2003-01-19 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
436 # serious shakedown.
437 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
438 #
439 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
440 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
441 #
442 v:2:NUM_REGS:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
454 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
455 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
456 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
458 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
459 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
461 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
463 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
464 # Convert from an sdb register number to an internal gdb register number.
465 # This should be defined in tm.h, if REGISTER_NAMES is not set up
466 # to map one to one onto the sdb register numbers.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
470 v:2:REGISTER_SIZE:int:register_size::::0:-1
471 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
472 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
473 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
474 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
475 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
476 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
477 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
478 #
479 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
480 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
481 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
486 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
487 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
488 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
489 # setjmp/longjmp support.
490 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
491 #
492 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
493 # much better but at least they are vaguely consistent). The headers
494 # and body contain convoluted #if/#else sequences for determine how
495 # things should be compiled. Instead of trying to mimic that
496 # behaviour here (and hence entrench it further) gdbarch simply
497 # reqires that these methods be set up from the word go. This also
498 # avoids any potential problems with moving beyond multi-arch partial.
499 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
500 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
501 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
502 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
503 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
504 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
505 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
506 # NOTE: cagney/2002-11-24: This function with predicate has a valid
507 # (callable) initial value. As a consequence, even when the predicate
508 # is false, the corresponding function works. This simplifies the
509 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
510 # doesn't need to be modified.
511 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
512 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
513 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
514 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
515 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
516 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
517 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
518 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
519 F::DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
520 #
521 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
522 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
523 F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
524 #
525 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
526 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
527 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
528 #
529 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
530 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
531 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
532 #
533 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
534 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
535 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
536 #
537 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
538 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
539 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
540 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
541 F:2:POP_FRAME:void:pop_frame:void:-:::0
542 #
543 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
544 #
545 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
546 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
547 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
548 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
549 #
550 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
551 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
552 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
553 #
554 F:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame:::0
555 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
556 #
557 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
558 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
559 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
560 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
561 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
562 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
563 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
564 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
565 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
566 #
567 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
568 #
569 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
570 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
571 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
572 F:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
573 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
574 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
575 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
576 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
577 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
578 #
579 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
580 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
581 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
582 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
583 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
584 v:2:PARM_BOUNDARY:int:parm_boundary
585 #
586 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
587 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
588 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
589 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
590 # On some machines there are bits in addresses which are not really
591 # part of the address, but are used by the kernel, the hardware, etc.
592 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
593 # we get a "real" address such as one would find in a symbol table.
594 # This is used only for addresses of instructions, and even then I'm
595 # not sure it's used in all contexts. It exists to deal with there
596 # being a few stray bits in the PC which would mislead us, not as some
597 # sort of generic thing to handle alignment or segmentation (it's
598 # possible it should be in TARGET_READ_PC instead).
599 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
600 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
601 # ADDR_BITS_REMOVE.
602 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
603 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
604 # the target needs software single step. An ISA method to implement it.
605 #
606 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
607 # using the breakpoint system instead of blatting memory directly (as with rs6000).
608 #
609 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
610 # single step. If not, then implement single step using breakpoints.
611 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
612 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
613 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
614
615
616 # For SVR4 shared libraries, each call goes through a small piece of
617 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
618 # to nonzero if we are currently stopped in one of these.
619 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
620
621 # Some systems also have trampoline code for returning from shared libs.
622 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
623
624 # Sigtramp is a routine that the kernel calls (which then calls the
625 # signal handler). On most machines it is a library routine that is
626 # linked into the executable.
627 #
628 # This macro, given a program counter value and the name of the
629 # function in which that PC resides (which can be null if the name is
630 # not known), returns nonzero if the PC and name show that we are in
631 # sigtramp.
632 #
633 # On most machines just see if the name is sigtramp (and if we have
634 # no name, assume we are not in sigtramp).
635 #
636 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
637 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
638 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
639 # own local NAME lookup.
640 #
641 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
642 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
643 # does not.
644 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
645 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
646 F::SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
647 # A target might have problems with watchpoints as soon as the stack
648 # frame of the current function has been destroyed. This mostly happens
649 # as the first action in a funtion's epilogue. in_function_epilogue_p()
650 # is defined to return a non-zero value if either the given addr is one
651 # instruction after the stack destroying instruction up to the trailing
652 # return instruction or if we can figure out that the stack frame has
653 # already been invalidated regardless of the value of addr. Targets
654 # which don't suffer from that problem could just let this functionality
655 # untouched.
656 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
657 # Given a vector of command-line arguments, return a newly allocated
658 # string which, when passed to the create_inferior function, will be
659 # parsed (on Unix systems, by the shell) to yield the same vector.
660 # This function should call error() if the argument vector is not
661 # representable for this target or if this target does not support
662 # command-line arguments.
663 # ARGC is the number of elements in the vector.
664 # ARGV is an array of strings, one per argument.
665 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
666 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
667 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
668 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
669 v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
670 v::CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
671 v::HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
672 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
673 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
674 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
675 # Is a register in a group
676 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
677 EOF
678 }
679
680 #
681 # The .log file
682 #
683 exec > new-gdbarch.log
684 function_list | while do_read
685 do
686 cat <<EOF
687 ${class} ${macro}(${actual})
688 ${returntype} ${function} ($formal)${attrib}
689 EOF
690 for r in ${read}
691 do
692 eval echo \"\ \ \ \ ${r}=\${${r}}\"
693 done
694 if class_is_predicate_p && fallback_default_p
695 then
696 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
697 kill $$
698 exit 1
699 fi
700 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
701 then
702 echo "Error: postdefault is useless when invalid_p=0" 1>&2
703 kill $$
704 exit 1
705 fi
706 if class_is_multiarch_p
707 then
708 if class_is_predicate_p ; then :
709 elif test "x${predefault}" = "x"
710 then
711 echo "Error: pure multi-arch function must have a predefault" 1>&2
712 kill $$
713 exit 1
714 fi
715 fi
716 echo ""
717 done
718
719 exec 1>&2
720 compare_new gdbarch.log
721
722
723 copyright ()
724 {
725 cat <<EOF
726 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
727
728 /* Dynamic architecture support for GDB, the GNU debugger.
729 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
730
731 This file is part of GDB.
732
733 This program is free software; you can redistribute it and/or modify
734 it under the terms of the GNU General Public License as published by
735 the Free Software Foundation; either version 2 of the License, or
736 (at your option) any later version.
737
738 This program is distributed in the hope that it will be useful,
739 but WITHOUT ANY WARRANTY; without even the implied warranty of
740 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
741 GNU General Public License for more details.
742
743 You should have received a copy of the GNU General Public License
744 along with this program; if not, write to the Free Software
745 Foundation, Inc., 59 Temple Place - Suite 330,
746 Boston, MA 02111-1307, USA. */
747
748 /* This file was created with the aid of \`\`gdbarch.sh''.
749
750 The Bourne shell script \`\`gdbarch.sh'' creates the files
751 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
752 against the existing \`\`gdbarch.[hc]''. Any differences found
753 being reported.
