Remove obsolete gdbarch_static_transform_name
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
342
343 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344 # starting with C++11.
345 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
346 # One if \`wchar_t' is signed, zero if unsigned.
347 v;int;wchar_signed;;;1;-1;1
348
349 # Returns the floating-point format to be used for values of length LENGTH.
350 # NAME, if non-NULL, is the type name, which may be used to distinguish
351 # different target formats of the same length.
352 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
353
354 # For most targets, a pointer on the target and its representation as an
355 # address in GDB have the same size and "look the same". For such a
356 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
357 # / addr_bit will be set from it.
358 #
359 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
360 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361 # gdbarch_address_to_pointer as well.
362 #
363 # ptr_bit is the size of a pointer on the target
364 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
365 # addr_bit is the size of a target address as represented in gdb
366 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
367 #
368 # dwarf2_addr_size is the target address size as used in the Dwarf debug
369 # info. For .debug_frame FDEs, this is supposed to be the target address
370 # size from the associated CU header, and which is equivalent to the
371 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372 # Unfortunately there is no good way to determine this value. Therefore
373 # dwarf2_addr_size simply defaults to the target pointer size.
374 #
375 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376 # defined using the target's pointer size so far.
377 #
378 # Note that dwarf2_addr_size only needs to be redefined by a target if the
379 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380 # and if Dwarf versions < 4 need to be supported.
381 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
382 #
383 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
384 v;int;char_signed;;;1;-1;1
385 #
386 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
387 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
388 # Function for getting target's idea of a frame pointer. FIXME: GDB's
389 # whole scheme for dealing with "frames" and "frame pointers" needs a
390 # serious shakedown.
391 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
392 #
393 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
394 # Read a register into a new struct value. If the register is wholly
395 # or partly unavailable, this should call mark_value_bytes_unavailable
396 # as appropriate. If this is defined, then pseudo_register_read will
397 # never be called.
398 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
399 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
400 #
401 v;int;num_regs;;;0;-1
402 # This macro gives the number of pseudo-registers that live in the
403 # register namespace but do not get fetched or stored on the target.
404 # These pseudo-registers may be aliases for other registers,
405 # combinations of other registers, or they may be computed by GDB.
406 v;int;num_pseudo_regs;;;0;0;;0
407
408 # Assemble agent expression bytecode to collect pseudo-register REG.
409 # Return -1 if something goes wrong, 0 otherwise.
410 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
411
412 # Assemble agent expression bytecode to push the value of pseudo-register
413 # REG on the interpreter stack.
414 # Return -1 if something goes wrong, 0 otherwise.
415 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
416
417 # Some targets/architectures can do extra processing/display of
418 # segmentation faults. E.g., Intel MPX boundary faults.
419 # Call the architecture dependent function to handle the fault.
420 # UIOUT is the output stream where the handler will place information.
421 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
422
423 # GDB's standard (or well known) register numbers. These can map onto
424 # a real register or a pseudo (computed) register or not be defined at
425 # all (-1).
426 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
427 v;int;sp_regnum;;;-1;-1;;0
428 v;int;pc_regnum;;;-1;-1;;0
429 v;int;ps_regnum;;;-1;-1;;0
430 v;int;fp0_regnum;;;0;-1;;0
431 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
432 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
433 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
434 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
435 # Convert from an sdb register number to an internal gdb register number.
436 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
437 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
438 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
439 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
440 m;const char *;register_name;int regnr;regnr;;0
441
442 # Return the type of a register specified by the architecture. Only
443 # the register cache should call this function directly; others should
444 # use "register_type".
445 M;struct type *;register_type;int reg_nr;reg_nr
446
447 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
448 # a dummy frame. A dummy frame is created before an inferior call,
449 # the frame_id returned here must match the frame_id that was built
450 # for the inferior call. Usually this means the returned frame_id's
451 # stack address should match the address returned by
452 # gdbarch_push_dummy_call, and the returned frame_id's code address
453 # should match the address at which the breakpoint was set in the dummy
454 # frame.
455 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
456 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
457 # deprecated_fp_regnum.
458 v;int;deprecated_fp_regnum;;;-1;-1;;0
459
460 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
461 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
462 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
463
464 # Return true if the code of FRAME is writable.
465 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
466
467 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
468 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
469 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
470 # MAP a GDB RAW register number onto a simulator register number. See
471 # also include/...-sim.h.
472 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
473 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
474 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
475
476 # Determine the address where a longjmp will land and save this address
477 # in PC. Return nonzero on success.
478 #
479 # FRAME corresponds to the longjmp frame.
480 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
481
482 #
483 v;int;believe_pcc_promotion;;;;;;;
484 #
485 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
486 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
487 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
488 # Construct a value representing the contents of register REGNUM in
489 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
490 # allocate and return a struct value with all value attributes
491 # (but not the value contents) filled in.
492 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
493 #
494 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
495 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
496 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
497
498 # Return the return-value convention that will be used by FUNCTION
499 # to return a value of type VALTYPE. FUNCTION may be NULL in which
500 # case the return convention is computed based only on VALTYPE.
501 #
502 # If READBUF is not NULL, extract the return value and save it in this buffer.
503 #
504 # If WRITEBUF is not NULL, it contains a return value which will be
505 # stored into the appropriate register. This can be used when we want
506 # to force the value returned by a function (see the "return" command
507 # for instance).
508 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
509
510 # Return true if the return value of function is stored in the first hidden
511 # parameter. In theory, this feature should be language-dependent, specified
512 # by language and its ABI, such as C++. Unfortunately, compiler may
513 # implement it to a target-dependent feature. So that we need such hook here
514 # to be aware of this in GDB.
515 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
516
517 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
518 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
519 # On some platforms, a single function may provide multiple entry points,
520 # e.g. one that is used for function-pointer calls and a different one
521 # that is used for direct function calls.
522 # In order to ensure that breakpoints set on the function will trigger
523 # no matter via which entry point the function is entered, a platform
524 # may provide the skip_entrypoint callback. It is called with IP set
525 # to the main entry point of a function (as determined by the symbol table),
526 # and should return the address of the innermost entry point, where the
527 # actual breakpoint needs to be set. Note that skip_entrypoint is used
528 # by GDB common code even when debugging optimized code, where skip_prologue
529 # is not used.
530 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
531
532 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
533 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
534
535 # Return the breakpoint kind for this target based on *PCPTR.
536 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
537
538 # Return the software breakpoint from KIND. KIND can have target
539 # specific meaning like the Z0 kind parameter.
540 # SIZE is set to the software breakpoint's length in memory.
541 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
542
543 # Return the breakpoint kind for this target based on the current
544 # processor state (e.g. the current instruction mode on ARM) and the
545 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
546 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
547
548 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
549 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
550 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
551 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
552
553 # A function can be addressed by either it's "pointer" (possibly a
554 # descriptor address) or "entry point" (first executable instruction).
555 # The method "convert_from_func_ptr_addr" converting the former to the
556 # latter. gdbarch_deprecated_function_start_offset is being used to implement
557 # a simplified subset of that functionality - the function's address
558 # corresponds to the "function pointer" and the function's start
559 # corresponds to the "function entry point" - and hence is redundant.
560
561 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
562
563 # Return the remote protocol register number associated with this
564 # register. Normally the identity mapping.
565 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
566
567 # Fetch the target specific address used to represent a load module.
568 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
569
570 # Return the thread-local address at OFFSET in the thread-local
571 # storage for the thread PTID and the shared library or executable
572 # file given by LM_ADDR. If that block of thread-local storage hasn't
573 # been allocated yet, this function may throw an error. LM_ADDR may
574 # be zero for statically linked multithreaded inferiors.
575
576 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
577 #
578 v;CORE_ADDR;frame_args_skip;;;0;;;0
579 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
580 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
581 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
582 # frame-base. Enable frame-base before frame-unwind.
583 F;int;frame_num_args;struct frame_info *frame;frame
584 #
585 M;CORE_ADDR;frame_align;CORE_ADDR address;address
586 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
587 v;int;frame_red_zone_size
588 #
589 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
590 # On some machines there are bits in addresses which are not really
591 # part of the address, but are used by the kernel, the hardware, etc.
592 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
593 # we get a "real" address such as one would find in a symbol table.
594 # This is used only for addresses of instructions, and even then I'm
595 # not sure it's used in all contexts. It exists to deal with there
596 # being a few stray bits in the PC which would mislead us, not as some
597 # sort of generic thing to handle alignment or segmentation (it's
598 # possible it should be in TARGET_READ_PC instead).
599 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
600
601 # On some machines, not all bits of an address word are significant.
602 # For example, on AArch64, the top bits of an address known as the "tag"
603 # are ignored by the kernel, the hardware, etc. and can be regarded as
604 # additional data associated with the address.
