ac51d1184c8710c904e86d4d81a9cccf5dc18d2d
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (thread_info *thread, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424 }
425
426 /* Add a process to the common process list, and set its private
427 data. */
428
429 static struct process_info *
430 linux_add_process (int pid, int attached)
431 {
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441 }
442
443 static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445 /* Call the target arch_setup function on the current thread. */
446
447 static void
448 linux_arch_setup (void)
449 {
450 the_low_target.arch_setup ();
451 }
452
453 /* Call the target arch_setup function on THREAD. */
454
455 static void
456 linux_arch_setup_thread (struct thread_info *thread)
457 {
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466 }
467
468 /* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474 static int
475 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476 {
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 thread_db_notice_clone (event_thr, ptid);
665
666 /* Don't report the event. */
667 return 1;
668 }
669 else if (event == PTRACE_EVENT_VFORK_DONE)
670 {
671 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
672
673 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
674 {
675 reinsert_single_step_breakpoints (event_thr);
676
677 gdb_assert (has_single_step_breakpoints (event_thr));
678 }
679
680 /* Report the event. */
681 return 0;
682 }
683 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
684 {
685 struct process_info *proc;
686 std::vector<int> syscalls_to_catch;
687 ptid_t event_ptid;
688 pid_t event_pid;
689
690 if (debug_threads)
691 {
692 debug_printf ("HEW: Got exec event from LWP %ld\n",
693 lwpid_of (event_thr));
694 }
695
696 /* Get the event ptid. */
697 event_ptid = ptid_of (event_thr);
698 event_pid = ptid_get_pid (event_ptid);
699
700 /* Save the syscall list from the execing process. */
701 proc = get_thread_process (event_thr);
702 syscalls_to_catch = std::move (proc->syscalls_to_catch);
703
704 /* Delete the execing process and all its threads. */
705 linux_mourn (proc);
706 current_thread = NULL;
707
708 /* Create a new process/lwp/thread. */
709 proc = linux_add_process (event_pid, 0);
710 event_lwp = add_lwp (event_ptid);
711 event_thr = get_lwp_thread (event_lwp);
712 gdb_assert (current_thread == event_thr);
713 linux_arch_setup_thread (event_thr);
714
715 /* Set the event status. */
716 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
717 event_lwp->waitstatus.value.execd_pathname
718 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
719
720 /* Mark the exec status as pending. */
721 event_lwp->stopped = 1;
722 event_lwp->status_pending_p = 1;
723 event_lwp->status_pending = wstat;
724 event_thr->last_resume_kind = resume_continue;
725 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
726
727 /* Update syscall state in the new lwp, effectively mid-syscall too. */
728 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
729
730 /* Restore the list to catch. Don't rely on the client, which is free
731 to avoid sending a new list when the architecture doesn't change.
732 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
733 proc->syscalls_to_catch = std::move (syscalls_to_catch);
734
735 /* Report the event. */
736 *orig_event_lwp = event_lwp;
737 return 0;
738 }
739
740 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
741 }
742
743 /* Return the PC as read from the regcache of LWP, without any
744 adjustment. */
745
746 static CORE_ADDR
747 get_pc (struct lwp_info *lwp)
748 {
749 struct thread_info *saved_thread;
750 struct regcache *regcache;
751 CORE_ADDR pc;
752
753 if (the_low_target.get_pc == NULL)
754 return 0;
755
756 saved_thread = current_thread;
757 current_thread = get_lwp_thread (lwp);
758
759 regcache = get_thread_regcache (current_thread, 1);
760 pc = (*the_low_target.get_pc) (regcache);
761
762 if (debug_threads)
763 debug_printf ("pc is 0x%lx\n", (long) pc);
764
765 current_thread = saved_thread;
766 return pc;
767 }
768
769 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
770 Fill *SYSNO with the syscall nr trapped. */
771
772 static void
773 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
774 {
775 struct thread_info *saved_thread;
776 struct regcache *regcache;
777
778 if (the_low_target.get_syscall_trapinfo == NULL)
779 {
780 /* If we cannot get the syscall trapinfo, report an unknown
781 system call number. */
782 *sysno = UNKNOWN_SYSCALL;
783 return;
784 }
785
786 saved_thread = current_thread;
787 current_thread = get_lwp_thread (lwp);
788
789 regcache = get_thread_regcache (current_thread, 1);
790 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
791
792 if (debug_threads)
793 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
794
795 current_thread = saved_thread;
796 }
797
798 static int check_stopped_by_watchpoint (struct lwp_info *child);
799
800 /* Called when the LWP stopped for a signal/trap. If it stopped for a
801 trap check what caused it (breakpoint, watchpoint, trace, etc.),
802 and save the result in the LWP's stop_reason field. If it stopped
