2012-05-11 Yao Qi <yao@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-1996, 1998-2012 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "linux-osdata.h"
22 #include "agent.h"
23
24 #include <sys/wait.h>
25 #include <stdio.h>
26 #include <sys/param.h>
27 #include <sys/ptrace.h>
28 #include "linux-ptrace.h"
29 #include "linux-procfs.h"
30 #include <signal.h>
31 #include <sys/ioctl.h>
32 #include <fcntl.h>
33 #include <string.h>
34 #include <stdlib.h>
35 #include <unistd.h>
36 #include <errno.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #ifndef ELFMAG0
47 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
48 then ELFMAG0 will have been defined. If it didn't get included by
49 gdb_proc_service.h then including it will likely introduce a duplicate
50 definition of elf_fpregset_t. */
51 #include <elf.h>
52 #endif
53
54 #ifndef SPUFS_MAGIC
55 #define SPUFS_MAGIC 0x23c9b64e
56 #endif
57
58 #ifdef HAVE_PERSONALITY
59 # include <sys/personality.h>
60 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
61 # define ADDR_NO_RANDOMIZE 0x0040000
62 # endif
63 #endif
64
65 #ifndef O_LARGEFILE
66 #define O_LARGEFILE 0
67 #endif
68
69 #ifndef W_STOPCODE
70 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
71 #endif
72
73 /* This is the kernel's hard limit. Not to be confused with
74 SIGRTMIN. */
75 #ifndef __SIGRTMIN
76 #define __SIGRTMIN 32
77 #endif
78
79 #ifdef __UCLIBC__
80 #if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
81 #define HAS_NOMMU
82 #endif
83 #endif
84
85 #ifndef HAVE_ELF32_AUXV_T
86 /* Copied from glibc's elf.h. */
87 typedef struct
88 {
89 uint32_t a_type; /* Entry type */
90 union
91 {
92 uint32_t a_val; /* Integer value */
93 /* We use to have pointer elements added here. We cannot do that,
94 though, since it does not work when using 32-bit definitions
95 on 64-bit platforms and vice versa. */
96 } a_un;
97 } Elf32_auxv_t;
98 #endif
99
100 #ifndef HAVE_ELF64_AUXV_T
101 /* Copied from glibc's elf.h. */
102 typedef struct
103 {
104 uint64_t a_type; /* Entry type */
105 union
106 {
107 uint64_t a_val; /* Integer value */
108 /* We use to have pointer elements added here. We cannot do that,
109 though, since it does not work when using 32-bit definitions
110 on 64-bit platforms and vice versa. */
111 } a_un;
112 } Elf64_auxv_t;
113 #endif
114
115 /* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
116 representation of the thread ID.
117
118 ``all_lwps'' is keyed by the process ID - which on Linux is (presently)
119 the same as the LWP ID.
120
121 ``all_processes'' is keyed by the "overall process ID", which
122 GNU/Linux calls tgid, "thread group ID". */
123
124 struct inferior_list all_lwps;
125
126 /* A list of all unknown processes which receive stop signals. Some
127 other process will presumably claim each of these as forked
128 children momentarily. */
129
130 struct simple_pid_list
131 {
132 /* The process ID. */
133 int pid;
134
135 /* The status as reported by waitpid. */
136 int status;
137
138 /* Next in chain. */
139 struct simple_pid_list *next;
140 };
141 struct simple_pid_list *stopped_pids;
142
143 /* Trivial list manipulation functions to keep track of a list of new
144 stopped processes. */
145
146 static void
147 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
148 {
149 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
150
151 new_pid->pid = pid;
152 new_pid->status = status;
153 new_pid->next = *listp;
154 *listp = new_pid;
155 }
156
157 static int
158 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
159 {
160 struct simple_pid_list **p;
161
162 for (p = listp; *p != NULL; p = &(*p)->next)
163 if ((*p)->pid == pid)
164 {
165 struct simple_pid_list *next = (*p)->next;
166
167 *statusp = (*p)->status;
168 xfree (*p);
169 *p = next;
170 return 1;
171 }
172 return 0;
173 }
174
175 enum stopping_threads_kind
176 {
177 /* Not stopping threads presently. */
178 NOT_STOPPING_THREADS,
179
180 /* Stopping threads. */
181 STOPPING_THREADS,
182
183 /* Stopping and suspending threads. */
184 STOPPING_AND_SUSPENDING_THREADS
185 };
186
187 /* This is set while stop_all_lwps is in effect. */
188 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
189
190 /* FIXME make into a target method? */
191 int using_threads = 1;
192
193 /* True if we're presently stabilizing threads (moving them out of
194 jump pads). */
195 static int stabilizing_threads;
196
197 /* This flag is true iff we've just created or attached to our first
198 inferior but it has not stopped yet. As soon as it does, we need
199 to call the low target's arch_setup callback. Doing this only on
200 the first inferior avoids reinializing the architecture on every
201 inferior, and avoids messing with the register caches of the
202 already running inferiors. NOTE: this assumes all inferiors under
203 control of gdbserver have the same architecture. */
204 static int new_inferior;
205
206 static void linux_resume_one_lwp (struct lwp_info *lwp,
207 int step, int signal, siginfo_t *info);
208 static void linux_resume (struct thread_resume *resume_info, size_t n);
209 static void stop_all_lwps (int suspend, struct lwp_info *except);
210 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
211 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
212 static void *add_lwp (ptid_t ptid);
213 static int linux_stopped_by_watchpoint (void);
214 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
215 static void proceed_all_lwps (void);
216 static int finish_step_over (struct lwp_info *lwp);
217 static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
218 static int kill_lwp (unsigned long lwpid, int signo);
219 static void linux_enable_event_reporting (int pid);
220
221 /* True if the low target can hardware single-step. Such targets
222 don't need a BREAKPOINT_REINSERT_ADDR callback. */
223
224 static int
225 can_hardware_single_step (void)
226 {
227 return (the_low_target.breakpoint_reinsert_addr == NULL);
228 }
229
230 /* True if the low target supports memory breakpoints. If so, we'll
231 have a GET_PC implementation. */
232
233 static int
234 supports_breakpoints (void)
235 {
236 return (the_low_target.get_pc != NULL);
237 }
238
239 /* Returns true if this target can support fast tracepoints. This
240 does not mean that the in-process agent has been loaded in the
241 inferior. */
242
243 static int
244 supports_fast_tracepoints (void)
245 {
246 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
247 }
248
249 struct pending_signals
250 {
251 int signal;
252 siginfo_t info;
253 struct pending_signals *prev;
254 };
255
256 #ifdef HAVE_LINUX_REGSETS
257 static char *disabled_regsets;
258 static int num_regsets;
259 #endif
260
261 /* The read/write ends of the pipe registered as waitable file in the
262 event loop. */
263 static int linux_event_pipe[2] = { -1, -1 };
264
265 /* True if we're currently in async mode. */
266 #define target_is_async_p() (linux_event_pipe[0] != -1)
267
268 static void send_sigstop (struct lwp_info *lwp);
269 static void wait_for_sigstop (struct inferior_list_entry *entry);
270
271 /* Return non-zero if HEADER is a 64-bit ELF file. */
272
273 static int
274 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
275 {
276 if (header->e_ident[EI_MAG0] == ELFMAG0
277 && header->e_ident[EI_MAG1] == ELFMAG1
278 && header->e_ident[EI_MAG2] == ELFMAG2
279 && header->e_ident[EI_MAG3] == ELFMAG3)
280 {
281 *machine = header->e_machine;
282 return header->e_ident[EI_CLASS] == ELFCLASS64;
283
284 }
285 *machine = EM_NONE;
286 return -1;
287 }
288
289 /* Return non-zero if FILE is a 64-bit ELF file,
290 zero if the file is not a 64-bit ELF file,
291 and -1 if the file is not accessible or doesn't exist. */
292
293 static int
294 elf_64_file_p (const char *file, unsigned int *machine)
295 {
296 Elf64_Ehdr header;
297 int fd;
298
299 fd = open (file, O_RDONLY);
300 if (fd < 0)
301 return -1;
302
303 if (read (fd, &header, sizeof (header)) != sizeof (header))
304 {
305 close (fd);
306 return 0;
307 }
308 close (fd);
309
310 return elf_64_header_p (&header, machine);
311 }
312
313 /* Accepts an integer PID; Returns true if the executable PID is
314 running is a 64-bit ELF file.. */
315
316 int
317 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
318 {
319 char file[MAXPATHLEN];
320
321 sprintf (file, "/proc/%d/exe", pid);
322 return elf_64_file_p (file, machine);
323 }
324
325 static void
326 delete_lwp (struct lwp_info *lwp)
327 {
328 remove_thread (get_lwp_thread (lwp));
329 remove_inferior (&all_lwps, &lwp->head);
330 free (lwp->arch_private);
331 free (lwp);
332 }
333
334 /* Add a process to the common process list, and set its private
335 data. */
336
337 static struct process_info *
338 linux_add_process (int pid, int attached)
339 {
340 struct process_info *proc;
341
342 /* Is this the first process? If so, then set the arch. */
343 if (all_processes.head == NULL)
344 new_inferior = 1;
345
346 proc = add_process (pid, attached);
347 proc->private = xcalloc (1, sizeof (*proc->private));
348
349 if (the_low_target.new_process != NULL)
350 proc->private->arch_private = the_low_target.new_process ();
351
352 return proc;
353 }
354
355 /* Wrapper function for waitpid which handles EINTR, and emulates
356 __WALL for systems where that is not available. */
357
358 static int
359 my_waitpid (int pid, int *status, int flags)
360 {
361 int ret, out_errno;
362
363 if (debug_threads)
364 fprintf (stderr, "my_waitpid (%d, 0x%x)\n", pid, flags);
365
366 if (flags & __WALL)
367 {
368 sigset_t block_mask, org_mask, wake_mask;
369 int wnohang;
370
371 wnohang = (flags & WNOHANG) != 0;
372 flags &= ~(__WALL | __WCLONE);
373 flags |= WNOHANG;
374
375 /* Block all signals while here. This avoids knowing about
376 LinuxThread's signals. */
377 sigfillset (&block_mask);
378 sigprocmask (SIG_BLOCK, &block_mask, &org_mask);
379
380 /* ... except during the sigsuspend below. */
381 sigemptyset (&wake_mask);
382
383 while (1)
384 {
385 /* Since all signals are blocked, there's no need to check
386 for EINTR here. */
387 ret = waitpid (pid, status, flags);
388 out_errno = errno;
389
390 if (ret == -1 && out_errno != ECHILD)
391 break;
392 else if (ret > 0)
393 break;
394
395 if (flags & __WCLONE)
396 {
397 /* We've tried both flavors now. If WNOHANG is set,
398 there's nothing else to do, just bail out. */
399 if (wnohang)
400 break;
401
402 if (debug_threads)
403 fprintf (stderr, "blocking\n");
404
405 /* Block waiting for signals. */
406 sigsuspend (&wake_mask);
407 }
408
409 flags ^= __WCLONE;
410 }
411
412 sigprocmask (SIG_SETMASK, &org_mask, NULL);
413 }
414 else
415 {
416 do
417 ret = waitpid (pid, status, flags);
418 while (ret == -1 && errno == EINTR);
419 out_errno = errno;
420 }
421
422 if (debug_threads)
423 fprintf (stderr, "my_waitpid (%d, 0x%x): status(%x), %d\n",
424 pid, flags, status ? *status : -1, ret);
425
426 errno = out_errno;
427 return ret;
428 }
429
430 /* Handle a GNU/Linux extended wait response. If we see a clone
431 event, we need to add the new LWP to our list (and not report the
432 trap to higher layers). */
433
434 static void
435 handle_extended_wait (struct lwp_info *event_child, int wstat)
436 {
437 int event = wstat >> 16;
438 struct lwp_info *new_lwp;
439
440 if (event == PTRACE_EVENT_CLONE)
441 {
442 ptid_t ptid;
443 unsigned long new_pid;
444 int ret, status;
445
446 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_child), 0, &new_pid);
447
448 /* If we haven't already seen the new PID stop, wait for it now. */
449 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
450 {
451 /* The new child has a pending SIGSTOP. We can't affect it until it
452 hits the SIGSTOP, but we're already attached. */
453
454 ret = my_waitpid (new_pid, &status, __WALL);
455
456 if (ret == -1)
457 perror_with_name ("waiting for new child");
458 else if (ret != new_pid)
459 warning ("wait returned unexpected PID %d", ret);
460 else if (!WIFSTOPPED (status))
461 warning ("wait returned unexpected status 0x%x", status);
462 }
463
464 linux_enable_event_reporting (new_pid);
465
466 ptid = ptid_build (pid_of (event_child), new_pid, 0);
467 new_lwp = (struct lwp_info *) add_lwp (ptid);
468 add_thread (ptid, new_lwp);
469
470 /* Either we're going to immediately resume the new thread
471 or leave it stopped. linux_resume_one_lwp is a nop if it
472 thinks the thread is currently running, so set this first
473 before calling linux_resume_one_lwp. */
474 new_lwp->stopped = 1;
475
476 /* If we're suspending all threads, leave this one suspended
477 too. */
478 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
479 new_lwp->suspended = 1;
480
481 /* Normally we will get the pending SIGSTOP. But in some cases
482 we might get another signal delivered to the group first.
483 If we do get another signal, be sure not to lose it. */
484 if (WSTOPSIG (status) == SIGSTOP)
485 {
486 if (stopping_threads != NOT_STOPPING_THREADS)
487 new_lwp->stop_pc = get_stop_pc (new_lwp);
488 else
489 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
490 }
491 else
492 {
493 new_lwp->stop_expected = 1;
494
495 if (stopping_threads != NOT_STOPPING_THREADS)
496 {
497 new_lwp->stop_pc = get_stop_pc (new_lwp);
498 new_lwp->status_pending_p = 1;
499 new_lwp->status_pending = status;
500 }
501 else
502 /* Pass the signal on. This is what GDB does - except
503 shouldn't we really report it instead? */
504 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
505 }
506
507 /* Always resume the current thread. If we are stopping
508 threads, it will have a pending SIGSTOP; we may as well
509 collect it now. */
510 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
511 }
512 }
513
514 /* Return the PC as read from the regcache of LWP, without any
515 adjustment. */
516
517 static CORE_ADDR
518 get_pc (struct lwp_info *lwp)
519 {
520 struct thread_info *saved_inferior;
521 struct regcache *regcache;
522 CORE_ADDR pc;
523
524 if (the_low_target.get_pc == NULL)
525 return 0;
526
527 saved_inferior = current_inferior;
528 current_inferior = get_lwp_thread (lwp);
529
530 regcache = get_thread_regcache (current_inferior, 1);
531 pc = (*the_low_target.get_pc) (regcache);
532
533 if (debug_threads)
534 fprintf (stderr, "pc is 0x%lx\n", (long) pc);
535
536 current_inferior = saved_inferior;
537 return pc;
538 }
539
540 /* This function should only be called if LWP got a SIGTRAP.
541 The SIGTRAP could mean several things.
542
543 On i386, where decr_pc_after_break is non-zero:
544 If we were single-stepping this process using PTRACE_SINGLESTEP,
545 we will get only the one SIGTRAP (even if the instruction we
546 stepped over was a breakpoint). The value of $eip will be the
547 next instruction.
548 If we continue the process using PTRACE_CONT, we will get a
549 SIGTRAP when we hit a breakpoint. The value of $eip will be
550 the instruction after the breakpoint (i.e. needs to be
551 decremented). If we report the SIGTRAP to GDB, we must also
552 report the undecremented PC. If we cancel the SIGTRAP, we
553 must resume at the decremented PC.
554
555 (Presumably, not yet tested) On a non-decr_pc_after_break machine
556 with hardware or kernel single-step:
557 If we single-step over a breakpoint instruction, our PC will
558 point at the following instruction. If we continue and hit a
559 breakpoint instruction, our PC will point at the breakpoint
560 instruction. */
561
562 static CORE_ADDR
563 get_stop_pc (struct lwp_info *lwp)
564 {
565 CORE_ADDR stop_pc;
566
567 if (the_low_target.get_pc == NULL)
568 return 0;
569
570 stop_pc = get_pc (lwp);
571
572 if (WSTOPSIG (lwp->last_status) == SIGTRAP
573 && !lwp->stepping
574 && !lwp->stopped_by_watchpoint
575 && lwp->last_status >> 16 == 0)
576 stop_pc -= the_low_target.decr_pc_after_break;
577
578 if (debug_threads)
579 fprintf (stderr, "stop pc is 0x%lx\n", (long) stop_pc);
580
581 return stop_pc;
582 }
583
584 static void *
585 add_lwp (ptid_t ptid)
586 {
587 struct lwp_info *lwp;
588
589 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
590 memset (lwp, 0, sizeof (*lwp));
591
592 lwp->head.id = ptid;
593
594 if (the_low_target.new_thread != NULL)
595 lwp->arch_private = the_low_target.new_thread ();
596
597 add_inferior_to_list (&all_lwps, &lwp->head);
598
599 return lwp;
600 }
601
602 /* Start an inferior process and returns its pid.
603 ALLARGS is a vector of program-name and args. */
604
605 static int
606 linux_create_inferior (char *program, char **allargs)
607 {
608 #ifdef HAVE_PERSONALITY
609 int personality_orig = 0, personality_set = 0;
610 #endif
611 struct lwp_info *new_lwp;
612 int pid;
613 ptid_t ptid;
614
615 #ifdef HAVE_PERSONALITY
616 if (disable_randomization)
617 {
618 errno = 0;
619 personality_orig = personality (0xffffffff);
620 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
621 {
622 personality_set = 1;
623 personality (personality_orig | ADDR_NO_RANDOMIZE);
624 }
625 if (errno != 0 || (personality_set
626 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
627 warning ("Error disabling address space randomization: %s",
628 strerror (errno));
629 }
630 #endif
631
632 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
633 pid = vfork ();
634 #else
635 pid = fork ();
636 #endif
637 if (pid < 0)
638 perror_with_name ("fork");
639
640 if (pid == 0)
641 {
642 ptrace (PTRACE_TRACEME, 0, 0, 0);
643
644 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
645 signal (__SIGRTMIN + 1, SIG_DFL);
646 #endif
647
648 setpgid (0, 0);
649
650 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
651 stdout to stderr so that inferior i/o doesn't corrupt the connection.
652 Also, redirect stdin to /dev/null. */
653 if (remote_connection_is_stdio ())
654 {
655 close (0);
656 open ("/dev/null", O_RDONLY);
657 dup2 (2, 1);
658 if (write (2, "stdin/stdout redirected\n",
659 sizeof ("stdin/stdout redirected\n") - 1) < 0)
660 /* Errors ignored. */;
661 }
662
663 execv (program, allargs);
664 if (errno == ENOENT)
665 execvp (program, allargs);
666
667 fprintf (stderr, "Cannot exec %s: %s.\n", program,
668 strerror (errno));
669 fflush (stderr);
670 _exit (0177);
671 }
672
673 #ifdef HAVE_PERSONALITY
674 if (personality_set)
675 {
676 errno = 0;
677 personality (personality_orig);
678 if (errno != 0)
679 warning ("Error restoring address space randomization: %s",
680 strerror (errno));
681 }
682 #endif
683
684 linux_add_process (pid, 0);
685
686 ptid = ptid_build (pid, pid, 0);
687 new_lwp = add_lwp (ptid);
688 add_thread (ptid, new_lwp);
689 new_lwp->must_set_ptrace_flags = 1;
690
691 return pid;
692 }
693
694 /* Attach to an inferior process. */
695
696 static void
697 linux_attach_lwp_1 (unsigned long lwpid, int initial)
698 {
699 ptid_t ptid;
700 struct lwp_info *new_lwp;
701
702 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) != 0)
703 {
704 struct buffer buffer;
705
706 if (!initial)
707 {
708 /* If we fail to attach to an LWP, just warn. */
709 fprintf (stderr, "Cannot attach to lwp %ld: %s (%d)\n", lwpid,
710 strerror (errno), errno);
711 fflush (stderr);
712 return;
713 }
714
715 /* If we fail to attach to a process, report an error. */
716 buffer_init (&buffer);
717 linux_ptrace_attach_warnings (lwpid, &buffer);
718 buffer_grow_str0 (&buffer, "");
719 error ("%sCannot attach to lwp %ld: %s (%d)", buffer_finish (&buffer),
720 lwpid, strerror (errno), errno);
721 }
722
723 if (initial)
724 /* If lwp is the tgid, we handle adding existing threads later.
725 Otherwise we just add lwp without bothering about any other
726 threads. */
727 ptid = ptid_build (lwpid, lwpid, 0);
728 else
729 {
730 /* Note that extracting the pid from the current inferior is
731 safe, since we're always called in the context of the same
732 process as this new thread. */
733 int pid = pid_of (get_thread_lwp (current_inferior));
734 ptid = ptid_build (pid, lwpid, 0);
735 }
736
737 new_lwp = (struct lwp_info *) add_lwp (ptid);
738 add_thread (ptid, new_lwp);
739
740 /* We need to wait for SIGSTOP before being able to make the next
741 ptrace call on this LWP. */
742 new_lwp->must_set_ptrace_flags = 1;
743
744 if (linux_proc_pid_is_stopped (lwpid))
745 {
746 if (debug_threads)
747 fprintf (stderr,
748 "Attached to a stopped process\n");
749
750 /* The process is definitely stopped. It is in a job control
751 stop, unless the kernel predates the TASK_STOPPED /
752 TASK_TRACED distinction, in which case it might be in a
753 ptrace stop. Make sure it is in a ptrace stop; from there we
754 can kill it, signal it, et cetera.
755
756 First make sure there is a pending SIGSTOP. Since we are
757 already attached, the process can not transition from stopped
758 to running without a PTRACE_CONT; so we know this signal will
759 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
760 probably already in the queue (unless this kernel is old
761 enough to use TASK_STOPPED for ptrace stops); but since
762 SIGSTOP is not an RT signal, it can only be queued once. */
763 kill_lwp (lwpid, SIGSTOP);
764
765 /* Finally, resume the stopped process. This will deliver the
766 SIGSTOP (or a higher priority signal, just like normal
767 PTRACE_ATTACH), which we'll catch later on. */
768 ptrace (PTRACE_CONT, lwpid, 0, 0);
769 }
770
771 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
772 brings it to a halt.
773
774 There are several cases to consider here:
775
776 1) gdbserver has already attached to the process and is being notified
777 of a new thread that is being created.
778 In this case we should ignore that SIGSTOP and resume the
779 process. This is handled below by setting stop_expected = 1,
780 and the fact that add_thread sets last_resume_kind ==
781 resume_continue.
782
783 2) This is the first thread (the process thread), and we're attaching
784 to it via attach_inferior.
785 In this case we want the process thread to stop.
786 This is handled by having linux_attach set last_resume_kind ==
787 resume_stop after we return.
