43d88fa01e2eb8b3f118d104ddbbe88a6a24c0cb
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include "linux-low.h"
22 #include "linux-osdata.h"
23
24 #include <sys/wait.h>
25 #include <stdio.h>
26 #include <sys/param.h>
27 #include <sys/ptrace.h>
28 #include "linux-ptrace.h"
29 #include "linux-procfs.h"
30 #include <signal.h>
31 #include <sys/ioctl.h>
32 #include <fcntl.h>
33 #include <string.h>
34 #include <stdlib.h>
35 #include <unistd.h>
36 #include <errno.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #ifndef ELFMAG0
47 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
48 then ELFMAG0 will have been defined. If it didn't get included by
49 gdb_proc_service.h then including it will likely introduce a duplicate
50 definition of elf_fpregset_t. */
51 #include <elf.h>
52 #endif
53
54 #ifndef SPUFS_MAGIC
55 #define SPUFS_MAGIC 0x23c9b64e
56 #endif
57
58 #ifdef HAVE_PERSONALITY
59 # include <sys/personality.h>
60 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
61 # define ADDR_NO_RANDOMIZE 0x0040000
62 # endif
63 #endif
64
65 #ifndef O_LARGEFILE
66 #define O_LARGEFILE 0
67 #endif
68
69 #ifndef W_STOPCODE
70 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
71 #endif
72
73 /* This is the kernel's hard limit. Not to be confused with
74 SIGRTMIN. */
75 #ifndef __SIGRTMIN
76 #define __SIGRTMIN 32
77 #endif
78
79 #ifdef __UCLIBC__
80 #if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
81 #define HAS_NOMMU
82 #endif
83 #endif
84
85 /* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
86 representation of the thread ID.
87
88 ``all_lwps'' is keyed by the process ID - which on Linux is (presently)
89 the same as the LWP ID.
90
91 ``all_processes'' is keyed by the "overall process ID", which
92 GNU/Linux calls tgid, "thread group ID". */
93
94 struct inferior_list all_lwps;
95
96 /* A list of all unknown processes which receive stop signals. Some other
97 process will presumably claim each of these as forked children
98 momentarily. */
99
100 struct inferior_list stopped_pids;
101
102 /* FIXME this is a bit of a hack, and could be removed. */
103 int stopping_threads;
104
105 /* FIXME make into a target method? */
106 int using_threads = 1;
107
108 /* True if we're presently stabilizing threads (moving them out of
109 jump pads). */
110 static int stabilizing_threads;
111
112 /* This flag is true iff we've just created or attached to our first
113 inferior but it has not stopped yet. As soon as it does, we need
114 to call the low target's arch_setup callback. Doing this only on
115 the first inferior avoids reinializing the architecture on every
116 inferior, and avoids messing with the register caches of the
117 already running inferiors. NOTE: this assumes all inferiors under
118 control of gdbserver have the same architecture. */
119 static int new_inferior;
120
121 static void linux_resume_one_lwp (struct lwp_info *lwp,
122 int step, int signal, siginfo_t *info);
123 static void linux_resume (struct thread_resume *resume_info, size_t n);
124 static void stop_all_lwps (int suspend, struct lwp_info *except);
125 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
126 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
127 static void *add_lwp (ptid_t ptid);
128 static int linux_stopped_by_watchpoint (void);
129 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
130 static void proceed_all_lwps (void);
131 static int finish_step_over (struct lwp_info *lwp);
132 static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
133 static int kill_lwp (unsigned long lwpid, int signo);
134 static void linux_enable_event_reporting (int pid);
135
136 /* True if the low target can hardware single-step. Such targets
137 don't need a BREAKPOINT_REINSERT_ADDR callback. */
138
139 static int
140 can_hardware_single_step (void)
141 {
142 return (the_low_target.breakpoint_reinsert_addr == NULL);
143 }
144
145 /* True if the low target supports memory breakpoints. If so, we'll
146 have a GET_PC implementation. */
147
148 static int
149 supports_breakpoints (void)
150 {
151 return (the_low_target.get_pc != NULL);
152 }
153
154 /* Returns true if this target can support fast tracepoints. This
155 does not mean that the in-process agent has been loaded in the
156 inferior. */
157
158 static int
159 supports_fast_tracepoints (void)
160 {
161 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
162 }
163
164 struct pending_signals
165 {
166 int signal;
167 siginfo_t info;
168 struct pending_signals *prev;
169 };
170
171 #define PTRACE_ARG3_TYPE void *
172 #define PTRACE_ARG4_TYPE void *
173 #define PTRACE_XFER_TYPE long
174
175 #ifdef HAVE_LINUX_REGSETS
176 static char *disabled_regsets;
177 static int num_regsets;
178 #endif
179
180 /* The read/write ends of the pipe registered as waitable file in the
181 event loop. */
182 static int linux_event_pipe[2] = { -1, -1 };
183
184 /* True if we're currently in async mode. */
185 #define target_is_async_p() (linux_event_pipe[0] != -1)
186
187 static void send_sigstop (struct lwp_info *lwp);
188 static void wait_for_sigstop (struct inferior_list_entry *entry);
189
190 /* Accepts an integer PID; Returns a string representing a file that
191 can be opened to get info for the child process.
192 Space for the result is malloc'd, caller must free. */
193
194 char *
195 linux_child_pid_to_exec_file (int pid)
196 {
197 char *name1, *name2;
198
199 name1 = xmalloc (MAXPATHLEN);
200 name2 = xmalloc (MAXPATHLEN);
201 memset (name2, 0, MAXPATHLEN);
202
203 sprintf (name1, "/proc/%d/exe", pid);
204 if (readlink (name1, name2, MAXPATHLEN) > 0)
205 {
206 free (name1);
207 return name2;
208 }
209 else
210 {
211 free (name2);
212 return name1;
213 }
214 }
215
216 /* Return non-zero if HEADER is a 64-bit ELF file. */
217
218 static int
219 elf_64_header_p (const Elf64_Ehdr *header)
220 {
221 return (header->e_ident[EI_MAG0] == ELFMAG0
222 && header->e_ident[EI_MAG1] == ELFMAG1
223 && header->e_ident[EI_MAG2] == ELFMAG2
224 && header->e_ident[EI_MAG3] == ELFMAG3
225 && header->e_ident[EI_CLASS] == ELFCLASS64);
226 }
227
228 /* Return non-zero if FILE is a 64-bit ELF file,
229 zero if the file is not a 64-bit ELF file,
230 and -1 if the file is not accessible or doesn't exist. */
231
232 int
233 elf_64_file_p (const char *file)
234 {
235 Elf64_Ehdr header;
236 int fd;
237
238 fd = open (file, O_RDONLY);
239 if (fd < 0)
240 return -1;
241
242 if (read (fd, &header, sizeof (header)) != sizeof (header))
243 {
244 close (fd);
245 return 0;
246 }
247 close (fd);
248
249 return elf_64_header_p (&header);
250 }
251
252 static void
253 delete_lwp (struct lwp_info *lwp)
254 {
255 remove_thread (get_lwp_thread (lwp));
256 remove_inferior (&all_lwps, &lwp->head);
257 free (lwp->arch_private);
258 free (lwp);
259 }
260
261 /* Add a process to the common process list, and set its private
262 data. */
263
264 static struct process_info *
265 linux_add_process (int pid, int attached)
266 {
267 struct process_info *proc;
268
269 /* Is this the first process? If so, then set the arch. */
270 if (all_processes.head == NULL)
271 new_inferior = 1;
272
273 proc = add_process (pid, attached);
274 proc->private = xcalloc (1, sizeof (*proc->private));
275
276 if (the_low_target.new_process != NULL)
277 proc->private->arch_private = the_low_target.new_process ();
278
279 return proc;
280 }
281
282 /* Wrapper function for waitpid which handles EINTR, and emulates
283 __WALL for systems where that is not available. */
284
285 static int
286 my_waitpid (int pid, int *status, int flags)
287 {
288 int ret, out_errno;
289
290 if (debug_threads)
291 fprintf (stderr, "my_waitpid (%d, 0x%x)\n", pid, flags);
292
293 if (flags & __WALL)
294 {
295 sigset_t block_mask, org_mask, wake_mask;
296 int wnohang;
297
298 wnohang = (flags & WNOHANG) != 0;
299 flags &= ~(__WALL | __WCLONE);
300 flags |= WNOHANG;
301
302 /* Block all signals while here. This avoids knowing about
303 LinuxThread's signals. */
304 sigfillset (&block_mask);
305 sigprocmask (SIG_BLOCK, &block_mask, &org_mask);
306
307 /* ... except during the sigsuspend below. */
308 sigemptyset (&wake_mask);
309
310 while (1)
311 {
312 /* Since all signals are blocked, there's no need to check
313 for EINTR here. */
314 ret = waitpid (pid, status, flags);
315 out_errno = errno;
316
317 if (ret == -1 && out_errno != ECHILD)
318 break;
319 else if (ret > 0)
320 break;
321
322 if (flags & __WCLONE)
323 {
324 /* We've tried both flavors now. If WNOHANG is set,
325 there's nothing else to do, just bail out. */
326 if (wnohang)
327 break;
328
329 if (debug_threads)
330 fprintf (stderr, "blocking\n");
331
332 /* Block waiting for signals. */
333 sigsuspend (&wake_mask);
334 }
335
336 flags ^= __WCLONE;
337 }
338
339 sigprocmask (SIG_SETMASK, &org_mask, NULL);
340 }
341 else
342 {
343 do
344 ret = waitpid (pid, status, flags);
345 while (ret == -1 && errno == EINTR);
346 out_errno = errno;
347 }
348
349 if (debug_threads)
350 fprintf (stderr, "my_waitpid (%d, 0x%x): status(%x), %d\n",
351 pid, flags, status ? *status : -1, ret);
352
353 errno = out_errno;
354 return ret;
355 }
356
357 /* Handle a GNU/Linux extended wait response. If we see a clone
358 event, we need to add the new LWP to our list (and not report the
359 trap to higher layers). */
360
361 static void
362 handle_extended_wait (struct lwp_info *event_child, int wstat)
363 {
364 int event = wstat >> 16;
365 struct lwp_info *new_lwp;
366
367 if (event == PTRACE_EVENT_CLONE)
368 {
369 ptid_t ptid;
370 unsigned long new_pid;
371 int ret, status = W_STOPCODE (SIGSTOP);
372
373 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_child), 0, &new_pid);
374
375 /* If we haven't already seen the new PID stop, wait for it now. */
376 if (! pull_pid_from_list (&stopped_pids, new_pid))
377 {
378 /* The new child has a pending SIGSTOP. We can't affect it until it
379 hits the SIGSTOP, but we're already attached. */
380
381 ret = my_waitpid (new_pid, &status, __WALL);
382
383 if (ret == -1)
384 perror_with_name ("waiting for new child");
385 else if (ret != new_pid)
386 warning ("wait returned unexpected PID %d", ret);
387 else if (!WIFSTOPPED (status))
388 warning ("wait returned unexpected status 0x%x", status);
389 }
390
391 linux_enable_event_reporting (new_pid);
392
393 ptid = ptid_build (pid_of (event_child), new_pid, 0);
394 new_lwp = (struct lwp_info *) add_lwp (ptid);
395 add_thread (ptid, new_lwp);
396
397 /* Either we're going to immediately resume the new thread
398 or leave it stopped. linux_resume_one_lwp is a nop if it
399 thinks the thread is currently running, so set this first
400 before calling linux_resume_one_lwp. */
401 new_lwp->stopped = 1;
402
403 /* Normally we will get the pending SIGSTOP. But in some cases
404 we might get another signal delivered to the group first.
405 If we do get another signal, be sure not to lose it. */
406 if (WSTOPSIG (status) == SIGSTOP)
407 {
408 if (stopping_threads)
409 new_lwp->stop_pc = get_stop_pc (new_lwp);
410 else
411 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
412 }
413 else
414 {
415 new_lwp->stop_expected = 1;
416
417 if (stopping_threads)
418 {
419 new_lwp->stop_pc = get_stop_pc (new_lwp);
420 new_lwp->status_pending_p = 1;
421 new_lwp->status_pending = status;
422 }
423 else
424 /* Pass the signal on. This is what GDB does - except
425 shouldn't we really report it instead? */
426 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
427 }
428
429 /* Always resume the current thread. If we are stopping
430 threads, it will have a pending SIGSTOP; we may as well
431 collect it now. */
432 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
433 }
434 }
435
436 /* Return the PC as read from the regcache of LWP, without any
437 adjustment. */
438
439 static CORE_ADDR
440 get_pc (struct lwp_info *lwp)
441 {
442 struct thread_info *saved_inferior;
443 struct regcache *regcache;
444 CORE_ADDR pc;
445
446 if (the_low_target.get_pc == NULL)
447 return 0;
448
449 saved_inferior = current_inferior;
450 current_inferior = get_lwp_thread (lwp);
451
452 regcache = get_thread_regcache (current_inferior, 1);
453 pc = (*the_low_target.get_pc) (regcache);
454
455 if (debug_threads)
456 fprintf (stderr, "pc is 0x%lx\n", (long) pc);
457
458 current_inferior = saved_inferior;
459 return pc;
460 }
461
462 /* This function should only be called if LWP got a SIGTRAP.
463 The SIGTRAP could mean several things.
464
465 On i386, where decr_pc_after_break is non-zero:
466 If we were single-stepping this process using PTRACE_SINGLESTEP,
467 we will get only the one SIGTRAP (even if the instruction we
468 stepped over was a breakpoint). The value of $eip will be the
469 next instruction.
470 If we continue the process using PTRACE_CONT, we will get a
471 SIGTRAP when we hit a breakpoint. The value of $eip will be
472 the instruction after the breakpoint (i.e. needs to be
473 decremented). If we report the SIGTRAP to GDB, we must also
474 report the undecremented PC. If we cancel the SIGTRAP, we
475 must resume at the decremented PC.
476
477 (Presumably, not yet tested) On a non-decr_pc_after_break machine
478 with hardware or kernel single-step:
479 If we single-step over a breakpoint instruction, our PC will
480 point at the following instruction. If we continue and hit a
481 breakpoint instruction, our PC will point at the breakpoint
482 instruction. */
483
484 static CORE_ADDR
485 get_stop_pc (struct lwp_info *lwp)
486 {
487 CORE_ADDR stop_pc;
488
489 if (the_low_target.get_pc == NULL)
490 return 0;
491
492 stop_pc = get_pc (lwp);
493
494 if (WSTOPSIG (lwp->last_status) == SIGTRAP
495 && !lwp->stepping
496 && !lwp->stopped_by_watchpoint
497 && lwp->last_status >> 16 == 0)
498 stop_pc -= the_low_target.decr_pc_after_break;
499
500 if (debug_threads)
501 fprintf (stderr, "stop pc is 0x%lx\n", (long) stop_pc);
502
503 return stop_pc;
504 }
505
506 static void *
507 add_lwp (ptid_t ptid)
508 {
509 struct lwp_info *lwp;
510
511 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
512 memset (lwp, 0, sizeof (*lwp));
513
514 lwp->head.id = ptid;
515
516 if (the_low_target.new_thread != NULL)
517 lwp->arch_private = the_low_target.new_thread ();
518
519 add_inferior_to_list (&all_lwps, &lwp->head);
520
521 return lwp;
522 }
523
524 /* Start an inferior process and returns its pid.
525 ALLARGS is a vector of program-name and args. */
526
527 static int
528 linux_create_inferior (char *program, char **allargs)
529 {
530 #ifdef HAVE_PERSONALITY
531 int personality_orig = 0, personality_set = 0;
532 #endif
533 struct lwp_info *new_lwp;
534 int pid;
535 ptid_t ptid;
536
537 #ifdef HAVE_PERSONALITY
538 if (disable_randomization)
539 {
540 errno = 0;
541 personality_orig = personality (0xffffffff);
542 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
543 {
544 personality_set = 1;
545 personality (personality_orig | ADDR_NO_RANDOMIZE);
546 }
547 if (errno != 0 || (personality_set
548 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
549 warning ("Error disabling address space randomization: %s",
550 strerror (errno));
551 }
552 #endif
553
554 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
555 pid = vfork ();
556 #else
557 pid = fork ();
558 #endif
559 if (pid < 0)
560 perror_with_name ("fork");
561
562 if (pid == 0)
563 {
564 ptrace (PTRACE_TRACEME, 0, 0, 0);
565
566 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
567 signal (__SIGRTMIN + 1, SIG_DFL);
568 #endif
569
570 setpgid (0, 0);
571
572 execv (program, allargs);
573 if (errno == ENOENT)
574 execvp (program, allargs);
575
576 fprintf (stderr, "Cannot exec %s: %s.\n", program,
577 strerror (errno));
578 fflush (stderr);
579 _exit (0177);
580 }
581
582 #ifdef HAVE_PERSONALITY
583 if (personality_set)
584 {
585 errno = 0;
586 personality (personality_orig);
587 if (errno != 0)
588 warning ("Error restoring address space randomization: %s",
589 strerror (errno));
590 }
591 #endif
592
593 linux_add_process (pid, 0);
594
595 ptid = ptid_build (pid, pid, 0);
596 new_lwp = add_lwp (ptid);
597 add_thread (ptid, new_lwp);
598 new_lwp->must_set_ptrace_flags = 1;
599
600 return pid;
601 }
602
603 /* Attach to an inferior process. */
604
605 static void
606 linux_attach_lwp_1 (unsigned long lwpid, int initial)
607 {
608 ptid_t ptid;
609 struct lwp_info *new_lwp;
610
611 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) != 0)
612 {
613 if (!initial)
614 {
615 /* If we fail to attach to an LWP, just warn. */
616 fprintf (stderr, "Cannot attach to lwp %ld: %s (%d)\n", lwpid,
617 strerror (errno), errno);
618 fflush (stderr);
619 return;
620 }
621 else
622 /* If we fail to attach to a process, report an error. */
623 error ("Cannot attach to lwp %ld: %s (%d)\n", lwpid,
624 strerror (errno), errno);
625 }
626
627 if (initial)
628 /* If lwp is the tgid, we handle adding existing threads later.
629 Otherwise we just add lwp without bothering about any other
630 threads. */
631 ptid = ptid_build (lwpid, lwpid, 0);
632 else
633 {
634 /* Note that extracting the pid from the current inferior is
635 safe, since we're always called in the context of the same
636 process as this new thread. */
637 int pid = pid_of (get_thread_lwp (current_inferior));
638 ptid = ptid_build (pid, lwpid, 0);
639 }
640
641 new_lwp = (struct lwp_info *) add_lwp (ptid);
642 add_thread (ptid, new_lwp);
643
644 /* We need to wait for SIGSTOP before being able to make the next
645 ptrace call on this LWP. */
646 new_lwp->must_set_ptrace_flags = 1;
647
648 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
649 brings it to a halt.
650
651 There are several cases to consider here:
652
653 1) gdbserver has already attached to the process and is being notified
654 of a new thread that is being created.
655 In this case we should ignore that SIGSTOP and resume the
656 process. This is handled below by setting stop_expected = 1,
657 and the fact that add_thread sets last_resume_kind ==
658 resume_continue.
659
660 2) This is the first thread (the process thread), and we're attaching
661 to it via attach_inferior.
662 In this case we want the process thread to stop.
663 This is handled by having linux_attach set last_resume_kind ==
664 resume_stop after we return.
665
666 If the pid we are attaching to is also the tgid, we attach to and
667 stop all the existing threads. Otherwise, we attach to pid and
668 ignore any other threads in the same group as this pid.
669
670 3) GDB is connecting to gdbserver and is requesting an enumeration of all
671 existing threads.
672 In this case we want the thread to stop.
673 FIXME: This case is currently not properly handled.
674 We should wait for the SIGSTOP but don't. Things work apparently
675 because enough time passes between when we ptrace (ATTACH) and when
676 gdb makes the next ptrace call on the thread.
