointer for that previous architecture is
1068 restored. INIT() is not re-called.
1069
1070 Multiple registrarants for any architecture are allowed (and
1071 strongly encouraged). */
1072
1073 struct gdbarch_data;
1074
1075 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1076 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1077 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1078 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1079 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1080 struct gdbarch_data *data,
1081 void *pointer);
1082
1083 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1084
1085
1086 /* Set the dynamic target-system-dependent parameters (architecture,
1087 byte-order, ...) using information found in the BFD */
1088
1089 extern void set_gdbarch_from_file (bfd *);
1090
1091
1092 /* Initialize the current architecture to the "first" one we find on
1093 our list. */
1094
1095 extern void initialize_current_architecture (void);
1096
1097 /* gdbarch trace variable */
1098 extern int gdbarch_debug;
1099
1100 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1101
1102 #endif
1103 EOF
1104 exec 1>&2
1105 #../move-if-change new-gdbarch.h gdbarch.h
1106 compare_new gdbarch.h
1107
1108
1109 #
1110 # C file
1111 #
1112
1113 exec > new-gdbarch.c
1114 copyright
1115 cat <<EOF
1116
1117 #include "defs.h"
1118 #include "arch-utils.h"
1119
1120 #include "gdbcmd.h"
1121 #include "inferior.h"
1122 #include "symcat.h"
1123
1124 #include "floatformat.h"
1125
1126 #include "gdb_assert.h"
1127 #include "gdb_string.h"
1128 #include "gdb-events.h"
1129 #include "reggroups.h"
1130 #include "osabi.h"
1131 #include "gdb_obstack.h"
1132
1133 /* Static function declarations */
1134
1135 static void alloc_gdbarch_data (struct gdbarch *);
1136
1137 /* Non-zero if we want to trace architecture code. */
1138
1139 #ifndef GDBARCH_DEBUG
1140 #define GDBARCH_DEBUG 0
1141 #endif
1142 int gdbarch_debug = GDBARCH_DEBUG;
1143 static void
1144 show_gdbarch_debug (struct ui_file *file, int from_tty,
1145 struct cmd_list_element *c, const char *value)
1146 {
1147 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1148 }
1149
1150 static const char *
1151 pformat (const struct floatformat **format)
1152 {
1153 if (format == NULL)
1154 return "(null)";
1155 else
1156 /* Just print out one of them - this is only for diagnostics. */
1157 return format[0]->name;
1158 }
1159
1160 EOF
1161
1162 # gdbarch open the gdbarch object
1163 printf "\n"
1164 printf "/* Maintain the struct gdbarch object */\n"
1165 printf "\n"
1166 printf "struct gdbarch\n"
1167 printf "{\n"
1168 printf " /* Has this architecture been fully initialized? */\n"
1169 printf " int initialized_p;\n"
1170 printf "\n"
1171 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1172 printf " struct obstack *obstack;\n"
1173 printf "\n"
1174 printf " /* basic architectural information */\n"
1175 function_list | while do_read
1176 do
1177 if class_is_info_p
1178 then
1179 printf " ${returntype} ${function};\n"
1180 fi
1181 done
1182 printf "\n"
1183 printf " /* target specific vector. */\n"
1184 printf " struct gdbarch_tdep *tdep;\n"
1185 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1186 printf "\n"
1187 printf " /* per-architecture data-pointers */\n"
1188 printf " unsigned nr_data;\n"
1189 printf " void **data;\n"
1190 printf "\n"
1191 printf " /* per-architecture swap-regions */\n"
1192 printf " struct gdbarch_swap *swap;\n"
1193 printf "\n"
1194 cat <<EOF
1195 /* Multi-arch values.
1196
1197 When extending this structure you must:
1198
1199 Add the field below.
1200
1201 Declare set/get functions and define the corresponding
1202 macro in gdbarch.h.
1203
1204 gdbarch_alloc(): If zero/NULL is not a suitable default,
1205 initialize the new field.
1206
1207 verify_gdbarch(): Confirm that the target updated the field
1208 correctly.
1209
1210 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1211 field is dumped out
1212
1213 \`\`startup_gdbarch()'': Append an initial value to the static
1214 variable (base values on the host's c-type system).
1215
1216 get_gdbarch(): Implement the set/get functions (probably using
1217 the macro's as shortcuts).