803 for a breakpoint, decrement the PC if necessary on the lwp's
804 architecture. Returns true if we now have the LWP's stop PC. */
805
806 static int
807 save_stop_reason (struct lwp_info *lwp)
808 {
809 CORE_ADDR pc;
810 CORE_ADDR sw_breakpoint_pc;
811 struct thread_info *saved_thread;
812 #if USE_SIGTRAP_SIGINFO
813 siginfo_t siginfo;
814 #endif
815
816 if (the_low_target.get_pc == NULL)
817 return 0;
818
819 pc = get_pc (lwp);
820 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
821
822 /* breakpoint_at reads from the current thread. */
823 saved_thread = current_thread;
824 current_thread = get_lwp_thread (lwp);
825
826 #if USE_SIGTRAP_SIGINFO
827 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
828 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
829 {
830 if (siginfo.si_signo == SIGTRAP)
831 {
832 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
833 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
834 {
835 /* The si_code is ambiguous on this arch -- check debug
836 registers. */
837 if (!check_stopped_by_watchpoint (lwp))
838 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
839 }
840 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
841 {
842 /* If we determine the LWP stopped for a SW breakpoint,
843 trust it. Particularly don't check watchpoint
844 registers, because at least on s390, we'd find
845 stopped-by-watchpoint as long as there's a watchpoint
846 set. */
847 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
848 }
849 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
850 {
851 /* This can indicate either a hardware breakpoint or
852 hardware watchpoint. Check debug registers. */
853 if (!check_stopped_by_watchpoint (lwp))
854 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
855 }
856 else if (siginfo.si_code == TRAP_TRACE)
857 {
858 /* We may have single stepped an instruction that
859 triggered a watchpoint. In that case, on some
860 architectures (such as x86), instead of TRAP_HWBKPT,
861 si_code indicates TRAP_TRACE, and we need to check
862 the debug registers separately. */
863 if (!check_stopped_by_watchpoint (lwp))
864 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
865 }
866 }
867 }
868 #else
869 /* We may have just stepped a breakpoint instruction. E.g., in
870 non-stop mode, GDB first tells the thread A to step a range, and
871 then the user inserts a breakpoint inside the range. In that
872 case we need to report the breakpoint PC. */
873 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
874 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
875 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
876
877 if (hardware_breakpoint_inserted_here (pc))
878 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
879
880 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
881 check_stopped_by_watchpoint (lwp);
882 #endif
883
884 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
885 {
886 if (debug_threads)
887 {
888 struct thread_info *thr = get_lwp_thread (lwp);
889
890 debug_printf ("CSBB: %s stopped by software breakpoint\n",
891 target_pid_to_str (ptid_of (thr)));
892 }
893
894 /* Back up the PC if necessary. */
895 if (pc != sw_breakpoint_pc)
896 {
897 struct regcache *regcache
898 = get_thread_regcache (current_thread, 1);
899 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
900 }
901
902 /* Update this so we record the correct stop PC below. */
903 pc = sw_breakpoint_pc;
904 }
905 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
906 {
907 if (debug_threads)
908 {
909 struct thread_info *thr = get_lwp_thread (lwp);
910
911 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
912 target_pid_to_str (ptid_of (thr)));
913 }
914 }
915 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
916 {
917 if (debug_threads)
918 {
919 struct thread_info *thr = get_lwp_thread (lwp);
920
921 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
922 target_pid_to_str (ptid_of (thr)));
923 }
924 }
925 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
926 {
927 if (debug_threads)
928 {
929 struct thread_info *thr = get_lwp_thread (lwp);
930
931 debug_printf ("CSBB: %s stopped by trace\n",
932 target_pid_to_str (ptid_of (thr)));
933 }
934 }
935
936 lwp->stop_pc = pc;
937 current_thread = saved_thread;
938 return 1;
939 }
940
941 static struct lwp_info *
942 add_lwp (ptid_t ptid)
943 {
944 struct lwp_info *lwp;
945
946 lwp = XCNEW (struct lwp_info);
947
948 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
949
950 if (the_low_target.new_thread != NULL)
951 the_low_target.new_thread (lwp);
952
953 lwp->thread = add_thread (ptid, lwp);
954
955 return lwp;
956 }
957
958 /* Callback to be used when calling fork_inferior, responsible for
959 actually initiating the tracing of the inferior. */
960
961 static void
962 linux_ptrace_fun ()
963 {
964 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
965 (PTRACE_TYPE_ARG4) 0) < 0)
966 trace_start_error_with_name ("ptrace");
967
968 if (setpgid (0, 0) < 0)
969 trace_start_error_with_name ("setpgid");
970
971 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
972 stdout to stderr so that inferior i/o doesn't corrupt the connection.