677
678 On the other hand, if we are currently trying to stop all threads, we
679 should treat the new thread as if we had sent it a SIGSTOP. This works
680 because we are guaranteed that the add_lwp call above added us to the
681 end of the list, and so the new thread has not yet reached
682 wait_for_sigstop (but will). */
683 new_lwp->stop_expected = 1;
684 }
685
686 void
687 linux_attach_lwp (unsigned long lwpid)
688 {
689 linux_attach_lwp_1 (lwpid, 0);
690 }
691
692 /* Attach to PID. If PID is the tgid, attach to it and all
693 of its threads. */
694
695 int
696 linux_attach (unsigned long pid)
697 {
698 /* Attach to PID. We will check for other threads
699 soon. */
700 linux_attach_lwp_1 (pid, 1);
701 linux_add_process (pid, 1);
702
703 if (!non_stop)
704 {
705 struct thread_info *thread;
706
707 /* Don't ignore the initial SIGSTOP if we just attached to this
708 process. It will be collected by wait shortly. */
709 thread = find_thread_ptid (ptid_build (pid, pid, 0));
710 thread->last_resume_kind = resume_stop;
711 }
712
713 if (linux_proc_get_tgid (pid) == pid)
714 {
715 DIR *dir;
716 char pathname[128];
717
718 sprintf (pathname, "/proc/%ld/task", pid);
719
720 dir = opendir (pathname);
721
722 if (!dir)
723 {
724 fprintf (stderr, "Could not open /proc/%ld/task.\n", pid);
725 fflush (stderr);
726 }
727 else
728 {
729 /* At this point we attached to the tgid. Scan the task for
730 existing threads. */
731 unsigned long lwp;
732 int new_threads_found;
733 int iterations = 0;
734 struct dirent *dp;
735
736 while (iterations < 2)
737 {
738 new_threads_found = 0;
739 /* Add all the other threads. While we go through the
740 threads, new threads may be spawned. Cycle through
741 the list of threads until we have done two iterations without
742 finding new threads. */
743 while ((dp = readdir (dir)) != NULL)
744 {
745 /* Fetch one lwp. */
746 lwp = strtoul (dp->d_name, NULL, 10);
747
748 /* Is this a new thread? */
749 if (lwp
750 && find_thread_ptid (ptid_build (pid, lwp, 0)) == NULL)
751 {
752 linux_attach_lwp_1 (lwp, 0);
753 new_threads_found++;
754
755 if (debug_threads)
756 fprintf (stderr, "\
757 Found and attached to new lwp %ld\n", lwp);
758 }
759 }
760
761 if (!new_threads_found)
762 iterations++;
763 else
764 iterations = 0;
765
766 rewinddir (dir);
767 }
768 closedir (dir);
769 }
770 }
771
772 return 0;
773 }
774
775 struct counter
776 {
777 int pid;
778 int count;
779 };
780
781 static int
782 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
783 {
784 struct counter *counter = args;
785
786 if (ptid_get_pid (entry->id) == counter->pid)
787 {
788 if (++counter->count > 1)
789 return 1;
790 }
791
792 return 0;
793 }
794
795 static int
796 last_thread_of_process_p (struct thread_info *thread)
797 {
798 ptid_t ptid = ((struct inferior_list_entry *)thread)->id;
799 int pid = ptid_get_pid (ptid);
800 struct counter counter = { pid , 0 };
801
802 return (find_inferior (&all_threads,
803 second_thread_of_pid_p, &counter) == NULL);
804 }
805
806 /* Kill the inferior lwp. */
807
808 static int
809 linux_kill_one_lwp (struct inferior_list_entry *entry, void *args)
810 {
811 struct thread_info *thread = (struct thread_info *) entry;
812 struct lwp_info *lwp = get_thread_lwp (thread);
813 int wstat;
814 int pid = * (int *) args;
815
816 if (ptid_get_pid (entry->id) != pid)
817 return 0;
818
819 /* We avoid killing the first thread here, because of a Linux kernel (at
820 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
821 the children get a chance to be reaped, it will remain a zombie
822 forever. */
823
824 if (lwpid_of (lwp) == pid)
825 {
826 if (debug_threads)
827 fprintf (stderr, "lkop: is last of process %s\n",
828 target_pid_to_str (entry->id));
829 return 0;
830 }
831
832 do
833 {
834 ptrace (PTRACE_KILL, lwpid_of (lwp), 0, 0);
835
836 /* Make sure it died. The loop is most likely unnecessary. */
837 pid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
838 } while (pid > 0 && WIFSTOPPED (wstat));
839
840 return 0;
841 }
842
843 static int
844 linux_kill (int pid)
845 {
846 struct process_info *process;
847 struct lwp_info *lwp;
848 int wstat;
849 int lwpid;
850
851 process = find_process_pid (pid);
852 if (process == NULL)
853 return -1;
854
855 /* If we're killing a running inferior, make sure it is stopped
856 first, as PTRACE_KILL will not work otherwise. */
857 stop_all_lwps (0, NULL);
858
859 find_inferior (&all_threads, linux_kill_one_lwp, &pid);
860
861 /* See the comment in linux_kill_one_lwp. We did not kill the first
862 thread in the list, so do so now. */
863 lwp = find_lwp_pid (pid_to_ptid (pid));
864
865 if (lwp == NULL)
866 {
867 if (debug_threads)
868 fprintf (stderr, "lk_1: cannot find lwp %ld, for pid: %d\n",
869 lwpid_of (lwp), pid);
870 }
871 else
872 {
873 if (debug_threads)
874 fprintf (stderr, "lk_1: killing lwp %ld, for pid: %d\n",
875 lwpid_of (lwp), pid);
876
877 do
878 {
879 ptrace (PTRACE_KILL, lwpid_of (lwp), 0, 0);
880
881 /* Make sure it died. The loop is most likely unnecessary. */
882 lwpid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
883 } while (lwpid > 0 && WIFSTOPPED (wstat));
884 }
885
886 the_target->mourn (process);
887
888 /* Since we presently can only stop all lwps of all processes, we
889 need to unstop lwps of other processes. */
890 unstop_all_lwps (0, NULL);
891 return 0;
892 }
893
894 static int
895 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
896 {
897 struct thread_info *thread = (struct thread_info *) entry;
898 struct lwp_info *lwp = get_thread_lwp (thread);
899 int pid = * (int *) args;
900
901 if (ptid_get_pid (entry->id) != pid)
902 return 0;
903
904 /* If this process is stopped but is expecting a SIGSTOP, then make
905 sure we take care of that now. This isn't absolutely guaranteed
906 to collect the SIGSTOP, but is fairly likely to. */
907 if (lwp->stop_expected)
908 {
909 int wstat;
910 /* Clear stop_expected, so that the SIGSTOP will be reported. */
911 lwp->stop_expected = 0;
912 linux_resume_one_lwp (lwp, 0, 0, NULL);
913 linux_wait_for_event (lwp->head.id, &wstat, __WALL);
914 }
915
916 /* Flush any pending changes to the process's registers. */
917 regcache_invalidate_one ((struct inferior_list_entry *)
918 get_lwp_thread (lwp));
919
920 /* Finally, let it resume. */
921 if (the_low_target.prepare_to_resume != NULL)
922 the_low_target.prepare_to_resume (lwp);
923 ptrace (PTRACE_DETACH, lwpid_of (lwp), 0, 0);
924
925 delete_lwp (lwp);
926 return 0;
927 }
928
929 static int
930 linux_detach (int pid)
931 {
932 struct process_info *process;
933
934 process = find_process_pid (pid);
935 if (process == NULL)
936 return -1;
937
938 /* Stop all threads before detaching. First, ptrace requires that
939 the thread is stopped to sucessfully detach. Second, thread_db
940 may need to uninstall thread event breakpoints from memory, which
941 only works with a stopped process anyway. */
942 stop_all_lwps (0, NULL);
943
944 #ifdef USE_THREAD_DB
945 thread_db_detach (process);
946 #endif
947
948 /* Stabilize threads (move out of jump pads). */
949 stabilize_threads ();
950
951 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
952
953 the_target->mourn (process);
954
955 /* Since we presently can only stop all lwps of all processes, we
956 need to unstop lwps of other processes. */
957 unstop_all_lwps (0, NULL);
958 return 0;
959 }
960
961 /* Remove all LWPs that belong to process PROC from the lwp list. */
962
963 static int
964 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
965 {
966 struct lwp_info *lwp = (struct lwp_info *) entry;
967 struct process_info *process = proc;
968
969 if (pid_of (lwp) == pid_of (process))
970 delete_lwp (lwp);
971
972 return 0;
973 }
974
975 static void
976 linux_mourn (struct process_info *process)
977 {
978 struct process_info_private *priv;
979
980 #ifdef USE_THREAD_DB
981 thread_db_mourn (process);
982 #endif
983
984 find_inferior (&all_lwps, delete_lwp_callback, process);
985
986 /* Freeing all private data. */
987 priv = process->private;
988 free (priv->arch_private);
989 free (priv);
990 process->private = NULL;
991
992 remove_process (process);
993 }
994
995 static void
996 linux_join (int pid)
997 {
998 int status, ret;
999
1000 do {
1001 ret = my_waitpid (pid, &status, 0);
1002 if (WIFEXITED (status) || WIFSIGNALED (status))
1003 break;
1004 } while (ret != -1 || errno != ECHILD);
1005 }
1006
1007 /* Return nonzero if the given thread is still alive. */
1008 static int
1009 linux_thread_alive (ptid_t ptid)
1010 {
1011 struct lwp_info *lwp = find_lwp_pid (ptid);
1012
1013 /* We assume we always know if a thread exits. If a whole process
1014 exited but we still haven't been able to report it to GDB, we'll
1015 hold on to the last lwp of the dead process. */
1016 if (lwp != NULL)
1017 return !lwp->dead;
1018 else
1019 return 0;
1020 }
1021
1022 /* Return 1 if this lwp has an interesting status pending. */
1023 static int
1024 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1025 {
1026 struct lwp_info *lwp = (struct lwp_info *) entry;
1027 ptid_t ptid = * (ptid_t *) arg;
1028 struct thread_info *thread;
1029
1030 /* Check if we're only interested in events from a specific process
1031 or its lwps. */
1032 if (!ptid_equal (minus_one_ptid, ptid)
1033 && ptid_get_pid (ptid) != ptid_get_pid (lwp->head.id))
1034 return 0;
1035
1036 thread = get_lwp_thread (lwp);
1037
1038 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1039 report any status pending the LWP may have. */
1040 if (thread->last_resume_kind == resume_stop
1041 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1042 return 0;
1043
1044 return lwp->status_pending_p;
1045 }
1046
1047 static int
1048 same_lwp (struct inferior_list_entry *entry, void *data)
1049 {
1050 ptid_t ptid = *(ptid_t *) data;
1051 int lwp;
1052
1053 if (ptid_get_lwp (ptid) != 0)
1054 lwp = ptid_get_lwp (ptid);
1055 else
1056 lwp = ptid_get_pid (ptid);
1057
1058 if (ptid_get_lwp (entry->id) == lwp)
1059 return 1;
1060
1061 return 0;
1062 }
1063
1064 struct lwp_info *
1065 find_lwp_pid (ptid_t ptid)
1066 {
1067 return (struct lwp_info*) find_inferior (&all_lwps, same_lwp, &ptid);
1068 }
1069
1070 static struct lwp_info *
1071 linux_wait_for_lwp (ptid_t ptid, int *wstatp, int options)
1072 {
1073 int ret;
1074 int to_wait_for = -1;
1075 struct lwp_info *child = NULL;
1076
1077 if (debug_threads)
1078 fprintf (stderr, "linux_wait_for_lwp: %s\n", target_pid_to_str (ptid));
1079
1080 if (ptid_equal (ptid, minus_one_ptid))
1081 to_wait_for = -1; /* any child */
1082 else
1083 to_wait_for = ptid_get_lwp (ptid); /* this lwp only */
1084
1085 options |= __WALL;
1086
1087 retry:
1088
1089 ret = my_waitpid (to_wait_for, wstatp, options);
1090 if (ret == 0 || (ret == -1 && errno == ECHILD && (options & WNOHANG)))
1091 return NULL;
1092 else if (ret == -1)
1093 perror_with_name ("waitpid");
1094
1095 if (debug_threads
1096 && (!WIFSTOPPED (*wstatp)
1097 || (WSTOPSIG (*wstatp) != 32
1098 && WSTOPSIG (*wstatp) != 33)))
1099 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
1100
1101 child = find_lwp_pid (pid_to_ptid (ret));
1102
1103 /* If we didn't find a process, one of two things presumably happened:
1104 - A process we started and then detached from has exited. Ignore it.
1105 - A process we are controlling has forked and the new child's stop
1106 was reported to us by the kernel. Save its PID. */
1107 if (child == NULL && WIFSTOPPED (*wstatp))
1108 {
1109 add_pid_to_list (&stopped_pids, ret);
1110 goto retry;
1111 }
1112 else if (child == NULL)
1113 goto retry;
1114
1115 child->stopped = 1;
1116
1117 child->last_status = *wstatp;
1118
1119 /* Architecture-specific setup after inferior is running.
1120 This needs to happen after we have attached to the inferior
1121 and it is stopped for the first time, but before we access
1122 any inferior registers. */
1123 if (new_inferior)
1124 {
1125 the_low_target.arch_setup ();
1126 #ifdef HAVE_LINUX_REGSETS
1127 memset (disabled_regsets, 0, num_regsets);
1128 #endif
1129 new_inferior = 0;
1130 }
1131
1132 /* Fetch the possibly triggered data watchpoint info and store it in
1133 CHILD.
1134
1135 On some archs, like x86, that use debug registers to set
1136 watchpoints, it's possible that the way to know which watched
1137 address trapped, is to check the register that is used to select
1138 which address to watch. Problem is, between setting the
1139 watchpoint and reading back which data address trapped, the user
1140 may change the set of watchpoints, and, as a consequence, GDB
1141 changes the debug registers in the inferior. To avoid reading
1142 back a stale stopped-data-address when that happens, we cache in
1143 LP the fact that a watchpoint trapped, and the corresponding data
1144 address, as soon as we see CHILD stop with a SIGTRAP. If GDB
1145 changes the debug registers meanwhile, we have the cached data we
1146 can rely on. */
1147
1148 if (WIFSTOPPED (*wstatp) && WSTOPSIG (*wstatp) == SIGTRAP)
1149 {
1150 if (the_low_target.stopped_by_watchpoint == NULL)
1151 {
1152 child->stopped_by_watchpoint = 0;
1153 }
1154 else
1155 {
1156 struct thread_info *saved_inferior;
1157
1158 saved_inferior = current_inferior;
1159 current_inferior = get_lwp_thread (child);
1160
1161 child->stopped_by_watchpoint
1162 = the_low_target.stopped_by_watchpoint ();
1163
1164 if (child->stopped_by_watchpoint)
1165 {
1166 if (the_low_target.stopped_data_address != NULL)
1167 child->stopped_data_address
1168 = the_low_target.stopped_data_address ();
1169 else
1170 child->stopped_data_address = 0;
1171 }
1172
1173 current_inferior = saved_inferior;
1174 }
1175 }
1176
1177 /* Store the STOP_PC, with adjustment applied. This depends on the
1178 architecture being defined already (so that CHILD has a valid
1179 regcache), and on LAST_STATUS being set (to check for SIGTRAP or
1180 not). */
1181 if (WIFSTOPPED (*wstatp))
1182 child->stop_pc = get_stop_pc (child);
1183
1184 if (debug_threads
1185 && WIFSTOPPED (*wstatp)
1186 && the_low_target.get_pc != NULL)
1187 {
1188 struct thread_info *saved_inferior = current_inferior;
1189 struct regcache *regcache;
1190 CORE_ADDR pc;
1191
1192 current_inferior = get_lwp_thread (child);
1193 regcache = get_thread_regcache (current_inferior, 1);
1194 pc = (*the_low_target.get_pc) (regcache);
1195 fprintf (stderr, "linux_wait_for_lwp: pc is 0x%lx\n", (long) pc);
1196 current_inferior = saved_inferior;
1197 }
1198
1199 return child;
1200 }
1201
1202 /* This function should only be called if the LWP got a SIGTRAP.
1203
1204 Handle any tracepoint steps or hits. Return true if a tracepoint
1205 event was handled, 0 otherwise. */
1206
1207 static int
1208 handle_tracepoints (struct lwp_info *lwp)
1209 {
1210 struct thread_info *tinfo = get_lwp_thread (lwp);
1211 int tpoint_related_event = 0;
1212
1213 /* If this tracepoint hit causes a tracing stop, we'll immediately
1214 uninsert tracepoints. To do this, we temporarily pause all
1215 threads, unpatch away, and then unpause threads. We need to make
1216 sure the unpausing doesn't resume LWP too. */
1217 lwp->suspended++;
1218
1219 /* And we need to be sure that any all-threads-stopping doesn't try
1220 to move threads out of the jump pads, as it could deadlock the
1221 inferior (LWP could be in the jump pad, maybe even holding the
1222 lock.) */
1223
1224 /* Do any necessary step collect actions. */
1225 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1226
1227 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1228
1229 /* See if we just hit a tracepoint and do its main collect
1230 actions. */
1231 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1232
1233 lwp->suspended--;
1234
1235 gdb_assert (lwp->suspended == 0);
1236 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1237
1238 if (tpoint_related_event)
1239 {
1240 if (debug_threads)
1241 fprintf (stderr, "got a tracepoint event\n");
1242 return 1;
1243 }
1244
1245 return 0;
1246 }
1247
1248 /* Convenience wrapper. Returns true if LWP is presently collecting a
1249 fast tracepoint. */
1250
1251 static int
1252 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1253 struct fast_tpoint_collect_status *status)
1254 {
1255 CORE_ADDR thread_area;
1256
1257 if (the_low_target.get_thread_area == NULL)
1258 return 0;
1259
1260 /* Get the thread area address. This is used to recognize which
1261 thread is which when tracing with the in-process agent library.
1262 We don't read anything from the address, and treat it as opaque;
1263 it's the address itself that we assume is unique per-thread. */
1264 if ((*the_low_target.get_thread_area) (lwpid_of (lwp), &thread_area) == -1)
1265 return 0;
1266
1267 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1268 }
1269
1270 /* The reason we resume in the caller, is because we want to be able
1271 to pass lwp->status_pending as WSTAT, and we need to clear
1272 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1273 refuses to resume. */
1274
1275 static int
1276 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1277 {
1278 struct thread_info *saved_inferior;
1279
1280 saved_inferior = current_inferior;
1281 current_inferior = get_lwp_thread (lwp);
1282
1283 if ((wstat == NULL
1284 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1285 && supports_fast_tracepoints ()
1286 && in_process_agent_loaded ())
1287 {
1288 struct fast_tpoint_collect_status status;
1289 int r;
1290
1291 if (debug_threads)
1292 fprintf (stderr, "\
1293 Checking whether LWP %ld needs to move out of the jump pad.\n",
1294 lwpid_of (lwp));
1295
1296 r = linux_fast_tracepoint_collecting (lwp, &status);
1297
1298 if (wstat == NULL
1299 || (WSTOPSIG (*wstat) != SIGILL
1300 && WSTOPSIG (*wstat) != SIGFPE
1301 && WSTOPSIG (*wstat) != SIGSEGV
1302 && WSTOPSIG (*wstat) != SIGBUS))
1303 {
1304 lwp->collecting_fast_tracepoint = r;
1305
1306 if (r != 0)
1307 {
1308 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1309 {
1310 /* Haven't executed the original instruction yet.
