ChangeLog:
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::plongest ((long) gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 # Given a vector of command-line arguments, return a newly allocated
579 # string which, when passed to the create_inferior function, will be
580 # parsed (on Unix systems, by the shell) to yield the same vector.
581 # This function should call error() if the argument vector is not
582 # representable for this target or if this target does not support
583 # command-line arguments.
584 # ARGC is the number of elements in the vector.
585 # ARGV is an array of strings, one per argument.
586 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
598
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
602
603 # Supported register notes in a core file.
604 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
605
606 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
607 # core file into buffer READBUF with length LEN.
608 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
609
610 # If the elements of C++ vtables are in-place function descriptors rather
611 # than normal function pointers (which may point to code or a descriptor),
612 # set this to one.
613 v:int:vtable_function_descriptors:::0:0::0
614
615 # Set if the least significant bit of the delta is used instead of the least
616 # significant bit of the pfn for pointers to virtual member functions.
617 v:int:vbit_in_delta:::0:0::0
618
619 # Advance PC to next instruction in order to skip a permanent breakpoint.
620 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
621
622 # The maximum length of an instruction on this architecture.
623 V:ULONGEST:max_insn_length:::0:0
624
625 # Copy the instruction at FROM to TO, and make any adjustments
626 # necessary to single-step it at that address.
627 #
628 # REGS holds the state the thread's registers will have before
629 # executing the copied instruction; the PC in REGS will refer to FROM,
630 # not the copy at TO. The caller should update it to point at TO later.
631 #
632 # Return a pointer to data of the architecture's choice to be passed
633 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
634 # the instruction's effects have been completely simulated, with the
635 # resulting state written back to REGS.
636 #
637 # For a general explanation of displaced stepping and how GDB uses it,
638 # see the comments in infrun.c.
639 #
640 # The TO area is only guaranteed to have space for
641 # gdbarch_max_insn_length (arch) bytes, so this function must not
642 # write more bytes than that to that area.
643 #
644 # If you do not provide this function, GDB assumes that the
645 # architecture does not support displaced stepping.
646 #
647 # If your architecture doesn't need to adjust instructions before
648 # single-stepping them, consider using simple_displaced_step_copy_insn
649 # here.
650 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
651
652 # Fix up the state resulting from successfully single-stepping a
653 # displaced instruction, to give the result we would have gotten from
654 # stepping the instruction in its original location.
655 #
656 # REGS is the register state resulting from single-stepping the
657 # displaced instruction.
658 #
659 # CLOSURE is the result from the matching call to
660 # gdbarch_displaced_step_copy_insn.
661 #
662 # If you provide gdbarch_displaced_step_copy_insn.but not this
663 # function, then GDB assumes that no fixup is needed after
664 # single-stepping the instruction.
665 #
666 # For a general explanation of displaced stepping and how GDB uses it,
667 # see the comments in infrun.c.
668 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
669
670 # Free a closure returned by gdbarch_displaced_step_copy_insn.
671 #
672 # If you provide gdbarch_displaced_step_copy_insn, you must provide
673 # this function as well.
674 #
675 # If your architecture uses closures that don't need to be freed, then
676 # you can use simple_displaced_step_free_closure here.
677 #
678 # For a general explanation of displaced stepping and how GDB uses it,
679 # see the comments in infrun.c.
680 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
681
682 # Return the address of an appropriate place to put displaced
683 # instructions while we step over them. There need only be one such
684 # place, since we're only stepping one thread over a breakpoint at a
685 # time.
686 #
687 # For a general explanation of displaced stepping and how GDB uses it,
688 # see the comments in infrun.c.
689 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
690
691 # Refresh overlay mapped state for section OSECT.
692 F:void:overlay_update:struct obj_section *osect:osect
693
694 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
695
696 # Handle special encoding of static variables in stabs debug info.
697 F:char *:static_transform_name:char *name:name
698 # Set if the address in N_SO or N_FUN stabs may be zero.
699 v:int:sofun_address_maybe_missing:::0:0::0
700
701 # Signal translation: translate inferior's signal (host's) number into
702 # GDB's representation.
703 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
704 # Signal translation: translate GDB's signal number into inferior's host
705 # signal number.
706 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
707
708 # Record architecture-specific information from the symbol table.
709 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
710 EOF
711 }
712
713 #
714 # The .log file
715 #
716 exec > new-gdbarch.log
717 function_list | while do_read
718 do
719 cat <<EOF
720 ${class} ${returntype} ${function} ($formal)
721 EOF
722 for r in ${read}
723 do
724 eval echo \"\ \ \ \ ${r}=\${${r}}\"
725 done
726 if class_is_predicate_p && fallback_default_p
727 then
728 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
729 kill $$
730 exit 1
731 fi
732 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
733 then
734 echo "Error: postdefault is useless when invalid_p=0" 1>&2
735 kill $$
736 exit 1
737 fi
738 if class_is_multiarch_p
739 then
740 if class_is_predicate_p ; then :
741 elif test "x${predefault}" = "x"
742 then
743 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
744 kill $$
745 exit 1
746 fi
747 fi
748 echo ""
749 done
750
751 exec 1>&2
752 compare_new gdbarch.log
753
754
755 copyright ()
756 {
757 cat <<EOF
758 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
759
760 /* Dynamic architecture support for GDB, the GNU debugger.
761
762 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
763 Free Software Foundation, Inc.
764
765 This file is part of GDB.
766
767 This program is free software; you can redistribute it and/or modify
768 it under the terms of the GNU General Public License as published by
769 the Free Software Foundation; either version 3 of the License, or
770 (at your option) any later version.