605 v;int;significant_addr_bit;;;;;;0
606
607 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
608 # indicates if the target needs software single step. An ISA method to
609 # implement it.
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612 # target can single step. If not, then implement single step using breakpoints.
613 #
614 # Return a vector of addresses on which the software single step
615 # breakpoints should be inserted. NULL means software single step is
616 # not used.
617 # Multiple breakpoints may be inserted for some instructions such as
618 # conditional branch. However, each implementation must always evaluate
619 # the condition and only put the breakpoint at the branch destination if
620 # the condition is true, so that we ensure forward progress when stepping
621 # past a conditional branch to self.
622 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
623
624 # Return non-zero if the processor is executing a delay slot and a
625 # further single-step is needed before the instruction finishes.
626 M;int;single_step_through_delay;struct frame_info *frame;frame
627 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
628 # disassembler. Perhaps objdump can handle it?
629 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
630 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
631
632
633 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
634 # evaluates non-zero, this is the address where the debugger will place
635 # a step-resume breakpoint to get us past the dynamic linker.
636 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
637 # Some systems also have trampoline code for returning from shared libs.
638 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
639
640 # Return true if PC lies inside an indirect branch thunk.
641 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
642
643 # A target might have problems with watchpoints as soon as the stack
644 # frame of the current function has been destroyed. This mostly happens
645 # as the first action in a function's epilogue. stack_frame_destroyed_p()
646 # is defined to return a non-zero value if either the given addr is one
647 # instruction after the stack destroying instruction up to the trailing
648 # return instruction or if we can figure out that the stack frame has
649 # already been invalidated regardless of the value of addr. Targets
650 # which don't suffer from that problem could just let this functionality
651 # untouched.
652 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
653 # Process an ELF symbol in the minimal symbol table in a backend-specific
654 # way. Normally this hook is supposed to do nothing, however if required,
655 # then this hook can be used to apply tranformations to symbols that are
656 # considered special in some way. For example the MIPS backend uses it
657 # to interpret \`st_other' information to mark compressed code symbols so
658 # that they can be treated in the appropriate manner in the processing of
659 # the main symbol table and DWARF-2 records.
660 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
661 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
662 # Process a symbol in the main symbol table in a backend-specific way.
663 # Normally this hook is supposed to do nothing, however if required,
664 # then this hook can be used to apply tranformations to symbols that
665 # are considered special in some way. This is currently used by the
666 # MIPS backend to make sure compressed code symbols have the ISA bit
667 # set. This in turn is needed for symbol values seen in GDB to match
668 # the values used at the runtime by the program itself, for function
669 # and label references.
670 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
671 # Adjust the address retrieved from a DWARF-2 record other than a line
672 # entry in a backend-specific way. Normally this hook is supposed to
673 # return the address passed unchanged, however if that is incorrect for
674 # any reason, then this hook can be used to fix the address up in the
675 # required manner. This is currently used by the MIPS backend to make
676 # sure addresses in FDE, range records, etc. referring to compressed
677 # code have the ISA bit set, matching line information and the symbol
678 # table.
679 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
680 # Adjust the address updated by a line entry in a backend-specific way.
681 # Normally this hook is supposed to return the address passed unchanged,
682 # however in the case of inconsistencies in these records, this hook can
683 # be used to fix them up in the required manner. This is currently used
684 # by the MIPS backend to make sure all line addresses in compressed code
685 # are presented with the ISA bit set, which is not always the case. This
686 # in turn ensures breakpoint addresses are correctly matched against the
687 # stop PC.
688 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
689 v;int;cannot_step_breakpoint;;;0;0;;0
690 # See comment in target.h about continuable, steppable and
691 # non-steppable watchpoints.
692 v;int;have_nonsteppable_watchpoint;;;0;0;;0
693 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
694 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
695 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
696 # FS are passed from the generic execute_cfa_program function.
697 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
698
699 # Return the appropriate type_flags for the supplied address class.
700 # This function should return 1 if the address class was recognized and
701 # type_flags was set, zero otherwise.
702 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
703 # Is a register in a group
704 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
705 # Fetch the pointer to the ith function argument.
706 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
707
708 # Iterate over all supported register notes in a core file. For each
709 # supported register note section, the iterator must call CB and pass
710 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
711 # the supported register note sections based on the current register
712 # values. Otherwise it should enumerate all supported register note
713 # sections.
714 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
715
716 # Create core file notes
717 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
718
719 # Find core file memory regions
720 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
721
722 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
723 # core file into buffer READBUF with length LEN. Return the number of bytes read
724 # (zero indicates failure).
725 # failed, otherwise, return the red length of READBUF.
726 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
727
728 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
729 # libraries list from core file into buffer READBUF with length LEN.
730 # Return the number of bytes read (zero indicates failure).
731 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
732
733 # How the core target converts a PTID from a core file to a string.
734 M;std::string;core_pid_to_str;ptid_t ptid;ptid
735
736 # How the core target extracts the name of a thread from a core file.
737 M;const char *;core_thread_name;struct thread_info *thr;thr
738
739 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
740 # from core file into buffer READBUF with length LEN. Return the number
741 # of bytes read (zero indicates EOF, a negative value indicates failure).
742 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
743
744 # BFD target to use when generating a core file.
745 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
746
747 # If the elements of C++ vtables are in-place function descriptors rather
748 # than normal function pointers (which may point to code or a descriptor),
749 # set this to one.
750 v;int;vtable_function_descriptors;;;0;0;;0
751
752 # Set if the least significant bit of the delta is used instead of the least
753 # significant bit of the pfn for pointers to virtual member functions.
754 v;int;vbit_in_delta;;;0;0;;0
755
756 # Advance PC to next instruction in order to skip a permanent breakpoint.
757 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
758
759 # The maximum length of an instruction on this architecture in bytes.
760 V;ULONGEST;max_insn_length;;;0;0
761
762 # Copy the instruction at FROM to TO, and make any adjustments
763 # necessary to single-step it at that address.
764 #
765 # REGS holds the state the thread's registers will have before
766 # executing the copied instruction; the PC in REGS will refer to FROM,
767 # not the copy at TO. The caller should update it to point at TO later.
768 #
769 # Return a pointer to data of the architecture's choice to be passed
770 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
771 # the instruction's effects have been completely simulated, with the
772 # resulting state written back to REGS.
773 #
774 # For a general explanation of displaced stepping and how GDB uses it,
775 # see the comments in infrun.c.
776 #
777 # The TO area is only guaranteed to have space for
778 # gdbarch_max_insn_length (arch) bytes, so this function must not
779 # write more bytes than that to that area.
780 #
781 # If you do not provide this function, GDB assumes that the
782 # architecture does not support displaced stepping.
783 #
784 # If the instruction cannot execute out of line, return NULL. The
785 # core falls back to stepping past the instruction in-line instead in
786 # that case.
787 M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
788
789 # Return true if GDB should use hardware single-stepping to execute
790 # the displaced instruction identified by CLOSURE. If false,
791 # GDB will simply restart execution at the displaced instruction
792 # location, and it is up to the target to ensure GDB will receive
793 # control again (e.g. by placing a software breakpoint instruction
794 # into the displaced instruction buffer).
795 #
796 # The default implementation returns false on all targets that
797 # provide a gdbarch_software_single_step routine, and true otherwise.
798 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
799
800 # Fix up the state resulting from successfully single-stepping a
801 # displaced instruction, to give the result we would have gotten from
802 # stepping the instruction in its original location.
803 #
804 # REGS is the register state resulting from single-stepping the
805 # displaced instruction.
806 #
807 # CLOSURE is the result from the matching call to
808 # gdbarch_displaced_step_copy_insn.
809 #
810 # If you provide gdbarch_displaced_step_copy_insn.but not this
811 # function, then GDB assumes that no fixup is needed after
812 # single-stepping the instruction.
813 #
814 # For a general explanation of displaced stepping and how GDB uses it,
815 # see the comments in infrun.c.
816 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
817
818 # Return the address of an appropriate place to put displaced
819 # instructions while we step over them. There need only be one such
820 # place, since we're only stepping one thread over a breakpoint at a
821 # time.
822 #
823 # For a general explanation of displaced stepping and how GDB uses it,
824 # see the comments in infrun.c.
825 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
826
827 # Relocate an instruction to execute at a different address. OLDLOC
828 # is the address in the inferior memory where the instruction to
829 # relocate is currently at. On input, TO points to the destination
830 # where we want the instruction to be copied (and possibly adjusted)
831 # to. On output, it points to one past the end of the resulting
832 # instruction(s). The effect of executing the instruction at TO shall
833 # be the same as if executing it at FROM. For example, call
834 # instructions that implicitly push the return address on the stack
835 # should be adjusted to return to the instruction after OLDLOC;
836 # relative branches, and other PC-relative instructions need the
837 # offset adjusted; etc.