1311 Set breakpoint there, and wait till it's hit,
1312 then single-step until exiting the jump pad. */
1313 lwp->exit_jump_pad_bkpt
1314 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1315 }
1316
1317 if (debug_threads)
1318 fprintf (stderr, "\
1319 Checking whether LWP %ld needs to move out of the jump pad...it does\n",
1320 lwpid_of (lwp));
1321 current_inferior = saved_inferior;
1322
1323 return 1;
1324 }
1325 }
1326 else
1327 {
1328 /* If we get a synchronous signal while collecting, *and*
1329 while executing the (relocated) original instruction,
1330 reset the PC to point at the tpoint address, before
1331 reporting to GDB. Otherwise, it's an IPA lib bug: just
1332 report the signal to GDB, and pray for the best. */
1333
1334 lwp->collecting_fast_tracepoint = 0;
1335
1336 if (r != 0
1337 && (status.adjusted_insn_addr <= lwp->stop_pc
1338 && lwp->stop_pc < status.adjusted_insn_addr_end))
1339 {
1340 siginfo_t info;
1341 struct regcache *regcache;
1342
1343 /* The si_addr on a few signals references the address
1344 of the faulting instruction. Adjust that as
1345 well. */
1346 if ((WSTOPSIG (*wstat) == SIGILL
1347 || WSTOPSIG (*wstat) == SIGFPE
1348 || WSTOPSIG (*wstat) == SIGBUS
1349 || WSTOPSIG (*wstat) == SIGSEGV)
1350 && ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &info) == 0
1351 /* Final check just to make sure we don't clobber
1352 the siginfo of non-kernel-sent signals. */
1353 && (uintptr_t) info.si_addr == lwp->stop_pc)
1354 {
1355 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1356 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &info);
1357 }
1358
1359 regcache = get_thread_regcache (get_lwp_thread (lwp), 1);
1360 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1361 lwp->stop_pc = status.tpoint_addr;
1362
1363 /* Cancel any fast tracepoint lock this thread was
1364 holding. */
1365 force_unlock_trace_buffer ();
1366 }
1367
1368 if (lwp->exit_jump_pad_bkpt != NULL)
1369 {
1370 if (debug_threads)
1371 fprintf (stderr,
1372 "Cancelling fast exit-jump-pad: removing bkpt. "
1373 "stopping all threads momentarily.\n");
1374
1375 stop_all_lwps (1, lwp);
1376 cancel_breakpoints ();
1377
1378 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1379 lwp->exit_jump_pad_bkpt = NULL;
1380
1381 unstop_all_lwps (1, lwp);
1382
1383 gdb_assert (lwp->suspended >= 0);
1384 }
1385 }
1386 }
1387
1388 if (debug_threads)
1389 fprintf (stderr, "\
1390 Checking whether LWP %ld needs to move out of the jump pad...no\n",
1391 lwpid_of (lwp));
1392
1393 current_inferior = saved_inferior;
1394 return 0;
1395 }
1396
1397 /* Enqueue one signal in the "signals to report later when out of the
1398 jump pad" list. */
1399
1400 static void
1401 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1402 {
1403 struct pending_signals *p_sig;
1404
1405 if (debug_threads)
1406 fprintf (stderr, "\
1407 Deferring signal %d for LWP %ld.\n", WSTOPSIG (*wstat), lwpid_of (lwp));
1408
1409 if (debug_threads)
1410 {
1411 struct pending_signals *sig;
1412
1413 for (sig = lwp->pending_signals_to_report;
1414 sig != NULL;
1415 sig = sig->prev)
1416 fprintf (stderr,
1417 " Already queued %d\n",
1418 sig->signal);
1419
1420 fprintf (stderr, " (no more currently queued signals)\n");
1421 }
1422
1423 /* Don't enqueue non-RT signals if they are already in the deferred
1424 queue. (SIGSTOP being the easiest signal to see ending up here
1425 twice) */
1426 if (WSTOPSIG (*wstat) < __SIGRTMIN)
1427 {
1428 struct pending_signals *sig;
1429
1430 for (sig = lwp->pending_signals_to_report;
1431 sig != NULL;
1432 sig = sig->prev)
1433 {
1434 if (sig->signal == WSTOPSIG (*wstat))
1435 {
1436 if (debug_threads)
1437 fprintf (stderr,
1438 "Not requeuing already queued non-RT signal %d"
1439 " for LWP %ld\n",
1440 sig->signal,
1441 lwpid_of (lwp));
1442 return;
1443 }
1444 }
1445 }
1446
1447 p_sig = xmalloc (sizeof (*p_sig));
1448 p_sig->prev = lwp->pending_signals_to_report;
1449 p_sig->signal = WSTOPSIG (*wstat);
1450 memset (&p_sig->info, 0, sizeof (siginfo_t));
1451 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &p_sig->info);
1452
1453 lwp->pending_signals_to_report = p_sig;
1454 }
1455
1456 /* Dequeue one signal from the "signals to report later when out of
1457 the jump pad" list. */
1458
1459 static int
1460 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1461 {
1462 if (lwp->pending_signals_to_report != NULL)
1463 {
1464 struct pending_signals **p_sig;
1465
1466 p_sig = &lwp->pending_signals_to_report;
1467 while ((*p_sig)->prev != NULL)
1468 p_sig = &(*p_sig)->prev;
1469
1470 *wstat = W_STOPCODE ((*p_sig)->signal);
1471 if ((*p_sig)->info.si_signo != 0)
1472 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &(*p_sig)->info);
1473 free (*p_sig);
1474 *p_sig = NULL;
1475
1476 if (debug_threads)
1477 fprintf (stderr, "Reporting deferred signal %d for LWP %ld.\n",
1478 WSTOPSIG (*wstat), lwpid_of (lwp));
1479
1480 if (debug_threads)
1481 {
1482 struct pending_signals *sig;
1483
1484 for (sig = lwp->pending_signals_to_report;
1485 sig != NULL;
1486 sig = sig->prev)
1487 fprintf (stderr,
1488 " Still queued %d\n",
1489 sig->signal);
1490
1491 fprintf (stderr, " (no more queued signals)\n");
1492 }
1493
1494 return 1;
1495 }
1496
1497 return 0;
1498 }
1499
1500 /* Arrange for a breakpoint to be hit again later. We don't keep the
1501 SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
1502 will handle the current event, eventually we will resume this LWP,
1503 and this breakpoint will trap again. */
1504
1505 static int
1506 cancel_breakpoint (struct lwp_info *lwp)
1507 {
1508 struct thread_info *saved_inferior;
1509
1510 /* There's nothing to do if we don't support breakpoints. */
1511 if (!supports_breakpoints ())
1512 return 0;
1513
1514 /* breakpoint_at reads from current inferior. */
1515 saved_inferior = current_inferior;
1516 current_inferior = get_lwp_thread (lwp);
1517
1518 if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
1519 {
1520 if (debug_threads)
1521 fprintf (stderr,
1522 "CB: Push back breakpoint for %s\n",
1523 target_pid_to_str (ptid_of (lwp)));
1524
1525 /* Back up the PC if necessary. */
1526 if (the_low_target.decr_pc_after_break)
1527 {
1528 struct regcache *regcache
1529 = get_thread_regcache (current_inferior, 1);
1530 (*the_low_target.set_pc) (regcache, lwp->stop_pc);
1531 }
1532
1533 current_inferior = saved_inferior;
1534 return 1;
1535 }
1536 else
1537 {
1538 if (debug_threads)
1539 fprintf (stderr,
1540 "CB: No breakpoint found at %s for [%s]\n",
1541 paddress (lwp->stop_pc),
1542 target_pid_to_str (ptid_of (lwp)));
1543 }
1544
1545 current_inferior = saved_inferior;
1546 return 0;
1547 }
1548
1549 /* When the event-loop is doing a step-over, this points at the thread
1550 being stepped. */
1551 ptid_t step_over_bkpt;
1552
1553 /* Wait for an event from child PID. If PID is -1, wait for any
1554 child. Store the stop status through the status pointer WSTAT.
1555 OPTIONS is passed to the waitpid call. Return 0 if no child stop
1556 event was found and OPTIONS contains WNOHANG. Return the PID of
1557 the stopped child otherwise. */
1558
1559 static int
1560 linux_wait_for_event_1 (ptid_t ptid, int *wstat, int options)
1561 {
1562 struct lwp_info *event_child, *requested_child;
1563
1564 event_child = NULL;
1565 requested_child = NULL;
1566
1567 /* Check for a lwp with a pending status. */
1568
1569 if (ptid_equal (ptid, minus_one_ptid)
1570 || ptid_equal (pid_to_ptid (ptid_get_pid (ptid)), ptid))
1571 {
1572 event_child = (struct lwp_info *)
1573 find_inferior (&all_lwps, status_pending_p_callback, &ptid);
1574 if (debug_threads && event_child)
1575 fprintf (stderr, "Got a pending child %ld\n", lwpid_of (event_child));
1576 }
1577 else
1578 {
1579 requested_child = find_lwp_pid (ptid);
1580
1581 if (!stopping_threads
1582 && requested_child->status_pending_p
1583 && requested_child->collecting_fast_tracepoint)
1584 {
1585 enqueue_one_deferred_signal (requested_child,
1586 &requested_child->status_pending);
1587 requested_child->status_pending_p = 0;
1588 requested_child->status_pending = 0;
1589 linux_resume_one_lwp (requested_child, 0, 0, NULL);
1590 }
1591
1592 if (requested_child->suspended
1593 && requested_child->status_pending_p)
1594 fatal ("requesting an event out of a suspended child?");
1595
1596 if (requested_child->status_pending_p)
1597 event_child = requested_child;
1598 }
1599
1600 if (event_child != NULL)
1601 {
1602 if (debug_threads)
1603 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
1604 lwpid_of (event_child), event_child->status_pending);
1605 *wstat = event_child->status_pending;
1606 event_child->status_pending_p = 0;
1607 event_child->status_pending = 0;
1608 current_inferior = get_lwp_thread (event_child);
1609 return lwpid_of (event_child);
1610 }
1611
1612 /* We only enter this loop if no process has a pending wait status. Thus
1613 any action taken in response to a wait status inside this loop is
1614 responding as soon as we detect the status, not after any pending
1615 events. */
1616 while (1)
1617 {
1618 event_child = linux_wait_for_lwp (ptid, wstat, options);
1619
1620 if ((options & WNOHANG) && event_child == NULL)
1621 {
1622 if (debug_threads)
1623 fprintf (stderr, "WNOHANG set, no event found\n");
1624 return 0;
1625 }
1626
1627 if (event_child == NULL)
1628 error ("event from unknown child");
1629
1630 current_inferior = get_lwp_thread (event_child);
1631
1632 /* Check for thread exit. */
1633 if (! WIFSTOPPED (*wstat))
1634 {
1635 if (debug_threads)
1636 fprintf (stderr, "LWP %ld exiting\n", lwpid_of (event_child));
1637
1638 /* If the last thread is exiting, just return. */
1639 if (last_thread_of_process_p (current_inferior))
1640 {
1641 if (debug_threads)
1642 fprintf (stderr, "LWP %ld is last lwp of process\n",
1643 lwpid_of (event_child));
1644 return lwpid_of (event_child);
1645 }
1646
1647 if (!non_stop)
1648 {
1649 current_inferior = (struct thread_info *) all_threads.head;
1650 if (debug_threads)
1651 fprintf (stderr, "Current inferior is now %ld\n",
1652 lwpid_of (get_thread_lwp (current_inferior)));
1653 }
1654 else
1655 {
1656 current_inferior = NULL;
1657 if (debug_threads)
1658 fprintf (stderr, "Current inferior is now <NULL>\n");
1659 }
1660
1661 /* If we were waiting for this particular child to do something...
1662 well, it did something. */
1663 if (requested_child != NULL)
1664 {
1665 int lwpid = lwpid_of (event_child);
1666
1667 /* Cancel the step-over operation --- the thread that
1668 started it is gone. */
1669 if (finish_step_over (event_child))
1670 unstop_all_lwps (1, event_child);
1671 delete_lwp (event_child);
1672 return lwpid;
1673 }
1674
1675 delete_lwp (event_child);
1676
1677 /* Wait for a more interesting event. */
1678 continue;
1679 }
1680
1681 if (event_child->must_set_ptrace_flags)
1682 {
1683 linux_enable_event_reporting (lwpid_of (event_child));
1684 event_child->must_set_ptrace_flags = 0;
1685 }
1686
1687 if (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) == SIGTRAP
1688 && *wstat >> 16 != 0)
1689 {
1690 handle_extended_wait (event_child, *wstat);
1691 continue;
1692 }
1693
1694 if (WIFSTOPPED (*wstat)
1695 && WSTOPSIG (*wstat) == SIGSTOP
1696 && event_child->stop_expected)
1697 {
1698 int should_stop;
1699
1700 if (debug_threads)
1701 fprintf (stderr, "Expected stop.\n");
1702 event_child->stop_expected = 0;
1703
1704 should_stop = (current_inferior->last_resume_kind == resume_stop
1705 || stopping_threads);
1706
1707 if (!should_stop)
1708 {
1709 linux_resume_one_lwp (event_child,
1710 event_child->stepping, 0, NULL);
1711 continue;
1712 }
1713 }
1714
1715 return lwpid_of (event_child);
1716 }
1717
1718 /* NOTREACHED */
1719 return 0;
1720 }
1721
1722 static int
1723 linux_wait_for_event (ptid_t ptid, int *wstat, int options)
1724 {
1725 ptid_t wait_ptid;
1726
1727 if (ptid_is_pid (ptid))
1728 {
1729 /* A request to wait for a specific tgid. This is not possible
1730 with waitpid, so instead, we wait for any child, and leave
1731 children we're not interested in right now with a pending
1732 status to report later. */
1733 wait_ptid = minus_one_ptid;
1734 }
1735 else
1736 wait_ptid = ptid;
1737
1738 while (1)
1739 {
1740 int event_pid;
1741
1742 event_pid = linux_wait_for_event_1 (wait_ptid, wstat, options);
1743
1744 if (event_pid > 0
1745 && ptid_is_pid (ptid) && ptid_get_pid (ptid) != event_pid)
1746 {
1747 struct lwp_info *event_child
1748 = find_lwp_pid (pid_to_ptid (event_pid));
1749
1750 if (! WIFSTOPPED (*wstat))
1751 mark_lwp_dead (event_child, *wstat);
1752 else
1753 {
1754 event_child->status_pending_p = 1;
1755 event_child->status_pending = *wstat;
1756 }
1757 }
1758 else
1759 return event_pid;
1760 }
1761 }
1762
1763
1764 /* Count the LWP's that have had events. */
1765
1766 static int
1767 count_events_callback (struct inferior_list_entry *entry, void *data)
1768 {
1769 struct lwp_info *lp = (struct lwp_info *) entry;
1770 struct thread_info *thread = get_lwp_thread (lp);
1771 int *count = data;
1772
1773 gdb_assert (count != NULL);
1774
1775 /* Count only resumed LWPs that have a SIGTRAP event pending that
1776 should be reported to GDB. */
1777 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
1778 && thread->last_resume_kind != resume_stop
1779 && lp->status_pending_p
1780 && WIFSTOPPED (lp->status_pending)
1781 && WSTOPSIG (lp->status_pending) == SIGTRAP
1782 && !breakpoint_inserted_here (lp->stop_pc))
1783 (*count)++;
1784
1785 return 0;
1786 }
1787
1788 /* Select the LWP (if any) that is currently being single-stepped. */
1789
1790 static int
1791 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
1792 {
1793 struct lwp_info *lp = (struct lwp_info *) entry;
1794 struct thread_info *thread = get_lwp_thread (lp);
1795
1796 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
1797 && thread->last_resume_kind == resume_step
1798 && lp->status_pending_p)
1799 return 1;
1800 else
1801 return 0;
1802 }
1803
1804 /* Select the Nth LWP that has had a SIGTRAP event that should be
1805 reported to GDB. */
1806
1807 static int
1808 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
1809 {
1810 struct lwp_info *lp = (struct lwp_info *) entry;
1811 struct thread_info *thread = get_lwp_thread (lp);
1812 int *selector = data;
1813
1814 gdb_assert (selector != NULL);
1815
1816 /* Select only resumed LWPs that have a SIGTRAP event pending. */
1817 if (thread->last_resume_kind != resume_stop
1818 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
1819 && lp->status_pending_p
1820 && WIFSTOPPED (lp->status_pending)
1821 && WSTOPSIG (lp->status_pending) == SIGTRAP
1822 && !breakpoint_inserted_here (lp->stop_pc))
1823 if ((*selector)-- == 0)
1824 return 1;
1825
1826 return 0;
1827 }
1828
1829 static int
1830 cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
1831 {
1832 struct lwp_info *lp = (struct lwp_info *) entry;
1833 struct thread_info *thread = get_lwp_thread (lp);
1834 struct lwp_info *event_lp = data;
1835
1836 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
1837 if (lp == event_lp)
1838 return 0;
1839
1840 /* If a LWP other than the LWP that we're reporting an event for has
1841 hit a GDB breakpoint (as opposed to some random trap signal),
1842 then just arrange for it to hit it again later. We don't keep
1843 the SIGTRAP status and don't forward the SIGTRAP signal to the
1844 LWP. We will handle the current event, eventually we will resume
1845 all LWPs, and this one will get its breakpoint trap again.
1846
1847 If we do not do this, then we run the risk that the user will
1848 delete or disable the breakpoint, but the LWP will have already
1849 tripped on it. */
1850
1851 if (thread->last_resume_kind != resume_stop
1852 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
1853 && lp->status_pending_p
1854 && WIFSTOPPED (lp->status_pending)
1855 && WSTOPSIG (lp->status_pending) == SIGTRAP
1856 && !lp->stepping
1857 && !lp->stopped_by_watchpoint
1858 && cancel_breakpoint (lp))
1859 /* Throw away the SIGTRAP. */
1860 lp->status_pending_p = 0;
1861
1862 return 0;
1863 }
1864
1865 static void
1866 linux_cancel_breakpoints (void)
1867 {
1868 find_inferior (&all_lwps, cancel_breakpoints_callback, NULL);
1869 }
1870
1871 /* Select one LWP out of those that have events pending. */
1872
1873 static void
1874 select_event_lwp (struct lwp_info **orig_lp)
1875 {
1876 int num_events = 0;
1877 int random_selector;
1878 struct lwp_info *event_lp;
1879
1880 /* Give preference to any LWP that is being single-stepped. */
1881 event_lp
1882 = (struct lwp_info *) find_inferior (&all_lwps,
1883 select_singlestep_lwp_callback, NULL);
1884 if (event_lp != NULL)
1885 {
1886 if (debug_threads)
1887 fprintf (stderr,
1888 "SEL: Select single-step %s\n",
1889 target_pid_to_str (ptid_of (event_lp)));
1890 }
1891 else
1892 {
1893 /* No single-stepping LWP. Select one at random, out of those
1894 which have had SIGTRAP events. */
1895
1896 /* First see how many SIGTRAP events we have. */
1897 find_inferior (&all_lwps, count_events_callback, &num_events);
1898
1899 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
1900 random_selector = (int)
1901 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
1902
1903 if (debug_threads && num_events > 1)
1904 fprintf (stderr,
1905 "SEL: Found %d SIGTRAP events, selecting #%d\n",
1906 num_events, random_selector);
1907
1908 event_lp = (struct lwp_info *) find_inferior (&all_lwps,
1909 select_event_lwp_callback,
1910 &random_selector);
1911 }
1912
1913 if (event_lp != NULL)
1914 {
1915 /* Switch the event LWP. */
1916 *orig_lp = event_lp;
1917 }
1918 }
1919
1920 /* Decrement the suspend count of an LWP. */
1921
1922 static int
1923 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
1924 {
1925 struct lwp_info *lwp = (struct lwp_info *) entry;
1926
1927 /* Ignore EXCEPT. */
1928 if (lwp == except)
1929 return 0;
1930
1931 lwp->suspended--;
1932
1933 gdb_assert (lwp->suspended >= 0);
1934 return 0;
1935 }
1936
1937 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
1938 NULL. */
1939
1940 static void
1941 unsuspend_all_lwps (struct lwp_info *except)
1942 {
1943 find_inferior (&all_lwps, unsuspend_one_lwp, except);
1944 }
1945
1946 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
1947 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
1948 void *data);
1949 static int lwp_running (struct inferior_list_entry *entry, void *data);
1950 static ptid_t linux_wait_1 (ptid_t ptid,
1951 struct target_waitstatus *ourstatus,
1952 int target_options);
1953
1954 /* Stabilize threads (move out of jump pads).
1955
1956 If a thread is midway collecting a fast tracepoint, we need to
1957 finish the collection and move it out of the jump pad before
1958 reporting the signal.
1959
1960 This avoids recursion while collecting (when a signal arrives
1961 midway, and the signal handler itself collects), which would trash
1962 the trace buffer. In case the user set a breakpoint in a signal
1963 handler, this avoids the backtrace showing the jump pad, etc..
1964 Most importantly, there are certain things we can't do safely if
1965 threads are stopped in a jump pad (or in its callee's). For
1966 example:
1967
1968 - starting a new trace run. A thread still collecting the
1969 previous run, could trash the trace buffer when resumed. The trace
1970 buffer control structures would have been reset but the thread had
1971 no way to tell. The thread could even midway memcpy'ing to the
1972 buffer, which would mean that when resumed, it would clobber the
1973 trace buffer that had been set for a new run.
1974
1975 - we can't rewrite/reuse the jump pads for new tracepoints
1976 safely. Say you do tstart while a thread is stopped midway while
1977 collecting. When the thread is later resumed, it finishes the
1978 collection, and returns to the jump pad, to execute the original
1979 instruction that was under the tracepoint jump at the time the
1980 older run had been started. If the jump pad had been rewritten
1981 since for something else in the new run, the thread would now
1982 execute the wrong / random instructions. */
1983
1984 static void
1985 linux_stabilize_threads (void)
1986 {
1987 struct thread_info *save_inferior;
1988 struct lwp_info *lwp_stuck;
1989
1990 lwp_stuck
1991 = (struct lwp_info *) find_inferior (&all_lwps,
1992 stuck_in_jump_pad_callback, NULL);
1993 if (lwp_stuck != NULL)
1994 {
1995 if (debug_threads)
1996 fprintf (stderr, "can't stabilize, LWP %ld is stuck in jump pad\n",
1997 lwpid_of (lwp_stuck));
1998 return;
1999 }
2000
2001 save_inferior = current_inferior;
2002
2003 stabilizing_threads = 1;
2004
2005 /* Kick 'em all. */
2006 for_each_inferior (&all_lwps, move_out_of_jump_pad_callback);
2007
2008 /* Loop until all are stopped out of the jump pads. */
2009 while (find_inferior (&all_lwps, lwp_running, NULL) != NULL)
2010 {
2011 struct target_waitstatus ourstatus;
2012 struct lwp_info *lwp;
2013 int wstat;
2014
2015 /* Note that we go through the full wait even loop. While
2016 moving threads out of jump pad, we need to be able to step
2017 over internal breakpoints and such. */
2018 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2019
2020 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2021 {
2022 lwp = get_thread_lwp (current_inferior);
2023
2024 /* Lock it. */
2025 lwp->suspended++;
2026
2027 if (ourstatus.value.sig != TARGET_SIGNAL_0
2028 || current_inferior->last_resume_kind == resume_stop)
2029 {
2030 wstat = W_STOPCODE (target_signal_to_host (ourstatus.value.sig));
2031 enqueue_one_deferred_signal (lwp, &wstat);
2032 }
2033 }
2034 }
2035
2036 find_inferior (&all_lwps, unsuspend_one_lwp, NULL);
2037
2038 stabilizing_threads = 0;
2039
2040 current_inferior = save_inferior;
2041
2042 if (debug_threads)
2043 {
2044 lwp_stuck
2045 = (struct lwp_info *) find_inferior (&all_lwps,
2046 stuck_in_jump_pad_callback, NULL);
2047 if (lwp_stuck != NULL)
2048 fprintf (stderr, "couldn't stabilize, LWP %ld got stuck in jump pad\n",
2049 lwpid_of (lwp_stuck));
2050 }
2051 }
2052
2053 /* Wait for process, returns status. */
2054
2055 static ptid_t
2056 linux_wait_1 (ptid_t ptid,
2057 struct target_waitstatus *ourstatus, int target_options)
2058 {
2059 int w;
2060 struct lwp_info *event_child;
2061 int options;
2062 int pid;
2063 int step_over_finished;
2064 int bp_explains_trap;
2065 int maybe_internal_trap;
2066 int report_to_gdb;
2067 int trace_event;
2068
2069 /* Translate generic target options into linux options. */
2070 options = __WALL;
2071 if (target_options & TARGET_WNOHANG)
2072 options |= WNOHANG;
2073
2074 retry:
2075 bp_explains_trap = 0;
2076 trace_event = 0;
2077 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2078
2079 /* If we were only supposed to resume one thread, only wait for
2080 that thread - if it's still alive. If it died, however - which
2081 can happen if we're coming from the thread death case below -
2082 then we need to make sure we restart the other threads. We could
2083 pick a thread at random or restart all; restarting all is less
2084 arbitrary. */
2085 if (!non_stop
2086 && !ptid_equal (cont_thread, null_ptid)
2087 && !ptid_equal (cont_thread, minus_one_ptid))
2088 {
2089 struct thread_info *thread;
2090
2091 thread = (struct thread_info *) find_inferior_id (&all_threads,
2092 cont_thread);
2093
2094 /* No stepping, no signal - unless one is pending already, of course. */
2095 if (thread == NULL)
2096 {
2097 struct thread_resume resume_info;
2098 resume_info.thread = minus_one_ptid;
2099 resume_info.kind = resume_continue;
2100 resume_info.sig = 0;
2101 linux_resume (&resume_info, 1);
2102 }
2103 else
2104 ptid = cont_thread;
2105 }
2106
2107 if (ptid_equal (step_over_bkpt, null_ptid))
2108 pid = linux_wait_for_event (ptid, &w, options);
2109 else
2110 {
2111 if (debug_threads)
2112 fprintf (stderr, "step_over_bkpt set [%s], doing a blocking wait\n",
2113 target_pid_to_str (step_over_bkpt));
2114 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2115 }
2116
2117 if (pid == 0) /* only if TARGET_WNOHANG */
2118 return null_ptid;
2119
2120 event_child = get_thread_lwp (current_inferior);
2121
2122 /* If we are waiting for a particular child, and it exited,
2123 linux_wait_for_event will return its exit status. Similarly if
2124 the last child exited. If this is not the last child, however,
2125 do not report it as exited until there is a 'thread exited' response
2126 available in the remote protocol. Instead, just wait for another event.