788
789 If the pid we are attaching to is also the tgid, we attach to and
790 stop all the existing threads. Otherwise, we attach to pid and
791 ignore any other threads in the same group as this pid.
792
793 3) GDB is connecting to gdbserver and is requesting an enumeration of all
794 existing threads.
795 In this case we want the thread to stop.
796 FIXME: This case is currently not properly handled.
797 We should wait for the SIGSTOP but don't. Things work apparently
798 because enough time passes between when we ptrace (ATTACH) and when
799 gdb makes the next ptrace call on the thread.
800
801 On the other hand, if we are currently trying to stop all threads, we
802 should treat the new thread as if we had sent it a SIGSTOP. This works
803 because we are guaranteed that the add_lwp call above added us to the
804 end of the list, and so the new thread has not yet reached
805 wait_for_sigstop (but will). */
806 new_lwp->stop_expected = 1;
807 }
808
809 void
810 linux_attach_lwp (unsigned long lwpid)
811 {
812 linux_attach_lwp_1 (lwpid, 0);
813 }
814
815 /* Attach to PID. If PID is the tgid, attach to it and all
816 of its threads. */
817
818 int
819 linux_attach (unsigned long pid)
820 {
821 /* Attach to PID. We will check for other threads
822 soon. */
823 linux_attach_lwp_1 (pid, 1);
824 linux_add_process (pid, 1);
825
826 if (!non_stop)
827 {
828 struct thread_info *thread;
829
830 /* Don't ignore the initial SIGSTOP if we just attached to this
831 process. It will be collected by wait shortly. */
832 thread = find_thread_ptid (ptid_build (pid, pid, 0));
833 thread->last_resume_kind = resume_stop;
834 }
835
836 if (linux_proc_get_tgid (pid) == pid)
837 {
838 DIR *dir;
839 char pathname[128];
840
841 sprintf (pathname, "/proc/%ld/task", pid);
842
843 dir = opendir (pathname);
844
845 if (!dir)
846 {
847 fprintf (stderr, "Could not open /proc/%ld/task.\n", pid);
848 fflush (stderr);
849 }
850 else
851 {
852 /* At this point we attached to the tgid. Scan the task for
853 existing threads. */
854 unsigned long lwp;
855 int new_threads_found;
856 int iterations = 0;
857 struct dirent *dp;
858
859 while (iterations < 2)
860 {
861 new_threads_found = 0;
862 /* Add all the other threads. While we go through the
863 threads, new threads may be spawned. Cycle through
864 the list of threads until we have done two iterations without
865 finding new threads. */
866 while ((dp = readdir (dir)) != NULL)
867 {
868 /* Fetch one lwp. */
869 lwp = strtoul (dp->d_name, NULL, 10);
870
871 /* Is this a new thread? */
872 if (lwp
873 && find_thread_ptid (ptid_build (pid, lwp, 0)) == NULL)
874 {
875 linux_attach_lwp_1 (lwp, 0);
876 new_threads_found++;
877
878 if (debug_threads)
879 fprintf (stderr, "\
880 Found and attached to new lwp %ld\n", lwp);
881 }
882 }
883
884 if (!new_threads_found)
885 iterations++;
886 else
887 iterations = 0;
888
889 rewinddir (dir);
890 }
891 closedir (dir);
892 }
893 }
894
895 return 0;
896 }
897
898 struct counter
899 {
900 int pid;
901 int count;
902 };
903
904 static int
905 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
906 {
907 struct counter *counter = args;
908
909 if (ptid_get_pid (entry->id) == counter->pid)
910 {
911 if (++counter->count > 1)
912 return 1;
913 }
914
915 return 0;
916 }
917
918 static int
919 last_thread_of_process_p (struct thread_info *thread)
920 {
921 ptid_t ptid = ((struct inferior_list_entry *)thread)->id;
922 int pid = ptid_get_pid (ptid);
923 struct counter counter = { pid , 0 };
924
925 return (find_inferior (&all_threads,
926 second_thread_of_pid_p, &counter) == NULL);
927 }
928
929 /* Kill LWP. */
930
931 static void
932 linux_kill_one_lwp (struct lwp_info *lwp)
933 {
934 int pid = lwpid_of (lwp);
935
936 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
937 there is no signal context, and ptrace(PTRACE_KILL) (or
938 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
939 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
940 alternative is to kill with SIGKILL. We only need one SIGKILL
941 per process, not one for each thread. But since we still support
942 linuxthreads, and we also support debugging programs using raw
943 clone without CLONE_THREAD, we send one for each thread. For
944 years, we used PTRACE_KILL only, so we're being a bit paranoid
945 about some old kernels where PTRACE_KILL might work better
946 (dubious if there are any such, but that's why it's paranoia), so
947 we try SIGKILL first, PTRACE_KILL second, and so we're fine
948 everywhere. */
949
950 errno = 0;
951 kill (pid, SIGKILL);
952 if (debug_threads)
953 fprintf (stderr,
954 "LKL: kill (SIGKILL) %s, 0, 0 (%s)\n",
955 target_pid_to_str (ptid_of (lwp)),
956 errno ? strerror (errno) : "OK");
957
958 errno = 0;
959 ptrace (PTRACE_KILL, pid, 0, 0);
960 if (debug_threads)
961 fprintf (stderr,
962 "LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
963 target_pid_to_str (ptid_of (lwp)),
964 errno ? strerror (errno) : "OK");
965 }
966
967 /* Callback for `find_inferior'. Kills an lwp of a given process,
968 except the leader. */
969
970 static int
971 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
972 {
973 struct thread_info *thread = (struct thread_info *) entry;
974 struct lwp_info *lwp = get_thread_lwp (thread);
975 int wstat;
976 int pid = * (int *) args;
977
978 if (ptid_get_pid (entry->id) != pid)
979 return 0;
980
981 /* We avoid killing the first thread here, because of a Linux kernel (at
982 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
983 the children get a chance to be reaped, it will remain a zombie
984 forever. */
985
986 if (lwpid_of (lwp) == pid)
987 {
988 if (debug_threads)
989 fprintf (stderr, "lkop: is last of process %s\n",
990 target_pid_to_str (entry->id));
991 return 0;
992 }
993
994 do
995 {
996 linux_kill_one_lwp (lwp);
997
998 /* Make sure it died. The loop is most likely unnecessary. */
999 pid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
1000 } while (pid > 0 && WIFSTOPPED (wstat));
1001
1002 return 0;
1003 }
1004
1005 static int
1006 linux_kill (int pid)
1007 {
1008 struct process_info *process;
1009 struct lwp_info *lwp;
1010 int wstat;
1011 int lwpid;
1012
1013 process = find_process_pid (pid);
1014 if (process == NULL)
1015 return -1;
1016
1017 /* If we're killing a running inferior, make sure it is stopped
1018 first, as PTRACE_KILL will not work otherwise. */
1019 stop_all_lwps (0, NULL);
1020
1021 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1022
1023 /* See the comment in linux_kill_one_lwp. We did not kill the first
1024 thread in the list, so do so now. */
1025 lwp = find_lwp_pid (pid_to_ptid (pid));
1026
1027 if (lwp == NULL)
1028 {
1029 if (debug_threads)
1030 fprintf (stderr, "lk_1: cannot find lwp %ld, for pid: %d\n",
1031 lwpid_of (lwp), pid);
1032 }
1033 else
1034 {
1035 if (debug_threads)
1036 fprintf (stderr, "lk_1: killing lwp %ld, for pid: %d\n",
1037 lwpid_of (lwp), pid);
1038
1039 do
1040 {
1041 linux_kill_one_lwp (lwp);
1042
1043 /* Make sure it died. The loop is most likely unnecessary. */
1044 lwpid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
1045 } while (lwpid > 0 && WIFSTOPPED (wstat));
1046 }
1047
1048 the_target->mourn (process);
1049
1050 /* Since we presently can only stop all lwps of all processes, we
1051 need to unstop lwps of other processes. */
1052 unstop_all_lwps (0, NULL);
1053 return 0;
1054 }
1055
1056 /* Get pending signal of THREAD, for detaching purposes. This is the
1057 signal the thread last stopped for, which we need to deliver to the
1058 thread when detaching, otherwise, it'd be suppressed/lost. */
1059
1060 static int
1061 get_detach_signal (struct thread_info *thread)
1062 {
1063 enum target_signal signo = TARGET_SIGNAL_0;
1064 int status;
1065 struct lwp_info *lp = get_thread_lwp (thread);
1066
1067 if (lp->status_pending_p)
1068 status = lp->status_pending;
1069 else
1070 {
1071 /* If the thread had been suspended by gdbserver, and it stopped
1072 cleanly, then it'll have stopped with SIGSTOP. But we don't
1073 want to deliver that SIGSTOP. */
1074 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1075 || thread->last_status.value.sig == TARGET_SIGNAL_0)
1076 return 0;
1077
1078 /* Otherwise, we may need to deliver the signal we
1079 intercepted. */
1080 status = lp->last_status;
1081 }
1082
1083 if (!WIFSTOPPED (status))
1084 {
1085 if (debug_threads)
1086 fprintf (stderr,
1087 "GPS: lwp %s hasn't stopped: no pending signal\n",
1088 target_pid_to_str (ptid_of (lp)));
1089 return 0;
1090 }
1091
1092 /* Extended wait statuses aren't real SIGTRAPs. */
1093 if (WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1094 {
1095 if (debug_threads)
1096 fprintf (stderr,
1097 "GPS: lwp %s had stopped with extended "
1098 "status: no pending signal\n",
1099 target_pid_to_str (ptid_of (lp)));
1100 return 0;
1101 }
1102
1103 signo = target_signal_from_host (WSTOPSIG (status));
1104
1105 if (program_signals_p && !program_signals[signo])
1106 {
1107 if (debug_threads)
1108 fprintf (stderr,
1109 "GPS: lwp %s had signal %s, but it is in nopass state\n",
1110 target_pid_to_str (ptid_of (lp)),
1111 target_signal_to_string (signo));
1112 return 0;
1113 }
1114 else if (!program_signals_p
1115 /* If we have no way to know which signals GDB does not
1116 want to have passed to the program, assume
1117 SIGTRAP/SIGINT, which is GDB's default. */
1118 && (signo == TARGET_SIGNAL_TRAP || signo == TARGET_SIGNAL_INT))
1119 {
1120 if (debug_threads)
1121 fprintf (stderr,
1122 "GPS: lwp %s had signal %s, "
1123 "but we don't know if we should pass it. Default to not.\n",
1124 target_pid_to_str (ptid_of (lp)),
1125 target_signal_to_string (signo));
1126 return 0;
1127 }
1128 else
1129 {
1130 if (debug_threads)
1131 fprintf (stderr,
1132 "GPS: lwp %s has pending signal %s: delivering it.\n",
1133 target_pid_to_str (ptid_of (lp)),
1134 target_signal_to_string (signo));
1135
1136 return WSTOPSIG (status);
1137 }
1138 }
1139
1140 static int
1141 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1142 {
1143 struct thread_info *thread = (struct thread_info *) entry;
1144 struct lwp_info *lwp = get_thread_lwp (thread);
1145 int pid = * (int *) args;
1146 int sig;
1147
1148 if (ptid_get_pid (entry->id) != pid)
1149 return 0;
1150
1151 /* If there is a pending SIGSTOP, get rid of it. */
1152 if (lwp->stop_expected)
1153 {
1154 if (debug_threads)
1155 fprintf (stderr,
1156 "Sending SIGCONT to %s\n",
1157 target_pid_to_str (ptid_of (lwp)));
1158
1159 kill_lwp (lwpid_of (lwp), SIGCONT);
1160 lwp->stop_expected = 0;
1161 }
1162
1163 /* Flush any pending changes to the process's registers. */
1164 regcache_invalidate_one ((struct inferior_list_entry *)
1165 get_lwp_thread (lwp));
1166
1167 /* Pass on any pending signal for this thread. */
1168 sig = get_detach_signal (thread);
1169
1170 /* Finally, let it resume. */
1171 if (the_low_target.prepare_to_resume != NULL)
1172 the_low_target.prepare_to_resume (lwp);
1173 if (ptrace (PTRACE_DETACH, lwpid_of (lwp), 0,
1174 (PTRACE_ARG4_TYPE) (long) sig) < 0)
1175 error (_("Can't detach %s: %s"),
1176 target_pid_to_str (ptid_of (lwp)),
1177 strerror (errno));
1178
1179 delete_lwp (lwp);
1180 return 0;
1181 }
1182
1183 static int
1184 linux_detach (int pid)
1185 {
1186 struct process_info *process;
1187
1188 process = find_process_pid (pid);
1189 if (process == NULL)
1190 return -1;
1191
1192 /* Stop all threads before detaching. First, ptrace requires that
1193 the thread is stopped to sucessfully detach. Second, thread_db
1194 may need to uninstall thread event breakpoints from memory, which
1195 only works with a stopped process anyway. */
1196 stop_all_lwps (0, NULL);
1197
1198 #ifdef USE_THREAD_DB
1199 thread_db_detach (process);
1200 #endif
1201
1202 /* Stabilize threads (move out of jump pads). */
1203 stabilize_threads ();
1204
1205 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1206
1207 the_target->mourn (process);
1208
1209 /* Since we presently can only stop all lwps of all processes, we
1210 need to unstop lwps of other processes. */
1211 unstop_all_lwps (0, NULL);
1212 return 0;
1213 }
1214
1215 /* Remove all LWPs that belong to process PROC from the lwp list. */
1216
1217 static int
1218 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1219 {
1220 struct lwp_info *lwp = (struct lwp_info *) entry;
1221 struct process_info *process = proc;
1222
1223 if (pid_of (lwp) == pid_of (process))
1224 delete_lwp (lwp);
1225
1226 return 0;
1227 }
1228
1229 static void
1230 linux_mourn (struct process_info *process)
1231 {
1232 struct process_info_private *priv;
1233
1234 #ifdef USE_THREAD_DB
1235 thread_db_mourn (process);
1236 #endif
1237
1238 find_inferior (&all_lwps, delete_lwp_callback, process);
1239
1240 /* Freeing all private data. */
1241 priv = process->private;
1242 free (priv->arch_private);
1243 free (priv);
1244 process->private = NULL;
1245
1246 remove_process (process);
1247 }
1248
1249 static void
1250 linux_join (int pid)
1251 {
1252 int status, ret;
1253
1254 do {
1255 ret = my_waitpid (pid, &status, 0);
1256 if (WIFEXITED (status) || WIFSIGNALED (status))
1257 break;
1258 } while (ret != -1 || errno != ECHILD);
1259 }
1260
1261 /* Return nonzero if the given thread is still alive. */
1262 static int
1263 linux_thread_alive (ptid_t ptid)
1264 {
1265 struct lwp_info *lwp = find_lwp_pid (ptid);
1266
1267 /* We assume we always know if a thread exits. If a whole process
1268 exited but we still haven't been able to report it to GDB, we'll
1269 hold on to the last lwp of the dead process. */
1270 if (lwp != NULL)
1271 return !lwp->dead;
1272 else
1273 return 0;
1274 }
1275
1276 /* Return 1 if this lwp has an interesting status pending. */
1277 static int
1278 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1279 {
1280 struct lwp_info *lwp = (struct lwp_info *) entry;
1281 ptid_t ptid = * (ptid_t *) arg;
1282 struct thread_info *thread;
1283
1284 /* Check if we're only interested in events from a specific process
1285 or its lwps. */
1286 if (!ptid_equal (minus_one_ptid, ptid)
1287 && ptid_get_pid (ptid) != ptid_get_pid (lwp->head.id))
1288 return 0;
1289
1290 thread = get_lwp_thread (lwp);
1291
1292 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1293 report any status pending the LWP may have. */
1294 if (thread->last_resume_kind == resume_stop
1295 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1296 return 0;
1297
1298 return lwp->status_pending_p;
1299 }
1300
1301 static int
1302 same_lwp (struct inferior_list_entry *entry, void *data)
1303 {
1304 ptid_t ptid = *(ptid_t *) data;
1305 int lwp;
1306
1307 if (ptid_get_lwp (ptid) != 0)
1308 lwp = ptid_get_lwp (ptid);
1309 else
1310 lwp = ptid_get_pid (ptid);
1311
1312 if (ptid_get_lwp (entry->id) == lwp)
1313 return 1;
1314
1315 return 0;
1316 }
1317
1318 struct lwp_info *
1319 find_lwp_pid (ptid_t ptid)
1320 {
1321 return (struct lwp_info*) find_inferior (&all_lwps, same_lwp, &ptid);
1322 }
1323
1324 static struct lwp_info *
1325 linux_wait_for_lwp (ptid_t ptid, int *wstatp, int options)
1326 {
1327 int ret;
1328 int to_wait_for = -1;
1329 struct lwp_info *child = NULL;
1330
1331 if (debug_threads)
1332 fprintf (stderr, "linux_wait_for_lwp: %s\n", target_pid_to_str (ptid));
1333
1334 if (ptid_equal (ptid, minus_one_ptid))
1335 to_wait_for = -1; /* any child */
1336 else
1337 to_wait_for = ptid_get_lwp (ptid); /* this lwp only */
1338
1339 options |= __WALL;
1340
1341 retry:
1342
1343 ret = my_waitpid (to_wait_for, wstatp, options);
1344 if (ret == 0 || (ret == -1 && errno == ECHILD && (options & WNOHANG)))
1345 return NULL;
1346 else if (ret == -1)
1347 perror_with_name ("waitpid");
1348
1349 if (debug_threads
1350 && (!WIFSTOPPED (*wstatp)
1351 || (WSTOPSIG (*wstatp) != 32
1352 && WSTOPSIG (*wstatp) != 33)))
1353 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
1354
1355 child = find_lwp_pid (pid_to_ptid (ret));
1356
1357 /* If we didn't find a process, one of two things presumably happened:
1358 - A process we started and then detached from has exited. Ignore it.
1359 - A process we are controlling has forked and the new child's stop
1360 was reported to us by the kernel. Save its PID. */
1361 if (child == NULL && WIFSTOPPED (*wstatp))
1362 {
1363 add_to_pid_list (&stopped_pids, ret, *wstatp);
1364 goto retry;
1365 }
1366 else if (child == NULL)
1367 goto retry;
1368
1369 child->stopped = 1;
1370
1371 child->last_status = *wstatp;
1372
1373 /* Architecture-specific setup after inferior is running.
1374 This needs to happen after we have attached to the inferior
1375 and it is stopped for the first time, but before we access
1376 any inferior registers. */
1377 if (new_inferior)
1378 {
1379 the_low_target.arch_setup ();
1380 #ifdef HAVE_LINUX_REGSETS
1381 memset (disabled_regsets, 0, num_regsets);
1382 #endif
1383 new_inferior = 0;
1384 }
1385
1386 /* Fetch the possibly triggered data watchpoint info and store it in
1387 CHILD.
1388
1389 On some archs, like x86, that use debug registers to set
1390 watchpoints, it's possible that the way to know which watched
1391 address trapped, is to check the register that is used to select
1392 which address to watch. Problem is, between setting the
1393 watchpoint and reading back which data address trapped, the user
1394 may change the set of watchpoints, and, as a consequence, GDB
1395 changes the debug registers in the inferior. To avoid reading
1396 back a stale stopped-data-address when that happens, we cache in
1397 LP the fact that a watchpoint trapped, and the corresponding data
1398 address, as soon as we see CHILD stop with a SIGTRAP. If GDB
1399 changes the debug registers meanwhile, we have the cached data we
1400 can rely on. */
1401
1402 if (WIFSTOPPED (*wstatp) && WSTOPSIG (*wstatp) == SIGTRAP)
1403 {
1404 if (the_low_target.stopped_by_watchpoint == NULL)
1405 {
1406 child->stopped_by_watchpoint = 0;
1407 }
1408 else
1409 {
1410 struct thread_info *saved_inferior;
1411
1412 saved_inferior = current_inferior;
1413 current_inferior = get_lwp_thread (child);
1414
1415 child->stopped_by_watchpoint
1416 = the_low_target.stopped_by_watchpoint ();
1417
1418 if (child->stopped_by_watchpoint)
1419 {
1420 if (the_low_target.stopped_data_address != NULL)
1421 child->stopped_data_address
1422 = the_low_target.stopped_data_address ();
1423 else
1424 child->stopped_data_address = 0;
1425 }
1426
1427 current_inferior = saved_inferior;
1428 }
1429 }
1430
1431 /* Store the STOP_PC, with adjustment applied. This depends on the
1432 architecture being defined already (so that CHILD has a valid
1433 regcache), and on LAST_STATUS being set (to check for SIGTRAP or
1434 not). */
1435 if (WIFSTOPPED (*wstatp))
1436 child->stop_pc = get_stop_pc (child);
1437
1438 if (debug_threads
1439 && WIFSTOPPED (*wstatp)
1440 && the_low_target.get_pc != NULL)
1441 {
1442 struct thread_info *saved_inferior = current_inferior;
1443 struct regcache *regcache;
1444 CORE_ADDR pc;
1445
1446 current_inferior = get_lwp_thread (child);
1447 regcache = get_thread_regcache (current_inferior, 1);
1448 pc = (*the_low_target.get_pc) (regcache);
1449 fprintf (stderr, "linux_wait_for_lwp: pc is 0x%lx\n", (long) pc);
1450 current_inferior = saved_inferior;
1451 }
1452
1453 return child;
1454 }
1455
1456 /* This function should only be called if the LWP got a SIGTRAP.
1457
1458 Handle any tracepoint steps or hits. Return true if a tracepoint
1459 event was handled, 0 otherwise. */
1460
1461 static int
1462 handle_tracepoints (struct lwp_info *lwp)
1463 {
1464 struct thread_info *tinfo = get_lwp_thread (lwp);
1465 int tpoint_related_event = 0;
1466
1467 /* If this tracepoint hit causes a tracing stop, we'll immediately
1468 uninsert tracepoints. To do this, we temporarily pause all
1469 threads, unpatch away, and then unpause threads. We need to make
1470 sure the unpausing doesn't resume LWP too. */
1471 lwp->suspended++;
1472
1473 /* And we need to be sure that any all-threads-stopping doesn't try
1474 to move threads out of the jump pads, as it could deadlock the
1475 inferior (LWP could be in the jump pad, maybe even holding the
1476 lock.) */
1477
1478 /* Do any necessary step collect actions. */
1479 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1480
1481 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1482
1483 /* See if we just hit a tracepoint and do its main collect
1484 actions. */
1485 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1486
1487 lwp->suspended--;
1488
1489 gdb_assert (lwp->suspended == 0);
1490 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1491
1492 if (tpoint_related_event)
1493 {
1494 if (debug_threads)
1495 fprintf (stderr, "got a tracepoint event\n");
1496 return 1;
1497 }
1498
1499 return 0;
1500 }
1501
1502 /* Convenience wrapper. Returns true if LWP is presently collecting a
1503 fast tracepoint. */
1504
1505 static int
1506 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1507 struct fast_tpoint_collect_status *status)
1508 {
1509 CORE_ADDR thread_area;
1510
1511 if (the_low_target.get_thread_area == NULL)
1512 return 0;
1513
1514 /* Get the thread area address. This is used to recognize which
1515 thread is which when tracing with the in-process agent library.
