* gdbarch.sh (REGISTER_NAME): Change return type a constant string
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:register_read:int regnum, char *buf:regnum, buf:
432 M:::void:register_write:int regnum, char *buf:regnum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
471 m:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame:file, frame:::default_print_float_info::0
472 # MAP a GDB RAW register number onto a simulator register number. See
473 # also include/...-sim.h.
474 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
475 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
476 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
477 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
478 # setjmp/longjmp support.
479 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
480 #
481 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
482 # much better but at least they are vaguely consistent). The headers
483 # and body contain convoluted #if/#else sequences for determine how
484 # things should be compiled. Instead of trying to mimic that
485 # behaviour here (and hence entrench it further) gdbarch simply
486 # reqires that these methods be set up from the word go. This also
487 # avoids any potential problems with moving beyond multi-arch partial.
488 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
489 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
490 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
491 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
492 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
493 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
494 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
495 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
496 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
497 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
498 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
499 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
500 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
501 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
502 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
503 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
504 #
505 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
506 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
507 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
508 f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
509 #
510 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
511 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
512 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
513 #
514 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
515 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
516 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
517 # This function is called when the value of a pseudo-register needs to
518 # be updated. Typically it will be defined on a per-architecture
519 # basis.
520 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
521 # This function is called when the value of a pseudo-register needs to
522 # be set or stored. Typically it will be defined on a
523 # per-architecture basis.
524 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
525 #
526 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
527 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
528 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
529 #
530 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
531 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
532 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
533 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
534 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
535 f:2:POP_FRAME:void:pop_frame:void:-:::0
536 #
537 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
538 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
539 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
540 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
541 #
542 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
543 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
544 #
545 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
546 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
547 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
548 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
549 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
551 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
552 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
553 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554 #
555 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
556 #
557 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
558 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
559 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
560 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
562 # given frame is the outermost one and has no caller.
563 #
564 # XXXX - both default and alternate frame_chain_valid functions are
565 # deprecated. New code should use dummy frames and one of the generic
566 # functions.
567 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
568 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573 #
574 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
575 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
576 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
577 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
578 v:2:PARM_BOUNDARY:int:parm_boundary
579 #
580 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
581 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
582 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
583 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
584 # On some machines there are bits in addresses which are not really
585 # part of the address, but are used by the kernel, the hardware, etc.
586 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
587 # we get a "real" address such as one would find in a symbol table.
588 # This is used only for addresses of instructions, and even then I'm
589 # not sure it's used in all contexts. It exists to deal with there
590 # being a few stray bits in the PC which would mislead us, not as some
591 # sort of generic thing to handle alignment or segmentation (it's
592 # possible it should be in TARGET_READ_PC instead).
593 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
594 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
595 # ADDR_BITS_REMOVE.
596 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
598 # the target needs software single step. An ISA method to implement it.
599 #
600 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
601 # using the breakpoint system instead of blatting memory directly (as with rs6000).
602 #
603 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
604 # single step. If not, then implement single step using breakpoints.
605 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
606 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
607 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
608 # For SVR4 shared libraries, each call goes through a small piece of
609 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
610 # to nonzero if we are current stopped in one of these.
611 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
612 # Sigtramp is a routine that the kernel calls (which then calls the
613 # signal handler). On most machines it is a library routine that is
614 # linked into the executable.
615 #
616 # This macro, given a program counter value and the name of the
617 # function in which that PC resides (which can be null if the name is
618 # not known), returns nonzero if the PC and name show that we are in
619 # sigtramp.
620 #
621 # On most machines just see if the name is sigtramp (and if we have
622 # no name, assume we are not in sigtramp).
623 #
624 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
625 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
626 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
627 # own local NAME lookup.
628 #
629 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
630 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
631 # does not.
632 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
633 # A target might have problems with watchpoints as soon as the stack
634 # frame of the current function has been destroyed. This mostly happens
635 # as the first action in a funtion's epilogue. in_function_epilogue_p()
636 # is defined to return a non-zero value if either the given addr is one
637 # instruction after the stack destroying instruction up to the trailing
638 # return instruction or if we can figure out that the stack frame has
639 # already been invalidated regardless of the value of addr. Targets
640 # which don't suffer from that problem could just let this functionality
641 # untouched.
642 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
643 # Given a vector of command-line arguments, return a newly allocated
644 # string which, when passed to the create_inferior function, will be
645 # parsed (on Unix systems, by the shell) to yield the same vector.
646 # This function should call error() if the argument vector is not
647 # representable for this target or if this target does not support
648 # command-line arguments.
649 # ARGC is the number of elements in the vector.
650 # ARGV is an array of strings, one per argument.
651 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
652 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
653 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
654 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
655 EOF
656 }
657
658 #
659 # The .log file
660 #
661 exec > new-gdbarch.log
662 function_list | while do_read
663 do
664 cat <<EOF
665 ${class} ${macro}(${actual})
666 ${returntype} ${function} ($formal)${attrib}
667 EOF
668 for r in ${read}
669 do
670 eval echo \"\ \ \ \ ${r}=\${${r}}\"
671 done
672 # #fallbackdefault=${fallbackdefault}
673 # #valid_p=${valid_p}
674 #EOF
675 if class_is_predicate_p && fallback_default_p
676 then
677 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
678 kill $$
679 exit 1
680 fi
681 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
682 then
683 echo "Error: postdefault is useless when invalid_p=0" 1>&2
684 kill $$
685 exit 1
686 fi
687 if class_is_multiarch_p
688 then
689 if class_is_predicate_p ; then :
690 elif test "x${predefault}" = "x"
691 then
692 echo "Error: pure multi-arch function must have a predefault" 1>&2
693 kill $$
694 exit 1
695 fi
696 fi
697 echo ""
698 done
699
700 exec 1>&2
701 compare_new gdbarch.log
702
703
704 copyright ()
705 {
706 cat <<EOF
707 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
708
709 /* Dynamic architecture support for GDB, the GNU debugger.
710 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
711
712 This file is part of GDB.
713
714 This program is free software; you can redistribute it and/or modify
715 it under the terms of the GNU General Public License as published by
716 the Free Software Foundation; either version 2 of the License, or
717 (at your option) any later version.
718
719 This program is distributed in the hope that it will be useful,
720 but WITHOUT ANY WARRANTY; without even the implied warranty of
721 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
722 GNU General Public License for more details.
723
724 You should have received a copy of the GNU General Public License
725 along with this program; if not, write to the Free Software
726 Foundation, Inc., 59 Temple Place - Suite 330,
727 Boston, MA 02111-1307, USA. */
728
729 /* This file was created with the aid of \`\`gdbarch.sh''.
730
731 The Bourne shell script \`\`gdbarch.sh'' creates the files
732 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
733 against the existing \`\`gdbarch.[hc]''. Any differences found
734 being reported.