838 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
839
840 # Refresh overlay mapped state for section OSECT.
841 F;void;overlay_update;struct obj_section *osect;osect
842
843 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
844
845 # Set if the address in N_SO or N_FUN stabs may be zero.
846 v;int;sofun_address_maybe_missing;;;0;0;;0
847
848 # Parse the instruction at ADDR storing in the record execution log
849 # the registers REGCACHE and memory ranges that will be affected when
850 # the instruction executes, along with their current values.
851 # Return -1 if something goes wrong, 0 otherwise.
852 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
853
854 # Save process state after a signal.
855 # Return -1 if something goes wrong, 0 otherwise.
856 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
857
858 # Signal translation: translate inferior's signal (target's) number
859 # into GDB's representation. The implementation of this method must
860 # be host independent. IOW, don't rely on symbols of the NAT_FILE
861 # header (the nm-*.h files), the host <signal.h> header, or similar
862 # headers. This is mainly used when cross-debugging core files ---
863 # "Live" targets hide the translation behind the target interface
864 # (target_wait, target_resume, etc.).
865 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
866
867 # Signal translation: translate the GDB's internal signal number into
868 # the inferior's signal (target's) representation. The implementation
869 # of this method must be host independent. IOW, don't rely on symbols
870 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
871 # header, or similar headers.
872 # Return the target signal number if found, or -1 if the GDB internal
873 # signal number is invalid.
874 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
875
876 # Extra signal info inspection.
877 #
878 # Return a type suitable to inspect extra signal information.
879 M;struct type *;get_siginfo_type;void;
880
881 # Record architecture-specific information from the symbol table.
882 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
883
884 # Function for the 'catch syscall' feature.
885
886 # Get architecture-specific system calls information from registers.
887 M;LONGEST;get_syscall_number;thread_info *thread;thread
888
889 # The filename of the XML syscall for this architecture.
890 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
891
892 # Information about system calls from this architecture
893 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
894
895 # SystemTap related fields and functions.
896
897 # A NULL-terminated array of prefixes used to mark an integer constant
898 # on the architecture's assembly.
899 # For example, on x86 integer constants are written as:
900 #
901 # \$10 ;; integer constant 10
902 #
903 # in this case, this prefix would be the character \`\$\'.
904 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
905
906 # A NULL-terminated array of suffixes used to mark an integer constant
907 # on the architecture's assembly.
908 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
909
910 # A NULL-terminated array of prefixes used to mark a register name on
911 # the architecture's assembly.
912 # For example, on x86 the register name is written as:
913 #
914 # \%eax ;; register eax
915 #
916 # in this case, this prefix would be the character \`\%\'.
917 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
918
919 # A NULL-terminated array of suffixes used to mark a register name on
920 # the architecture's assembly.
921 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
922
923 # A NULL-terminated array of prefixes used to mark a register
924 # indirection on the architecture's assembly.
925 # For example, on x86 the register indirection is written as:
926 #
927 # \(\%eax\) ;; indirecting eax
928 #
929 # in this case, this prefix would be the charater \`\(\'.
930 #
931 # Please note that we use the indirection prefix also for register
932 # displacement, e.g., \`4\(\%eax\)\' on x86.
933 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
934
935 # A NULL-terminated array of suffixes used to mark a register
936 # indirection on the architecture's assembly.
937 # For example, on x86 the register indirection is written as:
938 #
939 # \(\%eax\) ;; indirecting eax
940 #
941 # in this case, this prefix would be the charater \`\)\'.
942 #
943 # Please note that we use the indirection suffix also for register
944 # displacement, e.g., \`4\(\%eax\)\' on x86.
945 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
946
947 # Prefix(es) used to name a register using GDB's nomenclature.
948 #
949 # For example, on PPC a register is represented by a number in the assembly
950 # language (e.g., \`10\' is the 10th general-purpose register). However,
951 # inside GDB this same register has an \`r\' appended to its name, so the 10th
952 # register would be represented as \`r10\' internally.
953 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
954
955 # Suffix used to name a register using GDB's nomenclature.
956 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
957
958 # Check if S is a single operand.
959 #
960 # Single operands can be:
961 # \- Literal integers, e.g. \`\$10\' on x86
962 # \- Register access, e.g. \`\%eax\' on x86
963 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
964 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
965 #
966 # This function should check for these patterns on the string
967 # and return 1 if some were found, or zero otherwise. Please try to match
968 # as much info as you can from the string, i.e., if you have to match
969 # something like \`\(\%\', do not match just the \`\(\'.
970 M;int;stap_is_single_operand;const char *s;s
971
972 # Function used to handle a "special case" in the parser.
973 #
974 # A "special case" is considered to be an unknown token, i.e., a token
975 # that the parser does not know how to parse. A good example of special
976 # case would be ARM's register displacement syntax:
977 #
978 # [R0, #4] ;; displacing R0 by 4
979 #
980 # Since the parser assumes that a register displacement is of the form:
981 #
982 # <number> <indirection_prefix> <register_name> <indirection_suffix>
983 #
984 # it means that it will not be able to recognize and parse this odd syntax.
985 # Therefore, we should add a special case function that will handle this token.
986 #
987 # This function should generate the proper expression form of the expression
988 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
989 # and so on). It should also return 1 if the parsing was successful, or zero
990 # if the token was not recognized as a special token (in this case, returning
991 # zero means that the special parser is deferring the parsing to the generic
992 # parser), and should advance the buffer pointer (p->arg).
993 M;int;stap_parse_special_token;struct stap_parse_info *p;p
994
995 # Perform arch-dependent adjustments to a register name.
996 #
997 # In very specific situations, it may be necessary for the register
998 # name present in a SystemTap probe's argument to be handled in a
999 # special way. For example, on i386, GCC may over-optimize the
1000 # register allocation and use smaller registers than necessary. In
1001 # such cases, the client that is reading and evaluating the SystemTap
1002 # probe (ourselves) will need to actually fetch values from the wider
1003 # version of the register in question.
1004 #
1005 # To illustrate the example, consider the following probe argument
1006 # (i386):
1007 #
1008 # 4@%ax
1009 #
1010 # This argument says that its value can be found at the %ax register,
1011 # which is a 16-bit register. However, the argument's prefix says
1012 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1013 # this case, GDB should actually fetch the probe's value from register
1014 # %eax, not %ax. In this scenario, this function would actually
1015 # replace the register name from %ax to %eax.
1016 #
1017 # The rationale for this can be found at PR breakpoints/24541.
1018 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1019
1020 # DTrace related functions.
1021
1022 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1023 # NARG must be >= 0.
1024 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1025
1026 # True if the given ADDR does not contain the instruction sequence
1027 # corresponding to a disabled DTrace is-enabled probe.
1028 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1029
1030 # Enable a DTrace is-enabled probe at ADDR.
1031 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1032
1033 # Disable a DTrace is-enabled probe at ADDR.
1034 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1035
1036 # True if the list of shared libraries is one and only for all
1037 # processes, as opposed to a list of shared libraries per inferior.
1038 # This usually means that all processes, although may or may not share
1039 # an address space, will see the same set of symbols at the same
1040 # addresses.
1041 v;int;has_global_solist;;;0;0;;0
1042
1043 # On some targets, even though each inferior has its own private
1044 # address space, the debug interface takes care of making breakpoints
1045 # visible to all address spaces automatically. For such cases,
1046 # this property should be set to true.
1047 v;int;has_global_breakpoints;;;0;0;;0
1048
1049 # True if inferiors share an address space (e.g., uClinux).
1050 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1051
1052 # True if a fast tracepoint can be set at an address.
1053 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1054
1055 # Guess register state based on tracepoint location. Used for tracepoints
1056 # where no registers have been collected, but there's only one location,
1057 # allowing us to guess the PC value, and perhaps some other registers.
1058 # On entry, regcache has all registers marked as unavailable.
1059 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1060
1061 # Return the "auto" target charset.
1062 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1063 # Return the "auto" target wide charset.
1064 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1065
1066 # If non-empty, this is a file extension that will be opened in place
1067 # of the file extension reported by the shared library list.
1068 #
1069 # This is most useful for toolchains that use a post-linker tool,
1070 # where the names of the files run on the target differ in extension
1071 # compared to the names of the files GDB should load for debug info.
1072 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1073
1074 # If true, the target OS has DOS-based file system semantics. That
1075 # is, absolute paths include a drive name, and the backslash is
1076 # considered a directory separator.
1077 v;int;has_dos_based_file_system;;;0;0;;0
1078
1079 # Generate bytecodes to collect the return address in a frame.
1080 # Since the bytecodes run on the target, possibly with GDB not even
1081 # connected, the full unwinding machinery is not available, and
1082 # typically this function will issue bytecodes for one or more likely
1083 # places that the return address may be found.
