0d8518909601b2271a2d374120211411635f1329
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <sys/ptrace.h>
28 #include "nat/linux-ptrace.h"
29 #include "nat/linux-procfs.h"
30 #include <signal.h>
31 #include <sys/ioctl.h>
32 #include <fcntl.h>
33 #include <unistd.h>
34 #include <sys/syscall.h>
35 #include <sched.h>
36 #include <ctype.h>
37 #include <pwd.h>
38 #include <sys/types.h>
39 #include <dirent.h>
40 #include <sys/stat.h>
41 #include <sys/vfs.h>
42 #include <sys/uio.h>
43 #include "filestuff.h"
44 #include "tracepoint.h"
45 #include "hostio.h"
46 #ifndef ELFMAG0
47 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
48 then ELFMAG0 will have been defined. If it didn't get included by
49 gdb_proc_service.h then including it will likely introduce a duplicate
50 definition of elf_fpregset_t. */
51 #include <elf.h>
52 #endif
53
54 #ifndef SPUFS_MAGIC
55 #define SPUFS_MAGIC 0x23c9b64e
56 #endif
57
58 #ifdef HAVE_PERSONALITY
59 # include <sys/personality.h>
60 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
61 # define ADDR_NO_RANDOMIZE 0x0040000
62 # endif
63 #endif
64
65 #ifndef O_LARGEFILE
66 #define O_LARGEFILE 0
67 #endif
68
69 #ifndef W_STOPCODE
70 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
71 #endif
72
73 /* This is the kernel's hard limit. Not to be confused with
74 SIGRTMIN. */
75 #ifndef __SIGRTMIN
76 #define __SIGRTMIN 32
77 #endif
78
79 /* Some targets did not define these ptrace constants from the start,
80 so gdbserver defines them locally here. In the future, these may
81 be removed after they are added to asm/ptrace.h. */
82 #if !(defined(PT_TEXT_ADDR) \
83 || defined(PT_DATA_ADDR) \
84 || defined(PT_TEXT_END_ADDR))
85 #if defined(__mcoldfire__)
86 /* These are still undefined in 3.10 kernels. */
87 #define PT_TEXT_ADDR 49*4
88 #define PT_DATA_ADDR 50*4
89 #define PT_TEXT_END_ADDR 51*4
90 /* BFIN already defines these since at least 2.6.32 kernels. */
91 #elif defined(BFIN)
92 #define PT_TEXT_ADDR 220
93 #define PT_TEXT_END_ADDR 224
94 #define PT_DATA_ADDR 228
95 /* These are still undefined in 3.10 kernels. */
96 #elif defined(__TMS320C6X__)
97 #define PT_TEXT_ADDR (0x10000*4)
98 #define PT_DATA_ADDR (0x10004*4)
99 #define PT_TEXT_END_ADDR (0x10008*4)
100 #endif
101 #endif
102
103 #ifdef HAVE_LINUX_BTRACE
104 # include "nat/linux-btrace.h"
105 #endif
106
107 #ifndef HAVE_ELF32_AUXV_T
108 /* Copied from glibc's elf.h. */
109 typedef struct
110 {
111 uint32_t a_type; /* Entry type */
112 union
113 {
114 uint32_t a_val; /* Integer value */
115 /* We use to have pointer elements added here. We cannot do that,
116 though, since it does not work when using 32-bit definitions
117 on 64-bit platforms and vice versa. */
118 } a_un;
119 } Elf32_auxv_t;
120 #endif
121
122 #ifndef HAVE_ELF64_AUXV_T
123 /* Copied from glibc's elf.h. */
124 typedef struct
125 {
126 uint64_t a_type; /* Entry type */
127 union
128 {
129 uint64_t a_val; /* Integer value */
130 /* We use to have pointer elements added here. We cannot do that,
131 though, since it does not work when using 32-bit definitions
132 on 64-bit platforms and vice versa. */
133 } a_un;
134 } Elf64_auxv_t;
135 #endif
136
137 /* A list of all unknown processes which receive stop signals. Some
138 other process will presumably claim each of these as forked
139 children momentarily. */
140
141 struct simple_pid_list
142 {
143 /* The process ID. */
144 int pid;
145
146 /* The status as reported by waitpid. */
147 int status;
148
149 /* Next in chain. */
150 struct simple_pid_list *next;
151 };
152 struct simple_pid_list *stopped_pids;
153
154 /* Trivial list manipulation functions to keep track of a list of new
155 stopped processes. */
156
157 static void
158 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
159 {
160 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
161
162 new_pid->pid = pid;
163 new_pid->status = status;
164 new_pid->next = *listp;
165 *listp = new_pid;
166 }
167
168 static int
169 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
170 {
171 struct simple_pid_list **p;
172
173 for (p = listp; *p != NULL; p = &(*p)->next)
174 if ((*p)->pid == pid)
175 {
176 struct simple_pid_list *next = (*p)->next;
177
178 *statusp = (*p)->status;
179 xfree (*p);
180 *p = next;
181 return 1;
182 }
183 return 0;
184 }
185
186 enum stopping_threads_kind
187 {
188 /* Not stopping threads presently. */
189 NOT_STOPPING_THREADS,
190
191 /* Stopping threads. */
192 STOPPING_THREADS,
193
194 /* Stopping and suspending threads. */
195 STOPPING_AND_SUSPENDING_THREADS
196 };
197
198 /* This is set while stop_all_lwps is in effect. */
199 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
200
201 /* FIXME make into a target method? */
202 int using_threads = 1;
203
204 /* True if we're presently stabilizing threads (moving them out of
205 jump pads). */
206 static int stabilizing_threads;
207
208 static void linux_resume_one_lwp (struct lwp_info *lwp,
209 int step, int signal, siginfo_t *info);
210 static void linux_resume (struct thread_resume *resume_info, size_t n);
211 static void stop_all_lwps (int suspend, struct lwp_info *except);
212 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
213 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
214 int *wstat, int options);
215 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
216 static struct lwp_info *add_lwp (ptid_t ptid);
217 static int linux_stopped_by_watchpoint (void);
218 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
219 static void proceed_all_lwps (void);
220 static int finish_step_over (struct lwp_info *lwp);
221 static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
222 static int kill_lwp (unsigned long lwpid, int signo);
223
224 /* True if the low target can hardware single-step. Such targets
225 don't need a BREAKPOINT_REINSERT_ADDR callback. */
226
227 static int
228 can_hardware_single_step (void)
229 {
230 return (the_low_target.breakpoint_reinsert_addr == NULL);
231 }
232
233 /* True if the low target supports memory breakpoints. If so, we'll
234 have a GET_PC implementation. */
235
236 static int
237 supports_breakpoints (void)
238 {
239 return (the_low_target.get_pc != NULL);
240 }
241
242 /* Returns true if this target can support fast tracepoints. This
243 does not mean that the in-process agent has been loaded in the
244 inferior. */
245
246 static int
247 supports_fast_tracepoints (void)
248 {
249 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
250 }
251
252 /* True if LWP is stopped in its stepping range. */
253
254 static int
255 lwp_in_step_range (struct lwp_info *lwp)
256 {
257 CORE_ADDR pc = lwp->stop_pc;
258
259 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
260 }
261
262 struct pending_signals
263 {
264 int signal;
265 siginfo_t info;
266 struct pending_signals *prev;
267 };
268
269 /* The read/write ends of the pipe registered as waitable file in the
270 event loop. */
271 static int linux_event_pipe[2] = { -1, -1 };
272
273 /* True if we're currently in async mode. */
274 #define target_is_async_p() (linux_event_pipe[0] != -1)
275
276 static void send_sigstop (struct lwp_info *lwp);
277 static void wait_for_sigstop (void);
278
279 /* Return non-zero if HEADER is a 64-bit ELF file. */
280
281 static int
282 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
283 {
284 if (header->e_ident[EI_MAG0] == ELFMAG0
285 && header->e_ident[EI_MAG1] == ELFMAG1
286 && header->e_ident[EI_MAG2] == ELFMAG2
287 && header->e_ident[EI_MAG3] == ELFMAG3)
288 {
289 *machine = header->e_machine;
290 return header->e_ident[EI_CLASS] == ELFCLASS64;
291
292 }
293 *machine = EM_NONE;
294 return -1;
295 }
296
297 /* Return non-zero if FILE is a 64-bit ELF file,
298 zero if the file is not a 64-bit ELF file,
299 and -1 if the file is not accessible or doesn't exist. */
300
301 static int
302 elf_64_file_p (const char *file, unsigned int *machine)
303 {
304 Elf64_Ehdr header;
305 int fd;
306
307 fd = open (file, O_RDONLY);
308 if (fd < 0)
309 return -1;
310
311 if (read (fd, &header, sizeof (header)) != sizeof (header))
312 {
313 close (fd);
314 return 0;
315 }
316 close (fd);
317
318 return elf_64_header_p (&header, machine);
319 }
320
321 /* Accepts an integer PID; Returns true if the executable PID is
322 running is a 64-bit ELF file.. */
323
324 int
325 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
326 {
327 char file[PATH_MAX];
328
329 sprintf (file, "/proc/%d/exe", pid);
330 return elf_64_file_p (file, machine);
331 }
332
333 static void
334 delete_lwp (struct lwp_info *lwp)
335 {
336 struct thread_info *thr = get_lwp_thread (lwp);
337
338 if (debug_threads)
339 debug_printf ("deleting %ld\n", lwpid_of (thr));
340
341 remove_thread (thr);
342 free (lwp->arch_private);
343 free (lwp);
344 }
345
346 /* Add a process to the common process list, and set its private
347 data. */
348
349 static struct process_info *
350 linux_add_process (int pid, int attached)
351 {
352 struct process_info *proc;
353
354 proc = add_process (pid, attached);
355 proc->private = xcalloc (1, sizeof (*proc->private));
356
357 /* Set the arch when the first LWP stops. */
358 proc->private->new_inferior = 1;
359
360 if (the_low_target.new_process != NULL)
361 proc->private->arch_private = the_low_target.new_process ();
362
363 return proc;
364 }
365
366 /* Handle a GNU/Linux extended wait response. If we see a clone
367 event, we need to add the new LWP to our list (and not report the
368 trap to higher layers). */
369
370 static void
371 handle_extended_wait (struct lwp_info *event_child, int wstat)
372 {
373 int event = linux_ptrace_get_extended_event (wstat);
374 struct thread_info *event_thr = get_lwp_thread (event_child);
375 struct lwp_info *new_lwp;
376
377 if (event == PTRACE_EVENT_CLONE)
378 {
379 ptid_t ptid;
380 unsigned long new_pid;
381 int ret, status;
382
383 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
384 &new_pid);
385
386 /* If we haven't already seen the new PID stop, wait for it now. */
387 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
388 {
389 /* The new child has a pending SIGSTOP. We can't affect it until it
390 hits the SIGSTOP, but we're already attached. */
391
392 ret = my_waitpid (new_pid, &status, __WALL);
393
394 if (ret == -1)
395 perror_with_name ("waiting for new child");
396 else if (ret != new_pid)
397 warning ("wait returned unexpected PID %d", ret);
398 else if (!WIFSTOPPED (status))
399 warning ("wait returned unexpected status 0x%x", status);
400 }
401
402 if (debug_threads)
403 debug_printf ("HEW: Got clone event "
404 "from LWP %ld, new child is LWP %ld\n",
405 lwpid_of (event_thr), new_pid);
406
407 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
408 new_lwp = add_lwp (ptid);
409
410 /* Either we're going to immediately resume the new thread
411 or leave it stopped. linux_resume_one_lwp is a nop if it
412 thinks the thread is currently running, so set this first
413 before calling linux_resume_one_lwp. */
414 new_lwp->stopped = 1;
415
416 /* If we're suspending all threads, leave this one suspended
417 too. */
418 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
419 new_lwp->suspended = 1;
420
421 /* Normally we will get the pending SIGSTOP. But in some cases
422 we might get another signal delivered to the group first.
423 If we do get another signal, be sure not to lose it. */
424 if (WSTOPSIG (status) == SIGSTOP)
425 {
426 if (stopping_threads != NOT_STOPPING_THREADS)
427 new_lwp->stop_pc = get_stop_pc (new_lwp);
428 else
429 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
430 }
431 else
432 {
433 new_lwp->stop_expected = 1;
434
435 if (stopping_threads != NOT_STOPPING_THREADS)
436 {
437 new_lwp->stop_pc = get_stop_pc (new_lwp);
438 new_lwp->status_pending_p = 1;
439 new_lwp->status_pending = status;
440 }
441 else
442 /* Pass the signal on. This is what GDB does - except
443 shouldn't we really report it instead? */
444 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
445 }
446
447 /* Always resume the current thread. If we are stopping
448 threads, it will have a pending SIGSTOP; we may as well
449 collect it now. */
450 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
451 }
452 }
453
454 /* Return the PC as read from the regcache of LWP, without any
455 adjustment. */
456
457 static CORE_ADDR
458 get_pc (struct lwp_info *lwp)
459 {
460 struct thread_info *saved_thread;
461 struct regcache *regcache;
462 CORE_ADDR pc;
463
464 if (the_low_target.get_pc == NULL)
465 return 0;
466
467 saved_thread = current_thread;
468 current_thread = get_lwp_thread (lwp);
469
470 regcache = get_thread_regcache (current_thread, 1);
471 pc = (*the_low_target.get_pc) (regcache);
472
473 if (debug_threads)
474 debug_printf ("pc is 0x%lx\n", (long) pc);
475
476 current_thread = saved_thread;
477 return pc;
478 }
479
480 /* This function should only be called if LWP got a SIGTRAP.
481 The SIGTRAP could mean several things.
482
483 On i386, where decr_pc_after_break is non-zero:
484 If we were single-stepping this process using PTRACE_SINGLESTEP,
485 we will get only the one SIGTRAP (even if the instruction we
486 stepped over was a breakpoint). The value of $eip will be the
487 next instruction.
488 If we continue the process using PTRACE_CONT, we will get a
489 SIGTRAP when we hit a breakpoint. The value of $eip will be
490 the instruction after the breakpoint (i.e. needs to be
491 decremented). If we report the SIGTRAP to GDB, we must also
492 report the undecremented PC. If we cancel the SIGTRAP, we
493 must resume at the decremented PC.
494
495 (Presumably, not yet tested) On a non-decr_pc_after_break machine
496 with hardware or kernel single-step:
497 If we single-step over a breakpoint instruction, our PC will
498 point at the following instruction. If we continue and hit a
499 breakpoint instruction, our PC will point at the breakpoint
500 instruction. */
501
502 static CORE_ADDR
503 get_stop_pc (struct lwp_info *lwp)
504 {
505 CORE_ADDR stop_pc;
506
507 if (the_low_target.get_pc == NULL)
508 return 0;
509
510 stop_pc = get_pc (lwp);
511
512 if (WSTOPSIG (lwp->last_status) == SIGTRAP
513 && !lwp->stepping
514 && !lwp->stopped_by_watchpoint
515 && !linux_is_extended_waitstatus (lwp->last_status))
516 stop_pc -= the_low_target.decr_pc_after_break;
517
518 if (debug_threads)
519 debug_printf ("stop pc is 0x%lx\n", (long) stop_pc);
520
521 return stop_pc;
522 }
523
524 static struct lwp_info *
525 add_lwp (ptid_t ptid)
526 {
527 struct lwp_info *lwp;
528
529 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
530 memset (lwp, 0, sizeof (*lwp));
531
532 if (the_low_target.new_thread != NULL)
533 lwp->arch_private = the_low_target.new_thread ();
534
535 lwp->thread = add_thread (ptid, lwp);
536
537 return lwp;
538 }
539
540 /* Start an inferior process and returns its pid.
541 ALLARGS is a vector of program-name and args. */
542
543 static int
544 linux_create_inferior (char *program, char **allargs)
545 {
546 #ifdef HAVE_PERSONALITY
547 int personality_orig = 0, personality_set = 0;
548 #endif
549 struct lwp_info *new_lwp;
550 int pid;
551 ptid_t ptid;
552
553 #ifdef HAVE_PERSONALITY
554 if (disable_randomization)
555 {
556 errno = 0;
557 personality_orig = personality (0xffffffff);
558 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
559 {
560 personality_set = 1;
561 personality (personality_orig | ADDR_NO_RANDOMIZE);
562 }
563 if (errno != 0 || (personality_set
564 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
565 warning ("Error disabling address space randomization: %s",
566 strerror (errno));
567 }
568 #endif
569
570 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
571 pid = vfork ();
572 #else
573 pid = fork ();
574 #endif
575 if (pid < 0)
576 perror_with_name ("fork");
577
578 if (pid == 0)
579 {
580 close_most_fds ();
581 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
582
583 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
584 signal (__SIGRTMIN + 1, SIG_DFL);
585 #endif
586
587 setpgid (0, 0);
588
589 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
590 stdout to stderr so that inferior i/o doesn't corrupt the connection.
591 Also, redirect stdin to /dev/null. */
592 if (remote_connection_is_stdio ())
593 {
594 close (0);
595 open ("/dev/null", O_RDONLY);
596 dup2 (2, 1);
597 if (write (2, "stdin/stdout redirected\n",
598 sizeof ("stdin/stdout redirected\n") - 1) < 0)
599 {
600 /* Errors ignored. */;
601 }
602 }
603
604 execv (program, allargs);
605 if (errno == ENOENT)
606 execvp (program, allargs);
607
608 fprintf (stderr, "Cannot exec %s: %s.\n", program,
609 strerror (errno));
610 fflush (stderr);
611 _exit (0177);
612 }
613
614 #ifdef HAVE_PERSONALITY
615 if (personality_set)
616 {
617 errno = 0;
618 personality (personality_orig);
619 if (errno != 0)
620 warning ("Error restoring address space randomization: %s",
621 strerror (errno));
622 }
623 #endif
624
625 linux_add_process (pid, 0);
626
627 ptid = ptid_build (pid, pid, 0);
628 new_lwp = add_lwp (ptid);
629 new_lwp->must_set_ptrace_flags = 1;
630
631 return pid;
632 }
633
634 char *
635 linux_attach_fail_reason_string (ptid_t ptid, int err)
636 {
637 static char *reason_string;
638 struct buffer buffer;
639 char *warnings;
640 long lwpid = ptid_get_lwp (ptid);
641
642 xfree (reason_string);
643
644 buffer_init (&buffer);
645 linux_ptrace_attach_fail_reason (lwpid, &buffer);
646 buffer_grow_str0 (&buffer, "");
647 warnings = buffer_finish (&buffer);
648 if (warnings[0] != '\0')
649 reason_string = xstrprintf ("%s (%d), %s",
650 strerror (err), err, warnings);
651 else
652 reason_string = xstrprintf ("%s (%d)",
653 strerror (err), err);
654 xfree (warnings);
655 return reason_string;
656 }
657
658 /* Attach to an inferior process. */
659
660 int
661 linux_attach_lwp (ptid_t ptid)
662 {
663 struct lwp_info *new_lwp;
664 int lwpid = ptid_get_lwp (ptid);
665
666 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
667 != 0)
668 return errno;
669
670 new_lwp = add_lwp (ptid);
671
672 /* We need to wait for SIGSTOP before being able to make the next
673 ptrace call on this LWP. */
674 new_lwp->must_set_ptrace_flags = 1;
675
676 if (linux_proc_pid_is_stopped (lwpid))
677 {
678 if (debug_threads)
679 debug_printf ("Attached to a stopped process\n");
680
681 /* The process is definitely stopped. It is in a job control
682 stop, unless the kernel predates the TASK_STOPPED /
683 TASK_TRACED distinction, in which case it might be in a
684 ptrace stop. Make sure it is in a ptrace stop; from there we
685 can kill it, signal it, et cetera.
686
687 First make sure there is a pending SIGSTOP. Since we are
688 already attached, the process can not transition from stopped
689 to running without a PTRACE_CONT; so we know this signal will
690 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
691 probably already in the queue (unless this kernel is old
692 enough to use TASK_STOPPED for ptrace stops); but since
693 SIGSTOP is not an RT signal, it can only be queued once. */
694 kill_lwp (lwpid, SIGSTOP);
695
696 /* Finally, resume the stopped process. This will deliver the
697 SIGSTOP (or a higher priority signal, just like normal
698 PTRACE_ATTACH), which we'll catch later on. */
699 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
700 }
701
702 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
703 brings it to a halt.
704
705 There are several cases to consider here:
706
707 1) gdbserver has already attached to the process and is being notified
708 of a new thread that is being created.
709 In this case we should ignore that SIGSTOP and resume the
710 process. This is handled below by setting stop_expected = 1,
711 and the fact that add_thread sets last_resume_kind ==
712 resume_continue.
713
714 2) This is the first thread (the process thread), and we're attaching
715 to it via attach_inferior.
716 In this case we want the process thread to stop.
717 This is handled by having linux_attach set last_resume_kind ==
718 resume_stop after we return.
719
720 If the pid we are attaching to is also the tgid, we attach to and
721 stop all the existing threads. Otherwise, we attach to pid and
722 ignore any other threads in the same group as this pid.
723
724 3) GDB is connecting to gdbserver and is requesting an enumeration of all
725 existing threads.
726 In this case we want the thread to stop.
727 FIXME: This case is currently not properly handled.
728 We should wait for the SIGSTOP but don't. Things work apparently
729 because enough time passes between when we ptrace (ATTACH) and when
730 gdb makes the next ptrace call on the thread.