2127 This should be safe, because if the thread crashed we will already
2128 have reported the termination signal to GDB; that should stop any
2129 in-progress stepping operations, etc.
2130
2131 Report the exit status of the last thread to exit. This matches
2132 LinuxThreads' behavior. */
2133
2134 if (last_thread_of_process_p (current_inferior))
2135 {
2136 if (WIFEXITED (w) || WIFSIGNALED (w))
2137 {
2138 if (WIFEXITED (w))
2139 {
2140 ourstatus->kind = TARGET_WAITKIND_EXITED;
2141 ourstatus->value.integer = WEXITSTATUS (w);
2142
2143 if (debug_threads)
2144 fprintf (stderr,
2145 "\nChild exited with retcode = %x \n",
2146 WEXITSTATUS (w));
2147 }
2148 else
2149 {
2150 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2151 ourstatus->value.sig = target_signal_from_host (WTERMSIG (w));
2152
2153 if (debug_threads)
2154 fprintf (stderr,
2155 "\nChild terminated with signal = %x \n",
2156 WTERMSIG (w));
2157
2158 }
2159
2160 return ptid_of (event_child);
2161 }
2162 }
2163 else
2164 {
2165 if (!WIFSTOPPED (w))
2166 goto retry;
2167 }
2168
2169 /* If this event was not handled before, and is not a SIGTRAP, we
2170 report it. SIGILL and SIGSEGV are also treated as traps in case
2171 a breakpoint is inserted at the current PC. If this target does
2172 not support internal breakpoints at all, we also report the
2173 SIGTRAP without further processing; it's of no concern to us. */
2174 maybe_internal_trap
2175 = (supports_breakpoints ()
2176 && (WSTOPSIG (w) == SIGTRAP
2177 || ((WSTOPSIG (w) == SIGILL
2178 || WSTOPSIG (w) == SIGSEGV)
2179 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2180
2181 if (maybe_internal_trap)
2182 {
2183 /* Handle anything that requires bookkeeping before deciding to
2184 report the event or continue waiting. */
2185
2186 /* First check if we can explain the SIGTRAP with an internal
2187 breakpoint, or if we should possibly report the event to GDB.
2188 Do this before anything that may remove or insert a
2189 breakpoint. */
2190 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2191
2192 /* We have a SIGTRAP, possibly a step-over dance has just
2193 finished. If so, tweak the state machine accordingly,
2194 reinsert breakpoints and delete any reinsert (software
2195 single-step) breakpoints. */
2196 step_over_finished = finish_step_over (event_child);
2197
2198 /* Now invoke the callbacks of any internal breakpoints there. */
2199 check_breakpoints (event_child->stop_pc);
2200
2201 /* Handle tracepoint data collecting. This may overflow the
2202 trace buffer, and cause a tracing stop, removing
2203 breakpoints. */
2204 trace_event = handle_tracepoints (event_child);
2205
2206 if (bp_explains_trap)
2207 {
2208 /* If we stepped or ran into an internal breakpoint, we've
2209 already handled it. So next time we resume (from this
2210 PC), we should step over it. */
2211 if (debug_threads)
2212 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2213
2214 if (breakpoint_here (event_child->stop_pc))
2215 event_child->need_step_over = 1;
2216 }
2217 }
2218 else
2219 {
2220 /* We have some other signal, possibly a step-over dance was in
2221 progress, and it should be cancelled too. */
2222 step_over_finished = finish_step_over (event_child);
2223 }
2224
2225 /* We have all the data we need. Either report the event to GDB, or
2226 resume threads and keep waiting for more. */
2227
2228 /* If we're collecting a fast tracepoint, finish the collection and
2229 move out of the jump pad before delivering a signal. See
2230 linux_stabilize_threads. */
2231
2232 if (WIFSTOPPED (w)
2233 && WSTOPSIG (w) != SIGTRAP
2234 && supports_fast_tracepoints ()
2235 && in_process_agent_loaded ())
2236 {
2237 if (debug_threads)
2238 fprintf (stderr,
2239 "Got signal %d for LWP %ld. Check if we need "
2240 "to defer or adjust it.\n",
2241 WSTOPSIG (w), lwpid_of (event_child));
2242
2243 /* Allow debugging the jump pad itself. */
2244 if (current_inferior->last_resume_kind != resume_step
2245 && maybe_move_out_of_jump_pad (event_child, &w))
2246 {
2247 enqueue_one_deferred_signal (event_child, &w);
2248
2249 if (debug_threads)
2250 fprintf (stderr,
2251 "Signal %d for LWP %ld deferred (in jump pad)\n",
2252 WSTOPSIG (w), lwpid_of (event_child));
2253
2254 linux_resume_one_lwp (event_child, 0, 0, NULL);
2255 goto retry;
2256 }
2257 }
2258
2259 if (event_child->collecting_fast_tracepoint)
2260 {
2261 if (debug_threads)
2262 fprintf (stderr, "\
2263 LWP %ld was trying to move out of the jump pad (%d). \
2264 Check if we're already there.\n",
2265 lwpid_of (event_child),
2266 event_child->collecting_fast_tracepoint);
2267
2268 trace_event = 1;
2269
2270 event_child->collecting_fast_tracepoint
2271 = linux_fast_tracepoint_collecting (event_child, NULL);
2272
2273 if (event_child->collecting_fast_tracepoint != 1)
2274 {
2275 /* No longer need this breakpoint. */
2276 if (event_child->exit_jump_pad_bkpt != NULL)
2277 {
2278 if (debug_threads)
2279 fprintf (stderr,
2280 "No longer need exit-jump-pad bkpt; removing it."
2281 "stopping all threads momentarily.\n");
2282
2283 /* Other running threads could hit this breakpoint.
2284 We don't handle moribund locations like GDB does,
2285 instead we always pause all threads when removing
2286 breakpoints, so that any step-over or
2287 decr_pc_after_break adjustment is always taken
2288 care of while the breakpoint is still
2289 inserted. */
2290 stop_all_lwps (1, event_child);
2291 cancel_breakpoints ();
2292
2293 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2294 event_child->exit_jump_pad_bkpt = NULL;
2295
2296 unstop_all_lwps (1, event_child);
2297
2298 gdb_assert (event_child->suspended >= 0);
2299 }
2300 }
2301
2302 if (event_child->collecting_fast_tracepoint == 0)
2303 {
2304 if (debug_threads)
2305 fprintf (stderr,
2306 "fast tracepoint finished "
2307 "collecting successfully.\n");
2308
2309 /* We may have a deferred signal to report. */
2310 if (dequeue_one_deferred_signal (event_child, &w))
2311 {
2312 if (debug_threads)
2313 fprintf (stderr, "dequeued one signal.\n");
2314 }
2315 else
2316 {
2317 if (debug_threads)
2318 fprintf (stderr, "no deferred signals.\n");
2319
2320 if (stabilizing_threads)
2321 {
2322 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2323 ourstatus->value.sig = TARGET_SIGNAL_0;
2324 return ptid_of (event_child);
2325 }
2326 }
2327 }
2328 }
2329
2330 /* Check whether GDB would be interested in this event. */
2331
2332 /* If GDB is not interested in this signal, don't stop other
2333 threads, and don't report it to GDB. Just resume the inferior
2334 right away. We do this for threading-related signals as well as
2335 any that GDB specifically requested we ignore. But never ignore
2336 SIGSTOP if we sent it ourselves, and do not ignore signals when
2337 stepping - they may require special handling to skip the signal
2338 handler. */
2339 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2340 thread library? */
2341 if (WIFSTOPPED (w)
2342 && current_inferior->last_resume_kind != resume_step
2343 && (
2344 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
2345 (current_process ()->private->thread_db != NULL
2346 && (WSTOPSIG (w) == __SIGRTMIN
2347 || WSTOPSIG (w) == __SIGRTMIN + 1))
2348 ||
2349 #endif
2350 (pass_signals[target_signal_from_host (WSTOPSIG (w))]
2351 && !(WSTOPSIG (w) == SIGSTOP
2352 && current_inferior->last_resume_kind == resume_stop))))
2353 {
2354 siginfo_t info, *info_p;
2355
2356 if (debug_threads)
2357 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
2358 WSTOPSIG (w), lwpid_of (event_child));
2359
2360 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (event_child), 0, &info) == 0)
2361 info_p = &info;
2362 else
2363 info_p = NULL;
2364 linux_resume_one_lwp (event_child, event_child->stepping,
2365 WSTOPSIG (w), info_p);
2366 goto retry;
2367 }
2368
2369 /* If GDB wanted this thread to single step, we always want to
2370 report the SIGTRAP, and let GDB handle it. Watchpoints should
2371 always be reported. So should signals we can't explain. A
2372 SIGTRAP we can't explain could be a GDB breakpoint --- we may or
2373 not support Z0 breakpoints. If we do, we're be able to handle
2374 GDB breakpoints on top of internal breakpoints, by handling the
2375 internal breakpoint and still reporting the event to GDB. If we
2376 don't, we're out of luck, GDB won't see the breakpoint hit. */
2377 report_to_gdb = (!maybe_internal_trap
2378 || current_inferior->last_resume_kind == resume_step
2379 || event_child->stopped_by_watchpoint
2380 || (!step_over_finished
2381 && !bp_explains_trap && !trace_event)
2382 || gdb_breakpoint_here (event_child->stop_pc));
2383
2384 /* We found no reason GDB would want us to stop. We either hit one
2385 of our own breakpoints, or finished an internal step GDB
2386 shouldn't know about. */
2387 if (!report_to_gdb)
2388 {
2389 if (debug_threads)
2390 {
2391 if (bp_explains_trap)
2392 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2393 if (step_over_finished)
2394 fprintf (stderr, "Step-over finished.\n");
2395 if (trace_event)
2396 fprintf (stderr, "Tracepoint event.\n");
2397 }
2398
2399 /* We're not reporting this breakpoint to GDB, so apply the
2400 decr_pc_after_break adjustment to the inferior's regcache
2401 ourselves. */
2402
2403 if (the_low_target.set_pc != NULL)
2404 {
2405 struct regcache *regcache
2406 = get_thread_regcache (get_lwp_thread (event_child), 1);
2407 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2408 }
2409
2410 /* We may have finished stepping over a breakpoint. If so,
2411 we've stopped and suspended all LWPs momentarily except the
2412 stepping one. This is where we resume them all again. We're
2413 going to keep waiting, so use proceed, which handles stepping
2414 over the next breakpoint. */
2415 if (debug_threads)
2416 fprintf (stderr, "proceeding all threads.\n");
2417
2418 if (step_over_finished)
2419 unsuspend_all_lwps (event_child);
2420
2421 proceed_all_lwps ();
2422 goto retry;
2423 }
2424
2425 if (debug_threads)
2426 {
2427 if (current_inferior->last_resume_kind == resume_step)
2428 fprintf (stderr, "GDB wanted to single-step, reporting event.\n");
2429 if (event_child->stopped_by_watchpoint)
2430 fprintf (stderr, "Stopped by watchpoint.\n");
2431 if (gdb_breakpoint_here (event_child->stop_pc))
2432 fprintf (stderr, "Stopped by GDB breakpoint.\n");
2433 if (debug_threads)
2434 fprintf (stderr, "Hit a non-gdbserver trap event.\n");
2435 }
2436
2437 /* Alright, we're going to report a stop. */
2438
2439 if (!non_stop && !stabilizing_threads)
2440 {
2441 /* In all-stop, stop all threads. */
2442 stop_all_lwps (0, NULL);
2443
2444 /* If we're not waiting for a specific LWP, choose an event LWP
2445 from among those that have had events. Giving equal priority
2446 to all LWPs that have had events helps prevent
2447 starvation. */
2448 if (ptid_equal (ptid, minus_one_ptid))
2449 {
2450 event_child->status_pending_p = 1;
2451 event_child->status_pending = w;
2452
2453 select_event_lwp (&event_child);
2454
2455 event_child->status_pending_p = 0;
2456 w = event_child->status_pending;
2457 }
2458
2459 /* Now that we've selected our final event LWP, cancel any
2460 breakpoints in other LWPs that have hit a GDB breakpoint.
2461 See the comment in cancel_breakpoints_callback to find out
2462 why. */
2463 find_inferior (&all_lwps, cancel_breakpoints_callback, event_child);
2464
2465 /* Stabilize threads (move out of jump pads). */
2466 stabilize_threads ();
2467 }
2468 else
2469 {
2470 /* If we just finished a step-over, then all threads had been
2471 momentarily paused. In all-stop, that's fine, we want
2472 threads stopped by now anyway. In non-stop, we need to
2473 re-resume threads that GDB wanted to be running. */
2474 if (step_over_finished)
2475 unstop_all_lwps (1, event_child);
2476 }
2477
2478 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2479
2480 if (current_inferior->last_resume_kind == resume_stop
2481 && WSTOPSIG (w) == SIGSTOP)
2482 {
2483 /* A thread that has been requested to stop by GDB with vCont;t,
2484 and it stopped cleanly, so report as SIG0. The use of
2485 SIGSTOP is an implementation detail. */
2486 ourstatus->value.sig = TARGET_SIGNAL_0;
2487 }
2488 else if (current_inferior->last_resume_kind == resume_stop
2489 && WSTOPSIG (w) != SIGSTOP)
2490 {
2491 /* A thread that has been requested to stop by GDB with vCont;t,
2492 but, it stopped for other reasons. */
2493 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
2494 }
2495 else
2496 {
2497 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
2498 }
2499
2500 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
2501
2502 if (debug_threads)
2503 fprintf (stderr, "linux_wait ret = %s, %d, %d\n",
2504 target_pid_to_str (ptid_of (event_child)),
2505 ourstatus->kind,
2506 ourstatus->value.sig);
2507
2508 return ptid_of (event_child);
2509 }
2510
2511 /* Get rid of any pending event in the pipe. */
2512 static void
2513 async_file_flush (void)
2514 {
2515 int ret;
2516 char buf;
2517
2518 do
2519 ret = read (linux_event_pipe[0], &buf, 1);
2520 while (ret >= 0 || (ret == -1 && errno == EINTR));
2521 }
2522
2523 /* Put something in the pipe, so the event loop wakes up. */
2524 static void
2525 async_file_mark (void)
2526 {
2527 int ret;
2528
2529 async_file_flush ();
2530
2531 do
2532 ret = write (linux_event_pipe[1], "+", 1);
2533 while (ret == 0 || (ret == -1 && errno == EINTR));
2534
2535 /* Ignore EAGAIN. If the pipe is full, the event loop will already
2536 be awakened anyway. */
2537 }
2538
2539 static ptid_t
2540 linux_wait (ptid_t ptid,
2541 struct target_waitstatus *ourstatus, int target_options)
2542 {
2543 ptid_t event_ptid;
2544
2545 if (debug_threads)
2546 fprintf (stderr, "linux_wait: [%s]\n", target_pid_to_str (ptid));
2547
2548 /* Flush the async file first. */
2549 if (target_is_async_p ())
2550 async_file_flush ();
2551
2552 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
2553
2554 /* If at least one stop was reported, there may be more. A single
2555 SIGCHLD can signal more than one child stop. */
2556 if (target_is_async_p ()
2557 && (target_options & TARGET_WNOHANG) != 0
2558 && !ptid_equal (event_ptid, null_ptid))
2559 async_file_mark ();
2560
2561 return event_ptid;
2562 }
2563
2564 /* Send a signal to an LWP. */
2565
2566 static int
2567 kill_lwp (unsigned long lwpid, int signo)
2568 {
2569 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2570 fails, then we are not using nptl threads and we should be using kill. */
2571
2572 #ifdef __NR_tkill
2573 {
2574 static int tkill_failed;
2575
2576 if (!tkill_failed)
2577 {
2578 int ret;
2579
2580 errno = 0;
2581 ret = syscall (__NR_tkill, lwpid, signo);
2582 if (errno != ENOSYS)
2583 return ret;
2584 tkill_failed = 1;
2585 }
2586 }
2587 #endif
2588
2589 return kill (lwpid, signo);
2590 }
2591
2592 void
2593 linux_stop_lwp (struct lwp_info *lwp)
2594 {
2595 send_sigstop (lwp);
2596 }
2597
2598 static void
2599 send_sigstop (struct lwp_info *lwp)
2600 {
2601 int pid;
2602
2603 pid = lwpid_of (lwp);
2604
2605 /* If we already have a pending stop signal for this process, don't
2606 send another. */
2607 if (lwp->stop_expected)
2608 {
2609 if (debug_threads)
2610 fprintf (stderr, "Have pending sigstop for lwp %d\n", pid);
2611
2612 return;
2613 }
2614
2615 if (debug_threads)
2616 fprintf (stderr, "Sending sigstop to lwp %d\n", pid);
2617
2618 lwp->stop_expected = 1;
2619 kill_lwp (pid, SIGSTOP);
2620 }
2621
2622 static int
2623 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
2624 {
2625 struct lwp_info *lwp = (struct lwp_info *) entry;
2626
2627 /* Ignore EXCEPT. */
2628 if (lwp == except)
2629 return 0;
2630
2631 if (lwp->stopped)
2632 return 0;
2633
2634 send_sigstop (lwp);
2635 return 0;
2636 }
2637
2638 /* Increment the suspend count of an LWP, and stop it, if not stopped
2639 yet. */
2640 static int
2641 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
2642 void *except)
2643 {
2644 struct lwp_info *lwp = (struct lwp_info *) entry;
2645
2646 /* Ignore EXCEPT. */
2647 if (lwp == except)
2648 return 0;
2649
2650 lwp->suspended++;
2651
2652 return send_sigstop_callback (entry, except);
2653 }
2654
2655 static void
2656 mark_lwp_dead (struct lwp_info *lwp, int wstat)
2657 {
2658 /* It's dead, really. */
2659 lwp->dead = 1;
2660
2661 /* Store the exit status for later. */
2662 lwp->status_pending_p = 1;
2663 lwp->status_pending = wstat;
2664
2665 /* Prevent trying to stop it. */
2666 lwp->stopped = 1;
2667
2668 /* No further stops are expected from a dead lwp. */
2669 lwp->stop_expected = 0;
2670 }
2671
2672 static void
2673 wait_for_sigstop (struct inferior_list_entry *entry)
2674 {
2675 struct lwp_info *lwp = (struct lwp_info *) entry;
2676 struct thread_info *saved_inferior;
2677 int wstat;
2678 ptid_t saved_tid;
2679 ptid_t ptid;
2680 int pid;
2681
2682 if (lwp->stopped)
2683 {
2684 if (debug_threads)
2685 fprintf (stderr, "wait_for_sigstop: LWP %ld already stopped\n",
2686 lwpid_of (lwp));
2687 return;
2688 }
2689
2690 saved_inferior = current_inferior;
2691 if (saved_inferior != NULL)
2692 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
2693 else
2694 saved_tid = null_ptid; /* avoid bogus unused warning */
2695
2696 ptid = lwp->head.id;
2697
2698 if (debug_threads)
2699 fprintf (stderr, "wait_for_sigstop: pulling one event\n");
2700
2701 pid = linux_wait_for_event (ptid, &wstat, __WALL);
2702
2703 /* If we stopped with a non-SIGSTOP signal, save it for later
2704 and record the pending SIGSTOP. If the process exited, just
2705 return. */
2706 if (WIFSTOPPED (wstat))
2707 {
2708 if (debug_threads)
2709 fprintf (stderr, "LWP %ld stopped with signal %d\n",
2710 lwpid_of (lwp), WSTOPSIG (wstat));
2711
2712 if (WSTOPSIG (wstat) != SIGSTOP)
2713 {
2714 if (debug_threads)
2715 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
2716 lwpid_of (lwp), wstat);
2717
2718 lwp->status_pending_p = 1;
2719 lwp->status_pending = wstat;
2720 }
2721 }
2722 else
2723 {
2724 if (debug_threads)
2725 fprintf (stderr, "Process %d exited while stopping LWPs\n", pid);
2726
2727 lwp = find_lwp_pid (pid_to_ptid (pid));
2728 if (lwp)
2729 {
2730 /* Leave this status pending for the next time we're able to
2731 report it. In the mean time, we'll report this lwp as
2732 dead to GDB, so GDB doesn't try to read registers and
2733 memory from it. This can only happen if this was the
2734 last thread of the process; otherwise, PID is removed
2735 from the thread tables before linux_wait_for_event
2736 returns. */
2737 mark_lwp_dead (lwp, wstat);
2738 }
2739 }
2740
2741 if (saved_inferior == NULL || linux_thread_alive (saved_tid))
2742 current_inferior = saved_inferior;
2743 else
2744 {
2745 if (debug_threads)
2746 fprintf (stderr, "Previously current thread died.\n");
2747
2748 if (non_stop)
2749 {
2750 /* We can't change the current inferior behind GDB's back,
2751 otherwise, a subsequent command may apply to the wrong
2752 process. */
2753 current_inferior = NULL;
2754 }
2755 else
2756 {
2757 /* Set a valid thread as current. */
2758 set_desired_inferior (0);
2759 }
2760 }
2761 }
2762
2763 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
2764 move it out, because we need to report the stop event to GDB. For
2765 example, if the user puts a breakpoint in the jump pad, it's
2766 because she wants to debug it. */
2767
2768 static int
2769 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
2770 {
2771 struct lwp_info *lwp = (struct lwp_info *) entry;
2772 struct thread_info *thread = get_lwp_thread (lwp);
2773
2774 gdb_assert (lwp->suspended == 0);
2775 gdb_assert (lwp->stopped);
2776
2777 /* Allow debugging the jump pad, gdb_collect, etc.. */
2778 return (supports_fast_tracepoints ()
2779 && in_process_agent_loaded ()
2780 && (gdb_breakpoint_here (lwp->stop_pc)
2781 || lwp->stopped_by_watchpoint
2782 || thread->last_resume_kind == resume_step)
2783 && linux_fast_tracepoint_collecting (lwp, NULL));
2784 }
2785
2786 static void
2787 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
2788 {
2789 struct lwp_info *lwp = (struct lwp_info *) entry;
2790 struct thread_info *thread = get_lwp_thread (lwp);
2791 int *wstat;
2792
2793 gdb_assert (lwp->suspended == 0);
2794 gdb_assert (lwp->stopped);
2795
2796 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
2797
2798 /* Allow debugging the jump pad, gdb_collect, etc. */
2799 if (!gdb_breakpoint_here (lwp->stop_pc)
2800 && !lwp->stopped_by_watchpoint
2801 && thread->last_resume_kind != resume_step
2802 && maybe_move_out_of_jump_pad (lwp, wstat))
2803 {
2804 if (debug_threads)
2805 fprintf (stderr,
2806 "LWP %ld needs stabilizing (in jump pad)\n",
2807 lwpid_of (lwp));
2808
2809 if (wstat)
2810 {
2811 lwp->status_pending_p = 0;
2812 enqueue_one_deferred_signal (lwp, wstat);
2813
2814 if (debug_threads)
2815 fprintf (stderr,
2816 "Signal %d for LWP %ld deferred "
2817 "(in jump pad)\n",
2818 WSTOPSIG (*wstat), lwpid_of (lwp));
2819 }
2820
2821 linux_resume_one_lwp (lwp, 0, 0, NULL);
2822 }
2823 else
2824 lwp->suspended++;
2825 }
2826
2827 static int
2828 lwp_running (struct inferior_list_entry *entry, void *data)
2829 {
2830 struct lwp_info *lwp = (struct lwp_info *) entry;
2831
2832 if (lwp->dead)
2833 return 0;
2834 if (lwp->stopped)
2835 return 0;
2836 return 1;
2837 }
2838
2839 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
2840 If SUSPEND, then also increase the suspend count of every LWP,
2841 except EXCEPT. */
2842
2843 static void
2844 stop_all_lwps (int suspend, struct lwp_info *except)
2845 {
2846 stopping_threads = 1;
2847
2848 if (suspend)
2849 find_inferior (&all_lwps, suspend_and_send_sigstop_callback, except);
2850 else
2851 find_inferior (&all_lwps, send_sigstop_callback, except);
2852 for_each_inferior (&all_lwps, wait_for_sigstop);
2853 stopping_threads = 0;
2854 }
2855
2856 /* Resume execution of the inferior process.