1084 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1085
1086 # Implement the "info proc" command.
1087 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1088
1089 # Implement the "info proc" command for core files. Noe that there
1090 # are two "info_proc"-like methods on gdbarch -- one for core files,
1091 # one for live targets.
1092 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1093
1094 # Iterate over all objfiles in the order that makes the most sense
1095 # for the architecture to make global symbol searches.
1096 #
1097 # CB is a callback function where OBJFILE is the objfile to be searched,
1098 # and CB_DATA a pointer to user-defined data (the same data that is passed
1099 # when calling this gdbarch method). The iteration stops if this function
1100 # returns nonzero.
1101 #
1102 # CB_DATA is a pointer to some user-defined data to be passed to
1103 # the callback.
1104 #
1105 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1106 # inspected when the symbol search was requested.
1107 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1108
1109 # Ravenscar arch-dependent ops.
1110 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1111
1112 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1113 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1114
1115 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1116 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1117
1118 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1119 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1120
1121 # Return true if there's a program/permanent breakpoint planted in
1122 # memory at ADDRESS, return false otherwise.
1123 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1124
1125 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1126 # Return 0 if *READPTR is already at the end of the buffer.
1127 # Return -1 if there is insufficient buffer for a whole entry.
1128 # Return 1 if an entry was read into *TYPEP and *VALP.
1129 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1130
1131 # Print the description of a single auxv entry described by TYPE and VAL
1132 # to FILE.
1133 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1134
1135 # Find the address range of the current inferior's vsyscall/vDSO, and
1136 # write it to *RANGE. If the vsyscall's length can't be determined, a
1137 # range with zero length is returned. Returns true if the vsyscall is
1138 # found, false otherwise.
1139 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1140
1141 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1142 # PROT has GDB_MMAP_PROT_* bitmask format.
1143 # Throw an error if it is not possible. Returned address is always valid.
1144 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1145
1146 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1147 # Print a warning if it is not possible.
1148 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1149
1150 # Return string (caller has to use xfree for it) with options for GCC
1151 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1152 # These options are put before CU's DW_AT_producer compilation options so that
1153 # they can override it.
1154 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1155
1156 # Return a regular expression that matches names used by this
1157 # architecture in GNU configury triplets. The result is statically
1158 # allocated and must not be freed. The default implementation simply
1159 # returns the BFD architecture name, which is correct in nearly every
1160 # case.
1161 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1162
1163 # Return the size in 8-bit bytes of an addressable memory unit on this
1164 # architecture. This corresponds to the number of 8-bit bytes associated to
1165 # each address in memory.
1166 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1167
1168 # Functions for allowing a target to modify its disassembler options.
1169 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1170 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1171 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1172
1173 # Type alignment override method. Return the architecture specific
1174 # alignment required for TYPE. If there is no special handling
1175 # required for TYPE then return the value 0, GDB will then apply the
1176 # default rules as laid out in gdbtypes.c:type_align.
1177 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1178
1179 # Return a string containing any flags for the given PC in the given FRAME.
1180 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1181
1182 EOF
1183 }
1184
1185 #
1186 # The .log file
1187 #
1188 exec > gdbarch.log
1189 function_list | while do_read
1190 do
1191 cat <<EOF
1192 ${class} ${returntype:-} ${function} (${formal:-})
1193 EOF
1194 for r in ${read}
1195 do
1196 eval echo "\" ${r}=\${${r}}\""
1197 done
1198 if class_is_predicate_p && fallback_default_p
1199 then
1200 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1201 kill $$
1202 exit 1
1203 fi
1204 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1205 then
1206 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1207 kill $$
1208 exit 1
1209 fi
1210 if class_is_multiarch_p
1211 then
1212 if class_is_predicate_p ; then :
1213 elif test "x${predefault}" = "x"
1214 then
1215 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1216 kill $$
1217 exit 1
1218 fi
1219 fi
1220 echo ""
1221 done
1222
1223 exec 1>&2
1224
1225
1226 copyright ()
1227 {
1228 cat <<EOF
1229 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1230 /* vi:set ro: */
1231
1232 /* Dynamic architecture support for GDB, the GNU debugger.
1233
1234 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1235
1236 This file is part of GDB.
1237
1238 This program is free software; you can redistribute it and/or modify
1239 it under the terms of the GNU General Public License as published by
1240 the Free Software Foundation; either version 3 of the License, or
1241 (at your option) any later version.
1242
1243 This program is distributed in the hope that it will be useful,
1244 but WITHOUT ANY WARRANTY; without even the implied warranty of
1245 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1246 GNU General Public License for more details.
1247
1248 You should have received a copy of the GNU General Public License
1249 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1250
1251 /* This file was created with the aid of \`\`gdbarch.sh''. */
1252
1253 EOF
1254 }
1255
1256 #
1257 # The .h file
1258 #
1259
1260 exec > new-gdbarch.h
1261 copyright
1262 cat <<EOF
1263 #ifndef GDBARCH_H
1264 #define GDBARCH_H
1265
1266 #include <vector>
1267 #include "frame.h"
1268 #include "dis-asm.h"
1269 #include "gdb_obstack.h"
1270 #include "infrun.h"
1271 #include "osabi.h"
1272
1273 struct floatformat;
1274 struct ui_file;
1275 struct value;
1276 struct objfile;
1277 struct obj_section;
1278 struct minimal_symbol;
1279 struct regcache;
1280 struct reggroup;
1281 struct regset;
1282 struct disassemble_info;
1283 struct target_ops;
1284 struct obstack;
1285 struct bp_target_info;
1286 struct target_desc;
1287 struct symbol;
1288 struct syscall;
1289 struct agent_expr;
1290 struct axs_value;
1291 struct stap_parse_info;
1292 struct expr_builder;
1293 struct ravenscar_arch_ops;
1294 struct mem_range;
1295 struct syscalls_info;
1296 struct thread_info;
1297 struct ui_out;
1298
1299 #include "regcache.h"
1300
1301 /* The architecture associated with the inferior through the
1302 connection to the target.
1303
1304 The architecture vector provides some information that is really a
1305 property of the inferior, accessed through a particular target:
1306 ptrace operations; the layout of certain RSP packets; the solib_ops
1307 vector; etc. To differentiate architecture accesses to
1308 per-inferior/target properties from
1309 per-thread/per-frame/per-objfile properties, accesses to
1310 per-inferior/target properties should be made through this
1311 gdbarch. */
1312
1313 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1314 extern struct gdbarch *target_gdbarch (void);
1315
1316 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1317 gdbarch method. */
1318
1319 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1320 (struct objfile *objfile, void *cb_data);
1321
1322 /* Callback type for regset section iterators. The callback usually
1323 invokes the REGSET's supply or collect method, to which it must
1324 pass a buffer - for collects this buffer will need to be created using
1325 COLLECT_SIZE, for supply the existing buffer being read from should
1326 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1327 is used for diagnostic messages. CB_DATA should have been passed
1328 unchanged through the iterator. */
1329
1330 typedef void (iterate_over_regset_sections_cb)
1331 (const char *sect_name, int supply_size, int collect_size,
1332 const struct regset *regset, const char *human_name, void *cb_data);
1333
1334 /* For a function call, does the function return a value using a
1335 normal value return or a structure return - passing a hidden
1336 argument pointing to storage. For the latter, there are two
1337 cases: language-mandated structure return and target ABI
1338 structure return. */
1339
1340 enum function_call_return_method
1341 {
1342 /* Standard value return. */
1343 return_method_normal = 0,
1344
1345 /* Language ABI structure return. This is handled
1346 by passing the return location as the first parameter to
1347 the function, even preceding "this". */
1348 return_method_hidden_param,
1349
1350 /* Target ABI struct return. This is target-specific; for instance,
1351 on ia64 the first argument is passed in out0 but the hidden
1352 structure return pointer would normally be passed in r8. */
1353 return_method_struct,
1354 };
1355
1356 EOF
1357
1358 # function typedef's
1359 printf "\n"
1360 printf "\n"
1361 printf "/* The following are pre-initialized by GDBARCH. */\n"
1362 function_list | while do_read
1363 do
1364 if class_is_info_p
1365 then
1366 printf "\n"
1367 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1368 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1369 fi
1370 done
1371
1372 # function typedef's
1373 printf "\n"
1374 printf "\n"
1375 printf "/* The following are initialized by the target dependent code. */\n"
1376 function_list | while do_read
1377 do
1378 if [ -n "${comment}" ]
1379 then
1380 echo "${comment}" | sed \
1381 -e '2 s,#,/*,' \
1382 -e '3,$ s,#, ,' \
1383 -e '$ s,$, */,'
1384 fi
1385
1386 if class_is_predicate_p
1387 then
1388 printf "\n"
1389 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1390 fi
1391 if class_is_variable_p
1392 then
1393 printf "\n"
1394 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1395 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1396 fi
1397 if class_is_function_p
1398 then
1399 printf "\n"
1400 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1401 then
1402 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1403 elif class_is_multiarch_p
1404 then
1405 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1406 else
1407 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1408 fi
1409 if [ "x${formal}" = "xvoid" ]
1410 then
1411 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1412 else
1413 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1414 fi
1415 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1416 fi
1417 done
1418
1419 # close it off
1420 cat <<EOF
1421
1422 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1423
1424
1425 /* Mechanism for co-ordinating the selection of a specific
1426 architecture.