1516 We don't read anything from the address, and treat it as opaque;
1517 it's the address itself that we assume is unique per-thread. */
1518 if ((*the_low_target.get_thread_area) (lwpid_of (lwp), &thread_area) == -1)
1519 return 0;
1520
1521 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1522 }
1523
1524 /* The reason we resume in the caller, is because we want to be able
1525 to pass lwp->status_pending as WSTAT, and we need to clear
1526 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1527 refuses to resume. */
1528
1529 static int
1530 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1531 {
1532 struct thread_info *saved_inferior;
1533
1534 saved_inferior = current_inferior;
1535 current_inferior = get_lwp_thread (lwp);
1536
1537 if ((wstat == NULL
1538 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1539 && supports_fast_tracepoints ()
1540 && agent_loaded_p ())
1541 {
1542 struct fast_tpoint_collect_status status;
1543 int r;
1544
1545 if (debug_threads)
1546 fprintf (stderr, "\
1547 Checking whether LWP %ld needs to move out of the jump pad.\n",
1548 lwpid_of (lwp));
1549
1550 r = linux_fast_tracepoint_collecting (lwp, &status);
1551
1552 if (wstat == NULL
1553 || (WSTOPSIG (*wstat) != SIGILL
1554 && WSTOPSIG (*wstat) != SIGFPE
1555 && WSTOPSIG (*wstat) != SIGSEGV
1556 && WSTOPSIG (*wstat) != SIGBUS))
1557 {
1558 lwp->collecting_fast_tracepoint = r;
1559
1560 if (r != 0)
1561 {
1562 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1563 {
1564 /* Haven't executed the original instruction yet.
1565 Set breakpoint there, and wait till it's hit,
1566 then single-step until exiting the jump pad. */
1567 lwp->exit_jump_pad_bkpt
1568 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1569 }
1570
1571 if (debug_threads)
1572 fprintf (stderr, "\
1573 Checking whether LWP %ld needs to move out of the jump pad...it does\n",
1574 lwpid_of (lwp));
1575 current_inferior = saved_inferior;
1576
1577 return 1;
1578 }
1579 }
1580 else
1581 {
1582 /* If we get a synchronous signal while collecting, *and*
1583 while executing the (relocated) original instruction,
1584 reset the PC to point at the tpoint address, before
1585 reporting to GDB. Otherwise, it's an IPA lib bug: just
1586 report the signal to GDB, and pray for the best. */
1587
1588 lwp->collecting_fast_tracepoint = 0;
1589
1590 if (r != 0
1591 && (status.adjusted_insn_addr <= lwp->stop_pc
1592 && lwp->stop_pc < status.adjusted_insn_addr_end))
1593 {
1594 siginfo_t info;
1595 struct regcache *regcache;
1596
1597 /* The si_addr on a few signals references the address
1598 of the faulting instruction. Adjust that as
1599 well. */
1600 if ((WSTOPSIG (*wstat) == SIGILL
1601 || WSTOPSIG (*wstat) == SIGFPE
1602 || WSTOPSIG (*wstat) == SIGBUS
1603 || WSTOPSIG (*wstat) == SIGSEGV)
1604 && ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &info) == 0
1605 /* Final check just to make sure we don't clobber
1606 the siginfo of non-kernel-sent signals. */
1607 && (uintptr_t) info.si_addr == lwp->stop_pc)
1608 {
1609 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1610 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &info);
1611 }
1612
1613 regcache = get_thread_regcache (get_lwp_thread (lwp), 1);
1614 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1615 lwp->stop_pc = status.tpoint_addr;
1616
1617 /* Cancel any fast tracepoint lock this thread was
1618 holding. */
1619 force_unlock_trace_buffer ();
1620 }
1621
1622 if (lwp->exit_jump_pad_bkpt != NULL)
1623 {
1624 if (debug_threads)
1625 fprintf (stderr,
1626 "Cancelling fast exit-jump-pad: removing bkpt. "
1627 "stopping all threads momentarily.\n");
1628
1629 stop_all_lwps (1, lwp);
1630 cancel_breakpoints ();
1631
1632 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1633 lwp->exit_jump_pad_bkpt = NULL;
1634
1635 unstop_all_lwps (1, lwp);
1636
1637 gdb_assert (lwp->suspended >= 0);
1638 }
1639 }
1640 }
1641
1642 if (debug_threads)
1643 fprintf (stderr, "\
1644 Checking whether LWP %ld needs to move out of the jump pad...no\n",
1645 lwpid_of (lwp));
1646
1647 current_inferior = saved_inferior;
1648 return 0;
1649 }
1650
1651 /* Enqueue one signal in the "signals to report later when out of the
1652 jump pad" list. */
1653
1654 static void
1655 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1656 {
1657 struct pending_signals *p_sig;
1658
1659 if (debug_threads)
1660 fprintf (stderr, "\
1661 Deferring signal %d for LWP %ld.\n", WSTOPSIG (*wstat), lwpid_of (lwp));
1662
1663 if (debug_threads)
1664 {
1665 struct pending_signals *sig;
1666
1667 for (sig = lwp->pending_signals_to_report;
1668 sig != NULL;
1669 sig = sig->prev)
1670 fprintf (stderr,
1671 " Already queued %d\n",
1672 sig->signal);
1673
1674 fprintf (stderr, " (no more currently queued signals)\n");
1675 }
1676
1677 /* Don't enqueue non-RT signals if they are already in the deferred
1678 queue. (SIGSTOP being the easiest signal to see ending up here
1679 twice) */
1680 if (WSTOPSIG (*wstat) < __SIGRTMIN)
1681 {
1682 struct pending_signals *sig;
1683
1684 for (sig = lwp->pending_signals_to_report;
1685 sig != NULL;
1686 sig = sig->prev)
1687 {
1688 if (sig->signal == WSTOPSIG (*wstat))
1689 {
1690 if (debug_threads)
1691 fprintf (stderr,
1692 "Not requeuing already queued non-RT signal %d"
1693 " for LWP %ld\n",
1694 sig->signal,
1695 lwpid_of (lwp));
1696 return;
1697 }
1698 }
1699 }
1700
1701 p_sig = xmalloc (sizeof (*p_sig));
1702 p_sig->prev = lwp->pending_signals_to_report;
1703 p_sig->signal = WSTOPSIG (*wstat);
1704 memset (&p_sig->info, 0, sizeof (siginfo_t));
1705 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &p_sig->info);
1706
1707 lwp->pending_signals_to_report = p_sig;
1708 }
1709
1710 /* Dequeue one signal from the "signals to report later when out of
1711 the jump pad" list. */
1712
1713 static int
1714 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1715 {
1716 if (lwp->pending_signals_to_report != NULL)
1717 {
1718 struct pending_signals **p_sig;
1719
1720 p_sig = &lwp->pending_signals_to_report;
1721 while ((*p_sig)->prev != NULL)
1722 p_sig = &(*p_sig)->prev;
1723
1724 *wstat = W_STOPCODE ((*p_sig)->signal);
1725 if ((*p_sig)->info.si_signo != 0)
1726 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &(*p_sig)->info);
1727 free (*p_sig);
1728 *p_sig = NULL;
1729
1730 if (debug_threads)
1731 fprintf (stderr, "Reporting deferred signal %d for LWP %ld.\n",
1732 WSTOPSIG (*wstat), lwpid_of (lwp));
1733
1734 if (debug_threads)
1735 {
1736 struct pending_signals *sig;
1737
1738 for (sig = lwp->pending_signals_to_report;
1739 sig != NULL;
1740 sig = sig->prev)
1741 fprintf (stderr,
1742 " Still queued %d\n",
1743 sig->signal);
1744
1745 fprintf (stderr, " (no more queued signals)\n");
1746 }
1747
1748 return 1;
1749 }
1750
1751 return 0;
1752 }
1753
1754 /* Arrange for a breakpoint to be hit again later. We don't keep the
1755 SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
1756 will handle the current event, eventually we will resume this LWP,
1757 and this breakpoint will trap again. */
1758
1759 static int
1760 cancel_breakpoint (struct lwp_info *lwp)
1761 {
1762 struct thread_info *saved_inferior;
1763
1764 /* There's nothing to do if we don't support breakpoints. */
1765 if (!supports_breakpoints ())
1766 return 0;
1767
1768 /* breakpoint_at reads from current inferior. */
1769 saved_inferior = current_inferior;
1770 current_inferior = get_lwp_thread (lwp);
1771
1772 if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
1773 {
1774 if (debug_threads)
1775 fprintf (stderr,
1776 "CB: Push back breakpoint for %s\n",
1777 target_pid_to_str (ptid_of (lwp)));
1778
1779 /* Back up the PC if necessary. */
1780 if (the_low_target.decr_pc_after_break)
1781 {
1782 struct regcache *regcache
1783 = get_thread_regcache (current_inferior, 1);
1784 (*the_low_target.set_pc) (regcache, lwp->stop_pc);
1785 }
1786
1787 current_inferior = saved_inferior;
1788 return 1;
1789 }
1790 else
1791 {
1792 if (debug_threads)
1793 fprintf (stderr,
1794 "CB: No breakpoint found at %s for [%s]\n",
1795 paddress (lwp->stop_pc),
1796 target_pid_to_str (ptid_of (lwp)));
1797 }
1798
1799 current_inferior = saved_inferior;
1800 return 0;
1801 }
1802
1803 /* When the event-loop is doing a step-over, this points at the thread
1804 being stepped. */
1805 ptid_t step_over_bkpt;
1806
1807 /* Wait for an event from child PID. If PID is -1, wait for any
1808 child. Store the stop status through the status pointer WSTAT.
1809 OPTIONS is passed to the waitpid call. Return 0 if no child stop
1810 event was found and OPTIONS contains WNOHANG. Return the PID of
1811 the stopped child otherwise. */
1812
1813 static int
1814 linux_wait_for_event (ptid_t ptid, int *wstat, int options)
1815 {
1816 struct lwp_info *event_child, *requested_child;
1817 ptid_t wait_ptid;
1818
1819 event_child = NULL;
1820 requested_child = NULL;
1821
1822 /* Check for a lwp with a pending status. */
1823
1824 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
1825 {
1826 event_child = (struct lwp_info *)
1827 find_inferior (&all_lwps, status_pending_p_callback, &ptid);
1828 if (debug_threads && event_child)
1829 fprintf (stderr, "Got a pending child %ld\n", lwpid_of (event_child));
1830 }
1831 else
1832 {
1833 requested_child = find_lwp_pid (ptid);
1834
1835 if (stopping_threads == NOT_STOPPING_THREADS
1836 && requested_child->status_pending_p
1837 && requested_child->collecting_fast_tracepoint)
1838 {
1839 enqueue_one_deferred_signal (requested_child,
1840 &requested_child->status_pending);
1841 requested_child->status_pending_p = 0;
1842 requested_child->status_pending = 0;
1843 linux_resume_one_lwp (requested_child, 0, 0, NULL);
1844 }
1845
1846 if (requested_child->suspended
1847 && requested_child->status_pending_p)
1848 fatal ("requesting an event out of a suspended child?");
1849
1850 if (requested_child->status_pending_p)
1851 event_child = requested_child;
1852 }
1853
1854 if (event_child != NULL)
1855 {
1856 if (debug_threads)
1857 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
1858 lwpid_of (event_child), event_child->status_pending);
1859 *wstat = event_child->status_pending;
1860 event_child->status_pending_p = 0;
1861 event_child->status_pending = 0;
1862 current_inferior = get_lwp_thread (event_child);
1863 return lwpid_of (event_child);
1864 }
1865
1866 if (ptid_is_pid (ptid))
1867 {
1868 /* A request to wait for a specific tgid. This is not possible
1869 with waitpid, so instead, we wait for any child, and leave
1870 children we're not interested in right now with a pending
1871 status to report later. */
1872 wait_ptid = minus_one_ptid;
1873 }
1874 else
1875 wait_ptid = ptid;
1876
1877 /* We only enter this loop if no process has a pending wait status. Thus
1878 any action taken in response to a wait status inside this loop is
1879 responding as soon as we detect the status, not after any pending
1880 events. */
1881 while (1)
1882 {
1883 event_child = linux_wait_for_lwp (wait_ptid, wstat, options);
1884
1885 if ((options & WNOHANG) && event_child == NULL)
1886 {
1887 if (debug_threads)
1888 fprintf (stderr, "WNOHANG set, no event found\n");
1889 return 0;
1890 }
1891
1892 if (event_child == NULL)
1893 error ("event from unknown child");
1894
1895 if (ptid_is_pid (ptid)
1896 && ptid_get_pid (ptid) != ptid_get_pid (ptid_of (event_child)))
1897 {
1898 if (! WIFSTOPPED (*wstat))
1899 mark_lwp_dead (event_child, *wstat);
1900 else
1901 {
1902 event_child->status_pending_p = 1;
1903 event_child->status_pending = *wstat;
1904 }
1905 continue;
1906 }
1907
1908 current_inferior = get_lwp_thread (event_child);
1909
1910 /* Check for thread exit. */
1911 if (! WIFSTOPPED (*wstat))
1912 {
1913 if (debug_threads)
1914 fprintf (stderr, "LWP %ld exiting\n", lwpid_of (event_child));
1915
1916 /* If the last thread is exiting, just return. */
1917 if (last_thread_of_process_p (current_inferior))
1918 {
1919 if (debug_threads)
1920 fprintf (stderr, "LWP %ld is last lwp of process\n",
1921 lwpid_of (event_child));
1922 return lwpid_of (event_child);
1923 }
1924
1925 if (!non_stop)
1926 {
1927 current_inferior = (struct thread_info *) all_threads.head;
1928 if (debug_threads)
1929 fprintf (stderr, "Current inferior is now %ld\n",
1930 lwpid_of (get_thread_lwp (current_inferior)));
1931 }
1932 else
1933 {
1934 current_inferior = NULL;
1935 if (debug_threads)
1936 fprintf (stderr, "Current inferior is now <NULL>\n");
1937 }
1938
1939 /* If we were waiting for this particular child to do something...
1940 well, it did something. */
1941 if (requested_child != NULL)
1942 {
1943 int lwpid = lwpid_of (event_child);
1944
1945 /* Cancel the step-over operation --- the thread that
1946 started it is gone. */
1947 if (finish_step_over (event_child))
1948 unstop_all_lwps (1, event_child);
1949 delete_lwp (event_child);
1950 return lwpid;
1951 }
1952
1953 delete_lwp (event_child);
1954
1955 /* Wait for a more interesting event. */
1956 continue;
1957 }
1958
1959 if (event_child->must_set_ptrace_flags)
1960 {
1961 linux_enable_event_reporting (lwpid_of (event_child));
1962 event_child->must_set_ptrace_flags = 0;
1963 }
1964
1965 if (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) == SIGTRAP
1966 && *wstat >> 16 != 0)
1967 {
1968 handle_extended_wait (event_child, *wstat);
1969 continue;
1970 }
1971
1972 if (WIFSTOPPED (*wstat)
1973 && WSTOPSIG (*wstat) == SIGSTOP
1974 && event_child->stop_expected)
1975 {
1976 int should_stop;
1977
1978 if (debug_threads)
1979 fprintf (stderr, "Expected stop.\n");
1980 event_child->stop_expected = 0;
1981
1982 should_stop = (current_inferior->last_resume_kind == resume_stop
1983 || stopping_threads != NOT_STOPPING_THREADS);
1984
1985 if (!should_stop)
1986 {
1987 linux_resume_one_lwp (event_child,
1988 event_child->stepping, 0, NULL);
1989 continue;
1990 }
1991 }
1992
1993 return lwpid_of (event_child);
1994 }
1995
1996 /* NOTREACHED */
1997 return 0;
1998 }
1999
2000 /* Count the LWP's that have had events. */
2001
2002 static int
2003 count_events_callback (struct inferior_list_entry *entry, void *data)
2004 {
2005 struct lwp_info *lp = (struct lwp_info *) entry;
2006 struct thread_info *thread = get_lwp_thread (lp);
2007 int *count = data;
2008
2009 gdb_assert (count != NULL);
2010
2011 /* Count only resumed LWPs that have a SIGTRAP event pending that
2012 should be reported to GDB. */
2013 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2014 && thread->last_resume_kind != resume_stop
2015 && lp->status_pending_p
2016 && WIFSTOPPED (lp->status_pending)
2017 && WSTOPSIG (lp->status_pending) == SIGTRAP
2018 && !breakpoint_inserted_here (lp->stop_pc))
2019 (*count)++;
2020
2021 return 0;
2022 }
2023
2024 /* Select the LWP (if any) that is currently being single-stepped. */
2025
2026 static int
2027 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2028 {
2029 struct lwp_info *lp = (struct lwp_info *) entry;
2030 struct thread_info *thread = get_lwp_thread (lp);
2031
2032 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2033 && thread->last_resume_kind == resume_step
2034 && lp->status_pending_p)
2035 return 1;
2036 else
2037 return 0;
2038 }
2039
2040 /* Select the Nth LWP that has had a SIGTRAP event that should be
2041 reported to GDB. */
2042
2043 static int
2044 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2045 {
2046 struct lwp_info *lp = (struct lwp_info *) entry;
2047 struct thread_info *thread = get_lwp_thread (lp);
2048 int *selector = data;
2049
2050 gdb_assert (selector != NULL);
2051
2052 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2053 if (thread->last_resume_kind != resume_stop
2054 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2055 && lp->status_pending_p
2056 && WIFSTOPPED (lp->status_pending)
2057 && WSTOPSIG (lp->status_pending) == SIGTRAP
2058 && !breakpoint_inserted_here (lp->stop_pc))
2059 if ((*selector)-- == 0)
2060 return 1;
2061
2062 return 0;
2063 }
2064
2065 static int
2066 cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
2067 {
2068 struct lwp_info *lp = (struct lwp_info *) entry;
2069 struct thread_info *thread = get_lwp_thread (lp);
2070 struct lwp_info *event_lp = data;
2071
2072 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2073 if (lp == event_lp)
2074 return 0;
2075
2076 /* If a LWP other than the LWP that we're reporting an event for has
2077 hit a GDB breakpoint (as opposed to some random trap signal),
2078 then just arrange for it to hit it again later. We don't keep
2079 the SIGTRAP status and don't forward the SIGTRAP signal to the
2080 LWP. We will handle the current event, eventually we will resume
2081 all LWPs, and this one will get its breakpoint trap again.
2082
2083 If we do not do this, then we run the risk that the user will
2084 delete or disable the breakpoint, but the LWP will have already
2085 tripped on it. */
2086
2087 if (thread->last_resume_kind != resume_stop
2088 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2089 && lp->status_pending_p
2090 && WIFSTOPPED (lp->status_pending)
2091 && WSTOPSIG (lp->status_pending) == SIGTRAP
2092 && !lp->stepping
2093 && !lp->stopped_by_watchpoint
2094 && cancel_breakpoint (lp))
2095 /* Throw away the SIGTRAP. */
2096 lp->status_pending_p = 0;
2097
2098 return 0;
2099 }
2100
2101 static void
2102 linux_cancel_breakpoints (void)
2103 {
2104 find_inferior (&all_lwps, cancel_breakpoints_callback, NULL);
2105 }
2106
2107 /* Select one LWP out of those that have events pending. */
2108
2109 static void
2110 select_event_lwp (struct lwp_info **orig_lp)
2111 {
2112 int num_events = 0;
2113 int random_selector;
2114 struct lwp_info *event_lp;
2115
2116 /* Give preference to any LWP that is being single-stepped. */
2117 event_lp
2118 = (struct lwp_info *) find_inferior (&all_lwps,
2119 select_singlestep_lwp_callback, NULL);
2120 if (event_lp != NULL)
2121 {
2122 if (debug_threads)
2123 fprintf (stderr,
2124 "SEL: Select single-step %s\n",
2125 target_pid_to_str (ptid_of (event_lp)));
2126 }
2127 else
2128 {
2129 /* No single-stepping LWP. Select one at random, out of those
2130 which have had SIGTRAP events. */
2131
2132 /* First see how many SIGTRAP events we have. */
2133 find_inferior (&all_lwps, count_events_callback, &num_events);
2134
2135 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2136 random_selector = (int)
2137 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2138
2139 if (debug_threads && num_events > 1)
2140 fprintf (stderr,
2141 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2142 num_events, random_selector);
2143
2144 event_lp = (struct lwp_info *) find_inferior (&all_lwps,
2145 select_event_lwp_callback,
2146 &random_selector);
2147 }
2148
2149 if (event_lp != NULL)
2150 {
2151 /* Switch the event LWP. */
2152 *orig_lp = event_lp;
2153 }
2154 }
2155
2156 /* Decrement the suspend count of an LWP. */
2157
2158 static int
2159 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2160 {
2161 struct lwp_info *lwp = (struct lwp_info *) entry;
2162
2163 /* Ignore EXCEPT. */
2164 if (lwp == except)
2165 return 0;
2166
2167 lwp->suspended--;
2168
2169 gdb_assert (lwp->suspended >= 0);
2170 return 0;
2171 }
2172
2173 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2174 NULL. */
2175
2176 static void
2177 unsuspend_all_lwps (struct lwp_info *except)
2178 {
2179 find_inferior (&all_lwps, unsuspend_one_lwp, except);
2180 }
2181
2182 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2183 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2184 void *data);
2185 static int lwp_running (struct inferior_list_entry *entry, void *data);
2186 static ptid_t linux_wait_1 (ptid_t ptid,
2187 struct target_waitstatus *ourstatus,
2188 int target_options);
2189
2190 /* Stabilize threads (move out of jump pads).
2191
2192 If a thread is midway collecting a fast tracepoint, we need to
2193 finish the collection and move it out of the jump pad before
2194 reporting the signal.
2195
2196 This avoids recursion while collecting (when a signal arrives
2197 midway, and the signal handler itself collects), which would trash
2198 the trace buffer. In case the user set a breakpoint in a signal
2199 handler, this avoids the backtrace showing the jump pad, etc..
2200 Most importantly, there are certain things we can't do safely if
2201 threads are stopped in a jump pad (or in its callee's). For
2202 example:
2203
2204 - starting a new trace run. A thread still collecting the
2205 previous run, could trash the trace buffer when resumed. The trace
2206 buffer control structures would have been reset but the thread had
2207 no way to tell. The thread could even midway memcpy'ing to the
2208 buffer, which would mean that when resumed, it would clobber the
2209 trace buffer that had been set for a new run.