2857 If STEP is nonzero, single-step it.
2858 If SIGNAL is nonzero, give it that signal. */
2859
2860 static void
2861 linux_resume_one_lwp (struct lwp_info *lwp,
2862 int step, int signal, siginfo_t *info)
2863 {
2864 struct thread_info *saved_inferior;
2865 int fast_tp_collecting;
2866
2867 if (lwp->stopped == 0)
2868 return;
2869
2870 fast_tp_collecting = lwp->collecting_fast_tracepoint;
2871
2872 gdb_assert (!stabilizing_threads || fast_tp_collecting);
2873
2874 /* Cancel actions that rely on GDB not changing the PC (e.g., the
2875 user used the "jump" command, or "set $pc = foo"). */
2876 if (lwp->stop_pc != get_pc (lwp))
2877 {
2878 /* Collecting 'while-stepping' actions doesn't make sense
2879 anymore. */
2880 release_while_stepping_state_list (get_lwp_thread (lwp));
2881 }
2882
2883 /* If we have pending signals or status, and a new signal, enqueue the
2884 signal. Also enqueue the signal if we are waiting to reinsert a
2885 breakpoint; it will be picked up again below. */
2886 if (signal != 0
2887 && (lwp->status_pending_p
2888 || lwp->pending_signals != NULL
2889 || lwp->bp_reinsert != 0
2890 || fast_tp_collecting))
2891 {
2892 struct pending_signals *p_sig;
2893 p_sig = xmalloc (sizeof (*p_sig));
2894 p_sig->prev = lwp->pending_signals;
2895 p_sig->signal = signal;
2896 if (info == NULL)
2897 memset (&p_sig->info, 0, sizeof (siginfo_t));
2898 else
2899 memcpy (&p_sig->info, info, sizeof (siginfo_t));
2900 lwp->pending_signals = p_sig;
2901 }
2902
2903 if (lwp->status_pending_p)
2904 {
2905 if (debug_threads)
2906 fprintf (stderr, "Not resuming lwp %ld (%s, signal %d, stop %s);"
2907 " has pending status\n",
2908 lwpid_of (lwp), step ? "step" : "continue", signal,
2909 lwp->stop_expected ? "expected" : "not expected");
2910 return;
2911 }
2912
2913 saved_inferior = current_inferior;
2914 current_inferior = get_lwp_thread (lwp);
2915
2916 if (debug_threads)
2917 fprintf (stderr, "Resuming lwp %ld (%s, signal %d, stop %s)\n",
2918 lwpid_of (lwp), step ? "step" : "continue", signal,
2919 lwp->stop_expected ? "expected" : "not expected");
2920
2921 /* This bit needs some thinking about. If we get a signal that
2922 we must report while a single-step reinsert is still pending,
2923 we often end up resuming the thread. It might be better to
2924 (ew) allow a stack of pending events; then we could be sure that
2925 the reinsert happened right away and not lose any signals.
2926
2927 Making this stack would also shrink the window in which breakpoints are
2928 uninserted (see comment in linux_wait_for_lwp) but not enough for
2929 complete correctness, so it won't solve that problem. It may be
2930 worthwhile just to solve this one, however. */
2931 if (lwp->bp_reinsert != 0)
2932 {
2933 if (debug_threads)
2934 fprintf (stderr, " pending reinsert at 0x%s\n",
2935 paddress (lwp->bp_reinsert));
2936
2937 if (lwp->bp_reinsert != 0 && can_hardware_single_step ())
2938 {
2939 if (fast_tp_collecting == 0)
2940 {
2941 if (step == 0)
2942 fprintf (stderr, "BAD - reinserting but not stepping.\n");
2943 if (lwp->suspended)
2944 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
2945 lwp->suspended);
2946 }
2947
2948 step = 1;
2949 }
2950
2951 /* Postpone any pending signal. It was enqueued above. */
2952 signal = 0;
2953 }
2954
2955 if (fast_tp_collecting == 1)
2956 {
2957 if (debug_threads)
2958 fprintf (stderr, "\
2959 lwp %ld wants to get out of fast tracepoint jump pad (exit-jump-pad-bkpt)\n",
2960 lwpid_of (lwp));
2961
2962 /* Postpone any pending signal. It was enqueued above. */
2963 signal = 0;
2964 }
2965 else if (fast_tp_collecting == 2)
2966 {
2967 if (debug_threads)
2968 fprintf (stderr, "\
2969 lwp %ld wants to get out of fast tracepoint jump pad single-stepping\n",
2970 lwpid_of (lwp));
2971
2972 if (can_hardware_single_step ())
2973 step = 1;
2974 else
2975 fatal ("moving out of jump pad single-stepping"
2976 " not implemented on this target");
2977
2978 /* Postpone any pending signal. It was enqueued above. */
2979 signal = 0;
2980 }
2981
2982 /* If we have while-stepping actions in this thread set it stepping.
2983 If we have a signal to deliver, it may or may not be set to
2984 SIG_IGN, we don't know. Assume so, and allow collecting
2985 while-stepping into a signal handler. A possible smart thing to
2986 do would be to set an internal breakpoint at the signal return
2987 address, continue, and carry on catching this while-stepping
2988 action only when that breakpoint is hit. A future
2989 enhancement. */
2990 if (get_lwp_thread (lwp)->while_stepping != NULL
2991 && can_hardware_single_step ())
2992 {
2993 if (debug_threads)
2994 fprintf (stderr,
2995 "lwp %ld has a while-stepping action -> forcing step.\n",
2996 lwpid_of (lwp));
2997 step = 1;
2998 }
2999
3000 if (debug_threads && the_low_target.get_pc != NULL)
3001 {
3002 struct regcache *regcache = get_thread_regcache (current_inferior, 1);
3003 CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
3004 fprintf (stderr, " resuming from pc 0x%lx\n", (long) pc);
3005 }
3006
3007 /* If we have pending signals, consume one unless we are trying to
3008 reinsert a breakpoint or we're trying to finish a fast tracepoint
3009 collect. */
3010 if (lwp->pending_signals != NULL
3011 && lwp->bp_reinsert == 0
3012 && fast_tp_collecting == 0)
3013 {
3014 struct pending_signals **p_sig;
3015
3016 p_sig = &lwp->pending_signals;
3017 while ((*p_sig)->prev != NULL)
3018 p_sig = &(*p_sig)->prev;
3019
3020 signal = (*p_sig)->signal;
3021 if ((*p_sig)->info.si_signo != 0)
3022 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &(*p_sig)->info);
3023
3024 free (*p_sig);
3025 *p_sig = NULL;
3026 }
3027
3028 if (the_low_target.prepare_to_resume != NULL)
3029 the_low_target.prepare_to_resume (lwp);
3030
3031 regcache_invalidate_one ((struct inferior_list_entry *)
3032 get_lwp_thread (lwp));
3033 errno = 0;
3034 lwp->stopped = 0;
3035 lwp->stopped_by_watchpoint = 0;
3036 lwp->stepping = step;
3037 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (lwp), 0,
3038 /* Coerce to a uintptr_t first to avoid potential gcc warning
3039 of coercing an 8 byte integer to a 4 byte pointer. */
3040 (PTRACE_ARG4_TYPE) (uintptr_t) signal);
3041
3042 current_inferior = saved_inferior;
3043 if (errno)
3044 {
3045 /* ESRCH from ptrace either means that the thread was already
3046 running (an error) or that it is gone (a race condition). If
3047 it's gone, we will get a notification the next time we wait,
3048 so we can ignore the error. We could differentiate these
3049 two, but it's tricky without waiting; the thread still exists
3050 as a zombie, so sending it signal 0 would succeed. So just
3051 ignore ESRCH. */
3052 if (errno == ESRCH)
3053 return;
3054
3055 perror_with_name ("ptrace");
3056 }
3057 }
3058
3059 struct thread_resume_array
3060 {
3061 struct thread_resume *resume;
3062 size_t n;
3063 };
3064
3065 /* This function is called once per thread. We look up the thread
3066 in RESUME_PTR, and mark the thread with a pointer to the appropriate
3067 resume request.
3068
3069 This algorithm is O(threads * resume elements), but resume elements
3070 is small (and will remain small at least until GDB supports thread
3071 suspension). */
3072 static int
3073 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
3074 {
3075 struct lwp_info *lwp;
3076 struct thread_info *thread;
3077 int ndx;
3078 struct thread_resume_array *r;
3079
3080 thread = (struct thread_info *) entry;
3081 lwp = get_thread_lwp (thread);
3082 r = arg;
3083
3084 for (ndx = 0; ndx < r->n; ndx++)
3085 {
3086 ptid_t ptid = r->resume[ndx].thread;
3087 if (ptid_equal (ptid, minus_one_ptid)
3088 || ptid_equal (ptid, entry->id)
3089 || (ptid_is_pid (ptid)
3090 && (ptid_get_pid (ptid) == pid_of (lwp)))
3091 || (ptid_get_lwp (ptid) == -1
3092 && (ptid_get_pid (ptid) == pid_of (lwp))))
3093 {
3094 if (r->resume[ndx].kind == resume_stop
3095 && thread->last_resume_kind == resume_stop)
3096 {
3097 if (debug_threads)
3098 fprintf (stderr, "already %s LWP %ld at GDB's request\n",
3099 thread->last_status.kind == TARGET_WAITKIND_STOPPED
3100 ? "stopped"
3101 : "stopping",
3102 lwpid_of (lwp));
3103
3104 continue;
3105 }
3106
3107 lwp->resume = &r->resume[ndx];
3108 thread->last_resume_kind = lwp->resume->kind;
3109
3110 /* If we had a deferred signal to report, dequeue one now.
3111 This can happen if LWP gets more than one signal while
3112 trying to get out of a jump pad. */
3113 if (lwp->stopped
3114 && !lwp->status_pending_p
3115 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
3116 {
3117 lwp->status_pending_p = 1;
3118
3119 if (debug_threads)
3120 fprintf (stderr,
3121 "Dequeueing deferred signal %d for LWP %ld, "
3122 "leaving status pending.\n",
3123 WSTOPSIG (lwp->status_pending), lwpid_of (lwp));
3124 }
3125
3126 return 0;
3127 }
3128 }
3129
3130 /* No resume action for this thread. */
3131 lwp->resume = NULL;
3132
3133 return 0;
3134 }
3135
3136
3137 /* Set *FLAG_P if this lwp has an interesting status pending. */
3138 static int
3139 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3140 {
3141 struct lwp_info *lwp = (struct lwp_info *) entry;
3142
3143 /* LWPs which will not be resumed are not interesting, because
3144 we might not wait for them next time through linux_wait. */
3145 if (lwp->resume == NULL)
3146 return 0;
3147
3148 if (lwp->status_pending_p)
3149 * (int *) flag_p = 1;
3150
3151 return 0;
3152 }
3153
3154 /* Return 1 if this lwp that GDB wants running is stopped at an
3155 internal breakpoint that we need to step over. It assumes that any
3156 required STOP_PC adjustment has already been propagated to the
3157 inferior's regcache. */
3158
3159 static int
3160 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3161 {
3162 struct lwp_info *lwp = (struct lwp_info *) entry;
3163 struct thread_info *thread;
3164 struct thread_info *saved_inferior;
3165 CORE_ADDR pc;
3166
3167 /* LWPs which will not be resumed are not interesting, because we
3168 might not wait for them next time through linux_wait. */
3169
3170 if (!lwp->stopped)
3171 {
3172 if (debug_threads)
3173 fprintf (stderr,
3174 "Need step over [LWP %ld]? Ignoring, not stopped\n",
3175 lwpid_of (lwp));
3176 return 0;
3177 }
3178
3179 thread = get_lwp_thread (lwp);
3180
3181 if (thread->last_resume_kind == resume_stop)
3182 {
3183 if (debug_threads)
3184 fprintf (stderr,
3185 "Need step over [LWP %ld]? Ignoring, should remain stopped\n",
3186 lwpid_of (lwp));
3187 return 0;
3188 }
3189
3190 gdb_assert (lwp->suspended >= 0);
3191
3192 if (lwp->suspended)
3193 {
3194 if (debug_threads)
3195 fprintf (stderr,
3196 "Need step over [LWP %ld]? Ignoring, suspended\n",
3197 lwpid_of (lwp));
3198 return 0;
3199 }
3200
3201 if (!lwp->need_step_over)
3202 {
3203 if (debug_threads)
3204 fprintf (stderr,
3205 "Need step over [LWP %ld]? No\n", lwpid_of (lwp));
3206 }
3207
3208 if (lwp->status_pending_p)
3209 {
3210 if (debug_threads)
3211 fprintf (stderr,
3212 "Need step over [LWP %ld]? Ignoring, has pending status.\n",
3213 lwpid_of (lwp));
3214 return 0;
3215 }
3216
3217 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3218 or we have. */
3219 pc = get_pc (lwp);
3220
3221 /* If the PC has changed since we stopped, then don't do anything,
3222 and let the breakpoint/tracepoint be hit. This happens if, for
3223 instance, GDB handled the decr_pc_after_break subtraction itself,
3224 GDB is OOL stepping this thread, or the user has issued a "jump"
3225 command, or poked thread's registers herself. */
3226 if (pc != lwp->stop_pc)
3227 {
3228 if (debug_threads)
3229 fprintf (stderr,
3230 "Need step over [LWP %ld]? Cancelling, PC was changed. "
3231 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3232 lwpid_of (lwp), paddress (lwp->stop_pc), paddress (pc));
3233
3234 lwp->need_step_over = 0;
3235 return 0;
3236 }
3237
3238 saved_inferior = current_inferior;
3239 current_inferior = thread;
3240
3241 /* We can only step over breakpoints we know about. */
3242 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3243 {
3244 /* Don't step over a breakpoint that GDB expects to hit
3245 though. */
3246 if (gdb_breakpoint_here (pc))
3247 {
3248 if (debug_threads)
3249 fprintf (stderr,
3250 "Need step over [LWP %ld]? yes, but found"
3251 " GDB breakpoint at 0x%s; skipping step over\n",
3252 lwpid_of (lwp), paddress (pc));
3253
3254 current_inferior = saved_inferior;
3255 return 0;
3256 }
3257 else
3258 {
3259 if (debug_threads)
3260 fprintf (stderr,
3261 "Need step over [LWP %ld]? yes, "
3262 "found breakpoint at 0x%s\n",
3263 lwpid_of (lwp), paddress (pc));
3264
3265 /* We've found an lwp that needs stepping over --- return 1 so
3266 that find_inferior stops looking. */
3267 current_inferior = saved_inferior;
3268
3269 /* If the step over is cancelled, this is set again. */
3270 lwp->need_step_over = 0;
3271 return 1;
3272 }
3273 }
3274
3275 current_inferior = saved_inferior;
3276
3277 if (debug_threads)
3278 fprintf (stderr,
3279 "Need step over [LWP %ld]? No, no breakpoint found at 0x%s\n",
3280 lwpid_of (lwp), paddress (pc));
3281
3282 return 0;
3283 }
3284
3285 /* Start a step-over operation on LWP. When LWP stopped at a
3286 breakpoint, to make progress, we need to remove the breakpoint out
3287 of the way. If we let other threads run while we do that, they may
3288 pass by the breakpoint location and miss hitting it. To avoid
3289 that, a step-over momentarily stops all threads while LWP is
3290 single-stepped while the breakpoint is temporarily uninserted from
3291 the inferior. When the single-step finishes, we reinsert the
3292 breakpoint, and let all threads that are supposed to be running,
3293 run again.
