2003-03-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 f:2:TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
436 # serious shakedown.
437 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
438 #
439 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
440 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
441 #
442 v:2:NUM_REGS:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
454 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
455 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
456 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
458 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
459 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
461 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
463 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
464 # Convert from an sdb register number to an internal gdb register number.
465 # This should be defined in tm.h, if REGISTER_NAMES is not set up
466 # to map one to one onto the sdb register numbers.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
470 v:2:REGISTER_SIZE:int:register_size::::0:-1
471 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
472 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
473 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
474 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
475 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
476 # by REGISTER_TYPE.
477 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
478 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
479 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
480 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
481 # by REGISTER_TYPE.
482 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
483 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
484 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
485 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
486 # by REGISTER_TYPE.
487 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
488 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
489 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
490 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
491 # by REGISTER_TYPE.
492 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
493 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
494 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
495 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
496 # by REGISTER_TYPE.
497 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
498 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
499 #
500 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
501 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
502 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
503 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
504 # MAP a GDB RAW register number onto a simulator register number. See
505 # also include/...-sim.h.
506 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
507 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
508 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
509 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
510 # setjmp/longjmp support.
511 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
512 #
513 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
514 # much better but at least they are vaguely consistent). The headers
515 # and body contain convoluted #if/#else sequences for determine how
516 # things should be compiled. Instead of trying to mimic that
517 # behaviour here (and hence entrench it further) gdbarch simply
518 # reqires that these methods be set up from the word go. This also
519 # avoids any potential problems with moving beyond multi-arch partial.
520 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
522 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
523 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
524 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
525 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
526 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::gdbarch->call_dummy_length >= 0
527 # NOTE: cagney/2002-11-24: This function with predicate has a valid
528 # (callable) initial value. As a consequence, even when the predicate
529 # is false, the corresponding function works. This simplifies the
530 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
531 # doesn't need to be modified.
532 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
533 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
534 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
535 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
536 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
537 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
538 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
539 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
540 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
541 #
542 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
543 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
544 F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
545 #
546 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
547 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
548 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
549 #
550 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
551 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
552 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
553 #
554 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
555 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
556 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
557 #
558 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
559 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
560 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
561 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
562 F:2:POP_FRAME:void:pop_frame:void:-:::0
563 #
564 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
565 #
566 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
567 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
568 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
569 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
570 #
571 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
572 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
573 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
574 #
575 F:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame:::0
576 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
577 #
578 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
579 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
580 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
581 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
582 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
583 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
584 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
585 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
586 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
587 #
588 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
589 #
590 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
591 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
592 F:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
593 F:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
594 F:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
595 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
596 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
597 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
598 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
599 #
600 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
601 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
602 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
603 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
604 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
605 v:2:PARM_BOUNDARY:int:parm_boundary
606 #
607 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
608 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
609 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
610 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
611 # On some machines there are bits in addresses which are not really
612 # part of the address, but are used by the kernel, the hardware, etc.
613 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
614 # we get a "real" address such as one would find in a symbol table.
615 # This is used only for addresses of instructions, and even then I'm
616 # not sure it's used in all contexts. It exists to deal with there
617 # being a few stray bits in the PC which would mislead us, not as some
618 # sort of generic thing to handle alignment or segmentation (it's
619 # possible it should be in TARGET_READ_PC instead).
620 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
621 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
622 # ADDR_BITS_REMOVE.
623 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
624 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
625 # the target needs software single step. An ISA method to implement it.
626 #
627 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
628 # using the breakpoint system instead of blatting memory directly (as with rs6000).
629 #
630 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
631 # single step. If not, then implement single step using breakpoints.
632 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
633 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
634 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
635
636
637 # For SVR4 shared libraries, each call goes through a small piece of
638 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
639 # to nonzero if we are currently stopped in one of these.
640 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
641
642 # Some systems also have trampoline code for returning from shared libs.
643 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
644
645 # Sigtramp is a routine that the kernel calls (which then calls the
646 # signal handler). On most machines it is a library routine that is
647 # linked into the executable.
648 #
649 # This macro, given a program counter value and the name of the
650 # function in which that PC resides (which can be null if the name is
651 # not known), returns nonzero if the PC and name show that we are in
652 # sigtramp.
653 #
654 # On most machines just see if the name is sigtramp (and if we have
655 # no name, assume we are not in sigtramp).
656 #
657 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
658 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
659 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
660 # own local NAME lookup.
661 #
662 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
663 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
664 # does not.
665 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
666 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
667 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
668 # A target might have problems with watchpoints as soon as the stack
669 # frame of the current function has been destroyed. This mostly happens
670 # as the first action in a funtion's epilogue. in_function_epilogue_p()
671 # is defined to return a non-zero value if either the given addr is one
672 # instruction after the stack destroying instruction up to the trailing
673 # return instruction or if we can figure out that the stack frame has
674 # already been invalidated regardless of the value of addr. Targets
675 # which don't suffer from that problem could just let this functionality
676 # untouched.
677 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
678 # Given a vector of command-line arguments, return a newly allocated
679 # string which, when passed to the create_inferior function, will be
680 # parsed (on Unix systems, by the shell) to yield the same vector.
681 # This function should call error() if the argument vector is not
682 # representable for this target or if this target does not support
683 # command-line arguments.
684 # ARGC is the number of elements in the vector.
685 # ARGV is an array of strings, one per argument.
686 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
687 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
688 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
689 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
690 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
691 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
692 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
693 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
694 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
695 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
696 # Is a register in a group
697 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
698 EOF
699 }
700
701 #
702 # The .log file
703 #
704 exec > new-gdbarch.log
705 function_list | while do_read
706 do
707 cat <<EOF
708 ${class} ${macro}(${actual})
709 ${returntype} ${function} ($formal)${attrib}
710 EOF
711 for r in ${read}
712 do
713 eval echo \"\ \ \ \ ${r}=\${${r}}\"
714 done
715 if class_is_predicate_p && fallback_default_p
716 then
717 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
718 kill $$
719 exit 1
720 fi
721 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
722 then
723 echo "Error: postdefault is useless when invalid_p=0" 1>&2
724 kill $$
725 exit 1
726 fi
727 if class_is_multiarch_p
728 then
729 if class_is_predicate_p ; then :
730 elif test "x${predefault}" = "x"
731 then
732 echo "Error: pure multi-arch function must have a predefault" 1>&2
733 kill $$
734 exit 1
735 fi
736 fi
737 echo ""
738 done
739
740 exec 1>&2
741 compare_new gdbarch.log
742
743
744 copyright ()
745 {
746 cat <<EOF
747 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
748
749 /* Dynamic architecture support for GDB, the GNU debugger.
750 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
751
752 This file is part of GDB.
753
754 This program is free software; you can redistribute it and/or modify
755 it under the terms of the GNU General Public License as published by
756 the Free Software Foundation; either version 2 of the License, or
757 (at your option) any later version.
758
759 This program is distributed in the hope that it will be useful,
760 but WITHOUT ANY WARRANTY; without even the implied warranty of
761 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
762 GNU General Public License for more details.
763
764 You should have received a copy of the GNU General Public License
765 along with this program; if not, write to the Free Software
766 Foundation, Inc., 59 Temple Place - Suite 330,
767 Boston, MA 02111-1307, USA. */
768
769 /* This file was created with the aid of \`\`gdbarch.sh''.