735
736 If editing this file, please also run gdbarch.sh and merge any
737 changes into that script. Conversely, when making sweeping changes
738 to this file, modifying gdbarch.sh and using its output may prove
739 easier. */
740
741 EOF
742 }
743
744 #
745 # The .h file
746 #
747
748 exec > new-gdbarch.h
749 copyright
750 cat <<EOF
751 #ifndef GDBARCH_H
752 #define GDBARCH_H
753
754 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
755 #if !GDB_MULTI_ARCH
756 /* Pull in function declarations refered to, indirectly, via macros. */
757 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
758 #include "inferior.h" /* For unsigned_address_to_pointer(). */
759 #endif
760
761 struct frame_info;
762 struct value;
763 struct objfile;
764 struct minimal_symbol;
765
766 extern struct gdbarch *current_gdbarch;
767
768
769 /* If any of the following are defined, the target wasn't correctly
770 converted. */
771
772 #if GDB_MULTI_ARCH
773 #if defined (EXTRA_FRAME_INFO)
774 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
775 #endif
776 #endif
777
778 #if GDB_MULTI_ARCH
779 #if defined (FRAME_FIND_SAVED_REGS)
780 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
781 #endif
782 #endif
783
784 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
785 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
786 #endif
787 EOF
788
789 # function typedef's
790 printf "\n"
791 printf "\n"
792 printf "/* The following are pre-initialized by GDBARCH. */\n"
793 function_list | while do_read
794 do
795 if class_is_info_p
796 then
797 printf "\n"
798 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
799 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
800 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
801 printf "#error \"Non multi-arch definition of ${macro}\"\n"
802 printf "#endif\n"
803 printf "#if GDB_MULTI_ARCH\n"
804 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
805 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
806 printf "#endif\n"
807 printf "#endif\n"
808 fi
809 done
810
811 # function typedef's
812 printf "\n"
813 printf "\n"
814 printf "/* The following are initialized by the target dependent code. */\n"
815 function_list | while do_read
816 do
817 if [ -n "${comment}" ]
818 then
819 echo "${comment}" | sed \
820 -e '2 s,#,/*,' \
821 -e '3,$ s,#, ,' \
822 -e '$ s,$, */,'
823 fi
824 if class_is_multiarch_p
825 then
826 if class_is_predicate_p
827 then
828 printf "\n"
829 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
830 fi
831 else
832 if class_is_predicate_p
833 then
834 printf "\n"
835 printf "#if defined (${macro})\n"
836 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
837 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
838 printf "#if !defined (${macro}_P)\n"
839 printf "#define ${macro}_P() (1)\n"
840 printf "#endif\n"
841 printf "#endif\n"
842 printf "\n"
843 printf "/* Default predicate for non- multi-arch targets. */\n"
844 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
845 printf "#define ${macro}_P() (0)\n"
846 printf "#endif\n"
847 printf "\n"
848 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
849 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
850 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#endif\n"
852 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
853 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
854 printf "#endif\n"
855 fi
856 fi
857 if class_is_variable_p
858 then
859 if fallback_default_p || class_is_predicate_p
860 then
861 printf "\n"
862 printf "/* Default (value) for non- multi-arch platforms. */\n"
863 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
864 echo "#define ${macro} (${fallbackdefault})" \
865 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
866 printf "#endif\n"
867 fi
868 printf "\n"
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
870 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
871 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
872 printf "#error \"Non multi-arch definition of ${macro}\"\n"
873 printf "#endif\n"
874 printf "#if GDB_MULTI_ARCH\n"
875 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
876 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
877 printf "#endif\n"
878 printf "#endif\n"
879 fi
880 if class_is_function_p
881 then
882 if class_is_multiarch_p ; then :
883 elif fallback_default_p || class_is_predicate_p
884 then
885 printf "\n"
886 printf "/* Default (function) for non- multi-arch platforms. */\n"
887 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
888 if [ "x${fallbackdefault}" = "x0" ]
889 then
890 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
891 else
892 # FIXME: Should be passing current_gdbarch through!
893 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
894 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
895 fi
896 printf "#endif\n"
897 fi
898 printf "\n"
899 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
900 then
901 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
902 elif class_is_multiarch_p
903 then
904 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
905 else
906 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
907 fi
908 if [ "x${formal}" = "xvoid" ]
909 then
910 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
911 else
912 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
913 fi
914 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
915 if class_is_multiarch_p ; then :
916 else
917 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
918 printf "#error \"Non multi-arch definition of ${macro}\"\n"
919 printf "#endif\n"
920 printf "#if GDB_MULTI_ARCH\n"
921 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
922 if [ "x${actual}" = "x" ]
923 then
924 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
925 elif [ "x${actual}" = "x-" ]
926 then
927 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
928 else
929 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
930 fi
931 printf "#endif\n"
932 printf "#endif\n"
933 fi
934 fi
935 done
936
937 # close it off
938 cat <<EOF
939
940 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
941
942
943 /* Mechanism for co-ordinating the selection of a specific
944 architecture.
945
946 GDB targets (*-tdep.c) can register an interest in a specific
947 architecture. Other GDB components can register a need to maintain
948 per-architecture data.
949
950 The mechanisms below ensures that there is only a loose connection
951 between the set-architecture command and the various GDB
952 components. Each component can independently register their need
953 to maintain architecture specific data with gdbarch.
954
955 Pragmatics:
956
957 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
958 didn't scale.
959
960 The more traditional mega-struct containing architecture specific
961 data for all the various GDB components was also considered. Since
962 GDB is built from a variable number of (fairly independent)
963 components it was determined that the global aproach was not
964 applicable. */
965
966
967 /* Register a new architectural family with GDB.
968
969 Register support for the specified ARCHITECTURE with GDB. When
970 gdbarch determines that the specified architecture has been
971 selected, the corresponding INIT function is called.
972
973 --
974
975 The INIT function takes two parameters: INFO which contains the
976 information available to gdbarch about the (possibly new)
977 architecture; ARCHES which is a list of the previously created
978 \`\`struct gdbarch'' for this architecture.
979
980 The INFO parameter is, as far as possible, be pre-initialized with
981 information obtained from INFO.ABFD or the previously selected
982 architecture.
983
984 The ARCHES parameter is a linked list (sorted most recently used)
985 of all the previously created architures for this architecture
986 family. The (possibly NULL) ARCHES->gdbarch can used to access
987 values from the previously selected architecture for this
988 architecture family. The global \`\`current_gdbarch'' shall not be
989 used.
990
991 The INIT function shall return any of: NULL - indicating that it
992 doesn't recognize the selected architecture; an existing \`\`struct
993 gdbarch'' from the ARCHES list - indicating that the new
994 architecture is just a synonym for an earlier architecture (see
995 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
996 - that describes the selected architecture (see gdbarch_alloc()).