1427
1428 GDB targets (*-tdep.c) can register an interest in a specific
1429 architecture. Other GDB components can register a need to maintain
1430 per-architecture data.
1431
1432 The mechanisms below ensures that there is only a loose connection
1433 between the set-architecture command and the various GDB
1434 components. Each component can independently register their need
1435 to maintain architecture specific data with gdbarch.
1436
1437 Pragmatics:
1438
1439 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1440 didn't scale.
1441
1442 The more traditional mega-struct containing architecture specific
1443 data for all the various GDB components was also considered. Since
1444 GDB is built from a variable number of (fairly independent)
1445 components it was determined that the global aproach was not
1446 applicable. */
1447
1448
1449 /* Register a new architectural family with GDB.
1450
1451 Register support for the specified ARCHITECTURE with GDB. When
1452 gdbarch determines that the specified architecture has been
1453 selected, the corresponding INIT function is called.
1454
1455 --
1456
1457 The INIT function takes two parameters: INFO which contains the
1458 information available to gdbarch about the (possibly new)
1459 architecture; ARCHES which is a list of the previously created
1460 \`\`struct gdbarch'' for this architecture.
1461
1462 The INFO parameter is, as far as possible, be pre-initialized with
1463 information obtained from INFO.ABFD or the global defaults.
1464
1465 The ARCHES parameter is a linked list (sorted most recently used)
1466 of all the previously created architures for this architecture
1467 family. The (possibly NULL) ARCHES->gdbarch can used to access
1468 values from the previously selected architecture for this
1469 architecture family.
1470
1471 The INIT function shall return any of: NULL - indicating that it
1472 doesn't recognize the selected architecture; an existing \`\`struct
1473 gdbarch'' from the ARCHES list - indicating that the new
1474 architecture is just a synonym for an earlier architecture (see
1475 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1476 - that describes the selected architecture (see gdbarch_alloc()).
1477
1478 The DUMP_TDEP function shall print out all target specific values.
1479 Care should be taken to ensure that the function works in both the
1480 multi-arch and non- multi-arch cases. */
1481
1482 struct gdbarch_list
1483 {
1484 struct gdbarch *gdbarch;
1485 struct gdbarch_list *next;
1486 };
1487
1488 struct gdbarch_info
1489 {
1490 /* Use default: NULL (ZERO). */
1491 const struct bfd_arch_info *bfd_arch_info;
1492
1493 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1494 enum bfd_endian byte_order;
1495
1496 enum bfd_endian byte_order_for_code;
1497
1498 /* Use default: NULL (ZERO). */
1499 bfd *abfd;
1500
1501 /* Use default: NULL (ZERO). */
1502 union
1503 {
1504 /* Architecture-specific information. The generic form for targets
1505 that have extra requirements. */
1506 struct gdbarch_tdep_info *tdep_info;
1507
1508 /* Architecture-specific target description data. Numerous targets
1509 need only this, so give them an easy way to hold it. */
1510 struct tdesc_arch_data *tdesc_data;
1511
1512 /* SPU file system ID. This is a single integer, so using the
1513 generic form would only complicate code. Other targets may
1514 reuse this member if suitable. */
1515 int *id;
1516 };
1517
1518 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1519 enum gdb_osabi osabi;
1520
1521 /* Use default: NULL (ZERO). */
1522 const struct target_desc *target_desc;
1523 };
1524
1525 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1526 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1527
1528 /* DEPRECATED - use gdbarch_register() */
1529 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1530
1531 extern void gdbarch_register (enum bfd_architecture architecture,
1532 gdbarch_init_ftype *,
1533 gdbarch_dump_tdep_ftype *);
1534
1535
1536 /* Return a freshly allocated, NULL terminated, array of the valid
1537 architecture names. Since architectures are registered during the
1538 _initialize phase this function only returns useful information
1539 once initialization has been completed. */
1540
1541 extern const char **gdbarch_printable_names (void);
1542
1543
1544 /* Helper function. Search the list of ARCHES for a GDBARCH that
1545 matches the information provided by INFO. */
1546
1547 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1548
1549
1550 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1551 basic initialization using values obtained from the INFO and TDEP
1552 parameters. set_gdbarch_*() functions are called to complete the
1553 initialization of the object. */
1554
1555 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1556
1557
1558 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1559 It is assumed that the caller freeds the \`\`struct
1560 gdbarch_tdep''. */
1561
1562 extern void gdbarch_free (struct gdbarch *);
1563
1564 /* Get the obstack owned by ARCH. */
1565
1566 extern obstack *gdbarch_obstack (gdbarch *arch);
1567
1568 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1569 obstack. The memory is freed when the corresponding architecture
1570 is also freed. */
1571
1572 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1573 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1574
1575 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1576 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1577
1578 /* Duplicate STRING, returning an equivalent string that's allocated on the
1579 obstack associated with GDBARCH. The string is freed when the corresponding
1580 architecture is also freed. */
1581
1582 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1583
1584 /* Helper function. Force an update of the current architecture.
1585
1586 The actual architecture selected is determined by INFO, \`\`(gdb) set
1587 architecture'' et.al., the existing architecture and BFD's default
1588 architecture. INFO should be initialized to zero and then selected
1589 fields should be updated.
1590
1591 Returns non-zero if the update succeeds. */
1592
1593 extern int gdbarch_update_p (struct gdbarch_info info);
1594
1595
1596 /* Helper function. Find an architecture matching info.
1597
1598 INFO should be initialized using gdbarch_info_init, relevant fields
1599 set, and then finished using gdbarch_info_fill.
1600
1601 Returns the corresponding architecture, or NULL if no matching
1602 architecture was found. */
1603
1604 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1605
1606
1607 /* Helper function. Set the target gdbarch to "gdbarch". */
1608
1609 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1610
1611
1612 /* Register per-architecture data-pointer.
1613
1614 Reserve space for a per-architecture data-pointer. An identifier
1615 for the reserved data-pointer is returned. That identifer should
1616 be saved in a local static variable.
1617
1618 Memory for the per-architecture data shall be allocated using
1619 gdbarch_obstack_zalloc. That memory will be deleted when the
1620 corresponding architecture object is deleted.
1621
1622 When a previously created architecture is re-selected, the
1623 per-architecture data-pointer for that previous architecture is
1624 restored. INIT() is not re-called.