754
755 If editing this file, please also run gdbarch.sh and merge any
756 changes into that script. Conversely, when making sweeping changes
757 to this file, modifying gdbarch.sh and using its output may prove
758 easier. */
759
760 EOF
761 }
762
763 #
764 # The .h file
765 #
766
767 exec > new-gdbarch.h
768 copyright
769 cat <<EOF
770 #ifndef GDBARCH_H
771 #define GDBARCH_H
772
773 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
774 #if !GDB_MULTI_ARCH
775 /* Pull in function declarations refered to, indirectly, via macros. */
776 #include "inferior.h" /* For unsigned_address_to_pointer(). */
777 #endif
778
779 struct frame_info;
780 struct value;
781 struct objfile;
782 struct minimal_symbol;
783 struct regcache;
784 struct reggroup;
785
786 extern struct gdbarch *current_gdbarch;
787
788
789 /* If any of the following are defined, the target wasn't correctly
790 converted. */
791
792 #if GDB_MULTI_ARCH
793 #if defined (EXTRA_FRAME_INFO)
794 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
795 #endif
796 #endif
797
798 #if GDB_MULTI_ARCH
799 #if defined (FRAME_FIND_SAVED_REGS)
800 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
801 #endif
802 #endif
803
804 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
805 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
806 #endif
807 EOF
808
809 # function typedef's
810 printf "\n"
811 printf "\n"
812 printf "/* The following are pre-initialized by GDBARCH. */\n"
813 function_list | while do_read
814 do
815 if class_is_info_p
816 then
817 printf "\n"
818 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
819 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
820 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
821 printf "#error \"Non multi-arch definition of ${macro}\"\n"
822 printf "#endif\n"
823 printf "#if GDB_MULTI_ARCH\n"
824 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
825 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
826 printf "#endif\n"
827 printf "#endif\n"
828 fi
829 done
830
831 # function typedef's
832 printf "\n"
833 printf "\n"
834 printf "/* The following are initialized by the target dependent code. */\n"
835 function_list | while do_read
836 do
837 if [ -n "${comment}" ]
838 then
839 echo "${comment}" | sed \
840 -e '2 s,#,/*,' \
841 -e '3,$ s,#, ,' \
842 -e '$ s,$, */,'
843 fi
844 if class_is_multiarch_p
845 then
846 if class_is_predicate_p
847 then
848 printf "\n"
849 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
850 fi
851 else
852 if class_is_predicate_p
853 then
854 printf "\n"
855 printf "#if defined (${macro})\n"
856 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
857 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
858 printf "#if !defined (${macro}_P)\n"
859 printf "#define ${macro}_P() (1)\n"
860 printf "#endif\n"
861 printf "#endif\n"
862 printf "\n"
863 printf "/* Default predicate for non- multi-arch targets. */\n"
864 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
865 printf "#define ${macro}_P() (0)\n"
866 printf "#endif\n"
867 printf "\n"
868 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
869 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
870 printf "#error \"Non multi-arch definition of ${macro}\"\n"
871 printf "#endif\n"
872 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
873 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
874 printf "#endif\n"
875 fi
876 fi
877 if class_is_variable_p
878 then
879 if fallback_default_p || class_is_predicate_p
880 then
881 printf "\n"
882 printf "/* Default (value) for non- multi-arch platforms. */\n"
883 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
884 echo "#define ${macro} (${fallbackdefault})" \
885 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
886 printf "#endif\n"
887 fi
888 printf "\n"
889 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
890 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
891 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
892 printf "#error \"Non multi-arch definition of ${macro}\"\n"
893 printf "#endif\n"
894 printf "#if GDB_MULTI_ARCH\n"
895 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
896 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
897 printf "#endif\n"
898 printf "#endif\n"
899 fi
900 if class_is_function_p
901 then
902 if class_is_multiarch_p ; then :
903 elif fallback_default_p || class_is_predicate_p
904 then
905 printf "\n"
906 printf "/* Default (function) for non- multi-arch platforms. */\n"
907 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
908 if [ "x${fallbackdefault}" = "x0" ]
909 then
910 if [ "x${actual}" = "x-" ]
911 then
912 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
913 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
914 else
915 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
916 fi
917 else
918 # FIXME: Should be passing current_gdbarch through!
919 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
920 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
921 fi
922 printf "#endif\n"
923 fi
924 printf "\n"
925 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
926 then
927 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
928 elif class_is_multiarch_p
929 then
930 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
931 else
932 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
933 fi
934 if [ "x${formal}" = "xvoid" ]
935 then
936 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
937 else
938 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
939 fi
940 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
941 if class_is_multiarch_p ; then :
942 else
943 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
944 printf "#error \"Non multi-arch definition of ${macro}\"\n"
945 printf "#endif\n"
946 printf "#if GDB_MULTI_ARCH\n"
947 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
948 if [ "x${actual}" = "x" ]
949 then
950 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
951 elif [ "x${actual}" = "x-" ]
952 then
953 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
954 else
955 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
956 fi
957 printf "#endif\n"
958 printf "#endif\n"
959 fi
960 fi
961 done
962
963 # close it off
964 cat <<EOF
965
966 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
967
968
969 /* Mechanism for co-ordinating the selection of a specific
970 architecture.
971
972 GDB targets (*-tdep.c) can register an interest in a specific
973 architecture. Other GDB components can register a need to maintain
974 per-architecture data.
975
976 The mechanisms below ensures that there is only a loose connection
977 between the set-architecture command and the various GDB
978 components. Each component can independently register their need
979 to maintain architecture specific data with gdbarch.
980
981 Pragmatics:
982
983 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
984 didn't scale.
985
986 The more traditional mega-struct containing architecture specific
987 data for all the various GDB components was also considered. Since
988 GDB is built from a variable number of (fairly independent)
989 components it was determined that the global aproach was not
990 applicable. */
991
992
993 /* Register a new architectural family with GDB.
994
995 Register support for the specified ARCHITECTURE with GDB. When
996 gdbarch determines that the specified architecture has been
997 selected, the corresponding INIT function is called.
998
999 --
1000
1001 The INIT function takes two parameters: INFO which contains the
1002 information available to gdbarch about the (possibly new)
1003 architecture; ARCHES which is a list of the previously created
1004 \`\`struct gdbarch'' for this architecture.
1005
1006 The INFO parameter is, as far as possible, be pre-initialized with
1007 information obtained from INFO.ABFD or the previously selected
1008 architecture.
1009
1010 The ARCHES parameter is a linked list (sorted most recently used)
1011 of all the previously created architures for this architecture
1012 family. The (possibly NULL) ARCHES->gdbarch can used to access
1013 values from the previously selected architecture for this
1014 architecture family. The global \`\`current_gdbarch'' shall not be
1015 used.
1016
1017 The INIT function shall return any of: NULL - indicating that it
1018 doesn't recognize the selected architecture; an existing \`\`struct
1019 gdbarch'' from the ARCHES list - indicating that the new
1020 architecture is just a synonym for an earlier architecture (see
1021 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1022 - that describes the selected architecture (see gdbarch_alloc()).