1218
1219 */
1220
1221 EOF
1222 function_list | while do_read
1223 do
1224 if class_is_variable_p
1225 then
1226 printf " ${returntype} ${function};\n"
1227 elif class_is_function_p
1228 then
1229 printf " gdbarch_${function}_ftype *${function};\n"
1230 fi
1231 done
1232 printf "};\n"
1233
1234 # A pre-initialized vector
1235 printf "\n"
1236 printf "\n"
1237 cat <<EOF
1238 /* The default architecture uses host values (for want of a better
1239 choice). */
1240 EOF
1241 printf "\n"
1242 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1243 printf "\n"
1244 printf "struct gdbarch startup_gdbarch =\n"
1245 printf "{\n"
1246 printf " 1, /* Always initialized. */\n"
1247 printf " NULL, /* The obstack. */\n"
1248 printf " /* basic architecture information */\n"
1249 function_list | while do_read
1250 do
1251 if class_is_info_p
1252 then
1253 printf " ${staticdefault}, /* ${function} */\n"
1254 fi
1255 done
1256 cat <<EOF
1257 /* target specific vector and its dump routine */
1258 NULL, NULL,
1259 /*per-architecture data-pointers and swap regions */
1260 0, NULL, NULL,
1261 /* Multi-arch values */
1262 EOF
1263 function_list | while do_read
1264 do
1265 if class_is_function_p || class_is_variable_p
1266 then
1267 printf " ${staticdefault}, /* ${function} */\n"
1268 fi
1269 done
1270 cat <<EOF
1271 /* startup_gdbarch() */
1272 };
1273
1274 struct gdbarch *current_gdbarch = &startup_gdbarch;
1275 EOF
1276
1277 # Create a new gdbarch struct
1278 cat <<EOF
1279
1280 /* Create a new \`\`struct gdbarch'' based on information provided by
1281 \`\`struct gdbarch_info''. */
1282 EOF
1283 printf "\n"
1284 cat <<EOF
1285 struct gdbarch *
1286 gdbarch_alloc (const struct gdbarch_info *info,
1287 struct gdbarch_tdep *tdep)
1288 {
1289 struct gdbarch *gdbarch;
1290
1291 /* Create an obstack for allocating all the per-architecture memory,
1292 then use that to allocate the architecture vector. */
1293 struct obstack *obstack = XMALLOC (struct obstack);
1294 obstack_init (obstack);
1295 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1296 memset (gdbarch, 0, sizeof (*gdbarch));
1297 gdbarch->obstack = obstack;
1298
1299 alloc_gdbarch_data (gdbarch);
1300
1301 gdbarch->tdep = tdep;
1302 EOF
1303 printf "\n"
1304 function_list | while do_read
1305 do
1306 if class_is_info_p
1307 then
1308 printf " gdbarch->${function} = info->${function};\n"
1309 fi
1310 done
1311 printf "\n"
1312 printf " /* Force the explicit initialization of these. */\n"
1313 function_list | while do_read
1314 do
1315 if class_is_function_p || class_is_variable_p
1316 then
1317 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1318 then
1319 printf " gdbarch->${function} = ${predefault};\n"
1320 fi
1321 fi
1322 done
1323 cat <<EOF
1324 /* gdbarch_alloc() */
1325
1326 return gdbarch;
1327 }
1328 EOF
1329
1330 # Free a gdbarch struct.
1331 printf "\n"
1332 printf "\n"
1333 cat <<EOF
1334 /* Allocate extra space using the per-architecture obstack. */
1335
1336 void *
1337 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1338 {
1339 void *data = obstack_alloc (arch->obstack, size);
1340 memset (data, 0, size);
1341 return data;
1342 }
1343
1344
1345 /* Free a gdbarch struct. This should never happen in normal
1346 operation --- once you've created a gdbarch, you keep it around.
