2003-03-31 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 # The dummy call frame SP should be set by push_dummy_call.
434 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
435 # Function for getting target's idea of a frame pointer. FIXME: GDB's
436 # whole scheme for dealing with "frames" and "frame pointers" needs a
437 # serious shakedown.
438 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
439 #
440 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
441 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
442 #
443 v:2:NUM_REGS:int:num_regs::::0:-1
444 # This macro gives the number of pseudo-registers that live in the
445 # register namespace but do not get fetched or stored on the target.
446 # These pseudo-registers may be aliases for other registers,
447 # combinations of other registers, or they may be computed by GDB.
448 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
449
450 # GDB's standard (or well known) register numbers. These can map onto
451 # a real register or a pseudo (computed) register or not be defined at
452 # all (-1).
453 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
454 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
455 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
456 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
457 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
458 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
459 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
460 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
462 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
464 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
465 # Convert from an sdb register number to an internal gdb register number.
466 # This should be defined in tm.h, if REGISTER_NAMES is not set up
467 # to map one to one onto the sdb register numbers.
468 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
469 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
470 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
471 v:2:REGISTER_SIZE:int:register_size::::0:-1
472 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
473 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
474 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
475 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
476 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
477 # by REGISTER_TYPE.
478 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
479 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
480 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
481 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
482 # by REGISTER_TYPE.
483 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
484 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
485 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
486 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
487 # by REGISTER_TYPE.
488 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
489 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
490 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
491 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
492 # by REGISTER_TYPE.
493 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
494 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
495 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
496 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
497 # by REGISTER_TYPE.
498 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
499 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
500 #
501 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
502 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
503 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
504 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
505 # MAP a GDB RAW register number onto a simulator register number. See
506 # also include/...-sim.h.
507 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
508 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
509 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
510 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
511 # setjmp/longjmp support.
512 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
513 #
514 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
515 # much better but at least they are vaguely consistent). The headers
516 # and body contain convoluted #if/#else sequences for determine how
517 # things should be compiled. Instead of trying to mimic that
518 # behaviour here (and hence entrench it further) gdbarch simply
519 # reqires that these methods be set up from the word go. This also
520 # avoids any potential problems with moving beyond multi-arch partial.
521 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
523 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
524 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
525 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
526 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
527 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::gdbarch->call_dummy_length >= 0
528 # NOTE: cagney/2002-11-24: This function with predicate has a valid
529 # (callable) initial value. As a consequence, even when the predicate
530 # is false, the corresponding function works. This simplifies the
531 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
532 # doesn't need to be modified.
533 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
534 v::CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
535 v::SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
536 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
537 F::FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
538 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
539 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
540 #
541 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
542 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
543 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
544 #
545 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
546 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
547 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
548 #
549 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
550 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
551 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
552 #
553 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
554 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
555 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
556 #
557 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
558 # Replaced by PUSH_DUMMY_CALL
559 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
560 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:struct regcache *regcache, CORE_ADDR dummy_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:regcache, dummy_addr, nargs, args, sp, struct_return, struct_addr
561 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
562 # NOTE: This can be handled directly in push_dummy_call.
563 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
564 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
565 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
566 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
567 #
568 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
569 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
570 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
571 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
572 #
573 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
574 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
575 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
576 #
577 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
578 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
579 #
580 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
581 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
582 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
583 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
584 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
585 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
586 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
587 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
588 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
589 #
590 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
591 #
592 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
593 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
594 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
595 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
596 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
597 # note, per UNWIND_PC's doco, that while the two have similar
598 # interfaces they have very different underlying implementations.
599 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
600 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
601 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
602 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
603 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
604 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
605 #
606 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
607 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
608 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
609 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
610 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
611 # FIXME: kettenis/2003-03-08: This should be replaced by a function
612 # parametrized with (at least) the regcache.
613 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
614 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
615 v:2:PARM_BOUNDARY:int:parm_boundary
616 #
617 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
618 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
619 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
620 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
621 # On some machines there are bits in addresses which are not really
622 # part of the address, but are used by the kernel, the hardware, etc.
623 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
624 # we get a "real" address such as one would find in a symbol table.
625 # This is used only for addresses of instructions, and even then I'm
626 # not sure it's used in all contexts. It exists to deal with there
627 # being a few stray bits in the PC which would mislead us, not as some
628 # sort of generic thing to handle alignment or segmentation (it's
629 # possible it should be in TARGET_READ_PC instead).
630 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
631 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
632 # ADDR_BITS_REMOVE.
633 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
634 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
635 # the target needs software single step. An ISA method to implement it.
636 #
637 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
638 # using the breakpoint system instead of blatting memory directly (as with rs6000).
639 #
640 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
641 # single step. If not, then implement single step using breakpoints.
642 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
643 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
644 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
645
646
647 # For SVR4 shared libraries, each call goes through a small piece of
648 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
649 # to nonzero if we are currently stopped in one of these.
650 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
651
652 # Some systems also have trampoline code for returning from shared libs.
653 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
654
655 # Sigtramp is a routine that the kernel calls (which then calls the
656 # signal handler). On most machines it is a library routine that is
657 # linked into the executable.
658 #
659 # This macro, given a program counter value and the name of the
660 # function in which that PC resides (which can be null if the name is
661 # not known), returns nonzero if the PC and name show that we are in
662 # sigtramp.
663 #
664 # On most machines just see if the name is sigtramp (and if we have
665 # no name, assume we are not in sigtramp).
666 #
667 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
668 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
669 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
670 # own local NAME lookup.
671 #
672 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
673 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
674 # does not.
675 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
676 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
677 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
678 # A target might have problems with watchpoints as soon as the stack
679 # frame of the current function has been destroyed. This mostly happens
680 # as the first action in a funtion's epilogue. in_function_epilogue_p()
681 # is defined to return a non-zero value if either the given addr is one
682 # instruction after the stack destroying instruction up to the trailing
683 # return instruction or if we can figure out that the stack frame has
684 # already been invalidated regardless of the value of addr. Targets
685 # which don't suffer from that problem could just let this functionality
686 # untouched.
687 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
688 # Given a vector of command-line arguments, return a newly allocated
689 # string which, when passed to the create_inferior function, will be
690 # parsed (on Unix systems, by the shell) to yield the same vector.
691 # This function should call error() if the argument vector is not
692 # representable for this target or if this target does not support
693 # command-line arguments.
694 # ARGC is the number of elements in the vector.
695 # ARGV is an array of strings, one per argument.
696 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
697 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
698 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
699 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
700 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
701 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
702 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
703 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
704 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
705 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
706 # Is a register in a group
707 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
708 EOF
709 }
710
711 #
712 # The .log file
713 #
714 exec > new-gdbarch.log
715 function_list | while do_read
716 do
717 cat <<EOF
718 ${class} ${macro}(${actual})
719 ${returntype} ${function} ($formal)${attrib}
720 EOF
721 for r in ${read}
722 do
723 eval echo \"\ \ \ \ ${r}=\${${r}}\"
724 done
725 if class_is_predicate_p && fallback_default_p
726 then
727 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
728 kill $$
729 exit 1
730 fi
731 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
732 then
733 echo "Error: postdefault is useless when invalid_p=0" 1>&2
734 kill $$
735 exit 1
736 fi
737 if class_is_multiarch_p
738 then
739 if class_is_predicate_p ; then :
740 elif test "x${predefault}" = "x"
741 then
742 echo "Error: pure multi-arch function must have a predefault" 1>&2
743 kill $$
744 exit 1
745 fi
746 fi
747 echo ""
748 done
749
750 exec 1>&2
751 compare_new gdbarch.log
752
753
754 copyright ()
755 {
756 cat <<EOF
757 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
758
759 /* Dynamic architecture support for GDB, the GNU debugger.