2210
2211 - we can't rewrite/reuse the jump pads for new tracepoints
2212 safely. Say you do tstart while a thread is stopped midway while
2213 collecting. When the thread is later resumed, it finishes the
2214 collection, and returns to the jump pad, to execute the original
2215 instruction that was under the tracepoint jump at the time the
2216 older run had been started. If the jump pad had been rewritten
2217 since for something else in the new run, the thread would now
2218 execute the wrong / random instructions. */
2219
2220 static void
2221 linux_stabilize_threads (void)
2222 {
2223 struct thread_info *save_inferior;
2224 struct lwp_info *lwp_stuck;
2225
2226 lwp_stuck
2227 = (struct lwp_info *) find_inferior (&all_lwps,
2228 stuck_in_jump_pad_callback, NULL);
2229 if (lwp_stuck != NULL)
2230 {
2231 if (debug_threads)
2232 fprintf (stderr, "can't stabilize, LWP %ld is stuck in jump pad\n",
2233 lwpid_of (lwp_stuck));
2234 return;
2235 }
2236
2237 save_inferior = current_inferior;
2238
2239 stabilizing_threads = 1;
2240
2241 /* Kick 'em all. */
2242 for_each_inferior (&all_lwps, move_out_of_jump_pad_callback);
2243
2244 /* Loop until all are stopped out of the jump pads. */
2245 while (find_inferior (&all_lwps, lwp_running, NULL) != NULL)
2246 {
2247 struct target_waitstatus ourstatus;
2248 struct lwp_info *lwp;
2249 int wstat;
2250
2251 /* Note that we go through the full wait even loop. While
2252 moving threads out of jump pad, we need to be able to step
2253 over internal breakpoints and such. */
2254 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2255
2256 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2257 {
2258 lwp = get_thread_lwp (current_inferior);
2259
2260 /* Lock it. */
2261 lwp->suspended++;
2262
2263 if (ourstatus.value.sig != TARGET_SIGNAL_0
2264 || current_inferior->last_resume_kind == resume_stop)
2265 {
2266 wstat = W_STOPCODE (target_signal_to_host (ourstatus.value.sig));
2267 enqueue_one_deferred_signal (lwp, &wstat);
2268 }
2269 }
2270 }
2271
2272 find_inferior (&all_lwps, unsuspend_one_lwp, NULL);
2273
2274 stabilizing_threads = 0;
2275
2276 current_inferior = save_inferior;
2277
2278 if (debug_threads)
2279 {
2280 lwp_stuck
2281 = (struct lwp_info *) find_inferior (&all_lwps,
2282 stuck_in_jump_pad_callback, NULL);
2283 if (lwp_stuck != NULL)
2284 fprintf (stderr, "couldn't stabilize, LWP %ld got stuck in jump pad\n",
2285 lwpid_of (lwp_stuck));
2286 }
2287 }
2288
2289 /* Wait for process, returns status. */
2290
2291 static ptid_t
2292 linux_wait_1 (ptid_t ptid,
2293 struct target_waitstatus *ourstatus, int target_options)
2294 {
2295 int w;
2296 struct lwp_info *event_child;
2297 int options;
2298 int pid;
2299 int step_over_finished;
2300 int bp_explains_trap;
2301 int maybe_internal_trap;
2302 int report_to_gdb;
2303 int trace_event;
2304
2305 /* Translate generic target options into linux options. */
2306 options = __WALL;
2307 if (target_options & TARGET_WNOHANG)
2308 options |= WNOHANG;
2309
2310 retry:
2311 bp_explains_trap = 0;
2312 trace_event = 0;
2313 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2314
2315 /* If we were only supposed to resume one thread, only wait for
2316 that thread - if it's still alive. If it died, however - which
2317 can happen if we're coming from the thread death case below -
2318 then we need to make sure we restart the other threads. We could
2319 pick a thread at random or restart all; restarting all is less
2320 arbitrary. */
2321 if (!non_stop
2322 && !ptid_equal (cont_thread, null_ptid)
2323 && !ptid_equal (cont_thread, minus_one_ptid))
2324 {
2325 struct thread_info *thread;
2326
2327 thread = (struct thread_info *) find_inferior_id (&all_threads,
2328 cont_thread);
2329
2330 /* No stepping, no signal - unless one is pending already, of course. */
2331 if (thread == NULL)
2332 {
2333 struct thread_resume resume_info;
2334 resume_info.thread = minus_one_ptid;
2335 resume_info.kind = resume_continue;
2336 resume_info.sig = 0;
2337 linux_resume (&resume_info, 1);
2338 }
2339 else
2340 ptid = cont_thread;
2341 }
2342
2343 if (ptid_equal (step_over_bkpt, null_ptid))
2344 pid = linux_wait_for_event (ptid, &w, options);
2345 else
2346 {
2347 if (debug_threads)
2348 fprintf (stderr, "step_over_bkpt set [%s], doing a blocking wait\n",
2349 target_pid_to_str (step_over_bkpt));
2350 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2351 }
2352
2353 if (pid == 0) /* only if TARGET_WNOHANG */
2354 return null_ptid;
2355
2356 event_child = get_thread_lwp (current_inferior);
2357
2358 /* If we are waiting for a particular child, and it exited,
2359 linux_wait_for_event will return its exit status. Similarly if
2360 the last child exited. If this is not the last child, however,
2361 do not report it as exited until there is a 'thread exited' response
2362 available in the remote protocol. Instead, just wait for another event.
2363 This should be safe, because if the thread crashed we will already
2364 have reported the termination signal to GDB; that should stop any
2365 in-progress stepping operations, etc.
2366
2367 Report the exit status of the last thread to exit. This matches
2368 LinuxThreads' behavior. */
2369
2370 if (last_thread_of_process_p (current_inferior))
2371 {
2372 if (WIFEXITED (w) || WIFSIGNALED (w))
2373 {
2374 if (WIFEXITED (w))
2375 {
2376 ourstatus->kind = TARGET_WAITKIND_EXITED;
2377 ourstatus->value.integer = WEXITSTATUS (w);
2378
2379 if (debug_threads)
2380 fprintf (stderr,
2381 "\nChild exited with retcode = %x \n",
2382 WEXITSTATUS (w));
2383 }
2384 else
2385 {
2386 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2387 ourstatus->value.sig = target_signal_from_host (WTERMSIG (w));
2388
2389 if (debug_threads)
2390 fprintf (stderr,
2391 "\nChild terminated with signal = %x \n",
2392 WTERMSIG (w));
2393
2394 }
2395
2396 return ptid_of (event_child);
2397 }
2398 }
2399 else
2400 {
2401 if (!WIFSTOPPED (w))
2402 goto retry;
2403 }
2404
2405 /* If this event was not handled before, and is not a SIGTRAP, we
2406 report it. SIGILL and SIGSEGV are also treated as traps in case
2407 a breakpoint is inserted at the current PC. If this target does
2408 not support internal breakpoints at all, we also report the
2409 SIGTRAP without further processing; it's of no concern to us. */
2410 maybe_internal_trap
2411 = (supports_breakpoints ()
2412 && (WSTOPSIG (w) == SIGTRAP
2413 || ((WSTOPSIG (w) == SIGILL
2414 || WSTOPSIG (w) == SIGSEGV)
2415 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2416
2417 if (maybe_internal_trap)
2418 {
2419 /* Handle anything that requires bookkeeping before deciding to
2420 report the event or continue waiting. */
2421
2422 /* First check if we can explain the SIGTRAP with an internal
2423 breakpoint, or if we should possibly report the event to GDB.
2424 Do this before anything that may remove or insert a
2425 breakpoint. */
2426 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2427
2428 /* We have a SIGTRAP, possibly a step-over dance has just
2429 finished. If so, tweak the state machine accordingly,
2430 reinsert breakpoints and delete any reinsert (software
2431 single-step) breakpoints. */
2432 step_over_finished = finish_step_over (event_child);
2433
2434 /* Now invoke the callbacks of any internal breakpoints there. */
2435 check_breakpoints (event_child->stop_pc);
2436
2437 /* Handle tracepoint data collecting. This may overflow the
2438 trace buffer, and cause a tracing stop, removing
2439 breakpoints. */
2440 trace_event = handle_tracepoints (event_child);
2441
2442 if (bp_explains_trap)
2443 {
2444 /* If we stepped or ran into an internal breakpoint, we've
2445 already handled it. So next time we resume (from this
2446 PC), we should step over it. */
2447 if (debug_threads)
2448 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2449
2450 if (breakpoint_here (event_child->stop_pc))
2451 event_child->need_step_over = 1;
2452 }
2453 }
2454 else
2455 {
2456 /* We have some other signal, possibly a step-over dance was in
2457 progress, and it should be cancelled too. */
2458 step_over_finished = finish_step_over (event_child);
2459 }
2460
2461 /* We have all the data we need. Either report the event to GDB, or
2462 resume threads and keep waiting for more. */
2463
2464 /* If we're collecting a fast tracepoint, finish the collection and
2465 move out of the jump pad before delivering a signal. See
2466 linux_stabilize_threads. */
2467
2468 if (WIFSTOPPED (w)
2469 && WSTOPSIG (w) != SIGTRAP
2470 && supports_fast_tracepoints ()
2471 && agent_loaded_p ())
2472 {
2473 if (debug_threads)
2474 fprintf (stderr,
2475 "Got signal %d for LWP %ld. Check if we need "
2476 "to defer or adjust it.\n",
2477 WSTOPSIG (w), lwpid_of (event_child));
2478
2479 /* Allow debugging the jump pad itself. */
2480 if (current_inferior->last_resume_kind != resume_step
2481 && maybe_move_out_of_jump_pad (event_child, &w))
2482 {
2483 enqueue_one_deferred_signal (event_child, &w);
2484
2485 if (debug_threads)
2486 fprintf (stderr,
2487 "Signal %d for LWP %ld deferred (in jump pad)\n",
2488 WSTOPSIG (w), lwpid_of (event_child));
2489
2490 linux_resume_one_lwp (event_child, 0, 0, NULL);
2491 goto retry;
2492 }
2493 }
2494
2495 if (event_child->collecting_fast_tracepoint)
2496 {
2497 if (debug_threads)
2498 fprintf (stderr, "\
2499 LWP %ld was trying to move out of the jump pad (%d). \
2500 Check if we're already there.\n",
2501 lwpid_of (event_child),
2502 event_child->collecting_fast_tracepoint);
2503
2504 trace_event = 1;
2505
2506 event_child->collecting_fast_tracepoint
2507 = linux_fast_tracepoint_collecting (event_child, NULL);
2508
2509 if (event_child->collecting_fast_tracepoint != 1)
2510 {
2511 /* No longer need this breakpoint. */
2512 if (event_child->exit_jump_pad_bkpt != NULL)
2513 {
2514 if (debug_threads)
2515 fprintf (stderr,
2516 "No longer need exit-jump-pad bkpt; removing it."
2517 "stopping all threads momentarily.\n");
2518
2519 /* Other running threads could hit this breakpoint.
2520 We don't handle moribund locations like GDB does,
2521 instead we always pause all threads when removing
2522 breakpoints, so that any step-over or
2523 decr_pc_after_break adjustment is always taken
2524 care of while the breakpoint is still
2525 inserted. */
2526 stop_all_lwps (1, event_child);
2527 cancel_breakpoints ();
2528
2529 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2530 event_child->exit_jump_pad_bkpt = NULL;
2531
2532 unstop_all_lwps (1, event_child);
2533
2534 gdb_assert (event_child->suspended >= 0);
2535 }
2536 }
2537
2538 if (event_child->collecting_fast_tracepoint == 0)
2539 {
2540 if (debug_threads)
2541 fprintf (stderr,
2542 "fast tracepoint finished "
2543 "collecting successfully.\n");
2544
2545 /* We may have a deferred signal to report. */
2546 if (dequeue_one_deferred_signal (event_child, &w))
2547 {
2548 if (debug_threads)
2549 fprintf (stderr, "dequeued one signal.\n");
2550 }
2551 else
2552 {
2553 if (debug_threads)
2554 fprintf (stderr, "no deferred signals.\n");
2555
2556 if (stabilizing_threads)
2557 {
2558 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2559 ourstatus->value.sig = TARGET_SIGNAL_0;
2560 return ptid_of (event_child);
2561 }
2562 }
2563 }
2564 }
2565
2566 /* Check whether GDB would be interested in this event. */
2567
2568 /* If GDB is not interested in this signal, don't stop other
2569 threads, and don't report it to GDB. Just resume the inferior
2570 right away. We do this for threading-related signals as well as
2571 any that GDB specifically requested we ignore. But never ignore
2572 SIGSTOP if we sent it ourselves, and do not ignore signals when
2573 stepping - they may require special handling to skip the signal
2574 handler. */
2575 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2576 thread library? */
2577 if (WIFSTOPPED (w)
2578 && current_inferior->last_resume_kind != resume_step
2579 && (
2580 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
2581 (current_process ()->private->thread_db != NULL
2582 && (WSTOPSIG (w) == __SIGRTMIN
2583 || WSTOPSIG (w) == __SIGRTMIN + 1))
2584 ||
2585 #endif
2586 (pass_signals[target_signal_from_host (WSTOPSIG (w))]
2587 && !(WSTOPSIG (w) == SIGSTOP
2588 && current_inferior->last_resume_kind == resume_stop))))
2589 {
2590 siginfo_t info, *info_p;
2591
2592 if (debug_threads)
2593 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
2594 WSTOPSIG (w), lwpid_of (event_child));
2595
2596 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (event_child), 0, &info) == 0)
2597 info_p = &info;
2598 else
2599 info_p = NULL;
2600 linux_resume_one_lwp (event_child, event_child->stepping,
2601 WSTOPSIG (w), info_p);
2602 goto retry;
2603 }
2604
2605 /* If GDB wanted this thread to single step, we always want to
2606 report the SIGTRAP, and let GDB handle it. Watchpoints should
2607 always be reported. So should signals we can't explain. A
2608 SIGTRAP we can't explain could be a GDB breakpoint --- we may or
2609 not support Z0 breakpoints. If we do, we're be able to handle
2610 GDB breakpoints on top of internal breakpoints, by handling the
2611 internal breakpoint and still reporting the event to GDB. If we
2612 don't, we're out of luck, GDB won't see the breakpoint hit. */
2613 report_to_gdb = (!maybe_internal_trap
2614 || current_inferior->last_resume_kind == resume_step
2615 || event_child->stopped_by_watchpoint
2616 || (!step_over_finished
2617 && !bp_explains_trap && !trace_event)
2618 || (gdb_breakpoint_here (event_child->stop_pc)
2619 && gdb_condition_true_at_breakpoint (event_child->stop_pc)));
2620
2621 /* We found no reason GDB would want us to stop. We either hit one
2622 of our own breakpoints, or finished an internal step GDB
2623 shouldn't know about. */
2624 if (!report_to_gdb)
2625 {
2626 if (debug_threads)
2627 {
2628 if (bp_explains_trap)
2629 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2630 if (step_over_finished)
2631 fprintf (stderr, "Step-over finished.\n");
2632 if (trace_event)
2633 fprintf (stderr, "Tracepoint event.\n");
2634 }
2635
2636 /* We're not reporting this breakpoint to GDB, so apply the
2637 decr_pc_after_break adjustment to the inferior's regcache
2638 ourselves. */
2639
2640 if (the_low_target.set_pc != NULL)
2641 {
2642 struct regcache *regcache
2643 = get_thread_regcache (get_lwp_thread (event_child), 1);
2644 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2645 }
2646
2647 /* We may have finished stepping over a breakpoint. If so,
2648 we've stopped and suspended all LWPs momentarily except the
2649 stepping one. This is where we resume them all again. We're
2650 going to keep waiting, so use proceed, which handles stepping
2651 over the next breakpoint. */
2652 if (debug_threads)
2653 fprintf (stderr, "proceeding all threads.\n");
2654
2655 if (step_over_finished)
2656 unsuspend_all_lwps (event_child);
2657
2658 proceed_all_lwps ();
2659 goto retry;
2660 }
2661
2662 if (debug_threads)
2663 {
2664 if (current_inferior->last_resume_kind == resume_step)
2665 fprintf (stderr, "GDB wanted to single-step, reporting event.\n");
2666 if (event_child->stopped_by_watchpoint)
2667 fprintf (stderr, "Stopped by watchpoint.\n");
2668 if (gdb_breakpoint_here (event_child->stop_pc))
2669 fprintf (stderr, "Stopped by GDB breakpoint.\n");
2670 if (debug_threads)
2671 fprintf (stderr, "Hit a non-gdbserver trap event.\n");
2672 }
2673
2674 /* Alright, we're going to report a stop. */
2675
2676 if (!non_stop && !stabilizing_threads)
2677 {
2678 /* In all-stop, stop all threads. */
2679 stop_all_lwps (0, NULL);
2680
2681 /* If we're not waiting for a specific LWP, choose an event LWP
2682 from among those that have had events. Giving equal priority
2683 to all LWPs that have had events helps prevent
2684 starvation. */
2685 if (ptid_equal (ptid, minus_one_ptid))
2686 {
2687 event_child->status_pending_p = 1;
2688 event_child->status_pending = w;
2689
2690 select_event_lwp (&event_child);
2691
2692 event_child->status_pending_p = 0;
2693 w = event_child->status_pending;
2694 }
2695
2696 /* Now that we've selected our final event LWP, cancel any
2697 breakpoints in other LWPs that have hit a GDB breakpoint.