997
998 The DUMP_TDEP function shall print out all target specific values.
999 Care should be taken to ensure that the function works in both the
1000 multi-arch and non- multi-arch cases. */
1001
1002 struct gdbarch_list
1003 {
1004 struct gdbarch *gdbarch;
1005 struct gdbarch_list *next;
1006 };
1007
1008 struct gdbarch_info
1009 {
1010 /* Use default: NULL (ZERO). */
1011 const struct bfd_arch_info *bfd_arch_info;
1012
1013 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1014 int byte_order;
1015
1016 /* Use default: NULL (ZERO). */
1017 bfd *abfd;
1018
1019 /* Use default: NULL (ZERO). */
1020 struct gdbarch_tdep_info *tdep_info;
1021 };
1022
1023 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1024 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1025
1026 /* DEPRECATED - use gdbarch_register() */
1027 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1028
1029 extern void gdbarch_register (enum bfd_architecture architecture,
1030 gdbarch_init_ftype *,
1031 gdbarch_dump_tdep_ftype *);
1032
1033
1034 /* Return a freshly allocated, NULL terminated, array of the valid
1035 architecture names. Since architectures are registered during the
1036 _initialize phase this function only returns useful information
1037 once initialization has been completed. */
1038
1039 extern const char **gdbarch_printable_names (void);
1040
1041
1042 /* Helper function. Search the list of ARCHES for a GDBARCH that
1043 matches the information provided by INFO. */
1044
1045 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1046
1047
1048 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1049 basic initialization using values obtained from the INFO andTDEP
1050 parameters. set_gdbarch_*() functions are called to complete the
1051 initialization of the object. */
1052
1053 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1054
1055
1056 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1057 It is assumed that the caller freeds the \`\`struct
1058 gdbarch_tdep''. */
1059
1060 extern void gdbarch_free (struct gdbarch *);
1061
1062
1063 /* Helper function. Force an update of the current architecture.
1064
1065 The actual architecture selected is determined by INFO, \`\`(gdb) set
1066 architecture'' et.al., the existing architecture and BFD's default
1067 architecture. INFO should be initialized to zero and then selected
1068 fields should be updated.
1069
1070 Returns non-zero if the update succeeds */
1071
1072 extern int gdbarch_update_p (struct gdbarch_info info);
1073
1074
1075
1076 /* Register per-architecture data-pointer.
1077
1078 Reserve space for a per-architecture data-pointer. An identifier
1079 for the reserved data-pointer is returned. That identifer should
1080 be saved in a local static variable.
1081
1082 The per-architecture data-pointer is either initialized explicitly
1083 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1084 gdbarch_data()). FREE() is called to delete either an existing
1085 data-pointer overridden by set_gdbarch_data() or when the
1086 architecture object is being deleted.
1087
1088 When a previously created architecture is re-selected, the
1089 per-architecture data-pointer for that previous architecture is
1090 restored. INIT() is not re-called.
1091
1092 Multiple registrarants for any architecture are allowed (and
1093 strongly encouraged). */
1094
1095 struct gdbarch_data;
1096
1097 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1098 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1099 void *pointer);
1100 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1101 gdbarch_data_free_ftype *free);
1102 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1103 struct gdbarch_data *data,
1104 void *pointer);
1105
1106 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1107
1108
1109 /* Register per-architecture memory region.
1110
1111 Provide a memory-region swap mechanism. Per-architecture memory
1112 region are created. These memory regions are swapped whenever the
1113 architecture is changed. For a new architecture, the memory region
1114 is initialized with zero (0) and the INIT function is called.
1115
1116 Memory regions are swapped / initialized in the order that they are
1117 registered. NULL DATA and/or INIT values can be specified.
1118
1119 New code should use register_gdbarch_data(). */
1120
1121 typedef void (gdbarch_swap_ftype) (void);
1122 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1123 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1124
1125
1126
1127 /* The target-system-dependent byte order is dynamic */
1128
1129 extern int target_byte_order;
1130 #ifndef TARGET_BYTE_ORDER
1131 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1132 #endif
1133
1134 extern int target_byte_order_auto;
1135 #ifndef TARGET_BYTE_ORDER_AUTO
1136 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1137 #endif
1138
1139
1140
1141 /* The target-system-dependent BFD architecture is dynamic */
1142
1143 extern int target_architecture_auto;
1144 #ifndef TARGET_ARCHITECTURE_AUTO
1145 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1146 #endif
1147
1148 extern const struct bfd_arch_info *target_architecture;
1149 #ifndef TARGET_ARCHITECTURE
1150 #define TARGET_ARCHITECTURE (target_architecture + 0)
1151 #endif
1152
1153
1154 /* The target-system-dependent disassembler is semi-dynamic */
1155
1156 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1157 unsigned int len, disassemble_info *info);
1158
1159 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1160 disassemble_info *info);
1161
1162 extern void dis_asm_print_address (bfd_vma addr,
1163 disassemble_info *info);
1164
1165 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1166 extern disassemble_info tm_print_insn_info;
1167 #ifndef TARGET_PRINT_INSN_INFO
1168 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1169 #endif
1170
1171
1172
1173 /* Set the dynamic target-system-dependent parameters (architecture,
1174 byte-order, ...) using information found in the BFD */
1175
1176 extern void set_gdbarch_from_file (bfd *);
1177
1178
1179 /* Initialize the current architecture to the "first" one we find on
1180 our list. */
1181
1182 extern void initialize_current_architecture (void);
1183
1184 /* For non-multiarched targets, do any initialization of the default
1185 gdbarch object necessary after the _initialize_MODULE functions
1186 have run. */
1187 extern void initialize_non_multiarch ();
1188
1189 /* gdbarch trace variable */
1190 extern int gdbarch_debug;
1191
1192 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1193
1194 #endif
1195 EOF
1196 exec 1>&2
1197 #../move-if-change new-gdbarch.h gdbarch.h
1198 compare_new gdbarch.h
1199
1200
1201 #
1202 # C file
1203 #
1204
1205 exec > new-gdbarch.c
1206 copyright
1207 cat <<EOF
1208
1209 #include "defs.h"
1210 #include "arch-utils.h"
1211
1212 #if GDB_MULTI_ARCH
1213 #include "gdbcmd.h"
1214 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1215 #else
1216 /* Just include everything in sight so that the every old definition
1217 of macro is visible. */
1218 #include "gdb_string.h"
1219 #include <ctype.h>
1220 #include "symtab.h"
1221 #include "frame.h"
1222 #include "inferior.h"
1223 #include "breakpoint.h"
1224 #include "gdb_wait.h"
1225 #include "gdbcore.h"
1226 #include "gdbcmd.h"
1227 #include "target.h"
1228 #include "gdbthread.h"
1229 #include "annotate.h"
1230 #include "symfile.h" /* for overlay functions */
1231 #include "value.h" /* For old tm.h/nm.h macros. */
1232 #endif
1233 #include "symcat.h"
1234
1235 #include "floatformat.h"
1236
1237 #include "gdb_assert.h"
1238 #include "gdb-events.h"
1239
1240 /* Static function declarations */
1241
1242 static void verify_gdbarch (struct gdbarch *gdbarch);
1243 static void alloc_gdbarch_data (struct gdbarch *);
1244 static void free_gdbarch_data (struct gdbarch *);
1245 static void init_gdbarch_swap (struct gdbarch *);
1246 static void clear_gdbarch_swap (struct gdbarch *);
1247 static void swapout_gdbarch_swap (struct gdbarch *);
1248 static void swapin_gdbarch_swap (struct gdbarch *);
1249
1250 /* Non-zero if we want to trace architecture code. */
1251
1252 #ifndef GDBARCH_DEBUG
1253 #define GDBARCH_DEBUG 0
1254 #endif
1255 int gdbarch_debug = GDBARCH_DEBUG;
1256
1257 EOF
1258
1259 # gdbarch open the gdbarch object
1260 printf "\n"
1261 printf "/* Maintain the struct gdbarch object */\n"
1262 printf "\n"
1263 printf "struct gdbarch\n"
1264 printf "{\n"
1265 printf " /* Has this architecture been fully initialized? */\n"
1266 printf " int initialized_p;\n"
1267 printf " /* basic architectural information */\n"
1268 function_list | while do_read
1269 do
1270 if class_is_info_p
1271 then
1272 printf " ${returntype} ${function};\n"
1273 fi
1274 done
1275 printf "\n"
1276 printf " /* target specific vector. */\n"
1277 printf " struct gdbarch_tdep *tdep;\n"
1278 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1279 printf "\n"
1280 printf " /* per-architecture data-pointers */\n"
1281 printf " unsigned nr_data;\n"
1282 printf " void **data;\n"
1283 printf "\n"
1284 printf " /* per-architecture swap-regions */\n"
1285 printf " struct gdbarch_swap *swap;\n"
1286 printf "\n"
1287 cat <<EOF
1288 /* Multi-arch values.