770
771 The Bourne shell script \`\`gdbarch.sh'' creates the files
772 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
773 against the existing \`\`gdbarch.[hc]''. Any differences found
774 being reported.
775
776 If editing this file, please also run gdbarch.sh and merge any
777 changes into that script. Conversely, when making sweeping changes
778 to this file, modifying gdbarch.sh and using its output may prove
779 easier. */
780
781 EOF
782 }
783
784 #
785 # The .h file
786 #
787
788 exec > new-gdbarch.h
789 copyright
790 cat <<EOF
791 #ifndef GDBARCH_H
792 #define GDBARCH_H
793
794 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
795 #if !GDB_MULTI_ARCH
796 /* Pull in function declarations refered to, indirectly, via macros. */
797 #include "inferior.h" /* For unsigned_address_to_pointer(). */
798 #endif
799
800 struct frame_info;
801 struct value;
802 struct objfile;
803 struct minimal_symbol;
804 struct regcache;
805 struct reggroup;
806
807 extern struct gdbarch *current_gdbarch;
808
809
810 /* If any of the following are defined, the target wasn't correctly
811 converted. */
812
813 #if GDB_MULTI_ARCH
814 #if defined (EXTRA_FRAME_INFO)
815 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
816 #endif
817 #endif
818
819 #if GDB_MULTI_ARCH
820 #if defined (FRAME_FIND_SAVED_REGS)
821 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
822 #endif
823 #endif
824
825 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
826 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
827 #endif
828 EOF
829
830 # function typedef's
831 printf "\n"
832 printf "\n"
833 printf "/* The following are pre-initialized by GDBARCH. */\n"
834 function_list | while do_read
835 do
836 if class_is_info_p
837 then
838 printf "\n"
839 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
840 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
841 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
842 printf "#error \"Non multi-arch definition of ${macro}\"\n"
843 printf "#endif\n"
844 printf "#if GDB_MULTI_ARCH\n"
845 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
846 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
847 printf "#endif\n"
848 printf "#endif\n"
849 fi
850 done
851
852 # function typedef's
853 printf "\n"
854 printf "\n"
855 printf "/* The following are initialized by the target dependent code. */\n"
856 function_list | while do_read
857 do
858 if [ -n "${comment}" ]
859 then
860 echo "${comment}" | sed \
861 -e '2 s,#,/*,' \
862 -e '3,$ s,#, ,' \
863 -e '$ s,$, */,'
864 fi
865 if class_is_multiarch_p
866 then
867 if class_is_predicate_p
868 then
869 printf "\n"
870 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
871 fi
872 else
873 if class_is_predicate_p
874 then
875 printf "\n"
876 printf "#if defined (${macro})\n"
877 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
878 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
879 printf "#if !defined (${macro}_P)\n"
880 printf "#define ${macro}_P() (1)\n"
881 printf "#endif\n"
882 printf "#endif\n"
883 printf "\n"
884 printf "/* Default predicate for non- multi-arch targets. */\n"
885 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
886 printf "#define ${macro}_P() (0)\n"
887 printf "#endif\n"
888 printf "\n"
889 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
890 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
891 printf "#error \"Non multi-arch definition of ${macro}\"\n"
892 printf "#endif\n"
893 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
894 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
895 printf "#endif\n"
896 fi
897 fi
898 if class_is_variable_p
899 then
900 if fallback_default_p || class_is_predicate_p
901 then
902 printf "\n"
903 printf "/* Default (value) for non- multi-arch platforms. */\n"
904 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
905 echo "#define ${macro} (${fallbackdefault})" \
906 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
907 printf "#endif\n"
908 fi
909 printf "\n"
910 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
911 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
912 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
913 printf "#error \"Non multi-arch definition of ${macro}\"\n"
914 printf "#endif\n"
915 if test "${level}" = ""
916 then
917 printf "#if !defined (${macro})\n"
918 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
919 printf "#endif\n"
920 else
921 printf "#if GDB_MULTI_ARCH\n"
922 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
923 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
924 printf "#endif\n"
925 printf "#endif\n"
926 fi
927 fi
928 if class_is_function_p
929 then
930 if class_is_multiarch_p ; then :
931 elif fallback_default_p || class_is_predicate_p
932 then
933 printf "\n"
934 printf "/* Default (function) for non- multi-arch platforms. */\n"
935 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
936 if [ "x${fallbackdefault}" = "x0" ]
937 then
938 if [ "x${actual}" = "x-" ]
939 then
940 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
941 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
942 else
943 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
944 fi
945 else
946 # FIXME: Should be passing current_gdbarch through!
947 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
948 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
949 fi
950 printf "#endif\n"
951 fi
952 printf "\n"
953 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
954 then
955 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
956 elif class_is_multiarch_p
957 then
958 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
959 else
960 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
961 fi
962 if [ "x${formal}" = "xvoid" ]
963 then
964 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
965 else
966 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
967 fi
968 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
969 if class_is_multiarch_p ; then :
970 else
971 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
972 printf "#error \"Non multi-arch definition of ${macro}\"\n"
973 printf "#endif\n"
974 printf "#if GDB_MULTI_ARCH\n"
975 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
976 if [ "x${actual}" = "x" ]
977 then
978 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
979 elif [ "x${actual}" = "x-" ]
980 then
981 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
982 else
983 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
984 fi
985 printf "#endif\n"
986 printf "#endif\n"
987 fi
988 fi
989 done
990
991 # close it off
992 cat <<EOF
993
994 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
995
996
997 /* Mechanism for co-ordinating the selection of a specific
998 architecture.
999
1000 GDB targets (*-tdep.c) can register an interest in a specific
1001 architecture. Other GDB components can register a need to maintain
1002 per-architecture data.
1003
1004 The mechanisms below ensures that there is only a loose connection
1005 between the set-architecture command and the various GDB
1006 components. Each component can independently register their need
1007 to maintain architecture specific data with gdbarch.
1008
1009 Pragmatics:
1010
1011 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1012 didn't scale.
1013
1014 The more traditional mega-struct containing architecture specific
1015 data for all the various GDB components was also considered. Since
1016 GDB is built from a variable number of (fairly independent)
1017 components it was determined that the global aproach was not
1018 applicable. */
1019
1020
1021 /* Register a new architectural family with GDB.
1022
1023 Register support for the specified ARCHITECTURE with GDB. When
1024 gdbarch determines that the specified architecture has been
1025 selected, the corresponding INIT function is called.
1026
1027 --
1028
1029 The INIT function takes two parameters: INFO which contains the
1030 information available to gdbarch about the (possibly new)
1031 architecture; ARCHES which is a list of the previously created
1032 \`\`struct gdbarch'' for this architecture.
1033
1034 The INFO parameter is, as far as possible, be pre-initialized with
1035 information obtained from INFO.ABFD or the previously selected
1036 architecture.
1037
1038 The ARCHES parameter is a linked list (sorted most recently used)
1039 of all the previously created architures for this architecture
1040 family. The (possibly NULL) ARCHES->gdbarch can used to access
1041 values from the previously selected architecture for this
1042 architecture family. The global \`\`current_gdbarch'' shall not be
1043 used.