1347 However, if an architecture's init function encounters an error
1348 building the structure, it may need to clean up a partially
1349 constructed gdbarch. */
1350
1351 void
1352 gdbarch_free (struct gdbarch *arch)
1353 {
1354 struct obstack *obstack;
1355 gdb_assert (arch != NULL);
1356 gdb_assert (!arch->initialized_p);
1357 obstack = arch->obstack;
1358 obstack_free (obstack, 0); /* Includes the ARCH. */
1359 xfree (obstack);
1360 }
1361 EOF
1362
1363 # verify a new architecture
1364 cat <<EOF
1365
1366
1367 /* Ensure that all values in a GDBARCH are reasonable. */
1368
1369 static void
1370 verify_gdbarch (struct gdbarch *gdbarch)
1371 {
1372 struct ui_file *log;
1373 struct cleanup *cleanups;
1374 long dummy;
1375 char *buf;
1376 log = mem_fileopen ();
1377 cleanups = make_cleanup_ui_file_delete (log);
1378 /* fundamental */
1379 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1380 fprintf_unfiltered (log, "\n\tbyte-order");
1381 if (gdbarch->bfd_arch_info == NULL)
1382 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1383 /* Check those that need to be defined for the given multi-arch level. */
1384 EOF
1385 function_list | while do_read
1386 do
1387 if class_is_function_p || class_is_variable_p
1388 then
1389 if [ "x${invalid_p}" = "x0" ]
1390 then
1391 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1392 elif class_is_predicate_p
1393 then
1394 printf " /* Skip verify of ${function}, has predicate */\n"
1395 # FIXME: See do_read for potential simplification
1396 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1397 then
1398 printf " if (${invalid_p})\n"
1399 printf " gdbarch->${function} = ${postdefault};\n"
1400 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1401 then
1402 printf " if (gdbarch->${function} == ${predefault})\n"
1403 printf " gdbarch->${function} = ${postdefault};\n"
1404 elif [ -n "${postdefault}" ]
1405 then
1406 printf " if (gdbarch->${function} == 0)\n"
1407 printf " gdbarch->${function} = ${postdefault};\n"
1408 elif [ -n "${invalid_p}" ]
1409 then
1410 printf " if (${invalid_p})\n"
1411 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1412 elif [ -n "${predefault}" ]
1413 then
1414 printf " if (gdbarch->${function} == ${predefault})\n"
1415 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1416 fi
1417 fi
1418 done
1419 cat <<EOF
1420 buf = ui_file_xstrdup (log, &dummy);
1421 make_cleanup (xfree, buf);
1422 if (strlen (buf) > 0)
1423 internal_error (__FILE__, __LINE__,
1424 _("verify_gdbarch: the following are invalid ...%s"),
1425 buf);
1426 do_cleanups (cleanups);
1427 }
1428 EOF
1429
1430 # dump the structure
1431 printf "\n"
1432 printf "\n"
1433 cat <<EOF
1434 /* Print out the details of the current architecture. */
1435
1436 void
1437 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1438 {
1439 const char *gdb_nm_file = "<not-defined>";
1440 #if defined (GDB_NM_FILE)
1441 gdb_nm_file = GDB_NM_FILE;
1442 #endif
1443 fprintf_unfiltered (file,
1444 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1445 gdb_nm_file);
1446 EOF
1447 function_list | sort -t: -k 3 | while do_read
1448 do
1449 # First the predicate
1450 if class_is_predicate_p
1451 then
1452 printf " fprintf_unfiltered (file,\n"
1453 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1454 printf " gdbarch_${function}_p (gdbarch));\n"
1455 fi
1456 # Print the corresponding value.
1457 if class_is_function_p
1458 then
1459 printf " fprintf_unfiltered (file,\n"
1460 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1461 printf " (long) gdbarch->${function});\n"
1462 else
1463 # It is a variable
1464 case "${print}:${returntype}" in
1465 :CORE_ADDR )
1466 fmt="0x%s"
1467 print="paddr_nz (gdbarch->${function})"
1468 ;;
1469 :* )
1470 fmt="%s"
1471 print="paddr_d (gdbarch->${function})"
1472 ;;
1473 * )
1474 fmt="%s"
1475 ;;
1476 esac
1477 printf " fprintf_unfiltered (file,\n"
1478 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1479 printf " ${print});\n"
1480 fi
1481 done
1482 cat <<EOF
1483 if (gdbarch->dump_tdep != NULL)
1484 gdbarch->dump_tdep (gdbarch, file);
1485 }
1486 EOF
1487
1488
1489 # GET/SET
1490 printf "\n"
1491 cat <<EOF
1492 struct gdbarch_tdep *
1493 gdbarch_tdep (struct gdbarch *gdbarch)
1494 {
1495 if (gdbarch_debug >= 2)
1496 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1497 return gdbarch->tdep;
1498 }
1499 EOF
1500 printf "\n"
1501 function_list | while do_read
1502 do
1503 if class_is_predicate_p
1504 then
1505 printf "\n"
1506 printf "int\n"
1507 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1508 printf "{\n"
1509 printf " gdb_assert (gdbarch != NULL);\n"
1510 printf " return ${predicate};\n"
1511 printf "}\n"
1512 fi
1513 if class_is_function_p
1514 then
1515 printf "\n"
1516 printf "${returntype}\n"
1517 if [ "x${formal}" = "xvoid" ]
1518 then
1519 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1520 else
1521 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1522 fi
1523 printf "{\n"
1524 printf " gdb_assert (gdbarch != NULL);\n"
1525 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1526 if class_is_predicate_p && test -n "${predefault}"
1527 then
1528 # Allow a call to a function with a predicate.