1023
1024 The DUMP_TDEP function shall print out all target specific values.
1025 Care should be taken to ensure that the function works in both the
1026 multi-arch and non- multi-arch cases. */
1027
1028 struct gdbarch_list
1029 {
1030 struct gdbarch *gdbarch;
1031 struct gdbarch_list *next;
1032 };
1033
1034 struct gdbarch_info
1035 {
1036 /* Use default: NULL (ZERO). */
1037 const struct bfd_arch_info *bfd_arch_info;
1038
1039 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1040 int byte_order;
1041
1042 /* Use default: NULL (ZERO). */
1043 bfd *abfd;
1044
1045 /* Use default: NULL (ZERO). */
1046 struct gdbarch_tdep_info *tdep_info;
1047
1048 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1049 enum gdb_osabi osabi;
1050 };
1051
1052 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1053 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1054
1055 /* DEPRECATED - use gdbarch_register() */
1056 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1057
1058 extern void gdbarch_register (enum bfd_architecture architecture,
1059 gdbarch_init_ftype *,
1060 gdbarch_dump_tdep_ftype *);
1061
1062
1063 /* Return a freshly allocated, NULL terminated, array of the valid
1064 architecture names. Since architectures are registered during the
1065 _initialize phase this function only returns useful information
1066 once initialization has been completed. */
1067
1068 extern const char **gdbarch_printable_names (void);
1069
1070
1071 /* Helper function. Search the list of ARCHES for a GDBARCH that
1072 matches the information provided by INFO. */
1073
1074 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1075
1076
1077 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1078 basic initialization using values obtained from the INFO andTDEP
1079 parameters. set_gdbarch_*() functions are called to complete the
1080 initialization of the object. */
1081
1082 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1083
1084
1085 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1086 It is assumed that the caller freeds the \`\`struct
1087 gdbarch_tdep''. */
1088
1089 extern void gdbarch_free (struct gdbarch *);
1090
1091
1092 /* Helper function. Force an update of the current architecture.
1093
1094 The actual architecture selected is determined by INFO, \`\`(gdb) set
1095 architecture'' et.al., the existing architecture and BFD's default
1096 architecture. INFO should be initialized to zero and then selected
1097 fields should be updated.
1098
1099 Returns non-zero if the update succeeds */
1100
1101 extern int gdbarch_update_p (struct gdbarch_info info);
1102
1103
1104
1105 /* Register per-architecture data-pointer.
1106
1107 Reserve space for a per-architecture data-pointer. An identifier
1108 for the reserved data-pointer is returned. That identifer should
1109 be saved in a local static variable.
1110
1111 The per-architecture data-pointer is either initialized explicitly
1112 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1113 gdbarch_data()). FREE() is called to delete either an existing
1114 data-pointer overridden by set_gdbarch_data() or when the
1115 architecture object is being deleted.
1116
1117 When a previously created architecture is re-selected, the
1118 per-architecture data-pointer for that previous architecture is
1119 restored. INIT() is not re-called.
1120
1121 Multiple registrarants for any architecture are allowed (and
1122 strongly encouraged). */
1123
1124 struct gdbarch_data;
1125
1126 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1127 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1128 void *pointer);
1129 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1130 gdbarch_data_free_ftype *free);
1131 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1132 struct gdbarch_data *data,
1133 void *pointer);
1134
1135 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1136
1137
1138 /* Register per-architecture memory region.
1139
1140 Provide a memory-region swap mechanism. Per-architecture memory
1141 region are created. These memory regions are swapped whenever the
1142 architecture is changed. For a new architecture, the memory region
1143 is initialized with zero (0) and the INIT function is called.
1144
1145 Memory regions are swapped / initialized in the order that they are
1146 registered. NULL DATA and/or INIT values can be specified.
1147
1148 New code should use register_gdbarch_data(). */
1149
1150 typedef void (gdbarch_swap_ftype) (void);
1151 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1152 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1153
1154
1155
1156 /* The target-system-dependent byte order is dynamic */
1157
1158 extern int target_byte_order;
1159 #ifndef TARGET_BYTE_ORDER
1160 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1161 #endif
1162
1163 extern int target_byte_order_auto;
1164 #ifndef TARGET_BYTE_ORDER_AUTO
1165 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1166 #endif
1167
1168
1169
1170 /* The target-system-dependent BFD architecture is dynamic */
1171
1172 extern int target_architecture_auto;
1173 #ifndef TARGET_ARCHITECTURE_AUTO
1174 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1175 #endif
1176
1177 extern const struct bfd_arch_info *target_architecture;
1178 #ifndef TARGET_ARCHITECTURE
1179 #define TARGET_ARCHITECTURE (target_architecture + 0)
1180 #endif
1181
1182
1183 /* The target-system-dependent disassembler is semi-dynamic */
1184
1185 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1186 unsigned int len, disassemble_info *info);
1187
1188 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1189 disassemble_info *info);
1190
1191 extern void dis_asm_print_address (bfd_vma addr,
1192 disassemble_info *info);
1193
1194 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1195 extern disassemble_info tm_print_insn_info;
1196 #ifndef TARGET_PRINT_INSN_INFO
1197 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1198 #endif
1199
1200
1201
1202 /* Set the dynamic target-system-dependent parameters (architecture,
1203 byte-order, ...) using information found in the BFD */
1204
1205 extern void set_gdbarch_from_file (bfd *);
1206
1207
1208 /* Initialize the current architecture to the "first" one we find on
1209 our list. */
1210
1211 extern void initialize_current_architecture (void);
1212
1213 /* For non-multiarched targets, do any initialization of the default
1214 gdbarch object necessary after the _initialize_MODULE functions
1215 have run. */
1216 extern void initialize_non_multiarch (void);
1217
1218 /* gdbarch trace variable */
1219 extern int gdbarch_debug;
1220
1221 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1222
1223 #endif
1224 EOF
1225 exec 1>&2
1226 #../move-if-change new-gdbarch.h gdbarch.h
1227 compare_new gdbarch.h
1228
1229
1230 #
1231 # C file
1232 #
1233
1234 exec > new-gdbarch.c
1235 copyright
1236 cat <<EOF
1237
1238 #include "defs.h"
1239 #include "arch-utils.h"
1240
1241 #if GDB_MULTI_ARCH
1242 #include "gdbcmd.h"
1243 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1244 #else
1245 /* Just include everything in sight so that the every old definition
1246 of macro is visible. */
1247 #include "gdb_string.h"
1248 #include <ctype.h>
1249 #include "symtab.h"
1250 #include "frame.h"
1251 #include "inferior.h"
1252 #include "breakpoint.h"
1253 #include "gdb_wait.h"
1254 #include "gdbcore.h"
1255 #include "gdbcmd.h"
1256 #include "target.h"
1257 #include "gdbthread.h"
1258 #include "annotate.h"
1259 #include "symfile.h" /* for overlay functions */
1260 #include "value.h" /* For old tm.h/nm.h macros. */
1261 #endif
1262 #include "symcat.h"
1263
1264 #include "floatformat.h"
1265
1266 #include "gdb_assert.h"
1267 #include "gdb_string.h"
1268 #include "gdb-events.h"
1269 #include "reggroups.h"
1270 #include "osabi.h"
1271
1272 /* Static function declarations */
1273
1274 static void verify_gdbarch (struct gdbarch *gdbarch);
1275 static void alloc_gdbarch_data (struct gdbarch *);
1276 static void free_gdbarch_data (struct gdbarch *);
1277 static void init_gdbarch_swap (struct gdbarch *);
1278 static void clear_gdbarch_swap (struct gdbarch *);
1279 static void swapout_gdbarch_swap (struct gdbarch *);
1280 static void swapin_gdbarch_swap (struct gdbarch *);
1281
1282 /* Non-zero if we want to trace architecture code. */
1283
1284 #ifndef GDBARCH_DEBUG
1285 #define GDBARCH_DEBUG 0
1286 #endif
1287 int gdbarch_debug = GDBARCH_DEBUG;
1288
1289 EOF
1290
1291 # gdbarch open the gdbarch object
1292 printf "\n"
1293 printf "/* Maintain the struct gdbarch object */\n"
1294 printf "\n"
1295 printf "struct gdbarch\n"
1296 printf "{\n"
1297 printf " /* Has this architecture been fully initialized? */\n"
1298 printf " int initialized_p;\n"
1299 printf " /* basic architectural information */\n"
1300 function_list | while do_read
1301 do
1302 if class_is_info_p
1303 then
1304 printf " ${returntype} ${function};\n"
1305 fi
1306 done
1307 printf "\n"
1308 printf " /* target specific vector. */\n"
1309 printf " struct gdbarch_tdep *tdep;\n"
1310 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1311 printf "\n"
1312 printf " /* per-architecture data-pointers */\n"
1313 printf " unsigned nr_data;\n"
1314 printf " void **data;\n"
1315 printf "\n"
1316 printf " /* per-architecture swap-regions */\n"
1317 printf " struct gdbarch_swap *swap;\n"
1318 printf "\n"
1319 cat <<EOF
1320 /* Multi-arch values.