771
772 This program is distributed in the hope that it will be useful,
773 but WITHOUT ANY WARRANTY; without even the implied warranty of
774 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
775 GNU General Public License for more details.
776
777 You should have received a copy of the GNU General Public License
778 along with this program. If not, see <http://www.gnu.org/licenses/>. */
779
780 /* This file was created with the aid of \`\`gdbarch.sh''.
781
782 The Bourne shell script \`\`gdbarch.sh'' creates the files
783 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
784 against the existing \`\`gdbarch.[hc]''. Any differences found
785 being reported.
786
787 If editing this file, please also run gdbarch.sh and merge any
788 changes into that script. Conversely, when making sweeping changes
789 to this file, modifying gdbarch.sh and using its output may prove
790 easier. */
791
792 EOF
793 }
794
795 #
796 # The .h file
797 #
798
799 exec > new-gdbarch.h
800 copyright
801 cat <<EOF
802 #ifndef GDBARCH_H
803 #define GDBARCH_H
804
805 struct floatformat;
806 struct ui_file;
807 struct frame_info;
808 struct value;
809 struct objfile;
810 struct obj_section;
811 struct minimal_symbol;
812 struct regcache;
813 struct reggroup;
814 struct regset;
815 struct disassemble_info;
816 struct target_ops;
817 struct obstack;
818 struct bp_target_info;
819 struct target_desc;
820 struct displaced_step_closure;
821 struct core_regset_section;
822
823 extern struct gdbarch *current_gdbarch;
824 extern struct gdbarch *target_gdbarch;
825 EOF
826
827 # function typedef's
828 printf "\n"
829 printf "\n"
830 printf "/* The following are pre-initialized by GDBARCH. */\n"
831 function_list | while do_read
832 do
833 if class_is_info_p
834 then
835 printf "\n"
836 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
837 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
838 fi
839 done
840
841 # function typedef's
842 printf "\n"
843 printf "\n"
844 printf "/* The following are initialized by the target dependent code. */\n"
845 function_list | while do_read
846 do
847 if [ -n "${comment}" ]
848 then
849 echo "${comment}" | sed \
850 -e '2 s,#,/*,' \
851 -e '3,$ s,#, ,' \
852 -e '$ s,$, */,'
853 fi
854
855 if class_is_predicate_p
856 then
857 printf "\n"
858 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
859 fi
860 if class_is_variable_p
861 then
862 printf "\n"
863 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
864 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
865 fi
866 if class_is_function_p
867 then
868 printf "\n"
869 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
870 then
871 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
872 elif class_is_multiarch_p
873 then
874 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
875 else
876 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
877 fi
878 if [ "x${formal}" = "xvoid" ]
879 then
880 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
881 else
882 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
883 fi
884 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
885 fi
886 done
887
888 # close it off
889 cat <<EOF
890
891 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
892
893
894 /* Mechanism for co-ordinating the selection of a specific
895 architecture.
896
897 GDB targets (*-tdep.c) can register an interest in a specific
898 architecture. Other GDB components can register a need to maintain
899 per-architecture data.
900
901 The mechanisms below ensures that there is only a loose connection
902 between the set-architecture command and the various GDB
903 components. Each component can independently register their need
904 to maintain architecture specific data with gdbarch.
905
906 Pragmatics:
907
908 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
909 didn't scale.
910
911 The more traditional mega-struct containing architecture specific
912 data for all the various GDB components was also considered. Since
913 GDB is built from a variable number of (fairly independent)
914 components it was determined that the global aproach was not
915 applicable. */
916
917
918 /* Register a new architectural family with GDB.
919
920 Register support for the specified ARCHITECTURE with GDB. When
921 gdbarch determines that the specified architecture has been
922 selected, the corresponding INIT function is called.
923
924 --
925
926 The INIT function takes two parameters: INFO which contains the
927 information available to gdbarch about the (possibly new)
928 architecture; ARCHES which is a list of the previously created
929 \`\`struct gdbarch'' for this architecture.
930
931 The INFO parameter is, as far as possible, be pre-initialized with
932 information obtained from INFO.ABFD or the global defaults.
933
934 The ARCHES parameter is a linked list (sorted most recently used)
935 of all the previously created architures for this architecture
936 family. The (possibly NULL) ARCHES->gdbarch can used to access
937 values from the previously selected architecture for this
938 architecture family. The global \`\`current_gdbarch'' shall not be
939 used.
940
941 The INIT function shall return any of: NULL - indicating that it
942 doesn't recognize the selected architecture; an existing \`\`struct
943 gdbarch'' from the ARCHES list - indicating that the new
944 architecture is just a synonym for an earlier architecture (see
945 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
946 - that describes the selected architecture (see gdbarch_alloc()).