1529 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1530 fi
1531 printf " if (gdbarch_debug >= 2)\n"
1532 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1533 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1534 then
1535 if class_is_multiarch_p
1536 then
1537 params="gdbarch"
1538 else
1539 params=""
1540 fi
1541 else
1542 if class_is_multiarch_p
1543 then
1544 params="gdbarch, ${actual}"
1545 else
1546 params="${actual}"
1547 fi
1548 fi
1549 if [ "x${returntype}" = "xvoid" ]
1550 then
1551 printf " gdbarch->${function} (${params});\n"
1552 else
1553 printf " return gdbarch->${function} (${params});\n"
1554 fi
1555 printf "}\n"
1556 printf "\n"
1557 printf "void\n"
1558 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1559 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1560 printf "{\n"
1561 printf " gdbarch->${function} = ${function};\n"
1562 printf "}\n"
1563 elif class_is_variable_p
1564 then
1565 printf "\n"
1566 printf "${returntype}\n"
1567 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1568 printf "{\n"
1569 printf " gdb_assert (gdbarch != NULL);\n"
1570 if [ "x${invalid_p}" = "x0" ]
1571 then
1572 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1573 elif [ -n "${invalid_p}" ]
1574 then
1575 printf " /* Check variable is valid. */\n"
1576 printf " gdb_assert (!(${invalid_p}));\n"
1577 elif [ -n "${predefault}" ]
1578 then
1579 printf " /* Check variable changed from pre-default. */\n"
1580 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1581 fi
1582 printf " if (gdbarch_debug >= 2)\n"
1583 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1584 printf " return gdbarch->${function};\n"
1585 printf "}\n"
1586 printf "\n"
1587 printf "void\n"
1588 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1589 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1590 printf "{\n"
1591 printf " gdbarch->${function} = ${function};\n"
1592 printf "}\n"
1593 elif class_is_info_p
1594 then
1595 printf "\n"
1596 printf "${returntype}\n"
1597 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1598 printf "{\n"
1599 printf " gdb_assert (gdbarch != NULL);\n"
1600 printf " if (gdbarch_debug >= 2)\n"
1601 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1602 printf " return gdbarch->${function};\n"
1603 printf "}\n"
1604 fi
1605 done
1606
1607 # All the trailing guff
1608 cat <<EOF
1609
1610
1611 /* Keep a registry of per-architecture data-pointers required by GDB
1612 modules. */
1613
1614 struct gdbarch_data
1615 {
1616 unsigned index;
1617 int init_p;
1618 gdbarch_data_pre_init_ftype *pre_init;
1619 gdbarch_data_post_init_ftype *post_init;
1620 };
1621
1622 struct gdbarch_data_registration
1623 {
1624 struct gdbarch_data *data;
1625 struct gdbarch_data_registration *next;
1626 };
1627
1628 struct gdbarch_data_registry
1629 {
1630 unsigned nr;
1631 struct gdbarch_data_registration *registrations;
1632 };
1633
1634 struct gdbarch_data_registry gdbarch_data_registry =
1635 {
1636 0, NULL,
1637 };
1638
1639 static struct gdbarch_data *
1640 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1641 gdbarch_data_post_init_ftype *post_init)
1642 {
1643 struct gdbarch_data_registration **curr;
1644 /* Append the new registraration. */
1645 for (curr = &gdbarch_data_registry.registrations;
1646 (*curr) != NULL;
1647 curr = &(*curr)->next);
1648 (*curr) = XMALLOC (struct gdbarch_data_registration);
1649 (*curr)->next = NULL;
1650 (*curr)->data = XMALLOC (struct gdbarch_data);
1651 (*curr)->data->index = gdbarch_data_registry.nr++;
1652 (*curr)->data->pre_init = pre_init;
1653 (*curr)->data->post_init = post_init;
1654 (*curr)->data->init_p = 1;
1655 return (*curr)->data;
1656 }
1657
1658 struct gdbarch_data *
1659 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1660 {
1661 return gdbarch_data_register (pre_init, NULL);
1662 }
1663
1664 struct gdbarch_data *
1665 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1666 {