1044
1045 The INIT function shall return any of: NULL - indicating that it
1046 doesn't recognize the selected architecture; an existing \`\`struct
1047 gdbarch'' from the ARCHES list - indicating that the new
1048 architecture is just a synonym for an earlier architecture (see
1049 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1050 - that describes the selected architecture (see gdbarch_alloc()).
1051
1052 The DUMP_TDEP function shall print out all target specific values.
1053 Care should be taken to ensure that the function works in both the
1054 multi-arch and non- multi-arch cases. */
1055
1056 struct gdbarch_list
1057 {
1058 struct gdbarch *gdbarch;
1059 struct gdbarch_list *next;
1060 };
1061
1062 struct gdbarch_info
1063 {
1064 /* Use default: NULL (ZERO). */
1065 const struct bfd_arch_info *bfd_arch_info;
1066
1067 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1068 int byte_order;
1069
1070 /* Use default: NULL (ZERO). */
1071 bfd *abfd;
1072
1073 /* Use default: NULL (ZERO). */
1074 struct gdbarch_tdep_info *tdep_info;
1075
1076 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1077 enum gdb_osabi osabi;
1078 };
1079
1080 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1081 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1082
1083 /* DEPRECATED - use gdbarch_register() */
1084 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1085
1086 extern void gdbarch_register (enum bfd_architecture architecture,
1087 gdbarch_init_ftype *,
1088 gdbarch_dump_tdep_ftype *);
1089
1090
1091 /* Return a freshly allocated, NULL terminated, array of the valid
1092 architecture names. Since architectures are registered during the
1093 _initialize phase this function only returns useful information
1094 once initialization has been completed. */
1095
1096 extern const char **gdbarch_printable_names (void);
1097
1098
1099 /* Helper function. Search the list of ARCHES for a GDBARCH that
1100 matches the information provided by INFO. */
1101
1102 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1103
1104
1105 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1106 basic initialization using values obtained from the INFO andTDEP
1107 parameters. set_gdbarch_*() functions are called to complete the
1108 initialization of the object. */
1109
1110 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1111
1112
1113 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1114 It is assumed that the caller freeds the \`\`struct
1115 gdbarch_tdep''. */
1116
1117 extern void gdbarch_free (struct gdbarch *);
1118
1119
1120 /* Helper function. Force an update of the current architecture.
1121
1122 The actual architecture selected is determined by INFO, \`\`(gdb) set
1123 architecture'' et.al., the existing architecture and BFD's default
1124 architecture. INFO should be initialized to zero and then selected
1125 fields should be updated.
1126
1127 Returns non-zero if the update succeeds */
1128
1129 extern int gdbarch_update_p (struct gdbarch_info info);
1130
1131
1132
1133 /* Register per-architecture data-pointer.
1134
1135 Reserve space for a per-architecture data-pointer. An identifier
1136 for the reserved data-pointer is returned. That identifer should
1137 be saved in a local static variable.
1138
1139 The per-architecture data-pointer is either initialized explicitly
1140 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1141 gdbarch_data()). FREE() is called to delete either an existing
1142 data-pointer overridden by set_gdbarch_data() or when the
1143 architecture object is being deleted.
1144
1145 When a previously created architecture is re-selected, the
1146 per-architecture data-pointer for that previous architecture is
1147 restored. INIT() is not re-called.
1148
1149 Multiple registrarants for any architecture are allowed (and
1150 strongly encouraged). */
1151
1152 struct gdbarch_data;
1153
1154 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1155 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1156 void *pointer);
1157 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1158 gdbarch_data_free_ftype *free);
1159 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1160 struct gdbarch_data *data,
1161 void *pointer);
1162
1163 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1164
1165
1166 /* Register per-architecture memory region.
1167
1168 Provide a memory-region swap mechanism. Per-architecture memory
1169 region are created. These memory regions are swapped whenever the
1170 architecture is changed. For a new architecture, the memory region
1171 is initialized with zero (0) and the INIT function is called.
1172
1173 Memory regions are swapped / initialized in the order that they are
1174 registered. NULL DATA and/or INIT values can be specified.
1175
1176 New code should use register_gdbarch_data(). */
1177
1178 typedef void (gdbarch_swap_ftype) (void);
1179 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1180 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1181
1182
1183
1184 /* The target-system-dependent byte order is dynamic */
1185
1186 extern int target_byte_order;
1187 #ifndef TARGET_BYTE_ORDER
1188 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1189 #endif
1190
1191 extern int target_byte_order_auto;
1192 #ifndef TARGET_BYTE_ORDER_AUTO
1193 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1194 #endif
1195
1196
1197
1198 /* The target-system-dependent BFD architecture is dynamic */
1199
1200 extern int target_architecture_auto;
1201 #ifndef TARGET_ARCHITECTURE_AUTO
1202 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1203 #endif
1204
1205 extern const struct bfd_arch_info *target_architecture;
1206 #ifndef TARGET_ARCHITECTURE
1207 #define TARGET_ARCHITECTURE (target_architecture + 0)
1208 #endif
1209
1210
1211 /* The target-system-dependent disassembler is semi-dynamic */
1212
1213 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1214 unsigned int len, disassemble_info *info);
1215
1216 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1217 disassemble_info *info);
1218
1219 extern void dis_asm_print_address (bfd_vma addr,
1220 disassemble_info *info);
1221
1222 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1223 extern disassemble_info tm_print_insn_info;
1224 #ifndef TARGET_PRINT_INSN_INFO
1225 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1226 #endif
1227
1228
1229
1230 /* Set the dynamic target-system-dependent parameters (architecture,
1231 byte-order, ...) using information found in the BFD */
1232
1233 extern void set_gdbarch_from_file (bfd *);
1234
1235
1236 /* Initialize the current architecture to the "first" one we find on
1237 our list. */
1238
1239 extern void initialize_current_architecture (void);
1240
1241 /* For non-multiarched targets, do any initialization of the default
1242 gdbarch object necessary after the _initialize_MODULE functions
1243 have run. */
1244 extern void initialize_non_multiarch (void);
1245
1246 /* gdbarch trace variable */
1247 extern int gdbarch_debug;
1248
1249 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1250
1251 #endif
1252 EOF
1253 exec 1>&2
1254 #../move-if-change new-gdbarch.h gdbarch.h
1255 compare_new gdbarch.h
1256
1257
1258 #
1259 # C file
1260 #
1261
1262 exec > new-gdbarch.c
1263 copyright
1264 cat <<EOF
1265
1266 #include "defs.h"
1267 #include "arch-utils.h"
1268
1269 #if GDB_MULTI_ARCH
1270 #include "gdbcmd.h"
1271 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1272 #else
1273 /* Just include everything in sight so that the every old definition
1274 of macro is visible. */
1275 #include "gdb_string.h"
1276 #include <ctype.h>
1277 #include "symtab.h"
1278 #include "frame.h"
1279 #include "inferior.h"
1280 #include "breakpoint.h"
1281 #include "gdb_wait.h"
1282 #include "gdbcore.h"
1283 #include "gdbcmd.h"
1284 #include "target.h"
1285 #include "gdbthread.h"
1286 #include "annotate.h"
1287 #include "symfile.h" /* for overlay functions */
1288 #include "value.h" /* For old tm.h/nm.h macros. */
1289 #endif
1290 #include "symcat.h"
1291
1292 #include "floatformat.h"
1293
1294 #include "gdb_assert.h"
1295 #include "gdb_string.h"
1296 #include "gdb-events.h"
1297 #include "reggroups.h"
1298 #include "osabi.h"
1299
1300 /* Static function declarations */
1301
1302 static void verify_gdbarch (struct gdbarch *gdbarch);
1303 static void alloc_gdbarch_data (struct gdbarch *);
1304 static void free_gdbarch_data (struct gdbarch *);
1305 static void init_gdbarch_swap (struct gdbarch *);
1306 static void clear_gdbarch_swap (struct gdbarch *);
1307 static void swapout_gdbarch_swap (struct gdbarch *);
1308 static void swapin_gdbarch_swap (struct gdbarch *);
1309
1310 /* Non-zero if we want to trace architecture code. */
1311
1312 #ifndef GDBARCH_DEBUG
1313 #define GDBARCH_DEBUG 0
1314 #endif
1315 int gdbarch_debug = GDBARCH_DEBUG;
1316
1317 EOF
1318
1319 # gdbarch open the gdbarch object
1320 printf "\n"
1321 printf "/* Maintain the struct gdbarch object */\n"
1322 printf "\n"
1323 printf "struct gdbarch\n"
1324 printf "{\n"
1325 printf " /* Has this architecture been fully initialized? */\n"
1326 printf " int initialized_p;\n"
1327 printf " /* basic architectural information */\n"
1328 function_list | while do_read
1329 do
1330 if class_is_info_p
1331 then
1332 printf " ${returntype} ${function};\n"
1333 fi
1334 done
1335 printf "\n"
1336 printf " /* target specific vector. */\n"
1337 printf " struct gdbarch_tdep *tdep;\n"
1338 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1339 printf "\n"
1340 printf " /* per-architecture data-pointers */\n"
1341 printf " unsigned nr_data;\n"
1342 printf " void **data;\n"
1343 printf "\n"
1344 printf " /* per-architecture swap-regions */\n"
1345 printf " struct gdbarch_swap *swap;\n"
1346 printf "\n"
1347 cat <<EOF
1348 /* Multi-arch values.