973 Also, redirect stdin to /dev/null. */
974 if (remote_connection_is_stdio ())
975 {
976 if (close (0) < 0)
977 trace_start_error_with_name ("close");
978 if (open ("/dev/null", O_RDONLY) < 0)
979 trace_start_error_with_name ("open");
980 if (dup2 (2, 1) < 0)
981 trace_start_error_with_name ("dup2");
982 if (write (2, "stdin/stdout redirected\n",
983 sizeof ("stdin/stdout redirected\n") - 1) < 0)
984 {
985 /* Errors ignored. */;
986 }
987 }
988 }
989
990 /* Start an inferior process and returns its pid.
991 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
992 are its arguments. */
993
994 static int
995 linux_create_inferior (const char *program,
996 const std::vector<char *> &program_args)
997 {
998 struct lwp_info *new_lwp;
999 int pid;
1000 ptid_t ptid;
1001
1002 {
1003 maybe_disable_address_space_randomization restore_personality
1004 (disable_randomization);
1005 std::string str_program_args = stringify_argv (program_args);
1006
1007 pid = fork_inferior (program,
1008 str_program_args.c_str (),
1009 get_environ ()->envp (), linux_ptrace_fun,
1010 NULL, NULL, NULL, NULL);
1011 }
1012
1013 linux_add_process (pid, 0);
1014
1015 ptid = ptid_build (pid, pid, 0);
1016 new_lwp = add_lwp (ptid);
1017 new_lwp->must_set_ptrace_flags = 1;
1018
1019 post_fork_inferior (pid, program);
1020
1021 return pid;
1022 }
1023
1024 /* Implement the post_create_inferior target_ops method. */
1025
1026 static void
1027 linux_post_create_inferior (void)
1028 {
1029 struct lwp_info *lwp = get_thread_lwp (current_thread);
1030
1031 linux_arch_setup ();
1032
1033 if (lwp->must_set_ptrace_flags)
1034 {
1035 struct process_info *proc = current_process ();
1036 int options = linux_low_ptrace_options (proc->attached);
1037
1038 linux_enable_event_reporting (lwpid_of (current_thread), options);
1039 lwp->must_set_ptrace_flags = 0;
1040 }
1041 }
1042
1043 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1044 error. */
1045
1046 int
1047 linux_attach_lwp (ptid_t ptid)
1048 {
1049 struct lwp_info *new_lwp;
1050 int lwpid = ptid_get_lwp (ptid);
1051
1052 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1053 != 0)
1054 return errno;
1055
1056 new_lwp = add_lwp (ptid);
1057
1058 /* We need to wait for SIGSTOP before being able to make the next
1059 ptrace call on this LWP. */
1060 new_lwp->must_set_ptrace_flags = 1;
1061
1062 if (linux_proc_pid_is_stopped (lwpid))
1063 {
1064 if (debug_threads)
1065 debug_printf ("Attached to a stopped process\n");
1066
1067 /* The process is definitely stopped. It is in a job control
1068 stop, unless the kernel predates the TASK_STOPPED /
1069 TASK_TRACED distinction, in which case it might be in a
1070 ptrace stop. Make sure it is in a ptrace stop; from there we
1071 can kill it, signal it, et cetera.