1667 return gdbarch_data_register (NULL, post_init);
1668 }
1669
1670 /* Create/delete the gdbarch data vector. */
1671
1672 static void
1673 alloc_gdbarch_data (struct gdbarch *gdbarch)
1674 {
1675 gdb_assert (gdbarch->data == NULL);
1676 gdbarch->nr_data = gdbarch_data_registry.nr;
1677 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1678 }
1679
1680 /* Initialize the current value of the specified per-architecture
1681 data-pointer. */
1682
1683 void
1684 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1685 struct gdbarch_data *data,
1686 void *pointer)
1687 {
1688 gdb_assert (data->index < gdbarch->nr_data);
1689 gdb_assert (gdbarch->data[data->index] == NULL);
1690 gdb_assert (data->pre_init == NULL);
1691 gdbarch->data[data->index] = pointer;
1692 }
1693
1694 /* Return the current value of the specified per-architecture
1695 data-pointer. */
1696
1697 void *
1698 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1699 {
1700 gdb_assert (data->index < gdbarch->nr_data);
1701 if (gdbarch->data[data->index] == NULL)
1702 {
1703 /* The data-pointer isn't initialized, call init() to get a
1704 value. */
1705 if (data->pre_init != NULL)
1706 /* Mid architecture creation: pass just the obstack, and not
1707 the entire architecture, as that way it isn't possible for
1708 pre-init code to refer to undefined architecture
1709 fields. */
1710 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1711 else if (gdbarch->initialized_p
1712 && data->post_init != NULL)
1713 /* Post architecture creation: pass the entire architecture
1714 (as all fields are valid), but be careful to also detect
1715 recursive references. */
1716 {
1717 gdb_assert (data->init_p);
1718 data->init_p = 0;
1719 gdbarch->data[data->index] = data->post_init (gdbarch);
1720 data->init_p = 1;
1721 }
1722 else
1723 /* The architecture initialization hasn't completed - punt -
1724 hope that the caller knows what they are doing. Once
1725 deprecated_set_gdbarch_data has been initialized, this can be
1726 changed to an internal error. */
1727 return NULL;
1728 gdb_assert (gdbarch->data[data->index] != NULL);
1729 }
1730 return gdbarch->data[data->index];
1731 }
1732
1733
1734 /* Keep a registry of the architectures known by GDB. */
1735
1736 struct gdbarch_registration
1737 {
1738 enum bfd_architecture bfd_architecture;
1739 gdbarch_init_ftype *init;
1740 gdbarch_dump_tdep_ftype *dump_tdep;
1741 struct gdbarch_list *arches;
1742 struct gdbarch_registration *next;
1743 };
1744
1745 static struct gdbarch_registration *gdbarch_registry = NULL;
1746
1747 static void
1748 append_name (const char ***buf, int *nr, const char *name)
1749 {
1750 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1751 (*buf)[*nr] = name;
1752 *nr += 1;
1753 }
1754
1755 const char **
1756 gdbarch_printable_names (void)
1757 {
1758 /* Accumulate a list of names based on the registed list of
1759 architectures. */
1760 enum bfd_architecture a;
1761 int nr_arches = 0;
1762 const char **arches = NULL;
1763 struct gdbarch_registration *rego;
1764 for (rego = gdbarch_registry;
1765 rego != NULL;
1766 rego = rego->next)
1767 {
1768 const struct bfd_arch_info *ap;
1769 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1770 if (ap == NULL)
1771 internal_error (__FILE__, __LINE__,
1772 _("gdbarch_architecture_names: multi-arch unknown"));
1773 do
1774 {
1775 append_name (&arches, &nr_arches, ap->printable_name);
1776 ap = ap->next;
1777 }
1778 while (ap != NULL);
1779 }
1780 append_name (&arches, &nr_arches, NULL);
1781 return arches;
1782 }
1783
1784
1785 void
1786 gdbarch_register (enum bfd_architecture bfd_architecture,
1787 gdbarch_init_ftype *init,
1788 gdbarch_dump_tdep_ftype *dump_tdep)
1789 {
1790 struct gdbarch_registration **curr;
1791 const struct bfd_arch_info *bfd_arch_info;
1792 /* Check that BFD recognizes this architecture */
1793 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1794 if (bfd_arch_info == NULL)