2698 See the comment in cancel_breakpoints_callback to find out
2699 why. */
2700 find_inferior (&all_lwps, cancel_breakpoints_callback, event_child);
2701
2702 /* If we were going a step-over, all other threads but the stepping one
2703 had been paused in start_step_over, with their suspend counts
2704 incremented. We don't want to do a full unstop/unpause, because we're
2705 in all-stop mode (so we want threads stopped), but we still need to
2706 unsuspend the other threads, to decrement their `suspended' count
2707 back. */
2708 if (step_over_finished)
2709 unsuspend_all_lwps (event_child);
2710
2711 /* Stabilize threads (move out of jump pads). */
2712 stabilize_threads ();
2713 }
2714 else
2715 {
2716 /* If we just finished a step-over, then all threads had been
2717 momentarily paused. In all-stop, that's fine, we want
2718 threads stopped by now anyway. In non-stop, we need to
2719 re-resume threads that GDB wanted to be running. */
2720 if (step_over_finished)
2721 unstop_all_lwps (1, event_child);
2722 }
2723
2724 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2725
2726 if (current_inferior->last_resume_kind == resume_stop
2727 && WSTOPSIG (w) == SIGSTOP)
2728 {
2729 /* A thread that has been requested to stop by GDB with vCont;t,
2730 and it stopped cleanly, so report as SIG0. The use of
2731 SIGSTOP is an implementation detail. */
2732 ourstatus->value.sig = TARGET_SIGNAL_0;
2733 }
2734 else if (current_inferior->last_resume_kind == resume_stop
2735 && WSTOPSIG (w) != SIGSTOP)
2736 {
2737 /* A thread that has been requested to stop by GDB with vCont;t,
2738 but, it stopped for other reasons. */
2739 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
2740 }
2741 else
2742 {
2743 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
2744 }
2745
2746 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
2747
2748 if (debug_threads)
2749 fprintf (stderr, "linux_wait ret = %s, %d, %d\n",
2750 target_pid_to_str (ptid_of (event_child)),
2751 ourstatus->kind,
2752 ourstatus->value.sig);
2753
2754 return ptid_of (event_child);
2755 }
2756
2757 /* Get rid of any pending event in the pipe. */
2758 static void
2759 async_file_flush (void)
2760 {
2761 int ret;
2762 char buf;
2763
2764 do
2765 ret = read (linux_event_pipe[0], &buf, 1);
2766 while (ret >= 0 || (ret == -1 && errno == EINTR));
2767 }
2768
2769 /* Put something in the pipe, so the event loop wakes up. */
2770 static void
2771 async_file_mark (void)
2772 {
2773 int ret;
2774
2775 async_file_flush ();
2776
2777 do
2778 ret = write (linux_event_pipe[1], "+", 1);
2779 while (ret == 0 || (ret == -1 && errno == EINTR));
2780
2781 /* Ignore EAGAIN. If the pipe is full, the event loop will already
2782 be awakened anyway. */
2783 }
2784
2785 static ptid_t
2786 linux_wait (ptid_t ptid,
2787 struct target_waitstatus *ourstatus, int target_options)
2788 {
2789 ptid_t event_ptid;
2790
2791 if (debug_threads)
2792 fprintf (stderr, "linux_wait: [%s]\n", target_pid_to_str (ptid));
2793
2794 /* Flush the async file first. */
2795 if (target_is_async_p ())
2796 async_file_flush ();
2797
2798 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
2799
2800 /* If at least one stop was reported, there may be more. A single
2801 SIGCHLD can signal more than one child stop. */
2802 if (target_is_async_p ()
2803 && (target_options & TARGET_WNOHANG) != 0
2804 && !ptid_equal (event_ptid, null_ptid))
2805 async_file_mark ();
2806
2807 return event_ptid;
2808 }
2809
2810 /* Send a signal to an LWP. */
2811
2812 static int
2813 kill_lwp (unsigned long lwpid, int signo)
2814 {
2815 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2816 fails, then we are not using nptl threads and we should be using kill. */
2817
2818 #ifdef __NR_tkill
2819 {
2820 static int tkill_failed;
2821
2822 if (!tkill_failed)
2823 {
2824 int ret;
2825
2826 errno = 0;
2827 ret = syscall (__NR_tkill, lwpid, signo);
2828 if (errno != ENOSYS)
2829 return ret;
2830 tkill_failed = 1;
2831 }
2832 }
2833 #endif
2834
2835 return kill (lwpid, signo);
2836 }
2837
2838 void
2839 linux_stop_lwp (struct lwp_info *lwp)
2840 {
2841 send_sigstop (lwp);
2842 }
2843
2844 static void
2845 send_sigstop (struct lwp_info *lwp)
2846 {
2847 int pid;
2848
2849 pid = lwpid_of (lwp);
2850
2851 /* If we already have a pending stop signal for this process, don't
2852 send another. */
2853 if (lwp->stop_expected)
2854 {
2855 if (debug_threads)
2856 fprintf (stderr, "Have pending sigstop for lwp %d\n", pid);
2857
2858 return;
2859 }
2860
2861 if (debug_threads)
2862 fprintf (stderr, "Sending sigstop to lwp %d\n", pid);
2863
2864 lwp->stop_expected = 1;
2865 kill_lwp (pid, SIGSTOP);
2866 }
2867
2868 static int
2869 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
2870 {
2871 struct lwp_info *lwp = (struct lwp_info *) entry;
2872
2873 /* Ignore EXCEPT. */
2874 if (lwp == except)
2875 return 0;
2876
2877 if (lwp->stopped)
2878 return 0;
2879
2880 send_sigstop (lwp);
2881 return 0;
2882 }
2883
2884 /* Increment the suspend count of an LWP, and stop it, if not stopped
2885 yet. */
2886 static int
2887 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
2888 void *except)
2889 {
2890 struct lwp_info *lwp = (struct lwp_info *) entry;
2891
2892 /* Ignore EXCEPT. */
2893 if (lwp == except)
2894 return 0;
2895
2896 lwp->suspended++;
2897
2898 return send_sigstop_callback (entry, except);
2899 }
2900
2901 static void
2902 mark_lwp_dead (struct lwp_info *lwp, int wstat)
2903 {
2904 /* It's dead, really. */
2905 lwp->dead = 1;
2906
2907 /* Store the exit status for later. */
2908 lwp->status_pending_p = 1;
2909 lwp->status_pending = wstat;
2910
2911 /* Prevent trying to stop it. */
2912 lwp->stopped = 1;
2913
2914 /* No further stops are expected from a dead lwp. */
2915 lwp->stop_expected = 0;
2916 }
2917
2918 static void
2919 wait_for_sigstop (struct inferior_list_entry *entry)
2920 {
2921 struct lwp_info *lwp = (struct lwp_info *) entry;
2922 struct thread_info *saved_inferior;
2923 int wstat;
2924 ptid_t saved_tid;
2925 ptid_t ptid;
2926 int pid;
2927
2928 if (lwp->stopped)
2929 {
2930 if (debug_threads)
2931 fprintf (stderr, "wait_for_sigstop: LWP %ld already stopped\n",
2932 lwpid_of (lwp));
2933 return;
2934 }
2935
2936 saved_inferior = current_inferior;
2937 if (saved_inferior != NULL)
2938 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
2939 else
2940 saved_tid = null_ptid; /* avoid bogus unused warning */
2941
2942 ptid = lwp->head.id;
2943
2944 if (debug_threads)
2945 fprintf (stderr, "wait_for_sigstop: pulling one event\n");
2946
2947 pid = linux_wait_for_event (ptid, &wstat, __WALL);
2948
2949 /* If we stopped with a non-SIGSTOP signal, save it for later
2950 and record the pending SIGSTOP. If the process exited, just
2951 return. */
2952 if (WIFSTOPPED (wstat))
2953 {
2954 if (debug_threads)
2955 fprintf (stderr, "LWP %ld stopped with signal %d\n",
2956 lwpid_of (lwp), WSTOPSIG (wstat));
2957
2958 if (WSTOPSIG (wstat) != SIGSTOP)
2959 {
2960 if (debug_threads)
2961 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
2962 lwpid_of (lwp), wstat);
2963
2964 lwp->status_pending_p = 1;
2965 lwp->status_pending = wstat;
2966 }
2967 }
2968 else
2969 {
2970 if (debug_threads)
2971 fprintf (stderr, "Process %d exited while stopping LWPs\n", pid);
2972
2973 lwp = find_lwp_pid (pid_to_ptid (pid));
2974 if (lwp)
2975 {
2976 /* Leave this status pending for the next time we're able to
2977 report it. In the mean time, we'll report this lwp as
2978 dead to GDB, so GDB doesn't try to read registers and
2979 memory from it. This can only happen if this was the
2980 last thread of the process; otherwise, PID is removed
2981 from the thread tables before linux_wait_for_event
2982 returns. */
2983 mark_lwp_dead (lwp, wstat);
2984 }
2985 }
2986
2987 if (saved_inferior == NULL || linux_thread_alive (saved_tid))
2988 current_inferior = saved_inferior;
2989 else
2990 {
2991 if (debug_threads)
2992 fprintf (stderr, "Previously current thread died.\n");
2993
2994 if (non_stop)
2995 {
2996 /* We can't change the current inferior behind GDB's back,
2997 otherwise, a subsequent command may apply to the wrong
2998 process. */
2999 current_inferior = NULL;
3000 }
3001 else
3002 {
3003 /* Set a valid thread as current. */
3004 set_desired_inferior (0);
3005 }
3006 }
3007 }
3008
3009 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3010 move it out, because we need to report the stop event to GDB. For
3011 example, if the user puts a breakpoint in the jump pad, it's
3012 because she wants to debug it. */
3013
3014 static int
3015 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3016 {
3017 struct lwp_info *lwp = (struct lwp_info *) entry;
3018 struct thread_info *thread = get_lwp_thread (lwp);
3019
3020 gdb_assert (lwp->suspended == 0);
3021 gdb_assert (lwp->stopped);
3022
3023 /* Allow debugging the jump pad, gdb_collect, etc.. */
3024 return (supports_fast_tracepoints ()
3025 && agent_loaded_p ()
3026 && (gdb_breakpoint_here (lwp->stop_pc)
3027 || lwp->stopped_by_watchpoint
3028 || thread->last_resume_kind == resume_step)
3029 && linux_fast_tracepoint_collecting (lwp, NULL));
3030 }
3031
3032 static void
3033 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3034 {
3035 struct lwp_info *lwp = (struct lwp_info *) entry;
3036 struct thread_info *thread = get_lwp_thread (lwp);
3037 int *wstat;
3038
3039 gdb_assert (lwp->suspended == 0);
3040 gdb_assert (lwp->stopped);
3041
3042 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3043
3044 /* Allow debugging the jump pad, gdb_collect, etc. */
3045 if (!gdb_breakpoint_here (lwp->stop_pc)
3046 && !lwp->stopped_by_watchpoint
3047 && thread->last_resume_kind != resume_step
3048 && maybe_move_out_of_jump_pad (lwp, wstat))
3049 {
3050 if (debug_threads)
3051 fprintf (stderr,
3052 "LWP %ld needs stabilizing (in jump pad)\n",
3053 lwpid_of (lwp));
3054
3055 if (wstat)
3056 {
3057 lwp->status_pending_p = 0;
3058 enqueue_one_deferred_signal (lwp, wstat);
3059
3060 if (debug_threads)
3061 fprintf (stderr,
3062 "Signal %d for LWP %ld deferred "
3063 "(in jump pad)\n",
3064 WSTOPSIG (*wstat), lwpid_of (lwp));
3065 }
3066
3067 linux_resume_one_lwp (lwp, 0, 0, NULL);
3068 }
3069 else
3070 lwp->suspended++;
3071 }
3072
3073 static int
3074 lwp_running (struct inferior_list_entry *entry, void *data)
3075 {
3076 struct lwp_info *lwp = (struct lwp_info *) entry;
3077
3078 if (lwp->dead)
3079 return 0;
3080 if (lwp->stopped)
3081 return 0;
3082 return 1;
3083 }
3084
3085 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3086 If SUSPEND, then also increase the suspend count of every LWP,
3087 except EXCEPT. */
3088
3089 static void
3090 stop_all_lwps (int suspend, struct lwp_info *except)
3091 {
3092 /* Should not be called recursively. */
3093 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3094
3095 stopping_threads = (suspend
3096 ? STOPPING_AND_SUSPENDING_THREADS
3097 : STOPPING_THREADS);
3098
3099 if (suspend)
3100 find_inferior (&all_lwps, suspend_and_send_sigstop_callback, except);
3101 else
3102 find_inferior (&all_lwps, send_sigstop_callback, except);
3103 for_each_inferior (&all_lwps, wait_for_sigstop);
3104 stopping_threads = NOT_STOPPING_THREADS;
3105 }
3106
3107 /* Resume execution of the inferior process.
3108 If STEP is nonzero, single-step it.
3109 If SIGNAL is nonzero, give it that signal. */
3110
3111 static void
3112 linux_resume_one_lwp (struct lwp_info *lwp,
3113 int step, int signal, siginfo_t *info)
3114 {
3115 struct thread_info *saved_inferior;
3116 int fast_tp_collecting;
3117
3118 if (lwp->stopped == 0)
3119 return;
3120
3121 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3122
3123 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3124
3125 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3126 user used the "jump" command, or "set $pc = foo"). */
3127 if (lwp->stop_pc != get_pc (lwp))
3128 {
3129 /* Collecting 'while-stepping' actions doesn't make sense
3130 anymore. */
3131 release_while_stepping_state_list (get_lwp_thread (lwp));
3132 }
3133
3134 /* If we have pending signals or status, and a new signal, enqueue the
3135 signal. Also enqueue the signal if we are waiting to reinsert a
3136 breakpoint; it will be picked up again below. */
3137 if (signal != 0
3138 && (lwp->status_pending_p
3139 || lwp->pending_signals != NULL
3140 || lwp->bp_reinsert != 0
3141 || fast_tp_collecting))
3142 {
3143 struct pending_signals *p_sig;
3144 p_sig = xmalloc (sizeof (*p_sig));
3145 p_sig->prev = lwp->pending_signals;
3146 p_sig->signal = signal;
3147 if (info == NULL)
3148 memset (&p_sig->info, 0, sizeof (siginfo_t));
3149 else
3150 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3151 lwp->pending_signals = p_sig;
3152 }
3153
3154 if (lwp->status_pending_p)
3155 {
3156 if (debug_threads)
3157 fprintf (stderr, "Not resuming lwp %ld (%s, signal %d, stop %s);"
3158 " has pending status\n",
3159 lwpid_of (lwp), step ? "step" : "continue", signal,
3160 lwp->stop_expected ? "expected" : "not expected");
3161 return;
3162 }
3163
3164 saved_inferior = current_inferior;
3165 current_inferior = get_lwp_thread (lwp);
3166
3167 if (debug_threads)
3168 fprintf (stderr, "Resuming lwp %ld (%s, signal %d, stop %s)\n",
3169 lwpid_of (lwp), step ? "step" : "continue", signal,
3170 lwp->stop_expected ? "expected" : "not expected");
3171
3172 /* This bit needs some thinking about. If we get a signal that
3173 we must report while a single-step reinsert is still pending,
3174 we often end up resuming the thread. It might be better to
3175 (ew) allow a stack of pending events; then we could be sure that
3176 the reinsert happened right away and not lose any signals.
3177
3178 Making this stack would also shrink the window in which breakpoints are
3179 uninserted (see comment in linux_wait_for_lwp) but not enough for
3180 complete correctness, so it won't solve that problem. It may be
3181 worthwhile just to solve this one, however. */
3182 if (lwp->bp_reinsert != 0)
3183 {
3184 if (debug_threads)
3185 fprintf (stderr, " pending reinsert at 0x%s\n",
3186 paddress (lwp->bp_reinsert));
3187
3188 if (lwp->bp_reinsert != 0 && can_hardware_single_step ())
3189 {
3190 if (fast_tp_collecting == 0)
3191 {
3192 if (step == 0)
3193 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3194 if (lwp->suspended)
3195 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3196 lwp->suspended);
3197 }
3198
3199 step = 1;
3200 }
3201
3202 /* Postpone any pending signal. It was enqueued above. */
3203 signal = 0;
3204 }
3205
3206 if (fast_tp_collecting == 1)
3207 {
3208 if (debug_threads)
3209 fprintf (stderr, "\
3210 lwp %ld wants to get out of fast tracepoint jump pad (exit-jump-pad-bkpt)\n",
3211 lwpid_of (lwp));
3212
3213 /* Postpone any pending signal. It was enqueued above. */
3214 signal = 0;
3215 }
3216 else if (fast_tp_collecting == 2)
3217 {
3218 if (debug_threads)
3219 fprintf (stderr, "\
3220 lwp %ld wants to get out of fast tracepoint jump pad single-stepping\n",
3221 lwpid_of (lwp));
3222
3223 if (can_hardware_single_step ())
3224 step = 1;
3225 else
3226 fatal ("moving out of jump pad single-stepping"
3227 " not implemented on this target");
3228
3229 /* Postpone any pending signal. It was enqueued above. */
3230 signal = 0;
3231 }
3232
3233 /* If we have while-stepping actions in this thread set it stepping.
3234 If we have a signal to deliver, it may or may not be set to
3235 SIG_IGN, we don't know. Assume so, and allow collecting
3236 while-stepping into a signal handler. A possible smart thing to
3237 do would be to set an internal breakpoint at the signal return
3238 address, continue, and carry on catching this while-stepping
3239 action only when that breakpoint is hit. A future
3240 enhancement. */
3241 if (get_lwp_thread (lwp)->while_stepping != NULL
3242 && can_hardware_single_step ())
3243 {
3244 if (debug_threads)
3245 fprintf (stderr,
3246 "lwp %ld has a while-stepping action -> forcing step.\n",
3247 lwpid_of (lwp));
3248 step = 1;
3249 }
3250
3251 if (debug_threads && the_low_target.get_pc != NULL)
3252 {
3253 struct regcache *regcache = get_thread_regcache (current_inferior, 1);
3254 CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
3255 fprintf (stderr, " resuming from pc 0x%lx\n", (long) pc);
3256 }
3257
3258 /* If we have pending signals, consume one unless we are trying to
3259 reinsert a breakpoint or we're trying to finish a fast tracepoint
3260 collect. */
3261 if (lwp->pending_signals != NULL
3262 && lwp->bp_reinsert == 0
3263 && fast_tp_collecting == 0)
3264 {
3265 struct pending_signals **p_sig;
3266
3267 p_sig = &lwp->pending_signals;
3268 while ((*p_sig)->prev != NULL)
3269 p_sig = &(*p_sig)->prev;
3270
3271 signal = (*p_sig)->signal;
3272 if ((*p_sig)->info.si_signo != 0)
3273 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &(*p_sig)->info);
3274
3275 free (*p_sig);
3276 *p_sig = NULL;
3277 }
3278
3279 if (the_low_target.prepare_to_resume != NULL)
3280 the_low_target.prepare_to_resume (lwp);
3281
3282 regcache_invalidate_one ((struct inferior_list_entry *)
3283 get_lwp_thread (lwp));
3284 errno = 0;
3285 lwp->stopped = 0;
3286 lwp->stopped_by_watchpoint = 0;
3287 lwp->stepping = step;
3288 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (lwp), 0,
3289 /* Coerce to a uintptr_t first to avoid potential gcc warning
3290 of coercing an 8 byte integer to a 4 byte pointer. */
3291 (PTRACE_ARG4_TYPE) (uintptr_t) signal);
3292
3293 current_inferior = saved_inferior;
3294 if (errno)
3295 {
3296 /* ESRCH from ptrace either means that the thread was already
3297 running (an error) or that it is gone (a race condition). If
3298 it's gone, we will get a notification the next time we wait,
3299 so we can ignore the error. We could differentiate these
3300 two, but it's tricky without waiting; the thread still exists
3301 as a zombie, so sending it signal 0 would succeed. So just
3302 ignore ESRCH. */
3303 if (errno == ESRCH)
3304 return;
3305
3306 perror_with_name ("ptrace");
3307 }
3308 }
3309
3310 struct thread_resume_array
3311 {
3312 struct thread_resume *resume;
3313 size_t n;
3314 };
3315
3316 /* This function is called once per thread. We look up the thread
3317 in RESUME_PTR, and mark the thread with a pointer to the appropriate
3318 resume request.
3319
3320 This algorithm is O(threads * resume elements), but resume elements
3321 is small (and will remain small at least until GDB supports thread
3322 suspension). */
3323 static int
3324 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
3325 {
3326 struct lwp_info *lwp;
3327 struct thread_info *thread;
3328 int ndx;
3329 struct thread_resume_array *r;
3330
3331 thread = (struct thread_info *) entry;
3332 lwp = get_thread_lwp (thread);
3333 r = arg;
3334
3335 for (ndx = 0; ndx < r->n; ndx++)
3336 {
3337 ptid_t ptid = r->resume[ndx].thread;
3338 if (ptid_equal (ptid, minus_one_ptid)
3339 || ptid_equal (ptid, entry->id)
3340 || (ptid_is_pid (ptid)
3341 && (ptid_get_pid (ptid) == pid_of (lwp)))
3342 || (ptid_get_lwp (ptid) == -1
3343 && (ptid_get_pid (ptid) == pid_of (lwp))))
3344 {
3345 if (r->resume[ndx].kind == resume_stop
3346 && thread->last_resume_kind == resume_stop)
3347 {
3348 if (debug_threads)
3349 fprintf (stderr, "already %s LWP %ld at GDB's request\n",
3350 thread->last_status.kind == TARGET_WAITKIND_STOPPED
3351 ? "stopped"
3352 : "stopping",
3353 lwpid_of (lwp));
3354
3355 continue;
3356 }
3357
3358 lwp->resume = &r->resume[ndx];
3359 thread->last_resume_kind = lwp->resume->kind;
3360
3361 /* If we had a deferred signal to report, dequeue one now.
3362 This can happen if LWP gets more than one signal while
3363 trying to get out of a jump pad. */
3364 if (lwp->stopped
3365 && !lwp->status_pending_p
3366 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
3367 {
3368 lwp->status_pending_p = 1;
3369
3370 if (debug_threads)
3371 fprintf (stderr,
3372 "Dequeueing deferred signal %d for LWP %ld, "
3373 "leaving status pending.\n",
3374 WSTOPSIG (lwp->status_pending), lwpid_of (lwp));
3375 }
3376
3377 return 0;
3378 }
3379 }
3380
3381 /* No resume action for this thread. */
3382 lwp->resume = NULL;
3383
3384 return 0;
3385 }
3386
3387
3388 /* Set *FLAG_P if this lwp has an interesting status pending. */
3389 static int
3390 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3391 {
3392 struct lwp_info *lwp = (struct lwp_info *) entry;
3393
3394 /* LWPs which will not be resumed are not interesting, because
3395 we might not wait for them next time through linux_wait. */
3396 if (lwp->resume == NULL)
3397 return 0;
3398
3399 if (lwp->status_pending_p)
3400 * (int *) flag_p = 1;
3401
3402 return 0;
3403 }
3404
3405 /* Return 1 if this lwp that GDB wants running is stopped at an
3406 internal breakpoint that we need to step over. It assumes that any
3407 required STOP_PC adjustment has already been propagated to the
3408 inferior's regcache. */
3409
3410 static int
3411 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3412 {
3413 struct lwp_info *lwp = (struct lwp_info *) entry;
3414 struct thread_info *thread;
3415 struct thread_info *saved_inferior;
3416 CORE_ADDR pc;
3417
3418 /* LWPs which will not be resumed are not interesting, because we
3419 might not wait for them next time through linux_wait. */
3420
3421 if (!lwp->stopped)
3422 {
3423 if (debug_threads)
3424 fprintf (stderr,
3425 "Need step over [LWP %ld]? Ignoring, not stopped\n",
3426 lwpid_of (lwp));
3427 return 0;
3428 }
3429
3430 thread = get_lwp_thread (lwp);
3431
3432 if (thread->last_resume_kind == resume_stop)
3433 {
3434 if (debug_threads)
3435 fprintf (stderr,
3436 "Need step over [LWP %ld]? Ignoring, should remain stopped\n",
3437 lwpid_of (lwp));
3438 return 0;
3439 }
3440
3441 gdb_assert (lwp->suspended >= 0);
3442
3443 if (lwp->suspended)
3444 {
3445 if (debug_threads)
3446 fprintf (stderr,
3447 "Need step over [LWP %ld]? Ignoring, suspended\n",
3448 lwpid_of (lwp));
3449 return 0;
3450 }
3451
3452 if (!lwp->need_step_over)
3453 {
3454 if (debug_threads)
3455 fprintf (stderr,
3456 "Need step over [LWP %ld]? No\n", lwpid_of (lwp));
3457 }
3458
3459 if (lwp->status_pending_p)
3460 {
3461 if (debug_threads)
3462 fprintf (stderr,
3463 "Need step over [LWP %ld]? Ignoring, has pending status.\n",
3464 lwpid_of (lwp));
3465 return 0;
3466 }
3467
3468 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3469 or we have. */
3470 pc = get_pc (lwp);
3471
3472 /* If the PC has changed since we stopped, then don't do anything,
3473 and let the breakpoint/tracepoint be hit. This happens if, for
3474 instance, GDB handled the decr_pc_after_break subtraction itself,
3475 GDB is OOL stepping this thread, or the user has issued a "jump"
3476 command, or poked thread's registers herself. */
3477 if (pc != lwp->stop_pc)
3478 {
3479 if (debug_threads)
3480 fprintf (stderr,
3481 "Need step over [LWP %ld]? Cancelling, PC was changed. "
3482 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3483 lwpid_of (lwp), paddress (lwp->stop_pc), paddress (pc));
3484
3485 lwp->need_step_over = 0;
3486 return 0;
3487 }
3488
3489 saved_inferior = current_inferior;
3490 current_inferior = thread;
3491
3492 /* We can only step over breakpoints we know about. */
3493 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3494 {
3495 /* Don't step over a breakpoint that GDB expects to hit
3496 though. If the condition is being evaluated on the target's side
3497 and it evaluate to false, step over this breakpoint as well. */
3498 if (gdb_breakpoint_here (pc)
3499 && gdb_condition_true_at_breakpoint (pc))
3500 {
3501 if (debug_threads)
3502 fprintf (stderr,
3503 "Need step over [LWP %ld]? yes, but found"
3504 " GDB breakpoint at 0x%s; skipping step over\n",
3505 lwpid_of (lwp), paddress (pc));
3506
3507 current_inferior = saved_inferior;
3508 return 0;
3509 }
3510 else
3511 {
3512 if (debug_threads)
3513 fprintf (stderr,
3514 "Need step over [LWP %ld]? yes, "
3515 "found breakpoint at 0x%s\n",
3516 lwpid_of (lwp), paddress (pc));
3517
3518 /* We've found an lwp that needs stepping over --- return 1 so
3519 that find_inferior stops looking. */
3520 current_inferior = saved_inferior;
3521
3522 /* If the step over is cancelled, this is set again. */
3523 lwp->need_step_over = 0;
3524 return 1;
3525 }
3526 }
3527
3528 current_inferior = saved_inferior;
3529
3530 if (debug_threads)
3531 fprintf (stderr,
3532 "Need step over [LWP %ld]? No, no breakpoint found at 0x%s\n",
3533 lwpid_of (lwp), paddress (pc));
3534
3535 return 0;
3536 }
3537
3538 /* Start a step-over operation on LWP. When LWP stopped at a
3539 breakpoint, to make progress, we need to remove the breakpoint out
3540 of the way. If we let other threads run while we do that, they may
3541 pass by the breakpoint location and miss hitting it. To avoid
3542 that, a step-over momentarily stops all threads while LWP is
3543 single-stepped while the breakpoint is temporarily uninserted from
3544 the inferior. When the single-step finishes, we reinsert the
3545 breakpoint, and let all threads that are supposed to be running,
3546 run again.