731
732 On the other hand, if we are currently trying to stop all threads, we
733 should treat the new thread as if we had sent it a SIGSTOP. This works
734 because we are guaranteed that the add_lwp call above added us to the
735 end of the list, and so the new thread has not yet reached
736 wait_for_sigstop (but will). */
737 new_lwp->stop_expected = 1;
738
739 return 0;
740 }
741
742 /* Attach to PID. If PID is the tgid, attach to it and all
743 of its threads. */
744
745 static int
746 linux_attach (unsigned long pid)
747 {
748 ptid_t ptid = ptid_build (pid, pid, 0);
749 int err;
750
751 /* Attach to PID. We will check for other threads
752 soon. */
753 err = linux_attach_lwp (ptid);
754 if (err != 0)
755 error ("Cannot attach to process %ld: %s",
756 pid, linux_attach_fail_reason_string (ptid, err));
757
758 linux_add_process (pid, 1);
759
760 if (!non_stop)
761 {
762 struct thread_info *thread;
763
764 /* Don't ignore the initial SIGSTOP if we just attached to this
765 process. It will be collected by wait shortly. */
766 thread = find_thread_ptid (ptid_build (pid, pid, 0));
767 thread->last_resume_kind = resume_stop;
768 }
769
770 if (linux_proc_get_tgid (pid) == pid)
771 {
772 DIR *dir;
773 char pathname[128];
774
775 sprintf (pathname, "/proc/%ld/task", pid);
776
777 dir = opendir (pathname);
778
779 if (!dir)
780 {
781 fprintf (stderr, "Could not open /proc/%ld/task.\n", pid);
782 fflush (stderr);
783 }
784 else
785 {
786 /* At this point we attached to the tgid. Scan the task for
787 existing threads. */
788 int new_threads_found;
789 int iterations = 0;
790
791 while (iterations < 2)
792 {
793 struct dirent *dp;
794
795 new_threads_found = 0;
796 /* Add all the other threads. While we go through the
797 threads, new threads may be spawned. Cycle through
798 the list of threads until we have done two iterations without
799 finding new threads. */
800 while ((dp = readdir (dir)) != NULL)
801 {
802 unsigned long lwp;
803 ptid_t ptid;
804
805 /* Fetch one lwp. */
806 lwp = strtoul (dp->d_name, NULL, 10);
807
808 ptid = ptid_build (pid, lwp, 0);
809
810 /* Is this a new thread? */
811 if (lwp != 0 && find_thread_ptid (ptid) == NULL)
812 {
813 int err;
814
815 if (debug_threads)
816 debug_printf ("Found new lwp %ld\n", lwp);
817
818 err = linux_attach_lwp (ptid);
819 if (err != 0)
820 warning ("Cannot attach to lwp %ld: %s",
821 lwp,
822 linux_attach_fail_reason_string (ptid, err));
823
824 new_threads_found++;
825 }
826 }
827
828 if (!new_threads_found)
829 iterations++;
830 else
831 iterations = 0;
832
833 rewinddir (dir);
834 }
835 closedir (dir);
836 }
837 }
838
839 return 0;
840 }
841
842 struct counter
843 {
844 int pid;
845 int count;
846 };
847
848 static int
849 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
850 {
851 struct counter *counter = args;
852
853 if (ptid_get_pid (entry->id) == counter->pid)
854 {
855 if (++counter->count > 1)
856 return 1;
857 }
858
859 return 0;
860 }
861
862 static int
863 last_thread_of_process_p (int pid)
864 {
865 struct counter counter = { pid , 0 };
866
867 return (find_inferior (&all_threads,
868 second_thread_of_pid_p, &counter) == NULL);
869 }
870
871 /* Kill LWP. */
872
873 static void
874 linux_kill_one_lwp (struct lwp_info *lwp)
875 {
876 struct thread_info *thr = get_lwp_thread (lwp);
877 int pid = lwpid_of (thr);
878
879 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
880 there is no signal context, and ptrace(PTRACE_KILL) (or
881 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
882 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
883 alternative is to kill with SIGKILL. We only need one SIGKILL
884 per process, not one for each thread. But since we still support
885 linuxthreads, and we also support debugging programs using raw
886 clone without CLONE_THREAD, we send one for each thread. For
887 years, we used PTRACE_KILL only, so we're being a bit paranoid
888 about some old kernels where PTRACE_KILL might work better
889 (dubious if there are any such, but that's why it's paranoia), so
890 we try SIGKILL first, PTRACE_KILL second, and so we're fine
891 everywhere. */
892
893 errno = 0;
894 kill_lwp (pid, SIGKILL);
895 if (debug_threads)
896 {
897 int save_errno = errno;
898
899 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
900 target_pid_to_str (ptid_of (thr)),
901 save_errno ? strerror (save_errno) : "OK");
902 }
903
904 errno = 0;
905 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
906 if (debug_threads)
907 {
908 int save_errno = errno;
909
910 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
911 target_pid_to_str (ptid_of (thr)),
912 save_errno ? strerror (save_errno) : "OK");
913 }
914 }
915
916 /* Kill LWP and wait for it to die. */
917
918 static void
919 kill_wait_lwp (struct lwp_info *lwp)
920 {
921 struct thread_info *thr = get_lwp_thread (lwp);
922 int pid = ptid_get_pid (ptid_of (thr));
923 int lwpid = ptid_get_lwp (ptid_of (thr));
924 int wstat;
925 int res;
926
927 if (debug_threads)
928 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
929
930 do
931 {
932 linux_kill_one_lwp (lwp);
933
934 /* Make sure it died. Notes:
935
936 - The loop is most likely unnecessary.
937
938 - We don't use linux_wait_for_event as that could delete lwps
939 while we're iterating over them. We're not interested in
940 any pending status at this point, only in making sure all
941 wait status on the kernel side are collected until the
942 process is reaped.
943
944 - We don't use __WALL here as the __WALL emulation relies on
945 SIGCHLD, and killing a stopped process doesn't generate
946 one, nor an exit status.
947 */
948 res = my_waitpid (lwpid, &wstat, 0);
949 if (res == -1 && errno == ECHILD)
950 res = my_waitpid (lwpid, &wstat, __WCLONE);
951 } while (res > 0 && WIFSTOPPED (wstat));
952
953 gdb_assert (res > 0);
954 }
955
956 /* Callback for `find_inferior'. Kills an lwp of a given process,
957 except the leader. */
958
959 static int
960 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
961 {
962 struct thread_info *thread = (struct thread_info *) entry;
963 struct lwp_info *lwp = get_thread_lwp (thread);
964 int pid = * (int *) args;
965
966 if (ptid_get_pid (entry->id) != pid)
967 return 0;
968
969 /* We avoid killing the first thread here, because of a Linux kernel (at
970 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
971 the children get a chance to be reaped, it will remain a zombie
972 forever. */
973
974 if (lwpid_of (thread) == pid)
975 {
976 if (debug_threads)
977 debug_printf ("lkop: is last of process %s\n",
978 target_pid_to_str (entry->id));
979 return 0;
980 }
981
982 kill_wait_lwp (lwp);
983 return 0;
984 }
985
986 static int
987 linux_kill (int pid)
988 {
989 struct process_info *process;
990 struct lwp_info *lwp;
991
992 process = find_process_pid (pid);
993 if (process == NULL)
994 return -1;
995
996 /* If we're killing a running inferior, make sure it is stopped
997 first, as PTRACE_KILL will not work otherwise. */
998 stop_all_lwps (0, NULL);
999
1000 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1001
1002 /* See the comment in linux_kill_one_lwp. We did not kill the first
1003 thread in the list, so do so now. */
1004 lwp = find_lwp_pid (pid_to_ptid (pid));
1005
1006 if (lwp == NULL)
1007 {
1008 if (debug_threads)
1009 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1010 pid);
1011 }
1012 else
1013 kill_wait_lwp (lwp);
1014
1015 the_target->mourn (process);
1016
1017 /* Since we presently can only stop all lwps of all processes, we
1018 need to unstop lwps of other processes. */
1019 unstop_all_lwps (0, NULL);
1020 return 0;
1021 }
1022
1023 /* Get pending signal of THREAD, for detaching purposes. This is the
1024 signal the thread last stopped for, which we need to deliver to the
1025 thread when detaching, otherwise, it'd be suppressed/lost. */
1026
1027 static int
1028 get_detach_signal (struct thread_info *thread)
1029 {
1030 enum gdb_signal signo = GDB_SIGNAL_0;
1031 int status;
1032 struct lwp_info *lp = get_thread_lwp (thread);
1033
1034 if (lp->status_pending_p)
1035 status = lp->status_pending;
1036 else
1037 {
1038 /* If the thread had been suspended by gdbserver, and it stopped
1039 cleanly, then it'll have stopped with SIGSTOP. But we don't
1040 want to deliver that SIGSTOP. */
1041 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1042 || thread->last_status.value.sig == GDB_SIGNAL_0)
1043 return 0;
1044
1045 /* Otherwise, we may need to deliver the signal we
1046 intercepted. */
1047 status = lp->last_status;
1048 }
1049
1050 if (!WIFSTOPPED (status))
1051 {
1052 if (debug_threads)
1053 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1054 target_pid_to_str (ptid_of (thread)));
1055 return 0;
1056 }
1057
1058 /* Extended wait statuses aren't real SIGTRAPs. */
1059 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1060 {
1061 if (debug_threads)
1062 debug_printf ("GPS: lwp %s had stopped with extended "
1063 "status: no pending signal\n",
1064 target_pid_to_str (ptid_of (thread)));
1065 return 0;
1066 }
1067
1068 signo = gdb_signal_from_host (WSTOPSIG (status));
1069
1070 if (program_signals_p && !program_signals[signo])
1071 {
1072 if (debug_threads)
1073 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1074 target_pid_to_str (ptid_of (thread)),
1075 gdb_signal_to_string (signo));
1076 return 0;
1077 }
1078 else if (!program_signals_p
1079 /* If we have no way to know which signals GDB does not
1080 want to have passed to the program, assume
1081 SIGTRAP/SIGINT, which is GDB's default. */
1082 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1083 {
1084 if (debug_threads)
1085 debug_printf ("GPS: lwp %s had signal %s, "
1086 "but we don't know if we should pass it. "
1087 "Default to not.\n",
1088 target_pid_to_str (ptid_of (thread)),
1089 gdb_signal_to_string (signo));
1090 return 0;
1091 }
1092 else
1093 {
1094 if (debug_threads)
1095 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1096 target_pid_to_str (ptid_of (thread)),
1097 gdb_signal_to_string (signo));
1098
1099 return WSTOPSIG (status);
1100 }
1101 }
1102
1103 static int
1104 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1105 {
1106 struct thread_info *thread = (struct thread_info *) entry;
1107 struct lwp_info *lwp = get_thread_lwp (thread);
1108 int pid = * (int *) args;
1109 int sig;
1110
1111 if (ptid_get_pid (entry->id) != pid)
1112 return 0;
1113
1114 /* If there is a pending SIGSTOP, get rid of it. */
1115 if (lwp->stop_expected)
1116 {
1117 if (debug_threads)
1118 debug_printf ("Sending SIGCONT to %s\n",
1119 target_pid_to_str (ptid_of (thread)));
1120
1121 kill_lwp (lwpid_of (thread), SIGCONT);
1122 lwp->stop_expected = 0;
1123 }
1124
1125 /* Flush any pending changes to the process's registers. */
1126 regcache_invalidate_thread (thread);
1127
1128 /* Pass on any pending signal for this thread. */
1129 sig = get_detach_signal (thread);
1130
1131 /* Finally, let it resume. */
1132 if (the_low_target.prepare_to_resume != NULL)
1133 the_low_target.prepare_to_resume (lwp);
1134 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1135 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1136 error (_("Can't detach %s: %s"),
1137 target_pid_to_str (ptid_of (thread)),
1138 strerror (errno));
1139
1140 delete_lwp (lwp);
1141 return 0;
1142 }
1143
1144 static int
1145 linux_detach (int pid)
1146 {
1147 struct process_info *process;
1148
1149 process = find_process_pid (pid);
1150 if (process == NULL)
1151 return -1;
1152
1153 /* Stop all threads before detaching. First, ptrace requires that
1154 the thread is stopped to sucessfully detach. Second, thread_db
1155 may need to uninstall thread event breakpoints from memory, which
1156 only works with a stopped process anyway. */
1157 stop_all_lwps (0, NULL);
1158
1159 #ifdef USE_THREAD_DB
1160 thread_db_detach (process);
1161 #endif
1162
1163 /* Stabilize threads (move out of jump pads). */
1164 stabilize_threads ();
1165
1166 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1167
1168 the_target->mourn (process);
1169
1170 /* Since we presently can only stop all lwps of all processes, we
1171 need to unstop lwps of other processes. */
1172 unstop_all_lwps (0, NULL);
1173 return 0;
1174 }
1175
1176 /* Remove all LWPs that belong to process PROC from the lwp list. */
1177
1178 static int
1179 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1180 {
1181 struct thread_info *thread = (struct thread_info *) entry;
1182 struct lwp_info *lwp = get_thread_lwp (thread);
1183 struct process_info *process = proc;
1184
1185 if (pid_of (thread) == pid_of (process))
1186 delete_lwp (lwp);
1187
1188 return 0;
1189 }
1190
1191 static void
1192 linux_mourn (struct process_info *process)
1193 {
1194 struct process_info_private *priv;
1195
1196 #ifdef USE_THREAD_DB
1197 thread_db_mourn (process);
1198 #endif
1199
1200 find_inferior (&all_threads, delete_lwp_callback, process);
1201
1202 /* Freeing all private data. */
1203 priv = process->private;
1204 free (priv->arch_private);
1205 free (priv);
1206 process->private = NULL;
1207
1208 remove_process (process);
1209 }
1210
1211 static void
1212 linux_join (int pid)
1213 {
1214 int status, ret;
1215
1216 do {
1217 ret = my_waitpid (pid, &status, 0);
1218 if (WIFEXITED (status) || WIFSIGNALED (status))
1219 break;
1220 } while (ret != -1 || errno != ECHILD);
1221 }
1222
1223 /* Return nonzero if the given thread is still alive. */
1224 static int
1225 linux_thread_alive (ptid_t ptid)
1226 {
1227 struct lwp_info *lwp = find_lwp_pid (ptid);
1228
1229 /* We assume we always know if a thread exits. If a whole process
1230 exited but we still haven't been able to report it to GDB, we'll
1231 hold on to the last lwp of the dead process. */
1232 if (lwp != NULL)
1233 return !lwp->dead;
1234 else
1235 return 0;
1236 }
1237
1238 /* Return 1 if this lwp has an interesting status pending. */
1239 static int
1240 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1241 {
1242 struct thread_info *thread = (struct thread_info *) entry;
1243 struct lwp_info *lwp = get_thread_lwp (thread);
1244 ptid_t ptid = * (ptid_t *) arg;
1245
1246 /* Check if we're only interested in events from a specific process
1247 or its lwps. */
1248 if (!ptid_equal (minus_one_ptid, ptid)
1249 && ptid_get_pid (ptid) != ptid_get_pid (thread->entry.id))
1250 return 0;
1251
1252 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1253 report any status pending the LWP may have. */
1254 if (thread->last_resume_kind == resume_stop
1255 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1256 return 0;
1257
1258 return lwp->status_pending_p;
1259 }
1260
1261 static int
1262 same_lwp (struct inferior_list_entry *entry, void *data)
1263 {
1264 ptid_t ptid = *(ptid_t *) data;
1265 int lwp;
1266
1267 if (ptid_get_lwp (ptid) != 0)
1268 lwp = ptid_get_lwp (ptid);
1269 else
1270 lwp = ptid_get_pid (ptid);
1271
1272 if (ptid_get_lwp (entry->id) == lwp)
1273 return 1;
1274
1275 return 0;
1276 }
1277
1278 struct lwp_info *
1279 find_lwp_pid (ptid_t ptid)
1280 {
1281 struct inferior_list_entry *thread
1282 = find_inferior (&all_threads, same_lwp, &ptid);
1283
1284 if (thread == NULL)
1285 return NULL;
1286
1287 return get_thread_lwp ((struct thread_info *) thread);
1288 }
1289
1290 /* Return the number of known LWPs in the tgid given by PID. */
1291
1292 static int
1293 num_lwps (int pid)
1294 {
1295 struct inferior_list_entry *inf, *tmp;
1296 int count = 0;
1297
1298 ALL_INFERIORS (&all_threads, inf, tmp)
1299 {
1300 if (ptid_get_pid (inf->id) == pid)
1301 count++;
1302 }
1303
1304 return count;
1305 }
1306
1307 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1308 their exits until all other threads in the group have exited. */
1309
1310 static void
1311 check_zombie_leaders (void)
1312 {
1313 struct process_info *proc, *tmp;
1314
1315 ALL_PROCESSES (proc, tmp)
1316 {
1317 pid_t leader_pid = pid_of (proc);
1318 struct lwp_info *leader_lp;
1319
1320 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1321
1322 if (debug_threads)
1323 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1324 "num_lwps=%d, zombie=%d\n",
1325 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1326 linux_proc_pid_is_zombie (leader_pid));
1327
1328 if (leader_lp != NULL
1329 /* Check if there are other threads in the group, as we may
1330 have raced with the inferior simply exiting. */
1331 && !last_thread_of_process_p (leader_pid)
1332 && linux_proc_pid_is_zombie (leader_pid))
1333 {
1334 /* A leader zombie can mean one of two things:
1335
1336 - It exited, and there's an exit status pending
1337 available, or only the leader exited (not the whole
1338 program). In the latter case, we can't waitpid the
1339 leader's exit status until all other threads are gone.
1340
1341 - There are 3 or more threads in the group, and a thread
1342 other than the leader exec'd. On an exec, the Linux
1343 kernel destroys all other threads (except the execing
1344 one) in the thread group, and resets the execing thread's
1345 tid to the tgid. No exit notification is sent for the
1346 execing thread -- from the ptracer's perspective, it
1347 appears as though the execing thread just vanishes.
1348 Until we reap all other threads except the leader and the
1349 execing thread, the leader will be zombie, and the
1350 execing thread will be in `D (disc sleep)'. As soon as
1351 all other threads are reaped, the execing thread changes
1352 it's tid to the tgid, and the previous (zombie) leader
1353 vanishes, giving place to the "new" leader. We could try
1354 distinguishing the exit and exec cases, by waiting once
1355 more, and seeing if something comes out, but it doesn't
1356 sound useful. The previous leader _does_ go away, and
1357 we'll re-add the new one once we see the exec event
1358 (which is just the same as what would happen if the
1359 previous leader did exit voluntarily before some other
1360 thread execs). */
1361
1362 if (debug_threads)
1363 fprintf (stderr,
1364 "CZL: Thread group leader %d zombie "
1365 "(it exited, or another thread execd).\n",
1366 leader_pid);
1367
1368 delete_lwp (leader_lp);
1369 }
1370 }
1371 }
1372
1373 /* Callback for `find_inferior'. Returns the first LWP that is not
1374 stopped. ARG is a PTID filter. */
1375
1376 static int
1377 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1378 {
1379 struct thread_info *thr = (struct thread_info *) entry;
1380 struct lwp_info *lwp;
1381 ptid_t filter = *(ptid_t *) arg;
1382
1383 if (!ptid_match (ptid_of (thr), filter))
1384 return 0;
1385
1386 lwp = get_thread_lwp (thr);
1387 if (!lwp->stopped)
1388 return 1;
1389
1390 return 0;
1391 }
1392
1393 /* This function should only be called if the LWP got a SIGTRAP.
1394
1395 Handle any tracepoint steps or hits. Return true if a tracepoint
1396 event was handled, 0 otherwise. */
1397
1398 static int
1399 handle_tracepoints (struct lwp_info *lwp)
1400 {
1401 struct thread_info *tinfo = get_lwp_thread (lwp);
1402 int tpoint_related_event = 0;
1403
1404 /* If this tracepoint hit causes a tracing stop, we'll immediately
1405 uninsert tracepoints. To do this, we temporarily pause all
1406 threads, unpatch away, and then unpause threads. We need to make
1407 sure the unpausing doesn't resume LWP too. */
1408 lwp->suspended++;
1409
1410 /* And we need to be sure that any all-threads-stopping doesn't try
1411 to move threads out of the jump pads, as it could deadlock the
1412 inferior (LWP could be in the jump pad, maybe even holding the
1413 lock.) */
1414
1415 /* Do any necessary step collect actions. */
1416 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1417
1418 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1419
1420 /* See if we just hit a tracepoint and do its main collect
1421 actions. */
1422 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1423
1424 lwp->suspended--;
1425
1426 gdb_assert (lwp->suspended == 0);
1427 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1428
1429 if (tpoint_related_event)
1430 {
1431 if (debug_threads)
1432 debug_printf ("got a tracepoint event\n");
1433 return 1;
1434 }
1435
1436 return 0;
1437 }
1438
1439 /* Convenience wrapper. Returns true if LWP is presently collecting a
1440 fast tracepoint. */
1441
1442 static int
1443 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1444 struct fast_tpoint_collect_status *status)
1445 {
1446 CORE_ADDR thread_area;
1447 struct thread_info *thread = get_lwp_thread (lwp);
1448
1449 if (the_low_target.get_thread_area == NULL)
1450 return 0;
1451
1452 /* Get the thread area address. This is used to recognize which
1453 thread is which when tracing with the in-process agent library.
1454 We don't read anything from the address, and treat it as opaque;
1455 it's the address itself that we assume is unique per-thread. */
1456 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1457 return 0;
1458
1459 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1460 }
1461
1462 /* The reason we resume in the caller, is because we want to be able
1463 to pass lwp->status_pending as WSTAT, and we need to clear
1464 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1465 refuses to resume. */
1466
1467 static int
1468 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1469 {
1470 struct thread_info *saved_thread;
1471
1472 saved_thread = current_thread;
1473 current_thread = get_lwp_thread (lwp);
1474
1475 if ((wstat == NULL
1476 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1477 && supports_fast_tracepoints ()
1478 && agent_loaded_p ())
1479 {
1480 struct fast_tpoint_collect_status status;
1481 int r;
1482
1483 if (debug_threads)
1484 debug_printf ("Checking whether LWP %ld needs to move out of the "
1485 "jump pad.\n",
1486 lwpid_of (current_thread));
1487
1488 r = linux_fast_tracepoint_collecting (lwp, &status);
1489
1490 if (wstat == NULL
1491 || (WSTOPSIG (*wstat) != SIGILL
1492 && WSTOPSIG (*wstat) != SIGFPE
1493 && WSTOPSIG (*wstat) != SIGSEGV
1494 && WSTOPSIG (*wstat) != SIGBUS))
1495 {
1496 lwp->collecting_fast_tracepoint = r;
1497
1498 if (r != 0)
1499 {
1500 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1501 {
1502 /* Haven't executed the original instruction yet.