3294
3295 On targets that don't support hardware single-step, we don't
3296 currently support full software single-stepping. Instead, we only
3297 support stepping over the thread event breakpoint, by asking the
3298 low target where to place a reinsert breakpoint. Since this
3299 routine assumes the breakpoint being stepped over is a thread event
3300 breakpoint, it usually assumes the return address of the current
3301 function is a good enough place to set the reinsert breakpoint. */
3302
3303 static int
3304 start_step_over (struct lwp_info *lwp)
3305 {
3306 struct thread_info *saved_inferior;
3307 CORE_ADDR pc;
3308 int step;
3309
3310 if (debug_threads)
3311 fprintf (stderr,
3312 "Starting step-over on LWP %ld. Stopping all threads\n",
3313 lwpid_of (lwp));
3314
3315 stop_all_lwps (1, lwp);
3316 gdb_assert (lwp->suspended == 0);
3317
3318 if (debug_threads)
3319 fprintf (stderr, "Done stopping all threads for step-over.\n");
3320
3321 /* Note, we should always reach here with an already adjusted PC,
3322 either by GDB (if we're resuming due to GDB's request), or by our
3323 caller, if we just finished handling an internal breakpoint GDB
3324 shouldn't care about. */
3325 pc = get_pc (lwp);
3326
3327 saved_inferior = current_inferior;
3328 current_inferior = get_lwp_thread (lwp);
3329
3330 lwp->bp_reinsert = pc;
3331 uninsert_breakpoints_at (pc);
3332 uninsert_fast_tracepoint_jumps_at (pc);
3333
3334 if (can_hardware_single_step ())
3335 {
3336 step = 1;
3337 }
3338 else
3339 {
3340 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
3341 set_reinsert_breakpoint (raddr);
3342 step = 0;
3343 }
3344
3345 current_inferior = saved_inferior;
3346
3347 linux_resume_one_lwp (lwp, step, 0, NULL);
3348
3349 /* Require next event from this LWP. */
3350 step_over_bkpt = lwp->head.id;
3351 return 1;
3352 }
3353
3354 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
3355 start_step_over, if still there, and delete any reinsert
3356 breakpoints we've set, on non hardware single-step targets. */
3357
3358 static int
3359 finish_step_over (struct lwp_info *lwp)
3360 {
3361 if (lwp->bp_reinsert != 0)
3362 {
3363 if (debug_threads)
3364 fprintf (stderr, "Finished step over.\n");
3365
3366 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
3367 may be no breakpoint to reinsert there by now. */
3368 reinsert_breakpoints_at (lwp->bp_reinsert);
3369 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
3370
3371 lwp->bp_reinsert = 0;
3372
3373 /* Delete any software-single-step reinsert breakpoints. No
3374 longer needed. We don't have to worry about other threads
3375 hitting this trap, and later not being able to explain it,
3376 because we were stepping over a breakpoint, and we hold all
3377 threads but LWP stopped while doing that. */
3378 if (!can_hardware_single_step ())
3379 delete_reinsert_breakpoints ();
3380
3381 step_over_bkpt = null_ptid;
3382 return 1;
3383 }
3384 else
3385 return 0;
3386 }
3387
3388 /* This function is called once per thread. We check the thread's resume
3389 request, which will tell us whether to resume, step, or leave the thread
3390 stopped; and what signal, if any, it should be sent.
3391
3392 For threads which we aren't explicitly told otherwise, we preserve
3393 the stepping flag; this is used for stepping over gdbserver-placed
3394 breakpoints.
3395
3396 If pending_flags was set in any thread, we queue any needed
3397 signals, since we won't actually resume. We already have a pending
3398 event to report, so we don't need to preserve any step requests;
3399 they should be re-issued if necessary. */
3400
3401 static int
3402 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
3403 {
3404 struct lwp_info *lwp;
3405 struct thread_info *thread;
3406 int step;
3407 int leave_all_stopped = * (int *) arg;
3408 int leave_pending;
3409
3410 thread = (struct thread_info *) entry;
3411 lwp = get_thread_lwp (thread);
3412
3413 if (lwp->resume == NULL)
3414 return 0;
3415
3416 if (lwp->resume->kind == resume_stop)
3417 {
3418 if (debug_threads)
3419 fprintf (stderr, "resume_stop request for LWP %ld\n", lwpid_of (lwp));
3420
3421 if (!lwp->stopped)
3422 {
3423 if (debug_threads)
3424 fprintf (stderr, "stopping LWP %ld\n", lwpid_of (lwp));
3425
3426 /* Stop the thread, and wait for the event asynchronously,
3427 through the event loop. */
3428 send_sigstop (lwp);
3429 }
3430 else
3431 {
3432 if (debug_threads)
3433 fprintf (stderr, "already stopped LWP %ld\n",
3434 lwpid_of (lwp));
3435
3436 /* The LWP may have been stopped in an internal event that
3437 was not meant to be notified back to GDB (e.g., gdbserver
3438 breakpoint), so we should be reporting a stop event in
3439 this case too. */
3440
3441 /* If the thread already has a pending SIGSTOP, this is a
3442 no-op. Otherwise, something later will presumably resume
3443 the thread and this will cause it to cancel any pending
3444 operation, due to last_resume_kind == resume_stop. If
3445 the thread already has a pending status to report, we
3446 will still report it the next time we wait - see
3447 status_pending_p_callback. */
3448
3449 /* If we already have a pending signal to report, then
3450 there's no need to queue a SIGSTOP, as this means we're
3451 midway through moving the LWP out of the jumppad, and we
3452 will report the pending signal as soon as that is
3453 finished. */
3454 if (lwp->pending_signals_to_report == NULL)
3455 send_sigstop (lwp);
3456 }
3457
3458 /* For stop requests, we're done. */
3459 lwp->resume = NULL;
3460 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3461 return 0;
3462 }
3463
3464 /* If this thread which is about to be resumed has a pending status,
3465 then don't resume any threads - we can just report the pending
3466 status. Make sure to queue any signals that would otherwise be
3467 sent. In all-stop mode, we do this decision based on if *any*
3468 thread has a pending status. If there's a thread that needs the
3469 step-over-breakpoint dance, then don't resume any other thread
3470 but that particular one. */
3471 leave_pending = (lwp->status_pending_p || leave_all_stopped);
3472
3473 if (!leave_pending)
3474 {
3475 if (debug_threads)
3476 fprintf (stderr, "resuming LWP %ld\n", lwpid_of (lwp));
3477
3478 step = (lwp->resume->kind == resume_step);
3479 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
3480 }
3481 else
3482 {
3483 if (debug_threads)
3484 fprintf (stderr, "leaving LWP %ld stopped\n", lwpid_of (lwp));
3485
3486 /* If we have a new signal, enqueue the signal. */
3487 if (lwp->resume->sig != 0)
3488 {
3489 struct pending_signals *p_sig;
3490 p_sig = xmalloc (sizeof (*p_sig));
3491 p_sig->prev = lwp->pending_signals;
3492 p_sig->signal = lwp->resume->sig;
3493 memset (&p_sig->info, 0, sizeof (siginfo_t));
3494
3495 /* If this is the same signal we were previously stopped by,
3496 make sure to queue its siginfo. We can ignore the return
3497 value of ptrace; if it fails, we'll skip
3498 PTRACE_SETSIGINFO. */
3499 if (WIFSTOPPED (lwp->last_status)
3500 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
3501 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &p_sig->info);
3502
3503 lwp->pending_signals = p_sig;
3504 }
3505 }
3506
3507 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3508 lwp->resume = NULL;
3509 return 0;
3510 }
3511
3512 static void
3513 linux_resume (struct thread_resume *resume_info, size_t n)
3514 {
3515 struct thread_resume_array array = { resume_info, n };
3516 struct lwp_info *need_step_over = NULL;
3517 int any_pending;
3518 int leave_all_stopped;
3519
3520 find_inferior (&all_threads, linux_set_resume_request, &array);
3521
3522 /* If there is a thread which would otherwise be resumed, which has
3523 a pending status, then don't resume any threads - we can just
3524 report the pending status. Make sure to queue any signals that
3525 would otherwise be sent. In non-stop mode, we'll apply this
3526 logic to each thread individually. We consume all pending events
3527 before considering to start a step-over (in all-stop). */
3528 any_pending = 0;
3529 if (!non_stop)
3530 find_inferior (&all_lwps, resume_status_pending_p, &any_pending);
3531
3532 /* If there is a thread which would otherwise be resumed, which is
3533 stopped at a breakpoint that needs stepping over, then don't
3534 resume any threads - have it step over the breakpoint with all
3535 other threads stopped, then resume all threads again. Make sure
3536 to queue any signals that would otherwise be delivered or
3537 queued. */
3538 if (!any_pending && supports_breakpoints ())
3539 need_step_over
3540 = (struct lwp_info *) find_inferior (&all_lwps,
3541 need_step_over_p, NULL);
3542
3543 leave_all_stopped = (need_step_over != NULL || any_pending);
3544
3545 if (debug_threads)
3546 {
3547 if (need_step_over != NULL)
3548 fprintf (stderr, "Not resuming all, need step over\n");
3549 else if (any_pending)
3550 fprintf (stderr,
3551 "Not resuming, all-stop and found "
3552 "an LWP with pending status\n");
3553 else
3554 fprintf (stderr, "Resuming, no pending status or step over needed\n");
3555 }
3556
3557 /* Even if we're leaving threads stopped, queue all signals we'd
3558 otherwise deliver. */
3559 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
3560
3561 if (need_step_over)
3562 start_step_over (need_step_over);
3563 }
3564
3565 /* This function is called once per thread. We check the thread's
3566 last resume request, which will tell us whether to resume, step, or
3567 leave the thread stopped. Any signal the client requested to be
3568 delivered has already been enqueued at this point.
3569
3570 If any thread that GDB wants running is stopped at an internal
3571 breakpoint that needs stepping over, we start a step-over operation
3572 on that particular thread, and leave all others stopped. */
3573
3574 static int
3575 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3576 {
3577 struct lwp_info *lwp = (struct lwp_info *) entry;
3578 struct thread_info *thread;
3579 int step;
3580
3581 if (lwp == except)
3582 return 0;
3583
3584 if (debug_threads)
3585 fprintf (stderr,
3586 "proceed_one_lwp: lwp %ld\n", lwpid_of (lwp));
3587
3588 if (!lwp->stopped)
3589 {
3590 if (debug_threads)
3591 fprintf (stderr, " LWP %ld already running\n", lwpid_of (lwp));
3592 return 0;
3593 }
3594
3595 thread = get_lwp_thread (lwp);
3596
3597 if (thread->last_resume_kind == resume_stop
3598 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
3599 {
3600 if (debug_threads)
3601 fprintf (stderr, " client wants LWP to remain %ld stopped\n",
3602 lwpid_of (lwp));
3603 return 0;
3604 }
3605
3606 if (lwp->status_pending_p)
3607 {
3608 if (debug_threads)
3609 fprintf (stderr, " LWP %ld has pending status, leaving stopped\n",
3610 lwpid_of (lwp));
3611 return 0;
3612 }
3613
3614 gdb_assert (lwp->suspended >= 0);
3615
3616 if (lwp->suspended)
3617 {
3618 if (debug_threads)
3619 fprintf (stderr, " LWP %ld is suspended\n", lwpid_of (lwp));
3620 return 0;
3621 }
3622
3623 if (thread->last_resume_kind == resume_stop
3624 && lwp->pending_signals_to_report == NULL
3625 && lwp->collecting_fast_tracepoint == 0)
3626 {
3627 /* We haven't reported this LWP as stopped yet (otherwise, the
3628 last_status.kind check above would catch it, and we wouldn't
3629 reach here. This LWP may have been momentarily paused by a
3630 stop_all_lwps call while handling for example, another LWP's
3631 step-over. In that case, the pending expected SIGSTOP signal
3632 that was queued at vCont;t handling time will have already
3633 been consumed by wait_for_sigstop, and so we need to requeue
3634 another one here. Note that if the LWP already has a SIGSTOP
3635 pending, this is a no-op. */
3636
3637 if (debug_threads)
3638 fprintf (stderr,
3639 "Client wants LWP %ld to stop. "
3640 "Making sure it has a SIGSTOP pending\n",
3641 lwpid_of (lwp));
3642
3643 send_sigstop (lwp);
3644 }
3645
3646 step = thread->last_resume_kind == resume_step;
3647 linux_resume_one_lwp (lwp, step, 0, NULL);
3648 return 0;
3649 }
3650
3651 static int
3652 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3653 {
3654 struct lwp_info *lwp = (struct lwp_info *) entry;
3655
3656 if (lwp == except)
3657 return 0;
3658
3659 lwp->suspended--;
3660 gdb_assert (lwp->suspended >= 0);
3661
3662 return proceed_one_lwp (entry, except);
3663 }
3664
3665 /* When we finish a step-over, set threads running again. If there's
3666 another thread that may need a step-over, now's the time to start
3667 it. Eventually, we'll move all threads past their breakpoints. */
3668
3669 static void
3670 proceed_all_lwps (void)
3671 {
3672 struct lwp_info *need_step_over;
3673
3674 /* If there is a thread which would otherwise be resumed, which is
3675 stopped at a breakpoint that needs stepping over, then don't
3676 resume any threads - have it step over the breakpoint with all
3677 other threads stopped, then resume all threads again. */
3678
3679 if (supports_breakpoints ())
3680 {
3681 need_step_over
3682 = (struct lwp_info *) find_inferior (&all_lwps,
3683 need_step_over_p, NULL);
3684
3685 if (need_step_over != NULL)
3686 {
3687 if (debug_threads)
3688 fprintf (stderr, "proceed_all_lwps: found "
3689 "thread %ld needing a step-over\n",
3690 lwpid_of (need_step_over));
3691
3692 start_step_over (need_step_over);
3693 return;
3694 }
3695 }
3696
3697 if (debug_threads)
3698 fprintf (stderr, "Proceeding, no step-over needed\n");
3699
3700 find_inferior (&all_lwps, proceed_one_lwp, NULL);
3701 }
3702
3703 /* Stopped LWPs that the client wanted to be running, that don't have
3704 pending statuses, are set to run again, except for EXCEPT, if not
3705 NULL. This undoes a stop_all_lwps call. */
3706
3707 static void
3708 unstop_all_lwps (int unsuspend, struct lwp_info *except)
3709 {
3710 if (debug_threads)
3711 {
3712 if (except)
3713 fprintf (stderr,
3714 "unstopping all lwps, except=(LWP %ld)\n", lwpid_of (except));
3715 else
3716 fprintf (stderr,
3717 "unstopping all lwps\n");
3718 }
3719
3720 if (unsuspend)
3721 find_inferior (&all_lwps, unsuspend_and_proceed_one_lwp, except);
3722 else
3723 find_inferior (&all_lwps, proceed_one_lwp, except);
3724 }
3725
3726 #ifdef HAVE_LINUX_USRREGS
3727
3728 int
3729 register_addr (int regnum)
3730 {
3731 int addr;
3732
3733 if (regnum < 0 || regnum >= the_low_target.num_regs)
3734 error ("Invalid register number %d.", regnum);
3735
3736 addr = the_low_target.regmap[regnum];
3737
3738 return addr;
3739 }
3740
3741 /* Fetch one register. */
3742 static void
3743 fetch_register (struct regcache *regcache, int regno)
3744 {
3745 CORE_ADDR regaddr;
3746 int i, size;
3747 char *buf;
3748 int pid;
3749
3750 if (regno >= the_low_target.num_regs)
3751 return;
3752 if ((*the_low_target.cannot_fetch_register) (regno))
3753 return;
3754
3755 regaddr = register_addr (regno);
3756 if (regaddr == -1)
3757 return;
3758
3759 size = ((register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
3760 & -sizeof (PTRACE_XFER_TYPE));
3761 buf = alloca (size);
3762
3763 pid = lwpid_of (get_thread_lwp (current_inferior));
3764 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
3765 {
3766 errno = 0;
3767 *(PTRACE_XFER_TYPE *) (buf + i) =
3768 ptrace (PTRACE_PEEKUSER, pid,
3769 /* Coerce to a uintptr_t first to avoid potential gcc warning
3770 of coercing an 8 byte integer to a 4 byte pointer. */
3771 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr, 0);
3772 regaddr += sizeof (PTRACE_XFER_TYPE);
3773 if (errno != 0)
3774 error ("reading register %d: %s", regno, strerror (errno));
3775 }
3776
3777 if (the_low_target.supply_ptrace_register)
3778 the_low_target.supply_ptrace_register (regcache, regno, buf);
3779 else
3780 supply_register (regcache, regno, buf);
3781 }
3782
3783 /* Store one register. */
3784 static void
3785 store_register (struct regcache *regcache, int regno)
3786 {
3787 CORE_ADDR regaddr;
3788 int i, size;
3789 char *buf;
3790 int pid;
3791
3792 if (regno >= the_low_target.num_regs)
3793 return;
3794 if ((*the_low_target.cannot_store_register) (regno))
3795 return;
3796
3797 regaddr = register_addr (regno);
3798 if (regaddr == -1)
3799 return;
3800
3801 size = ((register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
3802 & -sizeof (PTRACE_XFER_TYPE));
3803 buf = alloca (size);
3804 memset (buf, 0, size);
3805
3806 if (the_low_target.collect_ptrace_register)
3807 the_low_target.collect_ptrace_register (regcache, regno, buf);
3808 else
3809 collect_register (regcache, regno, buf);
3810
3811 pid = lwpid_of (get_thread_lwp (current_inferior));
3812 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
3813 {
3814 errno = 0;
3815 ptrace (PTRACE_POKEUSER, pid,
3816 /* Coerce to a uintptr_t first to avoid potential gcc warning
3817 about coercing an 8 byte integer to a 4 byte pointer. */
3818 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr,
3819 (PTRACE_ARG4_TYPE) *(PTRACE_XFER_TYPE *) (buf + i));
3820 if (errno != 0)
3821 {
3822 /* At this point, ESRCH should mean the process is
3823 already gone, in which case we simply ignore attempts
3824 to change its registers. See also the related
3825 comment in linux_resume_one_lwp. */
3826 if (errno == ESRCH)
3827 return;
3828
3829 if ((*the_low_target.cannot_store_register) (regno) == 0)
3830 error ("writing register %d: %s", regno, strerror (errno));
3831 }
3832 regaddr += sizeof (PTRACE_XFER_TYPE);
3833 }
3834 }
3835
3836 /* Fetch all registers, or just one, from the child process. */
3837 static void
3838 usr_fetch_inferior_registers (struct regcache *regcache, int regno)
3839 {
3840 if (regno == -1)
3841 for (regno = 0; regno < the_low_target.num_regs; regno++)
3842 fetch_register (regcache, regno);
3843 else
3844 fetch_register (regcache, regno);
3845 }
3846
3847 /* Store our register values back into the inferior.