3547
3548 On targets that don't support hardware single-step, we don't
3549 currently support full software single-stepping. Instead, we only
3550 support stepping over the thread event breakpoint, by asking the
3551 low target where to place a reinsert breakpoint. Since this
3552 routine assumes the breakpoint being stepped over is a thread event
3553 breakpoint, it usually assumes the return address of the current
3554 function is a good enough place to set the reinsert breakpoint. */
3555
3556 static int
3557 start_step_over (struct lwp_info *lwp)
3558 {
3559 struct thread_info *saved_inferior;
3560 CORE_ADDR pc;
3561 int step;
3562
3563 if (debug_threads)
3564 fprintf (stderr,
3565 "Starting step-over on LWP %ld. Stopping all threads\n",
3566 lwpid_of (lwp));
3567
3568 stop_all_lwps (1, lwp);
3569 gdb_assert (lwp->suspended == 0);
3570
3571 if (debug_threads)
3572 fprintf (stderr, "Done stopping all threads for step-over.\n");
3573
3574 /* Note, we should always reach here with an already adjusted PC,
3575 either by GDB (if we're resuming due to GDB's request), or by our
3576 caller, if we just finished handling an internal breakpoint GDB
3577 shouldn't care about. */
3578 pc = get_pc (lwp);
3579
3580 saved_inferior = current_inferior;
3581 current_inferior = get_lwp_thread (lwp);
3582
3583 lwp->bp_reinsert = pc;
3584 uninsert_breakpoints_at (pc);
3585 uninsert_fast_tracepoint_jumps_at (pc);
3586
3587 if (can_hardware_single_step ())
3588 {
3589 step = 1;
3590 }
3591 else
3592 {
3593 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
3594 set_reinsert_breakpoint (raddr);
3595 step = 0;
3596 }
3597
3598 current_inferior = saved_inferior;
3599
3600 linux_resume_one_lwp (lwp, step, 0, NULL);
3601
3602 /* Require next event from this LWP. */
3603 step_over_bkpt = lwp->head.id;
3604 return 1;
3605 }
3606
3607 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
3608 start_step_over, if still there, and delete any reinsert
3609 breakpoints we've set, on non hardware single-step targets. */
3610
3611 static int
3612 finish_step_over (struct lwp_info *lwp)
3613 {
3614 if (lwp->bp_reinsert != 0)
3615 {
3616 if (debug_threads)
3617 fprintf (stderr, "Finished step over.\n");
3618
3619 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
3620 may be no breakpoint to reinsert there by now. */
3621 reinsert_breakpoints_at (lwp->bp_reinsert);
3622 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
3623
3624 lwp->bp_reinsert = 0;
3625
3626 /* Delete any software-single-step reinsert breakpoints. No
3627 longer needed. We don't have to worry about other threads
3628 hitting this trap, and later not being able to explain it,
3629 because we were stepping over a breakpoint, and we hold all
3630 threads but LWP stopped while doing that. */
3631 if (!can_hardware_single_step ())
3632 delete_reinsert_breakpoints ();
3633
3634 step_over_bkpt = null_ptid;
3635 return 1;
3636 }
3637 else
3638 return 0;
3639 }
3640
3641 /* This function is called once per thread. We check the thread's resume
3642 request, which will tell us whether to resume, step, or leave the thread
3643 stopped; and what signal, if any, it should be sent.
3644
3645 For threads which we aren't explicitly told otherwise, we preserve
3646 the stepping flag; this is used for stepping over gdbserver-placed
3647 breakpoints.
3648
3649 If pending_flags was set in any thread, we queue any needed
3650 signals, since we won't actually resume. We already have a pending
3651 event to report, so we don't need to preserve any step requests;
3652 they should be re-issued if necessary. */
3653
3654 static int
3655 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
3656 {
3657 struct lwp_info *lwp;
3658 struct thread_info *thread;
3659 int step;
3660 int leave_all_stopped = * (int *) arg;
3661 int leave_pending;
3662
3663 thread = (struct thread_info *) entry;
3664 lwp = get_thread_lwp (thread);
3665
3666 if (lwp->resume == NULL)
3667 return 0;
3668
3669 if (lwp->resume->kind == resume_stop)
3670 {
3671 if (debug_threads)
3672 fprintf (stderr, "resume_stop request for LWP %ld\n", lwpid_of (lwp));
3673
3674 if (!lwp->stopped)
3675 {
3676 if (debug_threads)
3677 fprintf (stderr, "stopping LWP %ld\n", lwpid_of (lwp));
3678
3679 /* Stop the thread, and wait for the event asynchronously,
3680 through the event loop. */
3681 send_sigstop (lwp);
3682 }
3683 else
3684 {
3685 if (debug_threads)
3686 fprintf (stderr, "already stopped LWP %ld\n",
3687 lwpid_of (lwp));
3688
3689 /* The LWP may have been stopped in an internal event that
3690 was not meant to be notified back to GDB (e.g., gdbserver
3691 breakpoint), so we should be reporting a stop event in
3692 this case too. */
3693
3694 /* If the thread already has a pending SIGSTOP, this is a
3695 no-op. Otherwise, something later will presumably resume
3696 the thread and this will cause it to cancel any pending
3697 operation, due to last_resume_kind == resume_stop. If
3698 the thread already has a pending status to report, we
3699 will still report it the next time we wait - see
3700 status_pending_p_callback. */
3701
3702 /* If we already have a pending signal to report, then
3703 there's no need to queue a SIGSTOP, as this means we're
3704 midway through moving the LWP out of the jumppad, and we
3705 will report the pending signal as soon as that is
3706 finished. */
3707 if (lwp->pending_signals_to_report == NULL)
3708 send_sigstop (lwp);
3709 }
3710
3711 /* For stop requests, we're done. */
3712 lwp->resume = NULL;
3713 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3714 return 0;
3715 }
3716
3717 /* If this thread which is about to be resumed has a pending status,
3718 then don't resume any threads - we can just report the pending
3719 status. Make sure to queue any signals that would otherwise be
3720 sent. In all-stop mode, we do this decision based on if *any*
3721 thread has a pending status. If there's a thread that needs the
3722 step-over-breakpoint dance, then don't resume any other thread
3723 but that particular one. */
3724 leave_pending = (lwp->status_pending_p || leave_all_stopped);
3725
3726 if (!leave_pending)
3727 {
3728 if (debug_threads)
3729 fprintf (stderr, "resuming LWP %ld\n", lwpid_of (lwp));
3730
3731 step = (lwp->resume->kind == resume_step);
3732 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
3733 }
3734 else
3735 {
3736 if (debug_threads)
3737 fprintf (stderr, "leaving LWP %ld stopped\n", lwpid_of (lwp));
3738
3739 /* If we have a new signal, enqueue the signal. */
3740 if (lwp->resume->sig != 0)
3741 {
3742 struct pending_signals *p_sig;
3743 p_sig = xmalloc (sizeof (*p_sig));
3744 p_sig->prev = lwp->pending_signals;
3745 p_sig->signal = lwp->resume->sig;
3746 memset (&p_sig->info, 0, sizeof (siginfo_t));
3747
3748 /* If this is the same signal we were previously stopped by,
3749 make sure to queue its siginfo. We can ignore the return
3750 value of ptrace; if it fails, we'll skip
3751 PTRACE_SETSIGINFO. */
3752 if (WIFSTOPPED (lwp->last_status)
3753 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
3754 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &p_sig->info);
3755
3756 lwp->pending_signals = p_sig;
3757 }
3758 }
3759
3760 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3761 lwp->resume = NULL;
3762 return 0;
3763 }
3764
3765 static void
3766 linux_resume (struct thread_resume *resume_info, size_t n)
3767 {
3768 struct thread_resume_array array = { resume_info, n };
3769 struct lwp_info *need_step_over = NULL;
3770 int any_pending;
3771 int leave_all_stopped;
3772
3773 find_inferior (&all_threads, linux_set_resume_request, &array);
3774
3775 /* If there is a thread which would otherwise be resumed, which has
3776 a pending status, then don't resume any threads - we can just
3777 report the pending status. Make sure to queue any signals that
3778 would otherwise be sent. In non-stop mode, we'll apply this
3779 logic to each thread individually. We consume all pending events
3780 before considering to start a step-over (in all-stop). */
3781 any_pending = 0;
3782 if (!non_stop)
3783 find_inferior (&all_lwps, resume_status_pending_p, &any_pending);
3784
3785 /* If there is a thread which would otherwise be resumed, which is
3786 stopped at a breakpoint that needs stepping over, then don't
3787 resume any threads - have it step over the breakpoint with all
3788 other threads stopped, then resume all threads again. Make sure
3789 to queue any signals that would otherwise be delivered or
3790 queued. */
3791 if (!any_pending && supports_breakpoints ())
3792 need_step_over
3793 = (struct lwp_info *) find_inferior (&all_lwps,
3794 need_step_over_p, NULL);
3795
3796 leave_all_stopped = (need_step_over != NULL || any_pending);
3797
3798 if (debug_threads)
3799 {
3800 if (need_step_over != NULL)
3801 fprintf (stderr, "Not resuming all, need step over\n");
3802 else if (any_pending)
3803 fprintf (stderr,
3804 "Not resuming, all-stop and found "
3805 "an LWP with pending status\n");
3806 else
3807 fprintf (stderr, "Resuming, no pending status or step over needed\n");
3808 }
3809
3810 /* Even if we're leaving threads stopped, queue all signals we'd
3811 otherwise deliver. */
3812 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
3813
3814 if (need_step_over)
3815 start_step_over (need_step_over);
3816 }
3817
3818 /* This function is called once per thread. We check the thread's
3819 last resume request, which will tell us whether to resume, step, or
3820 leave the thread stopped. Any signal the client requested to be
3821 delivered has already been enqueued at this point.
3822
3823 If any thread that GDB wants running is stopped at an internal
3824 breakpoint that needs stepping over, we start a step-over operation
3825 on that particular thread, and leave all others stopped. */
3826
3827 static int
3828 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3829 {
3830 struct lwp_info *lwp = (struct lwp_info *) entry;
3831 struct thread_info *thread;
3832 int step;
3833
3834 if (lwp == except)
3835 return 0;
3836
3837 if (debug_threads)
3838 fprintf (stderr,
3839 "proceed_one_lwp: lwp %ld\n", lwpid_of (lwp));
3840
3841 if (!lwp->stopped)
3842 {
3843 if (debug_threads)
3844 fprintf (stderr, " LWP %ld already running\n", lwpid_of (lwp));
3845 return 0;
3846 }
3847
3848 thread = get_lwp_thread (lwp);
3849
3850 if (thread->last_resume_kind == resume_stop
3851 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
3852 {
3853 if (debug_threads)
3854 fprintf (stderr, " client wants LWP to remain %ld stopped\n",
3855 lwpid_of (lwp));
3856 return 0;
3857 }
3858
3859 if (lwp->status_pending_p)
3860 {
3861 if (debug_threads)
3862 fprintf (stderr, " LWP %ld has pending status, leaving stopped\n",
3863 lwpid_of (lwp));
3864 return 0;
3865 }
3866
3867 gdb_assert (lwp->suspended >= 0);
3868
3869 if (lwp->suspended)
3870 {
3871 if (debug_threads)
3872 fprintf (stderr, " LWP %ld is suspended\n", lwpid_of (lwp));
3873 return 0;
3874 }
3875
3876 if (thread->last_resume_kind == resume_stop
3877 && lwp->pending_signals_to_report == NULL
3878 && lwp->collecting_fast_tracepoint == 0)
3879 {
3880 /* We haven't reported this LWP as stopped yet (otherwise, the
3881 last_status.kind check above would catch it, and we wouldn't
3882 reach here. This LWP may have been momentarily paused by a
3883 stop_all_lwps call while handling for example, another LWP's
3884 step-over. In that case, the pending expected SIGSTOP signal
3885 that was queued at vCont;t handling time will have already
3886 been consumed by wait_for_sigstop, and so we need to requeue
3887 another one here. Note that if the LWP already has a SIGSTOP
3888 pending, this is a no-op. */
3889
3890 if (debug_threads)
3891 fprintf (stderr,
3892 "Client wants LWP %ld to stop. "
3893 "Making sure it has a SIGSTOP pending\n",
3894 lwpid_of (lwp));
3895
3896 send_sigstop (lwp);
3897 }
3898
3899 step = thread->last_resume_kind == resume_step;
3900 linux_resume_one_lwp (lwp, step, 0, NULL);
3901 return 0;
3902 }
3903
3904 static int
3905 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3906 {
3907 struct lwp_info *lwp = (struct lwp_info *) entry;
3908
3909 if (lwp == except)
3910 return 0;
3911
3912 lwp->suspended--;
3913 gdb_assert (lwp->suspended >= 0);
3914
3915 return proceed_one_lwp (entry, except);
3916 }
3917
3918 /* When we finish a step-over, set threads running again. If there's
3919 another thread that may need a step-over, now's the time to start
3920 it. Eventually, we'll move all threads past their breakpoints. */
3921
3922 static void
3923 proceed_all_lwps (void)
3924 {
3925 struct lwp_info *need_step_over;
3926
3927 /* If there is a thread which would otherwise be resumed, which is
3928 stopped at a breakpoint that needs stepping over, then don't
3929 resume any threads - have it step over the breakpoint with all
3930 other threads stopped, then resume all threads again. */
3931
3932 if (supports_breakpoints ())
3933 {
3934 need_step_over
3935 = (struct lwp_info *) find_inferior (&all_lwps,
3936 need_step_over_p, NULL);
3937
3938 if (need_step_over != NULL)
3939 {
3940 if (debug_threads)
3941 fprintf (stderr, "proceed_all_lwps: found "
3942 "thread %ld needing a step-over\n",
3943 lwpid_of (need_step_over));
3944
3945 start_step_over (need_step_over);
3946 return;
3947 }
3948 }
3949
3950 if (debug_threads)
3951 fprintf (stderr, "Proceeding, no step-over needed\n");
3952
3953 find_inferior (&all_lwps, proceed_one_lwp, NULL);
3954 }
3955
3956 /* Stopped LWPs that the client wanted to be running, that don't have
3957 pending statuses, are set to run again, except for EXCEPT, if not
3958 NULL. This undoes a stop_all_lwps call. */
3959
3960 static void
3961 unstop_all_lwps (int unsuspend, struct lwp_info *except)
3962 {
3963 if (debug_threads)
3964 {
3965 if (except)
3966 fprintf (stderr,
3967 "unstopping all lwps, except=(LWP %ld)\n", lwpid_of (except));
3968 else
3969 fprintf (stderr,
3970 "unstopping all lwps\n");
3971 }
3972
3973 if (unsuspend)
3974 find_inferior (&all_lwps, unsuspend_and_proceed_one_lwp, except);
3975 else
3976 find_inferior (&all_lwps, proceed_one_lwp, except);
3977 }
3978
3979
3980 #ifdef HAVE_LINUX_REGSETS
3981
3982 #define use_linux_regsets 1
3983
3984 static int
3985 regsets_fetch_inferior_registers (struct regcache *regcache)
3986 {
3987 struct regset_info *regset;
3988 int saw_general_regs = 0;
3989 int pid;
3990 struct iovec iov;
3991
3992 regset = target_regsets;
3993
3994 pid = lwpid_of (get_thread_lwp (current_inferior));
3995 while (regset->size >= 0)
3996 {
3997 void *buf, *data;
3998 int nt_type, res;
3999
4000 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
4001 {
4002 regset ++;
4003 continue;
4004 }
4005
4006 buf = xmalloc (regset->size);
4007
4008 nt_type = regset->nt_type;
4009 if (nt_type)
4010 {
4011 iov.iov_base = buf;
4012 iov.iov_len = regset->size;
4013 data = (void *) &iov;
4014 }
4015 else
4016 data = buf;
4017
4018 #ifndef __sparc__
4019 res = ptrace (regset->get_request, pid,
4020 (PTRACE_ARG3_TYPE) (long) nt_type, data);
4021 #else
4022 res = ptrace (regset->get_request, pid, data, nt_type);
4023 #endif
4024 if (res < 0)
4025 {
4026 if (errno == EIO)
4027 {
4028 /* If we get EIO on a regset, do not try it again for
4029 this process. */
4030 disabled_regsets[regset - target_regsets] = 1;
4031 free (buf);
4032 continue;
4033 }
4034 else
4035 {
4036 char s[256];
4037 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4038 pid);
4039 perror (s);
4040 }
4041 }
4042 else if (regset->type == GENERAL_REGS)
4043 saw_general_regs = 1;
4044 regset->store_function (regcache, buf);
4045 regset ++;
4046 free (buf);
4047 }
4048 if (saw_general_regs)
4049 return 0;
4050 else
4051 return 1;
4052 }
4053
4054 static int
4055 regsets_store_inferior_registers (struct regcache *regcache)
4056 {
4057 struct regset_info *regset;
4058 int saw_general_regs = 0;
4059 int pid;
4060 struct iovec iov;
4061
4062 regset = target_regsets;
4063
4064 pid = lwpid_of (get_thread_lwp (current_inferior));
4065 while (regset->size >= 0)
4066 {
4067 void *buf, *data;
4068 int nt_type, res;
4069
4070 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
4071 {
4072 regset ++;
4073 continue;
4074 }
4075
4076 buf = xmalloc (regset->size);
4077
4078 /* First fill the buffer with the current register set contents,
4079 in case there are any items in the kernel's regset that are
4080 not in gdbserver's regcache. */
4081
4082 nt_type = regset->nt_type;
4083 if (nt_type)
4084 {
4085 iov.iov_base = buf;
4086 iov.iov_len = regset->size;
4087 data = (void *) &iov;
4088 }
4089 else
4090 data = buf;
4091
4092 #ifndef __sparc__
4093 res = ptrace (regset->get_request, pid,
4094 (PTRACE_ARG3_TYPE) (long) nt_type, data);
4095 #else
4096 res = ptrace (regset->get_request, pid, data, nt_type);
4097 #endif
4098
4099 if (res == 0)
4100 {
4101 /* Then overlay our cached registers on that. */
4102 regset->fill_function (regcache, buf);
4103
4104 /* Only now do we write the register set. */
4105 #ifndef __sparc__
4106 res = ptrace (regset->set_request, pid,
4107 (PTRACE_ARG3_TYPE) (long) nt_type, data);
4108 #else
4109 res = ptrace (regset->set_request, pid, data, nt_type);
4110 #endif
4111 }
4112
4113 if (res < 0)
4114 {
4115 if (errno == EIO)
4116 {
4117 /* If we get EIO on a regset, do not try it again for
4118 this process. */
4119 disabled_regsets[regset - target_regsets] = 1;
4120 free (buf);
4121 continue;
4122 }
4123 else if (errno == ESRCH)
4124 {
4125 /* At this point, ESRCH should mean the process is
4126 already gone, in which case we simply ignore attempts
4127 to change its registers. See also the related
4128 comment in linux_resume_one_lwp. */
4129 free (buf);
4130 return 0;
4131 }
4132 else
4133 {
4134 perror ("Warning: ptrace(regsets_store_inferior_registers)");
4135 }
4136 }
4137 else if (regset->type == GENERAL_REGS)
4138 saw_general_regs = 1;
4139 regset ++;
4140 free (buf);
4141 }
4142 if (saw_general_regs)
4143 return 0;
4144 else
4145 return 1;
4146 }
4147
4148 #else /* !HAVE_LINUX_REGSETS */
4149
4150 #define use_linux_regsets 0
4151 #define regsets_fetch_inferior_registers(regcache) 1
4152 #define regsets_store_inferior_registers(regcache) 1
4153
4154 #endif
4155
4156 /* Return 1 if register REGNO is supported by one of the regset ptrace
4157 calls or 0 if it has to be transferred individually. */
4158
4159 static int
4160 linux_register_in_regsets (int regno)
4161 {
4162 unsigned char mask = 1 << (regno % 8);
4163 size_t index = regno / 8;
4164
4165 return (use_linux_regsets
4166 && (the_low_target.regset_bitmap == NULL
4167 || (the_low_target.regset_bitmap[index] & mask) != 0));
4168 }
4169
4170 #ifdef HAVE_LINUX_USRREGS
4171
4172 int
4173 register_addr (int regnum)
4174 {
4175 int addr;
4176
4177 if (regnum < 0 || regnum >= the_low_target.num_regs)
4178 error ("Invalid register number %d.", regnum);
4179
4180 addr = the_low_target.regmap[regnum];
4181
4182 return addr;
4183 }
4184
4185 /* Fetch one register. */
4186 static void
4187 fetch_register (struct regcache *regcache, int regno)
4188 {
4189 CORE_ADDR regaddr;
4190 int i, size;
4191 char *buf;
4192 int pid;
4193
4194 if (regno >= the_low_target.num_regs)
4195 return;
4196 if ((*the_low_target.cannot_fetch_register) (regno))
4197 return;
4198
4199 regaddr = register_addr (regno);
4200 if (regaddr == -1)
4201 return;
4202
4203 size = ((register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
4204 & -sizeof (PTRACE_XFER_TYPE));
4205 buf = alloca (size);
4206
4207 pid = lwpid_of (get_thread_lwp (current_inferior));
4208 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4209 {
4210 errno = 0;
4211 *(PTRACE_XFER_TYPE *) (buf + i) =
4212 ptrace (PTRACE_PEEKUSER, pid,
4213 /* Coerce to a uintptr_t first to avoid potential gcc warning
4214 of coercing an 8 byte integer to a 4 byte pointer. */
4215 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr, 0);
4216 regaddr += sizeof (PTRACE_XFER_TYPE);
4217 if (errno != 0)
4218 error ("reading register %d: %s", regno, strerror (errno));
4219 }
4220
4221 if (the_low_target.supply_ptrace_register)
4222 the_low_target.supply_ptrace_register (regcache, regno, buf);
4223 else
4224 supply_register (regcache, regno, buf);
4225 }
4226
4227 /* Store one register. */
4228 static void
4229 store_register (struct regcache *regcache, int regno)
4230 {
4231 CORE_ADDR regaddr;
4232 int i, size;
4233 char *buf;
4234 int pid;
4235
4236 if (regno >= the_low_target.num_regs)
4237 return;
4238 if ((*the_low_target.cannot_store_register) (regno))
4239 return;
4240
4241 regaddr = register_addr (regno);
4242 if (regaddr == -1)
4243 return;
4244
4245 size = ((register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
4246 & -sizeof (PTRACE_XFER_TYPE));
4247 buf = alloca (size);
4248 memset (buf, 0, size);
4249
4250 if (the_low_target.collect_ptrace_register)
4251 the_low_target.collect_ptrace_register (regcache, regno, buf);
4252 else
4253 collect_register (regcache, regno, buf);
4254
4255 pid = lwpid_of (get_thread_lwp (current_inferior));
4256 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4257 {
4258 errno = 0;
4259 ptrace (PTRACE_POKEUSER, pid,
4260 /* Coerce to a uintptr_t first to avoid potential gcc warning
4261 about coercing an 8 byte integer to a 4 byte pointer. */
4262 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr,
4263 (PTRACE_ARG4_TYPE) *(PTRACE_XFER_TYPE *) (buf + i));
4264 if (errno != 0)
4265 {
4266 /* At this point, ESRCH should mean the process is
4267 already gone, in which case we simply ignore attempts
4268 to change its registers. See also the related
4269 comment in linux_resume_one_lwp. */
4270 if (errno == ESRCH)
4271 return;
4272
4273 if ((*the_low_target.cannot_store_register) (regno) == 0)
4274 error ("writing register %d: %s", regno, strerror (errno));
4275 }
4276 regaddr += sizeof (PTRACE_XFER_TYPE);
4277 }
4278 }
4279
4280 /* Fetch all registers, or just one, from the child process.