947
948 The DUMP_TDEP function shall print out all target specific values.
949 Care should be taken to ensure that the function works in both the
950 multi-arch and non- multi-arch cases. */
951
952 struct gdbarch_list
953 {
954 struct gdbarch *gdbarch;
955 struct gdbarch_list *next;
956 };
957
958 struct gdbarch_info
959 {
960 /* Use default: NULL (ZERO). */
961 const struct bfd_arch_info *bfd_arch_info;
962
963 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
964 int byte_order;
965
966 int byte_order_for_code;
967
968 /* Use default: NULL (ZERO). */
969 bfd *abfd;
970
971 /* Use default: NULL (ZERO). */
972 struct gdbarch_tdep_info *tdep_info;
973
974 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
975 enum gdb_osabi osabi;
976
977 /* Use default: NULL (ZERO). */
978 const struct target_desc *target_desc;
979 };
980
981 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
982 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
983
984 /* DEPRECATED - use gdbarch_register() */
985 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
986
987 extern void gdbarch_register (enum bfd_architecture architecture,
988 gdbarch_init_ftype *,
989 gdbarch_dump_tdep_ftype *);
990
991
992 /* Return a freshly allocated, NULL terminated, array of the valid
993 architecture names. Since architectures are registered during the
994 _initialize phase this function only returns useful information
995 once initialization has been completed. */
996
997 extern const char **gdbarch_printable_names (void);
998
999
1000 /* Helper function. Search the list of ARCHES for a GDBARCH that
1001 matches the information provided by INFO. */
1002
1003 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1004
1005
1006 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1007 basic initialization using values obtained from the INFO and TDEP
1008 parameters. set_gdbarch_*() functions are called to complete the
1009 initialization of the object. */
1010
1011 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1012
1013
1014 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1015 It is assumed that the caller freeds the \`\`struct
1016 gdbarch_tdep''. */
1017
1018 extern void gdbarch_free (struct gdbarch *);
1019
1020
1021 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1022 obstack. The memory is freed when the corresponding architecture
1023 is also freed. */
1024
1025 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1026 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1027 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1028
1029
1030 /* Helper function. Force an update of the current architecture.
1031
1032 The actual architecture selected is determined by INFO, \`\`(gdb) set
1033 architecture'' et.al., the existing architecture and BFD's default
1034 architecture. INFO should be initialized to zero and then selected
1035 fields should be updated.
1036
1037 Returns non-zero if the update succeeds */
1038
1039 extern int gdbarch_update_p (struct gdbarch_info info);
1040
1041
1042 /* Helper function. Find an architecture matching info.
1043
1044 INFO should be initialized using gdbarch_info_init, relevant fields
1045 set, and then finished using gdbarch_info_fill.
1046
1047 Returns the corresponding architecture, or NULL if no matching
1048 architecture was found. "current_gdbarch" is not updated. */
1049
1050 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1051
1052
1053 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1054
1055 FIXME: kettenis/20031124: Of the functions that follow, only
1056 gdbarch_from_bfd is supposed to survive. The others will
1057 dissappear since in the future GDB will (hopefully) be truly
1058 multi-arch. However, for now we're still stuck with the concept of
1059 a single active architecture. */
1060
1061 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1062
1063
1064 /* Register per-architecture data-pointer.
1065
1066 Reserve space for a per-architecture data-pointer. An identifier
1067 for the reserved data-pointer is returned. That identifer should
1068 be saved in a local static variable.
1069
1070 Memory for the per-architecture data shall be allocated using
1071 gdbarch_obstack_zalloc. That memory will be deleted when the
1072 corresponding architecture object is deleted.
1073
1074 When a previously created architecture is re-selected, the
1075 per-architecture data-pointer for that previous architecture is
1076 restored. INIT() is not re-called.
1077
1078 Multiple registrarants for any architecture are allowed (and
1079 strongly encouraged). */
1080
1081 struct gdbarch_data;
1082
1083 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1084 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1085 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1086 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1087 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1088 struct gdbarch_data *data,
1089 void *pointer);
1090
1091 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1092
1093
1094 /* Set the dynamic target-system-dependent parameters (architecture,
1095 byte-order, ...) using information found in the BFD */
1096
1097 extern void set_gdbarch_from_file (bfd *);
1098
1099
1100 /* Initialize the current architecture to the "first" one we find on
1101 our list. */
1102
1103 extern void initialize_current_architecture (void);
1104
1105 /* gdbarch trace variable */
1106 extern int gdbarch_debug;
1107
1108 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1109
1110 #endif
1111 EOF
1112 exec 1>&2
1113 #../move-if-change new-gdbarch.h gdbarch.h
1114 compare_new gdbarch.h
1115
1116
1117 #
1118 # C file
1119 #
1120
1121 exec > new-gdbarch.c
1122 copyright
1123 cat <<EOF
1124
1125 #include "defs.h"
1126 #include "arch-utils.h"
1127
1128 #include "gdbcmd.h"
1129 #include "inferior.h"
1130 #include "symcat.h"
1131
1132 #include "floatformat.h"
1133
1134 #include "gdb_assert.h"
1135 #include "gdb_string.h"
1136 #include "reggroups.h"
1137 #include "osabi.h"
1138 #include "gdb_obstack.h"
1139 #include "observer.h"
1140 #include "regcache.h"
1141
1142 /* Static function declarations */
1143
1144 static void alloc_gdbarch_data (struct gdbarch *);
1145
1146 /* Non-zero if we want to trace architecture code. */
1147
1148 #ifndef GDBARCH_DEBUG
1149 #define GDBARCH_DEBUG 0
1150 #endif
1151 int gdbarch_debug = GDBARCH_DEBUG;
1152 static void
1153 show_gdbarch_debug (struct ui_file *file, int from_tty,
1154 struct cmd_list_element *c, const char *value)
1155 {
1156 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1157 }
1158
1159 static const char *
1160 pformat (const struct floatformat **format)
1161 {
1162 if (format == NULL)
1163 return "(null)";
1164 else
1165 /* Just print out one of them - this is only for diagnostics. */
1166 return format[0]->name;
1167 }
1168
1169 EOF
1170
1171 # gdbarch open the gdbarch object
1172 printf "\n"
1173 printf "/* Maintain the struct gdbarch object */\n"
1174 printf "\n"
1175 printf "struct gdbarch\n"
1176 printf "{\n"
1177 printf " /* Has this architecture been fully initialized? */\n"
1178 printf " int initialized_p;\n"
1179 printf "\n"
1180 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1181 printf " struct obstack *obstack;\n"
1182 printf "\n"
1183 printf " /* basic architectural information */\n"
1184 function_list | while do_read
1185 do
1186 if class_is_info_p
1187 then
1188 printf " ${returntype} ${function};\n"
1189 fi
1190 done
1191 printf "\n"
1192 printf " /* target specific vector. */\n"
1193 printf " struct gdbarch_tdep *tdep;\n"
1194 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1195 printf "\n"
1196 printf " /* per-architecture data-pointers */\n"
1197 printf " unsigned nr_data;\n"
1198 printf " void **data;\n"
1199 printf "\n"
1200 printf " /* per-architecture swap-regions */\n"
1201 printf " struct gdbarch_swap *swap;\n"
1202 printf "\n"
1203 cat <<EOF
1204 /* Multi-arch values.