3848 If REGNO is -1, do this for all registers.
3849 Otherwise, REGNO specifies which register (so we can save time). */
3850 static void
3851 usr_store_inferior_registers (struct regcache *regcache, int regno)
3852 {
3853 if (regno == -1)
3854 for (regno = 0; regno < the_low_target.num_regs; regno++)
3855 store_register (regcache, regno);
3856 else
3857 store_register (regcache, regno);
3858 }
3859 #endif /* HAVE_LINUX_USRREGS */
3860
3861
3862
3863 #ifdef HAVE_LINUX_REGSETS
3864
3865 static int
3866 regsets_fetch_inferior_registers (struct regcache *regcache)
3867 {
3868 struct regset_info *regset;
3869 int saw_general_regs = 0;
3870 int pid;
3871 struct iovec iov;
3872
3873 regset = target_regsets;
3874
3875 pid = lwpid_of (get_thread_lwp (current_inferior));
3876 while (regset->size >= 0)
3877 {
3878 void *buf, *data;
3879 int nt_type, res;
3880
3881 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
3882 {
3883 regset ++;
3884 continue;
3885 }
3886
3887 buf = xmalloc (regset->size);
3888
3889 nt_type = regset->nt_type;
3890 if (nt_type)
3891 {
3892 iov.iov_base = buf;
3893 iov.iov_len = regset->size;
3894 data = (void *) &iov;
3895 }
3896 else
3897 data = buf;
3898
3899 #ifndef __sparc__
3900 res = ptrace (regset->get_request, pid, nt_type, data);
3901 #else
3902 res = ptrace (regset->get_request, pid, data, nt_type);
3903 #endif
3904 if (res < 0)
3905 {
3906 if (errno == EIO)
3907 {
3908 /* If we get EIO on a regset, do not try it again for
3909 this process. */
3910 disabled_regsets[regset - target_regsets] = 1;
3911 free (buf);
3912 continue;
3913 }
3914 else
3915 {
3916 char s[256];
3917 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
3918 pid);
3919 perror (s);
3920 }
3921 }
3922 else if (regset->type == GENERAL_REGS)
3923 saw_general_regs = 1;
3924 regset->store_function (regcache, buf);
3925 regset ++;
3926 free (buf);
3927 }
3928 if (saw_general_regs)
3929 return 0;
3930 else
3931 return 1;
3932 }
3933
3934 static int
3935 regsets_store_inferior_registers (struct regcache *regcache)
3936 {
3937 struct regset_info *regset;
3938 int saw_general_regs = 0;
3939 int pid;
3940 struct iovec iov;
3941
3942 regset = target_regsets;
3943
3944 pid = lwpid_of (get_thread_lwp (current_inferior));
3945 while (regset->size >= 0)
3946 {
3947 void *buf, *data;
3948 int nt_type, res;
3949
3950 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
3951 {
3952 regset ++;
3953 continue;
3954 }
3955
3956 buf = xmalloc (regset->size);
3957
3958 /* First fill the buffer with the current register set contents,
3959 in case there are any items in the kernel's regset that are
3960 not in gdbserver's regcache. */
3961
3962 nt_type = regset->nt_type;
3963 if (nt_type)
3964 {
3965 iov.iov_base = buf;
3966 iov.iov_len = regset->size;
3967 data = (void *) &iov;
3968 }
3969 else
3970 data = buf;
3971
3972 #ifndef __sparc__
3973 res = ptrace (regset->get_request, pid, nt_type, data);
3974 #else
3975 res = ptrace (regset->get_request, pid, &iov, data);
3976 #endif
3977
3978 if (res == 0)
3979 {
3980 /* Then overlay our cached registers on that. */
3981 regset->fill_function (regcache, buf);
3982
3983 /* Only now do we write the register set. */
3984 #ifndef __sparc__
3985 res = ptrace (regset->set_request, pid, nt_type, data);
3986 #else
3987 res = ptrace (regset->set_request, pid, data, nt_type);
3988 #endif
3989 }
3990
3991 if (res < 0)
3992 {
3993 if (errno == EIO)
3994 {
3995 /* If we get EIO on a regset, do not try it again for
3996 this process. */
3997 disabled_regsets[regset - target_regsets] = 1;
3998 free (buf);
3999 continue;
4000 }
4001 else if (errno == ESRCH)
4002 {
4003 /* At this point, ESRCH should mean the process is
4004 already gone, in which case we simply ignore attempts
4005 to change its registers. See also the related
4006 comment in linux_resume_one_lwp. */
4007 free (buf);
4008 return 0;
4009 }
4010 else
4011 {
4012 perror ("Warning: ptrace(regsets_store_inferior_registers)");
4013 }
4014 }
4015 else if (regset->type == GENERAL_REGS)
4016 saw_general_regs = 1;
4017 regset ++;
4018 free (buf);
4019 }
4020 if (saw_general_regs)
4021 return 0;
4022 else
4023 return 1;
4024 return 0;
4025 }
4026
4027 #endif /* HAVE_LINUX_REGSETS */
4028
4029
4030 void
4031 linux_fetch_registers (struct regcache *regcache, int regno)
4032 {
4033 #ifdef HAVE_LINUX_REGSETS
4034 if (regsets_fetch_inferior_registers (regcache) == 0)
4035 return;
4036 #endif
4037 #ifdef HAVE_LINUX_USRREGS
4038 usr_fetch_inferior_registers (regcache, regno);
4039 #endif
4040 }
4041
4042 void
4043 linux_store_registers (struct regcache *regcache, int regno)
4044 {
4045 #ifdef HAVE_LINUX_REGSETS
4046 if (regsets_store_inferior_registers (regcache) == 0)
4047 return;
4048 #endif
4049 #ifdef HAVE_LINUX_USRREGS
4050 usr_store_inferior_registers (regcache, regno);
4051 #endif
4052 }
4053
4054
4055 /* Copy LEN bytes from inferior's memory starting at MEMADDR
4056 to debugger memory starting at MYADDR. */
4057
4058 static int
4059 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
4060 {
4061 register int i;
4062 /* Round starting address down to longword boundary. */
4063 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4064 /* Round ending address up; get number of longwords that makes. */
4065 register int count
4066 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4067 / sizeof (PTRACE_XFER_TYPE);
4068 /* Allocate buffer of that many longwords. */
4069 register PTRACE_XFER_TYPE *buffer
4070 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4071 int fd;
4072 char filename[64];
4073 int pid = lwpid_of (get_thread_lwp (current_inferior));
4074
4075 /* Try using /proc. Don't bother for one word. */
4076 if (len >= 3 * sizeof (long))
4077 {
4078 /* We could keep this file open and cache it - possibly one per
4079 thread. That requires some juggling, but is even faster. */
4080 sprintf (filename, "/proc/%d/mem", pid);
4081 fd = open (filename, O_RDONLY | O_LARGEFILE);
4082 if (fd == -1)
4083 goto no_proc;
4084
4085 /* If pread64 is available, use it. It's faster if the kernel
4086 supports it (only one syscall), and it's 64-bit safe even on
4087 32-bit platforms (for instance, SPARC debugging a SPARC64
4088 application). */
4089 #ifdef HAVE_PREAD64
4090 if (pread64 (fd, myaddr, len, memaddr) != len)
4091 #else
4092 if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, myaddr, len) != len)
4093 #endif
4094 {
4095 close (fd);
4096 goto no_proc;
4097 }
4098
4099 close (fd);
4100 return 0;
4101 }
4102
4103 no_proc:
4104 /* Read all the longwords */
4105 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4106 {
4107 errno = 0;
4108 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4109 about coercing an 8 byte integer to a 4 byte pointer. */
4110 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
4111 (PTRACE_ARG3_TYPE) (uintptr_t) addr, 0);
4112 if (errno)
4113 return errno;
4114 }
4115
4116 /* Copy appropriate bytes out of the buffer. */
4117 memcpy (myaddr,
4118 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4119 len);
4120
4121 return 0;
4122 }
4123
4124 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
4125 memory at MEMADDR. On failure (cannot write to the inferior)
4126 returns the value of errno. */
4127
4128 static int
4129 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
4130 {
4131 register int i;
4132 /* Round starting address down to longword boundary. */
4133 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4134 /* Round ending address up; get number of longwords that makes. */
4135 register int count
4136 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4137 / sizeof (PTRACE_XFER_TYPE);
4138
4139 /* Allocate buffer of that many longwords. */
4140 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
4141 alloca (count * sizeof (PTRACE_XFER_TYPE));
4142
4143 int pid = lwpid_of (get_thread_lwp (current_inferior));
4144
4145 if (debug_threads)
4146 {
4147 /* Dump up to four bytes. */
4148 unsigned int val = * (unsigned int *) myaddr;
4149 if (len == 1)
4150 val = val & 0xff;
4151 else if (len == 2)
4152 val = val & 0xffff;
4153 else if (len == 3)
4154 val = val & 0xffffff;
4155 fprintf (stderr, "Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
4156 val, (long)memaddr);
4157 }
4158
4159 /* Fill start and end extra bytes of buffer with existing memory data. */
4160
4161 errno = 0;
4162 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4163 about coercing an 8 byte integer to a 4 byte pointer. */
4164 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
4165 (PTRACE_ARG3_TYPE) (uintptr_t) addr, 0);
4166 if (errno)
4167 return errno;
4168
4169 if (count > 1)
4170 {
4171 errno = 0;
4172 buffer[count - 1]
4173 = ptrace (PTRACE_PEEKTEXT, pid,
4174 /* Coerce to a uintptr_t first to avoid potential gcc warning
4175 about coercing an 8 byte integer to a 4 byte pointer. */
4176 (PTRACE_ARG3_TYPE) (uintptr_t) (addr + (count - 1)
4177 * sizeof (PTRACE_XFER_TYPE)),
4178 0);
4179 if (errno)
4180 return errno;
4181 }
4182
4183 /* Copy data to be written over corresponding part of buffer. */
4184
4185 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4186 myaddr, len);
4187
4188 /* Write the entire buffer. */
4189
4190 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4191 {
4192 errno = 0;
4193 ptrace (PTRACE_POKETEXT, pid,
4194 /* Coerce to a uintptr_t first to avoid potential gcc warning
4195 about coercing an 8 byte integer to a 4 byte pointer. */
4196 (PTRACE_ARG3_TYPE) (uintptr_t) addr,
4197 (PTRACE_ARG4_TYPE) buffer[i]);
4198 if (errno)
4199 return errno;
4200 }
4201
4202 return 0;
4203 }
4204
4205 /* Non-zero if the kernel supports PTRACE_O_TRACEFORK. */
4206 static int linux_supports_tracefork_flag;
4207
4208 static void
4209 linux_enable_event_reporting (int pid)
4210 {
4211 if (!linux_supports_tracefork_flag)
4212 return;
4213
4214 ptrace (PTRACE_SETOPTIONS, pid, 0, (PTRACE_ARG4_TYPE) PTRACE_O_TRACECLONE);
4215 }
4216
4217 /* Helper functions for linux_test_for_tracefork, called via clone (). */
4218
4219 static int
4220 linux_tracefork_grandchild (void *arg)
4221 {
4222 _exit (0);
4223 }
4224
4225 #define STACK_SIZE 4096
4226
4227 static int
4228 linux_tracefork_child (void *arg)
4229 {
4230 ptrace (PTRACE_TRACEME, 0, 0, 0);
4231 kill (getpid (), SIGSTOP);
4232
4233 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4234
4235 if (fork () == 0)
4236 linux_tracefork_grandchild (NULL);
4237
4238 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4239
4240 #ifdef __ia64__
4241 __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
4242 CLONE_VM | SIGCHLD, NULL);
4243 #else
4244 clone (linux_tracefork_grandchild, (char *) arg + STACK_SIZE,
4245 CLONE_VM | SIGCHLD, NULL);
4246 #endif
4247
4248 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4249
4250 _exit (0);
4251 }
4252
4253 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
4254 sure that we can enable the option, and that it had the desired
4255 effect. */
4256
4257 static void
4258 linux_test_for_tracefork (void)
4259 {
4260 int child_pid, ret, status;
4261 long second_pid;
4262 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4263 char *stack = xmalloc (STACK_SIZE * 4);
4264 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4265
4266 linux_supports_tracefork_flag = 0;
4267
4268 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4269
4270 child_pid = fork ();
4271 if (child_pid == 0)
4272 linux_tracefork_child (NULL);
4273
4274 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4275
4276 /* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
4277 #ifdef __ia64__
4278 child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
4279 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4280 #else /* !__ia64__ */
4281 child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
4282 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4283 #endif /* !__ia64__ */
4284
4285 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4286
4287 if (child_pid == -1)
4288 perror_with_name ("clone");
4289
4290 ret = my_waitpid (child_pid, &status, 0);
4291 if (ret == -1)
4292 perror_with_name ("waitpid");
4293 else if (ret != child_pid)
4294 error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
4295 if (! WIFSTOPPED (status))
4296 error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
4297
4298 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
4299 (PTRACE_ARG4_TYPE) PTRACE_O_TRACEFORK);
4300 if (ret != 0)
4301 {
4302 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
4303 if (ret != 0)
4304 {
4305 warning ("linux_test_for_tracefork: failed to kill child");
4306 return;
4307 }
4308
4309 ret = my_waitpid (child_pid, &status, 0);
4310 if (ret != child_pid)
4311 warning ("linux_test_for_tracefork: failed to wait for killed child");
4312 else if (!WIFSIGNALED (status))
4313 warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
4314 "killed child", status);
4315
4316 return;
4317 }
4318
4319 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
4320 if (ret != 0)
4321 warning ("linux_test_for_tracefork: failed to resume child");
4322
4323 ret = my_waitpid (child_pid, &status, 0);
4324
4325 if (ret == child_pid && WIFSTOPPED (status)
4326 && status >> 16 == PTRACE_EVENT_FORK)
4327 {
4328 second_pid = 0;
4329 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
4330 if (ret == 0 && second_pid != 0)
4331 {
4332 int second_status;
4333
4334 linux_supports_tracefork_flag = 1;
4335 my_waitpid (second_pid, &second_status, 0);
4336 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
4337 if (ret != 0)
4338 warning ("linux_test_for_tracefork: failed to kill second child");
4339 my_waitpid (second_pid, &status, 0);
4340 }
4341 }
4342 else
4343 warning ("linux_test_for_tracefork: unexpected result from waitpid "
4344 "(%d, status 0x%x)", ret, status);
4345
4346 do
4347 {
4348 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
4349 if (ret != 0)
4350 warning ("linux_test_for_tracefork: failed to kill child");
4351 my_waitpid (child_pid, &status, 0);
4352 }
4353 while (WIFSTOPPED (status));
4354
4355 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4356 free (stack);
4357 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4358 }
4359
4360
4361 static void
4362 linux_look_up_symbols (void)
4363 {
4364 #ifdef USE_THREAD_DB
4365 struct process_info *proc = current_process ();
4366
4367 if (proc->private->thread_db != NULL)
4368 return;
4369
4370 /* If the kernel supports tracing forks then it also supports tracing
4371 clones, and then we don't need to use the magic thread event breakpoint
4372 to learn about threads. */
4373 thread_db_init (!linux_supports_tracefork_flag);
4374 #endif
4375 }
4376
4377 static void
4378 linux_request_interrupt (void)
4379 {
4380 extern unsigned long signal_pid;
4381
4382 if (!ptid_equal (cont_thread, null_ptid)
4383 && !ptid_equal (cont_thread, minus_one_ptid))
4384 {
4385 struct lwp_info *lwp;
4386 int lwpid;
4387
4388 lwp = get_thread_lwp (current_inferior);
4389 lwpid = lwpid_of (lwp);
4390 kill_lwp (lwpid, SIGINT);
4391 }
4392 else
4393 kill_lwp (signal_pid, SIGINT);
4394 }
4395
4396 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
4397 to debugger memory starting at MYADDR. */
4398
4399 static int
4400 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
4401 {
4402 char filename[PATH_MAX];
4403 int fd, n;
4404 int pid = lwpid_of (get_thread_lwp (current_inferior));
4405
4406 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4407
4408 fd = open (filename, O_RDONLY);
4409 if (fd < 0)
4410 return -1;
4411
4412 if (offset != (CORE_ADDR) 0
4413 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4414 n = -1;
4415 else
4416 n = read (fd, myaddr, len);
4417
4418 close (fd);
4419
4420 return n;
4421 }
4422
4423 /* These breakpoint and watchpoint related wrapper functions simply
4424 pass on the function call if the target has registered a
4425 corresponding function. */
4426
4427 static int
4428 linux_insert_point (char type, CORE_ADDR addr, int len)
4429 {
4430 if (the_low_target.insert_point != NULL)
4431 return the_low_target.insert_point (type, addr, len);
4432 else
4433 /* Unsupported (see target.h). */
4434 return 1;
4435 }
4436
4437 static int
4438 linux_remove_point (char type, CORE_ADDR addr, int len)
4439 {
4440 if (the_low_target.remove_point != NULL)
4441 return the_low_target.remove_point (type, addr, len);
4442 else
4443 /* Unsupported (see target.h). */
4444 return 1;
4445 }
4446
4447 static int
4448 linux_stopped_by_watchpoint (void)
4449 {
4450 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4451
4452 return lwp->stopped_by_watchpoint;
4453 }
4454
4455 static CORE_ADDR
4456 linux_stopped_data_address (void)
4457 {
4458 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4459
4460 return lwp->stopped_data_address;
4461 }
4462
4463 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4464 #if defined(__mcoldfire__)
4465 /* These should really be defined in the kernel's ptrace.h header. */
4466 #define PT_TEXT_ADDR 49*4
4467 #define PT_DATA_ADDR 50*4
4468 #define PT_TEXT_END_ADDR 51*4
4469 #elif defined(BFIN)
4470 #define PT_TEXT_ADDR 220
4471 #define PT_TEXT_END_ADDR 224
4472 #define PT_DATA_ADDR 228
4473 #elif defined(__TMS320C6X__)
4474 #define PT_TEXT_ADDR (0x10000*4)
4475 #define PT_DATA_ADDR (0x10004*4)
4476 #define PT_TEXT_END_ADDR (0x10008*4)
4477 #endif
4478
4479 /* Under uClinux, programs are loaded at non-zero offsets, which we need
4480 to tell gdb about. */
4481
4482 static int
4483 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
4484 {
4485 #if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
4486 unsigned long text, text_end, data;
4487 int pid = lwpid_of (get_thread_lwp (current_inferior));
4488
4489 errno = 0;
4490
4491 text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
4492 text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
4493 data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
4494
4495 if (errno == 0)
4496 {
4497 /* Both text and data offsets produced at compile-time (and so
4498 used by gdb) are relative to the beginning of the program,
4499 with the data segment immediately following the text segment.