1349
1350 When extending this structure you must:
1351
1352 Add the field below.
1353
1354 Declare set/get functions and define the corresponding
1355 macro in gdbarch.h.
1356
1357 gdbarch_alloc(): If zero/NULL is not a suitable default,
1358 initialize the new field.
1359
1360 verify_gdbarch(): Confirm that the target updated the field
1361 correctly.
1362
1363 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1364 field is dumped out
1365
1366 \`\`startup_gdbarch()'': Append an initial value to the static
1367 variable (base values on the host's c-type system).
1368
1369 get_gdbarch(): Implement the set/get functions (probably using
1370 the macro's as shortcuts).
1371
1372 */
1373
1374 EOF
1375 function_list | while do_read
1376 do
1377 if class_is_variable_p
1378 then
1379 printf " ${returntype} ${function};\n"
1380 elif class_is_function_p
1381 then
1382 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1383 fi
1384 done
1385 printf "};\n"
1386
1387 # A pre-initialized vector
1388 printf "\n"
1389 printf "\n"
1390 cat <<EOF
1391 /* The default architecture uses host values (for want of a better
1392 choice). */
1393 EOF
1394 printf "\n"
1395 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1396 printf "\n"
1397 printf "struct gdbarch startup_gdbarch =\n"
1398 printf "{\n"
1399 printf " 1, /* Always initialized. */\n"
1400 printf " /* basic architecture information */\n"
1401 function_list | while do_read
1402 do
1403 if class_is_info_p
1404 then
1405 printf " ${staticdefault},\n"
1406 fi
1407 done
1408 cat <<EOF
1409 /* target specific vector and its dump routine */
1410 NULL, NULL,
1411 /*per-architecture data-pointers and swap regions */
1412 0, NULL, NULL,
1413 /* Multi-arch values */
1414 EOF
1415 function_list | while do_read
1416 do
1417 if class_is_function_p || class_is_variable_p
1418 then
1419 printf " ${staticdefault},\n"
1420 fi
1421 done
1422 cat <<EOF
1423 /* startup_gdbarch() */
1424 };
1425
1426 struct gdbarch *current_gdbarch = &startup_gdbarch;
1427
1428 /* Do any initialization needed for a non-multiarch configuration
1429 after the _initialize_MODULE functions have been run. */
1430 void
1431 initialize_non_multiarch (void)
1432 {
1433 alloc_gdbarch_data (&startup_gdbarch);
1434 /* Ensure that all swap areas are zeroed so that they again think
1435 they are starting from scratch. */
1436 clear_gdbarch_swap (&startup_gdbarch);
1437 init_gdbarch_swap (&startup_gdbarch);
1438 }
1439 EOF
1440
1441 # Create a new gdbarch struct
1442 printf "\n"
1443 printf "\n"
1444 cat <<EOF
1445 /* Create a new \`\`struct gdbarch'' based on information provided by
1446 \`\`struct gdbarch_info''. */
1447 EOF
1448 printf "\n"
1449 cat <<EOF
1450 struct gdbarch *
1451 gdbarch_alloc (const struct gdbarch_info *info,
1452 struct gdbarch_tdep *tdep)
1453 {
1454 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1455 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1456 the current local architecture and not the previous global
1457 architecture. This ensures that the new architectures initial
1458 values are not influenced by the previous architecture. Once
1459 everything is parameterised with gdbarch, this will go away. */
1460 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1461 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1462
1463 alloc_gdbarch_data (current_gdbarch);
1464
1465 current_gdbarch->tdep = tdep;
1466 EOF
1467 printf "\n"
1468 function_list | while do_read
1469 do
1470 if class_is_info_p
1471 then
1472 printf " current_gdbarch->${function} = info->${function};\n"
1473 fi
1474 done
1475 printf "\n"
1476 printf " /* Force the explicit initialization of these. */\n"
1477 function_list | while do_read
1478 do
1479 if class_is_function_p || class_is_variable_p
1480 then
1481 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1482 then
1483 printf " current_gdbarch->${function} = ${predefault};\n"
1484 fi
1485 fi
1486 done
1487 cat <<EOF
1488 /* gdbarch_alloc() */
1489
1490 return current_gdbarch;
1491 }
1492 EOF
1493
1494 # Free a gdbarch struct.
1495 printf "\n"
1496 printf "\n"
1497 cat <<EOF
1498 /* Free a gdbarch struct. This should never happen in normal
1499 operation --- once you've created a gdbarch, you keep it around.