1205
1206 When extending this structure you must:
1207
1208 Add the field below.
1209
1210 Declare set/get functions and define the corresponding
1211 macro in gdbarch.h.
1212
1213 gdbarch_alloc(): If zero/NULL is not a suitable default,
1214 initialize the new field.
1215
1216 verify_gdbarch(): Confirm that the target updated the field
1217 correctly.
1218
1219 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1220 field is dumped out
1221
1222 \`\`startup_gdbarch()'': Append an initial value to the static
1223 variable (base values on the host's c-type system).
1224
1225 get_gdbarch(): Implement the set/get functions (probably using
1226 the macro's as shortcuts).
1227
1228 */
1229
1230 EOF
1231 function_list | while do_read
1232 do
1233 if class_is_variable_p
1234 then
1235 printf " ${returntype} ${function};\n"
1236 elif class_is_function_p
1237 then
1238 printf " gdbarch_${function}_ftype *${function};\n"
1239 fi
1240 done
1241 printf "};\n"
1242
1243 # A pre-initialized vector
1244 printf "\n"
1245 printf "\n"
1246 cat <<EOF
1247 /* The default architecture uses host values (for want of a better
1248 choice). */
1249 EOF
1250 printf "\n"
1251 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1252 printf "\n"
1253 printf "struct gdbarch startup_gdbarch =\n"
1254 printf "{\n"
1255 printf " 1, /* Always initialized. */\n"
1256 printf " NULL, /* The obstack. */\n"
1257 printf " /* basic architecture information */\n"
1258 function_list | while do_read
1259 do
1260 if class_is_info_p
1261 then
1262 printf " ${staticdefault}, /* ${function} */\n"
1263 fi
1264 done
1265 cat <<EOF
1266 /* target specific vector and its dump routine */
1267 NULL, NULL,
1268 /*per-architecture data-pointers and swap regions */
1269 0, NULL, NULL,
1270 /* Multi-arch values */
1271 EOF
1272 function_list | while do_read
1273 do
1274 if class_is_function_p || class_is_variable_p
1275 then
1276 printf " ${staticdefault}, /* ${function} */\n"
1277 fi
1278 done
1279 cat <<EOF
1280 /* startup_gdbarch() */
1281 };
1282
1283 struct gdbarch *current_gdbarch = &startup_gdbarch;
1284 struct gdbarch *target_gdbarch = &startup_gdbarch;
1285 EOF
1286
1287 # Create a new gdbarch struct
1288 cat <<EOF
1289
1290 /* Create a new \`\`struct gdbarch'' based on information provided by
1291 \`\`struct gdbarch_info''. */
1292 EOF
1293 printf "\n"
1294 cat <<EOF
1295 struct gdbarch *
1296 gdbarch_alloc (const struct gdbarch_info *info,
1297 struct gdbarch_tdep *tdep)
1298 {
1299 struct gdbarch *gdbarch;
1300
1301 /* Create an obstack for allocating all the per-architecture memory,
1302 then use that to allocate the architecture vector. */
1303 struct obstack *obstack = XMALLOC (struct obstack);
1304 obstack_init (obstack);
1305 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1306 memset (gdbarch, 0, sizeof (*gdbarch));
1307 gdbarch->obstack = obstack;
1308
1309 alloc_gdbarch_data (gdbarch);
1310
1311 gdbarch->tdep = tdep;
1312 EOF
1313 printf "\n"
1314 function_list | while do_read
1315 do
1316 if class_is_info_p
1317 then
1318 printf " gdbarch->${function} = info->${function};\n"
1319 fi
1320 done
1321 printf "\n"
1322 printf " /* Force the explicit initialization of these. */\n"
1323 function_list | while do_read
1324 do
1325 if class_is_function_p || class_is_variable_p
1326 then
1327 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1328 then
1329 printf " gdbarch->${function} = ${predefault};\n"
1330 fi
1331 fi
1332 done
1333 cat <<EOF
1334 /* gdbarch_alloc() */
1335
1336 return gdbarch;
1337 }
1338 EOF
1339
1340 # Free a gdbarch struct.
1341 printf "\n"
1342 printf "\n"
1343 cat <<EOF
1344 /* Allocate extra space using the per-architecture obstack. */
1345
1346 void *
1347 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1348 {
1349 void *data = obstack_alloc (arch->obstack, size);
1350 memset (data, 0, size);
1351 return data;
1352 }
1353
1354
1355 /* Free a gdbarch struct. This should never happen in normal
1356 operation --- once you've created a gdbarch, you keep it around.