1072
1073 First make sure there is a pending SIGSTOP. Since we are
1074 already attached, the process can not transition from stopped
1075 to running without a PTRACE_CONT; so we know this signal will
1076 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1077 probably already in the queue (unless this kernel is old
1078 enough to use TASK_STOPPED for ptrace stops); but since
1079 SIGSTOP is not an RT signal, it can only be queued once. */
1080 kill_lwp (lwpid, SIGSTOP);
1081
1082 /* Finally, resume the stopped process. This will deliver the
1083 SIGSTOP (or a higher priority signal, just like normal
1084 PTRACE_ATTACH), which we'll catch later on. */
1085 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1086 }
1087
1088 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1089 brings it to a halt.
1090
1091 There are several cases to consider here:
1092
1093 1) gdbserver has already attached to the process and is being notified
1094 of a new thread that is being created.
1095 In this case we should ignore that SIGSTOP and resume the
1096 process. This is handled below by setting stop_expected = 1,
1097 and the fact that add_thread sets last_resume_kind ==
1098 resume_continue.
1099
1100 2) This is the first thread (the process thread), and we're attaching
1101 to it via attach_inferior.
1102 In this case we want the process thread to stop.
1103 This is handled by having linux_attach set last_resume_kind ==
1104 resume_stop after we return.
1105
1106 If the pid we are attaching to is also the tgid, we attach to and
1107 stop all the existing threads. Otherwise, we attach to pid and
1108 ignore any other threads in the same group as this pid.
1109
1110 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1111 existing threads.
1112 In this case we want the thread to stop.
1113 FIXME: This case is currently not properly handled.
1114 We should wait for the SIGSTOP but don't. Things work apparently
1115 because enough time passes between when we ptrace (ATTACH) and when
1116 gdb makes the next ptrace call on the thread.
1117
1118 On the other hand, if we are currently trying to stop all threads, we
1119 should treat the new thread as if we had sent it a SIGSTOP. This works
1120 because we are guaranteed that the add_lwp call above added us to the
1121 end of the list, and so the new thread has not yet reached
1122 wait_for_sigstop (but will). */
1123 new_lwp->stop_expected = 1;
1124
1125 return 0;
1126 }
1127
1128 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1129 already attached. Returns true if a new LWP is found, false
1130 otherwise. */
1131
1132 static int
1133 attach_proc_task_lwp_callback (ptid_t ptid)
1134 {
1135 /* Is this a new thread? */
1136 if (find_thread_ptid (ptid) == NULL)
1137 {
1138 int lwpid = ptid_get_lwp (ptid);
1139 int err;
1140
1141 if (debug_threads)
1142 debug_printf ("Found new lwp %d\n", lwpid);
1143
1144 err = linux_attach_lwp (ptid);
1145
1146 /* Be quiet if we simply raced with the thread exiting. EPERM
1147 is returned if the thread's task still exists, and is marked
1148 as exited or zombie, as well as other conditions, so in that
1149 case, confirm the status in /proc/PID/status. */
1150 if (err == ESRCH
1151 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1152 {
1153 if (debug_threads)
1154 {
1155 debug_printf ("Cannot attach to lwp %d: "
1156 "thread is gone (%d: %s)\n",
1157 lwpid, err, strerror (err));
1158 }
1159 }
1160 else if (err != 0)
1161 {
1162 warning (_("Cannot attach to lwp %d: %s"),
1163 lwpid,
1164 linux_ptrace_attach_fail_reason_string (ptid, err));
1165 }
1166
1167 return 1;
1168 }
1169 return 0;
1170 }
1171
1172 static void async_file_mark (void);
1173
1174 /* Attach to PID. If PID is the tgid, attach to it and all
1175 of its threads. */
1176
1177 static int
1178 linux_attach (unsigned long pid)
1179 {
1180 struct process_info *proc;
1181 struct thread_info *initial_thread;
1182 ptid_t ptid = ptid_build (pid, pid, 0);
1183 int err;
1184
1185 /* Attach to PID. We will check for other threads
1186 soon. */
1187 err = linux_attach_lwp (ptid);
1188 if (err != 0)
1189 error ("Cannot attach to process %ld: %s",
1190 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1191
1192 proc = linux_add_process (pid, 1);
1193
1194 /* Don't ignore the initial SIGSTOP if we just attached to this
1195 process. It will be collected by wait shortly. */