1503 Set breakpoint there, and wait till it's hit,
1504 then single-step until exiting the jump pad. */
1505 lwp->exit_jump_pad_bkpt
1506 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1507 }
1508
1509 if (debug_threads)
1510 debug_printf ("Checking whether LWP %ld needs to move out of "
1511 "the jump pad...it does\n",
1512 lwpid_of (current_thread));
1513 current_thread = saved_thread;
1514
1515 return 1;
1516 }
1517 }
1518 else
1519 {
1520 /* If we get a synchronous signal while collecting, *and*
1521 while executing the (relocated) original instruction,
1522 reset the PC to point at the tpoint address, before
1523 reporting to GDB. Otherwise, it's an IPA lib bug: just
1524 report the signal to GDB, and pray for the best. */
1525
1526 lwp->collecting_fast_tracepoint = 0;
1527
1528 if (r != 0
1529 && (status.adjusted_insn_addr <= lwp->stop_pc
1530 && lwp->stop_pc < status.adjusted_insn_addr_end))
1531 {
1532 siginfo_t info;
1533 struct regcache *regcache;
1534
1535 /* The si_addr on a few signals references the address
1536 of the faulting instruction. Adjust that as
1537 well. */
1538 if ((WSTOPSIG (*wstat) == SIGILL
1539 || WSTOPSIG (*wstat) == SIGFPE
1540 || WSTOPSIG (*wstat) == SIGBUS
1541 || WSTOPSIG (*wstat) == SIGSEGV)
1542 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
1543 (PTRACE_TYPE_ARG3) 0, &info) == 0
1544 /* Final check just to make sure we don't clobber
1545 the siginfo of non-kernel-sent signals. */
1546 && (uintptr_t) info.si_addr == lwp->stop_pc)
1547 {
1548 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1549 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
1550 (PTRACE_TYPE_ARG3) 0, &info);
1551 }
1552
1553 regcache = get_thread_regcache (current_thread, 1);
1554 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1555 lwp->stop_pc = status.tpoint_addr;
1556
1557 /* Cancel any fast tracepoint lock this thread was
1558 holding. */
1559 force_unlock_trace_buffer ();
1560 }
1561
1562 if (lwp->exit_jump_pad_bkpt != NULL)
1563 {
1564 if (debug_threads)
1565 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
1566 "stopping all threads momentarily.\n");
1567
1568 stop_all_lwps (1, lwp);
1569 cancel_breakpoints ();
1570
1571 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1572 lwp->exit_jump_pad_bkpt = NULL;
1573
1574 unstop_all_lwps (1, lwp);
1575
1576 gdb_assert (lwp->suspended >= 0);
1577 }
1578 }
1579 }
1580
1581 if (debug_threads)
1582 debug_printf ("Checking whether LWP %ld needs to move out of the "
1583 "jump pad...no\n",
1584 lwpid_of (current_thread));
1585
1586 current_thread = saved_thread;
1587 return 0;
1588 }
1589
1590 /* Enqueue one signal in the "signals to report later when out of the
1591 jump pad" list. */
1592
1593 static void
1594 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1595 {
1596 struct pending_signals *p_sig;
1597 struct thread_info *thread = get_lwp_thread (lwp);
1598
1599 if (debug_threads)
1600 debug_printf ("Deferring signal %d for LWP %ld.\n",
1601 WSTOPSIG (*wstat), lwpid_of (thread));
1602
1603 if (debug_threads)
1604 {
1605 struct pending_signals *sig;
1606
1607 for (sig = lwp->pending_signals_to_report;
1608 sig != NULL;
1609 sig = sig->prev)
1610 debug_printf (" Already queued %d\n",
1611 sig->signal);
1612
1613 debug_printf (" (no more currently queued signals)\n");
1614 }
1615
1616 /* Don't enqueue non-RT signals if they are already in the deferred
1617 queue. (SIGSTOP being the easiest signal to see ending up here
1618 twice) */
1619 if (WSTOPSIG (*wstat) < __SIGRTMIN)
1620 {
1621 struct pending_signals *sig;
1622
1623 for (sig = lwp->pending_signals_to_report;
1624 sig != NULL;
1625 sig = sig->prev)
1626 {
1627 if (sig->signal == WSTOPSIG (*wstat))
1628 {
1629 if (debug_threads)
1630 debug_printf ("Not requeuing already queued non-RT signal %d"
1631 " for LWP %ld\n",
1632 sig->signal,
1633 lwpid_of (thread));
1634 return;
1635 }
1636 }
1637 }
1638
1639 p_sig = xmalloc (sizeof (*p_sig));
1640 p_sig->prev = lwp->pending_signals_to_report;
1641 p_sig->signal = WSTOPSIG (*wstat);
1642 memset (&p_sig->info, 0, sizeof (siginfo_t));
1643 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1644 &p_sig->info);
1645
1646 lwp->pending_signals_to_report = p_sig;
1647 }
1648
1649 /* Dequeue one signal from the "signals to report later when out of
1650 the jump pad" list. */
1651
1652 static int
1653 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1654 {
1655 struct thread_info *thread = get_lwp_thread (lwp);
1656
1657 if (lwp->pending_signals_to_report != NULL)
1658 {
1659 struct pending_signals **p_sig;
1660
1661 p_sig = &lwp->pending_signals_to_report;
1662 while ((*p_sig)->prev != NULL)
1663 p_sig = &(*p_sig)->prev;
1664
1665 *wstat = W_STOPCODE ((*p_sig)->signal);
1666 if ((*p_sig)->info.si_signo != 0)
1667 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1668 &(*p_sig)->info);
1669 free (*p_sig);
1670 *p_sig = NULL;
1671
1672 if (debug_threads)
1673 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
1674 WSTOPSIG (*wstat), lwpid_of (thread));
1675
1676 if (debug_threads)
1677 {
1678 struct pending_signals *sig;
1679
1680 for (sig = lwp->pending_signals_to_report;
1681 sig != NULL;
1682 sig = sig->prev)
1683 debug_printf (" Still queued %d\n",
1684 sig->signal);
1685
1686 debug_printf (" (no more queued signals)\n");
1687 }
1688
1689 return 1;
1690 }
1691
1692 return 0;
1693 }
1694
1695 /* Arrange for a breakpoint to be hit again later. We don't keep the
1696 SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
1697 will handle the current event, eventually we will resume this LWP,
1698 and this breakpoint will trap again. */
1699
1700 static int
1701 cancel_breakpoint (struct lwp_info *lwp)
1702 {
1703 struct thread_info *saved_thread;
1704
1705 /* There's nothing to do if we don't support breakpoints. */
1706 if (!supports_breakpoints ())
1707 return 0;
1708
1709 /* breakpoint_at reads from current inferior. */
1710 saved_thread = current_thread;
1711 current_thread = get_lwp_thread (lwp);
1712
1713 if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
1714 {
1715 if (debug_threads)
1716 debug_printf ("CB: Push back breakpoint for %s\n",
1717 target_pid_to_str (ptid_of (current_thread)));
1718
1719 /* Back up the PC if necessary. */
1720 if (the_low_target.decr_pc_after_break)
1721 {
1722 struct regcache *regcache
1723 = get_thread_regcache (current_thread, 1);
1724 (*the_low_target.set_pc) (regcache, lwp->stop_pc);
1725 }
1726
1727 current_thread = saved_thread;
1728 return 1;
1729 }
1730 else
1731 {
1732 if (debug_threads)
1733 debug_printf ("CB: No breakpoint found at %s for [%s]\n",
1734 paddress (lwp->stop_pc),
1735 target_pid_to_str (ptid_of (current_thread)));
1736 }
1737
1738 current_thread = saved_thread;
1739 return 0;
1740 }
1741
1742 /* Return true if the event in LP may be caused by breakpoint. */
1743
1744 static int
1745 lp_status_maybe_breakpoint (struct lwp_info *lp)
1746 {
1747 return (lp->status_pending_p
1748 && WIFSTOPPED (lp->status_pending)
1749 && (WSTOPSIG (lp->status_pending) == SIGTRAP
1750 /* SIGILL and SIGSEGV are also treated as traps in case a
1751 breakpoint is inserted at the current PC. */
1752 || WSTOPSIG (lp->status_pending) == SIGILL
1753 || WSTOPSIG (lp->status_pending) == SIGSEGV));
1754 }
1755
1756 /* Do low-level handling of the event, and check if we should go on
1757 and pass it to caller code. Return the affected lwp if we are, or
1758 NULL otherwise. */
1759
1760 static struct lwp_info *
1761 linux_low_filter_event (ptid_t filter_ptid, int lwpid, int wstat)
1762 {
1763 struct lwp_info *child;
1764 struct thread_info *thread;
1765
1766 child = find_lwp_pid (pid_to_ptid (lwpid));
1767
1768 /* If we didn't find a process, one of two things presumably happened:
1769 - A process we started and then detached from has exited. Ignore it.
1770 - A process we are controlling has forked and the new child's stop
1771 was reported to us by the kernel. Save its PID. */
1772 if (child == NULL && WIFSTOPPED (wstat))
1773 {
1774 add_to_pid_list (&stopped_pids, lwpid, wstat);
1775 return NULL;
1776 }
1777 else if (child == NULL)
1778 return NULL;
1779
1780 thread = get_lwp_thread (child);
1781
1782 child->stopped = 1;
1783
1784 child->last_status = wstat;
1785
1786 if (WIFSTOPPED (wstat))
1787 {
1788 struct process_info *proc;
1789
1790 /* Architecture-specific setup after inferior is running. This
1791 needs to happen after we have attached to the inferior and it
1792 is stopped for the first time, but before we access any
1793 inferior registers. */
1794 proc = find_process_pid (pid_of (thread));
1795 if (proc->private->new_inferior)
1796 {
1797 struct thread_info *saved_thread;
1798
1799 saved_thread = current_thread;
1800 current_thread = thread;
1801
1802 the_low_target.arch_setup ();
1803
1804 current_thread = saved_thread;
1805
1806 proc->private->new_inferior = 0;
1807 }
1808 }
1809
1810 /* Store the STOP_PC, with adjustment applied. This depends on the
1811 architecture being defined already (so that CHILD has a valid
1812 regcache), and on LAST_STATUS being set (to check for SIGTRAP or
1813 not). */
1814 if (WIFSTOPPED (wstat))
1815 {
1816 if (debug_threads
1817 && the_low_target.get_pc != NULL)
1818 {
1819 struct thread_info *saved_thread;
1820 struct regcache *regcache;
1821 CORE_ADDR pc;
1822
1823 saved_thread = current_thread;
1824 current_thread = thread;
1825 regcache = get_thread_regcache (current_thread, 1);
1826 pc = (*the_low_target.get_pc) (regcache);
1827 debug_printf ("linux_low_filter_event: pc is 0x%lx\n", (long) pc);
1828 current_thread = saved_thread;
1829 }
1830
1831 child->stop_pc = get_stop_pc (child);
1832 }
1833
1834 /* Fetch the possibly triggered data watchpoint info and store it in
1835 CHILD.
1836
1837 On some archs, like x86, that use debug registers to set
1838 watchpoints, it's possible that the way to know which watched
1839 address trapped, is to check the register that is used to select
1840 which address to watch. Problem is, between setting the
1841 watchpoint and reading back which data address trapped, the user
1842 may change the set of watchpoints, and, as a consequence, GDB
1843 changes the debug registers in the inferior. To avoid reading
1844 back a stale stopped-data-address when that happens, we cache in
1845 LP the fact that a watchpoint trapped, and the corresponding data
1846 address, as soon as we see CHILD stop with a SIGTRAP. If GDB
1847 changes the debug registers meanwhile, we have the cached data we
1848 can rely on. */
1849
1850 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP)
1851 {
1852 if (the_low_target.stopped_by_watchpoint == NULL)
1853 {
1854 child->stopped_by_watchpoint = 0;
1855 }
1856 else
1857 {
1858 struct thread_info *saved_thread;
1859
1860 saved_thread = current_thread;
1861 current_thread = thread;
1862
1863 child->stopped_by_watchpoint
1864 = the_low_target.stopped_by_watchpoint ();
1865
1866 if (child->stopped_by_watchpoint)
1867 {
1868 if (the_low_target.stopped_data_address != NULL)
1869 child->stopped_data_address
1870 = the_low_target.stopped_data_address ();
1871 else
1872 child->stopped_data_address = 0;
1873 }
1874
1875 current_thread = saved_thread;
1876 }
1877 }
1878
1879 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
1880 {
1881 struct process_info *proc = find_process_pid (pid_of (thread));
1882
1883 linux_enable_event_reporting (lwpid, proc->attached);
1884 child->must_set_ptrace_flags = 0;
1885 }
1886
1887 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
1888 && linux_is_extended_waitstatus (wstat))
1889 {
1890 handle_extended_wait (child, wstat);
1891 return NULL;
1892 }
1893
1894 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
1895 && child->stop_expected)
1896 {
1897 if (debug_threads)
1898 debug_printf ("Expected stop.\n");
1899 child->stop_expected = 0;
1900
1901 if (thread->last_resume_kind == resume_stop)
1902 {
1903 /* We want to report the stop to the core. Treat the
1904 SIGSTOP as a normal event. */
1905 }
1906 else if (stopping_threads != NOT_STOPPING_THREADS)
1907 {
1908 /* Stopping threads. We don't want this SIGSTOP to end up
1909 pending in the FILTER_PTID handling below. */
1910 return NULL;
1911 }
1912 else
1913 {
1914 /* Filter out the event. */
1915 linux_resume_one_lwp (child, child->stepping, 0, NULL);
1916 return NULL;
1917 }
1918 }
1919
1920 /* Check if the thread has exited. */
1921 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat))
1922 && num_lwps (pid_of (thread)) > 1)
1923 {
1924 if (debug_threads)
1925 debug_printf ("LLW: %d exited.\n", lwpid);
1926
1927 /* If there is at least one more LWP, then the exit signal
1928 was not the end of the debugged application and should be
1929 ignored. */
1930 delete_lwp (child);
1931 return NULL;
1932 }
1933
1934 if (!ptid_match (ptid_of (thread), filter_ptid))
1935 {
1936 if (debug_threads)
1937 debug_printf ("LWP %d got an event %06x, leaving pending.\n",
1938 lwpid, wstat);
1939
1940 if (WIFSTOPPED (wstat))
1941 {
1942 child->status_pending_p = 1;
1943 child->status_pending = wstat;
1944
1945 if (WSTOPSIG (wstat) != SIGSTOP)
1946 {
1947 /* Cancel breakpoint hits. The breakpoint may be
1948 removed before we fetch events from this process to
1949 report to the core. It is best not to assume the
1950 moribund breakpoints heuristic always handles these
1951 cases --- it could be too many events go through to
1952 the core before this one is handled. All-stop always
1953 cancels breakpoint hits in all threads. */
1954 if (non_stop
1955 && lp_status_maybe_breakpoint (child)
1956 && cancel_breakpoint (child))
1957 {
1958 /* Throw away the SIGTRAP. */
1959 child->status_pending_p = 0;
1960
1961 if (debug_threads)
1962 debug_printf ("LLW: LWP %d hit a breakpoint while"
1963 " waiting for another process;"
1964 " cancelled it\n", lwpid);
1965 }
1966 }
1967 }
1968 else if (WIFEXITED (wstat) || WIFSIGNALED (wstat))
1969 {
1970 if (debug_threads)
1971 debug_printf ("LLWE: process %d exited while fetching "
1972 "event from another LWP\n", lwpid);
1973
1974 /* This was the last lwp in the process. Since events are
1975 serialized to GDB core, and we can't report this one
1976 right now, but GDB core and the other target layers will
1977 want to be notified about the exit code/signal, leave the
1978 status pending for the next time we're able to report
1979 it. */
1980 mark_lwp_dead (child, wstat);
1981 }
1982
1983 return NULL;
1984 }
1985
1986 return child;
1987 }
1988
1989 /* When the event-loop is doing a step-over, this points at the thread
1990 being stepped. */
1991 ptid_t step_over_bkpt;
1992
1993 /* Wait for an event from child(ren) WAIT_PTID, and return any that
1994 match FILTER_PTID (leaving others pending). The PTIDs can be:
1995 minus_one_ptid, to specify any child; a pid PTID, specifying all
1996 lwps of a thread group; or a PTID representing a single lwp. Store
1997 the stop status through the status pointer WSTAT. OPTIONS is
1998 passed to the waitpid call. Return 0 if no event was found and
1999 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2000 was found. Return the PID of the stopped child otherwise. */
2001
2002 static int
2003 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2004 int *wstatp, int options)
2005 {
2006 struct thread_info *event_thread;
2007 struct lwp_info *event_child, *requested_child;
2008 sigset_t block_mask, prev_mask;
2009
2010 retry:
2011 /* N.B. event_thread points to the thread_info struct that contains
2012 event_child. Keep them in sync. */
2013 event_thread = NULL;
2014 event_child = NULL;
2015 requested_child = NULL;
2016
2017 /* Check for a lwp with a pending status. */
2018
2019 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2020 {
2021 event_thread = (struct thread_info *)
2022 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2023 if (event_thread != NULL)
2024 event_child = get_thread_lwp (event_thread);
2025 if (debug_threads && event_thread)
2026 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2027 }
2028 else if (!ptid_equal (filter_ptid, null_ptid))
2029 {
2030 requested_child = find_lwp_pid (filter_ptid);
2031
2032 if (stopping_threads == NOT_STOPPING_THREADS
2033 && requested_child->status_pending_p
2034 && requested_child->collecting_fast_tracepoint)
2035 {
2036 enqueue_one_deferred_signal (requested_child,
2037 &requested_child->status_pending);
2038 requested_child->status_pending_p = 0;
2039 requested_child->status_pending = 0;
2040 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2041 }
2042
2043 if (requested_child->suspended
2044 && requested_child->status_pending_p)
2045 {
2046 internal_error (__FILE__, __LINE__,
2047 "requesting an event out of a"
2048 " suspended child?");
2049 }
2050
2051 if (requested_child->status_pending_p)
2052 {
2053 event_child = requested_child;
2054 event_thread = get_lwp_thread (event_child);
2055 }
2056 }
2057
2058 if (event_child != NULL)
2059 {
2060 if (debug_threads)
2061 debug_printf ("Got an event from pending child %ld (%04x)\n",
2062 lwpid_of (event_thread), event_child->status_pending);
2063 *wstatp = event_child->status_pending;
2064 event_child->status_pending_p = 0;
2065 event_child->status_pending = 0;
2066 current_thread = event_thread;
2067 return lwpid_of (event_thread);
2068 }
2069
2070 /* But if we don't find a pending event, we'll have to wait.
2071
2072 We only enter this loop if no process has a pending wait status.
2073 Thus any action taken in response to a wait status inside this
2074 loop is responding as soon as we detect the status, not after any
2075 pending events. */
2076
2077 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2078 all signals while here. */
2079 sigfillset (&block_mask);
2080 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2081
2082 while (event_child == NULL)
2083 {
2084 pid_t ret = 0;
2085
2086 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2087 quirks:
2088
2089 - If the thread group leader exits while other threads in the
2090 thread group still exist, waitpid(TGID, ...) hangs. That
2091 waitpid won't return an exit status until the other threads
2092 in the group are reaped.
2093
2094 - When a non-leader thread execs, that thread just vanishes
2095 without reporting an exit (so we'd hang if we waited for it
2096 explicitly in that case). The exec event is reported to
2097 the TGID pid (although we don't currently enable exec
2098 events). */
2099 errno = 0;
2100 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2101
2102 if (debug_threads)
2103 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2104 ret, errno ? strerror (errno) : "ERRNO-OK");
2105
2106 if (ret > 0)
2107 {
2108 if (debug_threads)
2109 {
2110 debug_printf ("LLW: waitpid %ld received %s\n",
2111 (long) ret, status_to_str (*wstatp));
2112 }
2113
2114 event_child = linux_low_filter_event (filter_ptid,
2115 ret, *wstatp);
2116 if (event_child != NULL)
2117 {
2118 /* We got an event to report to the core. */
2119 event_thread = get_lwp_thread (event_child);
2120 break;
2121 }
2122
2123 /* Retry until nothing comes out of waitpid. A single
2124 SIGCHLD can indicate more than one child stopped. */
2125 continue;
2126 }
2127
2128 /* Check for zombie thread group leaders. Those can't be reaped
2129 until all other threads in the thread group are. */
2130 check_zombie_leaders ();
2131
2132 /* If there are no resumed children left in the set of LWPs we
2133 want to wait for, bail. We can't just block in
2134 waitpid/sigsuspend, because lwps might have been left stopped
2135 in trace-stop state, and we'd be stuck forever waiting for
2136 their status to change (which would only happen if we resumed
2137 them). Even if WNOHANG is set, this return code is preferred
2138 over 0 (below), as it is more detailed. */
2139 if ((find_inferior (&all_threads,
2140 not_stopped_callback,
2141 &wait_ptid) == NULL))
2142 {
2143 if (debug_threads)
2144 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2145 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2146 return -1;
2147 }
2148
2149 /* No interesting event to report to the caller. */
2150 if ((options & WNOHANG))
2151 {
2152 if (debug_threads)
2153 debug_printf ("WNOHANG set, no event found\n");
2154
2155 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2156 return 0;
2157 }
2158
2159 /* Block until we get an event reported with SIGCHLD. */
2160 if (debug_threads)
2161 debug_printf ("sigsuspend'ing\n");
2162
2163 sigsuspend (&prev_mask);
2164 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2165 goto retry;
2166 }
2167
2168 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2169
2170 current_thread = event_thread;
2171
2172 /* Check for thread exit. */
2173 if (! WIFSTOPPED (*wstatp))
2174 {
2175 gdb_assert (last_thread_of_process_p (pid_of (event_thread)));
2176
2177 if (debug_threads)
2178 debug_printf ("LWP %d is the last lwp of process. "
2179 "Process %ld exiting.\n",
2180 pid_of (event_thread), lwpid_of (event_thread));
2181 return lwpid_of (event_thread);
2182 }
2183
2184 return lwpid_of (event_thread);
2185 }
2186
2187 /* Wait for an event from child(ren) PTID. PTIDs can be:
2188 minus_one_ptid, to specify any child; a pid PTID, specifying all
2189 lwps of a thread group; or a PTID representing a single lwp. Store
2190 the stop status through the status pointer WSTAT. OPTIONS is
2191 passed to the waitpid call. Return 0 if no event was found and
2192 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2193 was found. Return the PID of the stopped child otherwise. */
2194
2195 static int
2196 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2197 {
2198 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2199 }
2200
2201 /* Count the LWP's that have had events. */
2202
2203 static int
2204 count_events_callback (struct inferior_list_entry *entry, void *data)
2205 {
2206 struct thread_info *thread = (struct thread_info *) entry;
2207 struct lwp_info *lp = get_thread_lwp (thread);
2208 int *count = data;
2209
2210 gdb_assert (count != NULL);
2211
2212 /* Count only resumed LWPs that have a SIGTRAP event pending that
2213 should be reported to GDB. */
2214 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2215 && thread->last_resume_kind != resume_stop
2216 && lp_status_maybe_breakpoint (lp)
2217 && !breakpoint_inserted_here (lp->stop_pc))
2218 (*count)++;
2219
2220 return 0;
2221 }
2222
2223 /* Select the LWP (if any) that is currently being single-stepped. */
2224
2225 static int
2226 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2227 {
2228 struct thread_info *thread = (struct thread_info *) entry;
2229 struct lwp_info *lp = get_thread_lwp (thread);
2230
2231 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2232 && thread->last_resume_kind == resume_step
2233 && lp->status_pending_p)
2234 return 1;
2235 else
2236 return 0;
2237 }
2238
2239 /* Select the Nth LWP that has had a SIGTRAP event that should be
2240 reported to GDB. */
2241
2242 static int
2243 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2244 {
2245 struct thread_info *thread = (struct thread_info *) entry;
2246 struct lwp_info *lp = get_thread_lwp (thread);
2247 int *selector = data;
2248
2249 gdb_assert (selector != NULL);
2250
2251 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2252 if (thread->last_resume_kind != resume_stop
2253 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2254 && lp_status_maybe_breakpoint (lp)
2255 && !breakpoint_inserted_here (lp->stop_pc))
2256 if ((*selector)-- == 0)
2257 return 1;
2258
2259 return 0;
2260 }
2261
2262 static int
2263 cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
2264 {
2265 struct thread_info *thread = (struct thread_info *) entry;
2266 struct lwp_info *lp = get_thread_lwp (thread);
2267 struct lwp_info *event_lp = data;
2268
2269 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2270 if (lp == event_lp)
2271 return 0;
2272
2273 /* If a LWP other than the LWP that we're reporting an event for has
2274 hit a GDB breakpoint (as opposed to some random trap signal),
2275 then just arrange for it to hit it again later. We don't keep
2276 the SIGTRAP status and don't forward the SIGTRAP signal to the
2277 LWP. We will handle the current event, eventually we will resume
2278 all LWPs, and this one will get its breakpoint trap again.