4281 If REGNO is -1, do this for all registers, skipping any that are
4282 assumed to have been retrieved by regsets_fetch_inferior_registers,
4283 unless ALL is non-zero.
4284 Otherwise, REGNO specifies which register (so we can save time). */
4285 static void
4286 usr_fetch_inferior_registers (struct regcache *regcache, int regno, int all)
4287 {
4288 if (regno == -1)
4289 {
4290 for (regno = 0; regno < the_low_target.num_regs; regno++)
4291 if (all || !linux_register_in_regsets (regno))
4292 fetch_register (regcache, regno);
4293 }
4294 else
4295 fetch_register (regcache, regno);
4296 }
4297
4298 /* Store our register values back into the inferior.
4299 If REGNO is -1, do this for all registers, skipping any that are
4300 assumed to have been saved by regsets_store_inferior_registers,
4301 unless ALL is non-zero.
4302 Otherwise, REGNO specifies which register (so we can save time). */
4303 static void
4304 usr_store_inferior_registers (struct regcache *regcache, int regno, int all)
4305 {
4306 if (regno == -1)
4307 {
4308 for (regno = 0; regno < the_low_target.num_regs; regno++)
4309 if (all || !linux_register_in_regsets (regno))
4310 store_register (regcache, regno);
4311 }
4312 else
4313 store_register (regcache, regno);
4314 }
4315
4316 #else /* !HAVE_LINUX_USRREGS */
4317
4318 #define usr_fetch_inferior_registers(regcache, regno, all) do {} while (0)
4319 #define usr_store_inferior_registers(regcache, regno, all) do {} while (0)
4320
4321 #endif
4322
4323
4324 void
4325 linux_fetch_registers (struct regcache *regcache, int regno)
4326 {
4327 int use_regsets;
4328 int all = 0;
4329
4330 if (regno == -1)
4331 {
4332 if (the_low_target.fetch_register != NULL)
4333 for (regno = 0; regno < the_low_target.num_regs; regno++)
4334 (*the_low_target.fetch_register) (regcache, regno);
4335
4336 all = regsets_fetch_inferior_registers (regcache);
4337 usr_fetch_inferior_registers (regcache, -1, all);
4338 }
4339 else
4340 {
4341 if (the_low_target.fetch_register != NULL
4342 && (*the_low_target.fetch_register) (regcache, regno))
4343 return;
4344
4345 use_regsets = linux_register_in_regsets (regno);
4346 if (use_regsets)
4347 all = regsets_fetch_inferior_registers (regcache);
4348 if (!use_regsets || all)
4349 usr_fetch_inferior_registers (regcache, regno, 1);
4350 }
4351 }
4352
4353 void
4354 linux_store_registers (struct regcache *regcache, int regno)
4355 {
4356 int use_regsets;
4357 int all = 0;
4358
4359 if (regno == -1)
4360 {
4361 all = regsets_store_inferior_registers (regcache);
4362 usr_store_inferior_registers (regcache, regno, all);
4363 }
4364 else
4365 {
4366 use_regsets = linux_register_in_regsets (regno);
4367 if (use_regsets)
4368 all = regsets_store_inferior_registers (regcache);
4369 if (!use_regsets || all)
4370 usr_store_inferior_registers (regcache, regno, 1);
4371 }
4372 }
4373
4374
4375 /* Copy LEN bytes from inferior's memory starting at MEMADDR
4376 to debugger memory starting at MYADDR. */
4377
4378 static int
4379 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
4380 {
4381 register int i;
4382 /* Round starting address down to longword boundary. */
4383 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4384 /* Round ending address up; get number of longwords that makes. */
4385 register int count
4386 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4387 / sizeof (PTRACE_XFER_TYPE);
4388 /* Allocate buffer of that many longwords. */
4389 register PTRACE_XFER_TYPE *buffer
4390 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4391 int fd;
4392 char filename[64];
4393 int pid = lwpid_of (get_thread_lwp (current_inferior));
4394
4395 /* Try using /proc. Don't bother for one word. */
4396 if (len >= 3 * sizeof (long))
4397 {
4398 /* We could keep this file open and cache it - possibly one per
4399 thread. That requires some juggling, but is even faster. */
4400 sprintf (filename, "/proc/%d/mem", pid);
4401 fd = open (filename, O_RDONLY | O_LARGEFILE);
4402 if (fd == -1)
4403 goto no_proc;
4404
4405 /* If pread64 is available, use it. It's faster if the kernel
4406 supports it (only one syscall), and it's 64-bit safe even on
4407 32-bit platforms (for instance, SPARC debugging a SPARC64
4408 application). */
4409 #ifdef HAVE_PREAD64
4410 if (pread64 (fd, myaddr, len, memaddr) != len)
4411 #else
4412 if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, myaddr, len) != len)
4413 #endif
4414 {
4415 close (fd);
4416 goto no_proc;
4417 }
4418
4419 close (fd);
4420 return 0;
4421 }
4422
4423 no_proc:
4424 /* Read all the longwords */
4425 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4426 {
4427 errno = 0;
4428 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4429 about coercing an 8 byte integer to a 4 byte pointer. */
4430 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
4431 (PTRACE_ARG3_TYPE) (uintptr_t) addr, 0);
4432 if (errno)
4433 return errno;
4434 }
4435
4436 /* Copy appropriate bytes out of the buffer. */
4437 memcpy (myaddr,
4438 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4439 len);
4440
4441 return 0;
4442 }
4443
4444 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
4445 memory at MEMADDR. On failure (cannot write to the inferior)
4446 returns the value of errno. */
4447
4448 static int
4449 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
4450 {
4451 register int i;
4452 /* Round starting address down to longword boundary. */
4453 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4454 /* Round ending address up; get number of longwords that makes. */
4455 register int count
4456 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4457 / sizeof (PTRACE_XFER_TYPE);
4458
4459 /* Allocate buffer of that many longwords. */
4460 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
4461 alloca (count * sizeof (PTRACE_XFER_TYPE));
4462
4463 int pid = lwpid_of (get_thread_lwp (current_inferior));
4464
4465 if (debug_threads)
4466 {
4467 /* Dump up to four bytes. */
4468 unsigned int val = * (unsigned int *) myaddr;
4469 if (len == 1)
4470 val = val & 0xff;
4471 else if (len == 2)
4472 val = val & 0xffff;
4473 else if (len == 3)
4474 val = val & 0xffffff;
4475 fprintf (stderr, "Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
4476 val, (long)memaddr);
4477 }
4478
4479 /* Fill start and end extra bytes of buffer with existing memory data. */
4480
4481 errno = 0;
4482 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4483 about coercing an 8 byte integer to a 4 byte pointer. */
4484 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
4485 (PTRACE_ARG3_TYPE) (uintptr_t) addr, 0);
4486 if (errno)
4487 return errno;
4488
4489 if (count > 1)
4490 {
4491 errno = 0;
4492 buffer[count - 1]
4493 = ptrace (PTRACE_PEEKTEXT, pid,
4494 /* Coerce to a uintptr_t first to avoid potential gcc warning
4495 about coercing an 8 byte integer to a 4 byte pointer. */
4496 (PTRACE_ARG3_TYPE) (uintptr_t) (addr + (count - 1)
4497 * sizeof (PTRACE_XFER_TYPE)),
4498 0);
4499 if (errno)
4500 return errno;
4501 }
4502
4503 /* Copy data to be written over corresponding part of buffer. */
4504
4505 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4506 myaddr, len);
4507
4508 /* Write the entire buffer. */
4509
4510 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4511 {
4512 errno = 0;
4513 ptrace (PTRACE_POKETEXT, pid,
4514 /* Coerce to a uintptr_t first to avoid potential gcc warning
4515 about coercing an 8 byte integer to a 4 byte pointer. */
4516 (PTRACE_ARG3_TYPE) (uintptr_t) addr,
4517 (PTRACE_ARG4_TYPE) buffer[i]);
4518 if (errno)
4519 return errno;
4520 }
4521
4522 return 0;
4523 }
4524
4525 /* Non-zero if the kernel supports PTRACE_O_TRACEFORK. */
4526 static int linux_supports_tracefork_flag;
4527
4528 static void
4529 linux_enable_event_reporting (int pid)
4530 {
4531 if (!linux_supports_tracefork_flag)
4532 return;
4533
4534 ptrace (PTRACE_SETOPTIONS, pid, 0, (PTRACE_ARG4_TYPE) PTRACE_O_TRACECLONE);
4535 }
4536
4537 /* Helper functions for linux_test_for_tracefork, called via clone (). */
4538
4539 static int
4540 linux_tracefork_grandchild (void *arg)
4541 {
4542 _exit (0);
4543 }
4544
4545 #define STACK_SIZE 4096
4546
4547 static int
4548 linux_tracefork_child (void *arg)
4549 {
4550 ptrace (PTRACE_TRACEME, 0, 0, 0);
4551 kill (getpid (), SIGSTOP);
4552
4553 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4554
4555 if (fork () == 0)
4556 linux_tracefork_grandchild (NULL);
4557
4558 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4559
4560 #ifdef __ia64__
4561 __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
4562 CLONE_VM | SIGCHLD, NULL);
4563 #else
4564 clone (linux_tracefork_grandchild, (char *) arg + STACK_SIZE,
4565 CLONE_VM | SIGCHLD, NULL);
4566 #endif
4567
4568 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4569
4570 _exit (0);
4571 }
4572
4573 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
4574 sure that we can enable the option, and that it had the desired
4575 effect. */
4576
4577 static void
4578 linux_test_for_tracefork (void)
4579 {
4580 int child_pid, ret, status;
4581 long second_pid;
4582 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4583 char *stack = xmalloc (STACK_SIZE * 4);
4584 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4585
4586 linux_supports_tracefork_flag = 0;
4587
4588 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4589
4590 child_pid = fork ();
4591 if (child_pid == 0)
4592 linux_tracefork_child (NULL);
4593
4594 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4595
4596 /* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
4597 #ifdef __ia64__
4598 child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
4599 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4600 #else /* !__ia64__ */
4601 child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
4602 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4603 #endif /* !__ia64__ */
4604
4605 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4606
4607 if (child_pid == -1)
4608 perror_with_name ("clone");
4609
4610 ret = my_waitpid (child_pid, &status, 0);
4611 if (ret == -1)
4612 perror_with_name ("waitpid");
4613 else if (ret != child_pid)
4614 error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
4615 if (! WIFSTOPPED (status))
4616 error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
4617
4618 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
4619 (PTRACE_ARG4_TYPE) PTRACE_O_TRACEFORK);
4620 if (ret != 0)
4621 {
4622 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
4623 if (ret != 0)
4624 {
4625 warning ("linux_test_for_tracefork: failed to kill child");
4626 return;
4627 }
4628
4629 ret = my_waitpid (child_pid, &status, 0);
4630 if (ret != child_pid)
4631 warning ("linux_test_for_tracefork: failed to wait for killed child");
4632 else if (!WIFSIGNALED (status))
4633 warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
4634 "killed child", status);
4635
4636 return;
4637 }
4638
4639 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
4640 if (ret != 0)
4641 warning ("linux_test_for_tracefork: failed to resume child");
4642
4643 ret = my_waitpid (child_pid, &status, 0);
4644
4645 if (ret == child_pid && WIFSTOPPED (status)
4646 && status >> 16 == PTRACE_EVENT_FORK)
4647 {
4648 second_pid = 0;
4649 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
4650 if (ret == 0 && second_pid != 0)
4651 {
4652 int second_status;
4653
4654 linux_supports_tracefork_flag = 1;
4655 my_waitpid (second_pid, &second_status, 0);
4656 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
4657 if (ret != 0)
4658 warning ("linux_test_for_tracefork: failed to kill second child");
4659 my_waitpid (second_pid, &status, 0);
4660 }
4661 }
4662 else
4663 warning ("linux_test_for_tracefork: unexpected result from waitpid "
4664 "(%d, status 0x%x)", ret, status);
4665
4666 do
4667 {
4668 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
4669 if (ret != 0)
4670 warning ("linux_test_for_tracefork: failed to kill child");
4671 my_waitpid (child_pid, &status, 0);
4672 }
4673 while (WIFSTOPPED (status));
4674
4675 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4676 free (stack);
4677 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4678 }
4679
4680
4681 static void
4682 linux_look_up_symbols (void)
4683 {
4684 #ifdef USE_THREAD_DB
4685 struct process_info *proc = current_process ();
4686
4687 if (proc->private->thread_db != NULL)
4688 return;
4689
4690 /* If the kernel supports tracing forks then it also supports tracing
4691 clones, and then we don't need to use the magic thread event breakpoint
4692 to learn about threads. */
4693 thread_db_init (!linux_supports_tracefork_flag);
4694 #endif
4695 }
4696
4697 static void
4698 linux_request_interrupt (void)
4699 {
4700 extern unsigned long signal_pid;
4701
4702 if (!ptid_equal (cont_thread, null_ptid)
4703 && !ptid_equal (cont_thread, minus_one_ptid))
4704 {
4705 struct lwp_info *lwp;
4706 int lwpid;
4707
4708 lwp = get_thread_lwp (current_inferior);
4709 lwpid = lwpid_of (lwp);
4710 kill_lwp (lwpid, SIGINT);
4711 }
4712 else
4713 kill_lwp (signal_pid, SIGINT);
4714 }
4715
4716 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
4717 to debugger memory starting at MYADDR. */
4718
4719 static int
4720 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
4721 {
4722 char filename[PATH_MAX];
4723 int fd, n;
4724 int pid = lwpid_of (get_thread_lwp (current_inferior));
4725
4726 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4727
4728 fd = open (filename, O_RDONLY);
4729 if (fd < 0)
4730 return -1;
4731
4732 if (offset != (CORE_ADDR) 0
4733 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4734 n = -1;
4735 else
4736 n = read (fd, myaddr, len);
4737
4738 close (fd);
4739
4740 return n;
4741 }
4742
4743 /* These breakpoint and watchpoint related wrapper functions simply
4744 pass on the function call if the target has registered a
4745 corresponding function. */
4746
4747 static int
4748 linux_insert_point (char type, CORE_ADDR addr, int len)
4749 {
4750 if (the_low_target.insert_point != NULL)
4751 return the_low_target.insert_point (type, addr, len);
4752 else
4753 /* Unsupported (see target.h). */
4754 return 1;
4755 }
4756
4757 static int
4758 linux_remove_point (char type, CORE_ADDR addr, int len)
4759 {
4760 if (the_low_target.remove_point != NULL)
4761 return the_low_target.remove_point (type, addr, len);
4762 else
4763 /* Unsupported (see target.h). */
4764 return 1;
4765 }
4766
4767 static int
4768 linux_stopped_by_watchpoint (void)
4769 {
4770 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4771
4772 return lwp->stopped_by_watchpoint;
4773 }
4774
4775 static CORE_ADDR
4776 linux_stopped_data_address (void)
4777 {
4778 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4779
4780 return lwp->stopped_data_address;
4781 }
4782
4783 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4784 #if defined(__mcoldfire__)
4785 /* These should really be defined in the kernel's ptrace.h header. */
4786 #define PT_TEXT_ADDR 49*4
4787 #define PT_DATA_ADDR 50*4
4788 #define PT_TEXT_END_ADDR 51*4
4789 #elif defined(BFIN)
4790 #define PT_TEXT_ADDR 220
4791 #define PT_TEXT_END_ADDR 224
4792 #define PT_DATA_ADDR 228
4793 #elif defined(__TMS320C6X__)
4794 #define PT_TEXT_ADDR (0x10000*4)
4795 #define PT_DATA_ADDR (0x10004*4)
4796 #define PT_TEXT_END_ADDR (0x10008*4)
4797 #endif
4798
4799 /* Under uClinux, programs are loaded at non-zero offsets, which we need
4800 to tell gdb about. */
4801
4802 static int
4803 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
4804 {
4805 #if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
4806 unsigned long text, text_end, data;
4807 int pid = lwpid_of (get_thread_lwp (current_inferior));
4808
4809 errno = 0;
4810
4811 text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
4812 text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
4813 data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
4814
4815 if (errno == 0)
4816 {
4817 /* Both text and data offsets produced at compile-time (and so
4818 used by gdb) are relative to the beginning of the program,
4819 with the data segment immediately following the text segment.