1289
1290 When extending this structure you must:
1291
1292 Add the field below.
1293
1294 Declare set/get functions and define the corresponding
1295 macro in gdbarch.h.
1296
1297 gdbarch_alloc(): If zero/NULL is not a suitable default,
1298 initialize the new field.
1299
1300 verify_gdbarch(): Confirm that the target updated the field
1301 correctly.
1302
1303 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1304 field is dumped out
1305
1306 \`\`startup_gdbarch()'': Append an initial value to the static
1307 variable (base values on the host's c-type system).
1308
1309 get_gdbarch(): Implement the set/get functions (probably using
1310 the macro's as shortcuts).
1311
1312 */
1313
1314 EOF
1315 function_list | while do_read
1316 do
1317 if class_is_variable_p
1318 then
1319 printf " ${returntype} ${function};\n"
1320 elif class_is_function_p
1321 then
1322 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1323 fi
1324 done
1325 printf "};\n"
1326
1327 # A pre-initialized vector
1328 printf "\n"
1329 printf "\n"
1330 cat <<EOF
1331 /* The default architecture uses host values (for want of a better
1332 choice). */
1333 EOF
1334 printf "\n"
1335 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1336 printf "\n"
1337 printf "struct gdbarch startup_gdbarch =\n"
1338 printf "{\n"
1339 printf " 1, /* Always initialized. */\n"
1340 printf " /* basic architecture information */\n"
1341 function_list | while do_read
1342 do
1343 if class_is_info_p
1344 then
1345 printf " ${staticdefault},\n"
1346 fi
1347 done
1348 cat <<EOF
1349 /* target specific vector and its dump routine */
1350 NULL, NULL,
1351 /*per-architecture data-pointers and swap regions */
1352 0, NULL, NULL,
1353 /* Multi-arch values */
1354 EOF
1355 function_list | while do_read
1356 do
1357 if class_is_function_p || class_is_variable_p
1358 then
1359 printf " ${staticdefault},\n"
1360 fi
1361 done
1362 cat <<EOF
1363 /* startup_gdbarch() */
1364 };
1365
1366 struct gdbarch *current_gdbarch = &startup_gdbarch;
1367
1368 /* Do any initialization needed for a non-multiarch configuration
1369 after the _initialize_MODULE functions have been run. */
1370 void
1371 initialize_non_multiarch ()
1372 {
1373 alloc_gdbarch_data (&startup_gdbarch);
1374 /* Ensure that all swap areas are zeroed so that they again think
1375 they are starting from scratch. */
1376 clear_gdbarch_swap (&startup_gdbarch);
1377 init_gdbarch_swap (&startup_gdbarch);
1378 }
1379 EOF
1380
1381 # Create a new gdbarch struct
1382 printf "\n"
1383 printf "\n"
1384 cat <<EOF
1385 /* Create a new \`\`struct gdbarch'' based on information provided by
1386 \`\`struct gdbarch_info''. */
1387 EOF
1388 printf "\n"
1389 cat <<EOF
1390 struct gdbarch *
1391 gdbarch_alloc (const struct gdbarch_info *info,
1392 struct gdbarch_tdep *tdep)
1393 {
1394 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1395 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1396 the current local architecture and not the previous global
1397 architecture. This ensures that the new architectures initial
1398 values are not influenced by the previous architecture. Once
1399 everything is parameterised with gdbarch, this will go away. */
1400 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1401 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1402
1403 alloc_gdbarch_data (current_gdbarch);
1404
1405 current_gdbarch->tdep = tdep;
1406 EOF
1407 printf "\n"
1408 function_list | while do_read
1409 do
1410 if class_is_info_p
1411 then
1412 printf " current_gdbarch->${function} = info->${function};\n"
1413 fi
1414 done
1415 printf "\n"
1416 printf " /* Force the explicit initialization of these. */\n"
1417 function_list | while do_read
1418 do
1419 if class_is_function_p || class_is_variable_p
1420 then
1421 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1422 then
1423 printf " current_gdbarch->${function} = ${predefault};\n"
1424 fi
1425 fi
1426 done
1427 cat <<EOF
1428 /* gdbarch_alloc() */
1429
1430 return current_gdbarch;
1431 }
1432 EOF
1433
1434 # Free a gdbarch struct.
1435 printf "\n"
1436 printf "\n"
1437 cat <<EOF
1438 /* Free a gdbarch struct. This should never happen in normal
1439 operation --- once you've created a gdbarch, you keep it around.