1357 However, if an architecture's init function encounters an error
1358 building the structure, it may need to clean up a partially
1359 constructed gdbarch. */
1360
1361 void
1362 gdbarch_free (struct gdbarch *arch)
1363 {
1364 struct obstack *obstack;
1365 gdb_assert (arch != NULL);
1366 gdb_assert (!arch->initialized_p);
1367 obstack = arch->obstack;
1368 obstack_free (obstack, 0); /* Includes the ARCH. */
1369 xfree (obstack);
1370 }
1371 EOF
1372
1373 # verify a new architecture
1374 cat <<EOF
1375
1376
1377 /* Ensure that all values in a GDBARCH are reasonable. */
1378
1379 static void
1380 verify_gdbarch (struct gdbarch *gdbarch)
1381 {
1382 struct ui_file *log;
1383 struct cleanup *cleanups;
1384 long dummy;
1385 char *buf;
1386 log = mem_fileopen ();
1387 cleanups = make_cleanup_ui_file_delete (log);
1388 /* fundamental */
1389 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1390 fprintf_unfiltered (log, "\n\tbyte-order");
1391 if (gdbarch->bfd_arch_info == NULL)
1392 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1393 /* Check those that need to be defined for the given multi-arch level. */
1394 EOF
1395 function_list | while do_read
1396 do
1397 if class_is_function_p || class_is_variable_p
1398 then
1399 if [ "x${invalid_p}" = "x0" ]
1400 then
1401 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1402 elif class_is_predicate_p
1403 then
1404 printf " /* Skip verify of ${function}, has predicate */\n"
1405 # FIXME: See do_read for potential simplification
1406 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1407 then
1408 printf " if (${invalid_p})\n"
1409 printf " gdbarch->${function} = ${postdefault};\n"
1410 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1411 then
1412 printf " if (gdbarch->${function} == ${predefault})\n"
1413 printf " gdbarch->${function} = ${postdefault};\n"
1414 elif [ -n "${postdefault}" ]
1415 then
1416 printf " if (gdbarch->${function} == 0)\n"
1417 printf " gdbarch->${function} = ${postdefault};\n"
1418 elif [ -n "${invalid_p}" ]
1419 then
1420 printf " if (${invalid_p})\n"
1421 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1422 elif [ -n "${predefault}" ]
1423 then
1424 printf " if (gdbarch->${function} == ${predefault})\n"
1425 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1426 fi
1427 fi
1428 done
1429 cat <<EOF
1430 buf = ui_file_xstrdup (log, &dummy);
1431 make_cleanup (xfree, buf);
1432 if (strlen (buf) > 0)
1433 internal_error (__FILE__, __LINE__,
1434 _("verify_gdbarch: the following are invalid ...%s"),
1435 buf);
1436 do_cleanups (cleanups);
1437 }
1438 EOF
1439
1440 # dump the structure
1441 printf "\n"
1442 printf "\n"
1443 cat <<EOF
1444 /* Print out the details of the current architecture. */
1445
1446 void
1447 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1448 {
1449 const char *gdb_nm_file = "<not-defined>";
1450 #if defined (GDB_NM_FILE)
1451 gdb_nm_file = GDB_NM_FILE;
1452 #endif
1453 fprintf_unfiltered (file,
1454 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1455 gdb_nm_file);
1456 EOF
1457 function_list | sort -t: -k 3 | while do_read
1458 do
1459 # First the predicate
1460 if class_is_predicate_p
1461 then
1462 printf " fprintf_unfiltered (file,\n"
1463 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1464 printf " gdbarch_${function}_p (gdbarch));\n"
1465 fi
1466 # Print the corresponding value.
1467 if class_is_function_p
1468 then
1469 printf " fprintf_unfiltered (file,\n"
1470 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1471 printf " (long) gdbarch->${function});\n"
1472 else
1473 # It is a variable
1474 case "${print}:${returntype}" in
1475 :CORE_ADDR )
1476 fmt="%s"
1477 print="core_addr_to_string_nz (gdbarch->${function})"
1478 ;;
1479 :* )
1480 fmt="%s"
1481 print="plongest (gdbarch->${function})"
1482 ;;
1483 * )
1484 fmt="%s"
1485 ;;
1486 esac
1487 printf " fprintf_unfiltered (file,\n"
1488 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1489 printf " ${print});\n"
1490 fi
1491 done
1492 cat <<EOF
1493 if (gdbarch->dump_tdep != NULL)
1494 gdbarch->dump_tdep (gdbarch, file);
1495 }
1496 EOF
1497
1498
1499 # GET/SET
1500 printf "\n"
1501 cat <<EOF
1502 struct gdbarch_tdep *
1503 gdbarch_tdep (struct gdbarch *gdbarch)
1504 {
1505 if (gdbarch_debug >= 2)
1506 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1507 return gdbarch->tdep;
1508 }
1509 EOF
1510 printf "\n"
1511 function_list | while do_read
1512 do
1513 if class_is_predicate_p
1514 then
1515 printf "\n"
1516 printf "int\n"
1517 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1518 printf "{\n"
1519 printf " gdb_assert (gdbarch != NULL);\n"
1520 printf " return ${predicate};\n"
1521 printf "}\n"
1522 fi
1523 if class_is_function_p
1524 then
1525 printf "\n"
1526 printf "${returntype}\n"
1527 if [ "x${formal}" = "xvoid" ]
1528 then
1529 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1530 else
1531 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1532 fi
1533 printf "{\n"
1534 printf " gdb_assert (gdbarch != NULL);\n"
1535 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1536 if class_is_predicate_p && test -n "${predefault}"
1537 then
1538 # Allow a call to a function with a predicate.