1196 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1197 initial_thread->last_resume_kind = resume_stop;
1198
1199 /* We must attach to every LWP. If /proc is mounted, use that to
1200 find them now. On the one hand, the inferior may be using raw
1201 clone instead of using pthreads. On the other hand, even if it
1202 is using pthreads, GDB may not be connected yet (thread_db needs
1203 to do symbol lookups, through qSymbol). Also, thread_db walks
1204 structures in the inferior's address space to find the list of
1205 threads/LWPs, and those structures may well be corrupted. Note
1206 that once thread_db is loaded, we'll still use it to list threads
1207 and associate pthread info with each LWP. */
1208 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1209
1210 /* GDB will shortly read the xml target description for this
1211 process, to figure out the process' architecture. But the target
1212 description is only filled in when the first process/thread in
1213 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1214 that now, otherwise, if GDB is fast enough, it could read the
1215 target description _before_ that initial stop. */
1216 if (non_stop)
1217 {
1218 struct lwp_info *lwp;
1219 int wstat, lwpid;
1220 ptid_t pid_ptid = pid_to_ptid (pid);
1221
1222 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1223 &wstat, __WALL);
1224 gdb_assert (lwpid > 0);
1225
1226 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1227
1228 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1229 {
1230 lwp->status_pending_p = 1;
1231 lwp->status_pending = wstat;
1232 }
1233
1234 initial_thread->last_resume_kind = resume_continue;
1235
1236 async_file_mark ();
1237
1238 gdb_assert (proc->tdesc != NULL);
1239 }
1240
1241 return 0;
1242 }
1243
1244 struct counter
1245 {
1246 int pid;
1247 int count;
1248 };
1249
1250 static int
1251 second_thread_of_pid_p (thread_info *thread, void *args)
1252 {
1253 struct counter *counter = (struct counter *) args;
1254
1255 if (thread->id.pid () == counter->pid)
1256 {
1257 if (++counter->count > 1)
1258 return 1;
1259 }
1260
1261 return 0;
1262 }
1263
1264 static int
1265 last_thread_of_process_p (int pid)
1266 {
1267 struct counter counter = { pid , 0 };
1268
1269 return (find_inferior (&all_threads,
1270 second_thread_of_pid_p, &counter) == NULL);
1271 }
1272
1273 /* Kill LWP. */
1274
1275 static void
1276 linux_kill_one_lwp (struct lwp_info *lwp)
1277 {
1278 struct thread_info *thr = get_lwp_thread (lwp);
1279 int pid = lwpid_of (thr);
1280
1281 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1282 there is no signal context, and ptrace(PTRACE_KILL) (or
1283 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1284 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1285 alternative is to kill with SIGKILL. We only need one SIGKILL
1286 per process, not one for each thread. But since we still support
1287 support debugging programs using raw clone without CLONE_THREAD,
1288 we send one for each thread. For years, we used PTRACE_KILL
1289 only, so we're being a bit paranoid about some old kernels where
1290 PTRACE_KILL might work better (dubious if there are any such, but
1291 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1292 second, and so we're fine everywhere. */
1293
1294 errno = 0;
1295 kill_lwp (pid, SIGKILL);
1296 if (debug_threads)
1297 {
1298 int save_errno = errno;
1299
1300 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1301 target_pid_to_str (ptid_of (thr)),
1302 save_errno ? strerror (save_errno) : "OK");
1303 }
1304
1305 errno = 0;
1306 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1307 if (debug_threads)
1308 {
1309 int save_errno = errno;
1310
1311 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1312 target_pid_to_str (ptid_of (thr)),
1313 save_errno ? strerror (save_errno) : "OK");
1314 }
1315 }
1316
1317 /* Kill LWP and wait for it to die. */
1318
1319 static void
1320 kill_wait_lwp (struct lwp_info *lwp)
1321 {
1322 struct thread_info *thr = get_lwp_thread (lwp);
1323 int pid = ptid_get_pid (ptid_of (thr));
1324 int lwpid = ptid_get_lwp (ptid_of (thr));
1325 int wstat;
1326 int res;
1327
1328 if (debug_threads)
1329 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1330
1331 do
1332 {
1333 linux_kill_one_lwp (lwp);
1334
1335 /* Make sure it died. Notes:
1336
1337 - The loop is most likely unnecessary.