1321
1322 When extending this structure you must:
1323
1324 Add the field below.
1325
1326 Declare set/get functions and define the corresponding
1327 macro in gdbarch.h.
1328
1329 gdbarch_alloc(): If zero/NULL is not a suitable default,
1330 initialize the new field.
1331
1332 verify_gdbarch(): Confirm that the target updated the field
1333 correctly.
1334
1335 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1336 field is dumped out
1337
1338 \`\`startup_gdbarch()'': Append an initial value to the static
1339 variable (base values on the host's c-type system).
1340
1341 get_gdbarch(): Implement the set/get functions (probably using
1342 the macro's as shortcuts).
1343
1344 */
1345
1346 EOF
1347 function_list | while do_read
1348 do
1349 if class_is_variable_p
1350 then
1351 printf " ${returntype} ${function};\n"
1352 elif class_is_function_p
1353 then
1354 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1355 fi
1356 done
1357 printf "};\n"
1358
1359 # A pre-initialized vector
1360 printf "\n"
1361 printf "\n"
1362 cat <<EOF
1363 /* The default architecture uses host values (for want of a better
1364 choice). */
1365 EOF
1366 printf "\n"
1367 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1368 printf "\n"
1369 printf "struct gdbarch startup_gdbarch =\n"
1370 printf "{\n"
1371 printf " 1, /* Always initialized. */\n"
1372 printf " /* basic architecture information */\n"
1373 function_list | while do_read
1374 do
1375 if class_is_info_p
1376 then
1377 printf " ${staticdefault},\n"
1378 fi
1379 done
1380 cat <<EOF
1381 /* target specific vector and its dump routine */
1382 NULL, NULL,
1383 /*per-architecture data-pointers and swap regions */
1384 0, NULL, NULL,
1385 /* Multi-arch values */
1386 EOF
1387 function_list | while do_read
1388 do
1389 if class_is_function_p || class_is_variable_p
1390 then
1391 printf " ${staticdefault},\n"
1392 fi
1393 done
1394 cat <<EOF
1395 /* startup_gdbarch() */
1396 };
1397
1398 struct gdbarch *current_gdbarch = &startup_gdbarch;
1399
1400 /* Do any initialization needed for a non-multiarch configuration
1401 after the _initialize_MODULE functions have been run. */
1402 void
1403 initialize_non_multiarch (void)
1404 {
1405 alloc_gdbarch_data (&startup_gdbarch);
1406 /* Ensure that all swap areas are zeroed so that they again think
1407 they are starting from scratch. */
1408 clear_gdbarch_swap (&startup_gdbarch);
1409 init_gdbarch_swap (&startup_gdbarch);
1410 }
1411 EOF
1412
1413 # Create a new gdbarch struct
1414 printf "\n"
1415 printf "\n"
1416 cat <<EOF
1417 /* Create a new \`\`struct gdbarch'' based on information provided by
1418 \`\`struct gdbarch_info''. */
1419 EOF
1420 printf "\n"
1421 cat <<EOF
1422 struct gdbarch *
1423 gdbarch_alloc (const struct gdbarch_info *info,
1424 struct gdbarch_tdep *tdep)
1425 {
1426 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1427 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1428 the current local architecture and not the previous global
1429 architecture. This ensures that the new architectures initial
1430 values are not influenced by the previous architecture. Once
1431 everything is parameterised with gdbarch, this will go away. */
1432 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1433 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1434
1435 alloc_gdbarch_data (current_gdbarch);
1436
1437 current_gdbarch->tdep = tdep;
1438 EOF
1439 printf "\n"
1440 function_list | while do_read
1441 do
1442 if class_is_info_p
1443 then
1444 printf " current_gdbarch->${function} = info->${function};\n"
1445 fi
1446 done
1447 printf "\n"
1448 printf " /* Force the explicit initialization of these. */\n"
1449 function_list | while do_read
1450 do
1451 if class_is_function_p || class_is_variable_p
1452 then
1453 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1454 then
1455 printf " current_gdbarch->${function} = ${predefault};\n"
1456 fi
1457 fi
1458 done
1459 cat <<EOF
1460 /* gdbarch_alloc() */
1461
1462 return current_gdbarch;
1463 }
1464 EOF
1465
1466 # Free a gdbarch struct.
1467 printf "\n"
1468 printf "\n"
1469 cat <<EOF
1470 /* Free a gdbarch struct. This should never happen in normal
1471 operation --- once you've created a gdbarch, you keep it around.