2279
2280 If we do not do this, then we run the risk that the user will
2281 delete or disable the breakpoint, but the LWP will have already
2282 tripped on it. */
2283
2284 if (thread->last_resume_kind != resume_stop
2285 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2286 && lp_status_maybe_breakpoint (lp)
2287 && !lp->stepping
2288 && !lp->stopped_by_watchpoint
2289 && cancel_breakpoint (lp))
2290 /* Throw away the SIGTRAP. */
2291 lp->status_pending_p = 0;
2292
2293 return 0;
2294 }
2295
2296 static void
2297 linux_cancel_breakpoints (void)
2298 {
2299 find_inferior (&all_threads, cancel_breakpoints_callback, NULL);
2300 }
2301
2302 /* Select one LWP out of those that have events pending. */
2303
2304 static void
2305 select_event_lwp (struct lwp_info **orig_lp)
2306 {
2307 int num_events = 0;
2308 int random_selector;
2309 struct thread_info *event_thread;
2310
2311 /* Give preference to any LWP that is being single-stepped. */
2312 event_thread
2313 = (struct thread_info *) find_inferior (&all_threads,
2314 select_singlestep_lwp_callback,
2315 NULL);
2316 if (event_thread != NULL)
2317 {
2318 if (debug_threads)
2319 debug_printf ("SEL: Select single-step %s\n",
2320 target_pid_to_str (ptid_of (event_thread)));
2321 }
2322 else
2323 {
2324 /* No single-stepping LWP. Select one at random, out of those
2325 which have had SIGTRAP events. */
2326
2327 /* First see how many SIGTRAP events we have. */
2328 find_inferior (&all_threads, count_events_callback, &num_events);
2329
2330 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2331 random_selector = (int)
2332 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2333
2334 if (debug_threads && num_events > 1)
2335 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2336 num_events, random_selector);
2337
2338 event_thread
2339 = (struct thread_info *) find_inferior (&all_threads,
2340 select_event_lwp_callback,
2341 &random_selector);
2342 }
2343
2344 if (event_thread != NULL)
2345 {
2346 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2347
2348 /* Switch the event LWP. */
2349 *orig_lp = event_lp;
2350 }
2351 }
2352
2353 /* Decrement the suspend count of an LWP. */
2354
2355 static int
2356 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2357 {
2358 struct thread_info *thread = (struct thread_info *) entry;
2359 struct lwp_info *lwp = get_thread_lwp (thread);
2360
2361 /* Ignore EXCEPT. */
2362 if (lwp == except)
2363 return 0;
2364
2365 lwp->suspended--;
2366
2367 gdb_assert (lwp->suspended >= 0);
2368 return 0;
2369 }
2370
2371 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2372 NULL. */
2373
2374 static void
2375 unsuspend_all_lwps (struct lwp_info *except)
2376 {
2377 find_inferior (&all_threads, unsuspend_one_lwp, except);
2378 }
2379
2380 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2381 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2382 void *data);
2383 static int lwp_running (struct inferior_list_entry *entry, void *data);
2384 static ptid_t linux_wait_1 (ptid_t ptid,
2385 struct target_waitstatus *ourstatus,
2386 int target_options);
2387
2388 /* Stabilize threads (move out of jump pads).
2389
2390 If a thread is midway collecting a fast tracepoint, we need to
2391 finish the collection and move it out of the jump pad before
2392 reporting the signal.
2393
2394 This avoids recursion while collecting (when a signal arrives
2395 midway, and the signal handler itself collects), which would trash
2396 the trace buffer. In case the user set a breakpoint in a signal
2397 handler, this avoids the backtrace showing the jump pad, etc..
2398 Most importantly, there are certain things we can't do safely if
2399 threads are stopped in a jump pad (or in its callee's). For
2400 example:
2401
2402 - starting a new trace run. A thread still collecting the
2403 previous run, could trash the trace buffer when resumed. The trace
2404 buffer control structures would have been reset but the thread had
2405 no way to tell. The thread could even midway memcpy'ing to the
2406 buffer, which would mean that when resumed, it would clobber the
2407 trace buffer that had been set for a new run.
2408
2409 - we can't rewrite/reuse the jump pads for new tracepoints
2410 safely. Say you do tstart while a thread is stopped midway while
2411 collecting. When the thread is later resumed, it finishes the
2412 collection, and returns to the jump pad, to execute the original
2413 instruction that was under the tracepoint jump at the time the
2414 older run had been started. If the jump pad had been rewritten
2415 since for something else in the new run, the thread would now
2416 execute the wrong / random instructions. */
2417
2418 static void
2419 linux_stabilize_threads (void)
2420 {
2421 struct thread_info *saved_thread;
2422 struct thread_info *thread_stuck;
2423
2424 thread_stuck
2425 = (struct thread_info *) find_inferior (&all_threads,
2426 stuck_in_jump_pad_callback,
2427 NULL);
2428 if (thread_stuck != NULL)
2429 {
2430 if (debug_threads)
2431 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2432 lwpid_of (thread_stuck));
2433 return;
2434 }
2435
2436 saved_thread = current_thread;
2437
2438 stabilizing_threads = 1;
2439
2440 /* Kick 'em all. */
2441 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2442
2443 /* Loop until all are stopped out of the jump pads. */
2444 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2445 {
2446 struct target_waitstatus ourstatus;
2447 struct lwp_info *lwp;
2448 int wstat;
2449
2450 /* Note that we go through the full wait even loop. While
2451 moving threads out of jump pad, we need to be able to step
2452 over internal breakpoints and such. */
2453 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2454
2455 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2456 {
2457 lwp = get_thread_lwp (current_thread);
2458
2459 /* Lock it. */
2460 lwp->suspended++;
2461
2462 if (ourstatus.value.sig != GDB_SIGNAL_0
2463 || current_thread->last_resume_kind == resume_stop)
2464 {
2465 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2466 enqueue_one_deferred_signal (lwp, &wstat);
2467 }
2468 }
2469 }
2470
2471 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2472
2473 stabilizing_threads = 0;
2474
2475 current_thread = saved_thread;
2476
2477 if (debug_threads)
2478 {
2479 thread_stuck
2480 = (struct thread_info *) find_inferior (&all_threads,
2481 stuck_in_jump_pad_callback,
2482 NULL);
2483 if (thread_stuck != NULL)
2484 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2485 lwpid_of (thread_stuck));
2486 }
2487 }
2488
2489 /* Wait for process, returns status. */
2490
2491 static ptid_t
2492 linux_wait_1 (ptid_t ptid,
2493 struct target_waitstatus *ourstatus, int target_options)
2494 {
2495 int w;
2496 struct lwp_info *event_child;
2497 int options;
2498 int pid;
2499 int step_over_finished;
2500 int bp_explains_trap;
2501 int maybe_internal_trap;
2502 int report_to_gdb;
2503 int trace_event;
2504 int in_step_range;
2505
2506 if (debug_threads)
2507 {
2508 debug_enter ();
2509 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2510 }
2511
2512 /* Translate generic target options into linux options. */
2513 options = __WALL;
2514 if (target_options & TARGET_WNOHANG)
2515 options |= WNOHANG;
2516
2517 retry:
2518 bp_explains_trap = 0;
2519 trace_event = 0;
2520 in_step_range = 0;
2521 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2522
2523 if (ptid_equal (step_over_bkpt, null_ptid))
2524 pid = linux_wait_for_event (ptid, &w, options);
2525 else
2526 {
2527 if (debug_threads)
2528 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
2529 target_pid_to_str (step_over_bkpt));
2530 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2531 }
2532
2533 if (pid == 0)
2534 {
2535 gdb_assert (target_options & TARGET_WNOHANG);
2536
2537 if (debug_threads)
2538 {
2539 debug_printf ("linux_wait_1 ret = null_ptid, "
2540 "TARGET_WAITKIND_IGNORE\n");
2541 debug_exit ();
2542 }
2543
2544 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2545 return null_ptid;
2546 }
2547 else if (pid == -1)
2548 {
2549 if (debug_threads)
2550 {
2551 debug_printf ("linux_wait_1 ret = null_ptid, "
2552 "TARGET_WAITKIND_NO_RESUMED\n");
2553 debug_exit ();
2554 }
2555
2556 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
2557 return null_ptid;
2558 }
2559
2560 event_child = get_thread_lwp (current_thread);
2561
2562 /* linux_wait_for_event only returns an exit status for the last
2563 child of a process. Report it. */
2564 if (WIFEXITED (w) || WIFSIGNALED (w))
2565 {
2566 if (WIFEXITED (w))
2567 {
2568 ourstatus->kind = TARGET_WAITKIND_EXITED;
2569 ourstatus->value.integer = WEXITSTATUS (w);
2570
2571 if (debug_threads)
2572 {
2573 debug_printf ("linux_wait_1 ret = %s, exited with "
2574 "retcode %d\n",
2575 target_pid_to_str (ptid_of (current_thread)),
2576 WEXITSTATUS (w));
2577 debug_exit ();
2578 }
2579 }
2580 else
2581 {
2582 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2583 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
2584
2585 if (debug_threads)
2586 {
2587 debug_printf ("linux_wait_1 ret = %s, terminated with "
2588 "signal %d\n",
2589 target_pid_to_str (ptid_of (current_thread)),
2590 WTERMSIG (w));
2591 debug_exit ();
2592 }
2593 }
2594
2595 return ptid_of (current_thread);
2596 }
2597
2598 /* If this event was not handled before, and is not a SIGTRAP, we
2599 report it. SIGILL and SIGSEGV are also treated as traps in case
2600 a breakpoint is inserted at the current PC. If this target does
2601 not support internal breakpoints at all, we also report the
2602 SIGTRAP without further processing; it's of no concern to us. */
2603 maybe_internal_trap
2604 = (supports_breakpoints ()
2605 && (WSTOPSIG (w) == SIGTRAP
2606 || ((WSTOPSIG (w) == SIGILL
2607 || WSTOPSIG (w) == SIGSEGV)
2608 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2609
2610 if (maybe_internal_trap)
2611 {
2612 /* Handle anything that requires bookkeeping before deciding to
2613 report the event or continue waiting. */
2614
2615 /* First check if we can explain the SIGTRAP with an internal
2616 breakpoint, or if we should possibly report the event to GDB.
2617 Do this before anything that may remove or insert a
2618 breakpoint. */
2619 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2620
2621 /* We have a SIGTRAP, possibly a step-over dance has just
2622 finished. If so, tweak the state machine accordingly,
2623 reinsert breakpoints and delete any reinsert (software
2624 single-step) breakpoints. */
2625 step_over_finished = finish_step_over (event_child);
2626
2627 /* Now invoke the callbacks of any internal breakpoints there. */
2628 check_breakpoints (event_child->stop_pc);
2629
2630 /* Handle tracepoint data collecting. This may overflow the
2631 trace buffer, and cause a tracing stop, removing
2632 breakpoints. */
2633 trace_event = handle_tracepoints (event_child);
2634
2635 if (bp_explains_trap)
2636 {
2637 /* If we stepped or ran into an internal breakpoint, we've
2638 already handled it. So next time we resume (from this
2639 PC), we should step over it. */
2640 if (debug_threads)
2641 debug_printf ("Hit a gdbserver breakpoint.\n");
2642
2643 if (breakpoint_here (event_child->stop_pc))
2644 event_child->need_step_over = 1;
2645 }
2646 }
2647 else
2648 {
2649 /* We have some other signal, possibly a step-over dance was in
2650 progress, and it should be cancelled too. */
2651 step_over_finished = finish_step_over (event_child);
2652 }
2653
2654 /* We have all the data we need. Either report the event to GDB, or
2655 resume threads and keep waiting for more. */
2656
2657 /* If we're collecting a fast tracepoint, finish the collection and
2658 move out of the jump pad before delivering a signal. See
2659 linux_stabilize_threads. */
2660
2661 if (WIFSTOPPED (w)
2662 && WSTOPSIG (w) != SIGTRAP
2663 && supports_fast_tracepoints ()
2664 && agent_loaded_p ())
2665 {
2666 if (debug_threads)
2667 debug_printf ("Got signal %d for LWP %ld. Check if we need "
2668 "to defer or adjust it.\n",
2669 WSTOPSIG (w), lwpid_of (current_thread));
2670
2671 /* Allow debugging the jump pad itself. */
2672 if (current_thread->last_resume_kind != resume_step
2673 && maybe_move_out_of_jump_pad (event_child, &w))
2674 {
2675 enqueue_one_deferred_signal (event_child, &w);
2676
2677 if (debug_threads)
2678 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
2679 WSTOPSIG (w), lwpid_of (current_thread));
2680
2681 linux_resume_one_lwp (event_child, 0, 0, NULL);
2682 goto retry;
2683 }
2684 }
2685
2686 if (event_child->collecting_fast_tracepoint)
2687 {
2688 if (debug_threads)
2689 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
2690 "Check if we're already there.\n",
2691 lwpid_of (current_thread),
2692 event_child->collecting_fast_tracepoint);
2693
2694 trace_event = 1;
2695
2696 event_child->collecting_fast_tracepoint
2697 = linux_fast_tracepoint_collecting (event_child, NULL);
2698
2699 if (event_child->collecting_fast_tracepoint != 1)
2700 {
2701 /* No longer need this breakpoint. */
2702 if (event_child->exit_jump_pad_bkpt != NULL)
2703 {
2704 if (debug_threads)
2705 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
2706 "stopping all threads momentarily.\n");
2707
2708 /* Other running threads could hit this breakpoint.
2709 We don't handle moribund locations like GDB does,
2710 instead we always pause all threads when removing
2711 breakpoints, so that any step-over or
2712 decr_pc_after_break adjustment is always taken
2713 care of while the breakpoint is still
2714 inserted. */
2715 stop_all_lwps (1, event_child);
2716 cancel_breakpoints ();
2717
2718 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2719 event_child->exit_jump_pad_bkpt = NULL;
2720
2721 unstop_all_lwps (1, event_child);
2722
2723 gdb_assert (event_child->suspended >= 0);
2724 }
2725 }
2726
2727 if (event_child->collecting_fast_tracepoint == 0)
2728 {
2729 if (debug_threads)
2730 debug_printf ("fast tracepoint finished "
2731 "collecting successfully.\n");
2732
2733 /* We may have a deferred signal to report. */
2734 if (dequeue_one_deferred_signal (event_child, &w))
2735 {
2736 if (debug_threads)
2737 debug_printf ("dequeued one signal.\n");
2738 }
2739 else
2740 {
2741 if (debug_threads)
2742 debug_printf ("no deferred signals.\n");
2743
2744 if (stabilizing_threads)
2745 {
2746 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2747 ourstatus->value.sig = GDB_SIGNAL_0;
2748
2749 if (debug_threads)
2750 {
2751 debug_printf ("linux_wait_1 ret = %s, stopped "
2752 "while stabilizing threads\n",
2753 target_pid_to_str (ptid_of (current_thread)));
2754 debug_exit ();
2755 }
2756
2757 return ptid_of (current_thread);
2758 }
2759 }
2760 }
2761 }
2762
2763 /* Check whether GDB would be interested in this event. */
2764
2765 /* If GDB is not interested in this signal, don't stop other
2766 threads, and don't report it to GDB. Just resume the inferior
2767 right away. We do this for threading-related signals as well as
2768 any that GDB specifically requested we ignore. But never ignore
2769 SIGSTOP if we sent it ourselves, and do not ignore signals when
2770 stepping - they may require special handling to skip the signal
2771 handler. */
2772 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2773 thread library? */
2774 if (WIFSTOPPED (w)
2775 && current_thread->last_resume_kind != resume_step
2776 && (
2777 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
2778 (current_process ()->private->thread_db != NULL
2779 && (WSTOPSIG (w) == __SIGRTMIN
2780 || WSTOPSIG (w) == __SIGRTMIN + 1))
2781 ||
2782 #endif
2783 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
2784 && !(WSTOPSIG (w) == SIGSTOP
2785 && current_thread->last_resume_kind == resume_stop))))
2786 {
2787 siginfo_t info, *info_p;
2788
2789 if (debug_threads)
2790 debug_printf ("Ignored signal %d for LWP %ld.\n",
2791 WSTOPSIG (w), lwpid_of (current_thread));
2792
2793 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2794 (PTRACE_TYPE_ARG3) 0, &info) == 0)
2795 info_p = &info;
2796 else
2797 info_p = NULL;
2798 linux_resume_one_lwp (event_child, event_child->stepping,
2799 WSTOPSIG (w), info_p);
2800 goto retry;
2801 }
2802
2803 /* Note that all addresses are always "out of the step range" when
2804 there's no range to begin with. */
2805 in_step_range = lwp_in_step_range (event_child);
2806
2807 /* If GDB wanted this thread to single step, and the thread is out
2808 of the step range, we always want to report the SIGTRAP, and let
2809 GDB handle it. Watchpoints should always be reported. So should
2810 signals we can't explain. A SIGTRAP we can't explain could be a
2811 GDB breakpoint --- we may or not support Z0 breakpoints. If we
2812 do, we're be able to handle GDB breakpoints on top of internal
2813 breakpoints, by handling the internal breakpoint and still
2814 reporting the event to GDB. If we don't, we're out of luck, GDB
2815 won't see the breakpoint hit. */
2816 report_to_gdb = (!maybe_internal_trap
2817 || (current_thread->last_resume_kind == resume_step
2818 && !in_step_range)
2819 || event_child->stopped_by_watchpoint
2820 || (!step_over_finished && !in_step_range
2821 && !bp_explains_trap && !trace_event)
2822 || (gdb_breakpoint_here (event_child->stop_pc)
2823 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
2824 && gdb_no_commands_at_breakpoint (event_child->stop_pc)));
2825
2826 run_breakpoint_commands (event_child->stop_pc);
2827
2828 /* We found no reason GDB would want us to stop. We either hit one
2829 of our own breakpoints, or finished an internal step GDB
2830 shouldn't know about. */
2831 if (!report_to_gdb)
2832 {
2833 if (debug_threads)
2834 {
2835 if (bp_explains_trap)
2836 debug_printf ("Hit a gdbserver breakpoint.\n");
2837 if (step_over_finished)
2838 debug_printf ("Step-over finished.\n");
2839 if (trace_event)
2840 debug_printf ("Tracepoint event.\n");
2841 if (lwp_in_step_range (event_child))
2842 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
2843 paddress (event_child->stop_pc),
2844 paddress (event_child->step_range_start),
2845 paddress (event_child->step_range_end));
2846 }
2847
2848 /* We're not reporting this breakpoint to GDB, so apply the
2849 decr_pc_after_break adjustment to the inferior's regcache
2850 ourselves. */
2851
2852 if (the_low_target.set_pc != NULL)
2853 {
2854 struct regcache *regcache
2855 = get_thread_regcache (current_thread, 1);
2856 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2857 }
2858
2859 /* We may have finished stepping over a breakpoint. If so,
2860 we've stopped and suspended all LWPs momentarily except the
2861 stepping one. This is where we resume them all again. We're
2862 going to keep waiting, so use proceed, which handles stepping
2863 over the next breakpoint. */
2864 if (debug_threads)
2865 debug_printf ("proceeding all threads.\n");
2866
2867 if (step_over_finished)
2868 unsuspend_all_lwps (event_child);
2869
2870 proceed_all_lwps ();
2871 goto retry;
2872 }
2873
2874 if (debug_threads)
2875 {
2876 if (current_thread->last_resume_kind == resume_step)
2877 {
2878 if (event_child->step_range_start == event_child->step_range_end)
2879 debug_printf ("GDB wanted to single-step, reporting event.\n");
2880 else if (!lwp_in_step_range (event_child))
2881 debug_printf ("Out of step range, reporting event.\n");
2882 }
2883 if (event_child->stopped_by_watchpoint)
2884 debug_printf ("Stopped by watchpoint.\n");
2885 if (gdb_breakpoint_here (event_child->stop_pc))
2886 debug_printf ("Stopped by GDB breakpoint.\n");
2887 if (debug_threads)
2888 debug_printf ("Hit a non-gdbserver trap event.\n");
2889 }
2890
2891 /* Alright, we're going to report a stop. */
2892
2893 if (!non_stop && !stabilizing_threads)
2894 {
2895 /* In all-stop, stop all threads. */
2896 stop_all_lwps (0, NULL);
2897
2898 /* If we're not waiting for a specific LWP, choose an event LWP
2899 from among those that have had events. Giving equal priority
2900 to all LWPs that have had events helps prevent
2901 starvation. */
2902 if (ptid_equal (ptid, minus_one_ptid))
2903 {
2904 event_child->status_pending_p = 1;
2905 event_child->status_pending = w;
2906
2907 select_event_lwp (&event_child);
2908
2909 /* current_thread and event_child must stay in sync. */
2910 current_thread = get_lwp_thread (event_child);
2911
2912 event_child->status_pending_p = 0;
2913 w = event_child->status_pending;
2914 }
2915
2916 /* Now that we've selected our final event LWP, cancel any
2917 breakpoints in other LWPs that have hit a GDB breakpoint.