1539 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1540 fi
1541 printf " if (gdbarch_debug >= 2)\n"
1542 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1543 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1544 then
1545 if class_is_multiarch_p
1546 then
1547 params="gdbarch"
1548 else
1549 params=""
1550 fi
1551 else
1552 if class_is_multiarch_p
1553 then
1554 params="gdbarch, ${actual}"
1555 else
1556 params="${actual}"
1557 fi
1558 fi
1559 if [ "x${returntype}" = "xvoid" ]
1560 then
1561 printf " gdbarch->${function} (${params});\n"
1562 else
1563 printf " return gdbarch->${function} (${params});\n"
1564 fi
1565 printf "}\n"
1566 printf "\n"
1567 printf "void\n"
1568 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1569 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1570 printf "{\n"
1571 printf " gdbarch->${function} = ${function};\n"
1572 printf "}\n"
1573 elif class_is_variable_p
1574 then
1575 printf "\n"
1576 printf "${returntype}\n"
1577 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1578 printf "{\n"
1579 printf " gdb_assert (gdbarch != NULL);\n"
1580 if [ "x${invalid_p}" = "x0" ]
1581 then
1582 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1583 elif [ -n "${invalid_p}" ]
1584 then
1585 printf " /* Check variable is valid. */\n"
1586 printf " gdb_assert (!(${invalid_p}));\n"
1587 elif [ -n "${predefault}" ]
1588 then
1589 printf " /* Check variable changed from pre-default. */\n"
1590 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1591 fi
1592 printf " if (gdbarch_debug >= 2)\n"
1593 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1594 printf " return gdbarch->${function};\n"
1595 printf "}\n"
1596 printf "\n"
1597 printf "void\n"
1598 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1599 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1600 printf "{\n"
1601 printf " gdbarch->${function} = ${function};\n"
1602 printf "}\n"
1603 elif class_is_info_p
1604 then
1605 printf "\n"
1606 printf "${returntype}\n"
1607 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1608 printf "{\n"
1609 printf " gdb_assert (gdbarch != NULL);\n"
1610 printf " if (gdbarch_debug >= 2)\n"
1611 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1612 printf " return gdbarch->${function};\n"
1613 printf "}\n"
1614 fi
1615 done
1616
1617 # All the trailing guff
1618 cat <<EOF
1619
1620
1621 /* Keep a registry of per-architecture data-pointers required by GDB
1622 modules. */
1623
1624 struct gdbarch_data
1625 {
1626 unsigned index;
1627 int init_p;
1628 gdbarch_data_pre_init_ftype *pre_init;
1629 gdbarch_data_post_init_ftype *post_init;
1630 };
1631
1632 struct gdbarch_data_registration
1633 {
1634 struct gdbarch_data *data;
1635 struct gdbarch_data_registration *next;
1636 };
1637
1638 struct gdbarch_data_registry
1639 {
1640 unsigned nr;
1641 struct gdbarch_data_registration *registrations;
1642 };
1643
1644 struct gdbarch_data_registry gdbarch_data_registry =
1645 {
1646 0, NULL,
1647 };
1648
1649 static struct gdbarch_data *
1650 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1651 gdbarch_data_post_init_ftype *post_init)
1652 {
1653 struct gdbarch_data_registration **curr;
1654 /* Append the new registraration. */
1655 for (curr = &gdbarch_data_registry.registrations;
1656 (*curr) != NULL;
1657 curr = &(*curr)->next);
1658 (*curr) = XMALLOC (struct gdbarch_data_registration);
1659 (*curr)->next = NULL;
1660 (*curr)->data = XMALLOC (struct gdbarch_data);
1661 (*curr)->data->index = gdbarch_data_registry.nr++;
1662 (*curr)->data->pre_init = pre_init;
1663 (*curr)->data->post_init = post_init;
1664 (*curr)->data->init_p = 1;
1665 return (*curr)->data;
1666 }
1667
1668 struct gdbarch_data *
1669 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1670 {
1671 return gdbarch_data_register (pre_init, NULL);
1672 }
1673
1674 struct gdbarch_data *
1675 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1676 {
1677 return gdbarch_data_register (NULL, post_init);
1678 }
1679
1680 /* Create/delete the gdbarch data vector. */
1681
1682 static void
1683 alloc_gdbarch_data (struct gdbarch *gdbarch)
1684 {
1685 gdb_assert (gdbarch->data == NULL);
1686 gdbarch->nr_data = gdbarch_data_registry.nr;
1687 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1688 }
1689
1690 /* Initialize the current value of the specified per-architecture
1691 data-pointer. */
1692
1693 void
1694 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1695 struct gdbarch_data *data,
1696 void *pointer)
1697 {
1698 gdb_assert (data->index < gdbarch->nr_data);
1699 gdb_assert (gdbarch->data[data->index] == NULL);
1700 gdb_assert (data->pre_init == NULL);
1701 gdbarch->data[data->index] = pointer;
1702 }
1703
1704 /* Return the current value of the specified per-architecture
1705 data-pointer. */
1706
1707 void *
1708 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1709 {
1710 gdb_assert (data->index < gdbarch->nr_data);
1711 if (gdbarch->data[data->index] == NULL)
1712 {
1713 /* The data-pointer isn't initialized, call init() to get a
1714 value. */
1715 if (data->pre_init != NULL)
1716 /* Mid architecture creation: pass just the obstack, and not
1717 the entire architecture, as that way it isn't possible for
1718 pre-init code to refer to undefined architecture