1625
1626 Multiple registrarants for any architecture are allowed (and
1627 strongly encouraged). */
1628
1629 struct gdbarch_data;
1630
1631 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1632 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1633 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1634 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1635 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1636 struct gdbarch_data *data,
1637 void *pointer);
1638
1639 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1640
1641
1642 /* Set the dynamic target-system-dependent parameters (architecture,
1643 byte-order, ...) using information found in the BFD. */
1644
1645 extern void set_gdbarch_from_file (bfd *);
1646
1647
1648 /* Initialize the current architecture to the "first" one we find on
1649 our list. */
1650
1651 extern void initialize_current_architecture (void);
1652
1653 /* gdbarch trace variable */
1654 extern unsigned int gdbarch_debug;
1655
1656 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1657
1658 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1659
1660 static inline int
1661 gdbarch_num_cooked_regs (gdbarch *arch)
1662 {
1663 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1664 }
1665
1666 #endif
1667 EOF
1668 exec 1>&2
1669 ../move-if-change new-gdbarch.h gdbarch.h
1670 rm -f new-gdbarch.h
1671
1672
1673 #
1674 # C file
1675 #
1676
1677 exec > new-gdbarch.c
1678 copyright
1679 cat <<EOF
1680
1681 #include "defs.h"
1682 #include "arch-utils.h"
1683
1684 #include "gdbcmd.h"
1685 #include "inferior.h"
1686 #include "symcat.h"
1687
1688 #include "floatformat.h"
1689 #include "reggroups.h"
1690 #include "osabi.h"
1691 #include "gdb_obstack.h"
1692 #include "observable.h"
1693 #include "regcache.h"
1694 #include "objfiles.h"
1695 #include "auxv.h"
1696 #include "frame-unwind.h"
1697 #include "dummy-frame.h"
1698
1699 /* Static function declarations */
1700
1701 static void alloc_gdbarch_data (struct gdbarch *);
1702
1703 /* Non-zero if we want to trace architecture code. */
1704
1705 #ifndef GDBARCH_DEBUG
1706 #define GDBARCH_DEBUG 0
1707 #endif
1708 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1709 static void
1710 show_gdbarch_debug (struct ui_file *file, int from_tty,
1711 struct cmd_list_element *c, const char *value)
1712 {
1713 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1714 }
1715
1716 static const char *
1717 pformat (const struct floatformat **format)
1718 {
1719 if (format == NULL)
1720 return "(null)";
1721 else
1722 /* Just print out one of them - this is only for diagnostics. */
1723 return format[0]->name;
1724 }
1725
1726 static const char *
1727 pstring (const char *string)
1728 {
1729 if (string == NULL)
1730 return "(null)";
1731 return string;
1732 }
1733
1734 static const char *
1735 pstring_ptr (char **string)
1736 {
1737 if (string == NULL || *string == NULL)
1738 return "(null)";
1739 return *string;
1740 }
1741
1742 /* Helper function to print a list of strings, represented as "const
1743 char *const *". The list is printed comma-separated. */
1744
1745 static const char *
1746 pstring_list (const char *const *list)
1747 {
1748 static char ret[100];
1749 const char *const *p;
1750 size_t offset = 0;
1751
1752 if (list == NULL)
1753 return "(null)";
1754
1755 ret[0] = '\0';
1756 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1757 {
1758 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1759 offset += 2 + s;
1760 }
1761
1762 if (offset > 0)
1763 {
1764 gdb_assert (offset - 2 < sizeof (ret));
1765 ret[offset - 2] = '\0';
1766 }
1767
1768 return ret;
1769 }
1770
1771 EOF
1772
1773 # gdbarch open the gdbarch object
1774 printf "\n"
1775 printf "/* Maintain the struct gdbarch object. */\n"
1776 printf "\n"
1777 printf "struct gdbarch\n"
1778 printf "{\n"
1779 printf " /* Has this architecture been fully initialized? */\n"
1780 printf " int initialized_p;\n"
1781 printf "\n"
1782 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1783 printf " struct obstack *obstack;\n"
1784 printf "\n"
1785 printf " /* basic architectural information. */\n"
1786 function_list | while do_read
1787 do
1788 if class_is_info_p
1789 then
1790 printf " %s %s;\n" "$returntype" "$function"
1791 fi
1792 done
1793 printf "\n"
1794 printf " /* target specific vector. */\n"
1795 printf " struct gdbarch_tdep *tdep;\n"
1796 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1797 printf "\n"
1798 printf " /* per-architecture data-pointers. */\n"
1799 printf " unsigned nr_data;\n"
1800 printf " void **data;\n"
1801 printf "\n"
1802 cat <<EOF
1803 /* Multi-arch values.
1804
1805 When extending this structure you must:
1806
1807 Add the field below.
1808
1809 Declare set/get functions and define the corresponding
1810 macro in gdbarch.h.
1811
1812 gdbarch_alloc(): If zero/NULL is not a suitable default,
1813 initialize the new field.
1814
1815 verify_gdbarch(): Confirm that the target updated the field
1816 correctly.
1817
1818 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1819 field is dumped out
1820
1821 get_gdbarch(): Implement the set/get functions (probably using
1822 the macro's as shortcuts).
1823
1824 */
1825
1826 EOF
1827 function_list | while do_read
1828 do
1829 if class_is_variable_p
1830 then
1831 printf " %s %s;\n" "$returntype" "$function"
1832 elif class_is_function_p
1833 then
1834 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1835 fi
1836 done
1837 printf "};\n"
1838
1839 # Create a new gdbarch struct
1840 cat <<EOF
1841
1842 /* Create a new \`\`struct gdbarch'' based on information provided by
1843 \`\`struct gdbarch_info''. */
1844 EOF
1845 printf "\n"
1846 cat <<EOF
1847 struct gdbarch *
1848 gdbarch_alloc (const struct gdbarch_info *info,
1849 struct gdbarch_tdep *tdep)
1850 {
1851 struct gdbarch *gdbarch;
1852
1853 /* Create an obstack for allocating all the per-architecture memory,
1854 then use that to allocate the architecture vector. */
1855 struct obstack *obstack = XNEW (struct obstack);
1856 obstack_init (obstack);
1857 gdbarch = XOBNEW (obstack, struct gdbarch);
1858 memset (gdbarch, 0, sizeof (*gdbarch));
1859 gdbarch->obstack = obstack;
1860
1861 alloc_gdbarch_data (gdbarch);
1862
1863 gdbarch->tdep = tdep;
1864 EOF
1865 printf "\n"
1866 function_list | while do_read
1867 do
1868 if class_is_info_p
1869 then
1870 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1871 fi
1872 done
1873 printf "\n"
1874 printf " /* Force the explicit initialization of these. */\n"
1875 function_list | while do_read
1876 do
1877 if class_is_function_p || class_is_variable_p
1878 then
1879 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1880 then
1881 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1882 fi
1883 fi
1884 done
1885 cat <<EOF
1886 /* gdbarch_alloc() */
1887
1888 return gdbarch;
1889 }
1890 EOF
1891
1892 # Free a gdbarch struct.
1893 printf "\n"
1894 printf "\n"
1895 cat <<EOF
1896
1897 obstack *gdbarch_obstack (gdbarch *arch)
1898 {
1899 return arch->obstack;
1900 }
1901
1902 /* See gdbarch.h. */
1903
1904 char *
1905 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1906 {
1907 return obstack_strdup (arch->obstack, string);
1908 }
1909
1910
1911 /* Free a gdbarch struct. This should never happen in normal
1912 operation --- once you've created a gdbarch, you keep it around.
1913 However, if an architecture's init function encounters an error
1914 building the structure, it may need to clean up a partially
1915 constructed gdbarch. */
1916
1917 void
1918 gdbarch_free (struct gdbarch *arch)
1919 {
1920 struct obstack *obstack;
1921
1922 gdb_assert (arch != NULL);
1923 gdb_assert (!arch->initialized_p);
1924 obstack = arch->obstack;
1925 obstack_free (obstack, 0); /* Includes the ARCH. */
1926 xfree (obstack);
1927 }
1928 EOF
1929
1930 # verify a new architecture
1931 cat <<EOF
1932
1933
1934 /* Ensure that all values in a GDBARCH are reasonable. */
1935
1936 static void
1937 verify_gdbarch (struct gdbarch *gdbarch)
1938 {
1939 string_file log;
1940
1941 /* fundamental */
1942 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1943 log.puts ("\n\tbyte-order");
1944 if (gdbarch->bfd_arch_info == NULL)
1945 log.puts ("\n\tbfd_arch_info");
1946 /* Check those that need to be defined for the given multi-arch level. */
1947 EOF
1948 function_list | while do_read
1949 do
1950 if class_is_function_p || class_is_variable_p
1951 then
1952 if [ "x${invalid_p}" = "x0" ]
1953 then
1954 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1955 elif class_is_predicate_p
1956 then
1957 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1958 # FIXME: See do_read for potential simplification
1959 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1960 then
1961 printf " if (%s)\n" "$invalid_p"
1962 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1963 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
1964 then
1965 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1966 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1967 elif [ -n "${postdefault}" ]
1968 then
1969 printf " if (gdbarch->%s == 0)\n" "$function"
1970 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1971 elif [ -n "${invalid_p}" ]
1972 then
1973 printf " if (%s)\n" "$invalid_p"
1974 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1975 elif [ -n "${predefault}" ]
1976 then
1977 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1978 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1979 fi
1980 fi
1981 done
1982 cat <<EOF
1983 if (!log.empty ())
1984 internal_error (__FILE__, __LINE__,
1985 _("verify_gdbarch: the following are invalid ...%s"),
1986 log.c_str ());
1987 }
1988 EOF
1989
1990 # dump the structure
1991 printf "\n"
1992 printf "\n"
1993 cat <<EOF
1994 /* Print out the details of the current architecture. */
1995
1996 void
1997 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1998 {
1999 const char *gdb_nm_file = "<not-defined>";
2000
2001 #if defined (GDB_NM_FILE)
2002 gdb_nm_file = GDB_NM_FILE;
2003 #endif
2004 fprintf_unfiltered (file,
2005 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2006 gdb_nm_file);
2007 EOF
2008 function_list | sort '-t;' -k 3 | while do_read
2009 do
2010 # First the predicate
2011 if class_is_predicate_p
2012 then
2013 printf " fprintf_unfiltered (file,\n"
2014 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2015 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2016 fi
2017 # Print the corresponding value.