2918 See the comment in cancel_breakpoints_callback to find out
2919 why. */
2920 find_inferior (&all_threads, cancel_breakpoints_callback, event_child);
2921
2922 /* If we were going a step-over, all other threads but the stepping one
2923 had been paused in start_step_over, with their suspend counts
2924 incremented. We don't want to do a full unstop/unpause, because we're
2925 in all-stop mode (so we want threads stopped), but we still need to
2926 unsuspend the other threads, to decrement their `suspended' count
2927 back. */
2928 if (step_over_finished)
2929 unsuspend_all_lwps (event_child);
2930
2931 /* Stabilize threads (move out of jump pads). */
2932 stabilize_threads ();
2933 }
2934 else
2935 {
2936 /* If we just finished a step-over, then all threads had been
2937 momentarily paused. In all-stop, that's fine, we want
2938 threads stopped by now anyway. In non-stop, we need to
2939 re-resume threads that GDB wanted to be running. */
2940 if (step_over_finished)
2941 unstop_all_lwps (1, event_child);
2942 }
2943
2944 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2945
2946 if (current_thread->last_resume_kind == resume_stop
2947 && WSTOPSIG (w) == SIGSTOP)
2948 {
2949 /* A thread that has been requested to stop by GDB with vCont;t,
2950 and it stopped cleanly, so report as SIG0. The use of
2951 SIGSTOP is an implementation detail. */
2952 ourstatus->value.sig = GDB_SIGNAL_0;
2953 }
2954 else if (current_thread->last_resume_kind == resume_stop
2955 && WSTOPSIG (w) != SIGSTOP)
2956 {
2957 /* A thread that has been requested to stop by GDB with vCont;t,
2958 but, it stopped for other reasons. */
2959 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2960 }
2961 else
2962 {
2963 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2964 }
2965
2966 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
2967
2968 if (debug_threads)
2969 {
2970 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
2971 target_pid_to_str (ptid_of (current_thread)),
2972 ourstatus->kind, ourstatus->value.sig);
2973 debug_exit ();
2974 }
2975
2976 return ptid_of (current_thread);
2977 }
2978
2979 /* Get rid of any pending event in the pipe. */
2980 static void
2981 async_file_flush (void)
2982 {
2983 int ret;
2984 char buf;
2985
2986 do
2987 ret = read (linux_event_pipe[0], &buf, 1);
2988 while (ret >= 0 || (ret == -1 && errno == EINTR));
2989 }
2990
2991 /* Put something in the pipe, so the event loop wakes up. */
2992 static void
2993 async_file_mark (void)
2994 {
2995 int ret;
2996
2997 async_file_flush ();
2998
2999 do
3000 ret = write (linux_event_pipe[1], "+", 1);
3001 while (ret == 0 || (ret == -1 && errno == EINTR));
3002
3003 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3004 be awakened anyway. */
3005 }
3006
3007 static ptid_t
3008 linux_wait (ptid_t ptid,
3009 struct target_waitstatus *ourstatus, int target_options)
3010 {
3011 ptid_t event_ptid;
3012
3013 /* Flush the async file first. */
3014 if (target_is_async_p ())
3015 async_file_flush ();
3016
3017 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3018
3019 /* If at least one stop was reported, there may be more. A single
3020 SIGCHLD can signal more than one child stop. */
3021 if (target_is_async_p ()
3022 && (target_options & TARGET_WNOHANG) != 0
3023 && !ptid_equal (event_ptid, null_ptid))
3024 async_file_mark ();
3025
3026 return event_ptid;
3027 }
3028
3029 /* Send a signal to an LWP. */
3030
3031 static int
3032 kill_lwp (unsigned long lwpid, int signo)
3033 {
3034 /* Use tkill, if possible, in case we are using nptl threads. If tkill
3035 fails, then we are not using nptl threads and we should be using kill. */
3036
3037 #ifdef __NR_tkill
3038 {
3039 static int tkill_failed;
3040
3041 if (!tkill_failed)
3042 {
3043 int ret;
3044
3045 errno = 0;
3046 ret = syscall (__NR_tkill, lwpid, signo);
3047 if (errno != ENOSYS)
3048 return ret;
3049 tkill_failed = 1;
3050 }
3051 }
3052 #endif
3053
3054 return kill (lwpid, signo);
3055 }
3056
3057 void
3058 linux_stop_lwp (struct lwp_info *lwp)
3059 {
3060 send_sigstop (lwp);
3061 }
3062
3063 static void
3064 send_sigstop (struct lwp_info *lwp)
3065 {
3066 int pid;
3067
3068 pid = lwpid_of (get_lwp_thread (lwp));
3069
3070 /* If we already have a pending stop signal for this process, don't
3071 send another. */
3072 if (lwp->stop_expected)
3073 {
3074 if (debug_threads)
3075 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3076
3077 return;
3078 }
3079
3080 if (debug_threads)
3081 debug_printf ("Sending sigstop to lwp %d\n", pid);
3082
3083 lwp->stop_expected = 1;
3084 kill_lwp (pid, SIGSTOP);
3085 }
3086
3087 static int
3088 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3089 {
3090 struct thread_info *thread = (struct thread_info *) entry;
3091 struct lwp_info *lwp = get_thread_lwp (thread);
3092
3093 /* Ignore EXCEPT. */
3094 if (lwp == except)
3095 return 0;
3096
3097 if (lwp->stopped)
3098 return 0;
3099
3100 send_sigstop (lwp);
3101 return 0;
3102 }
3103
3104 /* Increment the suspend count of an LWP, and stop it, if not stopped
3105 yet. */
3106 static int
3107 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3108 void *except)
3109 {
3110 struct thread_info *thread = (struct thread_info *) entry;
3111 struct lwp_info *lwp = get_thread_lwp (thread);
3112
3113 /* Ignore EXCEPT. */
3114 if (lwp == except)
3115 return 0;
3116
3117 lwp->suspended++;
3118
3119 return send_sigstop_callback (entry, except);
3120 }
3121
3122 static void
3123 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3124 {
3125 /* It's dead, really. */
3126 lwp->dead = 1;
3127
3128 /* Store the exit status for later. */
3129 lwp->status_pending_p = 1;
3130 lwp->status_pending = wstat;
3131
3132 /* Prevent trying to stop it. */
3133 lwp->stopped = 1;
3134
3135 /* No further stops are expected from a dead lwp. */
3136 lwp->stop_expected = 0;
3137 }
3138
3139 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3140
3141 static void
3142 wait_for_sigstop (void)
3143 {
3144 struct thread_info *saved_thread;
3145 ptid_t saved_tid;
3146 int wstat;
3147 int ret;
3148
3149 saved_thread = current_thread;
3150 if (saved_thread != NULL)
3151 saved_tid = saved_thread->entry.id;
3152 else
3153 saved_tid = null_ptid; /* avoid bogus unused warning */
3154
3155 if (debug_threads)
3156 debug_printf ("wait_for_sigstop: pulling events\n");
3157
3158 /* Passing NULL_PTID as filter indicates we want all events to be
3159 left pending. Eventually this returns when there are no
3160 unwaited-for children left. */
3161 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3162 &wstat, __WALL);
3163 gdb_assert (ret == -1);
3164
3165 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3166 current_thread = saved_thread;
3167 else
3168 {
3169 if (debug_threads)
3170 debug_printf ("Previously current thread died.\n");
3171
3172 if (non_stop)
3173 {
3174 /* We can't change the current inferior behind GDB's back,
3175 otherwise, a subsequent command may apply to the wrong
3176 process. */
3177 current_thread = NULL;
3178 }
3179 else
3180 {
3181 /* Set a valid thread as current. */
3182 set_desired_thread (0);
3183 }
3184 }
3185 }
3186
3187 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3188 move it out, because we need to report the stop event to GDB. For
3189 example, if the user puts a breakpoint in the jump pad, it's
3190 because she wants to debug it. */
3191
3192 static int
3193 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3194 {
3195 struct thread_info *thread = (struct thread_info *) entry;
3196 struct lwp_info *lwp = get_thread_lwp (thread);
3197
3198 gdb_assert (lwp->suspended == 0);
3199 gdb_assert (lwp->stopped);
3200
3201 /* Allow debugging the jump pad, gdb_collect, etc.. */
3202 return (supports_fast_tracepoints ()
3203 && agent_loaded_p ()
3204 && (gdb_breakpoint_here (lwp->stop_pc)
3205 || lwp->stopped_by_watchpoint
3206 || thread->last_resume_kind == resume_step)
3207 && linux_fast_tracepoint_collecting (lwp, NULL));
3208 }
3209
3210 static void
3211 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3212 {
3213 struct thread_info *thread = (struct thread_info *) entry;
3214 struct lwp_info *lwp = get_thread_lwp (thread);
3215 int *wstat;
3216
3217 gdb_assert (lwp->suspended == 0);
3218 gdb_assert (lwp->stopped);
3219
3220 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3221
3222 /* Allow debugging the jump pad, gdb_collect, etc. */
3223 if (!gdb_breakpoint_here (lwp->stop_pc)
3224 && !lwp->stopped_by_watchpoint
3225 && thread->last_resume_kind != resume_step
3226 && maybe_move_out_of_jump_pad (lwp, wstat))
3227 {
3228 if (debug_threads)
3229 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3230 lwpid_of (thread));
3231
3232 if (wstat)
3233 {
3234 lwp->status_pending_p = 0;
3235 enqueue_one_deferred_signal (lwp, wstat);
3236
3237 if (debug_threads)
3238 debug_printf ("Signal %d for LWP %ld deferred "
3239 "(in jump pad)\n",
3240 WSTOPSIG (*wstat), lwpid_of (thread));
3241 }
3242
3243 linux_resume_one_lwp (lwp, 0, 0, NULL);
3244 }
3245 else
3246 lwp->suspended++;
3247 }
3248
3249 static int
3250 lwp_running (struct inferior_list_entry *entry, void *data)
3251 {
3252 struct thread_info *thread = (struct thread_info *) entry;
3253 struct lwp_info *lwp = get_thread_lwp (thread);
3254
3255 if (lwp->dead)
3256 return 0;
3257 if (lwp->stopped)
3258 return 0;
3259 return 1;
3260 }
3261
3262 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3263 If SUSPEND, then also increase the suspend count of every LWP,
3264 except EXCEPT. */
3265
3266 static void
3267 stop_all_lwps (int suspend, struct lwp_info *except)
3268 {
3269 /* Should not be called recursively. */
3270 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3271
3272 if (debug_threads)
3273 {
3274 debug_enter ();
3275 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3276 suspend ? "stop-and-suspend" : "stop",
3277 except != NULL
3278 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3279 : "none");
3280 }
3281
3282 stopping_threads = (suspend
3283 ? STOPPING_AND_SUSPENDING_THREADS
3284 : STOPPING_THREADS);
3285
3286 if (suspend)
3287 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3288 else
3289 find_inferior (&all_threads, send_sigstop_callback, except);
3290 wait_for_sigstop ();
3291 stopping_threads = NOT_STOPPING_THREADS;
3292
3293 if (debug_threads)
3294 {
3295 debug_printf ("stop_all_lwps done, setting stopping_threads "
3296 "back to !stopping\n");
3297 debug_exit ();
3298 }
3299 }
3300
3301 /* Resume execution of the inferior process.
3302 If STEP is nonzero, single-step it.
3303 If SIGNAL is nonzero, give it that signal. */
3304
3305 static void
3306 linux_resume_one_lwp (struct lwp_info *lwp,
3307 int step, int signal, siginfo_t *info)
3308 {
3309 struct thread_info *thread = get_lwp_thread (lwp);
3310 struct thread_info *saved_thread;
3311 int fast_tp_collecting;
3312
3313 if (lwp->stopped == 0)
3314 return;
3315
3316 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3317
3318 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3319
3320 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3321 user used the "jump" command, or "set $pc = foo"). */
3322 if (lwp->stop_pc != get_pc (lwp))
3323 {
3324 /* Collecting 'while-stepping' actions doesn't make sense
3325 anymore. */
3326 release_while_stepping_state_list (thread);
3327 }
3328
3329 /* If we have pending signals or status, and a new signal, enqueue the
3330 signal. Also enqueue the signal if we are waiting to reinsert a
3331 breakpoint; it will be picked up again below. */
3332 if (signal != 0
3333 && (lwp->status_pending_p
3334 || lwp->pending_signals != NULL
3335 || lwp->bp_reinsert != 0
3336 || fast_tp_collecting))
3337 {
3338 struct pending_signals *p_sig;
3339 p_sig = xmalloc (sizeof (*p_sig));
3340 p_sig->prev = lwp->pending_signals;
3341 p_sig->signal = signal;
3342 if (info == NULL)
3343 memset (&p_sig->info, 0, sizeof (siginfo_t));
3344 else
3345 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3346 lwp->pending_signals = p_sig;
3347 }
3348
3349 if (lwp->status_pending_p)
3350 {
3351 if (debug_threads)
3352 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
3353 " has pending status\n",
3354 lwpid_of (thread), step ? "step" : "continue", signal,
3355 lwp->stop_expected ? "expected" : "not expected");
3356 return;
3357 }
3358
3359 saved_thread = current_thread;
3360 current_thread = thread;
3361
3362 if (debug_threads)
3363 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
3364 lwpid_of (thread), step ? "step" : "continue", signal,
3365 lwp->stop_expected ? "expected" : "not expected");
3366
3367 /* This bit needs some thinking about. If we get a signal that
3368 we must report while a single-step reinsert is still pending,
3369 we often end up resuming the thread. It might be better to
3370 (ew) allow a stack of pending events; then we could be sure that
3371 the reinsert happened right away and not lose any signals.
3372
3373 Making this stack would also shrink the window in which breakpoints are
3374 uninserted (see comment in linux_wait_for_lwp) but not enough for
3375 complete correctness, so it won't solve that problem. It may be
3376 worthwhile just to solve this one, however. */
3377 if (lwp->bp_reinsert != 0)
3378 {
3379 if (debug_threads)
3380 debug_printf (" pending reinsert at 0x%s\n",
3381 paddress (lwp->bp_reinsert));
3382
3383 if (can_hardware_single_step ())
3384 {
3385 if (fast_tp_collecting == 0)
3386 {
3387 if (step == 0)
3388 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3389 if (lwp->suspended)
3390 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3391 lwp->suspended);
3392 }
3393
3394 step = 1;
3395 }
3396
3397 /* Postpone any pending signal. It was enqueued above. */
3398 signal = 0;
3399 }
3400
3401 if (fast_tp_collecting == 1)
3402 {
3403 if (debug_threads)
3404 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3405 " (exit-jump-pad-bkpt)\n",
3406 lwpid_of (thread));
3407
3408 /* Postpone any pending signal. It was enqueued above. */
3409 signal = 0;
3410 }
3411 else if (fast_tp_collecting == 2)
3412 {
3413 if (debug_threads)
3414 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3415 " single-stepping\n",
3416 lwpid_of (thread));
3417
3418 if (can_hardware_single_step ())
3419 step = 1;
3420 else
3421 {
3422 internal_error (__FILE__, __LINE__,
3423 "moving out of jump pad single-stepping"
3424 " not implemented on this target");
3425 }
3426
3427 /* Postpone any pending signal. It was enqueued above. */
3428 signal = 0;
3429 }
3430
3431 /* If we have while-stepping actions in this thread set it stepping.
3432 If we have a signal to deliver, it may or may not be set to
3433 SIG_IGN, we don't know. Assume so, and allow collecting
3434 while-stepping into a signal handler. A possible smart thing to
3435 do would be to set an internal breakpoint at the signal return
3436 address, continue, and carry on catching this while-stepping
3437 action only when that breakpoint is hit. A future
3438 enhancement. */
3439 if (thread->while_stepping != NULL
3440 && can_hardware_single_step ())
3441 {
3442 if (debug_threads)
3443 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
3444 lwpid_of (thread));
3445 step = 1;
3446 }
3447
3448 if (debug_threads && the_low_target.get_pc != NULL)
3449 {
3450 struct regcache *regcache = get_thread_regcache (current_thread, 1);
3451 CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
3452 debug_printf (" resuming from pc 0x%lx\n", (long) pc);
3453 }
3454
3455 /* If we have pending signals, consume one unless we are trying to
3456 reinsert a breakpoint or we're trying to finish a fast tracepoint
3457 collect. */
3458 if (lwp->pending_signals != NULL
3459 && lwp->bp_reinsert == 0
3460 && fast_tp_collecting == 0)
3461 {
3462 struct pending_signals **p_sig;
3463
3464 p_sig = &lwp->pending_signals;
3465 while ((*p_sig)->prev != NULL)
3466 p_sig = &(*p_sig)->prev;
3467
3468 signal = (*p_sig)->signal;
3469 if ((*p_sig)->info.si_signo != 0)
3470 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
3471 &(*p_sig)->info);
3472
3473 free (*p_sig);
3474 *p_sig = NULL;
3475 }
3476
3477 if (the_low_target.prepare_to_resume != NULL)
3478 the_low_target.prepare_to_resume (lwp);
3479
3480 regcache_invalidate_thread (thread);
3481 errno = 0;
3482 lwp->stopped = 0;
3483 lwp->stopped_by_watchpoint = 0;
3484 lwp->stepping = step;
3485 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
3486 (PTRACE_TYPE_ARG3) 0,
3487 /* Coerce to a uintptr_t first to avoid potential gcc warning
3488 of coercing an 8 byte integer to a 4 byte pointer. */
3489 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
3490
3491 current_thread = saved_thread;
3492 if (errno)
3493 {
3494 /* ESRCH from ptrace either means that the thread was already
3495 running (an error) or that it is gone (a race condition). If
3496 it's gone, we will get a notification the next time we wait,
3497 so we can ignore the error. We could differentiate these
3498 two, but it's tricky without waiting; the thread still exists
3499 as a zombie, so sending it signal 0 would succeed. So just
3500 ignore ESRCH. */
3501 if (errno == ESRCH)
3502 return;
3503
3504 perror_with_name ("ptrace");
3505 }
3506 }
3507
3508 struct thread_resume_array
3509 {
3510 struct thread_resume *resume;
3511 size_t n;
3512 };
3513
3514 /* This function is called once per thread via find_inferior.
3515 ARG is a pointer to a thread_resume_array struct.
3516 We look up the thread specified by ENTRY in ARG, and mark the thread
3517 with a pointer to the appropriate resume request.
3518
3519 This algorithm is O(threads * resume elements), but resume elements
3520 is small (and will remain small at least until GDB supports thread
3521 suspension). */
3522
3523 static int
3524 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
3525 {
3526 struct thread_info *thread = (struct thread_info *) entry;
3527 struct lwp_info *lwp = get_thread_lwp (thread);
3528 int ndx;
3529 struct thread_resume_array *r;
3530
3531 r = arg;
3532
3533 for (ndx = 0; ndx < r->n; ndx++)
3534 {
3535 ptid_t ptid = r->resume[ndx].thread;
3536 if (ptid_equal (ptid, minus_one_ptid)
3537 || ptid_equal (ptid, entry->id)
3538 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
3539 of PID'. */
3540 || (ptid_get_pid (ptid) == pid_of (thread)
3541 && (ptid_is_pid (ptid)
3542 || ptid_get_lwp (ptid) == -1)))
3543 {
3544 if (r->resume[ndx].kind == resume_stop
3545 && thread->last_resume_kind == resume_stop)
3546 {
3547 if (debug_threads)
3548 debug_printf ("already %s LWP %ld at GDB's request\n",
3549 (thread->last_status.kind
3550 == TARGET_WAITKIND_STOPPED)
3551 ? "stopped"
3552 : "stopping",
3553 lwpid_of (thread));
3554
3555 continue;
3556 }
3557
3558 lwp->resume = &r->resume[ndx];
3559 thread->last_resume_kind = lwp->resume->kind;
3560
3561 lwp->step_range_start = lwp->resume->step_range_start;
3562 lwp->step_range_end = lwp->resume->step_range_end;
3563
3564 /* If we had a deferred signal to report, dequeue one now.
3565 This can happen if LWP gets more than one signal while
3566 trying to get out of a jump pad. */
3567 if (lwp->stopped
3568 && !lwp->status_pending_p
3569 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
3570 {
3571 lwp->status_pending_p = 1;
3572
3573 if (debug_threads)
3574 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
3575 "leaving status pending.\n",
3576 WSTOPSIG (lwp->status_pending),
3577 lwpid_of (thread));
3578 }
3579
3580 return 0;
3581 }
3582 }
3583
3584 /* No resume action for this thread. */
3585 lwp->resume = NULL;
3586
3587 return 0;
3588 }
3589
3590 /* find_inferior callback for linux_resume.
3591 Set *FLAG_P if this lwp has an interesting status pending. */
3592
3593 static int
3594 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3595 {
3596 struct thread_info *thread = (struct thread_info *) entry;
3597 struct lwp_info *lwp = get_thread_lwp (thread);
3598
3599 /* LWPs which will not be resumed are not interesting, because
3600 we might not wait for them next time through linux_wait. */
3601 if (lwp->resume == NULL)
3602 return 0;
3603
3604 if (lwp->status_pending_p)
3605 * (int *) flag_p = 1;
3606
3607 return 0;
3608 }
3609
3610 /* Return 1 if this lwp that GDB wants running is stopped at an
3611 internal breakpoint that we need to step over. It assumes that any
3612 required STOP_PC adjustment has already been propagated to the
3613 inferior's regcache. */
3614
3615 static int
3616 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3617 {
3618 struct thread_info *thread = (struct thread_info *) entry;
3619 struct lwp_info *lwp = get_thread_lwp (thread);
3620 struct thread_info *saved_thread;
3621 CORE_ADDR pc;
3622
3623 /* LWPs which will not be resumed are not interesting, because we
3624 might not wait for them next time through linux_wait. */
3625
3626 if (!lwp->stopped)
3627 {
3628 if (debug_threads)
3629 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
3630 lwpid_of (thread));
3631 return 0;
3632 }
3633
3634 if (thread->last_resume_kind == resume_stop)
3635 {
3636 if (debug_threads)
3637 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
3638 " stopped\n",
3639 lwpid_of (thread));
3640 return 0;
3641 }
3642
3643 gdb_assert (lwp->suspended >= 0);
3644
3645 if (lwp->suspended)
3646 {
3647 if (debug_threads)
3648 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
3649 lwpid_of (thread));
3650 return 0;
3651 }
3652
3653 if (!lwp->need_step_over)
3654 {
3655 if (debug_threads)
3656 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
3657 }
3658
3659 if (lwp->status_pending_p)
3660 {
3661 if (debug_threads)
3662 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
3663 " status.\n",
3664 lwpid_of (thread));
3665 return 0;
3666 }
3667
3668 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3669 or we have. */
3670 pc = get_pc (lwp);
3671
3672 /* If the PC has changed since we stopped, then don't do anything,
3673 and let the breakpoint/tracepoint be hit. This happens if, for
3674 instance, GDB handled the decr_pc_after_break subtraction itself,
3675 GDB is OOL stepping this thread, or the user has issued a "jump"
3676 command, or poked thread's registers herself. */
3677 if (pc != lwp->stop_pc)
3678 {
3679 if (debug_threads)
3680 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
3681 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3682 lwpid_of (thread),
3683 paddress (lwp->stop_pc), paddress (pc));
3684
3685 lwp->need_step_over = 0;
3686 return 0;
3687 }
3688
3689 saved_thread = current_thread;
3690 current_thread = thread;
3691
3692 /* We can only step over breakpoints we know about. */
3693 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3694 {
3695 /* Don't step over a breakpoint that GDB expects to hit
3696 though. If the condition is being evaluated on the target's side
3697 and it evaluate to false, step over this breakpoint as well. */
3698 if (gdb_breakpoint_here (pc)
3699 && gdb_condition_true_at_breakpoint (pc)
3700 && gdb_no_commands_at_breakpoint (pc))
3701 {
3702 if (debug_threads)
3703 debug_printf ("Need step over [LWP %ld]? yes, but found"
3704 " GDB breakpoint at 0x%s; skipping step over\n",
3705 lwpid_of (thread), paddress (pc));
3706
3707 current_thread = saved_thread;
3708 return 0;
3709 }
3710 else
3711 {
3712 if (debug_threads)
3713 debug_printf ("Need step over [LWP %ld]? yes, "
3714 "found breakpoint at 0x%s\n",
3715 lwpid_of (thread), paddress (pc));
3716
3717 /* We've found an lwp that needs stepping over --- return 1 so
3718 that find_inferior stops looking. */
3719 current_thread = saved_thread;
3720
3721 /* If the step over is cancelled, this is set again. */
3722 lwp->need_step_over = 0;
3723 return 1;
3724 }
3725 }
3726
3727 current_thread = saved_thread;
3728
3729 if (debug_threads)
3730 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
3731 " at 0x%s\n",
3732 lwpid_of (thread), paddress (pc));
3733
3734 return 0;
3735 }
3736
3737 /* Start a step-over operation on LWP. When LWP stopped at a
3738 breakpoint, to make progress, we need to remove the breakpoint out
3739 of the way. If we let other threads run while we do that, they may
3740 pass by the breakpoint location and miss hitting it. To avoid
3741 that, a step-over momentarily stops all threads while LWP is
3742 single-stepped while the breakpoint is temporarily uninserted from
3743 the inferior. When the single-step finishes, we reinsert the
3744 breakpoint, and let all threads that are supposed to be running,
3745 run again.