1500 However, if an architecture's init function encounters an error
1501 building the structure, it may need to clean up a partially
1502 constructed gdbarch. */
1503
1504 void
1505 gdbarch_free (struct gdbarch *arch)
1506 {
1507 gdb_assert (arch != NULL);
1508 free_gdbarch_data (arch);
1509 xfree (arch);
1510 }
1511 EOF
1512
1513 # verify a new architecture
1514 printf "\n"
1515 printf "\n"
1516 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1517 printf "\n"
1518 cat <<EOF
1519 static void
1520 verify_gdbarch (struct gdbarch *gdbarch)
1521 {
1522 struct ui_file *log;
1523 struct cleanup *cleanups;
1524 long dummy;
1525 char *buf;
1526 /* Only perform sanity checks on a multi-arch target. */
1527 if (!GDB_MULTI_ARCH)
1528 return;
1529 log = mem_fileopen ();
1530 cleanups = make_cleanup_ui_file_delete (log);
1531 /* fundamental */
1532 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1533 fprintf_unfiltered (log, "\n\tbyte-order");
1534 if (gdbarch->bfd_arch_info == NULL)
1535 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1536 /* Check those that need to be defined for the given multi-arch level. */
1537 EOF
1538 function_list | while do_read
1539 do
1540 if class_is_function_p || class_is_variable_p
1541 then
1542 if [ "x${invalid_p}" = "x0" ]
1543 then
1544 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1545 elif class_is_predicate_p
1546 then
1547 printf " /* Skip verify of ${function}, has predicate */\n"
1548 # FIXME: See do_read for potential simplification
1549 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1550 then
1551 printf " if (${invalid_p})\n"
1552 printf " gdbarch->${function} = ${postdefault};\n"
1553 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1554 then
1555 printf " if (gdbarch->${function} == ${predefault})\n"
1556 printf " gdbarch->${function} = ${postdefault};\n"
1557 elif [ -n "${postdefault}" ]
1558 then
1559 printf " if (gdbarch->${function} == 0)\n"
1560 printf " gdbarch->${function} = ${postdefault};\n"
1561 elif [ -n "${invalid_p}" ]
1562 then
1563 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1564 printf " && (${invalid_p}))\n"
1565 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1566 elif [ -n "${predefault}" ]
1567 then
1568 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1569 printf " && (gdbarch->${function} == ${predefault}))\n"
1570 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1571 fi
1572 fi
1573 done
1574 cat <<EOF
1575 buf = ui_file_xstrdup (log, &dummy);
1576 make_cleanup (xfree, buf);
1577 if (strlen (buf) > 0)
1578 internal_error (__FILE__, __LINE__,
1579 "verify_gdbarch: the following are invalid ...%s",
1580 buf);
1581 do_cleanups (cleanups);
1582 }
1583 EOF
1584
1585 # dump the structure
1586 printf "\n"
1587 printf "\n"
1588 cat <<EOF
1589 /* Print out the details of the current architecture. */
1590
1591 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1592 just happens to match the global variable \`\`current_gdbarch''. That
1593 way macros refering to that variable get the local and not the global
1594 version - ulgh. Once everything is parameterised with gdbarch, this
1595 will go away. */
1596
1597 void
1598 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1599 {
1600 fprintf_unfiltered (file,
1601 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1602 GDB_MULTI_ARCH);
1603 EOF
1604 function_list | sort -t: -k 3 | while do_read
1605 do
1606 # First the predicate
1607 if class_is_predicate_p
1608 then
1609 if class_is_multiarch_p
1610 then
1611 printf " if (GDB_MULTI_ARCH)\n"
1612 printf " fprintf_unfiltered (file,\n"
1613 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1614 printf " gdbarch_${function}_p (current_gdbarch));\n"
1615 else
1616 printf "#ifdef ${macro}_P\n"
1617 printf " fprintf_unfiltered (file,\n"
1618 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1619 printf " \"${macro}_P()\",\n"
1620 printf " XSTRING (${macro}_P ()));\n"
1621 printf " fprintf_unfiltered (file,\n"
1622 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1623 printf " ${macro}_P ());\n"
1624 printf "#endif\n"
1625 fi
1626 fi
1627 # multiarch functions don't have macros.
1628 if class_is_multiarch_p
1629 then
1630 printf " if (GDB_MULTI_ARCH)\n"
1631 printf " fprintf_unfiltered (file,\n"
1632 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1633 printf " (long) current_gdbarch->${function});\n"
1634 continue
1635 fi
1636 # Print the macro definition.
1637 printf "#ifdef ${macro}\n"
1638 if [ "x${returntype}" = "xvoid" ]
1639 then
1640 printf "#if GDB_MULTI_ARCH\n"
1641 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1642 fi
1643 if class_is_function_p
1644 then
1645 printf " fprintf_unfiltered (file,\n"
1646 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1647 printf " \"${macro}(${actual})\",\n"
1648 printf " XSTRING (${macro} (${actual})));\n"
1649 else
1650 printf " fprintf_unfiltered (file,\n"
1651 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1652 printf " XSTRING (${macro}));\n"
1653 fi
1654 # Print the architecture vector value
1655 if [ "x${returntype}" = "xvoid" ]
1656 then
1657 printf "#endif\n"
1658 fi
1659 if [ "x${print_p}" = "x()" ]
1660 then
1661 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1662 elif [ "x${print_p}" = "x0" ]
1663 then
1664 printf " /* skip print of ${macro}, print_p == 0. */\n"
1665 elif [ -n "${print_p}" ]
1666 then
1667 printf " if (${print_p})\n"
1668 printf " fprintf_unfiltered (file,\n"
1669 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1670 printf " ${print});\n"
1671 elif class_is_function_p
1672 then
1673 printf " if (GDB_MULTI_ARCH)\n"
1674 printf " fprintf_unfiltered (file,\n"
1675 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1676 printf " (long) current_gdbarch->${function}\n"
1677 printf " /*${macro} ()*/);\n"
1678 else
1679 printf " fprintf_unfiltered (file,\n"
1680 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1681 printf " ${print});\n"
1682 fi
1683 printf "#endif\n"
1684 done
1685 cat <<EOF
1686 if (current_gdbarch->dump_tdep != NULL)
1687 current_gdbarch->dump_tdep (current_gdbarch, file);
1688 }
1689 EOF
1690
1691
1692 # GET/SET
1693 printf "\n"
1694 cat <<EOF
1695 struct gdbarch_tdep *
1696 gdbarch_tdep (struct gdbarch *gdbarch)
1697 {
1698 if (gdbarch_debug >= 2)
1699 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1700 return gdbarch->tdep;
1701 }
1702 EOF
1703 printf "\n"
1704 function_list | while do_read
1705 do
1706 if class_is_predicate_p
1707 then
1708 printf "\n"
1709 printf "int\n"
1710 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1711 printf "{\n"
1712 printf " gdb_assert (gdbarch != NULL);\n"
1713 if [ -n "${predicate}" ]
1714 then
1715 printf " return ${predicate};\n"
1716 else
1717 printf " return gdbarch->${function} != 0;\n"
1718 fi
1719 printf "}\n"
1720 fi
1721 if class_is_function_p
1722 then
1723 printf "\n"
1724 printf "${returntype}\n"
1725 if [ "x${formal}" = "xvoid" ]
1726 then
1727 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1728 else
1729 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1730 fi
1731 printf "{\n"
1732 printf " gdb_assert (gdbarch != NULL);\n"
1733 printf " if (gdbarch->${function} == 0)\n"
1734 printf " internal_error (__FILE__, __LINE__,\n"
1735 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1736 if class_is_predicate_p && test -n "${predicate}"
1737 then
1738 # Allow a call to a function with a predicate.