760 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
761
762 This file is part of GDB.
763
764 This program is free software; you can redistribute it and/or modify
765 it under the terms of the GNU General Public License as published by
766 the Free Software Foundation; either version 2 of the License, or
767 (at your option) any later version.
768
769 This program is distributed in the hope that it will be useful,
770 but WITHOUT ANY WARRANTY; without even the implied warranty of
771 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
772 GNU General Public License for more details.
773
774 You should have received a copy of the GNU General Public License
775 along with this program; if not, write to the Free Software
776 Foundation, Inc., 59 Temple Place - Suite 330,
777 Boston, MA 02111-1307, USA. */
778
779 /* This file was created with the aid of \`\`gdbarch.sh''.
780
781 The Bourne shell script \`\`gdbarch.sh'' creates the files
782 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
783 against the existing \`\`gdbarch.[hc]''. Any differences found
784 being reported.
785
786 If editing this file, please also run gdbarch.sh and merge any
787 changes into that script. Conversely, when making sweeping changes
788 to this file, modifying gdbarch.sh and using its output may prove
789 easier. */
790
791 EOF
792 }
793
794 #
795 # The .h file
796 #
797
798 exec > new-gdbarch.h
799 copyright
800 cat <<EOF
801 #ifndef GDBARCH_H
802 #define GDBARCH_H
803
804 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
805 #if !GDB_MULTI_ARCH
806 /* Pull in function declarations refered to, indirectly, via macros. */
807 #include "inferior.h" /* For unsigned_address_to_pointer(). */
808 #include "symfile.h" /* For entry_point_address(). */
809 #endif
810
811 struct frame_info;
812 struct value;
813 struct objfile;
814 struct minimal_symbol;
815 struct regcache;
816 struct reggroup;
817
818 extern struct gdbarch *current_gdbarch;
819
820
821 /* If any of the following are defined, the target wasn't correctly
822 converted. */
823
824 #if GDB_MULTI_ARCH
825 #if defined (EXTRA_FRAME_INFO)
826 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
827 #endif
828 #endif
829
830 #if GDB_MULTI_ARCH
831 #if defined (FRAME_FIND_SAVED_REGS)
832 #error "FRAME_FIND_SAVED_REGS: replaced by DEPRECATED_FRAME_INIT_SAVED_REGS"
833 #endif
834 #endif
835
836 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
837 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
838 #endif
839 EOF
840
841 # function typedef's
842 printf "\n"
843 printf "\n"
844 printf "/* The following are pre-initialized by GDBARCH. */\n"
845 function_list | while do_read
846 do
847 if class_is_info_p
848 then
849 printf "\n"
850 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
851 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
852 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
853 printf "#error \"Non multi-arch definition of ${macro}\"\n"
854 printf "#endif\n"
855 printf "#if GDB_MULTI_ARCH\n"
856 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
857 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
858 printf "#endif\n"
859 printf "#endif\n"
860 fi
861 done
862
863 # function typedef's
864 printf "\n"
865 printf "\n"
866 printf "/* The following are initialized by the target dependent code. */\n"
867 function_list | while do_read
868 do
869 if [ -n "${comment}" ]
870 then
871 echo "${comment}" | sed \
872 -e '2 s,#,/*,' \
873 -e '3,$ s,#, ,' \
874 -e '$ s,$, */,'
875 fi
876 if class_is_multiarch_p
877 then
878 if class_is_predicate_p
879 then
880 printf "\n"
881 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
882 fi
883 else
884 if class_is_predicate_p
885 then
886 printf "\n"
887 printf "#if defined (${macro})\n"
888 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
889 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
890 printf "#if !defined (${macro}_P)\n"
891 printf "#define ${macro}_P() (1)\n"
892 printf "#endif\n"
893 printf "#endif\n"
894 printf "\n"
895 printf "/* Default predicate for non- multi-arch targets. */\n"
896 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
897 printf "#define ${macro}_P() (0)\n"
898 printf "#endif\n"
899 printf "\n"
900 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
901 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
902 printf "#error \"Non multi-arch definition of ${macro}\"\n"
903 printf "#endif\n"
904 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
905 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
906 printf "#endif\n"
907 fi
908 fi
909 if class_is_variable_p
910 then
911 if fallback_default_p || class_is_predicate_p
912 then
913 printf "\n"
914 printf "/* Default (value) for non- multi-arch platforms. */\n"
915 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
916 echo "#define ${macro} (${fallbackdefault})" \
917 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
918 printf "#endif\n"
919 fi
920 printf "\n"
921 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
922 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
923 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
924 printf "#error \"Non multi-arch definition of ${macro}\"\n"
925 printf "#endif\n"
926 if test "${level}" = ""
927 then
928 printf "#if !defined (${macro})\n"
929 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
930 printf "#endif\n"
931 else
932 printf "#if GDB_MULTI_ARCH\n"
933 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
934 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
935 printf "#endif\n"
936 printf "#endif\n"
937 fi
938 fi
939 if class_is_function_p
940 then
941 if class_is_multiarch_p ; then :
942 elif fallback_default_p || class_is_predicate_p
943 then
944 printf "\n"
945 printf "/* Default (function) for non- multi-arch platforms. */\n"
946 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
947 if [ "x${fallbackdefault}" = "x0" ]
948 then
949 if [ "x${actual}" = "x-" ]
950 then
951 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
952 else
953 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
954 fi
955 else
956 # FIXME: Should be passing current_gdbarch through!
957 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
958 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
959 fi
960 printf "#endif\n"
961 fi
962 printf "\n"
963 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
964 then
965 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
966 elif class_is_multiarch_p
967 then
968 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
969 else
970 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
971 fi
972 if [ "x${formal}" = "xvoid" ]
973 then
974 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
975 else
976 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
977 fi
978 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
979 if class_is_multiarch_p ; then :
980 else
981 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
982 printf "#error \"Non multi-arch definition of ${macro}\"\n"
983 printf "#endif\n"
984 printf "#if GDB_MULTI_ARCH\n"
985 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
986 if [ "x${actual}" = "x" ]
987 then
988 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
989 elif [ "x${actual}" = "x-" ]
990 then
991 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
992 else
993 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
994 fi
995 printf "#endif\n"
996 printf "#endif\n"
997 fi
998 fi
999 done
1000
1001 # close it off
1002 cat <<EOF
1003
1004 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1005
1006
1007 /* Mechanism for co-ordinating the selection of a specific
1008 architecture.
1009
1010 GDB targets (*-tdep.c) can register an interest in a specific
1011 architecture. Other GDB components can register a need to maintain
1012 per-architecture data.
1013
1014 The mechanisms below ensures that there is only a loose connection
1015 between the set-architecture command and the various GDB
1016 components. Each component can independently register their need
1017 to maintain architecture specific data with gdbarch.
1018
1019 Pragmatics:
1020
1021 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1022 didn't scale.
1023
1024 The more traditional mega-struct containing architecture specific
1025 data for all the various GDB components was also considered. Since
1026 GDB is built from a variable number of (fairly independent)
1027 components it was determined that the global aproach was not
1028 applicable. */
1029
1030
1031 /* Register a new architectural family with GDB.