2018 if class_is_function_p
2019 then
2020 printf " fprintf_unfiltered (file,\n"
2021 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2022 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2023 else
2024 # It is a variable
2025 case "${print}:${returntype}" in
2026 :CORE_ADDR )
2027 fmt="%s"
2028 print="core_addr_to_string_nz (gdbarch->${function})"
2029 ;;
2030 :* )
2031 fmt="%s"
2032 print="plongest (gdbarch->${function})"
2033 ;;
2034 * )
2035 fmt="%s"
2036 ;;
2037 esac
2038 printf " fprintf_unfiltered (file,\n"
2039 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2040 printf " %s);\n" "$print"
2041 fi
2042 done
2043 cat <<EOF
2044 if (gdbarch->dump_tdep != NULL)
2045 gdbarch->dump_tdep (gdbarch, file);
2046 }
2047 EOF
2048
2049
2050 # GET/SET
2051 printf "\n"
2052 cat <<EOF
2053 struct gdbarch_tdep *
2054 gdbarch_tdep (struct gdbarch *gdbarch)
2055 {
2056 if (gdbarch_debug >= 2)
2057 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2058 return gdbarch->tdep;
2059 }
2060 EOF
2061 printf "\n"
2062 function_list | while do_read
2063 do
2064 if class_is_predicate_p
2065 then
2066 printf "\n"
2067 printf "int\n"
2068 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2069 printf "{\n"
2070 printf " gdb_assert (gdbarch != NULL);\n"
2071 printf " return %s;\n" "$predicate"
2072 printf "}\n"
2073 fi
2074 if class_is_function_p
2075 then
2076 printf "\n"
2077 printf "%s\n" "$returntype"
2078 if [ "x${formal}" = "xvoid" ]
2079 then
2080 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2081 else
2082 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2083 fi
2084 printf "{\n"
2085 printf " gdb_assert (gdbarch != NULL);\n"
2086 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2087 if class_is_predicate_p && test -n "${predefault}"
2088 then
2089 # Allow a call to a function with a predicate.
2090 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2091 fi
2092 printf " if (gdbarch_debug >= 2)\n"
2093 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2094 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2095 then
2096 if class_is_multiarch_p
2097 then
2098 params="gdbarch"
2099 else
2100 params=""
2101 fi
2102 else
2103 if class_is_multiarch_p
2104 then
2105 params="gdbarch, ${actual}"
2106 else
2107 params="${actual}"
2108 fi
2109 fi
2110 if [ "x${returntype}" = "xvoid" ]
2111 then
2112 printf " gdbarch->%s (%s);\n" "$function" "$params"
2113 else
2114 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2115 fi
2116 printf "}\n"
2117 printf "\n"
2118 printf "void\n"
2119 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2120 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2121 printf "{\n"
2122 printf " gdbarch->%s = %s;\n" "$function" "$function"
2123 printf "}\n"
2124 elif class_is_variable_p
2125 then
2126 printf "\n"
2127 printf "%s\n" "$returntype"
2128 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2129 printf "{\n"
2130 printf " gdb_assert (gdbarch != NULL);\n"
2131 if [ "x${invalid_p}" = "x0" ]
2132 then
2133 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2134 elif [ -n "${invalid_p}" ]
2135 then
2136 printf " /* Check variable is valid. */\n"
2137 printf " gdb_assert (!(%s));\n" "$invalid_p"
2138 elif [ -n "${predefault}" ]
2139 then
2140 printf " /* Check variable changed from pre-default. */\n"
2141 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2142 fi
2143 printf " if (gdbarch_debug >= 2)\n"
2144 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2145 printf " return gdbarch->%s;\n" "$function"
2146 printf "}\n"
2147 printf "\n"
2148 printf "void\n"
2149 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2150 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2151 printf "{\n"
2152 printf " gdbarch->%s = %s;\n" "$function" "$function"
2153 printf "}\n"
2154 elif class_is_info_p
2155 then
2156 printf "\n"
2157 printf "%s\n" "$returntype"
2158 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2159 printf "{\n"
2160 printf " gdb_assert (gdbarch != NULL);\n"
2161 printf " if (gdbarch_debug >= 2)\n"
2162 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2163 printf " return gdbarch->%s;\n" "$function"
2164 printf "}\n"
2165 fi
2166 done
2167
2168 # All the trailing guff
2169 cat <<EOF
2170
2171
2172 /* Keep a registry of per-architecture data-pointers required by GDB
2173 modules. */
2174
2175 struct gdbarch_data
2176 {
2177 unsigned index;
2178 int init_p;
2179 gdbarch_data_pre_init_ftype *pre_init;
2180 gdbarch_data_post_init_ftype *post_init;
2181 };
2182
2183 struct gdbarch_data_registration
2184 {
2185 struct gdbarch_data *data;
2186 struct gdbarch_data_registration *next;
2187 };
2188
2189 struct gdbarch_data_registry
2190 {
2191 unsigned nr;
2192 struct gdbarch_data_registration *registrations;
2193 };
2194
2195 struct gdbarch_data_registry gdbarch_data_registry =
2196 {
2197 0, NULL,
2198 };
2199
2200 static struct gdbarch_data *
2201 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2202 gdbarch_data_post_init_ftype *post_init)
2203 {
2204 struct gdbarch_data_registration **curr;
2205
2206 /* Append the new registration. */
2207 for (curr = &gdbarch_data_registry.registrations;
2208 (*curr) != NULL;
2209 curr = &(*curr)->next);
2210 (*curr) = XNEW (struct gdbarch_data_registration);
2211 (*curr)->next = NULL;
2212 (*curr)->data = XNEW (struct gdbarch_data);
2213 (*curr)->data->index = gdbarch_data_registry.nr++;
2214 (*curr)->data->pre_init = pre_init;
2215 (*curr)->data->post_init = post_init;
2216 (*curr)->data->init_p = 1;
2217 return (*curr)->data;
2218 }
2219
2220 struct gdbarch_data *
2221 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2222 {
2223 return gdbarch_data_register (pre_init, NULL);
2224 }
2225
2226 struct gdbarch_data *
2227 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2228 {
2229 return gdbarch_data_register (NULL, post_init);
2230 }
2231
2232 /* Create/delete the gdbarch data vector. */
2233
2234 static void
2235 alloc_gdbarch_data (struct gdbarch *gdbarch)
2236 {
2237 gdb_assert (gdbarch->data == NULL);
2238 gdbarch->nr_data = gdbarch_data_registry.nr;
2239 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2240 }
2241
2242 /* Initialize the current value of the specified per-architecture
2243 data-pointer. */
2244
2245 void
2246 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2247 struct gdbarch_data *data,
2248 void *pointer)
2249 {
2250 gdb_assert (data->index < gdbarch->nr_data);
2251 gdb_assert (gdbarch->data[data->index] == NULL);
2252 gdb_assert (data->pre_init == NULL);
2253 gdbarch->data[data->index] = pointer;
2254 }
2255
2256 /* Return the current value of the specified per-architecture
2257 data-pointer. */
2258
2259 void *
2260 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2261 {
2262 gdb_assert (data->index < gdbarch->nr_data);
2263 if (gdbarch->data[data->index] == NULL)
2264 {
2265 /* The data-pointer isn't initialized, call init() to get a
2266 value. */
2267 if (data->pre_init != NULL)
2268 /* Mid architecture creation: pass just the obstack, and not
2269 the entire architecture, as that way it isn't possible for
2270 pre-init code to refer to undefined architecture
2271 fields. */
2272 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2273 else if (gdbarch->initialized_p
2274 && data->post_init != NULL)
2275 /* Post architecture creation: pass the entire architecture
2276 (as all fields are valid), but be careful to also detect
2277 recursive references. */
2278 {
2279 gdb_assert (data->init_p);
2280 data->init_p = 0;
2281 gdbarch->data[data->index] = data->post_init (gdbarch);
2282 data->init_p = 1;
2283 }
2284 else
2285 /* The architecture initialization hasn't completed - punt -
2286 hope that the caller knows what they are doing. Once
2287 deprecated_set_gdbarch_data has been initialized, this can be
2288 changed to an internal error. */
2289 return NULL;
2290 gdb_assert (gdbarch->data[data->index] != NULL);
2291 }
2292 return gdbarch->data[data->index];
2293 }
2294
2295
2296 /* Keep a registry of the architectures known by GDB. */
2297
2298 struct gdbarch_registration
2299 {
2300 enum bfd_architecture bfd_architecture;
2301 gdbarch_init_ftype *init;
2302 gdbarch_dump_tdep_ftype *dump_tdep;
2303 struct gdbarch_list *arches;
2304 struct gdbarch_registration *next;
2305 };
2306
2307 static struct gdbarch_registration *gdbarch_registry = NULL;
2308