1795 {
1796 internal_error (__FILE__, __LINE__,
1797 _("gdbarch: Attempt to register unknown architecture (%d)"),
1798 bfd_architecture);
1799 }
1800 /* Check that we haven't seen this architecture before */
1801 for (curr = &gdbarch_registry;
1802 (*curr) != NULL;
1803 curr = &(*curr)->next)
1804 {
1805 if (bfd_architecture == (*curr)->bfd_architecture)
1806 internal_error (__FILE__, __LINE__,
1807 _("gdbarch: Duplicate registraration of architecture (%s)"),
1808 bfd_arch_info->printable_name);
1809 }
1810 /* log it */
1811 if (gdbarch_debug)
1812 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1813 bfd_arch_info->printable_name,
1814 (long) init);
1815 /* Append it */
1816 (*curr) = XMALLOC (struct gdbarch_registration);
1817 (*curr)->bfd_architecture = bfd_architecture;
1818 (*curr)->init = init;
1819 (*curr)->dump_tdep = dump_tdep;
1820 (*curr)->arches = NULL;
1821 (*curr)->next = NULL;
1822 }
1823
1824 void
1825 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1826 gdbarch_init_ftype *init)
1827 {
1828 gdbarch_register (bfd_architecture, init, NULL);
1829 }
1830
1831
1832 /* Look for an architecture using gdbarch_info. */
1833
1834 struct gdbarch_list *
1835 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1836 const struct gdbarch_info *info)
1837 {
1838 for (; arches != NULL; arches = arches->next)
1839 {
1840 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1841 continue;
1842 if (info->byte_order != arches->gdbarch->byte_order)
1843 continue;
1844 if (info->osabi != arches->gdbarch->osabi)
1845 continue;
1846 if (info->target_desc != arches->gdbarch->target_desc)
1847 continue;
1848 return arches;
1849 }
1850 return NULL;
1851 }
1852
1853
1854 /* Find an architecture that matches the specified INFO. Create a new
1855 architecture if needed. Return that new architecture. Assumes
1856 that there is no current architecture. */
1857
1858 static struct gdbarch *
1859 find_arch_by_info (struct gdbarch_info info)
1860 {
1861 struct gdbarch *new_gdbarch;
1862 struct gdbarch_registration *rego;
1863
1864 /* The existing architecture has been swapped out - all this code
1865 works from a clean slate. */
1866 gdb_assert (current_gdbarch == NULL);
1867
1868 /* Fill in missing parts of the INFO struct using a number of
1869 sources: "set ..."; INFOabfd supplied; and the global
1870 defaults. */
1871 gdbarch_info_fill (&info);
1872
1873 /* Must have found some sort of architecture. */
1874 gdb_assert (info.bfd_arch_info != NULL);
1875
1876 if (gdbarch_debug)
1877 {
1878 fprintf_unfiltered (gdb_stdlog,
1879 "find_arch_by_info: info.bfd_arch_info %s\n",
1880 (info.bfd_arch_info != NULL
1881 ? info.bfd_arch_info->printable_name
1882 : "(null)"));
1883 fprintf_unfiltered (gdb_stdlog,
1884 "find_arch_by_info: info.byte_order %d (%s)\n",
1885 info.byte_order,
1886 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1887 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1888 : "default"));
1889 fprintf_unfiltered (gdb_stdlog,
1890 "find_arch_by_info: info.osabi %d (%s)\n",
1891 info.osabi, gdbarch_osabi_name (info.osabi));
1892 fprintf_unfiltered (gdb_stdlog,
1893 "find_arch_by_info: info.abfd 0x%lx\n",
1894 (long) info.abfd);
1895 fprintf_unfiltered (gdb_stdlog,
1896 "find_arch_by_info: info.tdep_info 0x%lx\n",
1897 (long) info.tdep_info);
1898 }
1899
1900 /* Find the tdep code that knows about this architecture. */
1901 for (rego = gdbarch_registry;
1902 rego != NULL;
1903 rego = rego->next)
1904 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1905 break;
1906 if (rego == NULL)
1907 {
1908 if (gdbarch_debug)
1909 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1910 "No matching architecture\n");
1911 return 0;
1912 }
1913
1914 /* Ask the tdep code for an architecture that matches "info". */
1915 new_gdbarch = rego->init (info, rego->arches);
1916
1917 /* Did the tdep code like it? No. Reject the change and revert to