3746
3747 On targets that don't support hardware single-step, we don't
3748 currently support full software single-stepping. Instead, we only
3749 support stepping over the thread event breakpoint, by asking the
3750 low target where to place a reinsert breakpoint. Since this
3751 routine assumes the breakpoint being stepped over is a thread event
3752 breakpoint, it usually assumes the return address of the current
3753 function is a good enough place to set the reinsert breakpoint. */
3754
3755 static int
3756 start_step_over (struct lwp_info *lwp)
3757 {
3758 struct thread_info *thread = get_lwp_thread (lwp);
3759 struct thread_info *saved_thread;
3760 CORE_ADDR pc;
3761 int step;
3762
3763 if (debug_threads)
3764 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
3765 lwpid_of (thread));
3766
3767 stop_all_lwps (1, lwp);
3768 gdb_assert (lwp->suspended == 0);
3769
3770 if (debug_threads)
3771 debug_printf ("Done stopping all threads for step-over.\n");
3772
3773 /* Note, we should always reach here with an already adjusted PC,
3774 either by GDB (if we're resuming due to GDB's request), or by our
3775 caller, if we just finished handling an internal breakpoint GDB
3776 shouldn't care about. */
3777 pc = get_pc (lwp);
3778
3779 saved_thread = current_thread;
3780 current_thread = thread;
3781
3782 lwp->bp_reinsert = pc;
3783 uninsert_breakpoints_at (pc);
3784 uninsert_fast_tracepoint_jumps_at (pc);
3785
3786 if (can_hardware_single_step ())
3787 {
3788 step = 1;
3789 }
3790 else
3791 {
3792 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
3793 set_reinsert_breakpoint (raddr);
3794 step = 0;
3795 }
3796
3797 current_thread = saved_thread;
3798
3799 linux_resume_one_lwp (lwp, step, 0, NULL);
3800
3801 /* Require next event from this LWP. */
3802 step_over_bkpt = thread->entry.id;
3803 return 1;
3804 }
3805
3806 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
3807 start_step_over, if still there, and delete any reinsert
3808 breakpoints we've set, on non hardware single-step targets. */
3809
3810 static int
3811 finish_step_over (struct lwp_info *lwp)
3812 {
3813 if (lwp->bp_reinsert != 0)
3814 {
3815 if (debug_threads)
3816 debug_printf ("Finished step over.\n");
3817
3818 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
3819 may be no breakpoint to reinsert there by now. */
3820 reinsert_breakpoints_at (lwp->bp_reinsert);
3821 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
3822
3823 lwp->bp_reinsert = 0;
3824
3825 /* Delete any software-single-step reinsert breakpoints. No
3826 longer needed. We don't have to worry about other threads
3827 hitting this trap, and later not being able to explain it,
3828 because we were stepping over a breakpoint, and we hold all
3829 threads but LWP stopped while doing that. */
3830 if (!can_hardware_single_step ())
3831 delete_reinsert_breakpoints ();
3832
3833 step_over_bkpt = null_ptid;
3834 return 1;
3835 }
3836 else
3837 return 0;
3838 }
3839
3840 /* This function is called once per thread. We check the thread's resume
3841 request, which will tell us whether to resume, step, or leave the thread
3842 stopped; and what signal, if any, it should be sent.
3843
3844 For threads which we aren't explicitly told otherwise, we preserve
3845 the stepping flag; this is used for stepping over gdbserver-placed
3846 breakpoints.
3847
3848 If pending_flags was set in any thread, we queue any needed
3849 signals, since we won't actually resume. We already have a pending
3850 event to report, so we don't need to preserve any step requests;
3851 they should be re-issued if necessary. */
3852
3853 static int
3854 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
3855 {
3856 struct thread_info *thread = (struct thread_info *) entry;
3857 struct lwp_info *lwp = get_thread_lwp (thread);
3858 int step;
3859 int leave_all_stopped = * (int *) arg;
3860 int leave_pending;
3861
3862 if (lwp->resume == NULL)
3863 return 0;
3864
3865 if (lwp->resume->kind == resume_stop)
3866 {
3867 if (debug_threads)
3868 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
3869
3870 if (!lwp->stopped)
3871 {
3872 if (debug_threads)
3873 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
3874
3875 /* Stop the thread, and wait for the event asynchronously,
3876 through the event loop. */
3877 send_sigstop (lwp);
3878 }
3879 else
3880 {
3881 if (debug_threads)
3882 debug_printf ("already stopped LWP %ld\n",
3883 lwpid_of (thread));
3884
3885 /* The LWP may have been stopped in an internal event that
3886 was not meant to be notified back to GDB (e.g., gdbserver
3887 breakpoint), so we should be reporting a stop event in
3888 this case too. */
3889
3890 /* If the thread already has a pending SIGSTOP, this is a
3891 no-op. Otherwise, something later will presumably resume
3892 the thread and this will cause it to cancel any pending
3893 operation, due to last_resume_kind == resume_stop. If
3894 the thread already has a pending status to report, we
3895 will still report it the next time we wait - see
3896 status_pending_p_callback. */
3897
3898 /* If we already have a pending signal to report, then
3899 there's no need to queue a SIGSTOP, as this means we're
3900 midway through moving the LWP out of the jumppad, and we
3901 will report the pending signal as soon as that is
3902 finished. */
3903 if (lwp->pending_signals_to_report == NULL)
3904 send_sigstop (lwp);
3905 }
3906
3907 /* For stop requests, we're done. */
3908 lwp->resume = NULL;
3909 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3910 return 0;
3911 }
3912
3913 /* If this thread which is about to be resumed has a pending status,
3914 then don't resume any threads - we can just report the pending
3915 status. Make sure to queue any signals that would otherwise be
3916 sent. In all-stop mode, we do this decision based on if *any*
3917 thread has a pending status. If there's a thread that needs the
3918 step-over-breakpoint dance, then don't resume any other thread
3919 but that particular one. */
3920 leave_pending = (lwp->status_pending_p || leave_all_stopped);
3921
3922 if (!leave_pending)
3923 {
3924 if (debug_threads)
3925 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
3926
3927 step = (lwp->resume->kind == resume_step);
3928 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
3929 }
3930 else
3931 {
3932 if (debug_threads)
3933 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
3934
3935 /* If we have a new signal, enqueue the signal. */
3936 if (lwp->resume->sig != 0)
3937 {
3938 struct pending_signals *p_sig;
3939 p_sig = xmalloc (sizeof (*p_sig));
3940 p_sig->prev = lwp->pending_signals;
3941 p_sig->signal = lwp->resume->sig;
3942 memset (&p_sig->info, 0, sizeof (siginfo_t));
3943
3944 /* If this is the same signal we were previously stopped by,
3945 make sure to queue its siginfo. We can ignore the return
3946 value of ptrace; if it fails, we'll skip
3947 PTRACE_SETSIGINFO. */
3948 if (WIFSTOPPED (lwp->last_status)
3949 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
3950 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
3951 &p_sig->info);
3952
3953 lwp->pending_signals = p_sig;
3954 }
3955 }
3956
3957 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3958 lwp->resume = NULL;
3959 return 0;
3960 }
3961
3962 static void
3963 linux_resume (struct thread_resume *resume_info, size_t n)
3964 {
3965 struct thread_resume_array array = { resume_info, n };
3966 struct thread_info *need_step_over = NULL;
3967 int any_pending;
3968 int leave_all_stopped;
3969
3970 if (debug_threads)
3971 {
3972 debug_enter ();
3973 debug_printf ("linux_resume:\n");
3974 }
3975
3976 find_inferior (&all_threads, linux_set_resume_request, &array);
3977
3978 /* If there is a thread which would otherwise be resumed, which has
3979 a pending status, then don't resume any threads - we can just
3980 report the pending status. Make sure to queue any signals that
3981 would otherwise be sent. In non-stop mode, we'll apply this
3982 logic to each thread individually. We consume all pending events
3983 before considering to start a step-over (in all-stop). */
3984 any_pending = 0;
3985 if (!non_stop)
3986 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
3987
3988 /* If there is a thread which would otherwise be resumed, which is
3989 stopped at a breakpoint that needs stepping over, then don't
3990 resume any threads - have it step over the breakpoint with all
3991 other threads stopped, then resume all threads again. Make sure
3992 to queue any signals that would otherwise be delivered or
3993 queued. */
3994 if (!any_pending && supports_breakpoints ())
3995 need_step_over
3996 = (struct thread_info *) find_inferior (&all_threads,
3997 need_step_over_p, NULL);
3998
3999 leave_all_stopped = (need_step_over != NULL || any_pending);
4000
4001 if (debug_threads)
4002 {
4003 if (need_step_over != NULL)
4004 debug_printf ("Not resuming all, need step over\n");
4005 else if (any_pending)
4006 debug_printf ("Not resuming, all-stop and found "
4007 "an LWP with pending status\n");
4008 else
4009 debug_printf ("Resuming, no pending status or step over needed\n");
4010 }
4011
4012 /* Even if we're leaving threads stopped, queue all signals we'd
4013 otherwise deliver. */
4014 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4015
4016 if (need_step_over)
4017 start_step_over (get_thread_lwp (need_step_over));
4018
4019 if (debug_threads)
4020 {
4021 debug_printf ("linux_resume done\n");
4022 debug_exit ();
4023 }
4024 }
4025
4026 /* This function is called once per thread. We check the thread's
4027 last resume request, which will tell us whether to resume, step, or
4028 leave the thread stopped. Any signal the client requested to be
4029 delivered has already been enqueued at this point.
4030
4031 If any thread that GDB wants running is stopped at an internal
4032 breakpoint that needs stepping over, we start a step-over operation
4033 on that particular thread, and leave all others stopped. */
4034
4035 static int
4036 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4037 {
4038 struct thread_info *thread = (struct thread_info *) entry;
4039 struct lwp_info *lwp = get_thread_lwp (thread);
4040 int step;
4041
4042 if (lwp == except)
4043 return 0;
4044
4045 if (debug_threads)
4046 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4047
4048 if (!lwp->stopped)
4049 {
4050 if (debug_threads)
4051 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4052 return 0;
4053 }
4054
4055 if (thread->last_resume_kind == resume_stop
4056 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4057 {
4058 if (debug_threads)
4059 debug_printf (" client wants LWP to remain %ld stopped\n",
4060 lwpid_of (thread));
4061 return 0;
4062 }
4063
4064 if (lwp->status_pending_p)
4065 {
4066 if (debug_threads)
4067 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4068 lwpid_of (thread));
4069 return 0;
4070 }
4071
4072 gdb_assert (lwp->suspended >= 0);
4073
4074 if (lwp->suspended)
4075 {
4076 if (debug_threads)
4077 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4078 return 0;
4079 }
4080
4081 if (thread->last_resume_kind == resume_stop
4082 && lwp->pending_signals_to_report == NULL
4083 && lwp->collecting_fast_tracepoint == 0)
4084 {
4085 /* We haven't reported this LWP as stopped yet (otherwise, the
4086 last_status.kind check above would catch it, and we wouldn't
4087 reach here. This LWP may have been momentarily paused by a
4088 stop_all_lwps call while handling for example, another LWP's
4089 step-over. In that case, the pending expected SIGSTOP signal
4090 that was queued at vCont;t handling time will have already
4091 been consumed by wait_for_sigstop, and so we need to requeue
4092 another one here. Note that if the LWP already has a SIGSTOP
4093 pending, this is a no-op. */
4094
4095 if (debug_threads)
4096 debug_printf ("Client wants LWP %ld to stop. "
4097 "Making sure it has a SIGSTOP pending\n",
4098 lwpid_of (thread));
4099
4100 send_sigstop (lwp);
4101 }
4102
4103 step = thread->last_resume_kind == resume_step;
4104 linux_resume_one_lwp (lwp, step, 0, NULL);
4105 return 0;
4106 }
4107
4108 static int
4109 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4110 {
4111 struct thread_info *thread = (struct thread_info *) entry;
4112 struct lwp_info *lwp = get_thread_lwp (thread);
4113
4114 if (lwp == except)
4115 return 0;
4116
4117 lwp->suspended--;
4118 gdb_assert (lwp->suspended >= 0);
4119
4120 return proceed_one_lwp (entry, except);
4121 }
4122
4123 /* When we finish a step-over, set threads running again. If there's
4124 another thread that may need a step-over, now's the time to start
4125 it. Eventually, we'll move all threads past their breakpoints. */
4126
4127 static void
4128 proceed_all_lwps (void)
4129 {
4130 struct thread_info *need_step_over;
4131
4132 /* If there is a thread which would otherwise be resumed, which is
4133 stopped at a breakpoint that needs stepping over, then don't
4134 resume any threads - have it step over the breakpoint with all
4135 other threads stopped, then resume all threads again. */
4136
4137 if (supports_breakpoints ())
4138 {
4139 need_step_over
4140 = (struct thread_info *) find_inferior (&all_threads,
4141 need_step_over_p, NULL);
4142
4143 if (need_step_over != NULL)
4144 {
4145 if (debug_threads)
4146 debug_printf ("proceed_all_lwps: found "
4147 "thread %ld needing a step-over\n",
4148 lwpid_of (need_step_over));
4149
4150 start_step_over (get_thread_lwp (need_step_over));
4151 return;
4152 }
4153 }
4154
4155 if (debug_threads)
4156 debug_printf ("Proceeding, no step-over needed\n");
4157
4158 find_inferior (&all_threads, proceed_one_lwp, NULL);
4159 }
4160
4161 /* Stopped LWPs that the client wanted to be running, that don't have
4162 pending statuses, are set to run again, except for EXCEPT, if not
4163 NULL. This undoes a stop_all_lwps call. */
4164
4165 static void
4166 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4167 {
4168 if (debug_threads)
4169 {
4170 debug_enter ();
4171 if (except)
4172 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4173 lwpid_of (get_lwp_thread (except)));
4174 else
4175 debug_printf ("unstopping all lwps\n");
4176 }
4177
4178 if (unsuspend)
4179 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4180 else
4181 find_inferior (&all_threads, proceed_one_lwp, except);
4182
4183 if (debug_threads)
4184 {
4185 debug_printf ("unstop_all_lwps done\n");
4186 debug_exit ();
4187 }
4188 }
4189
4190
4191 #ifdef HAVE_LINUX_REGSETS
4192
4193 #define use_linux_regsets 1
4194
4195 /* Returns true if REGSET has been disabled. */
4196
4197 static int
4198 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4199 {
4200 return (info->disabled_regsets != NULL
4201 && info->disabled_regsets[regset - info->regsets]);
4202 }
4203
4204 /* Disable REGSET. */
4205
4206 static void
4207 disable_regset (struct regsets_info *info, struct regset_info *regset)
4208 {
4209 int dr_offset;
4210
4211 dr_offset = regset - info->regsets;
4212 if (info->disabled_regsets == NULL)
4213 info->disabled_regsets = xcalloc (1, info->num_regsets);
4214 info->disabled_regsets[dr_offset] = 1;
4215 }
4216
4217 static int
4218 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
4219 struct regcache *regcache)
4220 {
4221 struct regset_info *regset;
4222 int saw_general_regs = 0;
4223 int pid;
4224 struct iovec iov;
4225
4226 pid = lwpid_of (current_thread);
4227 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4228 {
4229 void *buf, *data;
4230 int nt_type, res;
4231
4232 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4233 continue;
4234
4235 buf = xmalloc (regset->size);
4236
4237 nt_type = regset->nt_type;
4238 if (nt_type)
4239 {
4240 iov.iov_base = buf;
4241 iov.iov_len = regset->size;
4242 data = (void *) &iov;
4243 }
4244 else
4245 data = buf;
4246
4247 #ifndef __sparc__
4248 res = ptrace (regset->get_request, pid,
4249 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4250 #else
4251 res = ptrace (regset->get_request, pid, data, nt_type);
4252 #endif
4253 if (res < 0)
4254 {
4255 if (errno == EIO)
4256 {
4257 /* If we get EIO on a regset, do not try it again for
4258 this process mode. */
4259 disable_regset (regsets_info, regset);
4260 }
4261 else if (errno == ENODATA)
4262 {
4263 /* ENODATA may be returned if the regset is currently
4264 not "active". This can happen in normal operation,
4265 so suppress the warning in this case. */
4266 }
4267 else
4268 {
4269 char s[256];
4270 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4271 pid);
4272 perror (s);
4273 }
4274 }
4275 else
4276 {
4277 if (regset->type == GENERAL_REGS)
4278 saw_general_regs = 1;
4279 regset->store_function (regcache, buf);
4280 }
4281 free (buf);
4282 }
4283 if (saw_general_regs)
4284 return 0;
4285 else
4286 return 1;
4287 }
4288
4289 static int
4290 regsets_store_inferior_registers (struct regsets_info *regsets_info,
4291 struct regcache *regcache)
4292 {
4293 struct regset_info *regset;
4294 int saw_general_regs = 0;
4295 int pid;
4296 struct iovec iov;
4297
4298 pid = lwpid_of (current_thread);
4299 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4300 {
4301 void *buf, *data;
4302 int nt_type, res;
4303
4304 if (regset->size == 0 || regset_disabled (regsets_info, regset)
4305 || regset->fill_function == NULL)
4306 continue;
4307
4308 buf = xmalloc (regset->size);
4309
4310 /* First fill the buffer with the current register set contents,
4311 in case there are any items in the kernel's regset that are
4312 not in gdbserver's regcache. */
4313
4314 nt_type = regset->nt_type;
4315 if (nt_type)
4316 {
4317 iov.iov_base = buf;
4318 iov.iov_len = regset->size;
4319 data = (void *) &iov;
4320 }
4321 else
4322 data = buf;
4323
4324 #ifndef __sparc__
4325 res = ptrace (regset->get_request, pid,
4326 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4327 #else
4328 res = ptrace (regset->get_request, pid, data, nt_type);
4329 #endif
4330
4331 if (res == 0)
4332 {
4333 /* Then overlay our cached registers on that. */
4334 regset->fill_function (regcache, buf);
4335
4336 /* Only now do we write the register set. */
4337 #ifndef __sparc__
4338 res = ptrace (regset->set_request, pid,
4339 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4340 #else
4341 res = ptrace (regset->set_request, pid, data, nt_type);
4342 #endif
4343 }
4344
4345 if (res < 0)
4346 {
4347 if (errno == EIO)
4348 {
4349 /* If we get EIO on a regset, do not try it again for
4350 this process mode. */
4351 disable_regset (regsets_info, regset);
4352 }
4353 else if (errno == ESRCH)
4354 {
4355 /* At this point, ESRCH should mean the process is
4356 already gone, in which case we simply ignore attempts
4357 to change its registers. See also the related
4358 comment in linux_resume_one_lwp. */
4359 free (buf);
4360 return 0;
4361 }
4362 else
4363 {
4364 perror ("Warning: ptrace(regsets_store_inferior_registers)");
4365 }
4366 }
4367 else if (regset->type == GENERAL_REGS)
4368 saw_general_regs = 1;
4369 free (buf);
4370 }
4371 if (saw_general_regs)
4372 return 0;
4373 else
4374 return 1;
4375 }
4376
4377 #else /* !HAVE_LINUX_REGSETS */
4378
4379 #define use_linux_regsets 0
4380 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
4381 #define regsets_store_inferior_registers(regsets_info, regcache) 1
4382
4383 #endif
4384
4385 /* Return 1 if register REGNO is supported by one of the regset ptrace
4386 calls or 0 if it has to be transferred individually. */
4387
4388 static int
4389 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
4390 {
4391 unsigned char mask = 1 << (regno % 8);
4392 size_t index = regno / 8;
4393
4394 return (use_linux_regsets
4395 && (regs_info->regset_bitmap == NULL
4396 || (regs_info->regset_bitmap[index] & mask) != 0));
4397 }
4398
4399 #ifdef HAVE_LINUX_USRREGS
4400
4401 int
4402 register_addr (const struct usrregs_info *usrregs, int regnum)
4403 {
4404 int addr;
4405
4406 if (regnum < 0 || regnum >= usrregs->num_regs)
4407 error ("Invalid register number %d.", regnum);
4408
4409 addr = usrregs->regmap[regnum];
4410
4411 return addr;
4412 }
4413
4414 /* Fetch one register. */
4415 static void
4416 fetch_register (const struct usrregs_info *usrregs,
4417 struct regcache *regcache, int regno)
4418 {
4419 CORE_ADDR regaddr;
4420 int i, size;
4421 char *buf;
4422 int pid;
4423
4424 if (regno >= usrregs->num_regs)
4425 return;
4426 if ((*the_low_target.cannot_fetch_register) (regno))
4427 return;
4428
4429 regaddr = register_addr (usrregs, regno);
4430 if (regaddr == -1)
4431 return;
4432
4433 size = ((register_size (regcache->tdesc, regno)
4434 + sizeof (PTRACE_XFER_TYPE) - 1)
4435 & -sizeof (PTRACE_XFER_TYPE));
4436 buf = alloca (size);
4437
4438 pid = lwpid_of (current_thread);
4439 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4440 {
4441 errno = 0;
4442 *(PTRACE_XFER_TYPE *) (buf + i) =
4443 ptrace (PTRACE_PEEKUSER, pid,
4444 /* Coerce to a uintptr_t first to avoid potential gcc warning
4445 of coercing an 8 byte integer to a 4 byte pointer. */
4446 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
4447 regaddr += sizeof (PTRACE_XFER_TYPE);
4448 if (errno != 0)
4449 error ("reading register %d: %s", regno, strerror (errno));
4450 }
4451
4452 if (the_low_target.supply_ptrace_register)
4453 the_low_target.supply_ptrace_register (regcache, regno, buf);
4454 else
4455 supply_register (regcache, regno, buf);
4456 }
4457
4458 /* Store one register. */
4459 static void
4460 store_register (const struct usrregs_info *usrregs,
4461 struct regcache *regcache, int regno)
4462 {
4463 CORE_ADDR regaddr;
4464 int i, size;
4465 char *buf;
4466 int pid;
4467
4468 if (regno >= usrregs->num_regs)
4469 return;
4470 if ((*the_low_target.cannot_store_register) (regno))
4471 return;
4472
4473 regaddr = register_addr (usrregs, regno);
4474 if (regaddr == -1)
4475 return;
4476
4477 size = ((register_size (regcache->tdesc, regno)
4478 + sizeof (PTRACE_XFER_TYPE) - 1)
4479 & -sizeof (PTRACE_XFER_TYPE));
4480 buf = alloca (size);
4481 memset (buf, 0, size);
4482
4483 if (the_low_target.collect_ptrace_register)
4484 the_low_target.collect_ptrace_register (regcache, regno, buf);
4485 else
4486 collect_register (regcache, regno, buf);
4487
4488 pid = lwpid_of (current_thread);
4489 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4490 {
4491 errno = 0;
4492 ptrace (PTRACE_POKEUSER, pid,
4493 /* Coerce to a uintptr_t first to avoid potential gcc warning
4494 about coercing an 8 byte integer to a 4 byte pointer. */
4495 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
4496 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
4497 if (errno != 0)
4498 {
4499 /* At this point, ESRCH should mean the process is
4500 already gone, in which case we simply ignore attempts
4501 to change its registers. See also the related
4502 comment in linux_resume_one_lwp. */
4503 if (errno == ESRCH)
4504 return;
4505
4506 if ((*the_low_target.cannot_store_register) (regno) == 0)
4507 error ("writing register %d: %s", regno, strerror (errno));
4508 }
4509 regaddr += sizeof (PTRACE_XFER_TYPE);
4510 }
4511 }
4512
4513 /* Fetch all registers, or just one, from the child process.