1739 printf " /* Ignore predicate (${predicate}). */\n"
1740 fi
1741 printf " if (gdbarch_debug >= 2)\n"
1742 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1743 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1744 then
1745 if class_is_multiarch_p
1746 then
1747 params="gdbarch"
1748 else
1749 params=""
1750 fi
1751 else
1752 if class_is_multiarch_p
1753 then
1754 params="gdbarch, ${actual}"
1755 else
1756 params="${actual}"
1757 fi
1758 fi
1759 if [ "x${returntype}" = "xvoid" ]
1760 then
1761 printf " gdbarch->${function} (${params});\n"
1762 else
1763 printf " return gdbarch->${function} (${params});\n"
1764 fi
1765 printf "}\n"
1766 printf "\n"
1767 printf "void\n"
1768 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1769 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1770 printf "{\n"
1771 printf " gdbarch->${function} = ${function};\n"
1772 printf "}\n"
1773 elif class_is_variable_p
1774 then
1775 printf "\n"
1776 printf "${returntype}\n"
1777 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1778 printf "{\n"
1779 printf " gdb_assert (gdbarch != NULL);\n"
1780 if [ "x${invalid_p}" = "x0" ]
1781 then
1782 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1783 elif [ -n "${invalid_p}" ]
1784 then
1785 printf " if (${invalid_p})\n"
1786 printf " internal_error (__FILE__, __LINE__,\n"
1787 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1788 elif [ -n "${predefault}" ]
1789 then
1790 printf " if (gdbarch->${function} == ${predefault})\n"
1791 printf " internal_error (__FILE__, __LINE__,\n"
1792 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1793 fi
1794 printf " if (gdbarch_debug >= 2)\n"
1795 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1796 printf " return gdbarch->${function};\n"
1797 printf "}\n"
1798 printf "\n"
1799 printf "void\n"
1800 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1801 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1802 printf "{\n"
1803 printf " gdbarch->${function} = ${function};\n"
1804 printf "}\n"
1805 elif class_is_info_p
1806 then
1807 printf "\n"
1808 printf "${returntype}\n"
1809 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1810 printf "{\n"
1811 printf " gdb_assert (gdbarch != NULL);\n"
1812 printf " if (gdbarch_debug >= 2)\n"
1813 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1814 printf " return gdbarch->${function};\n"
1815 printf "}\n"
1816 fi
1817 done
1818
1819 # All the trailing guff
1820 cat <<EOF
1821
1822
1823 /* Keep a registry of per-architecture data-pointers required by GDB
1824 modules. */
1825
1826 struct gdbarch_data
1827 {
1828 unsigned index;
1829 int init_p;
1830 gdbarch_data_init_ftype *init;
1831 gdbarch_data_free_ftype *free;
1832 };
1833
1834 struct gdbarch_data_registration
1835 {
1836 struct gdbarch_data *data;
1837 struct gdbarch_data_registration *next;
1838 };
1839
1840 struct gdbarch_data_registry
1841 {
1842 unsigned nr;
1843 struct gdbarch_data_registration *registrations;
1844 };
1845
1846 struct gdbarch_data_registry gdbarch_data_registry =
1847 {
1848 0, NULL,
1849 };
1850
1851 struct gdbarch_data *
1852 register_gdbarch_data (gdbarch_data_init_ftype *init,
1853 gdbarch_data_free_ftype *free)
1854 {
1855 struct gdbarch_data_registration **curr;
1856 /* Append the new registraration. */
1857 for (curr = &gdbarch_data_registry.registrations;
1858 (*curr) != NULL;
1859 curr = &(*curr)->next);
1860 (*curr) = XMALLOC (struct gdbarch_data_registration);
1861 (*curr)->next = NULL;
1862 (*curr)->data = XMALLOC (struct gdbarch_data);
1863 (*curr)->data->index = gdbarch_data_registry.nr++;
1864 (*curr)->data->init = init;
1865 (*curr)->data->init_p = 1;
1866 (*curr)->data->free = free;
1867 return (*curr)->data;
1868 }
1869
1870
1871 /* Create/delete the gdbarch data vector. */
1872
1873 static void
1874 alloc_gdbarch_data (struct gdbarch *gdbarch)
1875 {
1876 gdb_assert (gdbarch->data == NULL);
1877 gdbarch->nr_data = gdbarch_data_registry.nr;
1878 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1879 }
1880
1881 static void
1882 free_gdbarch_data (struct gdbarch *gdbarch)
1883 {
1884 struct gdbarch_data_registration *rego;
1885 gdb_assert (gdbarch->data != NULL);
1886 for (rego = gdbarch_data_registry.registrations;
1887 rego != NULL;
1888 rego = rego->next)
1889 {
1890 struct gdbarch_data *data = rego->data;
1891 gdb_assert (data->index < gdbarch->nr_data);
1892 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1893 {
1894 data->free (gdbarch, gdbarch->data[data->index]);
1895 gdbarch->data[data->index] = NULL;
1896 }
1897 }
1898 xfree (gdbarch->data);
1899 gdbarch->data = NULL;
1900 }
1901
1902
1903 /* Initialize the current value of the specified per-architecture
1904 data-pointer. */
1905
1906 void
1907 set_gdbarch_data (struct gdbarch *gdbarch,
1908 struct gdbarch_data *data,
1909 void *pointer)
1910 {
1911 gdb_assert (data->index < gdbarch->nr_data);
1912 if (gdbarch->data[data->index] != NULL)
1913 {
1914 gdb_assert (data->free != NULL);
1915 data->free (gdbarch, gdbarch->data[data->index]);
1916 }
1917 gdbarch->data[data->index] = pointer;
1918 }
1919
1920 /* Return the current value of the specified per-architecture
1921 data-pointer. */
1922
1923 void *
1924 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1925 {
1926 gdb_assert (data->index < gdbarch->nr_data);
1927 /* The data-pointer isn't initialized, call init() to get a value but
1928 only if the architecture initializaiton has completed. Otherwise
1929 punt - hope that the caller knows what they are doing. */
1930 if (gdbarch->data[data->index] == NULL
1931 && gdbarch->initialized_p)
1932 {
1933 /* Be careful to detect an initialization cycle. */
1934 gdb_assert (data->init_p);
1935 data->init_p = 0;
1936 gdb_assert (data->init != NULL);
1937 gdbarch->data[data->index] = data->init (gdbarch);
1938 data->init_p = 1;
1939 gdb_assert (gdbarch->data[data->index] != NULL);
1940 }
1941 return gdbarch->data[data->index];
1942 }
1943
1944
1945
1946 /* Keep a registry of swapped data required by GDB modules. */
1947
1948 struct gdbarch_swap
1949 {
1950 void *swap;
1951 struct gdbarch_swap_registration *source;
1952 struct gdbarch_swap *next;
1953 };
1954
1955 struct gdbarch_swap_registration
1956 {
1957 void *data;
1958 unsigned long sizeof_data;
1959 gdbarch_swap_ftype *init;
1960 struct gdbarch_swap_registration *next;
1961 };
1962
1963 struct gdbarch_swap_registry
1964 {
1965 int nr;
1966 struct gdbarch_swap_registration *registrations;
1967 };
1968
1969 struct gdbarch_swap_registry gdbarch_swap_registry =
1970 {
1971 0, NULL,
1972 };
1973
1974 void
1975 register_gdbarch_swap (void *data,
1976 unsigned long sizeof_data,
1977 gdbarch_swap_ftype *init)
1978 {
1979 struct gdbarch_swap_registration **rego;
1980 for (rego = &gdbarch_swap_registry.registrations;
1981 (*rego) != NULL;
1982 rego = &(*rego)->next);