1719 fields. */
1720 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1721 else if (gdbarch->initialized_p
1722 && data->post_init != NULL)
1723 /* Post architecture creation: pass the entire architecture
1724 (as all fields are valid), but be careful to also detect
1725 recursive references. */
1726 {
1727 gdb_assert (data->init_p);
1728 data->init_p = 0;
1729 gdbarch->data[data->index] = data->post_init (gdbarch);
1730 data->init_p = 1;
1731 }
1732 else
1733 /* The architecture initialization hasn't completed - punt -
1734 hope that the caller knows what they are doing. Once
1735 deprecated_set_gdbarch_data has been initialized, this can be
1736 changed to an internal error. */
1737 return NULL;
1738 gdb_assert (gdbarch->data[data->index] != NULL);
1739 }
1740 return gdbarch->data[data->index];
1741 }
1742
1743
1744 /* Keep a registry of the architectures known by GDB. */
1745
1746 struct gdbarch_registration
1747 {
1748 enum bfd_architecture bfd_architecture;
1749 gdbarch_init_ftype *init;
1750 gdbarch_dump_tdep_ftype *dump_tdep;
1751 struct gdbarch_list *arches;
1752 struct gdbarch_registration *next;
1753 };
1754
1755 static struct gdbarch_registration *gdbarch_registry = NULL;
1756
1757 static void
1758 append_name (const char ***buf, int *nr, const char *name)
1759 {
1760 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1761 (*buf)[*nr] = name;
1762 *nr += 1;
1763 }
1764
1765 const char **
1766 gdbarch_printable_names (void)
1767 {
1768 /* Accumulate a list of names based on the registed list of
1769 architectures. */
1770 enum bfd_architecture a;
1771 int nr_arches = 0;
1772 const char **arches = NULL;
1773 struct gdbarch_registration *rego;
1774 for (rego = gdbarch_registry;
1775 rego != NULL;
1776 rego = rego->next)
1777 {
1778 const struct bfd_arch_info *ap;
1779 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1780 if (ap == NULL)
1781 internal_error (__FILE__, __LINE__,
1782 _("gdbarch_architecture_names: multi-arch unknown"));
1783 do
1784 {
1785 append_name (&arches, &nr_arches, ap->printable_name);
1786 ap = ap->next;
1787 }
1788 while (ap != NULL);
1789 }
1790 append_name (&arches, &nr_arches, NULL);
1791 return arches;
1792 }
1793
1794
1795 void
1796 gdbarch_register (enum bfd_architecture bfd_architecture,
1797 gdbarch_init_ftype *init,
1798 gdbarch_dump_tdep_ftype *dump_tdep)
1799 {
1800 struct gdbarch_registration **curr;
1801 const struct bfd_arch_info *bfd_arch_info;
1802 /* Check that BFD recognizes this architecture */
1803 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1804 if (bfd_arch_info == NULL)
1805 {
1806 internal_error (__FILE__, __LINE__,
1807 _("gdbarch: Attempt to register unknown architecture (%d)"),
1808 bfd_architecture);
1809 }
1810 /* Check that we haven't seen this architecture before */
1811 for (curr = &gdbarch_registry;
1812 (*curr) != NULL;
1813 curr = &(*curr)->next)
1814 {
1815 if (bfd_architecture == (*curr)->bfd_architecture)
1816 internal_error (__FILE__, __LINE__,
1817 _("gdbarch: Duplicate registraration of architecture (%s)"),
1818 bfd_arch_info->printable_name);
1819 }
1820 /* log it */
1821 if (gdbarch_debug)
1822 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1823 bfd_arch_info->printable_name,
1824 (long) init);
1825 /* Append it */
1826 (*curr) = XMALLOC (struct gdbarch_registration);
1827 (*curr)->bfd_architecture = bfd_architecture;
1828 (*curr)->init = init;
1829 (*curr)->dump_tdep = dump_tdep;
1830 (*curr)->arches = NULL;
1831 (*curr)->next = NULL;
1832 }
1833
1834 void
1835 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1836 gdbarch_init_ftype *init)
1837 {
1838 gdbarch_register (bfd_architecture, init, NULL);
1839 }
1840
1841
1842 /* Look for an architecture using gdbarch_info. */
1843
1844 struct gdbarch_list *
1845 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1846 const struct gdbarch_info *info)
1847 {
1848 for (; arches != NULL; arches = arches->next)
1849 {
1850 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1851 continue;
1852 if (info->byte_order != arches->gdbarch->byte_order)
1853 continue;
1854 if (info->osabi != arches->gdbarch->osabi)
1855 continue;
1856 if (info->target_desc != arches->gdbarch->target_desc)
1857 continue;
1858 return arches;
1859 }
1860 return NULL;
1861 }
1862
1863
1864 /* Find an architecture that matches the specified INFO. Create a new
1865 architecture if needed. Return that new architecture. Assumes
1866 that there is no current architecture. */
1867
1868 static struct gdbarch *
1869 find_arch_by_info (struct gdbarch_info info)
1870 {
1871 struct gdbarch *new_gdbarch;
1872 struct gdbarch_registration *rego;
1873
1874 /* The existing architecture has been swapped out - all this code
1875 works from a clean slate. */
1876 gdb_assert (current_gdbarch == NULL);
1877
1878 /* Fill in missing parts of the INFO struct using a number of
1879 sources: "set ..."; INFOabfd supplied; and the global
1880 defaults. */
1881 gdbarch_info_fill (&info);
1882
1883 /* Must have found some sort of architecture. */
1884 gdb_assert (info.bfd_arch_info != NULL);
1885
1886 if (gdbarch_debug)
1887 {
1888 fprintf_unfiltered (gdb_stdlog,
1889 "find_arch_by_info: info.bfd_arch_info %s\n",
1890 (info.bfd_arch_info != NULL