4514 If REGNO is -1, do this for all registers, skipping any that are
4515 assumed to have been retrieved by regsets_fetch_inferior_registers,
4516 unless ALL is non-zero.
4517 Otherwise, REGNO specifies which register (so we can save time). */
4518 static void
4519 usr_fetch_inferior_registers (const struct regs_info *regs_info,
4520 struct regcache *regcache, int regno, int all)
4521 {
4522 struct usrregs_info *usr = regs_info->usrregs;
4523
4524 if (regno == -1)
4525 {
4526 for (regno = 0; regno < usr->num_regs; regno++)
4527 if (all || !linux_register_in_regsets (regs_info, regno))
4528 fetch_register (usr, regcache, regno);
4529 }
4530 else
4531 fetch_register (usr, regcache, regno);
4532 }
4533
4534 /* Store our register values back into the inferior.
4535 If REGNO is -1, do this for all registers, skipping any that are
4536 assumed to have been saved by regsets_store_inferior_registers,
4537 unless ALL is non-zero.
4538 Otherwise, REGNO specifies which register (so we can save time). */
4539 static void
4540 usr_store_inferior_registers (const struct regs_info *regs_info,
4541 struct regcache *regcache, int regno, int all)
4542 {
4543 struct usrregs_info *usr = regs_info->usrregs;
4544
4545 if (regno == -1)
4546 {
4547 for (regno = 0; regno < usr->num_regs; regno++)
4548 if (all || !linux_register_in_regsets (regs_info, regno))
4549 store_register (usr, regcache, regno);
4550 }
4551 else
4552 store_register (usr, regcache, regno);
4553 }
4554
4555 #else /* !HAVE_LINUX_USRREGS */
4556
4557 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4558 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4559
4560 #endif
4561
4562
4563 void
4564 linux_fetch_registers (struct regcache *regcache, int regno)
4565 {
4566 int use_regsets;
4567 int all = 0;
4568 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4569
4570 if (regno == -1)
4571 {
4572 if (the_low_target.fetch_register != NULL
4573 && regs_info->usrregs != NULL)
4574 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
4575 (*the_low_target.fetch_register) (regcache, regno);
4576
4577 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
4578 if (regs_info->usrregs != NULL)
4579 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
4580 }
4581 else
4582 {
4583 if (the_low_target.fetch_register != NULL
4584 && (*the_low_target.fetch_register) (regcache, regno))
4585 return;
4586
4587 use_regsets = linux_register_in_regsets (regs_info, regno);
4588 if (use_regsets)
4589 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
4590 regcache);
4591 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4592 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
4593 }
4594 }
4595
4596 void
4597 linux_store_registers (struct regcache *regcache, int regno)
4598 {
4599 int use_regsets;
4600 int all = 0;
4601 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4602
4603 if (regno == -1)
4604 {
4605 all = regsets_store_inferior_registers (regs_info->regsets_info,
4606 regcache);
4607 if (regs_info->usrregs != NULL)
4608 usr_store_inferior_registers (regs_info, regcache, regno, all);
4609 }
4610 else
4611 {
4612 use_regsets = linux_register_in_regsets (regs_info, regno);
4613 if (use_regsets)
4614 all = regsets_store_inferior_registers (regs_info->regsets_info,
4615 regcache);
4616 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4617 usr_store_inferior_registers (regs_info, regcache, regno, 1);
4618 }
4619 }
4620
4621
4622 /* Copy LEN bytes from inferior's memory starting at MEMADDR
4623 to debugger memory starting at MYADDR. */
4624
4625 static int
4626 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
4627 {
4628 int pid = lwpid_of (current_thread);
4629 register PTRACE_XFER_TYPE *buffer;
4630 register CORE_ADDR addr;
4631 register int count;
4632 char filename[64];
4633 register int i;
4634 int ret;
4635 int fd;
4636
4637 /* Try using /proc. Don't bother for one word. */
4638 if (len >= 3 * sizeof (long))
4639 {
4640 int bytes;
4641
4642 /* We could keep this file open and cache it - possibly one per
4643 thread. That requires some juggling, but is even faster. */
4644 sprintf (filename, "/proc/%d/mem", pid);
4645 fd = open (filename, O_RDONLY | O_LARGEFILE);
4646 if (fd == -1)
4647 goto no_proc;
4648
4649 /* If pread64 is available, use it. It's faster if the kernel
4650 supports it (only one syscall), and it's 64-bit safe even on
4651 32-bit platforms (for instance, SPARC debugging a SPARC64
4652 application). */
4653 #ifdef HAVE_PREAD64
4654 bytes = pread64 (fd, myaddr, len, memaddr);
4655 #else
4656 bytes = -1;
4657 if (lseek (fd, memaddr, SEEK_SET) != -1)
4658 bytes = read (fd, myaddr, len);
4659 #endif
4660
4661 close (fd);
4662 if (bytes == len)
4663 return 0;
4664
4665 /* Some data was read, we'll try to get the rest with ptrace. */
4666 if (bytes > 0)
4667 {
4668 memaddr += bytes;
4669 myaddr += bytes;
4670 len -= bytes;
4671 }
4672 }
4673
4674 no_proc:
4675 /* Round starting address down to longword boundary. */
4676 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4677 /* Round ending address up; get number of longwords that makes. */
4678 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4679 / sizeof (PTRACE_XFER_TYPE));
4680 /* Allocate buffer of that many longwords. */
4681 buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4682
4683 /* Read all the longwords */
4684 errno = 0;
4685 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4686 {
4687 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4688 about coercing an 8 byte integer to a 4 byte pointer. */
4689 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
4690 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4691 (PTRACE_TYPE_ARG4) 0);
4692 if (errno)
4693 break;
4694 }
4695 ret = errno;
4696
4697 /* Copy appropriate bytes out of the buffer. */
4698 if (i > 0)
4699 {
4700 i *= sizeof (PTRACE_XFER_TYPE);
4701 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
4702 memcpy (myaddr,
4703 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4704 i < len ? i : len);
4705 }
4706
4707 return ret;
4708 }
4709
4710 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
4711 memory at MEMADDR. On failure (cannot write to the inferior)
4712 returns the value of errno. Always succeeds if LEN is zero. */
4713
4714 static int
4715 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
4716 {
4717 register int i;
4718 /* Round starting address down to longword boundary. */
4719 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4720 /* Round ending address up; get number of longwords that makes. */
4721 register int count
4722 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4723 / sizeof (PTRACE_XFER_TYPE);
4724
4725 /* Allocate buffer of that many longwords. */
4726 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
4727 alloca (count * sizeof (PTRACE_XFER_TYPE));
4728
4729 int pid = lwpid_of (current_thread);
4730
4731 if (len == 0)
4732 {
4733 /* Zero length write always succeeds. */
4734 return 0;
4735 }
4736
4737 if (debug_threads)
4738 {
4739 /* Dump up to four bytes. */
4740 unsigned int val = * (unsigned int *) myaddr;
4741 if (len == 1)
4742 val = val & 0xff;
4743 else if (len == 2)
4744 val = val & 0xffff;
4745 else if (len == 3)
4746 val = val & 0xffffff;
4747 debug_printf ("Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
4748 val, (long)memaddr);
4749 }
4750
4751 /* Fill start and end extra bytes of buffer with existing memory data. */
4752
4753 errno = 0;
4754 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4755 about coercing an 8 byte integer to a 4 byte pointer. */
4756 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
4757 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4758 (PTRACE_TYPE_ARG4) 0);
4759 if (errno)
4760 return errno;
4761
4762 if (count > 1)
4763 {
4764 errno = 0;
4765 buffer[count - 1]
4766 = ptrace (PTRACE_PEEKTEXT, pid,
4767 /* Coerce to a uintptr_t first to avoid potential gcc warning
4768 about coercing an 8 byte integer to a 4 byte pointer. */
4769 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
4770 * sizeof (PTRACE_XFER_TYPE)),
4771 (PTRACE_TYPE_ARG4) 0);
4772 if (errno)
4773 return errno;
4774 }
4775
4776 /* Copy data to be written over corresponding part of buffer. */
4777
4778 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4779 myaddr, len);
4780
4781 /* Write the entire buffer. */
4782
4783 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4784 {
4785 errno = 0;
4786 ptrace (PTRACE_POKETEXT, pid,
4787 /* Coerce to a uintptr_t first to avoid potential gcc warning
4788 about coercing an 8 byte integer to a 4 byte pointer. */
4789 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4790 (PTRACE_TYPE_ARG4) buffer[i]);
4791 if (errno)
4792 return errno;
4793 }
4794
4795 return 0;
4796 }
4797
4798 static void
4799 linux_look_up_symbols (void)
4800 {
4801 #ifdef USE_THREAD_DB
4802 struct process_info *proc = current_process ();
4803
4804 if (proc->private->thread_db != NULL)
4805 return;
4806
4807 /* If the kernel supports tracing clones, then we don't need to
4808 use the magic thread event breakpoint to learn about
4809 threads. */
4810 thread_db_init (!linux_supports_traceclone ());
4811 #endif
4812 }
4813
4814 static void
4815 linux_request_interrupt (void)
4816 {
4817 extern unsigned long signal_pid;
4818
4819 /* Send a SIGINT to the process group. This acts just like the user
4820 typed a ^C on the controlling terminal. */
4821 kill (-signal_pid, SIGINT);
4822 }
4823
4824 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
4825 to debugger memory starting at MYADDR. */
4826
4827 static int
4828 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
4829 {
4830 char filename[PATH_MAX];
4831 int fd, n;
4832 int pid = lwpid_of (current_thread);
4833
4834 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4835
4836 fd = open (filename, O_RDONLY);
4837 if (fd < 0)
4838 return -1;
4839
4840 if (offset != (CORE_ADDR) 0
4841 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4842 n = -1;
4843 else
4844 n = read (fd, myaddr, len);
4845
4846 close (fd);
4847
4848 return n;
4849 }
4850
4851 /* These breakpoint and watchpoint related wrapper functions simply
4852 pass on the function call if the target has registered a
4853 corresponding function. */
4854
4855 static int
4856 linux_supports_z_point_type (char z_type)
4857 {
4858 return (the_low_target.supports_z_point_type != NULL
4859 && the_low_target.supports_z_point_type (z_type));
4860 }
4861
4862 static int
4863 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
4864 int size, struct raw_breakpoint *bp)
4865 {
4866 if (the_low_target.insert_point != NULL)
4867 return the_low_target.insert_point (type, addr, size, bp);
4868 else
4869 /* Unsupported (see target.h). */
4870 return 1;
4871 }
4872
4873 static int
4874 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
4875 int size, struct raw_breakpoint *bp)
4876 {
4877 if (the_low_target.remove_point != NULL)
4878 return the_low_target.remove_point (type, addr, size, bp);
4879 else
4880 /* Unsupported (see target.h). */
4881 return 1;
4882 }
4883
4884 static int
4885 linux_stopped_by_watchpoint (void)
4886 {
4887 struct lwp_info *lwp = get_thread_lwp (current_thread);
4888
4889 return lwp->stopped_by_watchpoint;
4890 }
4891
4892 static CORE_ADDR
4893 linux_stopped_data_address (void)
4894 {
4895 struct lwp_info *lwp = get_thread_lwp (current_thread);
4896
4897 return lwp->stopped_data_address;
4898 }
4899
4900 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
4901 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
4902 && defined(PT_TEXT_END_ADDR)
4903
4904 /* This is only used for targets that define PT_TEXT_ADDR,
4905 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
4906 the target has different ways of acquiring this information, like
4907 loadmaps. */
4908
4909 /* Under uClinux, programs are loaded at non-zero offsets, which we need
4910 to tell gdb about. */
4911
4912 static int
4913 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
4914 {
4915 unsigned long text, text_end, data;
4916 int pid = lwpid_of (get_thread_lwp (current_thread));
4917
4918 errno = 0;
4919
4920 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
4921 (PTRACE_TYPE_ARG4) 0);
4922 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
4923 (PTRACE_TYPE_ARG4) 0);
4924 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
4925 (PTRACE_TYPE_ARG4) 0);
4926
4927 if (errno == 0)
4928 {
4929 /* Both text and data offsets produced at compile-time (and so
4930 used by gdb) are relative to the beginning of the program,
4931 with the data segment immediately following the text segment.
4932 However, the actual runtime layout in memory may put the data
4933 somewhere else, so when we send gdb a data base-address, we
4934 use the real data base address and subtract the compile-time
4935 data base-address from it (which is just the length of the
4936 text segment). BSS immediately follows data in both
4937 cases. */
4938 *text_p = text;
4939 *data_p = data - (text_end - text);
4940
4941 return 1;
4942 }
4943 return 0;
4944 }
4945 #endif
4946
4947 static int
4948 linux_qxfer_osdata (const char *annex,
4949 unsigned char *readbuf, unsigned const char *writebuf,
4950 CORE_ADDR offset, int len)
4951 {
4952 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4953 }
4954
4955 /* Convert a native/host siginfo object, into/from the siginfo in the
4956 layout of the inferiors' architecture. */
4957
4958 static void
4959 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
4960 {
4961 int done = 0;
4962
4963 if (the_low_target.siginfo_fixup != NULL)
4964 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
4965
4966 /* If there was no callback, or the callback didn't do anything,
4967 then just do a straight memcpy. */
4968 if (!done)
4969 {
4970 if (direction == 1)
4971 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
4972 else
4973 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
4974 }
4975 }
4976
4977 static int
4978 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
4979 unsigned const char *writebuf, CORE_ADDR offset, int len)
4980 {
4981 int pid;
4982 siginfo_t siginfo;
4983 char inf_siginfo[sizeof (siginfo_t)];
4984
4985 if (current_thread == NULL)
4986 return -1;
4987
4988 pid = lwpid_of (current_thread);
4989
4990 if (debug_threads)
4991 debug_printf ("%s siginfo for lwp %d.\n",
4992 readbuf != NULL ? "Reading" : "Writing",
4993 pid);
4994
4995 if (offset >= sizeof (siginfo))
4996 return -1;
4997
4998 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
4999 return -1;
5000
5001 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5002 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5003 inferior with a 64-bit GDBSERVER should look the same as debugging it
5004 with a 32-bit GDBSERVER, we need to convert it. */
5005 siginfo_fixup (&siginfo, inf_siginfo, 0);
5006
5007 if (offset + len > sizeof (siginfo))
5008 len = sizeof (siginfo) - offset;
5009
5010 if (readbuf != NULL)
5011 memcpy (readbuf, inf_siginfo + offset, len);
5012 else
5013 {
5014 memcpy (inf_siginfo + offset, writebuf, len);
5015
5016 /* Convert back to ptrace layout before flushing it out. */
5017 siginfo_fixup (&siginfo, inf_siginfo, 1);
5018
5019 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5020 return -1;
5021 }
5022
5023 return len;
5024 }
5025
5026 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5027 so we notice when children change state; as the handler for the
5028 sigsuspend in my_waitpid. */
5029
5030 static void
5031 sigchld_handler (int signo)
5032 {
5033 int old_errno = errno;
5034
5035 if (debug_threads)
5036 {
5037 do
5038 {
5039 /* fprintf is not async-signal-safe, so call write
5040 directly. */
5041 if (write (2, "sigchld_handler\n",
5042 sizeof ("sigchld_handler\n") - 1) < 0)
5043 break; /* just ignore */
5044 } while (0);
5045 }
5046
5047 if (target_is_async_p ())
5048 async_file_mark (); /* trigger a linux_wait */
5049
5050 errno = old_errno;
5051 }
5052
5053 static int
5054 linux_supports_non_stop (void)
5055 {
5056 return 1;
5057 }
5058
5059 static int
5060 linux_async (int enable)
5061 {
5062 int previous = target_is_async_p ();
5063
5064 if (debug_threads)
5065 debug_printf ("linux_async (%d), previous=%d\n",
5066 enable, previous);
5067
5068 if (previous != enable)
5069 {
5070 sigset_t mask;
5071 sigemptyset (&mask);
5072 sigaddset (&mask, SIGCHLD);
5073
5074 sigprocmask (SIG_BLOCK, &mask, NULL);
5075
5076 if (enable)
5077 {
5078 if (pipe (linux_event_pipe) == -1)
5079 {
5080 linux_event_pipe[0] = -1;
5081 linux_event_pipe[1] = -1;
5082 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5083
5084 warning ("creating event pipe failed.");
5085 return previous;
5086 }
5087
5088 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5089 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5090
5091 /* Register the event loop handler. */
5092 add_file_handler (linux_event_pipe[0],
5093 handle_target_event, NULL);
5094
5095 /* Always trigger a linux_wait. */
5096 async_file_mark ();
5097 }
5098 else
5099 {
5100 delete_file_handler (linux_event_pipe[0]);
5101
5102 close (linux_event_pipe[0]);
5103 close (linux_event_pipe[1]);
5104 linux_event_pipe[0] = -1;
5105 linux_event_pipe[1] = -1;
5106 }
5107
5108 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5109 }
5110
5111 return previous;
5112 }
5113
5114 static int
5115 linux_start_non_stop (int nonstop)
5116 {
5117 /* Register or unregister from event-loop accordingly. */
5118 linux_async (nonstop);
5119
5120 if (target_is_async_p () != (nonstop != 0))
5121 return -1;
5122
5123 return 0;
5124 }
5125
5126 static int
5127 linux_supports_multi_process (void)
5128 {
5129 return 1;
5130 }
5131
5132 static int
5133 linux_supports_disable_randomization (void)
5134 {
5135 #ifdef HAVE_PERSONALITY
5136 return 1;
5137 #else
5138 return 0;
5139 #endif
5140 }
5141
5142 static int
5143 linux_supports_agent (void)
5144 {
5145 return 1;
5146 }
5147
5148 static int
5149 linux_supports_range_stepping (void)
5150 {
5151 if (*the_low_target.supports_range_stepping == NULL)
5152 return 0;
5153
5154 return (*the_low_target.supports_range_stepping) ();
5155 }
5156
5157 /* Enumerate spufs IDs for process PID. */
5158 static int
5159 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
5160 {
5161 int pos = 0;
5162 int written = 0;
5163 char path[128];
5164 DIR *dir;
5165 struct dirent *entry;
5166
5167 sprintf (path, "/proc/%ld/fd", pid);
5168 dir = opendir (path);
5169 if (!dir)
5170 return -1;
5171
5172 rewinddir (dir);
5173 while ((entry = readdir (dir)) != NULL)
5174 {
5175 struct stat st;
5176 struct statfs stfs;
5177 int fd;
5178
5179 fd = atoi (entry->d_name);
5180 if (!fd)
5181 continue;
5182
5183 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
5184 if (stat (path, &st) != 0)
5185 continue;
5186 if (!S_ISDIR (st.st_mode))
5187 continue;
5188
5189 if (statfs (path, &stfs) != 0)
5190 continue;
5191 if (stfs.f_type != SPUFS_MAGIC)
5192 continue;
5193
5194 if (pos >= offset && pos + 4 <= offset + len)
5195 {
5196 *(unsigned int *)(buf + pos - offset) = fd;
5197 written += 4;
5198 }
5199 pos += 4;
5200 }
5201
5202 closedir (dir);
5203 return written;
5204 }
5205
5206 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
5207 object type, using the /proc file system. */
5208 static int
5209 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
5210 unsigned const char *writebuf,
5211 CORE_ADDR offset, int len)
5212 {
5213 long pid = lwpid_of (current_thread);
5214 char buf[128];
5215 int fd = 0;
5216 int ret = 0;
5217
5218 if (!writebuf && !readbuf)
5219 return -1;
5220
5221 if (!*annex)
5222 {
5223 if (!readbuf)
5224 return -1;
5225 else
5226 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5227 }
5228
5229 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
5230 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5231 if (fd <= 0)
5232 return -1;
5233
5234 if (offset != 0
5235 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5236 {
5237 close (fd);
5238 return 0;
5239 }
5240
5241 if (writebuf)
5242 ret = write (fd, writebuf, (size_t) len);
5243 else
5244 ret = read (fd, readbuf, (size_t) len);
5245
5246 close (fd);
5247 return ret;
5248 }
5249
5250 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
5251 struct target_loadseg
5252 {
5253 /* Core address to which the segment is mapped. */
5254 Elf32_Addr addr;
5255 /* VMA recorded in the program header. */
5256 Elf32_Addr p_vaddr;
5257 /* Size of this segment in memory. */
5258 Elf32_Word p_memsz;
5259 };
5260
5261 # if defined PT_GETDSBT
5262 struct target_loadmap
5263 {
5264 /* Protocol version number, must be zero. */
5265 Elf32_Word version;
5266 /* Pointer to the DSBT table, its size, and the DSBT index. */
5267 unsigned *dsbt_table;
5268 unsigned dsbt_size, dsbt_index;
5269 /* Number of segments in this map. */
5270 Elf32_Word nsegs;
5271 /* The actual memory map. */
5272 struct target_loadseg segs[/*nsegs*/];
5273 };
5274 # define LINUX_LOADMAP PT_GETDSBT
5275 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
5276 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
5277 # else
5278 struct target_loadmap
5279 {
5280 /* Protocol version number, must be zero. */
5281 Elf32_Half version;
5282 /* Number of segments in this map. */
5283 Elf32_Half nsegs;
5284 /* The actual memory map. */
5285 struct target_loadseg segs[/*nsegs*/];
5286 };
5287 # define LINUX_LOADMAP PTRACE_GETFDPIC
5288 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
5289 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
5290 # endif
5291
5292 static int
5293 linux_read_loadmap (const char *annex, CORE_ADDR offset,
5294 unsigned char *myaddr, unsigned int len)
5295 {
5296 int pid = lwpid_of (current_thread);
5297 int addr = -1;
5298 struct target_loadmap *data = NULL;
5299 unsigned int actual_length, copy_length;
5300
5301 if (strcmp (annex, "exec") == 0)
5302 addr = (int) LINUX_LOADMAP_EXEC;
5303 else if (strcmp (annex, "interp") == 0)
5304 addr = (int) LINUX_LOADMAP_INTERP;
5305 else
5306 return -1;
5307
5308 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
5309 return -1;
5310
5311 if (data == NULL)
5312 return -1;
5313
5314 actual_length = sizeof (struct target_loadmap)
5315 + sizeof (struct target_loadseg) * data->nsegs;
5316
5317 if (offset < 0 || offset > actual_length)
5318 return -1;
5319
5320 copy_length = actual_length - offset < len ? actual_length - offset : len;
5321 memcpy (myaddr, (char *) data + offset, copy_length);
5322 return copy_length;
5323 }
5324 #else
5325 # define linux_read_loadmap NULL
5326 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
5327
5328 static void
5329 linux_process_qsupported (const char *query)
5330 {
5331 if (the_low_target.process_qsupported != NULL)
5332 the_low_target.process_qsupported (query);
5333 }
5334
5335 static int
5336 linux_supports_tracepoints (void)
5337 {
5338 if (*the_low_target.supports_tracepoints == NULL)
5339 return 0;
5340
5341 return (*the_low_target.supports_tracepoints) ();
5342 }
5343
5344 static CORE_ADDR
5345 linux_read_pc (struct regcache *regcache)
5346 {
5347 if (the_low_target.get_pc == NULL)
5348 return 0;
5349
5350 return (*the_low_target.get_pc) (regcache);
5351 }
5352
5353 static void
5354 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
5355 {
5356 gdb_assert (the_low_target.set_pc != NULL);
5357
5358 (*the_low_target.set_pc) (regcache, pc);
5359 }
5360
5361 static int
5362 linux_thread_stopped (struct thread_info *thread)
5363 {
5364 return get_thread_lwp (thread)->stopped;
5365 }
5366
5367 /* This exposes stop-all-threads functionality to other modules. */
5368
5369 static void
5370 linux_pause_all (int freeze)
5371 {
5372 stop_all_lwps (freeze, NULL);
5373 }
5374
5375 /* This exposes unstop-all-threads functionality to other gdbserver
5376 modules. */
5377
5378 static void
5379 linux_unpause_all (int unfreeze)
5380 {
5381 unstop_all_lwps (unfreeze, NULL);
5382 }
5383
5384 static int
5385 linux_prepare_to_access_memory (void)
5386 {
5387 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5388 running LWP. */
5389 if (non_stop)
5390 linux_pause_all (1);
5391 return 0;
5392 }
5393
5394 static void
5395 linux_done_accessing_memory (void)
5396 {
5397 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5398 running LWP. */
5399 if (non_stop)
5400 linux_unpause_all (1);
5401 }
5402
5403 static int
5404 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
5405 CORE_ADDR collector,
5406 CORE_ADDR lockaddr,
5407 ULONGEST orig_size,
5408 CORE_ADDR *jump_entry,
5409 CORE_ADDR *trampoline,
5410 ULONGEST *trampoline_size,
5411 unsigned char *jjump_pad_insn,
5412 ULONGEST *jjump_pad_insn_size,
5413 CORE_ADDR *adjusted_insn_addr,
5414 CORE_ADDR *adjusted_insn_addr_end,
5415 char *err)
5416 {
5417 return (*the_low_target.install_fast_tracepoint_jump_pad)
5418 (tpoint, tpaddr, collector, lockaddr, orig_size,
5419 jump_entry, trampoline, trampoline_size,
5420 jjump_pad_insn, jjump_pad_insn_size,
5421 adjusted_insn_addr, adjusted_insn_addr_end,
5422 err);
5423 }
5424
5425 static struct emit_ops *
5426 linux_emit_ops (void)
5427 {
5428 if (the_low_target.emit_ops != NULL)
5429 return (*the_low_target.emit_ops) ();
5430 else
5431 return NULL;
5432 }
5433
5434 static int
5435 linux_get_min_fast_tracepoint_insn_len (void)
5436 {
5437 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
5438 }
5439
5440 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
5441
5442 static int
5443 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
5444 CORE_ADDR *phdr_memaddr, int *num_phdr)
5445 {
5446 char filename[PATH_MAX];
5447 int fd;
5448 const int auxv_size = is_elf64
5449 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
5450 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
5451
5452 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5453
5454 fd = open (filename, O_RDONLY);
5455 if (fd < 0)
5456 return 1;
5457
5458 *phdr_memaddr = 0;
5459 *num_phdr = 0;
5460 while (read (fd, buf, auxv_size) == auxv_size
5461 && (*phdr_memaddr == 0 || *num_phdr == 0))
5462 {
5463 if (is_elf64)
5464 {
5465 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
5466
5467 switch (aux->a_type)
5468 {
5469 case AT_PHDR:
5470 *phdr_memaddr = aux->a_un.a_val;
5471 break;
5472 case AT_PHNUM:
5473 *num_phdr = aux->a_un.a_val;
5474 break;
5475 }
5476 }
5477 else
5478 {
5479 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
5480
5481 switch (aux->a_type)
5482 {
5483 case AT_PHDR:
5484 *phdr_memaddr = aux->a_un.a_val;
5485 break;
5486 case AT_PHNUM:
5487 *num_phdr = aux->a_un.a_val;
5488 break;
5489 }
5490 }
5491 }
5492
5493 close (fd);
5494
5495 if (*phdr_memaddr == 0 || *num_phdr == 0)
5496 {
5497 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
5498 "phdr_memaddr = %ld, phdr_num = %d",
5499 (long) *phdr_memaddr, *num_phdr);
5500 return 2;
5501 }
5502
5503 return 0;
5504 }
5505
5506 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
5507
5508 static CORE_ADDR
5509 get_dynamic (const int pid, const int is_elf64)
5510 {
5511 CORE_ADDR phdr_memaddr, relocation;
5512 int num_phdr, i;
5513 unsigned char *phdr_buf;
5514 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
5515
5516 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
5517 return 0;
5518
5519 gdb_assert (num_phdr < 100); /* Basic sanity check. */
5520 phdr_buf = alloca (num_phdr * phdr_size);
5521
5522 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
5523 return 0;
5524
5525 /* Compute relocation: it is expected to be 0 for "regular" executables,
5526 non-zero for PIE ones. */
5527 relocation = -1;
5528 for (i = 0; relocation == -1 && i < num_phdr; i++)
5529 if (is_elf64)
5530 {
5531 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5532
5533 if (p->p_type == PT_PHDR)
5534 relocation = phdr_memaddr - p->p_vaddr;
5535 }
5536 else
5537 {
5538 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5539
5540 if (p->p_type == PT_PHDR)
5541 relocation = phdr_memaddr - p->p_vaddr;
5542 }
5543
5544 if (relocation == -1)
5545 {
5546 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
5547 any real world executables, including PIE executables, have always
5548 PT_PHDR present. PT_PHDR is not present in some shared libraries or
5549 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
5550 or present DT_DEBUG anyway (fpc binaries are statically linked).