4500 However, the actual runtime layout in memory may put the data
4501 somewhere else, so when we send gdb a data base-address, we
4502 use the real data base address and subtract the compile-time
4503 data base-address from it (which is just the length of the
4504 text segment). BSS immediately follows data in both
4505 cases. */
4506 *text_p = text;
4507 *data_p = data - (text_end - text);
4508
4509 return 1;
4510 }
4511 #endif
4512 return 0;
4513 }
4514 #endif
4515
4516 static int
4517 linux_qxfer_osdata (const char *annex,
4518 unsigned char *readbuf, unsigned const char *writebuf,
4519 CORE_ADDR offset, int len)
4520 {
4521 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4522 }
4523
4524 /* Convert a native/host siginfo object, into/from the siginfo in the
4525 layout of the inferiors' architecture. */
4526
4527 static void
4528 siginfo_fixup (struct siginfo *siginfo, void *inf_siginfo, int direction)
4529 {
4530 int done = 0;
4531
4532 if (the_low_target.siginfo_fixup != NULL)
4533 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
4534
4535 /* If there was no callback, or the callback didn't do anything,
4536 then just do a straight memcpy. */
4537 if (!done)
4538 {
4539 if (direction == 1)
4540 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4541 else
4542 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4543 }
4544 }
4545
4546 static int
4547 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
4548 unsigned const char *writebuf, CORE_ADDR offset, int len)
4549 {
4550 int pid;
4551 struct siginfo siginfo;
4552 char inf_siginfo[sizeof (struct siginfo)];
4553
4554 if (current_inferior == NULL)
4555 return -1;
4556
4557 pid = lwpid_of (get_thread_lwp (current_inferior));
4558
4559 if (debug_threads)
4560 fprintf (stderr, "%s siginfo for lwp %d.\n",
4561 readbuf != NULL ? "Reading" : "Writing",
4562 pid);
4563
4564 if (offset >= sizeof (siginfo))
4565 return -1;
4566
4567 if (ptrace (PTRACE_GETSIGINFO, pid, 0, &siginfo) != 0)
4568 return -1;
4569
4570 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
4571 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4572 inferior with a 64-bit GDBSERVER should look the same as debugging it
4573 with a 32-bit GDBSERVER, we need to convert it. */
4574 siginfo_fixup (&siginfo, inf_siginfo, 0);
4575
4576 if (offset + len > sizeof (siginfo))
4577 len = sizeof (siginfo) - offset;
4578
4579 if (readbuf != NULL)
4580 memcpy (readbuf, inf_siginfo + offset, len);
4581 else
4582 {
4583 memcpy (inf_siginfo + offset, writebuf, len);
4584
4585 /* Convert back to ptrace layout before flushing it out. */
4586 siginfo_fixup (&siginfo, inf_siginfo, 1);
4587
4588 if (ptrace (PTRACE_SETSIGINFO, pid, 0, &siginfo) != 0)
4589 return -1;
4590 }
4591
4592 return len;
4593 }
4594
4595 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4596 so we notice when children change state; as the handler for the
4597 sigsuspend in my_waitpid. */
4598
4599 static void
4600 sigchld_handler (int signo)
4601 {
4602 int old_errno = errno;
4603
4604 if (debug_threads)
4605 {
4606 do
4607 {
4608 /* fprintf is not async-signal-safe, so call write
4609 directly. */
4610 if (write (2, "sigchld_handler\n",
4611 sizeof ("sigchld_handler\n") - 1) < 0)
4612 break; /* just ignore */
4613 } while (0);
4614 }
4615
4616 if (target_is_async_p ())
4617 async_file_mark (); /* trigger a linux_wait */
4618
4619 errno = old_errno;
4620 }
4621
4622 static int
4623 linux_supports_non_stop (void)
4624 {
4625 return 1;
4626 }
4627
4628 static int
4629 linux_async (int enable)
4630 {
4631 int previous = (linux_event_pipe[0] != -1);
4632
4633 if (debug_threads)
4634 fprintf (stderr, "linux_async (%d), previous=%d\n",
4635 enable, previous);
4636
4637 if (previous != enable)
4638 {
4639 sigset_t mask;
4640 sigemptyset (&mask);
4641 sigaddset (&mask, SIGCHLD);
4642
4643 sigprocmask (SIG_BLOCK, &mask, NULL);
4644
4645 if (enable)
4646 {
4647 if (pipe (linux_event_pipe) == -1)
4648 fatal ("creating event pipe failed.");
4649
4650 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
4651 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
4652
4653 /* Register the event loop handler. */
4654 add_file_handler (linux_event_pipe[0],
4655 handle_target_event, NULL);
4656
4657 /* Always trigger a linux_wait. */
4658 async_file_mark ();
4659 }
4660 else
4661 {
4662 delete_file_handler (linux_event_pipe[0]);
4663
4664 close (linux_event_pipe[0]);
4665 close (linux_event_pipe[1]);
4666 linux_event_pipe[0] = -1;
4667 linux_event_pipe[1] = -1;
4668 }
4669
4670 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4671 }
4672
4673 return previous;
4674 }
4675
4676 static int
4677 linux_start_non_stop (int nonstop)
4678 {
4679 /* Register or unregister from event-loop accordingly. */
4680 linux_async (nonstop);
4681 return 0;
4682 }
4683
4684 static int
4685 linux_supports_multi_process (void)
4686 {
4687 return 1;
4688 }
4689
4690 static int
4691 linux_supports_disable_randomization (void)
4692 {
4693 #ifdef HAVE_PERSONALITY
4694 return 1;
4695 #else
4696 return 0;
4697 #endif
4698 }
4699
4700 /* Enumerate spufs IDs for process PID. */
4701 static int
4702 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
4703 {
4704 int pos = 0;
4705 int written = 0;
4706 char path[128];
4707 DIR *dir;
4708 struct dirent *entry;
4709
4710 sprintf (path, "/proc/%ld/fd", pid);
4711 dir = opendir (path);
4712 if (!dir)
4713 return -1;
4714
4715 rewinddir (dir);
4716 while ((entry = readdir (dir)) != NULL)
4717 {
4718 struct stat st;
4719 struct statfs stfs;
4720 int fd;
4721
4722 fd = atoi (entry->d_name);
4723 if (!fd)
4724 continue;
4725
4726 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
4727 if (stat (path, &st) != 0)
4728 continue;
4729 if (!S_ISDIR (st.st_mode))
4730 continue;
4731
4732 if (statfs (path, &stfs) != 0)
4733 continue;
4734 if (stfs.f_type != SPUFS_MAGIC)
4735 continue;
4736
4737 if (pos >= offset && pos + 4 <= offset + len)
4738 {
4739 *(unsigned int *)(buf + pos - offset) = fd;
4740 written += 4;
4741 }
4742 pos += 4;
4743 }
4744
4745 closedir (dir);
4746 return written;
4747 }
4748
4749 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
4750 object type, using the /proc file system. */
4751 static int
4752 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
4753 unsigned const char *writebuf,
4754 CORE_ADDR offset, int len)
4755 {
4756 long pid = lwpid_of (get_thread_lwp (current_inferior));
4757 char buf[128];
4758 int fd = 0;
4759 int ret = 0;
4760
4761 if (!writebuf && !readbuf)
4762 return -1;
4763
4764 if (!*annex)
4765 {
4766 if (!readbuf)
4767 return -1;
4768 else
4769 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4770 }
4771
4772 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
4773 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4774 if (fd <= 0)
4775 return -1;
4776
4777 if (offset != 0
4778 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4779 {
4780 close (fd);
4781 return 0;
4782 }
4783
4784 if (writebuf)
4785 ret = write (fd, writebuf, (size_t) len);
4786 else
4787 ret = read (fd, readbuf, (size_t) len);
4788
4789 close (fd);
4790 return ret;
4791 }
4792
4793 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
4794 struct target_loadseg
4795 {
4796 /* Core address to which the segment is mapped. */
4797 Elf32_Addr addr;
4798 /* VMA recorded in the program header. */
4799 Elf32_Addr p_vaddr;
4800 /* Size of this segment in memory. */
4801 Elf32_Word p_memsz;
4802 };
4803
4804 # if defined PT_GETDSBT
4805 struct target_loadmap
4806 {
4807 /* Protocol version number, must be zero. */
4808 Elf32_Word version;
4809 /* Pointer to the DSBT table, its size, and the DSBT index. */
4810 unsigned *dsbt_table;
4811 unsigned dsbt_size, dsbt_index;
4812 /* Number of segments in this map. */
4813 Elf32_Word nsegs;
4814 /* The actual memory map. */
4815 struct target_loadseg segs[/*nsegs*/];
4816 };
4817 # define LINUX_LOADMAP PT_GETDSBT
4818 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
4819 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
4820 # else
4821 struct target_loadmap
4822 {
4823 /* Protocol version number, must be zero. */
4824 Elf32_Half version;
4825 /* Number of segments in this map. */
4826 Elf32_Half nsegs;
4827 /* The actual memory map. */
4828 struct target_loadseg segs[/*nsegs*/];
4829 };
4830 # define LINUX_LOADMAP PTRACE_GETFDPIC
4831 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
4832 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
4833 # endif
4834
4835 static int
4836 linux_read_loadmap (const char *annex, CORE_ADDR offset,
4837 unsigned char *myaddr, unsigned int len)
4838 {
4839 int pid = lwpid_of (get_thread_lwp (current_inferior));
4840 int addr = -1;
4841 struct target_loadmap *data = NULL;
4842 unsigned int actual_length, copy_length;
4843
4844 if (strcmp (annex, "exec") == 0)
4845 addr = (int) LINUX_LOADMAP_EXEC;
4846 else if (strcmp (annex, "interp") == 0)
4847 addr = (int) LINUX_LOADMAP_INTERP;
4848 else
4849 return -1;
4850
4851 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
4852 return -1;
4853
4854 if (data == NULL)
4855 return -1;
4856
4857 actual_length = sizeof (struct target_loadmap)
4858 + sizeof (struct target_loadseg) * data->nsegs;
4859
4860 if (offset < 0 || offset > actual_length)
4861 return -1;
4862
4863 copy_length = actual_length - offset < len ? actual_length - offset : len;
4864 memcpy (myaddr, (char *) data + offset, copy_length);
4865 return copy_length;
4866 }
4867 #else
4868 # define linux_read_loadmap NULL
4869 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
4870
4871 static void
4872 linux_process_qsupported (const char *query)
4873 {
4874 if (the_low_target.process_qsupported != NULL)
4875 the_low_target.process_qsupported (query);
4876 }
4877
4878 static int
4879 linux_supports_tracepoints (void)
4880 {
4881 if (*the_low_target.supports_tracepoints == NULL)
4882 return 0;
4883
4884 return (*the_low_target.supports_tracepoints) ();
4885 }
4886
4887 static CORE_ADDR
4888 linux_read_pc (struct regcache *regcache)
4889 {
4890 if (the_low_target.get_pc == NULL)
4891 return 0;
4892
4893 return (*the_low_target.get_pc) (regcache);
4894 }
4895
4896 static void
4897 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
4898 {
4899 gdb_assert (the_low_target.set_pc != NULL);
4900
4901 (*the_low_target.set_pc) (regcache, pc);
4902 }
4903
4904 static int
4905 linux_thread_stopped (struct thread_info *thread)
4906 {
4907 return get_thread_lwp (thread)->stopped;
4908 }
4909
4910 /* This exposes stop-all-threads functionality to other modules. */
4911
4912 static void
4913 linux_pause_all (int freeze)
4914 {
4915 stop_all_lwps (freeze, NULL);
4916 }
4917
4918 /* This exposes unstop-all-threads functionality to other gdbserver
4919 modules. */
4920
4921 static void
4922 linux_unpause_all (int unfreeze)
4923 {
4924 unstop_all_lwps (unfreeze, NULL);
4925 }
4926
4927 static int
4928 linux_prepare_to_access_memory (void)
4929 {
4930 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
4931 running LWP. */
4932 if (non_stop)
4933 linux_pause_all (1);
4934 return 0;
4935 }
4936
4937 static void
4938 linux_done_accessing_memory (void)
4939 {
4940 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
4941 running LWP. */
4942 if (non_stop)
4943 linux_unpause_all (1);
4944 }
4945
4946 static int
4947 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
4948 CORE_ADDR collector,
4949 CORE_ADDR lockaddr,
4950 ULONGEST orig_size,
4951 CORE_ADDR *jump_entry,
4952 CORE_ADDR *trampoline,
4953 ULONGEST *trampoline_size,
4954 unsigned char *jjump_pad_insn,
4955 ULONGEST *jjump_pad_insn_size,
4956 CORE_ADDR *adjusted_insn_addr,
4957 CORE_ADDR *adjusted_insn_addr_end,
4958 char *err)
4959 {
4960 return (*the_low_target.install_fast_tracepoint_jump_pad)
4961 (tpoint, tpaddr, collector, lockaddr, orig_size,
4962 jump_entry, trampoline, trampoline_size,
4963 jjump_pad_insn, jjump_pad_insn_size,
4964 adjusted_insn_addr, adjusted_insn_addr_end,
4965 err);
4966 }
4967
4968 static struct emit_ops *
4969 linux_emit_ops (void)
4970 {
4971 if (the_low_target.emit_ops != NULL)
4972 return (*the_low_target.emit_ops) ();
4973 else
4974 return NULL;
4975 }
4976
4977 static int
4978 linux_get_min_fast_tracepoint_insn_len (void)
4979 {
4980 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
4981 }
4982
4983 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
4984
4985 static int
4986 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
4987 CORE_ADDR *phdr_memaddr, int *num_phdr)
4988 {
4989 char filename[PATH_MAX];
4990 int fd;
4991 const int auxv_size = is_elf64
4992 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
4993 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
4994
4995 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4996
4997 fd = open (filename, O_RDONLY);
4998 if (fd < 0)
4999 return 1;
5000
5001 *phdr_memaddr = 0;
5002 *num_phdr = 0;
5003 while (read (fd, buf, auxv_size) == auxv_size
5004 && (*phdr_memaddr == 0 || *num_phdr == 0))
5005 {
5006 if (is_elf64)
5007 {
5008 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
5009
5010 switch (aux->a_type)
5011 {
5012 case AT_PHDR:
5013 *phdr_memaddr = aux->a_un.a_val;
5014 break;
5015 case AT_PHNUM:
5016 *num_phdr = aux->a_un.a_val;
5017 break;
5018 }
5019 }
5020 else
5021 {
5022 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
5023
5024 switch (aux->a_type)
5025 {
5026 case AT_PHDR:
5027 *phdr_memaddr = aux->a_un.a_val;
5028 break;
5029 case AT_PHNUM:
5030 *num_phdr = aux->a_un.a_val;
5031 break;
5032 }
5033 }
5034 }
5035
5036 close (fd);
5037
5038 if (*phdr_memaddr == 0 || *num_phdr == 0)
5039 {
5040 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
5041 "phdr_memaddr = %ld, phdr_num = %d",
5042 (long) *phdr_memaddr, *num_phdr);
5043 return 2;
5044 }
5045
5046 return 0;
5047 }
5048
5049 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
5050
5051 static CORE_ADDR
5052 get_dynamic (const int pid, const int is_elf64)
5053 {
5054 CORE_ADDR phdr_memaddr, relocation;
5055 int num_phdr, i;
5056 unsigned char *phdr_buf;
5057 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
5058
5059 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
5060 return 0;
5061
5062 gdb_assert (num_phdr < 100); /* Basic sanity check. */
5063 phdr_buf = alloca (num_phdr * phdr_size);
5064
5065 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
5066 return 0;
5067
5068 /* Compute relocation: it is expected to be 0 for "regular" executables,
5069 non-zero for PIE ones. */
5070 relocation = -1;
5071 for (i = 0; relocation == -1 && i < num_phdr; i++)
5072 if (is_elf64)
5073 {
5074 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5075
5076 if (p->p_type == PT_PHDR)
5077 relocation = phdr_memaddr - p->p_vaddr;
5078 }
5079 else
5080 {
5081 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5082
5083 if (p->p_type == PT_PHDR)
5084 relocation = phdr_memaddr - p->p_vaddr;
5085 }
5086
5087 if (relocation == -1)
5088 {
5089 warning ("Unexpected missing PT_PHDR");
5090 return 0;
5091 }
5092
5093 for (i = 0; i < num_phdr; i++)
5094 {
5095 if (is_elf64)
5096 {
5097 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5098
5099 if (p->p_type == PT_DYNAMIC)
5100 return p->p_vaddr + relocation;
5101 }
5102 else
5103 {
5104 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5105
5106 if (p->p_type == PT_DYNAMIC)
5107 return p->p_vaddr + relocation;
5108 }
5109 }
5110
5111 return 0;
5112 }
5113
5114 /* Return &_r_debug in the inferior, or -1 if not present. Return value
5115 can be 0 if the inferior does not yet have the library list initialized. */
5116
5117 static CORE_ADDR
5118 get_r_debug (const int pid, const int is_elf64)
5119 {
5120 CORE_ADDR dynamic_memaddr;
5121 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
5122 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
5123
5124 dynamic_memaddr = get_dynamic (pid, is_elf64);
5125 if (dynamic_memaddr == 0)
5126 return (CORE_ADDR) -1;
5127
5128 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
5129 {
5130 if (is_elf64)
5131 {
5132 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
5133
5134 if (dyn->d_tag == DT_DEBUG)
5135 return dyn->d_un.d_val;
5136
5137 if (dyn->d_tag == DT_NULL)
5138 break;
5139 }
5140 else
5141 {
5142 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
5143
5144 if (dyn->d_tag == DT_DEBUG)
5145 return dyn->d_un.d_val;
5146
5147 if (dyn->d_tag == DT_NULL)
5148 break;
5149 }
5150
5151 dynamic_memaddr += dyn_size;
5152 }
5153
5154 return (CORE_ADDR) -1;
5155 }
5156
5157 /* Read one pointer from MEMADDR in the inferior. */
5158
5159 static int
5160 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
5161 {
5162 *ptr = 0;
5163 return linux_read_memory (memaddr, (unsigned char *) ptr, ptr_size);
5164 }
5165
5166 struct link_map_offsets
5167 {
5168 /* Offset and size of r_debug.r_version. */
5169 int r_version_offset;
5170
5171 /* Offset and size of r_debug.r_map. */
5172 int r_map_offset;
5173
5174 /* Offset to l_addr field in struct link_map. */
5175 int l_addr_offset;
5176
5177 /* Offset to l_name field in struct link_map. */
5178 int l_name_offset;
5179
5180 /* Offset to l_ld field in struct link_map. */
5181 int l_ld_offset;
5182
5183 /* Offset to l_next field in struct link_map. */
5184 int l_next_offset;
5185
5186 /* Offset to l_prev field in struct link_map. */
5187 int l_prev_offset;
5188 };
5189
5190 /* Construct qXfer:libraries:read reply. */
5191
5192 static int
5193 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
5194 unsigned const char *writebuf,
5195 CORE_ADDR offset, int len)
5196 {
5197 char *document;
5198 unsigned document_len;
5199 struct process_info_private *const priv = current_process ()->private;
5200 char filename[PATH_MAX];
5201 int pid, is_elf64;
5202
5203 static const struct link_map_offsets lmo_32bit_offsets =
5204 {
5205 0, /* r_version offset. */
5206 4, /* r_debug.r_map offset. */
5207 0, /* l_addr offset in link_map. */
5208 4, /* l_name offset in link_map. */
5209 8, /* l_ld offset in link_map. */
5210 12, /* l_next offset in link_map. */
5211 16 /* l_prev offset in link_map. */
5212 };
5213
5214 static const struct link_map_offsets lmo_64bit_offsets =
5215 {
5216 0, /* r_version offset. */
5217 8, /* r_debug.r_map offset. */
5218 0, /* l_addr offset in link_map. */
5219 8, /* l_name offset in link_map. */
5220 16, /* l_ld offset in link_map. */
5221 24, /* l_next offset in link_map. */
5222 32 /* l_prev offset in link_map. */
5223 };
5224 const struct link_map_offsets *lmo;
5225
5226 if (writebuf != NULL)
5227 return -2;
5228 if (readbuf == NULL)
5229 return -1;
5230
5231 pid = lwpid_of (get_thread_lwp (current_inferior));
5232 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
5233 is_elf64 = elf_64_file_p (filename);
5234 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
5235
5236 if (priv->r_debug == 0)
5237 priv->r_debug = get_r_debug (pid, is_elf64);
5238
5239 if (priv->r_debug == (CORE_ADDR) -1 || priv->r_debug == 0)
5240 {
5241 document = xstrdup ("<library-list-svr4 version=\"1.0\"/>\n");
5242 }
5243 else
5244 {
5245 int allocated = 1024;
5246 char *p;
5247 const int ptr_size = is_elf64 ? 8 : 4;
5248 CORE_ADDR lm_addr, lm_prev, l_name, l_addr, l_ld, l_next, l_prev;
5249 int r_version, header_done = 0;
5250
5251 document = xmalloc (allocated);
5252 strcpy (document, "<library-list-svr4 version=\"1.0\"");
5253 p = document + strlen (document);
5254
5255 r_version = 0;
5256 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
5257 (unsigned char *) &r_version,
5258 sizeof (r_version)) != 0
5259 || r_version != 1)
5260 {
5261 warning ("unexpected r_debug version %d", r_version);
5262 goto done;
5263 }
5264
5265 if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
5266 &lm_addr, ptr_size) != 0)
5267 {
5268 warning ("unable to read r_map from 0x%lx",
5269 (long) priv->r_debug + lmo->r_map_offset);
5270 goto done;
5271 }
5272
5273 lm_prev = 0;
5274 while (read_one_ptr (lm_addr + lmo->l_name_offset,
5275 &l_name, ptr_size) == 0
5276 && read_one_ptr (lm_addr + lmo->l_addr_offset,
5277 &l_addr, ptr_size) == 0
5278 && read_one_ptr (lm_addr + lmo->l_ld_offset,
5279 &l_ld, ptr_size) == 0
5280 && read_one_ptr (lm_addr + lmo->l_prev_offset,
5281 &l_prev, ptr_size) == 0
5282 && read_one_ptr (lm_addr + lmo->l_next_offset,
5283 &l_next, ptr_size) == 0)
5284 {
5285 unsigned char libname[PATH_MAX];
5286
5287 if (lm_prev != l_prev)
5288 {
5289 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
5290 (long) lm_prev, (long) l_prev);
5291 break;
5292 }
5293
5294 /* Not checking for error because reading may stop before
5295 we've got PATH_MAX worth of characters. */
5296 libname[0] = '\0';
5297 linux_read_memory (l_name, libname, sizeof (libname) - 1);
5298 libname[sizeof (libname) - 1] = '\0';
5299 if (libname[0] != '\0')
5300 {
5301 /* 6x the size for xml_escape_text below. */
5302 size_t len = 6 * strlen ((char *) libname);
5303 char *name;
5304
5305 if (!header_done)
5306 {
5307 /* Terminate `<library-list-svr4'. */
5308 *p++ = '>';
5309 header_done = 1;
5310 }
5311
5312 while (allocated < p - document + len + 200)
5313 {
5314 /* Expand to guarantee sufficient storage. */
5315 uintptr_t document_len = p - document;
5316
5317 document = xrealloc (document, 2 * allocated);
5318 allocated *= 2;
5319 p = document + document_len;
5320 }
5321
5322 name = xml_escape_text ((char *) libname);
5323 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
5324 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
5325 name, (unsigned long) lm_addr,
5326 (unsigned long) l_addr, (unsigned long) l_ld);
5327 free (name);
5328 }
5329 else if (lm_prev == 0)
5330 {
5331 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
5332 p = p + strlen (p);
5333 }
5334
5335 if (l_next == 0)
5336 break;
5337
5338 lm_prev = lm_addr;
5339 lm_addr = l_next;
5340 }
5341 done:
5342 strcpy (p, "</library-list-svr4>");
5343 }
5344
5345 document_len = strlen (document);
5346 if (offset < document_len)
5347 document_len -= offset;
5348 else
5349 document_len = 0;
5350 if (len > document_len)
5351 len = document_len;
5352
5353 memcpy (readbuf, document + offset, len);
5354 xfree (document);
5355
5356 return len;
5357 }
5358
5359 static struct target_ops linux_target_ops = {
5360 linux_create_inferior,
5361 linux_attach,
5362 linux_kill,
5363 linux_detach,
5364 linux_mourn,
5365 linux_join,
5366 linux_thread_alive,
5367 linux_resume,
5368 linux_wait,
5369 linux_fetch_registers,
5370 linux_store_registers,
5371 linux_prepare_to_access_memory,
5372 linux_done_accessing_memory,
5373 linux_read_memory,
5374 linux_write_memory,
5375 linux_look_up_symbols,
5376 linux_request_interrupt,
5377 linux_read_auxv,
5378 linux_insert_point,
5379 linux_remove_point,
5380 linux_stopped_by_watchpoint,
5381 linux_stopped_data_address,
5382 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
5383 linux_read_offsets,
5384 #else
5385 NULL,
5386 #endif
5387 #ifdef USE_THREAD_DB
5388 thread_db_get_tls_address,
5389 #else
5390 NULL,
5391 #endif
5392 linux_qxfer_spu,
5393 hostio_last_error_from_errno,
5394 linux_qxfer_osdata,
5395 linux_xfer_siginfo,
5396 linux_supports_non_stop,
5397 linux_async,
5398 linux_start_non_stop,
5399 linux_supports_multi_process,
5400 #ifdef USE_THREAD_DB
5401 thread_db_handle_monitor_command,
5402 #else
5403 NULL,
5404 #endif
5405 linux_common_core_of_thread,
5406 linux_read_loadmap,
5407 linux_process_qsupported,
5408 linux_supports_tracepoints,
5409 linux_read_pc,
5410 linux_write_pc,
5411 linux_thread_stopped,
5412 NULL,
5413 linux_pause_all,
5414 linux_unpause_all,
5415 linux_cancel_breakpoints,
5416 linux_stabilize_threads,
5417 linux_install_fast_tracepoint_jump_pad,
5418 linux_emit_ops,
5419 linux_supports_disable_randomization,
5420 linux_get_min_fast_tracepoint_insn_len,
5421 linux_qxfer_libraries_svr4,
5422 };
5423
5424 static void
5425 linux_init_signals ()
5426 {
5427 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
5428 to find what the cancel signal actually is. */
5429 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
5430 signal (__SIGRTMIN+1, SIG_IGN);
5431 #endif
5432 }
5433
5434 void
5435 initialize_low (void)
5436 {
5437 struct sigaction sigchld_action;
5438 memset (&sigchld_action, 0, sizeof (sigchld_action));
5439 set_target_ops (&linux_target_ops);
5440 set_breakpoint_data (the_low_target.breakpoint,
5441 the_low_target.breakpoint_len);
5442 linux_init_signals ();
5443 linux_test_for_tracefork ();
5444 #ifdef HAVE_LINUX_REGSETS
5445 for (num_regsets = 0; target_regsets[num_regsets].size >= 0; num_regsets++)
5446 ;
5447 disabled_regsets = xmalloc (num_regsets);
5448 #endif
5449
5450 sigchld_action.sa_handler = sigchld_handler;
5451 sigemptyset (&sigchld_action.sa_mask);
5452 sigchld_action.sa_flags = SA_RESTART;
5453 sigaction (SIGCHLD, &sigchld_action, NULL);
5454 }
This page took 0.145622 seconds and 4 git commands to generate.