1891 ? info.bfd_arch_info->printable_name
1892 : "(null)"));
1893 fprintf_unfiltered (gdb_stdlog,
1894 "find_arch_by_info: info.byte_order %d (%s)\n",
1895 info.byte_order,
1896 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1897 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1898 : "default"));
1899 fprintf_unfiltered (gdb_stdlog,
1900 "find_arch_by_info: info.osabi %d (%s)\n",
1901 info.osabi, gdbarch_osabi_name (info.osabi));
1902 fprintf_unfiltered (gdb_stdlog,
1903 "find_arch_by_info: info.abfd 0x%lx\n",
1904 (long) info.abfd);
1905 fprintf_unfiltered (gdb_stdlog,
1906 "find_arch_by_info: info.tdep_info 0x%lx\n",
1907 (long) info.tdep_info);
1908 }
1909
1910 /* Find the tdep code that knows about this architecture. */
1911 for (rego = gdbarch_registry;
1912 rego != NULL;
1913 rego = rego->next)
1914 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1915 break;
1916 if (rego == NULL)
1917 {
1918 if (gdbarch_debug)
1919 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1920 "No matching architecture\n");
1921 return 0;
1922 }
1923
1924 /* Ask the tdep code for an architecture that matches "info". */
1925 new_gdbarch = rego->init (info, rego->arches);
1926
1927 /* Did the tdep code like it? No. Reject the change and revert to
1928 the old architecture. */
1929 if (new_gdbarch == NULL)
1930 {
1931 if (gdbarch_debug)
1932 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1933 "Target rejected architecture\n");
1934 return NULL;
1935 }
1936
1937 /* Is this a pre-existing architecture (as determined by already
1938 being initialized)? Move it to the front of the architecture
1939 list (keeping the list sorted Most Recently Used). */
1940 if (new_gdbarch->initialized_p)
1941 {
1942 struct gdbarch_list **list;
1943 struct gdbarch_list *this;
1944 if (gdbarch_debug)
1945 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1946 "Previous architecture 0x%08lx (%s) selected\n",
1947 (long) new_gdbarch,
1948 new_gdbarch->bfd_arch_info->printable_name);
1949 /* Find the existing arch in the list. */
1950 for (list = &rego->arches;
1951 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1952 list = &(*list)->next);
1953 /* It had better be in the list of architectures. */
1954 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1955 /* Unlink THIS. */
1956 this = (*list);
1957 (*list) = this->next;
1958 /* Insert THIS at the front. */
1959 this->next = rego->arches;
1960 rego->arches = this;
1961 /* Return it. */
1962 return new_gdbarch;
1963 }
1964
1965 /* It's a new architecture. */
1966 if (gdbarch_debug)
1967 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1968 "New architecture 0x%08lx (%s) selected\n",
1969 (long) new_gdbarch,
1970 new_gdbarch->bfd_arch_info->printable_name);
1971
1972 /* Insert the new architecture into the front of the architecture
1973 list (keep the list sorted Most Recently Used). */
1974 {
1975 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1976 this->next = rego->arches;
1977 this->gdbarch = new_gdbarch;
1978 rego->arches = this;
1979 }
1980
1981 /* Check that the newly installed architecture is valid. Plug in
1982 any post init values. */
1983 new_gdbarch->dump_tdep = rego->dump_tdep;
1984 verify_gdbarch (new_gdbarch);
1985 new_gdbarch->initialized_p = 1;
1986
1987 if (gdbarch_debug)
1988 gdbarch_dump (new_gdbarch, gdb_stdlog);
1989
1990 return new_gdbarch;
1991 }
1992
1993 struct gdbarch *
1994 gdbarch_find_by_info (struct gdbarch_info info)
1995 {
1996 struct gdbarch *new_gdbarch;
1997
1998 /* Save the previously selected architecture, setting the global to
1999 NULL. This stops things like gdbarch->init() trying to use the
2000 previous architecture's configuration. The previous architecture
2001 may not even be of the same architecture family. The most recent
2002 architecture of the same family is found at the head of the
2003 rego->arches list. */
2004 struct gdbarch *old_gdbarch = current_gdbarch;
2005 current_gdbarch = NULL;
2006
2007 /* Find the specified architecture. */
2008 new_gdbarch = find_arch_by_info (info);
2009
2010 /* Restore the existing architecture. */
2011 gdb_assert (current_gdbarch == NULL);
2012 current_gdbarch = old_gdbarch;
2013
2014 return new_gdbarch;
2015 }
2016
2017 /* Make the specified architecture current. */
2018
2019 void
2020 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2021 {
2022 gdb_assert (new_gdbarch != NULL);
2023 gdb_assert (current_gdbarch != NULL);
2024 gdb_assert (new_gdbarch->initialized_p);
2025 current_gdbarch = new_gdbarch;
2026 target_gdbarch = new_gdbarch;
2027 observer_notify_architecture_changed (new_gdbarch);
2028 registers_changed ();
2029 }
2030
2031 extern void _initialize_gdbarch (void);
2032
2033 void
2034 _initialize_gdbarch (void)
2035 {
2036 struct cmd_list_element *c;
2037
2038 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2039 Set architecture debugging."), _("\\
2040 Show architecture debugging."), _("\\
2041 When non-zero, architecture debugging is enabled."),
2042 NULL,
2043 show_gdbarch_debug,
2044 &setdebuglist, &showdebuglist);
2045 }
2046 EOF
2047
2048 # close things off
2049 exec 1>&2
2050 #../move-if-change new-gdbarch.c gdbarch.c
2051 compare_new gdbarch.c
This page took 0.081686 seconds and 5 git commands to generate.