1472 However, if an architecture's init function encounters an error
1473 building the structure, it may need to clean up a partially
1474 constructed gdbarch. */
1475
1476 void
1477 gdbarch_free (struct gdbarch *arch)
1478 {
1479 gdb_assert (arch != NULL);
1480 free_gdbarch_data (arch);
1481 xfree (arch);
1482 }
1483 EOF
1484
1485 # verify a new architecture
1486 printf "\n"
1487 printf "\n"
1488 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1489 printf "\n"
1490 cat <<EOF
1491 static void
1492 verify_gdbarch (struct gdbarch *gdbarch)
1493 {
1494 struct ui_file *log;
1495 struct cleanup *cleanups;
1496 long dummy;
1497 char *buf;
1498 /* Only perform sanity checks on a multi-arch target. */
1499 if (!GDB_MULTI_ARCH)
1500 return;
1501 log = mem_fileopen ();
1502 cleanups = make_cleanup_ui_file_delete (log);
1503 /* fundamental */
1504 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1505 fprintf_unfiltered (log, "\n\tbyte-order");
1506 if (gdbarch->bfd_arch_info == NULL)
1507 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1508 /* Check those that need to be defined for the given multi-arch level. */
1509 EOF
1510 function_list | while do_read
1511 do
1512 if class_is_function_p || class_is_variable_p
1513 then
1514 if [ "x${invalid_p}" = "x0" ]
1515 then
1516 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1517 elif class_is_predicate_p
1518 then
1519 printf " /* Skip verify of ${function}, has predicate */\n"
1520 # FIXME: See do_read for potential simplification
1521 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1522 then
1523 printf " if (${invalid_p})\n"
1524 printf " gdbarch->${function} = ${postdefault};\n"
1525 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1526 then
1527 printf " if (gdbarch->${function} == ${predefault})\n"
1528 printf " gdbarch->${function} = ${postdefault};\n"
1529 elif [ -n "${postdefault}" ]
1530 then
1531 printf " if (gdbarch->${function} == 0)\n"
1532 printf " gdbarch->${function} = ${postdefault};\n"
1533 elif [ -n "${invalid_p}" ]
1534 then
1535 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1536 printf " && (${invalid_p}))\n"
1537 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1538 elif [ -n "${predefault}" ]
1539 then
1540 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1541 printf " && (gdbarch->${function} == ${predefault}))\n"
1542 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1543 fi
1544 fi
1545 done
1546 cat <<EOF
1547 buf = ui_file_xstrdup (log, &dummy);
1548 make_cleanup (xfree, buf);
1549 if (strlen (buf) > 0)
1550 internal_error (__FILE__, __LINE__,
1551 "verify_gdbarch: the following are invalid ...%s",
1552 buf);
1553 do_cleanups (cleanups);
1554 }
1555 EOF
1556
1557 # dump the structure
1558 printf "\n"
1559 printf "\n"
1560 cat <<EOF
1561 /* Print out the details of the current architecture. */
1562
1563 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1564 just happens to match the global variable \`\`current_gdbarch''. That
1565 way macros refering to that variable get the local and not the global
1566 version - ulgh. Once everything is parameterised with gdbarch, this
1567 will go away. */
1568
1569 void
1570 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1571 {
1572 fprintf_unfiltered (file,
1573 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1574 GDB_MULTI_ARCH);
1575 EOF
1576 function_list | sort -t: -k 3 | while do_read
1577 do
1578 # First the predicate
1579 if class_is_predicate_p
1580 then
1581 if class_is_multiarch_p
1582 then
1583 printf " if (GDB_MULTI_ARCH)\n"
1584 printf " fprintf_unfiltered (file,\n"
1585 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1586 printf " gdbarch_${function}_p (current_gdbarch));\n"
1587 else
1588 printf "#ifdef ${macro}_P\n"
1589 printf " fprintf_unfiltered (file,\n"
1590 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1591 printf " \"${macro}_P()\",\n"
1592 printf " XSTRING (${macro}_P ()));\n"
1593 printf " fprintf_unfiltered (file,\n"
1594 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1595 printf " ${macro}_P ());\n"
1596 printf "#endif\n"
1597 fi
1598 fi
1599 # multiarch functions don't have macros.
1600 if class_is_multiarch_p
1601 then
1602 printf " if (GDB_MULTI_ARCH)\n"
1603 printf " fprintf_unfiltered (file,\n"
1604 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1605 printf " (long) current_gdbarch->${function});\n"
1606 continue
1607 fi
1608 # Print the macro definition.
1609 printf "#ifdef ${macro}\n"
1610 if [ "x${returntype}" = "xvoid" ]
1611 then
1612 printf "#if GDB_MULTI_ARCH\n"
1613 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1614 fi
1615 if class_is_function_p
1616 then
1617 printf " fprintf_unfiltered (file,\n"
1618 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1619 printf " \"${macro}(${actual})\",\n"
1620 printf " XSTRING (${macro} (${actual})));\n"
1621 else
1622 printf " fprintf_unfiltered (file,\n"
1623 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1624 printf " XSTRING (${macro}));\n"
1625 fi
1626 # Print the architecture vector value
1627 if [ "x${returntype}" = "xvoid" ]
1628 then
1629 printf "#endif\n"
1630 fi
1631 if [ "x${print_p}" = "x()" ]
1632 then
1633 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1634 elif [ "x${print_p}" = "x0" ]
1635 then
1636 printf " /* skip print of ${macro}, print_p == 0. */\n"
1637 elif [ -n "${print_p}" ]
1638 then
1639 printf " if (${print_p})\n"
1640 printf " fprintf_unfiltered (file,\n"
1641 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1642 printf " ${print});\n"
1643 elif class_is_function_p
1644 then
1645 printf " if (GDB_MULTI_ARCH)\n"
1646 printf " fprintf_unfiltered (file,\n"
1647 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1648 printf " (long) current_gdbarch->${function}\n"
1649 printf " /*${macro} ()*/);\n"
1650 else
1651 printf " fprintf_unfiltered (file,\n"
1652 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1653 printf " ${print});\n"
1654 fi
1655 printf "#endif\n"
1656 done
1657 cat <<EOF
1658 if (current_gdbarch->dump_tdep != NULL)
1659 current_gdbarch->dump_tdep (current_gdbarch, file);
1660 }
1661 EOF
1662
1663
1664 # GET/SET
1665 printf "\n"
1666 cat <<EOF
1667 struct gdbarch_tdep *
1668 gdbarch_tdep (struct gdbarch *gdbarch)
1669 {
1670 if (gdbarch_debug >= 2)
1671 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1672 return gdbarch->tdep;
1673 }
1674 EOF
1675 printf "\n"
1676 function_list | while do_read
1677 do
1678 if class_is_predicate_p
1679 then
1680 printf "\n"
1681 printf "int\n"
1682 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1683 printf "{\n"
1684 printf " gdb_assert (gdbarch != NULL);\n"
1685 if [ -n "${predicate}" ]
1686 then
1687 printf " return ${predicate};\n"
1688 else
1689 printf " return gdbarch->${function} != 0;\n"
1690 fi
1691 printf "}\n"
1692 fi
1693 if class_is_function_p
1694 then
1695 printf "\n"
1696 printf "${returntype}\n"
1697 if [ "x${formal}" = "xvoid" ]
1698 then
1699 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1700 else
1701 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1702 fi
1703 printf "{\n"
1704 printf " gdb_assert (gdbarch != NULL);\n"
1705 printf " if (gdbarch->${function} == 0)\n"
1706 printf " internal_error (__FILE__, __LINE__,\n"
1707 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1708 if class_is_predicate_p && test -n "${predicate}"
1709 then
1710 # Allow a call to a function with a predicate.