1983 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1984 (*rego)->next = NULL;
1985 (*rego)->init = init;
1986 (*rego)->data = data;
1987 (*rego)->sizeof_data = sizeof_data;
1988 }
1989
1990 static void
1991 clear_gdbarch_swap (struct gdbarch *gdbarch)
1992 {
1993 struct gdbarch_swap *curr;
1994 for (curr = gdbarch->swap;
1995 curr != NULL;
1996 curr = curr->next)
1997 {
1998 memset (curr->source->data, 0, curr->source->sizeof_data);
1999 }
2000 }
2001
2002 static void
2003 init_gdbarch_swap (struct gdbarch *gdbarch)
2004 {
2005 struct gdbarch_swap_registration *rego;
2006 struct gdbarch_swap **curr = &gdbarch->swap;
2007 for (rego = gdbarch_swap_registry.registrations;
2008 rego != NULL;
2009 rego = rego->next)
2010 {
2011 if (rego->data != NULL)
2012 {
2013 (*curr) = XMALLOC (struct gdbarch_swap);
2014 (*curr)->source = rego;
2015 (*curr)->swap = xmalloc (rego->sizeof_data);
2016 (*curr)->next = NULL;
2017 curr = &(*curr)->next;
2018 }
2019 if (rego->init != NULL)
2020 rego->init ();
2021 }
2022 }
2023
2024 static void
2025 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2026 {
2027 struct gdbarch_swap *curr;
2028 for (curr = gdbarch->swap;
2029 curr != NULL;
2030 curr = curr->next)
2031 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2032 }
2033
2034 static void
2035 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2036 {
2037 struct gdbarch_swap *curr;
2038 for (curr = gdbarch->swap;
2039 curr != NULL;
2040 curr = curr->next)
2041 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2042 }
2043
2044
2045 /* Keep a registry of the architectures known by GDB. */
2046
2047 struct gdbarch_registration
2048 {
2049 enum bfd_architecture bfd_architecture;
2050 gdbarch_init_ftype *init;
2051 gdbarch_dump_tdep_ftype *dump_tdep;
2052 struct gdbarch_list *arches;
2053 struct gdbarch_registration *next;
2054 };
2055
2056 static struct gdbarch_registration *gdbarch_registry = NULL;
2057
2058 static void
2059 append_name (const char ***buf, int *nr, const char *name)
2060 {
2061 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2062 (*buf)[*nr] = name;
2063 *nr += 1;
2064 }
2065
2066 const char **
2067 gdbarch_printable_names (void)
2068 {
2069 if (GDB_MULTI_ARCH)
2070 {
2071 /* Accumulate a list of names based on the registed list of
2072 architectures. */
2073 enum bfd_architecture a;
2074 int nr_arches = 0;
2075 const char **arches = NULL;
2076 struct gdbarch_registration *rego;
2077 for (rego = gdbarch_registry;
2078 rego != NULL;
2079 rego = rego->next)
2080 {
2081 const struct bfd_arch_info *ap;
2082 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2083 if (ap == NULL)
2084 internal_error (__FILE__, __LINE__,
2085 "gdbarch_architecture_names: multi-arch unknown");
2086 do
2087 {
2088 append_name (&arches, &nr_arches, ap->printable_name);
2089 ap = ap->next;
2090 }
2091 while (ap != NULL);
2092 }
2093 append_name (&arches, &nr_arches, NULL);
2094 return arches;
2095 }
2096 else
2097 /* Just return all the architectures that BFD knows. Assume that
2098 the legacy architecture framework supports them. */
2099 return bfd_arch_list ();
2100 }
2101
2102
2103 void
2104 gdbarch_register (enum bfd_architecture bfd_architecture,
2105 gdbarch_init_ftype *init,
2106 gdbarch_dump_tdep_ftype *dump_tdep)
2107 {
2108 struct gdbarch_registration **curr;
2109 const struct bfd_arch_info *bfd_arch_info;
2110 /* Check that BFD recognizes this architecture */
2111 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2112 if (bfd_arch_info == NULL)
2113 {
2114 internal_error (__FILE__, __LINE__,
2115 "gdbarch: Attempt to register unknown architecture (%d)",
2116 bfd_architecture);
2117 }
2118 /* Check that we haven't seen this architecture before */
2119 for (curr = &gdbarch_registry;
2120 (*curr) != NULL;
2121 curr = &(*curr)->next)
2122 {
2123 if (bfd_architecture == (*curr)->bfd_architecture)
2124 internal_error (__FILE__, __LINE__,
2125 "gdbarch: Duplicate registraration of architecture (%s)",
2126 bfd_arch_info->printable_name);
2127 }
2128 /* log it */
2129 if (gdbarch_debug)
2130 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2131 bfd_arch_info->printable_name,
2132 (long) init);
2133 /* Append it */
2134 (*curr) = XMALLOC (struct gdbarch_registration);
2135 (*curr)->bfd_architecture = bfd_architecture;
2136 (*curr)->init = init;
2137 (*curr)->dump_tdep = dump_tdep;
2138 (*curr)->arches = NULL;
2139 (*curr)->next = NULL;
2140 /* When non- multi-arch, install whatever target dump routine we've
2141 been provided - hopefully that routine has been written correctly
2142 and works regardless of multi-arch. */
2143 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2144 && startup_gdbarch.dump_tdep == NULL)
2145 startup_gdbarch.dump_tdep = dump_tdep;
2146 }
2147
2148 void
2149 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2150 gdbarch_init_ftype *init)
2151 {
2152 gdbarch_register (bfd_architecture, init, NULL);
2153 }
2154
2155
2156 /* Look for an architecture using gdbarch_info. Base search on only
2157 BFD_ARCH_INFO and BYTE_ORDER. */
2158
2159 struct gdbarch_list *
2160 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2161 const struct gdbarch_info *info)
2162 {
2163 for (; arches != NULL; arches = arches->next)
2164 {
2165 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2166 continue;
2167 if (info->byte_order != arches->gdbarch->byte_order)
2168 continue;
2169 if (info->osabi != arches->gdbarch->osabi)
2170 continue;
2171 return arches;
2172 }
2173 return NULL;
2174 }
2175
2176
2177 /* Update the current architecture. Return ZERO if the update request
2178 failed. */
2179
2180 int
2181 gdbarch_update_p (struct gdbarch_info info)
2182 {
2183 struct gdbarch *new_gdbarch;
2184 struct gdbarch *old_gdbarch;
2185 struct gdbarch_registration *rego;
2186
2187 /* Fill in missing parts of the INFO struct using a number of
2188 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2189
2190 /* \`\`(gdb) set architecture ...'' */
2191 if (info.bfd_arch_info == NULL
2192 && !TARGET_ARCHITECTURE_AUTO)
2193 info.bfd_arch_info = TARGET_ARCHITECTURE;
2194 if (info.bfd_arch_info == NULL
2195 && info.abfd != NULL
2196 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2197 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2198 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2199 if (info.bfd_arch_info == NULL)
2200 info.bfd_arch_info = TARGET_ARCHITECTURE;
2201
2202 /* \`\`(gdb) set byte-order ...'' */
2203 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2204 && !TARGET_BYTE_ORDER_AUTO)
2205 info.byte_order = TARGET_BYTE_ORDER;
2206 /* From the INFO struct. */
2207 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2208 && info.abfd != NULL)
2209 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2210 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2211 : BFD_ENDIAN_UNKNOWN);