5551
5552 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
5553
5554 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
5555
5556 return 0;
5557 }
5558
5559 for (i = 0; i < num_phdr; i++)
5560 {
5561 if (is_elf64)
5562 {
5563 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5564
5565 if (p->p_type == PT_DYNAMIC)
5566 return p->p_vaddr + relocation;
5567 }
5568 else
5569 {
5570 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5571
5572 if (p->p_type == PT_DYNAMIC)
5573 return p->p_vaddr + relocation;
5574 }
5575 }
5576
5577 return 0;
5578 }
5579
5580 /* Return &_r_debug in the inferior, or -1 if not present. Return value
5581 can be 0 if the inferior does not yet have the library list initialized.
5582 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
5583 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
5584
5585 static CORE_ADDR
5586 get_r_debug (const int pid, const int is_elf64)
5587 {
5588 CORE_ADDR dynamic_memaddr;
5589 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
5590 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
5591 CORE_ADDR map = -1;
5592
5593 dynamic_memaddr = get_dynamic (pid, is_elf64);
5594 if (dynamic_memaddr == 0)
5595 return map;
5596
5597 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
5598 {
5599 if (is_elf64)
5600 {
5601 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
5602 #ifdef DT_MIPS_RLD_MAP
5603 union
5604 {
5605 Elf64_Xword map;
5606 unsigned char buf[sizeof (Elf64_Xword)];
5607 }
5608 rld_map;
5609
5610 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5611 {
5612 if (linux_read_memory (dyn->d_un.d_val,
5613 rld_map.buf, sizeof (rld_map.buf)) == 0)
5614 return rld_map.map;
5615 else
5616 break;
5617 }
5618 #endif /* DT_MIPS_RLD_MAP */
5619
5620 if (dyn->d_tag == DT_DEBUG && map == -1)
5621 map = dyn->d_un.d_val;
5622
5623 if (dyn->d_tag == DT_NULL)
5624 break;
5625 }
5626 else
5627 {
5628 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
5629 #ifdef DT_MIPS_RLD_MAP
5630 union
5631 {
5632 Elf32_Word map;
5633 unsigned char buf[sizeof (Elf32_Word)];
5634 }
5635 rld_map;
5636
5637 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5638 {
5639 if (linux_read_memory (dyn->d_un.d_val,
5640 rld_map.buf, sizeof (rld_map.buf)) == 0)
5641 return rld_map.map;
5642 else
5643 break;
5644 }
5645 #endif /* DT_MIPS_RLD_MAP */
5646
5647 if (dyn->d_tag == DT_DEBUG && map == -1)
5648 map = dyn->d_un.d_val;
5649
5650 if (dyn->d_tag == DT_NULL)
5651 break;
5652 }
5653
5654 dynamic_memaddr += dyn_size;
5655 }
5656
5657 return map;
5658 }
5659
5660 /* Read one pointer from MEMADDR in the inferior. */
5661
5662 static int
5663 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
5664 {
5665 int ret;
5666
5667 /* Go through a union so this works on either big or little endian
5668 hosts, when the inferior's pointer size is smaller than the size
5669 of CORE_ADDR. It is assumed the inferior's endianness is the
5670 same of the superior's. */
5671 union
5672 {
5673 CORE_ADDR core_addr;
5674 unsigned int ui;
5675 unsigned char uc;
5676 } addr;
5677
5678 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
5679 if (ret == 0)
5680 {
5681 if (ptr_size == sizeof (CORE_ADDR))
5682 *ptr = addr.core_addr;
5683 else if (ptr_size == sizeof (unsigned int))
5684 *ptr = addr.ui;
5685 else
5686 gdb_assert_not_reached ("unhandled pointer size");
5687 }
5688 return ret;
5689 }
5690
5691 struct link_map_offsets
5692 {
5693 /* Offset and size of r_debug.r_version. */
5694 int r_version_offset;
5695
5696 /* Offset and size of r_debug.r_map. */
5697 int r_map_offset;
5698
5699 /* Offset to l_addr field in struct link_map. */
5700 int l_addr_offset;
5701
5702 /* Offset to l_name field in struct link_map. */
5703 int l_name_offset;
5704
5705 /* Offset to l_ld field in struct link_map. */
5706 int l_ld_offset;
5707
5708 /* Offset to l_next field in struct link_map. */
5709 int l_next_offset;
5710
5711 /* Offset to l_prev field in struct link_map. */
5712 int l_prev_offset;
5713 };
5714
5715 /* Construct qXfer:libraries-svr4:read reply. */
5716
5717 static int
5718 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
5719 unsigned const char *writebuf,
5720 CORE_ADDR offset, int len)
5721 {
5722 char *document;
5723 unsigned document_len;
5724 struct process_info_private *const priv = current_process ()->private;
5725 char filename[PATH_MAX];
5726 int pid, is_elf64;
5727
5728 static const struct link_map_offsets lmo_32bit_offsets =
5729 {
5730 0, /* r_version offset. */
5731 4, /* r_debug.r_map offset. */
5732 0, /* l_addr offset in link_map. */
5733 4, /* l_name offset in link_map. */
5734 8, /* l_ld offset in link_map. */
5735 12, /* l_next offset in link_map. */
5736 16 /* l_prev offset in link_map. */
5737 };
5738
5739 static const struct link_map_offsets lmo_64bit_offsets =
5740 {
5741 0, /* r_version offset. */
5742 8, /* r_debug.r_map offset. */
5743 0, /* l_addr offset in link_map. */
5744 8, /* l_name offset in link_map. */
5745 16, /* l_ld offset in link_map. */
5746 24, /* l_next offset in link_map. */
5747 32 /* l_prev offset in link_map. */
5748 };
5749 const struct link_map_offsets *lmo;
5750 unsigned int machine;
5751 int ptr_size;
5752 CORE_ADDR lm_addr = 0, lm_prev = 0;
5753 int allocated = 1024;
5754 char *p;
5755 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
5756 int header_done = 0;
5757
5758 if (writebuf != NULL)
5759 return -2;
5760 if (readbuf == NULL)
5761 return -1;
5762
5763 pid = lwpid_of (current_thread);
5764 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
5765 is_elf64 = elf_64_file_p (filename, &machine);
5766 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
5767 ptr_size = is_elf64 ? 8 : 4;
5768
5769 while (annex[0] != '\0')
5770 {
5771 const char *sep;
5772 CORE_ADDR *addrp;
5773 int len;
5774
5775 sep = strchr (annex, '=');
5776 if (sep == NULL)
5777 break;
5778
5779 len = sep - annex;
5780 if (len == 5 && strncmp (annex, "start", 5) == 0)
5781 addrp = &lm_addr;
5782 else if (len == 4 && strncmp (annex, "prev", 4) == 0)
5783 addrp = &lm_prev;
5784 else
5785 {
5786 annex = strchr (sep, ';');
5787 if (annex == NULL)
5788 break;
5789 annex++;
5790 continue;
5791 }
5792
5793 annex = decode_address_to_semicolon (addrp, sep + 1);
5794 }
5795
5796 if (lm_addr == 0)
5797 {
5798 int r_version = 0;
5799
5800 if (priv->r_debug == 0)
5801 priv->r_debug = get_r_debug (pid, is_elf64);
5802
5803 /* We failed to find DT_DEBUG. Such situation will not change
5804 for this inferior - do not retry it. Report it to GDB as
5805 E01, see for the reasons at the GDB solib-svr4.c side. */
5806 if (priv->r_debug == (CORE_ADDR) -1)
5807 return -1;
5808
5809 if (priv->r_debug != 0)
5810 {
5811 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
5812 (unsigned char *) &r_version,
5813 sizeof (r_version)) != 0
5814 || r_version != 1)
5815 {
5816 warning ("unexpected r_debug version %d", r_version);
5817 }
5818 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
5819 &lm_addr, ptr_size) != 0)
5820 {
5821 warning ("unable to read r_map from 0x%lx",
5822 (long) priv->r_debug + lmo->r_map_offset);
5823 }
5824 }
5825 }
5826
5827 document = xmalloc (allocated);
5828 strcpy (document, "<library-list-svr4 version=\"1.0\"");
5829 p = document + strlen (document);
5830
5831 while (lm_addr
5832 && read_one_ptr (lm_addr + lmo->l_name_offset,
5833 &l_name, ptr_size) == 0
5834 && read_one_ptr (lm_addr + lmo->l_addr_offset,
5835 &l_addr, ptr_size) == 0
5836 && read_one_ptr (lm_addr + lmo->l_ld_offset,
5837 &l_ld, ptr_size) == 0
5838 && read_one_ptr (lm_addr + lmo->l_prev_offset,
5839 &l_prev, ptr_size) == 0
5840 && read_one_ptr (lm_addr + lmo->l_next_offset,
5841 &l_next, ptr_size) == 0)
5842 {
5843 unsigned char libname[PATH_MAX];
5844
5845 if (lm_prev != l_prev)
5846 {
5847 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
5848 (long) lm_prev, (long) l_prev);
5849 break;
5850 }
5851
5852 /* Ignore the first entry even if it has valid name as the first entry
5853 corresponds to the main executable. The first entry should not be
5854 skipped if the dynamic loader was loaded late by a static executable
5855 (see solib-svr4.c parameter ignore_first). But in such case the main
5856 executable does not have PT_DYNAMIC present and this function already
5857 exited above due to failed get_r_debug. */
5858 if (lm_prev == 0)
5859 {
5860 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
5861 p = p + strlen (p);
5862 }
5863 else
5864 {
5865 /* Not checking for error because reading may stop before
5866 we've got PATH_MAX worth of characters. */
5867 libname[0] = '\0';
5868 linux_read_memory (l_name, libname, sizeof (libname) - 1);
5869 libname[sizeof (libname) - 1] = '\0';
5870 if (libname[0] != '\0')
5871 {
5872 /* 6x the size for xml_escape_text below. */
5873 size_t len = 6 * strlen ((char *) libname);
5874 char *name;
5875
5876 if (!header_done)
5877 {
5878 /* Terminate `<library-list-svr4'. */
5879 *p++ = '>';
5880 header_done = 1;
5881 }
5882
5883 while (allocated < p - document + len + 200)
5884 {
5885 /* Expand to guarantee sufficient storage. */
5886 uintptr_t document_len = p - document;
5887
5888 document = xrealloc (document, 2 * allocated);
5889 allocated *= 2;
5890 p = document + document_len;
5891 }
5892
5893 name = xml_escape_text ((char *) libname);
5894 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
5895 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
5896 name, (unsigned long) lm_addr,
5897 (unsigned long) l_addr, (unsigned long) l_ld);
5898 free (name);
5899 }
5900 }
5901
5902 lm_prev = lm_addr;
5903 lm_addr = l_next;
5904 }
5905
5906 if (!header_done)
5907 {
5908 /* Empty list; terminate `<library-list-svr4'. */
5909 strcpy (p, "/>");
5910 }
5911 else
5912 strcpy (p, "</library-list-svr4>");
5913
5914 document_len = strlen (document);
5915 if (offset < document_len)
5916 document_len -= offset;
5917 else
5918 document_len = 0;
5919 if (len > document_len)
5920 len = document_len;
5921
5922 memcpy (readbuf, document + offset, len);
5923 xfree (document);
5924
5925 return len;
5926 }
5927
5928 #ifdef HAVE_LINUX_BTRACE
5929
5930 /* See to_enable_btrace target method. */
5931
5932 static struct btrace_target_info *
5933 linux_low_enable_btrace (ptid_t ptid)
5934 {
5935 struct btrace_target_info *tinfo;
5936
5937 tinfo = linux_enable_btrace (ptid);
5938
5939 if (tinfo != NULL)
5940 {
5941 struct thread_info *thread = find_thread_ptid (ptid);
5942 struct regcache *regcache = get_thread_regcache (thread, 0);
5943
5944 tinfo->ptr_bits = register_size (regcache->tdesc, 0) * 8;
5945 }
5946
5947 return tinfo;
5948 }
5949
5950 /* See to_disable_btrace target method. */
5951
5952 static int
5953 linux_low_disable_btrace (struct btrace_target_info *tinfo)
5954 {
5955 enum btrace_error err;
5956
5957 err = linux_disable_btrace (tinfo);
5958 return (err == BTRACE_ERR_NONE ? 0 : -1);
5959 }
5960
5961 /* See to_read_btrace target method. */
5962
5963 static int
5964 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
5965 int type)
5966 {
5967 VEC (btrace_block_s) *btrace;
5968 struct btrace_block *block;
5969 enum btrace_error err;
5970 int i;
5971
5972 btrace = NULL;
5973 err = linux_read_btrace (&btrace, tinfo, type);
5974 if (err != BTRACE_ERR_NONE)
5975 {
5976 if (err == BTRACE_ERR_OVERFLOW)
5977 buffer_grow_str0 (buffer, "E.Overflow.");
5978 else
5979 buffer_grow_str0 (buffer, "E.Generic Error.");
5980
5981 return -1;
5982 }
5983
5984 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
5985 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
5986
5987 for (i = 0; VEC_iterate (btrace_block_s, btrace, i, block); i++)
5988 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
5989 paddress (block->begin), paddress (block->end));
5990
5991 buffer_grow_str0 (buffer, "</btrace>\n");
5992
5993 VEC_free (btrace_block_s, btrace);
5994
5995 return 0;
5996 }
5997 #endif /* HAVE_LINUX_BTRACE */
5998
5999 static struct target_ops linux_target_ops = {
6000 linux_create_inferior,
6001 linux_attach,
6002 linux_kill,
6003 linux_detach,
6004 linux_mourn,
6005 linux_join,
6006 linux_thread_alive,
6007 linux_resume,
6008 linux_wait,
6009 linux_fetch_registers,
6010 linux_store_registers,
6011 linux_prepare_to_access_memory,
6012 linux_done_accessing_memory,
6013 linux_read_memory,
6014 linux_write_memory,
6015 linux_look_up_symbols,
6016 linux_request_interrupt,
6017 linux_read_auxv,
6018 linux_supports_z_point_type,
6019 linux_insert_point,
6020 linux_remove_point,
6021 linux_stopped_by_watchpoint,
6022 linux_stopped_data_address,
6023 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6024 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6025 && defined(PT_TEXT_END_ADDR)
6026 linux_read_offsets,
6027 #else
6028 NULL,
6029 #endif
6030 #ifdef USE_THREAD_DB
6031 thread_db_get_tls_address,
6032 #else
6033 NULL,
6034 #endif
6035 linux_qxfer_spu,
6036 hostio_last_error_from_errno,
6037 linux_qxfer_osdata,
6038 linux_xfer_siginfo,
6039 linux_supports_non_stop,
6040 linux_async,
6041 linux_start_non_stop,
6042 linux_supports_multi_process,
6043 #ifdef USE_THREAD_DB
6044 thread_db_handle_monitor_command,
6045 #else
6046 NULL,
6047 #endif
6048 linux_common_core_of_thread,
6049 linux_read_loadmap,
6050 linux_process_qsupported,
6051 linux_supports_tracepoints,
6052 linux_read_pc,
6053 linux_write_pc,
6054 linux_thread_stopped,
6055 NULL,
6056 linux_pause_all,
6057 linux_unpause_all,
6058 linux_cancel_breakpoints,
6059 linux_stabilize_threads,
6060 linux_install_fast_tracepoint_jump_pad,
6061 linux_emit_ops,
6062 linux_supports_disable_randomization,
6063 linux_get_min_fast_tracepoint_insn_len,
6064 linux_qxfer_libraries_svr4,
6065 linux_supports_agent,
6066 #ifdef HAVE_LINUX_BTRACE
6067 linux_supports_btrace,
6068 linux_low_enable_btrace,
6069 linux_low_disable_btrace,
6070 linux_low_read_btrace,
6071 #else
6072 NULL,
6073 NULL,
6074 NULL,
6075 NULL,
6076 #endif
6077 linux_supports_range_stepping,
6078 };
6079
6080 static void
6081 linux_init_signals ()
6082 {
6083 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
6084 to find what the cancel signal actually is. */
6085 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
6086 signal (__SIGRTMIN+1, SIG_IGN);
6087 #endif
6088 }
6089
6090 #ifdef HAVE_LINUX_REGSETS
6091 void
6092 initialize_regsets_info (struct regsets_info *info)
6093 {
6094 for (info->num_regsets = 0;
6095 info->regsets[info->num_regsets].size >= 0;
6096 info->num_regsets++)
6097 ;
6098 }
6099 #endif
6100
6101 void
6102 initialize_low (void)
6103 {
6104 struct sigaction sigchld_action;
6105 memset (&sigchld_action, 0, sizeof (sigchld_action));
6106 set_target_ops (&linux_target_ops);
6107 set_breakpoint_data (the_low_target.breakpoint,
6108 the_low_target.breakpoint_len);
6109 linux_init_signals ();
6110 linux_ptrace_init_warnings ();
6111
6112 sigchld_action.sa_handler = sigchld_handler;
6113 sigemptyset (&sigchld_action.sa_mask);
6114 sigchld_action.sa_flags = SA_RESTART;
6115 sigaction (SIGCHLD, &sigchld_action, NULL);
6116
6117 initialize_low_arch ();
6118 }
This page took 0.167968 seconds and 4 git commands to generate.