1711 printf " /* Ignore predicate (${predicate}). */\n"
1712 fi
1713 printf " if (gdbarch_debug >= 2)\n"
1714 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1715 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1716 then
1717 if class_is_multiarch_p
1718 then
1719 params="gdbarch"
1720 else
1721 params=""
1722 fi
1723 else
1724 if class_is_multiarch_p
1725 then
1726 params="gdbarch, ${actual}"
1727 else
1728 params="${actual}"
1729 fi
1730 fi
1731 if [ "x${returntype}" = "xvoid" ]
1732 then
1733 printf " gdbarch->${function} (${params});\n"
1734 else
1735 printf " return gdbarch->${function} (${params});\n"
1736 fi
1737 printf "}\n"
1738 printf "\n"
1739 printf "void\n"
1740 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1741 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1742 printf "{\n"
1743 printf " gdbarch->${function} = ${function};\n"
1744 printf "}\n"
1745 elif class_is_variable_p
1746 then
1747 printf "\n"
1748 printf "${returntype}\n"
1749 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1750 printf "{\n"
1751 printf " gdb_assert (gdbarch != NULL);\n"
1752 if [ "x${invalid_p}" = "x0" ]
1753 then
1754 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1755 elif [ -n "${invalid_p}" ]
1756 then
1757 printf " if (${invalid_p})\n"
1758 printf " internal_error (__FILE__, __LINE__,\n"
1759 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1760 elif [ -n "${predefault}" ]
1761 then
1762 printf " if (gdbarch->${function} == ${predefault})\n"
1763 printf " internal_error (__FILE__, __LINE__,\n"
1764 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1765 fi
1766 printf " if (gdbarch_debug >= 2)\n"
1767 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1768 printf " return gdbarch->${function};\n"
1769 printf "}\n"
1770 printf "\n"
1771 printf "void\n"
1772 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1773 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1774 printf "{\n"
1775 printf " gdbarch->${function} = ${function};\n"
1776 printf "}\n"
1777 elif class_is_info_p
1778 then
1779 printf "\n"
1780 printf "${returntype}\n"
1781 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1782 printf "{\n"
1783 printf " gdb_assert (gdbarch != NULL);\n"
1784 printf " if (gdbarch_debug >= 2)\n"
1785 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1786 printf " return gdbarch->${function};\n"
1787 printf "}\n"
1788 fi
1789 done
1790
1791 # All the trailing guff
1792 cat <<EOF
1793
1794
1795 /* Keep a registry of per-architecture data-pointers required by GDB
1796 modules. */
1797
1798 struct gdbarch_data
1799 {
1800 unsigned index;
1801 int init_p;
1802 gdbarch_data_init_ftype *init;
1803 gdbarch_data_free_ftype *free;
1804 };
1805
1806 struct gdbarch_data_registration
1807 {
1808 struct gdbarch_data *data;
1809 struct gdbarch_data_registration *next;
1810 };
1811
1812 struct gdbarch_data_registry
1813 {
1814 unsigned nr;
1815 struct gdbarch_data_registration *registrations;
1816 };
1817
1818 struct gdbarch_data_registry gdbarch_data_registry =
1819 {
1820 0, NULL,
1821 };
1822
1823 struct gdbarch_data *
1824 register_gdbarch_data (gdbarch_data_init_ftype *init,
1825 gdbarch_data_free_ftype *free)
1826 {
1827 struct gdbarch_data_registration **curr;
1828 /* Append the new registraration. */
1829 for (curr = &gdbarch_data_registry.registrations;
1830 (*curr) != NULL;
1831 curr = &(*curr)->next);
1832 (*curr) = XMALLOC (struct gdbarch_data_registration);
1833 (*curr)->next = NULL;
1834 (*curr)->data = XMALLOC (struct gdbarch_data);
1835 (*curr)->data->index = gdbarch_data_registry.nr++;
1836 (*curr)->data->init = init;
1837 (*curr)->data->init_p = 1;
1838 (*curr)->data->free = free;
1839 return (*curr)->data;
1840 }
1841
1842
1843 /* Create/delete the gdbarch data vector. */
1844
1845 static void
1846 alloc_gdbarch_data (struct gdbarch *gdbarch)
1847 {
1848 gdb_assert (gdbarch->data == NULL);
1849 gdbarch->nr_data = gdbarch_data_registry.nr;
1850 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1851 }
1852
1853 static void
1854 free_gdbarch_data (struct gdbarch *gdbarch)
1855 {
1856 struct gdbarch_data_registration *rego;
1857 gdb_assert (gdbarch->data != NULL);
1858 for (rego = gdbarch_data_registry.registrations;
1859 rego != NULL;
1860 rego = rego->next)
1861 {
1862 struct gdbarch_data *data = rego->data;
1863 gdb_assert (data->index < gdbarch->nr_data);
1864 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1865 {
1866 data->free (gdbarch, gdbarch->data[data->index]);
1867 gdbarch->data[data->index] = NULL;
1868 }
1869 }
1870 xfree (gdbarch->data);
1871 gdbarch->data = NULL;
1872 }
1873
1874
1875 /* Initialize the current value of the specified per-architecture
1876 data-pointer. */
1877
1878 void
1879 set_gdbarch_data (struct gdbarch *gdbarch,
1880 struct gdbarch_data *data,
1881 void *pointer)
1882 {
1883 gdb_assert (data->index < gdbarch->nr_data);
1884 if (gdbarch->data[data->index] != NULL)
1885 {
1886 gdb_assert (data->free != NULL);
1887 data->free (gdbarch, gdbarch->data[data->index]);
1888 }
1889 gdbarch->data[data->index] = pointer;
1890 }
1891
1892 /* Return the current value of the specified per-architecture
1893 data-pointer. */
1894
1895 void *
1896 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1897 {
1898 gdb_assert (data->index < gdbarch->nr_data);
1899 /* The data-pointer isn't initialized, call init() to get a value but
1900 only if the architecture initializaiton has completed. Otherwise
1901 punt - hope that the caller knows what they are doing. */
1902 if (gdbarch->data[data->index] == NULL
1903 && gdbarch->initialized_p)
1904 {
1905 /* Be careful to detect an initialization cycle. */
1906 gdb_assert (data->init_p);
1907 data->init_p = 0;
1908 gdb_assert (data->init != NULL);
1909 gdbarch->data[data->index] = data->init (gdbarch);
1910 data->init_p = 1;
1911 gdb_assert (gdbarch->data[data->index] != NULL);
1912 }
1913 return gdbarch->data[data->index];
1914 }
1915
1916
1917
1918 /* Keep a registry of swapped data required by GDB modules. */
1919
1920 struct gdbarch_swap
1921 {
1922 void *swap;
1923 struct gdbarch_swap_registration *source;
1924 struct gdbarch_swap *next;
1925 };
1926
1927 struct gdbarch_swap_registration
1928 {
1929 void *data;
1930 unsigned long sizeof_data;
1931 gdbarch_swap_ftype *init;
1932 struct gdbarch_swap_registration *next;
1933 };
1934
1935 struct gdbarch_swap_registry
1936 {
1937 int nr;
1938 struct gdbarch_swap_registration *registrations;
1939 };
1940
1941 struct gdbarch_swap_registry gdbarch_swap_registry =
1942 {
1943 0, NULL,
1944 };
1945
1946 void
1947 register_gdbarch_swap (void *data,
1948 unsigned long sizeof_data,
1949 gdbarch_swap_ftype *init)
1950 {
1951 struct gdbarch_swap_registration **rego;
1952 for (rego = &gdbarch_swap_registry.registrations;
1953 (*rego) != NULL;
1954 rego = &(*rego)->next);