2212 /* From the current target. */
2213 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2214 info.byte_order = TARGET_BYTE_ORDER;
2215
2216 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2217 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2218 info.osabi = gdbarch_lookup_osabi (info.abfd);
2219 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2220 info.osabi = current_gdbarch->osabi;
2221
2222 /* Must have found some sort of architecture. */
2223 gdb_assert (info.bfd_arch_info != NULL);
2224
2225 if (gdbarch_debug)
2226 {
2227 fprintf_unfiltered (gdb_stdlog,
2228 "gdbarch_update: info.bfd_arch_info %s\n",
2229 (info.bfd_arch_info != NULL
2230 ? info.bfd_arch_info->printable_name
2231 : "(null)"));
2232 fprintf_unfiltered (gdb_stdlog,
2233 "gdbarch_update: info.byte_order %d (%s)\n",
2234 info.byte_order,
2235 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2236 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2237 : "default"));
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_update: info.osabi %d (%s)\n",
2240 info.osabi, gdbarch_osabi_name (info.osabi));
2241 fprintf_unfiltered (gdb_stdlog,
2242 "gdbarch_update: info.abfd 0x%lx\n",
2243 (long) info.abfd);
2244 fprintf_unfiltered (gdb_stdlog,
2245 "gdbarch_update: info.tdep_info 0x%lx\n",
2246 (long) info.tdep_info);
2247 }
2248
2249 /* Find the target that knows about this architecture. */
2250 for (rego = gdbarch_registry;
2251 rego != NULL;
2252 rego = rego->next)
2253 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2254 break;
2255 if (rego == NULL)
2256 {
2257 if (gdbarch_debug)
2258 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2259 return 0;
2260 }
2261
2262 /* Swap the data belonging to the old target out setting the
2263 installed data to zero. This stops the ->init() function trying
2264 to refer to the previous architecture's global data structures. */
2265 swapout_gdbarch_swap (current_gdbarch);
2266 clear_gdbarch_swap (current_gdbarch);
2267
2268 /* Save the previously selected architecture, setting the global to
2269 NULL. This stops ->init() trying to use the previous
2270 architecture's configuration. The previous architecture may not
2271 even be of the same architecture family. The most recent
2272 architecture of the same family is found at the head of the
2273 rego->arches list. */
2274 old_gdbarch = current_gdbarch;
2275 current_gdbarch = NULL;
2276
2277 /* Ask the target for a replacement architecture. */
2278 new_gdbarch = rego->init (info, rego->arches);
2279
2280 /* Did the target like it? No. Reject the change and revert to the
2281 old architecture. */
2282 if (new_gdbarch == NULL)
2283 {
2284 if (gdbarch_debug)
2285 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2286 swapin_gdbarch_swap (old_gdbarch);
2287 current_gdbarch = old_gdbarch;
2288 return 0;
2289 }
2290
2291 /* Did the architecture change? No. Oops, put the old architecture
2292 back. */
2293 if (old_gdbarch == new_gdbarch)
2294 {
2295 if (gdbarch_debug)
2296 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2297 (long) new_gdbarch,
2298 new_gdbarch->bfd_arch_info->printable_name);
2299 swapin_gdbarch_swap (old_gdbarch);
2300 current_gdbarch = old_gdbarch;
2301 return 1;
2302 }
2303
2304 /* Is this a pre-existing architecture? Yes. Move it to the front
2305 of the list of architectures (keeping the list sorted Most
2306 Recently Used) and then copy it in. */
2307 {
2308 struct gdbarch_list **list;
2309 for (list = &rego->arches;
2310 (*list) != NULL;
2311 list = &(*list)->next)
2312 {
2313 if ((*list)->gdbarch == new_gdbarch)
2314 {
2315 struct gdbarch_list *this;
2316 if (gdbarch_debug)
2317 fprintf_unfiltered (gdb_stdlog,
2318 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2319 (long) new_gdbarch,
2320 new_gdbarch->bfd_arch_info->printable_name);
2321 /* Unlink this. */
2322 this = (*list);
2323 (*list) = this->next;
2324 /* Insert in the front. */
2325 this->next = rego->arches;
2326 rego->arches = this;
2327 /* Copy the new architecture in. */
2328 current_gdbarch = new_gdbarch;
2329 swapin_gdbarch_swap (new_gdbarch);
2330 architecture_changed_event ();
2331 return 1;
2332 }
2333 }
2334 }
2335
2336 /* Prepend this new architecture to the architecture list (keep the
2337 list sorted Most Recently Used). */
2338 {
2339 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2340 this->next = rego->arches;
2341 this->gdbarch = new_gdbarch;
2342 rego->arches = this;
2343 }
2344
2345 /* Switch to this new architecture marking it initialized. */
2346 current_gdbarch = new_gdbarch;
2347 current_gdbarch->initialized_p = 1;
2348 if (gdbarch_debug)
2349 {
2350 fprintf_unfiltered (gdb_stdlog,
2351 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2352 (long) new_gdbarch,
2353 new_gdbarch->bfd_arch_info->printable_name);
2354 }
2355
2356 /* Check that the newly installed architecture is valid. Plug in
2357 any post init values. */
2358 new_gdbarch->dump_tdep = rego->dump_tdep;
2359 verify_gdbarch (new_gdbarch);
2360
2361 /* Initialize the per-architecture memory (swap) areas.
2362 CURRENT_GDBARCH must be update before these modules are
2363 called. */
2364 init_gdbarch_swap (new_gdbarch);
2365
2366 /* Initialize the per-architecture data. CURRENT_GDBARCH
2367 must be updated before these modules are called. */
2368 architecture_changed_event ();
2369
2370 if (gdbarch_debug)
2371 gdbarch_dump (current_gdbarch, gdb_stdlog);
2372
2373 return 1;
2374 }
2375
2376
2377 /* Disassembler */
2378
2379 /* Pointer to the target-dependent disassembly function. */
2380 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2381 disassemble_info tm_print_insn_info;
2382
2383
2384 extern void _initialize_gdbarch (void);
2385
2386 void
2387 _initialize_gdbarch (void)
2388 {
2389 struct cmd_list_element *c;
2390
2391 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2392 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2393 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2394 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2395 tm_print_insn_info.print_address_func = dis_asm_print_address;
2396
2397 add_show_from_set (add_set_cmd ("arch",
2398 class_maintenance,
2399 var_zinteger,
2400 (char *)&gdbarch_debug,
2401 "Set architecture debugging.\\n\\
2402 When non-zero, architecture debugging is enabled.", &setdebuglist),
2403 &showdebuglist);
2404 c = add_set_cmd ("archdebug",
2405 class_maintenance,
2406 var_zinteger,
2407 (char *)&gdbarch_debug,
2408 "Set architecture debugging.\\n\\
2409 When non-zero, architecture debugging is enabled.", &setlist);
2410
2411 deprecate_cmd (c, "set debug arch");
2412 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2413 }
2414 EOF
2415
2416 # close things off
2417 exec 1>&2
2418 #../move-if-change new-gdbarch.c gdbarch.c
2419 compare_new gdbarch.c
This page took 0.084887 seconds and 5 git commands to generate.