1918 the old architecture. */
1919 if (new_gdbarch == NULL)
1920 {
1921 if (gdbarch_debug)
1922 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1923 "Target rejected architecture\n");
1924 return NULL;
1925 }
1926
1927 /* Is this a pre-existing architecture (as determined by already
1928 being initialized)? Move it to the front of the architecture
1929 list (keeping the list sorted Most Recently Used). */
1930 if (new_gdbarch->initialized_p)
1931 {
1932 struct gdbarch_list **list;
1933 struct gdbarch_list *this;
1934 if (gdbarch_debug)
1935 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1936 "Previous architecture 0x%08lx (%s) selected\n",
1937 (long) new_gdbarch,
1938 new_gdbarch->bfd_arch_info->printable_name);
1939 /* Find the existing arch in the list. */
1940 for (list = &rego->arches;
1941 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1942 list = &(*list)->next);
1943 /* It had better be in the list of architectures. */
1944 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1945 /* Unlink THIS. */
1946 this = (*list);
1947 (*list) = this->next;
1948 /* Insert THIS at the front. */
1949 this->next = rego->arches;
1950 rego->arches = this;
1951 /* Return it. */
1952 return new_gdbarch;
1953 }
1954
1955 /* It's a new architecture. */
1956 if (gdbarch_debug)
1957 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1958 "New architecture 0x%08lx (%s) selected\n",
1959 (long) new_gdbarch,
1960 new_gdbarch->bfd_arch_info->printable_name);
1961
1962 /* Insert the new architecture into the front of the architecture
1963 list (keep the list sorted Most Recently Used). */
1964 {
1965 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1966 this->next = rego->arches;
1967 this->gdbarch = new_gdbarch;
1968 rego->arches = this;
1969 }
1970
1971 /* Check that the newly installed architecture is valid. Plug in
1972 any post init values. */
1973 new_gdbarch->dump_tdep = rego->dump_tdep;
1974 verify_gdbarch (new_gdbarch);
1975 new_gdbarch->initialized_p = 1;
1976
1977 if (gdbarch_debug)
1978 gdbarch_dump (new_gdbarch, gdb_stdlog);
1979
1980 return new_gdbarch;
1981 }
1982
1983 struct gdbarch *
1984 gdbarch_find_by_info (struct gdbarch_info info)
1985 {
1986 struct gdbarch *new_gdbarch;
1987
1988 /* Save the previously selected architecture, setting the global to
1989 NULL. This stops things like gdbarch->init() trying to use the
1990 previous architecture's configuration. The previous architecture
1991 may not even be of the same architecture family. The most recent
1992 architecture of the same family is found at the head of the
1993 rego->arches list. */
1994 struct gdbarch *old_gdbarch = current_gdbarch;
1995 current_gdbarch = NULL;
1996
1997 /* Find the specified architecture. */
1998 new_gdbarch = find_arch_by_info (info);
1999
2000 /* Restore the existing architecture. */
2001 gdb_assert (current_gdbarch == NULL);
2002 current_gdbarch = old_gdbarch;
2003
2004 return new_gdbarch;
2005 }
2006
2007 /* Make the specified architecture current. */
2008
2009 void
2010 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2011 {
2012 gdb_assert (new_gdbarch != NULL);
2013 gdb_assert (current_gdbarch != NULL);
2014 gdb_assert (new_gdbarch->initialized_p);
2015 current_gdbarch = new_gdbarch;
2016 architecture_changed_event ();
2017 reinit_frame_cache ();
2018 }
2019
2020 extern void _initialize_gdbarch (void);
2021
2022 void
2023 _initialize_gdbarch (void)
2024 {
2025 struct cmd_list_element *c;
2026
2027 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2028 Set architecture debugging."), _("\\
2029 Show architecture debugging."), _("\\
2030 When non-zero, architecture debugging is enabled."),
2031 NULL,
2032 show_gdbarch_debug,
2033 &setdebuglist, &showdebuglist);
2034 }
2035 EOF
2036
2037 # close things off
2038 exec 1>&2
2039 #../move-if-change new-gdbarch.c gdbarch.c
2040 compare_new gdbarch.c
This page took 0.077165 seconds and 5 git commands to generate.