1032
1033 Register support for the specified ARCHITECTURE with GDB. When
1034 gdbarch determines that the specified architecture has been
1035 selected, the corresponding INIT function is called.
1036
1037 --
1038
1039 The INIT function takes two parameters: INFO which contains the
1040 information available to gdbarch about the (possibly new)
1041 architecture; ARCHES which is a list of the previously created
1042 \`\`struct gdbarch'' for this architecture.
1043
1044 The INFO parameter is, as far as possible, be pre-initialized with
1045 information obtained from INFO.ABFD or the previously selected
1046 architecture.
1047
1048 The ARCHES parameter is a linked list (sorted most recently used)
1049 of all the previously created architures for this architecture
1050 family. The (possibly NULL) ARCHES->gdbarch can used to access
1051 values from the previously selected architecture for this
1052 architecture family. The global \`\`current_gdbarch'' shall not be
1053 used.
1054
1055 The INIT function shall return any of: NULL - indicating that it
1056 doesn't recognize the selected architecture; an existing \`\`struct
1057 gdbarch'' from the ARCHES list - indicating that the new
1058 architecture is just a synonym for an earlier architecture (see
1059 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1060 - that describes the selected architecture (see gdbarch_alloc()).
1061
1062 The DUMP_TDEP function shall print out all target specific values.
1063 Care should be taken to ensure that the function works in both the
1064 multi-arch and non- multi-arch cases. */
1065
1066 struct gdbarch_list
1067 {
1068 struct gdbarch *gdbarch;
1069 struct gdbarch_list *next;
1070 };
1071
1072 struct gdbarch_info
1073 {
1074 /* Use default: NULL (ZERO). */
1075 const struct bfd_arch_info *bfd_arch_info;
1076
1077 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1078 int byte_order;
1079
1080 /* Use default: NULL (ZERO). */
1081 bfd *abfd;
1082
1083 /* Use default: NULL (ZERO). */
1084 struct gdbarch_tdep_info *tdep_info;
1085
1086 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1087 enum gdb_osabi osabi;
1088 };
1089
1090 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1091 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1092
1093 /* DEPRECATED - use gdbarch_register() */
1094 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1095
1096 extern void gdbarch_register (enum bfd_architecture architecture,
1097 gdbarch_init_ftype *,
1098 gdbarch_dump_tdep_ftype *);
1099
1100
1101 /* Return a freshly allocated, NULL terminated, array of the valid
1102 architecture names. Since architectures are registered during the
1103 _initialize phase this function only returns useful information
1104 once initialization has been completed. */
1105
1106 extern const char **gdbarch_printable_names (void);
1107
1108
1109 /* Helper function. Search the list of ARCHES for a GDBARCH that
1110 matches the information provided by INFO. */
1111
1112 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1113
1114
1115 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1116 basic initialization using values obtained from the INFO andTDEP
1117 parameters. set_gdbarch_*() functions are called to complete the
1118 initialization of the object. */
1119
1120 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1121
1122
1123 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1124 It is assumed that the caller freeds the \`\`struct
1125 gdbarch_tdep''. */
1126
1127 extern void gdbarch_free (struct gdbarch *);
1128
1129
1130 /* Helper function. Force an update of the current architecture.
1131
1132 The actual architecture selected is determined by INFO, \`\`(gdb) set
1133 architecture'' et.al., the existing architecture and BFD's default
1134 architecture. INFO should be initialized to zero and then selected
1135 fields should be updated.
1136
1137 Returns non-zero if the update succeeds */
1138
1139 extern int gdbarch_update_p (struct gdbarch_info info);
1140
1141
1142
1143 /* Register per-architecture data-pointer.
1144
1145 Reserve space for a per-architecture data-pointer. An identifier
1146 for the reserved data-pointer is returned. That identifer should
1147 be saved in a local static variable.
1148
1149 The per-architecture data-pointer is either initialized explicitly
1150 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1151 gdbarch_data()). FREE() is called to delete either an existing
1152 data-pointer overridden by set_gdbarch_data() or when the
1153 architecture object is being deleted.
1154
1155 When a previously created architecture is re-selected, the
1156 per-architecture data-pointer for that previous architecture is
1157 restored. INIT() is not re-called.
1158
1159 Multiple registrarants for any architecture are allowed (and
1160 strongly encouraged). */
1161
1162 struct gdbarch_data;
1163
1164 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1165 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1166 void *pointer);
1167 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1168 gdbarch_data_free_ftype *free);
1169 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1170 struct gdbarch_data *data,
1171 void *pointer);
1172
1173 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1174
1175
1176 /* Register per-architecture memory region.
1177
1178 Provide a memory-region swap mechanism. Per-architecture memory
1179 region are created. These memory regions are swapped whenever the
1180 architecture is changed. For a new architecture, the memory region
1181 is initialized with zero (0) and the INIT function is called.
1182
1183 Memory regions are swapped / initialized in the order that they are
1184 registered. NULL DATA and/or INIT values can be specified.
1185
1186 New code should use register_gdbarch_data(). */
1187
1188 typedef void (gdbarch_swap_ftype) (void);
1189 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1190 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1191
1192
1193
1194 /* The target-system-dependent byte order is dynamic */
1195
1196 extern int target_byte_order;
1197 #ifndef TARGET_BYTE_ORDER
1198 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1199 #endif
1200
1201 extern int target_byte_order_auto;
1202 #ifndef TARGET_BYTE_ORDER_AUTO
1203 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1204 #endif
1205
1206
1207
1208 /* The target-system-dependent BFD architecture is dynamic */
1209
1210 extern int target_architecture_auto;
1211 #ifndef TARGET_ARCHITECTURE_AUTO
1212 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1213 #endif
1214
1215 extern const struct bfd_arch_info *target_architecture;
1216 #ifndef TARGET_ARCHITECTURE
1217 #define TARGET_ARCHITECTURE (target_architecture + 0)
1218 #endif
1219
1220
1221 /* The target-system-dependent disassembler is semi-dynamic */
1222
1223 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1224 unsigned int len, disassemble_info *info);
1225
1226 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1227 disassemble_info *info);
1228
1229 extern void dis_asm_print_address (bfd_vma addr,
1230 disassemble_info *info);
1231
1232 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1233 extern disassemble_info tm_print_insn_info;
1234 #ifndef TARGET_PRINT_INSN_INFO
1235 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1236 #endif
1237
1238
1239
1240 /* Set the dynamic target-system-dependent parameters (architecture,
1241 byte-order, ...) using information found in the BFD */
1242
1243 extern void set_gdbarch_from_file (bfd *);