1338
1339 - We don't use linux_wait_for_event as that could delete lwps
1340 while we're iterating over them. We're not interested in
1341 any pending status at this point, only in making sure all
1342 wait status on the kernel side are collected until the
1343 process is reaped.
1344
1345 - We don't use __WALL here as the __WALL emulation relies on
1346 SIGCHLD, and killing a stopped process doesn't generate
1347 one, nor an exit status.
1348 */
1349 res = my_waitpid (lwpid, &wstat, 0);
1350 if (res == -1 && errno == ECHILD)
1351 res = my_waitpid (lwpid, &wstat, __WCLONE);
1352 } while (res > 0 && WIFSTOPPED (wstat));
1353
1354 /* Even if it was stopped, the child may have already disappeared.
1355 E.g., if it was killed by SIGKILL. */
1356 if (res < 0 && errno != ECHILD)
1357 perror_with_name ("kill_wait_lwp");
1358 }
1359
1360 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1361 except the leader. */
1362
1363 static void
1364 kill_one_lwp_callback (thread_info *thread, int pid)
1365 {
1366 struct lwp_info *lwp = get_thread_lwp (thread);
1367
1368 /* We avoid killing the first thread here, because of a Linux kernel (at
1369 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1370 the children get a chance to be reaped, it will remain a zombie
1371 forever. */
1372
1373 if (lwpid_of (thread) == pid)
1374 {
1375 if (debug_threads)
1376 debug_printf ("lkop: is last of process %s\n",
1377 target_pid_to_str (thread->id));
1378 return;
1379 }
1380
1381 kill_wait_lwp (lwp);
1382 }
1383
1384 static int
1385 linux_kill (int pid)
1386 {
1387 struct process_info *process;
1388 struct lwp_info *lwp;
1389
1390 process = find_process_pid (pid);
1391 if (process == NULL)
1392 return -1;
1393
1394 /* If we're killing a running inferior, make sure it is stopped
1395 first, as PTRACE_KILL will not work otherwise. */
1396 stop_all_lwps (0, NULL);
1397
1398 for_each_thread (pid, [&] (thread_info *thread)
1399 {
1400 kill_one_lwp_callback (thread, pid);
1401 });
1402
1403 /* See the comment in linux_kill_one_lwp. We did not kill the first
1404 thread in the list, so do so now. */
1405 lwp = find_lwp_pid (pid_to_ptid (pid));
1406
1407 if (lwp == NULL)
1408 {
1409 if (debug_threads)
1410 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1411 pid);
1412 }
1413 else
1414 kill_wait_lwp (lwp);
1415
1416 the_target->mourn (process);
1417
1418 /* Since we presently can only stop all lwps of all processes, we
1419 need to unstop lwps of other processes. */
1420 unstop_all_lwps (0, NULL);
1421 return 0;
1422 }
1423
1424 /* Get pending signal of THREAD, for detaching purposes. This is the
1425 signal the thread last stopped for, which we need to deliver to the
1426 thread when detaching, otherwise, it'd be suppressed/lost. */
1427
1428 static int
1429 get_detach_signal (struct thread_info *thread)
1430 {
1431 enum gdb_signal signo = GDB_SIGNAL_0;
1432 int status;
1433 struct lwp_info *lp = get_thread_lwp (thread);
1434
1435 if (lp->status_pending_p)
1436 status = lp->status_pending;
1437 else
1438 {
1439 /* If the thread had been suspended by gdbserver, and it stopped
1440 cleanly, then it'll have stopped with SIGSTOP. But we don't
1441 want to deliver that SIGSTOP. */
1442 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1443 || thread->last_status.value.sig == GDB_SIGNAL_0)
1444 return 0;
1445
1446 /* Otherwise, we may need to deliver the signal we
1447 intercepted. */
1448 status = lp->last_status;
1449 }
1450
1451 if (!WIFSTOPPED (status))
1452 {
1453 if (debug_threads)
1454 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1455 target_pid_to_str (ptid_of (thread)));
1456 return 0;
1457 }
1458
1459 /* Extended wait statuses aren't real SIGTRAPs. */
1460 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1461 {
1462 if (debug_threads)