2309 static void
2310 append_name (const char ***buf, int *nr, const char *name)
2311 {
2312 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2313 (*buf)[*nr] = name;
2314 *nr += 1;
2315 }
2316
2317 const char **
2318 gdbarch_printable_names (void)
2319 {
2320 /* Accumulate a list of names based on the registed list of
2321 architectures. */
2322 int nr_arches = 0;
2323 const char **arches = NULL;
2324 struct gdbarch_registration *rego;
2325
2326 for (rego = gdbarch_registry;
2327 rego != NULL;
2328 rego = rego->next)
2329 {
2330 const struct bfd_arch_info *ap;
2331 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2332 if (ap == NULL)
2333 internal_error (__FILE__, __LINE__,
2334 _("gdbarch_architecture_names: multi-arch unknown"));
2335 do
2336 {
2337 append_name (&arches, &nr_arches, ap->printable_name);
2338 ap = ap->next;
2339 }
2340 while (ap != NULL);
2341 }
2342 append_name (&arches, &nr_arches, NULL);
2343 return arches;
2344 }
2345
2346
2347 void
2348 gdbarch_register (enum bfd_architecture bfd_architecture,
2349 gdbarch_init_ftype *init,
2350 gdbarch_dump_tdep_ftype *dump_tdep)
2351 {
2352 struct gdbarch_registration **curr;
2353 const struct bfd_arch_info *bfd_arch_info;
2354
2355 /* Check that BFD recognizes this architecture */
2356 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2357 if (bfd_arch_info == NULL)
2358 {
2359 internal_error (__FILE__, __LINE__,
2360 _("gdbarch: Attempt to register "
2361 "unknown architecture (%d)"),
2362 bfd_architecture);
2363 }
2364 /* Check that we haven't seen this architecture before. */
2365 for (curr = &gdbarch_registry;
2366 (*curr) != NULL;
2367 curr = &(*curr)->next)
2368 {
2369 if (bfd_architecture == (*curr)->bfd_architecture)
2370 internal_error (__FILE__, __LINE__,
2371 _("gdbarch: Duplicate registration "
2372 "of architecture (%s)"),
2373 bfd_arch_info->printable_name);
2374 }
2375 /* log it */
2376 if (gdbarch_debug)
2377 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2378 bfd_arch_info->printable_name,
2379 host_address_to_string (init));
2380 /* Append it */
2381 (*curr) = XNEW (struct gdbarch_registration);
2382 (*curr)->bfd_architecture = bfd_architecture;
2383 (*curr)->init = init;
2384 (*curr)->dump_tdep = dump_tdep;
2385 (*curr)->arches = NULL;
2386 (*curr)->next = NULL;
2387 }
2388
2389 void
2390 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2391 gdbarch_init_ftype *init)
2392 {
2393 gdbarch_register (bfd_architecture, init, NULL);
2394 }
2395
2396
2397 /* Look for an architecture using gdbarch_info. */
2398
2399 struct gdbarch_list *
2400 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2401 const struct gdbarch_info *info)
2402 {
2403 for (; arches != NULL; arches = arches->next)
2404 {
2405 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2406 continue;
2407 if (info->byte_order != arches->gdbarch->byte_order)
2408 continue;
2409 if (info->osabi != arches->gdbarch->osabi)
2410 continue;
2411 if (info->target_desc != arches->gdbarch->target_desc)
2412 continue;
2413 return arches;
2414 }
2415 return NULL;
2416 }
2417
2418
2419 /* Find an architecture that matches the specified INFO. Create a new
2420 architecture if needed. Return that new architecture. */
2421
2422 struct gdbarch *
2423 gdbarch_find_by_info (struct gdbarch_info info)
2424 {
2425 struct gdbarch *new_gdbarch;
2426 struct gdbarch_registration *rego;
2427
2428 /* Fill in missing parts of the INFO struct using a number of
2429 sources: "set ..."; INFOabfd supplied; and the global
2430 defaults. */
2431 gdbarch_info_fill (&info);
2432
2433 /* Must have found some sort of architecture. */
2434 gdb_assert (info.bfd_arch_info != NULL);
2435
2436 if (gdbarch_debug)
2437 {
2438 fprintf_unfiltered (gdb_stdlog,
2439 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2440 (info.bfd_arch_info != NULL
2441 ? info.bfd_arch_info->printable_name
2442 : "(null)"));
2443 fprintf_unfiltered (gdb_stdlog,
2444 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2445 info.byte_order,
2446 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2447 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2448 : "default"));
2449 fprintf_unfiltered (gdb_stdlog,
2450 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2451 info.osabi, gdbarch_osabi_name (info.osabi));
2452 fprintf_unfiltered (gdb_stdlog,
2453 "gdbarch_find_by_info: info.abfd %s\n",
2454 host_address_to_string (info.abfd));
2455 fprintf_unfiltered (gdb_stdlog,
2456 "gdbarch_find_by_info: info.tdep_info %s\n",
2457 host_address_to_string (info.tdep_info));
2458 }
2459
2460 /* Find the tdep code that knows about this architecture. */
2461 for (rego = gdbarch_registry;
2462 rego != NULL;
2463 rego = rego->next)
2464 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2465 break;
2466 if (rego == NULL)
2467 {
2468 if (gdbarch_debug)
2469 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2470 "No matching architecture\n");
2471 return 0;
2472 }
2473
2474 /* Ask the tdep code for an architecture that matches "info". */
2475 new_gdbarch = rego->init (info, rego->arches);
2476
2477 /* Did the tdep code like it? No. Reject the change and revert to
2478 the old architecture. */
2479 if (new_gdbarch == NULL)
2480 {
2481 if (gdbarch_debug)
2482 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2483 "Target rejected architecture\n");
2484 return NULL;
2485 }
2486
2487 /* Is this a pre-existing architecture (as determined by already
2488 being initialized)? Move it to the front of the architecture
2489 list (keeping the list sorted Most Recently Used). */
2490 if (new_gdbarch->initialized_p)
2491 {
2492 struct gdbarch_list **list;
2493 struct gdbarch_list *self;
2494 if (gdbarch_debug)
2495 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2496 "Previous architecture %s (%s) selected\n",
2497 host_address_to_string (new_gdbarch),
2498 new_gdbarch->bfd_arch_info->printable_name);
2499 /* Find the existing arch in the list. */
2500 for (list = &rego->arches;
2501 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2502 list = &(*list)->next);
2503 /* It had better be in the list of architectures. */
2504 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2505 /* Unlink SELF. */
2506 self = (*list);
2507 (*list) = self->next;
2508 /* Insert SELF at the front. */
2509 self->next = rego->arches;
2510 rego->arches = self;
2511 /* Return it. */
2512 return new_gdbarch;
2513 }
2514
2515 /* It's a new architecture. */
2516 if (gdbarch_debug)
2517 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2518 "New architecture %s (%s) selected\n",
2519 host_address_to_string (new_gdbarch),
2520 new_gdbarch->bfd_arch_info->printable_name);
2521
2522 /* Insert the new architecture into the front of the architecture
2523 list (keep the list sorted Most Recently Used). */
2524 {
2525 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2526 self->next = rego->arches;
2527 self->gdbarch = new_gdbarch;
2528 rego->arches = self;
2529 }
2530
2531 /* Check that the newly installed architecture is valid. Plug in
2532 any post init values. */
2533 new_gdbarch->dump_tdep = rego->dump_tdep;
2534 verify_gdbarch (new_gdbarch);
2535 new_gdbarch->initialized_p = 1;
2536
2537 if (gdbarch_debug)
2538 gdbarch_dump (new_gdbarch, gdb_stdlog);
2539
2540 return new_gdbarch;
2541 }
2542
2543 /* Make the specified architecture current. */
2544
2545 void
2546 set_target_gdbarch (struct gdbarch *new_gdbarch)
2547 {
2548 gdb_assert (new_gdbarch != NULL);
2549 gdb_assert (new_gdbarch->initialized_p);
2550 current_inferior ()->gdbarch = new_gdbarch;
2551 gdb::observers::architecture_changed.notify (new_gdbarch);
2552 registers_changed ();
2553 }
2554
2555 /* Return the current inferior's arch. */
2556
2557 struct gdbarch *
2558 target_gdbarch (void)
2559 {
2560 return current_inferior ()->gdbarch;
2561 }
2562
2563 void _initialize_gdbarch ();
2564 void
2565 _initialize_gdbarch ()
2566 {
2567 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2568 Set architecture debugging."), _("\\
2569 Show architecture debugging."), _("\\
2570 When non-zero, architecture debugging is enabled."),
2571 NULL,
2572 show_gdbarch_debug,
2573 &setdebuglist, &showdebuglist);
2574 }
2575 EOF
2576
2577 # close things off
2578 exec 1>&2
2579 ../move-if-change new-gdbarch.c gdbarch.c
2580 rm -f new-gdbarch.c
This page took 0.089503 seconds and 5 git commands to generate.