1244
1245
1246 /* Initialize the current architecture to the "first" one we find on
1247 our list. */
1248
1249 extern void initialize_current_architecture (void);
1250
1251 /* For non-multiarched targets, do any initialization of the default
1252 gdbarch object necessary after the _initialize_MODULE functions
1253 have run. */
1254 extern void initialize_non_multiarch (void);
1255
1256 /* gdbarch trace variable */
1257 extern int gdbarch_debug;
1258
1259 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1260
1261 #endif
1262 EOF
1263 exec 1>&2
1264 #../move-if-change new-gdbarch.h gdbarch.h
1265 compare_new gdbarch.h
1266
1267
1268 #
1269 # C file
1270 #
1271
1272 exec > new-gdbarch.c
1273 copyright
1274 cat <<EOF
1275
1276 #include "defs.h"
1277 #include "arch-utils.h"
1278
1279 #if GDB_MULTI_ARCH
1280 #include "gdbcmd.h"
1281 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1282 #else
1283 /* Just include everything in sight so that the every old definition
1284 of macro is visible. */
1285 #include "gdb_string.h"
1286 #include <ctype.h>
1287 #include "symtab.h"
1288 #include "frame.h"
1289 #include "inferior.h"
1290 #include "breakpoint.h"
1291 #include "gdb_wait.h"
1292 #include "gdbcore.h"
1293 #include "gdbcmd.h"
1294 #include "target.h"
1295 #include "gdbthread.h"
1296 #include "annotate.h"
1297 #include "symfile.h" /* for overlay functions */
1298 #include "value.h" /* For old tm.h/nm.h macros. */
1299 #endif
1300 #include "symcat.h"
1301
1302 #include "floatformat.h"
1303
1304 #include "gdb_assert.h"
1305 #include "gdb_string.h"
1306 #include "gdb-events.h"
1307 #include "reggroups.h"
1308 #include "osabi.h"
1309 #include "symfile.h" /* For entry_point_address. */
1310
1311 /* Static function declarations */
1312
1313 static void verify_gdbarch (struct gdbarch *gdbarch);
1314 static void alloc_gdbarch_data (struct gdbarch *);
1315 static void free_gdbarch_data (struct gdbarch *);
1316 static void init_gdbarch_swap (struct gdbarch *);
1317 static void clear_gdbarch_swap (struct gdbarch *);
1318 static void swapout_gdbarch_swap (struct gdbarch *);
1319 static void swapin_gdbarch_swap (struct gdbarch *);
1320
1321 /* Non-zero if we want to trace architecture code. */
1322
1323 #ifndef GDBARCH_DEBUG
1324 #define GDBARCH_DEBUG 0
1325 #endif
1326 int gdbarch_debug = GDBARCH_DEBUG;
1327
1328 EOF
1329
1330 # gdbarch open the gdbarch object
1331 printf "\n"
1332 printf "/* Maintain the struct gdbarch object */\n"
1333 printf "\n"
1334 printf "struct gdbarch\n"
1335 printf "{\n"
1336 printf " /* Has this architecture been fully initialized? */\n"
1337 printf " int initialized_p;\n"
1338 printf " /* basic architectural information */\n"
1339 function_list | while do_read
1340 do
1341 if class_is_info_p
1342 then
1343 printf " ${returntype} ${function};\n"
1344 fi
1345 done
1346 printf "\n"
1347 printf " /* target specific vector. */\n"
1348 printf " struct gdbarch_tdep *tdep;\n"
1349 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1350 printf "\n"
1351 printf " /* per-architecture data-pointers */\n"
1352 printf " unsigned nr_data;\n"
1353 printf " void **data;\n"
1354 printf "\n"
1355 printf " /* per-architecture swap-regions */\n"
1356 printf " struct gdbarch_swap *swap;\n"
1357 printf "\n"
1358 cat <<EOF
1359 /* Multi-arch values.
1360
1361 When extending this structure you must:
1362
1363 Add the field below.
1364
1365 Declare set/get functions and define the corresponding
1366 macro in gdbarch.h.
1367
1368 gdbarch_alloc(): If zero/NULL is not a suitable default,
1369 initialize the new field.
1370
1371 verify_gdbarch(): Confirm that the target updated the field
1372 correctly.
1373
1374 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1375 field is dumped out
1376
1377 \`\`startup_gdbarch()'': Append an initial value to the static
1378 variable (base values on the host's c-type system).
1379
1380 get_gdbarch(): Implement the set/get functions (probably using
1381 the macro's as shortcuts).
1382
1383 */
1384
1385 EOF
1386 function_list | while do_read
1387 do
1388 if class_is_variable_p
1389 then
1390 printf " ${returntype} ${function};\n"
1391 elif class_is_function_p
1392 then
1393 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1394 fi
1395 done
1396 printf "};\n"
1397
1398 # A pre-initialized vector
1399 printf "\n"
1400 printf "\n"
1401 cat <<EOF
1402 /* The default architecture uses host values (for want of a better
1403 choice). */
1404 EOF
1405 printf "\n"
1406 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1407 printf "\n"
1408 printf "struct gdbarch startup_gdbarch =\n"
1409 printf "{\n"
1410 printf " 1, /* Always initialized. */\n"
1411 printf " /* basic architecture information */\n"
1412 function_list | while do_read
1413 do
1414 if class_is_info_p
1415 then
1416 printf " ${staticdefault},\n"
1417 fi
1418 done
1419 cat <<EOF
1420 /* target specific vector and its dump routine */
1421 NULL, NULL,
1422 /*per-architecture data-pointers and swap regions */
1423 0, NULL, NULL,
1424 /* Multi-arch values */
1425 EOF
1426 function_list | while do_read
1427 do
1428 if class_is_function_p || class_is_variable_p
1429 then
1430 printf " ${staticdefault},\n"
1431 fi
1432 done
1433 cat <<EOF
1434 /* startup_gdbarch() */
1435 };
1436
1437 struct gdbarch *current_gdbarch = &startup_gdbarch;
1438
1439 /* Do any initialization needed for a non-multiarch configuration
1440 after the _initialize_MODULE functions have been run. */
1441 void
1442 initialize_non_multiarch (void)
1443 {
1444 alloc_gdbarch_data (&startup_gdbarch);
1445 /* Ensure that all swap areas are zeroed so that they again think
1446 they are starting from scratch. */
1447 clear_gdbarch_swap (&startup_gdbarch);
1448 init_gdbarch_swap (&startup_gdbarch);
1449 }
1450 EOF
1451
1452 # Create a new gdbarch struct
1453 printf "\n"
1454 printf "\n"
1455 cat <<EOF
1456 /* Create a new \`\`struct gdbarch'' based on information provided by
1457 \`\`struct gdbarch_info''. */
1458 EOF
1459 printf "\n"
1460 cat <<EOF
1461 struct gdbarch *
1462 gdbarch_alloc (const struct gdbarch_info *info,
1463 struct gdbarch_tdep *tdep)
1464 {
1465 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1466 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1467 the current local architecture and not the previous global
1468 architecture. This ensures that the new architectures initial
1469 values are not influenced by the previous architecture. Once
1470 everything is parameterised with gdbarch, this will go away. */
1471 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1472 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1473
1474 alloc_gdbarch_data (current_gdbarch);
1475
1476 current_gdbarch->tdep = tdep;
1477 EOF
1478 printf "\n"
1479 function_list | while do_read
1480 do
1481 if class_is_info_p
1482 then
1483 printf " current_gdbarch->${function} = info->${function};\n"
1484 fi
1485 done
1486 printf "\n"
1487 printf " /* Force the explicit initialization of these. */\n"
1488 function_list | while do_read
1489 do
1490 if class_is_function_p || class_is_variable_p
1491 then
1492 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1493 then
1494 printf " current_gdbarch->${function} = ${predefault};\n"
1495 fi
1496 fi
1497 done
1498 cat <<EOF
1499 /* gdbarch_alloc() */
1500
1501 return current_gdbarch;
1502 }
1503 EOF
1504
1505 # Free a gdbarch struct.
1506 printf "\n"
1507 printf "\n"
1508 cat <<EOF
1509 /* Free a gdbarch struct. This should never happen in normal
1510 operation --- once you've created a gdbarch, you keep it around.