1955 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1956 (*rego)->next = NULL;
1957 (*rego)->init = init;
1958 (*rego)->data = data;
1959 (*rego)->sizeof_data = sizeof_data;
1960 }
1961
1962 static void
1963 clear_gdbarch_swap (struct gdbarch *gdbarch)
1964 {
1965 struct gdbarch_swap *curr;
1966 for (curr = gdbarch->swap;
1967 curr != NULL;
1968 curr = curr->next)
1969 {
1970 memset (curr->source->data, 0, curr->source->sizeof_data);
1971 }
1972 }
1973
1974 static void
1975 init_gdbarch_swap (struct gdbarch *gdbarch)
1976 {
1977 struct gdbarch_swap_registration *rego;
1978 struct gdbarch_swap **curr = &gdbarch->swap;
1979 for (rego = gdbarch_swap_registry.registrations;
1980 rego != NULL;
1981 rego = rego->next)
1982 {
1983 if (rego->data != NULL)
1984 {
1985 (*curr) = XMALLOC (struct gdbarch_swap);
1986 (*curr)->source = rego;
1987 (*curr)->swap = xmalloc (rego->sizeof_data);
1988 (*curr)->next = NULL;
1989 curr = &(*curr)->next;
1990 }
1991 if (rego->init != NULL)
1992 rego->init ();
1993 }
1994 }
1995
1996 static void
1997 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1998 {
1999 struct gdbarch_swap *curr;
2000 for (curr = gdbarch->swap;
2001 curr != NULL;
2002 curr = curr->next)
2003 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2004 }
2005
2006 static void
2007 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2008 {
2009 struct gdbarch_swap *curr;
2010 for (curr = gdbarch->swap;
2011 curr != NULL;
2012 curr = curr->next)
2013 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2014 }
2015
2016
2017 /* Keep a registry of the architectures known by GDB. */
2018
2019 struct gdbarch_registration
2020 {
2021 enum bfd_architecture bfd_architecture;
2022 gdbarch_init_ftype *init;
2023 gdbarch_dump_tdep_ftype *dump_tdep;
2024 struct gdbarch_list *arches;
2025 struct gdbarch_registration *next;
2026 };
2027
2028 static struct gdbarch_registration *gdbarch_registry = NULL;
2029
2030 static void
2031 append_name (const char ***buf, int *nr, const char *name)
2032 {
2033 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2034 (*buf)[*nr] = name;
2035 *nr += 1;
2036 }
2037
2038 const char **
2039 gdbarch_printable_names (void)
2040 {
2041 if (GDB_MULTI_ARCH)
2042 {
2043 /* Accumulate a list of names based on the registed list of
2044 architectures. */
2045 enum bfd_architecture a;
2046 int nr_arches = 0;
2047 const char **arches = NULL;
2048 struct gdbarch_registration *rego;
2049 for (rego = gdbarch_registry;
2050 rego != NULL;
2051 rego = rego->next)
2052 {
2053 const struct bfd_arch_info *ap;
2054 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2055 if (ap == NULL)
2056 internal_error (__FILE__, __LINE__,
2057 "gdbarch_architecture_names: multi-arch unknown");
2058 do
2059 {
2060 append_name (&arches, &nr_arches, ap->printable_name);
2061 ap = ap->next;
2062 }
2063 while (ap != NULL);
2064 }
2065 append_name (&arches, &nr_arches, NULL);
2066 return arches;
2067 }
2068 else
2069 /* Just return all the architectures that BFD knows. Assume that
2070 the legacy architecture framework supports them. */
2071 return bfd_arch_list ();
2072 }
2073
2074
2075 void
2076 gdbarch_register (enum bfd_architecture bfd_architecture,
2077 gdbarch_init_ftype *init,
2078 gdbarch_dump_tdep_ftype *dump_tdep)
2079 {
2080 struct gdbarch_registration **curr;
2081 const struct bfd_arch_info *bfd_arch_info;
2082 /* Check that BFD recognizes this architecture */
2083 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2084 if (bfd_arch_info == NULL)
2085 {
2086 internal_error (__FILE__, __LINE__,
2087 "gdbarch: Attempt to register unknown architecture (%d)",
2088 bfd_architecture);
2089 }
2090 /* Check that we haven't seen this architecture before */
2091 for (curr = &gdbarch_registry;
2092 (*curr) != NULL;
2093 curr = &(*curr)->next)
2094 {
2095 if (bfd_architecture == (*curr)->bfd_architecture)
2096 internal_error (__FILE__, __LINE__,
2097 "gdbarch: Duplicate registraration of architecture (%s)",
2098 bfd_arch_info->printable_name);
2099 }
2100 /* log it */
2101 if (gdbarch_debug)
2102 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2103 bfd_arch_info->printable_name,
2104 (long) init);
2105 /* Append it */
2106 (*curr) = XMALLOC (struct gdbarch_registration);
2107 (*curr)->bfd_architecture = bfd_architecture;
2108 (*curr)->init = init;
2109 (*curr)->dump_tdep = dump_tdep;
2110 (*curr)->arches = NULL;
2111 (*curr)->next = NULL;
2112 /* When non- multi-arch, install whatever target dump routine we've
2113 been provided - hopefully that routine has been written correctly
2114 and works regardless of multi-arch. */
2115 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2116 && startup_gdbarch.dump_tdep == NULL)
2117 startup_gdbarch.dump_tdep = dump_tdep;
2118 }
2119
2120 void
2121 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2122 gdbarch_init_ftype *init)
2123 {
2124 gdbarch_register (bfd_architecture, init, NULL);
2125 }
2126
2127
2128 /* Look for an architecture using gdbarch_info. Base search on only
2129 BFD_ARCH_INFO and BYTE_ORDER. */
2130
2131 struct gdbarch_list *
2132 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2133 const struct gdbarch_info *info)
2134 {
2135 for (; arches != NULL; arches = arches->next)
2136 {
2137 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2138 continue;
2139 if (info->byte_order != arches->gdbarch->byte_order)
2140 continue;
2141 if (info->osabi != arches->gdbarch->osabi)
2142 continue;
2143 return arches;
2144 }
2145 return NULL;
2146 }
2147
2148
2149 /* Update the current architecture. Return ZERO if the update request
2150 failed. */
2151
2152 int
2153 gdbarch_update_p (struct gdbarch_info info)
2154 {
2155 struct gdbarch *new_gdbarch;
2156 struct gdbarch *old_gdbarch;
2157 struct gdbarch_registration *rego;
2158
2159 /* Fill in missing parts of the INFO struct using a number of
2160 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2161
2162 /* \`\`(gdb) set architecture ...'' */
2163 if (info.bfd_arch_info == NULL
2164 && !TARGET_ARCHITECTURE_AUTO)
2165 info.bfd_arch_info = TARGET_ARCHITECTURE;
2166 if (info.bfd_arch_info == NULL
2167 && info.abfd != NULL
2168 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2169 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2170 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2171 if (info.bfd_arch_info == NULL)
2172 info.bfd_arch_info = TARGET_ARCHITECTURE;
2173
2174 /* \`\`(gdb) set byte-order ...'' */
2175 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2176 && !TARGET_BYTE_ORDER_AUTO)
2177 info.byte_order = TARGET_BYTE_ORDER;
2178 /* From the INFO struct. */
2179 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2180 && info.abfd != NULL)
2181 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2182 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2183 : BFD_ENDIAN_UNKNOWN);