4820 However, the actual runtime layout in memory may put the data
4821 somewhere else, so when we send gdb a data base-address, we
4822 use the real data base address and subtract the compile-time
4823 data base-address from it (which is just the length of the
4824 text segment). BSS immediately follows data in both
4825 cases. */
4826 *text_p = text;
4827 *data_p = data - (text_end - text);
4828
4829 return 1;
4830 }
4831 #endif
4832 return 0;
4833 }
4834 #endif
4835
4836 static int
4837 linux_qxfer_osdata (const char *annex,
4838 unsigned char *readbuf, unsigned const char *writebuf,
4839 CORE_ADDR offset, int len)
4840 {
4841 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4842 }
4843
4844 /* Convert a native/host siginfo object, into/from the siginfo in the
4845 layout of the inferiors' architecture. */
4846
4847 static void
4848 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
4849 {
4850 int done = 0;
4851
4852 if (the_low_target.siginfo_fixup != NULL)
4853 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
4854
4855 /* If there was no callback, or the callback didn't do anything,
4856 then just do a straight memcpy. */
4857 if (!done)
4858 {
4859 if (direction == 1)
4860 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
4861 else
4862 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
4863 }
4864 }
4865
4866 static int
4867 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
4868 unsigned const char *writebuf, CORE_ADDR offset, int len)
4869 {
4870 int pid;
4871 siginfo_t siginfo;
4872 char inf_siginfo[sizeof (siginfo_t)];
4873
4874 if (current_inferior == NULL)
4875 return -1;
4876
4877 pid = lwpid_of (get_thread_lwp (current_inferior));
4878
4879 if (debug_threads)
4880 fprintf (stderr, "%s siginfo for lwp %d.\n",
4881 readbuf != NULL ? "Reading" : "Writing",
4882 pid);
4883
4884 if (offset >= sizeof (siginfo))
4885 return -1;
4886
4887 if (ptrace (PTRACE_GETSIGINFO, pid, 0, &siginfo) != 0)
4888 return -1;
4889
4890 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
4891 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4892 inferior with a 64-bit GDBSERVER should look the same as debugging it
4893 with a 32-bit GDBSERVER, we need to convert it. */
4894 siginfo_fixup (&siginfo, inf_siginfo, 0);
4895
4896 if (offset + len > sizeof (siginfo))
4897 len = sizeof (siginfo) - offset;
4898
4899 if (readbuf != NULL)
4900 memcpy (readbuf, inf_siginfo + offset, len);
4901 else
4902 {
4903 memcpy (inf_siginfo + offset, writebuf, len);
4904
4905 /* Convert back to ptrace layout before flushing it out. */
4906 siginfo_fixup (&siginfo, inf_siginfo, 1);
4907
4908 if (ptrace (PTRACE_SETSIGINFO, pid, 0, &siginfo) != 0)
4909 return -1;
4910 }
4911
4912 return len;
4913 }
4914
4915 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4916 so we notice when children change state; as the handler for the
4917 sigsuspend in my_waitpid. */
4918
4919 static void
4920 sigchld_handler (int signo)
4921 {
4922 int old_errno = errno;
4923
4924 if (debug_threads)
4925 {
4926 do
4927 {
4928 /* fprintf is not async-signal-safe, so call write
4929 directly. */
4930 if (write (2, "sigchld_handler\n",
4931 sizeof ("sigchld_handler\n") - 1) < 0)
4932 break; /* just ignore */
4933 } while (0);
4934 }
4935
4936 if (target_is_async_p ())
4937 async_file_mark (); /* trigger a linux_wait */
4938
4939 errno = old_errno;
4940 }
4941
4942 static int
4943 linux_supports_non_stop (void)
4944 {
4945 return 1;
4946 }
4947
4948 static int
4949 linux_async (int enable)
4950 {
4951 int previous = (linux_event_pipe[0] != -1);
4952
4953 if (debug_threads)
4954 fprintf (stderr, "linux_async (%d), previous=%d\n",
4955 enable, previous);
4956
4957 if (previous != enable)
4958 {
4959 sigset_t mask;
4960 sigemptyset (&mask);
4961 sigaddset (&mask, SIGCHLD);
4962
4963 sigprocmask (SIG_BLOCK, &mask, NULL);
4964
4965 if (enable)
4966 {
4967 if (pipe (linux_event_pipe) == -1)
4968 fatal ("creating event pipe failed.");
4969
4970 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
4971 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
4972
4973 /* Register the event loop handler. */
4974 add_file_handler (linux_event_pipe[0],
4975 handle_target_event, NULL);
4976
4977 /* Always trigger a linux_wait. */
4978 async_file_mark ();
4979 }
4980 else
4981 {
4982 delete_file_handler (linux_event_pipe[0]);
4983
4984 close (linux_event_pipe[0]);
4985 close (linux_event_pipe[1]);
4986 linux_event_pipe[0] = -1;
4987 linux_event_pipe[1] = -1;
4988 }
4989
4990 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4991 }
4992
4993 return previous;
4994 }
4995
4996 static int
4997 linux_start_non_stop (int nonstop)
4998 {
4999 /* Register or unregister from event-loop accordingly. */
5000 linux_async (nonstop);
5001 return 0;
5002 }
5003
5004 static int
5005 linux_supports_multi_process (void)
5006 {
5007 return 1;
5008 }
5009
5010 static int
5011 linux_supports_disable_randomization (void)
5012 {
5013 #ifdef HAVE_PERSONALITY
5014 return 1;
5015 #else
5016 return 0;
5017 #endif
5018 }
5019
5020 static int
5021 linux_supports_agent (void)
5022 {
5023 return 1;
5024 }
5025
5026 /* Enumerate spufs IDs for process PID. */
5027 static int
5028 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
5029 {
5030 int pos = 0;
5031 int written = 0;
5032 char path[128];
5033 DIR *dir;
5034 struct dirent *entry;
5035
5036 sprintf (path, "/proc/%ld/fd", pid);
5037 dir = opendir (path);
5038 if (!dir)
5039 return -1;
5040
5041 rewinddir (dir);
5042 while ((entry = readdir (dir)) != NULL)
5043 {
5044 struct stat st;
5045 struct statfs stfs;
5046 int fd;
5047
5048 fd = atoi (entry->d_name);
5049 if (!fd)
5050 continue;
5051
5052 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
5053 if (stat (path, &st) != 0)
5054 continue;
5055 if (!S_ISDIR (st.st_mode))
5056 continue;
5057
5058 if (statfs (path, &stfs) != 0)
5059 continue;
5060 if (stfs.f_type != SPUFS_MAGIC)
5061 continue;
5062
5063 if (pos >= offset && pos + 4 <= offset + len)
5064 {
5065 *(unsigned int *)(buf + pos - offset) = fd;
5066 written += 4;
5067 }
5068 pos += 4;
5069 }
5070
5071 closedir (dir);
5072 return written;
5073 }
5074
5075 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
5076 object type, using the /proc file system. */
5077 static int
5078 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
5079 unsigned const char *writebuf,
5080 CORE_ADDR offset, int len)
5081 {
5082 long pid = lwpid_of (get_thread_lwp (current_inferior));
5083 char buf[128];
5084 int fd = 0;
5085 int ret = 0;
5086
5087 if (!writebuf && !readbuf)
5088 return -1;
5089
5090 if (!*annex)
5091 {
5092 if (!readbuf)
5093 return -1;
5094 else
5095 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5096 }
5097
5098 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
5099 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5100 if (fd <= 0)
5101 return -1;
5102
5103 if (offset != 0
5104 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5105 {
5106 close (fd);
5107 return 0;
5108 }
5109
5110 if (writebuf)
5111 ret = write (fd, writebuf, (size_t) len);
5112 else
5113 ret = read (fd, readbuf, (size_t) len);
5114
5115 close (fd);
5116 return ret;
5117 }
5118
5119 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
5120 struct target_loadseg
5121 {
5122 /* Core address to which the segment is mapped. */
5123 Elf32_Addr addr;
5124 /* VMA recorded in the program header. */
5125 Elf32_Addr p_vaddr;
5126 /* Size of this segment in memory. */
5127 Elf32_Word p_memsz;
5128 };
5129
5130 # if defined PT_GETDSBT
5131 struct target_loadmap
5132 {
5133 /* Protocol version number, must be zero. */
5134 Elf32_Word version;
5135 /* Pointer to the DSBT table, its size, and the DSBT index. */
5136 unsigned *dsbt_table;
5137 unsigned dsbt_size, dsbt_index;
5138 /* Number of segments in this map. */
5139 Elf32_Word nsegs;
5140 /* The actual memory map. */
5141 struct target_loadseg segs[/*nsegs*/];
5142 };
5143 # define LINUX_LOADMAP PT_GETDSBT
5144 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
5145 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
5146 # else
5147 struct target_loadmap
5148 {
5149 /* Protocol version number, must be zero. */
5150 Elf32_Half version;
5151 /* Number of segments in this map. */
5152 Elf32_Half nsegs;
5153 /* The actual memory map. */
5154 struct target_loadseg segs[/*nsegs*/];
5155 };
5156 # define LINUX_LOADMAP PTRACE_GETFDPIC
5157 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
5158 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
5159 # endif
5160
5161 static int
5162 linux_read_loadmap (const char *annex, CORE_ADDR offset,
5163 unsigned char *myaddr, unsigned int len)
5164 {
5165 int pid = lwpid_of (get_thread_lwp (current_inferior));
5166 int addr = -1;
5167 struct target_loadmap *data = NULL;
5168 unsigned int actual_length, copy_length;
5169
5170 if (strcmp (annex, "exec") == 0)
5171 addr = (int) LINUX_LOADMAP_EXEC;
5172 else if (strcmp (annex, "interp") == 0)
5173 addr = (int) LINUX_LOADMAP_INTERP;
5174 else
5175 return -1;
5176
5177 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
5178 return -1;
5179
5180 if (data == NULL)
5181 return -1;
5182
5183 actual_length = sizeof (struct target_loadmap)
5184 + sizeof (struct target_loadseg) * data->nsegs;
5185
5186 if (offset < 0 || offset > actual_length)
5187 return -1;
5188
5189 copy_length = actual_length - offset < len ? actual_length - offset : len;
5190 memcpy (myaddr, (char *) data + offset, copy_length);
5191 return copy_length;
5192 }
5193 #else
5194 # define linux_read_loadmap NULL
5195 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
5196
5197 static void
5198 linux_process_qsupported (const char *query)
5199 {
5200 if (the_low_target.process_qsupported != NULL)
5201 the_low_target.process_qsupported (query);
5202 }
5203
5204 static int
5205 linux_supports_tracepoints (void)
5206 {
5207 if (*the_low_target.supports_tracepoints == NULL)
5208 return 0;
5209
5210 return (*the_low_target.supports_tracepoints) ();
5211 }
5212
5213 static CORE_ADDR
5214 linux_read_pc (struct regcache *regcache)
5215 {
5216 if (the_low_target.get_pc == NULL)
5217 return 0;
5218
5219 return (*the_low_target.get_pc) (regcache);
5220 }
5221
5222 static void
5223 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
5224 {
5225 gdb_assert (the_low_target.set_pc != NULL);
5226
5227 (*the_low_target.set_pc) (regcache, pc);
5228 }
5229
5230 static int
5231 linux_thread_stopped (struct thread_info *thread)
5232 {
5233 return get_thread_lwp (thread)->stopped;
5234 }
5235
5236 /* This exposes stop-all-threads functionality to other modules. */
5237
5238 static void
5239 linux_pause_all (int freeze)
5240 {
5241 stop_all_lwps (freeze, NULL);
5242 }
5243
5244 /* This exposes unstop-all-threads functionality to other gdbserver
5245 modules. */
5246
5247 static void
5248 linux_unpause_all (int unfreeze)
5249 {
5250 unstop_all_lwps (unfreeze, NULL);
5251 }
5252
5253 static int
5254 linux_prepare_to_access_memory (void)
5255 {
5256 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5257 running LWP. */
5258 if (non_stop)
5259 linux_pause_all (1);
5260 return 0;
5261 }
5262
5263 static void
5264 linux_done_accessing_memory (void)
5265 {
5266 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5267 running LWP. */
5268 if (non_stop)
5269 linux_unpause_all (1);
5270 }
5271
5272 static int
5273 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
5274 CORE_ADDR collector,
5275 CORE_ADDR lockaddr,
5276 ULONGEST orig_size,
5277 CORE_ADDR *jump_entry,
5278 CORE_ADDR *trampoline,
5279 ULONGEST *trampoline_size,
5280 unsigned char *jjump_pad_insn,
5281 ULONGEST *jjump_pad_insn_size,
5282 CORE_ADDR *adjusted_insn_addr,
5283 CORE_ADDR *adjusted_insn_addr_end,
5284 char *err)
5285 {
5286 return (*the_low_target.install_fast_tracepoint_jump_pad)
5287 (tpoint, tpaddr, collector, lockaddr, orig_size,
5288 jump_entry, trampoline, trampoline_size,
5289 jjump_pad_insn, jjump_pad_insn_size,
5290 adjusted_insn_addr, adjusted_insn_addr_end,
5291 err);
5292 }
5293
5294 static struct emit_ops *
5295 linux_emit_ops (void)
5296 {
5297 if (the_low_target.emit_ops != NULL)
5298 return (*the_low_target.emit_ops) ();
5299 else
5300 return NULL;
5301 }
5302
5303 static int
5304 linux_get_min_fast_tracepoint_insn_len (void)
5305 {
5306 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
5307 }
5308
5309 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
5310
5311 static int
5312 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
5313 CORE_ADDR *phdr_memaddr, int *num_phdr)
5314 {
5315 char filename[PATH_MAX];
5316 int fd;
5317 const int auxv_size = is_elf64
5318 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
5319 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
5320
5321 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5322
5323 fd = open (filename, O_RDONLY);
5324 if (fd < 0)
5325 return 1;
5326
5327 *phdr_memaddr = 0;
5328 *num_phdr = 0;
5329 while (read (fd, buf, auxv_size) == auxv_size
5330 && (*phdr_memaddr == 0 || *num_phdr == 0))
5331 {
5332 if (is_elf64)
5333 {
5334 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
5335
5336 switch (aux->a_type)
5337 {
5338 case AT_PHDR:
5339 *phdr_memaddr = aux->a_un.a_val;
5340 break;
5341 case AT_PHNUM:
5342 *num_phdr = aux->a_un.a_val;
5343 break;
5344 }
5345 }
5346 else
5347 {
5348 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
5349
5350 switch (aux->a_type)
5351 {
5352 case AT_PHDR:
5353 *phdr_memaddr = aux->a_un.a_val;
5354 break;
5355 case AT_PHNUM:
5356 *num_phdr = aux->a_un.a_val;
5357 break;
5358 }
5359 }
5360 }
5361
5362 close (fd);
5363
5364 if (*phdr_memaddr == 0 || *num_phdr == 0)
5365 {
5366 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
5367 "phdr_memaddr = %ld, phdr_num = %d",
5368 (long) *phdr_memaddr, *num_phdr);
5369 return 2;
5370 }
5371
5372 return 0;
5373 }
5374
5375 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
5376
5377 static CORE_ADDR
5378 get_dynamic (const int pid, const int is_elf64)
5379 {
5380 CORE_ADDR phdr_memaddr, relocation;
5381 int num_phdr, i;
5382 unsigned char *phdr_buf;
5383 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
5384
5385 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
5386 return 0;
5387
5388 gdb_assert (num_phdr < 100); /* Basic sanity check. */
5389 phdr_buf = alloca (num_phdr * phdr_size);
5390
5391 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
5392 return 0;
5393
5394 /* Compute relocation: it is expected to be 0 for "regular" executables,
5395 non-zero for PIE ones. */
5396 relocation = -1;
5397 for (i = 0; relocation == -1 && i < num_phdr; i++)
5398 if (is_elf64)
5399 {
5400 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5401
5402 if (p->p_type == PT_PHDR)
5403 relocation = phdr_memaddr - p->p_vaddr;
5404 }
5405 else
5406 {
5407 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5408
5409 if (p->p_type == PT_PHDR)
5410 relocation = phdr_memaddr - p->p_vaddr;
5411 }
5412
5413 if (relocation == -1)
5414 {
5415 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
5416 any real world executables, including PIE executables, have always
5417 PT_PHDR present. PT_PHDR is not present in some shared libraries or
5418 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
5419 or present DT_DEBUG anyway (fpc binaries are statically linked).
5420
5421 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
5422
5423 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
5424
5425 return 0;
5426 }
5427
5428 for (i = 0; i < num_phdr; i++)
5429 {
5430 if (is_elf64)
5431 {
5432 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5433
5434 if (p->p_type == PT_DYNAMIC)
5435 return p->p_vaddr + relocation;
5436 }
5437 else
5438 {
5439 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5440
5441 if (p->p_type == PT_DYNAMIC)
5442 return p->p_vaddr + relocation;
5443 }
5444 }
5445
5446 return 0;
5447 }
5448
5449 /* Return &_r_debug in the inferior, or -1 if not present. Return value
5450 can be 0 if the inferior does not yet have the library list initialized.
5451 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
5452 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
5453
5454 static CORE_ADDR
5455 get_r_debug (const int pid, const int is_elf64)
5456 {
5457 CORE_ADDR dynamic_memaddr;
5458 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
5459 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
5460 CORE_ADDR map = -1;
5461
5462 dynamic_memaddr = get_dynamic (pid, is_elf64);
5463 if (dynamic_memaddr == 0)
5464 return map;
5465
5466 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
5467 {
5468 if (is_elf64)
5469 {
5470 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
5471 union
5472 {
5473 Elf64_Xword map;
5474 unsigned char buf[sizeof (Elf64_Xword)];
5475 }
5476 rld_map;
5477
5478 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5479 {
5480 if (linux_read_memory (dyn->d_un.d_val,
5481 rld_map.buf, sizeof (rld_map.buf)) == 0)
5482 return rld_map.map;
5483 else
5484 break;
5485 }
5486
5487 if (dyn->d_tag == DT_DEBUG && map == -1)
5488 map = dyn->d_un.d_val;
5489
5490 if (dyn->d_tag == DT_NULL)
5491 break;
5492 }
5493 else
5494 {
5495 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
5496 union
5497 {
5498 Elf32_Word map;
5499 unsigned char buf[sizeof (Elf32_Word)];
5500 }
5501 rld_map;
5502
5503 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5504 {
5505 if (linux_read_memory (dyn->d_un.d_val,
5506 rld_map.buf, sizeof (rld_map.buf)) == 0)
5507 return rld_map.map;
5508 else
5509 break;
5510 }
5511
5512 if (dyn->d_tag == DT_DEBUG && map == -1)
5513 map = dyn->d_un.d_val;
5514
5515 if (dyn->d_tag == DT_NULL)
5516 break;
5517 }
5518
5519 dynamic_memaddr += dyn_size;
5520 }
5521
5522 return map;
5523 }
5524
5525 /* Read one pointer from MEMADDR in the inferior. */
5526
5527 static int
5528 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
5529 {
5530 int ret;
5531
5532 /* Go through a union so this works on either big or little endian
5533 hosts, when the inferior's pointer size is smaller than the size
5534 of CORE_ADDR. It is assumed the inferior's endianness is the
5535 same of the superior's. */
5536 union
5537 {
5538 CORE_ADDR core_addr;
5539 unsigned int ui;
5540 unsigned char uc;
5541 } addr;
5542
5543 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
5544 if (ret == 0)
5545 {
5546 if (ptr_size == sizeof (CORE_ADDR))
5547 *ptr = addr.core_addr;
5548 else if (ptr_size == sizeof (unsigned int))
5549 *ptr = addr.ui;
5550 else
5551 gdb_assert_not_reached ("unhandled pointer size");
5552 }
5553 return ret;
5554 }
5555
5556 struct link_map_offsets
5557 {
5558 /* Offset and size of r_debug.r_version. */
5559 int r_version_offset;
5560
5561 /* Offset and size of r_debug.r_map. */
5562 int r_map_offset;
5563
5564 /* Offset to l_addr field in struct link_map. */
5565 int l_addr_offset;
5566
5567 /* Offset to l_name field in struct link_map. */
5568 int l_name_offset;
5569
5570 /* Offset to l_ld field in struct link_map. */
5571 int l_ld_offset;
5572
5573 /* Offset to l_next field in struct link_map. */
5574 int l_next_offset;
5575
5576 /* Offset to l_prev field in struct link_map. */
5577 int l_prev_offset;
5578 };
5579
5580 /* Construct qXfer:libraries-svr4:read reply. */
5581
5582 static int
5583 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
5584 unsigned const char *writebuf,
5585 CORE_ADDR offset, int len)
5586 {
5587 char *document;
5588 unsigned document_len;
5589 struct process_info_private *const priv = current_process ()->private;
5590 char filename[PATH_MAX];
5591 int pid, is_elf64;
5592
5593 static const struct link_map_offsets lmo_32bit_offsets =
5594 {
5595 0, /* r_version offset. */
5596 4, /* r_debug.r_map offset. */
5597 0, /* l_addr offset in link_map. */
5598 4, /* l_name offset in link_map. */
5599 8, /* l_ld offset in link_map. */
5600 12, /* l_next offset in link_map. */
5601 16 /* l_prev offset in link_map. */
5602 };
5603
5604 static const struct link_map_offsets lmo_64bit_offsets =
5605 {
5606 0, /* r_version offset. */
5607 8, /* r_debug.r_map offset. */
5608 0, /* l_addr offset in link_map. */
5609 8, /* l_name offset in link_map. */
5610 16, /* l_ld offset in link_map. */
5611 24, /* l_next offset in link_map. */
5612 32 /* l_prev offset in link_map. */
5613 };
5614 const struct link_map_offsets *lmo;
5615 unsigned int machine;
5616
5617 if (writebuf != NULL)
5618 return -2;
5619 if (readbuf == NULL)
5620 return -1;
5621
5622 pid = lwpid_of (get_thread_lwp (current_inferior));
5623 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
5624 is_elf64 = elf_64_file_p (filename, &machine);
5625 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
5626
5627 if (priv->r_debug == 0)
5628 priv->r_debug = get_r_debug (pid, is_elf64);
5629
5630 if (priv->r_debug == (CORE_ADDR) -1 || priv->r_debug == 0)
5631 {
5632 document = xstrdup ("<library-list-svr4 version=\"1.0\"/>\n");
5633 }
5634 else
5635 {
5636 int allocated = 1024;
5637 char *p;
5638 const int ptr_size = is_elf64 ? 8 : 4;
5639 CORE_ADDR lm_addr, lm_prev, l_name, l_addr, l_ld, l_next, l_prev;
5640 int r_version, header_done = 0;
5641
5642 document = xmalloc (allocated);
5643 strcpy (document, "<library-list-svr4 version=\"1.0\"");
5644 p = document + strlen (document);
5645
5646 r_version = 0;
5647 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
5648 (unsigned char *) &r_version,
5649 sizeof (r_version)) != 0
5650 || r_version != 1)
5651 {
5652 warning ("unexpected r_debug version %d", r_version);
5653 goto done;
5654 }
5655
5656 if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
5657 &lm_addr, ptr_size) != 0)
5658 {
5659 warning ("unable to read r_map from 0x%lx",
5660 (long) priv->r_debug + lmo->r_map_offset);
5661 goto done;
5662 }
5663
5664 lm_prev = 0;
5665 while (read_one_ptr (lm_addr + lmo->l_name_offset,
5666 &l_name, ptr_size) == 0
5667 && read_one_ptr (lm_addr + lmo->l_addr_offset,
5668 &l_addr, ptr_size) == 0
5669 && read_one_ptr (lm_addr + lmo->l_ld_offset,
5670 &l_ld, ptr_size) == 0
5671 && read_one_ptr (lm_addr + lmo->l_prev_offset,
5672 &l_prev, ptr_size) == 0
5673 && read_one_ptr (lm_addr + lmo->l_next_offset,
5674 &l_next, ptr_size) == 0)
5675 {
5676 unsigned char libname[PATH_MAX];
5677
5678 if (lm_prev != l_prev)
5679 {
5680 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
5681 (long) lm_prev, (long) l_prev);
5682 break;
5683 }
5684
5685 /* Not checking for error because reading may stop before
5686 we've got PATH_MAX worth of characters. */
5687 libname[0] = '\0';
5688 linux_read_memory (l_name, libname, sizeof (libname) - 1);
5689 libname[sizeof (libname) - 1] = '\0';
5690 if (libname[0] != '\0')
5691 {
5692 /* 6x the size for xml_escape_text below. */
5693 size_t len = 6 * strlen ((char *) libname);
5694 char *name;
5695
5696 if (!header_done)
5697 {
5698 /* Terminate `<library-list-svr4'. */
5699 *p++ = '>';
5700 header_done = 1;
5701 }
5702
5703 while (allocated < p - document + len + 200)
5704 {
5705 /* Expand to guarantee sufficient storage. */
5706 uintptr_t document_len = p - document;
5707
5708 document = xrealloc (document, 2 * allocated);
5709 allocated *= 2;
5710 p = document + document_len;
5711 }
5712
5713 name = xml_escape_text ((char *) libname);
5714 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
5715 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
5716 name, (unsigned long) lm_addr,
5717 (unsigned long) l_addr, (unsigned long) l_ld);
5718 free (name);
5719 }
5720 else if (lm_prev == 0)
5721 {
5722 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
5723 p = p + strlen (p);
5724 }
5725
5726 if (l_next == 0)
5727 break;
5728
5729 lm_prev = lm_addr;
5730 lm_addr = l_next;
5731 }
5732 done:
5733 if (!header_done)
5734 {
5735 /* Empty list; terminate `<library-list-svr4'. */
5736 strcpy (p, "/>");
5737 }
5738 else
5739 strcpy (p, "</library-list-svr4>");
5740 }
5741
5742 document_len = strlen (document);
5743 if (offset < document_len)
5744 document_len -= offset;
5745 else
5746 document_len = 0;
5747 if (len > document_len)
5748 len = document_len;
5749
5750 memcpy (readbuf, document + offset, len);
5751 xfree (document);
5752
5753 return len;
5754 }
5755
5756 static struct target_ops linux_target_ops = {
5757 linux_create_inferior,
5758 linux_attach,
5759 linux_kill,
5760 linux_detach,
5761 linux_mourn,
5762 linux_join,
5763 linux_thread_alive,
5764 linux_resume,
5765 linux_wait,
5766 linux_fetch_registers,
5767 linux_store_registers,
5768 linux_prepare_to_access_memory,
5769 linux_done_accessing_memory,
5770 linux_read_memory,
5771 linux_write_memory,
5772 linux_look_up_symbols,
5773 linux_request_interrupt,
5774 linux_read_auxv,
5775 linux_insert_point,
5776 linux_remove_point,
5777 linux_stopped_by_watchpoint,
5778 linux_stopped_data_address,
5779 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
5780 linux_read_offsets,
5781 #else
5782 NULL,
5783 #endif
5784 #ifdef USE_THREAD_DB
5785 thread_db_get_tls_address,
5786 #else
5787 NULL,
5788 #endif
5789 linux_qxfer_spu,
5790 hostio_last_error_from_errno,
5791 linux_qxfer_osdata,
5792 linux_xfer_siginfo,
5793 linux_supports_non_stop,
5794 linux_async,
5795 linux_start_non_stop,
5796 linux_supports_multi_process,
5797 #ifdef USE_THREAD_DB
5798 thread_db_handle_monitor_command,
5799 #else
5800 NULL,
5801 #endif
5802 linux_common_core_of_thread,
5803 linux_read_loadmap,
5804 linux_process_qsupported,
5805 linux_supports_tracepoints,
5806 linux_read_pc,
5807 linux_write_pc,
5808 linux_thread_stopped,
5809 NULL,
5810 linux_pause_all,
5811 linux_unpause_all,
5812 linux_cancel_breakpoints,
5813 linux_stabilize_threads,
5814 linux_install_fast_tracepoint_jump_pad,
5815 linux_emit_ops,
5816 linux_supports_disable_randomization,
5817 linux_get_min_fast_tracepoint_insn_len,
5818 linux_qxfer_libraries_svr4,
5819 linux_supports_agent,
5820 };
5821
5822 static void
5823 linux_init_signals ()
5824 {
5825 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
5826 to find what the cancel signal actually is. */
5827 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
5828 signal (__SIGRTMIN+1, SIG_IGN);
5829 #endif
5830 }
5831
5832 void
5833 initialize_low (void)
5834 {
5835 struct sigaction sigchld_action;
5836 memset (&sigchld_action, 0, sizeof (sigchld_action));
5837 set_target_ops (&linux_target_ops);
5838 set_breakpoint_data (the_low_target.breakpoint,
5839 the_low_target.breakpoint_len);
5840 linux_init_signals ();
5841 linux_test_for_tracefork ();
5842 #ifdef HAVE_LINUX_REGSETS
5843 for (num_regsets = 0; target_regsets[num_regsets].size >= 0; num_regsets++)
5844 ;
5845 disabled_regsets = xmalloc (num_regsets);
5846 #endif
5847
5848 sigchld_action.sa_handler = sigchld_handler;
5849 sigemptyset (&sigchld_action.sa_mask);
5850 sigchld_action.sa_flags = SA_RESTART;
5851 sigaction (SIGCHLD, &sigchld_action, NULL);
5852 }
This page took 0.1582 seconds and 4 git commands to generate.