1511 However, if an architecture's init function encounters an error
1512 building the structure, it may need to clean up a partially
1513 constructed gdbarch. */
1514
1515 void
1516 gdbarch_free (struct gdbarch *arch)
1517 {
1518 gdb_assert (arch != NULL);
1519 free_gdbarch_data (arch);
1520 xfree (arch);
1521 }
1522 EOF
1523
1524 # verify a new architecture
1525 printf "\n"
1526 printf "\n"
1527 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1528 printf "\n"
1529 cat <<EOF
1530 static void
1531 verify_gdbarch (struct gdbarch *gdbarch)
1532 {
1533 struct ui_file *log;
1534 struct cleanup *cleanups;
1535 long dummy;
1536 char *buf;
1537 /* Only perform sanity checks on a multi-arch target. */
1538 if (!GDB_MULTI_ARCH)
1539 return;
1540 log = mem_fileopen ();
1541 cleanups = make_cleanup_ui_file_delete (log);
1542 /* fundamental */
1543 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1544 fprintf_unfiltered (log, "\n\tbyte-order");
1545 if (gdbarch->bfd_arch_info == NULL)
1546 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1547 /* Check those that need to be defined for the given multi-arch level. */
1548 EOF
1549 function_list | while do_read
1550 do
1551 if class_is_function_p || class_is_variable_p
1552 then
1553 if [ "x${invalid_p}" = "x0" ]
1554 then
1555 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1556 elif class_is_predicate_p
1557 then
1558 printf " /* Skip verify of ${function}, has predicate */\n"
1559 # FIXME: See do_read for potential simplification
1560 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1561 then
1562 printf " if (${invalid_p})\n"
1563 printf " gdbarch->${function} = ${postdefault};\n"
1564 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1565 then
1566 printf " if (gdbarch->${function} == ${predefault})\n"
1567 printf " gdbarch->${function} = ${postdefault};\n"
1568 elif [ -n "${postdefault}" ]
1569 then
1570 printf " if (gdbarch->${function} == 0)\n"
1571 printf " gdbarch->${function} = ${postdefault};\n"
1572 elif [ -n "${invalid_p}" ]
1573 then
1574 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1575 printf " && (${invalid_p}))\n"
1576 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1577 elif [ -n "${predefault}" ]
1578 then
1579 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1580 printf " && (gdbarch->${function} == ${predefault}))\n"
1581 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1582 fi
1583 fi
1584 done
1585 cat <<EOF
1586 buf = ui_file_xstrdup (log, &dummy);
1587 make_cleanup (xfree, buf);
1588 if (strlen (buf) > 0)
1589 internal_error (__FILE__, __LINE__,
1590 "verify_gdbarch: the following are invalid ...%s",
1591 buf);
1592 do_cleanups (cleanups);
1593 }
1594 EOF
1595
1596 # dump the structure
1597 printf "\n"
1598 printf "\n"
1599 cat <<EOF
1600 /* Print out the details of the current architecture. */
1601
1602 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1603 just happens to match the global variable \`\`current_gdbarch''. That
1604 way macros refering to that variable get the local and not the global
1605 version - ulgh. Once everything is parameterised with gdbarch, this
1606 will go away. */
1607
1608 void
1609 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1610 {
1611 fprintf_unfiltered (file,
1612 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1613 GDB_MULTI_ARCH);
1614 EOF
1615 function_list | sort -t: -k 3 | while do_read
1616 do
1617 # First the predicate
1618 if class_is_predicate_p
1619 then
1620 if class_is_multiarch_p
1621 then
1622 printf " if (GDB_MULTI_ARCH)\n"
1623 printf " fprintf_unfiltered (file,\n"
1624 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1625 printf " gdbarch_${function}_p (current_gdbarch));\n"
1626 else
1627 printf "#ifdef ${macro}_P\n"
1628 printf " fprintf_unfiltered (file,\n"
1629 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1630 printf " \"${macro}_P()\",\n"
1631 printf " XSTRING (${macro}_P ()));\n"
1632 printf " fprintf_unfiltered (file,\n"
1633 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1634 printf " ${macro}_P ());\n"
1635 printf "#endif\n"
1636 fi
1637 fi
1638 # multiarch functions don't have macros.
1639 if class_is_multiarch_p
1640 then
1641 printf " if (GDB_MULTI_ARCH)\n"
1642 printf " fprintf_unfiltered (file,\n"
1643 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1644 printf " (long) current_gdbarch->${function});\n"
1645 continue
1646 fi
1647 # Print the macro definition.
1648 printf "#ifdef ${macro}\n"
1649 if [ "x${returntype}" = "xvoid" ]
1650 then
1651 printf "#if GDB_MULTI_ARCH\n"
1652 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1653 fi
1654 if class_is_function_p
1655 then
1656 printf " fprintf_unfiltered (file,\n"
1657 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1658 printf " \"${macro}(${actual})\",\n"
1659 printf " XSTRING (${macro} (${actual})));\n"
1660 else
1661 printf " fprintf_unfiltered (file,\n"
1662 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1663 printf " XSTRING (${macro}));\n"
1664 fi
1665 # Print the architecture vector value
1666 if [ "x${returntype}" = "xvoid" ]
1667 then
1668 printf "#endif\n"
1669 fi
1670 if [ "x${print_p}" = "x()" ]
1671 then
1672 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1673 elif [ "x${print_p}" = "x0" ]
1674 then
1675 printf " /* skip print of ${macro}, print_p == 0. */\n"
1676 elif [ -n "${print_p}" ]
1677 then
1678 printf " if (${print_p})\n"
1679 printf " fprintf_unfiltered (file,\n"
1680 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1681 printf " ${print});\n"
1682 elif class_is_function_p
1683 then
1684 printf " if (GDB_MULTI_ARCH)\n"
1685 printf " fprintf_unfiltered (file,\n"
1686 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1687 printf " (long) current_gdbarch->${function}\n"
1688 printf " /*${macro} ()*/);\n"
1689 else
1690 printf " fprintf_unfiltered (file,\n"
1691 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1692 printf " ${print});\n"
1693 fi
1694 printf "#endif\n"
1695 done
1696 cat <<EOF
1697 if (current_gdbarch->dump_tdep != NULL)
1698 current_gdbarch->dump_tdep (current_gdbarch, file);
1699 }
1700 EOF
1701
1702
1703 # GET/SET
1704 printf "\n"
1705 cat <<EOF
1706 struct gdbarch_tdep *
1707 gdbarch_tdep (struct gdbarch *gdbarch)
1708 {
1709 if (gdbarch_debug >= 2)
1710 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1711 return gdbarch->tdep;
1712 }
1713 EOF
1714 printf "\n"
1715 function_list | while do_read
1716 do
1717 if class_is_predicate_p
1718 then
1719 printf "\n"
1720 printf "int\n"
1721 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1722 printf "{\n"
1723 printf " gdb_assert (gdbarch != NULL);\n"
1724 if [ -n "${predicate}" ]
1725 then
1726 printf " return ${predicate};\n"
1727 else
1728 printf " return gdbarch->${function} != 0;\n"
1729 fi
1730 printf "}\n"
1731 fi
1732 if class_is_function_p
1733 then
1734 printf "\n"
1735 printf "${returntype}\n"
1736 if [ "x${formal}" = "xvoid" ]
1737 then
1738 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1739 else
1740 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1741 fi
1742 printf "{\n"
1743 printf " gdb_assert (gdbarch != NULL);\n"
1744 printf " if (gdbarch->${function} == 0)\n"
1745 printf " internal_error (__FILE__, __LINE__,\n"
1746 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1747 if class_is_predicate_p && test -n "${predicate}"
1748 then
1749 # Allow a call to a function with a predicate.