1440 However, if an architecture's init function encounters an error
1441 building the structure, it may need to clean up a partially
1442 constructed gdbarch. */
1443
1444 void
1445 gdbarch_free (struct gdbarch *arch)
1446 {
1447 gdb_assert (arch != NULL);
1448 free_gdbarch_data (arch);
1449 xfree (arch);
1450 }
1451 EOF
1452
1453 # verify a new architecture
1454 printf "\n"
1455 printf "\n"
1456 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1457 printf "\n"
1458 cat <<EOF
1459 static void
1460 verify_gdbarch (struct gdbarch *gdbarch)
1461 {
1462 struct ui_file *log;
1463 struct cleanup *cleanups;
1464 long dummy;
1465 char *buf;
1466 /* Only perform sanity checks on a multi-arch target. */
1467 if (!GDB_MULTI_ARCH)
1468 return;
1469 log = mem_fileopen ();
1470 cleanups = make_cleanup_ui_file_delete (log);
1471 /* fundamental */
1472 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1473 fprintf_unfiltered (log, "\n\tbyte-order");
1474 if (gdbarch->bfd_arch_info == NULL)
1475 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1476 /* Check those that need to be defined for the given multi-arch level. */
1477 EOF
1478 function_list | while do_read
1479 do
1480 if class_is_function_p || class_is_variable_p
1481 then
1482 if [ "x${invalid_p}" = "x0" ]
1483 then
1484 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1485 elif class_is_predicate_p
1486 then
1487 printf " /* Skip verify of ${function}, has predicate */\n"
1488 # FIXME: See do_read for potential simplification
1489 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1490 then
1491 printf " if (${invalid_p})\n"
1492 printf " gdbarch->${function} = ${postdefault};\n"
1493 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1494 then
1495 printf " if (gdbarch->${function} == ${predefault})\n"
1496 printf " gdbarch->${function} = ${postdefault};\n"
1497 elif [ -n "${postdefault}" ]
1498 then
1499 printf " if (gdbarch->${function} == 0)\n"
1500 printf " gdbarch->${function} = ${postdefault};\n"
1501 elif [ -n "${invalid_p}" ]
1502 then
1503 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1504 printf " && (${invalid_p}))\n"
1505 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1506 elif [ -n "${predefault}" ]
1507 then
1508 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1509 printf " && (gdbarch->${function} == ${predefault}))\n"
1510 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1511 fi
1512 fi
1513 done
1514 cat <<EOF
1515 buf = ui_file_xstrdup (log, &dummy);
1516 make_cleanup (xfree, buf);
1517 if (strlen (buf) > 0)
1518 internal_error (__FILE__, __LINE__,
1519 "verify_gdbarch: the following are invalid ...%s",
1520 buf);
1521 do_cleanups (cleanups);
1522 }
1523 EOF
1524
1525 # dump the structure
1526 printf "\n"
1527 printf "\n"
1528 cat <<EOF
1529 /* Print out the details of the current architecture. */
1530
1531 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1532 just happens to match the global variable \`\`current_gdbarch''. That
1533 way macros refering to that variable get the local and not the global
1534 version - ulgh. Once everything is parameterised with gdbarch, this
1535 will go away. */
1536
1537 void
1538 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1539 {
1540 fprintf_unfiltered (file,
1541 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1542 GDB_MULTI_ARCH);
1543 EOF
1544 function_list | sort -t: +2 | while do_read
1545 do
1546 # multiarch functions don't have macros.
1547 if class_is_multiarch_p
1548 then
1549 printf " if (GDB_MULTI_ARCH)\n"
1550 printf " fprintf_unfiltered (file,\n"
1551 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1552 printf " (long) current_gdbarch->${function});\n"
1553 continue
1554 fi
1555 # Print the macro definition.
1556 printf "#ifdef ${macro}\n"
1557 if [ "x${returntype}" = "xvoid" ]
1558 then
1559 printf "#if GDB_MULTI_ARCH\n"
1560 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1561 fi
1562 if class_is_function_p
1563 then
1564 printf " fprintf_unfiltered (file,\n"
1565 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1566 printf " \"${macro}(${actual})\",\n"
1567 printf " XSTRING (${macro} (${actual})));\n"
1568 else
1569 printf " fprintf_unfiltered (file,\n"
1570 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1571 printf " XSTRING (${macro}));\n"
1572 fi
1573 # Print the architecture vector value
1574 if [ "x${returntype}" = "xvoid" ]
1575 then
1576 printf "#endif\n"
1577 fi
1578 if [ "x${print_p}" = "x()" ]
1579 then
1580 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1581 elif [ "x${print_p}" = "x0" ]
1582 then
1583 printf " /* skip print of ${macro}, print_p == 0. */\n"
1584 elif [ -n "${print_p}" ]
1585 then
1586 printf " if (${print_p})\n"
1587 printf " fprintf_unfiltered (file,\n"
1588 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1589 printf " ${print});\n"
1590 elif class_is_function_p
1591 then
1592 printf " if (GDB_MULTI_ARCH)\n"
1593 printf " fprintf_unfiltered (file,\n"
1594 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1595 printf " (long) current_gdbarch->${function}\n"
1596 printf " /*${macro} ()*/);\n"
1597 else
1598 printf " fprintf_unfiltered (file,\n"
1599 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1600 printf " ${print});\n"
1601 fi
1602 printf "#endif\n"
1603 done
1604 cat <<EOF
1605 if (current_gdbarch->dump_tdep != NULL)
1606 current_gdbarch->dump_tdep (current_gdbarch, file);
1607 }
1608 EOF
1609
1610
1611 # GET/SET
1612 printf "\n"
1613 cat <<EOF
1614 struct gdbarch_tdep *
1615 gdbarch_tdep (struct gdbarch *gdbarch)
1616 {
1617 if (gdbarch_debug >= 2)
1618 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1619 return gdbarch->tdep;
1620 }
1621 EOF
1622 printf "\n"
1623 function_list | while do_read
1624 do
1625 if class_is_predicate_p
1626 then
1627 printf "\n"
1628 printf "int\n"
1629 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1630 printf "{\n"
1631 printf " gdb_assert (gdbarch != NULL);\n"
1632 if [ -n "${valid_p}" ]
1633 then
1634 printf " return ${valid_p};\n"
1635 else
1636 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1637 fi
1638 printf "}\n"
1639 fi
1640 if class_is_function_p
1641 then
1642 printf "\n"
1643 printf "${returntype}\n"
1644 if [ "x${formal}" = "xvoid" ]
1645 then
1646 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1647 else
1648 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1649 fi
1650 printf "{\n"
1651 printf " gdb_assert (gdbarch != NULL);\n"
1652 printf " if (gdbarch->${function} == 0)\n"
1653 printf " internal_error (__FILE__, __LINE__,\n"
1654 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1655 printf " if (gdbarch_debug >= 2)\n"