2184 /* From the current target. */
2185 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2186 info.byte_order = TARGET_BYTE_ORDER;
2187
2188 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2189 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2190 info.osabi = gdbarch_lookup_osabi (info.abfd);
2191 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2192 info.osabi = current_gdbarch->osabi;
2193
2194 /* Must have found some sort of architecture. */
2195 gdb_assert (info.bfd_arch_info != NULL);
2196
2197 if (gdbarch_debug)
2198 {
2199 fprintf_unfiltered (gdb_stdlog,
2200 "gdbarch_update: info.bfd_arch_info %s\n",
2201 (info.bfd_arch_info != NULL
2202 ? info.bfd_arch_info->printable_name
2203 : "(null)"));
2204 fprintf_unfiltered (gdb_stdlog,
2205 "gdbarch_update: info.byte_order %d (%s)\n",
2206 info.byte_order,
2207 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2208 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2209 : "default"));
2210 fprintf_unfiltered (gdb_stdlog,
2211 "gdbarch_update: info.osabi %d (%s)\n",
2212 info.osabi, gdbarch_osabi_name (info.osabi));
2213 fprintf_unfiltered (gdb_stdlog,
2214 "gdbarch_update: info.abfd 0x%lx\n",
2215 (long) info.abfd);
2216 fprintf_unfiltered (gdb_stdlog,
2217 "gdbarch_update: info.tdep_info 0x%lx\n",
2218 (long) info.tdep_info);
2219 }
2220
2221 /* Find the target that knows about this architecture. */
2222 for (rego = gdbarch_registry;
2223 rego != NULL;
2224 rego = rego->next)
2225 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2226 break;
2227 if (rego == NULL)
2228 {
2229 if (gdbarch_debug)
2230 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2231 return 0;
2232 }
2233
2234 /* Swap the data belonging to the old target out setting the
2235 installed data to zero. This stops the ->init() function trying
2236 to refer to the previous architecture's global data structures. */
2237 swapout_gdbarch_swap (current_gdbarch);
2238 clear_gdbarch_swap (current_gdbarch);
2239
2240 /* Save the previously selected architecture, setting the global to
2241 NULL. This stops ->init() trying to use the previous
2242 architecture's configuration. The previous architecture may not
2243 even be of the same architecture family. The most recent
2244 architecture of the same family is found at the head of the
2245 rego->arches list. */
2246 old_gdbarch = current_gdbarch;
2247 current_gdbarch = NULL;
2248
2249 /* Ask the target for a replacement architecture. */
2250 new_gdbarch = rego->init (info, rego->arches);
2251
2252 /* Did the target like it? No. Reject the change and revert to the
2253 old architecture. */
2254 if (new_gdbarch == NULL)
2255 {
2256 if (gdbarch_debug)
2257 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2258 swapin_gdbarch_swap (old_gdbarch);
2259 current_gdbarch = old_gdbarch;
2260 return 0;
2261 }
2262
2263 /* Did the architecture change? No. Oops, put the old architecture
2264 back. */
2265 if (old_gdbarch == new_gdbarch)
2266 {
2267 if (gdbarch_debug)
2268 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2269 (long) new_gdbarch,
2270 new_gdbarch->bfd_arch_info->printable_name);
2271 swapin_gdbarch_swap (old_gdbarch);
2272 current_gdbarch = old_gdbarch;
2273 return 1;
2274 }
2275
2276 /* Is this a pre-existing architecture? Yes. Move it to the front
2277 of the list of architectures (keeping the list sorted Most
2278 Recently Used) and then copy it in. */
2279 {
2280 struct gdbarch_list **list;
2281 for (list = &rego->arches;
2282 (*list) != NULL;
2283 list = &(*list)->next)
2284 {
2285 if ((*list)->gdbarch == new_gdbarch)
2286 {
2287 struct gdbarch_list *this;
2288 if (gdbarch_debug)
2289 fprintf_unfiltered (gdb_stdlog,
2290 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2291 (long) new_gdbarch,
2292 new_gdbarch->bfd_arch_info->printable_name);
2293 /* Unlink this. */
2294 this = (*list);
2295 (*list) = this->next;
2296 /* Insert in the front. */
2297 this->next = rego->arches;
2298 rego->arches = this;
2299 /* Copy the new architecture in. */
2300 current_gdbarch = new_gdbarch;
2301 swapin_gdbarch_swap (new_gdbarch);
2302 architecture_changed_event ();
2303 return 1;
2304 }
2305 }
2306 }
2307
2308 /* Prepend this new architecture to the architecture list (keep the
2309 list sorted Most Recently Used). */
2310 {
2311 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2312 this->next = rego->arches;
2313 this->gdbarch = new_gdbarch;
2314 rego->arches = this;
2315 }
2316
2317 /* Switch to this new architecture marking it initialized. */
2318 current_gdbarch = new_gdbarch;
2319 current_gdbarch->initialized_p = 1;
2320 if (gdbarch_debug)
2321 {
2322 fprintf_unfiltered (gdb_stdlog,
2323 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2324 (long) new_gdbarch,
2325 new_gdbarch->bfd_arch_info->printable_name);
2326 }
2327
2328 /* Check that the newly installed architecture is valid. Plug in
2329 any post init values. */
2330 new_gdbarch->dump_tdep = rego->dump_tdep;
2331 verify_gdbarch (new_gdbarch);
2332
2333 /* Initialize the per-architecture memory (swap) areas.
2334 CURRENT_GDBARCH must be update before these modules are
2335 called. */
2336 init_gdbarch_swap (new_gdbarch);
2337
2338 /* Initialize the per-architecture data. CURRENT_GDBARCH
2339 must be updated before these modules are called. */
2340 architecture_changed_event ();
2341
2342 if (gdbarch_debug)
2343 gdbarch_dump (current_gdbarch, gdb_stdlog);
2344
2345 return 1;
2346 }
2347
2348
2349 /* Disassembler */
2350
2351 /* Pointer to the target-dependent disassembly function. */
2352 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2353 disassemble_info tm_print_insn_info;
2354
2355
2356 extern void _initialize_gdbarch (void);
2357
2358 void
2359 _initialize_gdbarch (void)
2360 {
2361 struct cmd_list_element *c;
2362
2363 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2364 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2365 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2366 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2367 tm_print_insn_info.print_address_func = dis_asm_print_address;
2368
2369 add_show_from_set (add_set_cmd ("arch",
2370 class_maintenance,
2371 var_zinteger,
2372 (char *)&gdbarch_debug,
2373 "Set architecture debugging.\\n\\
2374 When non-zero, architecture debugging is enabled.", &setdebuglist),
2375 &showdebuglist);
2376 c = add_set_cmd ("archdebug",
2377 class_maintenance,
2378 var_zinteger,
2379 (char *)&gdbarch_debug,
2380 "Set architecture debugging.\\n\\
2381 When non-zero, architecture debugging is enabled.", &setlist);
2382
2383 deprecate_cmd (c, "set debug arch");
2384 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2385 }
2386 EOF
2387
2388 # close things off
2389 exec 1>&2
2390 #../move-if-change new-gdbarch.c gdbarch.c
2391 compare_new gdbarch.c
This page took 0.082341 seconds and 5 git commands to generate.