1750 printf " /* Ignore predicate (${predicate}). */\n"
1751 fi
1752 printf " if (gdbarch_debug >= 2)\n"
1753 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1754 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1755 then
1756 if class_is_multiarch_p
1757 then
1758 params="gdbarch"
1759 else
1760 params=""
1761 fi
1762 else
1763 if class_is_multiarch_p
1764 then
1765 params="gdbarch, ${actual}"
1766 else
1767 params="${actual}"
1768 fi
1769 fi
1770 if [ "x${returntype}" = "xvoid" ]
1771 then
1772 printf " gdbarch->${function} (${params});\n"
1773 else
1774 printf " return gdbarch->${function} (${params});\n"
1775 fi
1776 printf "}\n"
1777 printf "\n"
1778 printf "void\n"
1779 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1780 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1781 printf "{\n"
1782 printf " gdbarch->${function} = ${function};\n"
1783 printf "}\n"
1784 elif class_is_variable_p
1785 then
1786 printf "\n"
1787 printf "${returntype}\n"
1788 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1789 printf "{\n"
1790 printf " gdb_assert (gdbarch != NULL);\n"
1791 if [ "x${invalid_p}" = "x0" ]
1792 then
1793 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1794 elif [ -n "${invalid_p}" ]
1795 then
1796 printf " if (${invalid_p})\n"
1797 printf " internal_error (__FILE__, __LINE__,\n"
1798 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1799 elif [ -n "${predefault}" ]
1800 then
1801 printf " if (gdbarch->${function} == ${predefault})\n"
1802 printf " internal_error (__FILE__, __LINE__,\n"
1803 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1804 fi
1805 printf " if (gdbarch_debug >= 2)\n"
1806 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1807 printf " return gdbarch->${function};\n"
1808 printf "}\n"
1809 printf "\n"
1810 printf "void\n"
1811 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1812 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1813 printf "{\n"
1814 printf " gdbarch->${function} = ${function};\n"
1815 printf "}\n"
1816 elif class_is_info_p
1817 then
1818 printf "\n"
1819 printf "${returntype}\n"
1820 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1821 printf "{\n"
1822 printf " gdb_assert (gdbarch != NULL);\n"
1823 printf " if (gdbarch_debug >= 2)\n"
1824 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1825 printf " return gdbarch->${function};\n"
1826 printf "}\n"
1827 fi
1828 done
1829
1830 # All the trailing guff
1831 cat <<EOF
1832
1833
1834 /* Keep a registry of per-architecture data-pointers required by GDB
1835 modules. */
1836
1837 struct gdbarch_data
1838 {
1839 unsigned index;
1840 int init_p;
1841 gdbarch_data_init_ftype *init;
1842 gdbarch_data_free_ftype *free;
1843 };
1844
1845 struct gdbarch_data_registration
1846 {
1847 struct gdbarch_data *data;
1848 struct gdbarch_data_registration *next;
1849 };
1850
1851 struct gdbarch_data_registry
1852 {
1853 unsigned nr;
1854 struct gdbarch_data_registration *registrations;
1855 };
1856
1857 struct gdbarch_data_registry gdbarch_data_registry =
1858 {
1859 0, NULL,
1860 };
1861
1862 struct gdbarch_data *
1863 register_gdbarch_data (gdbarch_data_init_ftype *init,
1864 gdbarch_data_free_ftype *free)
1865 {
1866 struct gdbarch_data_registration **curr;
1867 /* Append the new registraration. */
1868 for (curr = &gdbarch_data_registry.registrations;
1869 (*curr) != NULL;
1870 curr = &(*curr)->next);
1871 (*curr) = XMALLOC (struct gdbarch_data_registration);
1872 (*curr)->next = NULL;
1873 (*curr)->data = XMALLOC (struct gdbarch_data);
1874 (*curr)->data->index = gdbarch_data_registry.nr++;
1875 (*curr)->data->init = init;
1876 (*curr)->data->init_p = 1;
1877 (*curr)->data->free = free;
1878 return (*curr)->data;
1879 }
1880
1881
1882 /* Create/delete the gdbarch data vector. */
1883
1884 static void
1885 alloc_gdbarch_data (struct gdbarch *gdbarch)
1886 {
1887 gdb_assert (gdbarch->data == NULL);
1888 gdbarch->nr_data = gdbarch_data_registry.nr;
1889 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1890 }
1891
1892 static void
1893 free_gdbarch_data (struct gdbarch *gdbarch)
1894 {
1895 struct gdbarch_data_registration *rego;
1896 gdb_assert (gdbarch->data != NULL);
1897 for (rego = gdbarch_data_registry.registrations;
1898 rego != NULL;
1899 rego = rego->next)
1900 {
1901 struct gdbarch_data *data = rego->data;
1902 gdb_assert (data->index < gdbarch->nr_data);
1903 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1904 {
1905 data->free (gdbarch, gdbarch->data[data->index]);
1906 gdbarch->data[data->index] = NULL;
1907 }
1908 }
1909 xfree (gdbarch->data);
1910 gdbarch->data = NULL;
1911 }
1912
1913
1914 /* Initialize the current value of the specified per-architecture
1915 data-pointer. */
1916
1917 void
1918 set_gdbarch_data (struct gdbarch *gdbarch,
1919 struct gdbarch_data *data,
1920 void *pointer)
1921 {
1922 gdb_assert (data->index < gdbarch->nr_data);
1923 if (gdbarch->data[data->index] != NULL)
1924 {
1925 gdb_assert (data->free != NULL);
1926 data->free (gdbarch, gdbarch->data[data->index]);
1927 }
1928 gdbarch->data[data->index] = pointer;
1929 }
1930
1931 /* Return the current value of the specified per-architecture
1932 data-pointer. */
1933
1934 void *
1935 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1936 {
1937 gdb_assert (data->index < gdbarch->nr_data);
1938 /* The data-pointer isn't initialized, call init() to get a value but
1939 only if the architecture initializaiton has completed. Otherwise
1940 punt - hope that the caller knows what they are doing. */
1941 if (gdbarch->data[data->index] == NULL
1942 && gdbarch->initialized_p)
1943 {
1944 /* Be careful to detect an initialization cycle. */
1945 gdb_assert (data->init_p);
1946 data->init_p = 0;
1947 gdb_assert (data->init != NULL);
1948 gdbarch->data[data->index] = data->init (gdbarch);
1949 data->init_p = 1;
1950 gdb_assert (gdbarch->data[data->index] != NULL);
1951 }
1952 return gdbarch->data[data->index];
1953 }
1954
1955
1956
1957 /* Keep a registry of swapped data required by GDB modules. */
1958
1959 struct gdbarch_swap
1960 {
1961 void *swap;
1962 struct gdbarch_swap_registration *source;
1963 struct gdbarch_swap *next;
1964 };
1965
1966 struct gdbarch_swap_registration
1967 {
1968 void *data;
1969 unsigned long sizeof_data;
1970 gdbarch_swap_ftype *init;
1971 struct gdbarch_swap_registration *next;
1972 };
1973
1974 struct gdbarch_swap_registry
1975 {
1976 int nr;
1977 struct gdbarch_swap_registration *registrations;
1978 };
1979
1980 struct gdbarch_swap_registry gdbarch_swap_registry =
1981 {
1982 0, NULL,
1983 };
1984
1985 void
1986 register_gdbarch_swap (void *data,
1987 unsigned long sizeof_data,
1988 gdbarch_swap_ftype *init)
1989 {
1990 struct gdbarch_swap_registration **rego;
1991 for (rego = &gdbarch_swap_registry.registrations;
1992 (*rego) != NULL;
1993 rego = &(*rego)->next);