1656 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1657 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1658 then
1659 if class_is_multiarch_p
1660 then
1661 params="gdbarch"
1662 else
1663 params=""
1664 fi
1665 else
1666 if class_is_multiarch_p
1667 then
1668 params="gdbarch, ${actual}"
1669 else
1670 params="${actual}"
1671 fi
1672 fi
1673 if [ "x${returntype}" = "xvoid" ]
1674 then
1675 printf " gdbarch->${function} (${params});\n"
1676 else
1677 printf " return gdbarch->${function} (${params});\n"
1678 fi
1679 printf "}\n"
1680 printf "\n"
1681 printf "void\n"
1682 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1683 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1684 printf "{\n"
1685 printf " gdbarch->${function} = ${function};\n"
1686 printf "}\n"
1687 elif class_is_variable_p
1688 then
1689 printf "\n"
1690 printf "${returntype}\n"
1691 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1692 printf "{\n"
1693 printf " gdb_assert (gdbarch != NULL);\n"
1694 if [ "x${invalid_p}" = "x0" ]
1695 then
1696 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1697 elif [ -n "${invalid_p}" ]
1698 then
1699 printf " if (${invalid_p})\n"
1700 printf " internal_error (__FILE__, __LINE__,\n"
1701 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1702 elif [ -n "${predefault}" ]
1703 then
1704 printf " if (gdbarch->${function} == ${predefault})\n"
1705 printf " internal_error (__FILE__, __LINE__,\n"
1706 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1707 fi
1708 printf " if (gdbarch_debug >= 2)\n"
1709 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1710 printf " return gdbarch->${function};\n"
1711 printf "}\n"
1712 printf "\n"
1713 printf "void\n"
1714 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1715 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1716 printf "{\n"
1717 printf " gdbarch->${function} = ${function};\n"
1718 printf "}\n"
1719 elif class_is_info_p
1720 then
1721 printf "\n"
1722 printf "${returntype}\n"
1723 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1724 printf "{\n"
1725 printf " gdb_assert (gdbarch != NULL);\n"
1726 printf " if (gdbarch_debug >= 2)\n"
1727 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1728 printf " return gdbarch->${function};\n"
1729 printf "}\n"
1730 fi
1731 done
1732
1733 # All the trailing guff
1734 cat <<EOF
1735
1736
1737 /* Keep a registry of per-architecture data-pointers required by GDB
1738 modules. */
1739
1740 struct gdbarch_data
1741 {
1742 unsigned index;
1743 int init_p;
1744 gdbarch_data_init_ftype *init;
1745 gdbarch_data_free_ftype *free;
1746 };
1747
1748 struct gdbarch_data_registration
1749 {
1750 struct gdbarch_data *data;
1751 struct gdbarch_data_registration *next;
1752 };
1753
1754 struct gdbarch_data_registry
1755 {
1756 unsigned nr;
1757 struct gdbarch_data_registration *registrations;
1758 };
1759
1760 struct gdbarch_data_registry gdbarch_data_registry =
1761 {
1762 0, NULL,
1763 };
1764
1765 struct gdbarch_data *
1766 register_gdbarch_data (gdbarch_data_init_ftype *init,
1767 gdbarch_data_free_ftype *free)
1768 {
1769 struct gdbarch_data_registration **curr;
1770 /* Append the new registraration. */
1771 for (curr = &gdbarch_data_registry.registrations;
1772 (*curr) != NULL;
1773 curr = &(*curr)->next);
1774 (*curr) = XMALLOC (struct gdbarch_data_registration);
1775 (*curr)->next = NULL;
1776 (*curr)->data = XMALLOC (struct gdbarch_data);
1777 (*curr)->data->index = gdbarch_data_registry.nr++;
1778 (*curr)->data->init = init;
1779 (*curr)->data->init_p = 1;
1780 (*curr)->data->free = free;
1781 return (*curr)->data;
1782 }
1783
1784
1785 /* Create/delete the gdbarch data vector. */
1786
1787 static void
1788 alloc_gdbarch_data (struct gdbarch *gdbarch)
1789 {
1790 gdb_assert (gdbarch->data == NULL);
1791 gdbarch->nr_data = gdbarch_data_registry.nr;
1792 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1793 }
1794
1795 static void
1796 free_gdbarch_data (struct gdbarch *gdbarch)
1797 {
1798 struct gdbarch_data_registration *rego;
1799 gdb_assert (gdbarch->data != NULL);
1800 for (rego = gdbarch_data_registry.registrations;
1801 rego != NULL;
1802 rego = rego->next)
1803 {
1804 struct gdbarch_data *data = rego->data;
1805 gdb_assert (data->index < gdbarch->nr_data);
1806 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1807 {
1808 data->free (gdbarch, gdbarch->data[data->index]);
1809 gdbarch->data[data->index] = NULL;
1810 }
1811 }
1812 xfree (gdbarch->data);
1813 gdbarch->data = NULL;
1814 }
1815
1816
1817 /* Initialize the current value of the specified per-architecture
1818 data-pointer. */
1819
1820 void
1821 set_gdbarch_data (struct gdbarch *gdbarch,
1822 struct gdbarch_data *data,
1823 void *pointer)
1824 {
1825 gdb_assert (data->index < gdbarch->nr_data);
1826 if (gdbarch->data[data->index] != NULL)
1827 {
1828 gdb_assert (data->free != NULL);
1829 data->free (gdbarch, gdbarch->data[data->index]);
1830 }
1831 gdbarch->data[data->index] = pointer;
1832 }
1833
1834 /* Return the current value of the specified per-architecture
1835 data-pointer. */
1836
1837 void *
1838 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1839 {
1840 gdb_assert (data->index < gdbarch->nr_data);
1841 /* The data-pointer isn't initialized, call init() to get a value but
1842 only if the architecture initializaiton has completed. Otherwise
1843 punt - hope that the caller knows what they are doing. */
1844 if (gdbarch->data[data->index] == NULL
1845 && gdbarch->initialized_p)
1846 {
1847 /* Be careful to detect an initialization cycle. */
1848 gdb_assert (data->init_p);
1849 data->init_p = 0;
1850 gdb_assert (data->init != NULL);
1851 gdbarch->data[data->index] = data->init (gdbarch);
1852 data->init_p = 1;
1853 gdb_assert (gdbarch->data[data->index] != NULL);
1854 }
1855 return gdbarch->data[data->index];
1856 }
1857
1858
1859
1860 /* Keep a registry of swapped data required by GDB modules. */
1861
1862 struct gdbarch_swap
1863 {
1864 void *swap;
1865 struct gdbarch_swap_registration *source;
1866 struct gdbarch_swap *next;
1867 };
1868
1869 struct gdbarch_swap_registration
1870 {
1871 void *data;
1872 unsigned long sizeof_data;
1873 gdbarch_swap_ftype *init;
1874 struct gdbarch_swap_registration *next;
1875 };
1876
1877 struct gdbarch_swap_registry
1878 {
1879 int nr;
1880 struct gdbarch_swap_registration *registrations;
1881 };
1882
1883 struct gdbarch_swap_registry gdbarch_swap_registry =
1884 {
1885 0, NULL,
1886 };
1887
1888 void
1889 register_gdbarch_swap (void *data,
1890 unsigned long sizeof_data,
1891 gdbarch_swap_ftype *init)
1892 {
1893 struct gdbarch_swap_registration **rego;