1994 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1995 (*rego)->next = NULL;
1996 (*rego)->init = init;
1997 (*rego)->data = data;
1998 (*rego)->sizeof_data = sizeof_data;
1999 }
2000
2001 static void
2002 clear_gdbarch_swap (struct gdbarch *gdbarch)
2003 {
2004 struct gdbarch_swap *curr;
2005 for (curr = gdbarch->swap;
2006 curr != NULL;
2007 curr = curr->next)
2008 {
2009 memset (curr->source->data, 0, curr->source->sizeof_data);
2010 }
2011 }
2012
2013 static void
2014 init_gdbarch_swap (struct gdbarch *gdbarch)
2015 {
2016 struct gdbarch_swap_registration *rego;
2017 struct gdbarch_swap **curr = &gdbarch->swap;
2018 for (rego = gdbarch_swap_registry.registrations;
2019 rego != NULL;
2020 rego = rego->next)
2021 {
2022 if (rego->data != NULL)
2023 {
2024 (*curr) = XMALLOC (struct gdbarch_swap);
2025 (*curr)->source = rego;
2026 (*curr)->swap = xmalloc (rego->sizeof_data);
2027 (*curr)->next = NULL;
2028 curr = &(*curr)->next;
2029 }
2030 if (rego->init != NULL)
2031 rego->init ();
2032 }
2033 }
2034
2035 static void
2036 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2037 {
2038 struct gdbarch_swap *curr;
2039 for (curr = gdbarch->swap;
2040 curr != NULL;
2041 curr = curr->next)
2042 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2043 }
2044
2045 static void
2046 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2047 {
2048 struct gdbarch_swap *curr;
2049 for (curr = gdbarch->swap;
2050 curr != NULL;
2051 curr = curr->next)
2052 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2053 }
2054
2055
2056 /* Keep a registry of the architectures known by GDB. */
2057
2058 struct gdbarch_registration
2059 {
2060 enum bfd_architecture bfd_architecture;
2061 gdbarch_init_ftype *init;
2062 gdbarch_dump_tdep_ftype *dump_tdep;
2063 struct gdbarch_list *arches;
2064 struct gdbarch_registration *next;
2065 };
2066
2067 static struct gdbarch_registration *gdbarch_registry = NULL;
2068
2069 static void
2070 append_name (const char ***buf, int *nr, const char *name)
2071 {
2072 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2073 (*buf)[*nr] = name;
2074 *nr += 1;
2075 }
2076
2077 const char **
2078 gdbarch_printable_names (void)
2079 {
2080 if (GDB_MULTI_ARCH)
2081 {
2082 /* Accumulate a list of names based on the registed list of
2083 architectures. */
2084 enum bfd_architecture a;
2085 int nr_arches = 0;
2086 const char **arches = NULL;
2087 struct gdbarch_registration *rego;
2088 for (rego = gdbarch_registry;
2089 rego != NULL;
2090 rego = rego->next)
2091 {
2092 const struct bfd_arch_info *ap;
2093 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2094 if (ap == NULL)
2095 internal_error (__FILE__, __LINE__,
2096 "gdbarch_architecture_names: multi-arch unknown");
2097 do
2098 {
2099 append_name (&arches, &nr_arches, ap->printable_name);
2100 ap = ap->next;
2101 }
2102 while (ap != NULL);
2103 }
2104 append_name (&arches, &nr_arches, NULL);
2105 return arches;
2106 }
2107 else
2108 /* Just return all the architectures that BFD knows. Assume that
2109 the legacy architecture framework supports them. */
2110 return bfd_arch_list ();
2111 }
2112
2113
2114 void
2115 gdbarch_register (enum bfd_architecture bfd_architecture,
2116 gdbarch_init_ftype *init,
2117 gdbarch_dump_tdep_ftype *dump_tdep)
2118 {
2119 struct gdbarch_registration **curr;
2120 const struct bfd_arch_info *bfd_arch_info;
2121 /* Check that BFD recognizes this architecture */
2122 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2123 if (bfd_arch_info == NULL)
2124 {
2125 internal_error (__FILE__, __LINE__,
2126 "gdbarch: Attempt to register unknown architecture (%d)",
2127 bfd_architecture);
2128 }
2129 /* Check that we haven't seen this architecture before */
2130 for (curr = &gdbarch_registry;
2131 (*curr) != NULL;
2132 curr = &(*curr)->next)
2133 {
2134 if (bfd_architecture == (*curr)->bfd_architecture)
2135 internal_error (__FILE__, __LINE__,
2136 "gdbarch: Duplicate registraration of architecture (%s)",
2137 bfd_arch_info->printable_name);
2138 }
2139 /* log it */
2140 if (gdbarch_debug)
2141 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2142 bfd_arch_info->printable_name,
2143 (long) init);
2144 /* Append it */
2145 (*curr) = XMALLOC (struct gdbarch_registration);
2146 (*curr)->bfd_architecture = bfd_architecture;
2147 (*curr)->init = init;
2148 (*curr)->dump_tdep = dump_tdep;
2149 (*curr)->arches = NULL;
2150 (*curr)->next = NULL;
2151 /* When non- multi-arch, install whatever target dump routine we've
2152 been provided - hopefully that routine has been written correctly
2153 and works regardless of multi-arch. */
2154 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2155 && startup_gdbarch.dump_tdep == NULL)
2156 startup_gdbarch.dump_tdep = dump_tdep;
2157 }
2158
2159 void
2160 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2161 gdbarch_init_ftype *init)
2162 {
2163 gdbarch_register (bfd_architecture, init, NULL);
2164 }
2165
2166
2167 /* Look for an architecture using gdbarch_info. Base search on only
2168 BFD_ARCH_INFO and BYTE_ORDER. */
2169
2170 struct gdbarch_list *
2171 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2172 const struct gdbarch_info *info)
2173 {
2174 for (; arches != NULL; arches = arches->next)
2175 {
2176 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2177 continue;
2178 if (info->byte_order != arches->gdbarch->byte_order)
2179 continue;
2180 if (info->osabi != arches->gdbarch->osabi)
2181 continue;
2182 return arches;
2183 }
2184 return NULL;
2185 }
2186
2187
2188 /* Update the current architecture. Return ZERO if the update request
2189 failed. */
2190
2191 int
2192 gdbarch_update_p (struct gdbarch_info info)
2193 {
2194 struct gdbarch *new_gdbarch;
2195 struct gdbarch *old_gdbarch;
2196 struct gdbarch_registration *rego;
2197
2198 /* Fill in missing parts of the INFO struct using a number of
2199 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2200
2201 /* \`\`(gdb) set architecture ...'' */
2202 if (info.bfd_arch_info == NULL
2203 && !TARGET_ARCHITECTURE_AUTO)
2204 info.bfd_arch_info = TARGET_ARCHITECTURE;
2205 if (info.bfd_arch_info == NULL
2206 && info.abfd != NULL
2207 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2208 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2209 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2210 if (info.bfd_arch_info == NULL)
2211 info.bfd_arch_info = TARGET_ARCHITECTURE;
2212
2213 /* \`\`(gdb) set byte-order ...'' */
2214 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2215 && !TARGET_BYTE_ORDER_AUTO)
2216 info.byte_order = TARGET_BYTE_ORDER;
2217 /* From the INFO struct. */
2218 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2219 && info.abfd != NULL)
2220 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2221 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2222 : BFD_ENDIAN_UNKNOWN);