1894 for (rego = &gdbarch_swap_registry.registrations;
1895 (*rego) != NULL;
1896 rego = &(*rego)->next);
1897 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1898 (*rego)->next = NULL;
1899 (*rego)->init = init;
1900 (*rego)->data = data;
1901 (*rego)->sizeof_data = sizeof_data;
1902 }
1903
1904 static void
1905 clear_gdbarch_swap (struct gdbarch *gdbarch)
1906 {
1907 struct gdbarch_swap *curr;
1908 for (curr = gdbarch->swap;
1909 curr != NULL;
1910 curr = curr->next)
1911 {
1912 memset (curr->source->data, 0, curr->source->sizeof_data);
1913 }
1914 }
1915
1916 static void
1917 init_gdbarch_swap (struct gdbarch *gdbarch)
1918 {
1919 struct gdbarch_swap_registration *rego;
1920 struct gdbarch_swap **curr = &gdbarch->swap;
1921 for (rego = gdbarch_swap_registry.registrations;
1922 rego != NULL;
1923 rego = rego->next)
1924 {
1925 if (rego->data != NULL)
1926 {
1927 (*curr) = XMALLOC (struct gdbarch_swap);
1928 (*curr)->source = rego;
1929 (*curr)->swap = xmalloc (rego->sizeof_data);
1930 (*curr)->next = NULL;
1931 curr = &(*curr)->next;
1932 }
1933 if (rego->init != NULL)
1934 rego->init ();
1935 }
1936 }
1937
1938 static void
1939 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1940 {
1941 struct gdbarch_swap *curr;
1942 for (curr = gdbarch->swap;
1943 curr != NULL;
1944 curr = curr->next)
1945 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1946 }
1947
1948 static void
1949 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1950 {
1951 struct gdbarch_swap *curr;
1952 for (curr = gdbarch->swap;
1953 curr != NULL;
1954 curr = curr->next)
1955 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1956 }
1957
1958
1959 /* Keep a registry of the architectures known by GDB. */
1960
1961 struct gdbarch_registration
1962 {
1963 enum bfd_architecture bfd_architecture;
1964 gdbarch_init_ftype *init;
1965 gdbarch_dump_tdep_ftype *dump_tdep;
1966 struct gdbarch_list *arches;
1967 struct gdbarch_registration *next;
1968 };
1969
1970 static struct gdbarch_registration *gdbarch_registry = NULL;
1971
1972 static void
1973 append_name (const char ***buf, int *nr, const char *name)
1974 {
1975 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1976 (*buf)[*nr] = name;
1977 *nr += 1;
1978 }
1979
1980 const char **
1981 gdbarch_printable_names (void)
1982 {
1983 if (GDB_MULTI_ARCH)
1984 {
1985 /* Accumulate a list of names based on the registed list of
1986 architectures. */
1987 enum bfd_architecture a;
1988 int nr_arches = 0;
1989 const char **arches = NULL;
1990 struct gdbarch_registration *rego;
1991 for (rego = gdbarch_registry;
1992 rego != NULL;
1993 rego = rego->next)
1994 {
1995 const struct bfd_arch_info *ap;
1996 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1997 if (ap == NULL)
1998 internal_error (__FILE__, __LINE__,
1999 "gdbarch_architecture_names: multi-arch unknown");
2000 do
2001 {
2002 append_name (&arches, &nr_arches, ap->printable_name);
2003 ap = ap->next;
2004 }
2005 while (ap != NULL);
2006 }
2007 append_name (&arches, &nr_arches, NULL);
2008 return arches;
2009 }
2010 else
2011 /* Just return all the architectures that BFD knows. Assume that
2012 the legacy architecture framework supports them. */
2013 return bfd_arch_list ();
2014 }
2015
2016
2017 void
2018 gdbarch_register (enum bfd_architecture bfd_architecture,
2019 gdbarch_init_ftype *init,
2020 gdbarch_dump_tdep_ftype *dump_tdep)
2021 {
2022 struct gdbarch_registration **curr;
2023 const struct bfd_arch_info *bfd_arch_info;
2024 /* Check that BFD recognizes this architecture */
2025 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2026 if (bfd_arch_info == NULL)
2027 {
2028 internal_error (__FILE__, __LINE__,
2029 "gdbarch: Attempt to register unknown architecture (%d)",
2030 bfd_architecture);
2031 }
2032 /* Check that we haven't seen this architecture before */
2033 for (curr = &gdbarch_registry;
2034 (*curr) != NULL;
2035 curr = &(*curr)->next)
2036 {
2037 if (bfd_architecture == (*curr)->bfd_architecture)
2038 internal_error (__FILE__, __LINE__,
2039 "gdbarch: Duplicate registraration of architecture (%s)",
2040 bfd_arch_info->printable_name);
2041 }
2042 /* log it */
2043 if (gdbarch_debug)
2044 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2045 bfd_arch_info->printable_name,
2046 (long) init);
2047 /* Append it */
2048 (*curr) = XMALLOC (struct gdbarch_registration);
2049 (*curr)->bfd_architecture = bfd_architecture;
2050 (*curr)->init = init;
2051 (*curr)->dump_tdep = dump_tdep;
2052 (*curr)->arches = NULL;
2053 (*curr)->next = NULL;
2054 /* When non- multi-arch, install whatever target dump routine we've
2055 been provided - hopefully that routine has been written correctly
2056 and works regardless of multi-arch. */
2057 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2058 && startup_gdbarch.dump_tdep == NULL)
2059 startup_gdbarch.dump_tdep = dump_tdep;
2060 }
2061
2062 void
2063 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2064 gdbarch_init_ftype *init)
2065 {
2066 gdbarch_register (bfd_architecture, init, NULL);
2067 }
2068
2069
2070 /* Look for an architecture using gdbarch_info. Base search on only
2071 BFD_ARCH_INFO and BYTE_ORDER. */
2072
2073 struct gdbarch_list *
2074 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2075 const struct gdbarch_info *info)
2076 {
2077 for (; arches != NULL; arches = arches->next)
2078 {
2079 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2080 continue;
2081 if (info->byte_order != arches->gdbarch->byte_order)
2082 continue;
2083 return arches;
2084 }
2085 return NULL;
2086 }
2087
2088
2089 /* Update the current architecture. Return ZERO if the update request
2090 failed. */
2091
2092 int
2093 gdbarch_update_p (struct gdbarch_info info)
2094 {
2095 struct gdbarch *new_gdbarch;
2096 struct gdbarch *old_gdbarch;
2097 struct gdbarch_registration *rego;
2098
2099 /* Fill in missing parts of the INFO struct using a number of
2100 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2101
2102 /* \`\`(gdb) set architecture ...'' */
2103 if (info.bfd_arch_info == NULL
2104 && !TARGET_ARCHITECTURE_AUTO)
2105 info.bfd_arch_info = TARGET_ARCHITECTURE;
2106 if (info.bfd_arch_info == NULL
2107 && info.abfd != NULL
2108 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2109 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2110 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2111 if (info.bfd_arch_info == NULL)
2112 info.bfd_arch_info = TARGET_ARCHITECTURE;
2113
2114 /* \`\`(gdb) set byte-order ...'' */
2115 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2116 && !TARGET_BYTE_ORDER_AUTO)
2117 info.byte_order = TARGET_BYTE_ORDER;
2118 /* From the INFO struct. */
2119 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2120 && info.abfd != NULL)
2121 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2122 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2123 : BFD_ENDIAN_UNKNOWN);
2124 /* From the current target. */
2125 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2126 info.byte_order = TARGET_BYTE_ORDER;
2127
2128 /* Must have found some sort of architecture. */
2129 gdb_assert (info.bfd_arch_info != NULL);
2130
2131 if (gdbarch_debug)
2132 {
2133 fprintf_unfiltered (gdb_stdlog,
2134 "gdbarch_update: info.bfd_arch_info %s\n",
2135 (info.bfd_arch_info != NULL
2136 ? info.bfd_arch_info->printable_name
2137 : "(null)"));
2138 fprintf_unfiltered (gdb_stdlog,
2139 "gdbarch_update: info.byte_order %d (%s)\n",
2140 info.byte_order,
2141 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2142 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2143 : "default"));
2144 fprintf_unfiltered (gdb_stdlog,
2145 "gdbarch_update: info.abfd 0x%lx\n",
2146 (long) info.abfd);
2147 fprintf_unfiltered (gdb_stdlog,
2148 "gdbarch_update: info.tdep_info 0x%lx\n",
2149 (long) info.tdep_info);
2150 }
2151
2152 /* Find the target that knows about this architecture. */
2153 for (rego = gdbarch_registry;
2154 rego != NULL;
2155 rego = rego->next)
2156 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2157 break;
2158 if (rego == NULL)
2159 {
2160 if (gdbarch_debug)
2161 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2162 return 0;
2163 }
2164
2165 /* Swap the data belonging to the old target out setting the
2166 installed data to zero. This stops the ->init() function trying
2167 to refer to the previous architecture's global data structures. */
2168 swapout_gdbarch_swap (current_gdbarch);
2169 clear_gdbarch_swap (current_gdbarch);
2170
2171 /* Save the previously selected architecture, setting the global to
2172 NULL. This stops ->init() trying to use the previous
2173 architecture's configuration. The previous architecture may not
2174 even be of the same architecture family. The most recent
2175 architecture of the same family is found at the head of the
2176 rego->arches list. */
2177 old_gdbarch = current_gdbarch;
2178 current_gdbarch = NULL;
2179
2180 /* Ask the target for a replacement architecture. */
2181 new_gdbarch = rego->init (info, rego->arches);
2182
2183 /* Did the target like it? No. Reject the change and revert to the
2184 old architecture. */
2185 if (new_gdbarch == NULL)
2186 {
2187 if (gdbarch_debug)
2188 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2189 swapin_gdbarch_swap (old_gdbarch);
2190 current_gdbarch = old_gdbarch;
2191 return 0;
2192 }
2193
2194 /* Did the architecture change? No. Oops, put the old architecture
2195 back. */
2196 if (old_gdbarch == new_gdbarch)
2197 {
2198 if (gdbarch_debug)
2199 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2200 (long) new_gdbarch,
2201 new_gdbarch->bfd_arch_info->printable_name);
2202 swapin_gdbarch_swap (old_gdbarch);
2203 current_gdbarch = old_gdbarch;
2204 return 1;
2205 }
2206
2207 /* Is this a pre-existing architecture? Yes. Move it to the front
2208 of the list of architectures (keeping the list sorted Most
2209 Recently Used) and then copy it in. */
2210 {
2211 struct gdbarch_list **list;
2212 for (list = &rego->arches;
2213 (*list) != NULL;
2214 list = &(*list)->next)
2215 {
2216 if ((*list)->gdbarch == new_gdbarch)
2217 {
2218 struct gdbarch_list *this;
2219 if (gdbarch_debug)
2220 fprintf_unfiltered (gdb_stdlog,
2221 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2222 (long) new_gdbarch,
2223 new_gdbarch->bfd_arch_info->printable_name);
2224 /* Unlink this. */
2225 this = (*list);
2226 (*list) = this->next;
2227 /* Insert in the front. */
2228 this->next = rego->arches;
2229 rego->arches = this;
2230 /* Copy the new architecture in. */
2231 current_gdbarch = new_gdbarch;
2232 swapin_gdbarch_swap (new_gdbarch);
2233 architecture_changed_event ();
2234 return 1;
2235 }
2236 }
2237 }
2238
2239 /* Prepend this new architecture to the architecture list (keep the
2240 list sorted Most Recently Used). */
2241 {
2242 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2243 this->next = rego->arches;
2244 this->gdbarch = new_gdbarch;
2245 rego->arches = this;
2246 }
2247
2248 /* Switch to this new architecture marking it initialized. */
2249 current_gdbarch = new_gdbarch;
2250 current_gdbarch->initialized_p = 1;
2251 if (gdbarch_debug)
2252 {
2253 fprintf_unfiltered (gdb_stdlog,
2254 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2255 (long) new_gdbarch,
2256 new_gdbarch->bfd_arch_info->printable_name);
2257 }
2258
2259 /* Check that the newly installed architecture is valid. Plug in
2260 any post init values. */
2261 new_gdbarch->dump_tdep = rego->dump_tdep;
2262 verify_gdbarch (new_gdbarch);
2263
2264 /* Initialize the per-architecture memory (swap) areas.
2265 CURRENT_GDBARCH must be update before these modules are
2266 called. */
2267 init_gdbarch_swap (new_gdbarch);
2268
2269 /* Initialize the per-architecture data. CURRENT_GDBARCH
2270 must be updated before these modules are called. */
2271 architecture_changed_event ();
2272
2273 if (gdbarch_debug)
2274 gdbarch_dump (current_gdbarch, gdb_stdlog);
2275
2276 return 1;
2277 }
2278
2279
2280 /* Disassembler */
2281
2282 /* Pointer to the target-dependent disassembly function. */
2283 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2284 disassemble_info tm_print_insn_info;
2285
2286
2287 extern void _initialize_gdbarch (void);
2288
2289 void
2290 _initialize_gdbarch (void)
2291 {
2292 struct cmd_list_element *c;
2293
2294 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2295 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2296 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2297 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2298 tm_print_insn_info.print_address_func = dis_asm_print_address;
2299
2300 add_show_from_set (add_set_cmd ("arch",
2301 class_maintenance,
2302 var_zinteger,
2303 (char *)&gdbarch_debug,
2304 "Set architecture debugging.\\n\\
2305 When non-zero, architecture debugging is enabled.", &setdebuglist),
2306 &showdebuglist);
2307 c = add_set_cmd ("archdebug",
2308 class_maintenance,
2309 var_zinteger,
2310 (char *)&gdbarch_debug,
2311 "Set architecture debugging.\\n\\
2312 When non-zero, architecture debugging is enabled.", &setlist);
2313
2314 deprecate_cmd (c, "set debug arch");
2315 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2316 }
2317 EOF
2318
2319 # close things off
2320 exec 1>&2
2321 #../move-if-change new-gdbarch.c gdbarch.c
2322 compare_new gdbarch.c
This page took 0.083308 seconds and 5 git commands to generate.