2223 /* From the current target. */
2224 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2225 info.byte_order = TARGET_BYTE_ORDER;
2226
2227 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2228 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2229 info.osabi = gdbarch_lookup_osabi (info.abfd);
2230 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2231 info.osabi = current_gdbarch->osabi;
2232
2233 /* Must have found some sort of architecture. */
2234 gdb_assert (info.bfd_arch_info != NULL);
2235
2236 if (gdbarch_debug)
2237 {
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_update: info.bfd_arch_info %s\n",
2240 (info.bfd_arch_info != NULL
2241 ? info.bfd_arch_info->printable_name
2242 : "(null)"));
2243 fprintf_unfiltered (gdb_stdlog,
2244 "gdbarch_update: info.byte_order %d (%s)\n",
2245 info.byte_order,
2246 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2247 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2248 : "default"));
2249 fprintf_unfiltered (gdb_stdlog,
2250 "gdbarch_update: info.osabi %d (%s)\n",
2251 info.osabi, gdbarch_osabi_name (info.osabi));
2252 fprintf_unfiltered (gdb_stdlog,
2253 "gdbarch_update: info.abfd 0x%lx\n",
2254 (long) info.abfd);
2255 fprintf_unfiltered (gdb_stdlog,
2256 "gdbarch_update: info.tdep_info 0x%lx\n",
2257 (long) info.tdep_info);
2258 }
2259
2260 /* Find the target that knows about this architecture. */
2261 for (rego = gdbarch_registry;
2262 rego != NULL;
2263 rego = rego->next)
2264 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2265 break;
2266 if (rego == NULL)
2267 {
2268 if (gdbarch_debug)
2269 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2270 return 0;
2271 }
2272
2273 /* Swap the data belonging to the old target out setting the
2274 installed data to zero. This stops the ->init() function trying
2275 to refer to the previous architecture's global data structures. */
2276 swapout_gdbarch_swap (current_gdbarch);
2277 clear_gdbarch_swap (current_gdbarch);
2278
2279 /* Save the previously selected architecture, setting the global to
2280 NULL. This stops ->init() trying to use the previous
2281 architecture's configuration. The previous architecture may not
2282 even be of the same architecture family. The most recent
2283 architecture of the same family is found at the head of the
2284 rego->arches list. */
2285 old_gdbarch = current_gdbarch;
2286 current_gdbarch = NULL;
2287
2288 /* Ask the target for a replacement architecture. */
2289 new_gdbarch = rego->init (info, rego->arches);
2290
2291 /* Did the target like it? No. Reject the change and revert to the
2292 old architecture. */
2293 if (new_gdbarch == NULL)
2294 {
2295 if (gdbarch_debug)
2296 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2297 swapin_gdbarch_swap (old_gdbarch);
2298 current_gdbarch = old_gdbarch;
2299 return 0;
2300 }
2301
2302 /* Did the architecture change? No. Oops, put the old architecture
2303 back. */
2304 if (old_gdbarch == new_gdbarch)
2305 {
2306 if (gdbarch_debug)
2307 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2308 (long) new_gdbarch,
2309 new_gdbarch->bfd_arch_info->printable_name);
2310 swapin_gdbarch_swap (old_gdbarch);
2311 current_gdbarch = old_gdbarch;
2312 return 1;
2313 }
2314
2315 /* Is this a pre-existing architecture? Yes. Move it to the front
2316 of the list of architectures (keeping the list sorted Most
2317 Recently Used) and then copy it in. */
2318 {
2319 struct gdbarch_list **list;
2320 for (list = &rego->arches;
2321 (*list) != NULL;
2322 list = &(*list)->next)
2323 {
2324 if ((*list)->gdbarch == new_gdbarch)
2325 {
2326 struct gdbarch_list *this;
2327 if (gdbarch_debug)
2328 fprintf_unfiltered (gdb_stdlog,
2329 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2330 (long) new_gdbarch,
2331 new_gdbarch->bfd_arch_info->printable_name);
2332 /* Unlink this. */
2333 this = (*list);
2334 (*list) = this->next;
2335 /* Insert in the front. */
2336 this->next = rego->arches;
2337 rego->arches = this;
2338 /* Copy the new architecture in. */
2339 current_gdbarch = new_gdbarch;
2340 swapin_gdbarch_swap (new_gdbarch);
2341 architecture_changed_event ();
2342 return 1;
2343 }
2344 }
2345 }
2346
2347 /* Prepend this new architecture to the architecture list (keep the
2348 list sorted Most Recently Used). */
2349 {
2350 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2351 this->next = rego->arches;
2352 this->gdbarch = new_gdbarch;
2353 rego->arches = this;
2354 }
2355
2356 /* Switch to this new architecture marking it initialized. */
2357 current_gdbarch = new_gdbarch;
2358 current_gdbarch->initialized_p = 1;
2359 if (gdbarch_debug)
2360 {
2361 fprintf_unfiltered (gdb_stdlog,
2362 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2363 (long) new_gdbarch,
2364 new_gdbarch->bfd_arch_info->printable_name);
2365 }
2366
2367 /* Check that the newly installed architecture is valid. Plug in
2368 any post init values. */
2369 new_gdbarch->dump_tdep = rego->dump_tdep;
2370 verify_gdbarch (new_gdbarch);
2371
2372 /* Initialize the per-architecture memory (swap) areas.
2373 CURRENT_GDBARCH must be update before these modules are
2374 called. */
2375 init_gdbarch_swap (new_gdbarch);
2376
2377 /* Initialize the per-architecture data. CURRENT_GDBARCH
2378 must be updated before these modules are called. */
2379 architecture_changed_event ();
2380
2381 if (gdbarch_debug)
2382 gdbarch_dump (current_gdbarch, gdb_stdlog);
2383
2384 return 1;
2385 }
2386
2387
2388 /* Disassembler */
2389
2390 /* Pointer to the target-dependent disassembly function. */
2391 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2392 disassemble_info tm_print_insn_info;
2393
2394
2395 extern void _initialize_gdbarch (void);
2396
2397 void
2398 _initialize_gdbarch (void)
2399 {
2400 struct cmd_list_element *c;
2401
2402 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2403 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2404 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2405 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2406 tm_print_insn_info.print_address_func = dis_asm_print_address;
2407
2408 add_show_from_set (add_set_cmd ("arch",
2409 class_maintenance,
2410 var_zinteger,
2411 (char *)&gdbarch_debug,
2412 "Set architecture debugging.\\n\\
2413 When non-zero, architecture debugging is enabled.", &setdebuglist),
2414 &showdebuglist);
2415 c = add_set_cmd ("archdebug",
2416 class_maintenance,
2417 var_zinteger,
2418 (char *)&gdbarch_debug,
2419 "Set architecture debugging.\\n\\
2420 When non-zero, architecture debugging is enabled.", &setlist);
2421
2422 deprecate_cmd (c, "set debug arch");
2423 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2424 }
2425 EOF
2426
2427 # close things off
2428 exec 1>&2
2429 #../move-if-change new-gdbarch.c gdbarch.c
2430 compare_new gdbarch.c
This page took 0.083601 seconds and 5 git commands to generate.