1463 debug_printf ("GPS: lwp %s had stopped with extended "
1464 "status: no pending signal\n",
1465 target_pid_to_str (ptid_of (thread)));
1466 return 0;
1467 }
1468
1469 signo = gdb_signal_from_host (WSTOPSIG (status));
1470
1471 if (program_signals_p && !program_signals[signo])
1472 {
1473 if (debug_threads)
1474 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1475 target_pid_to_str (ptid_of (thread)),
1476 gdb_signal_to_string (signo));
1477 return 0;
1478 }
1479 else if (!program_signals_p
1480 /* If we have no way to know which signals GDB does not
1481 want to have passed to the program, assume
1482 SIGTRAP/SIGINT, which is GDB's default. */
1483 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1484 {
1485 if (debug_threads)
1486 debug_printf ("GPS: lwp %s had signal %s, "
1487 "but we don't know if we should pass it. "
1488 "Default to not.\n",
1489 target_pid_to_str (ptid_of (thread)),
1490 gdb_signal_to_string (signo));
1491 return 0;
1492 }
1493 else
1494 {
1495 if (debug_threads)
1496 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1497 target_pid_to_str (ptid_of (thread)),
1498 gdb_signal_to_string (signo));
1499
1500 return WSTOPSIG (status);
1501 }
1502 }
1503
1504 /* Detach from LWP. */
1505
1506 static void
1507 linux_detach_one_lwp (struct lwp_info *lwp)
1508 {
1509 struct thread_info *thread = get_lwp_thread (lwp);
1510 int sig;
1511 int lwpid;
1512
1513 /* If there is a pending SIGSTOP, get rid of it. */
1514 if (lwp->stop_expected)
1515 {
1516 if (debug_threads)
1517 debug_printf ("Sending SIGCONT to %s\n",
1518 target_pid_to_str (ptid_of (thread)));
1519
1520 kill_lwp (lwpid_of (thread), SIGCONT);
1521 lwp->stop_expected = 0;
1522 }
1523
1524 /* Pass on any pending signal for this thread. */
1525 sig = get_detach_signal (thread);
1526
1527 /* Preparing to resume may try to write registers, and fail if the
1528 lwp is zombie. If that happens, ignore the error. We'll handle
1529 it below, when detach fails with ESRCH. */
1530 TRY
1531 {
1532 /* Flush any pending changes to the process's registers. */
1533 regcache_invalidate_thread (thread);
1534
1535 /* Finally, let it resume. */
1536 if (the_low_target.prepare_to_resume != NULL)
1537 the_low_target.prepare_to_resume (lwp);
1538 }
1539 CATCH (ex, RETURN_MASK_ERROR)
1540 {
1541 if (!check_ptrace_stopped_lwp_gone (lwp))
1542 throw_exception (ex);
1543 }
1544 END_CATCH
1545
1546 lwpid = lwpid_of (thread);
1547 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1548 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1549 {
1550 int save_errno = errno;
1551
1552 /* We know the thread exists, so ESRCH must mean the lwp is
1553 zombie. This can happen if one of the already-detached
1554 threads exits the whole thread group. In that case we're
1555 still attached, and must reap the lwp. */
1556 if (save_errno == ESRCH)
1557 {
1558 int ret, status;
1559
1560 ret = my_waitpid (lwpid, &status, __WALL);
1561 if (ret == -1)
1562 {
1563 warning (_("Couldn't reap LWP %d while detaching: %s"),
1564 lwpid, strerror (errno));
1565 }
1566 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1567 {
1568 warning (_("Reaping LWP %d while detaching "
1569 "returned unexpected status 0x%x"),
1570 lwpid, status);
1571 }
1572 }
1573 else
1574 {
1575 error (_("Can't detach %s: %s"),
1576 target_pid_to_str (ptid_of (thread)),
1577 strerror (save_errno));
1578 }
1579 }
1580 else if (debug_threads)
1581 {
1582 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1583 target_pid_to_str (ptid_of (thread)),
1584 strsignal (sig));
1585 }
1586
1587 delete_lwp (lwp);
1588 }
1589
1590 /* Callback for find_inferior. Detaches from non-leader threads of a
1591 given process. */
1592
1593 static int
1594 linux_detach_lwp_callback (thread_info *thread, void *args)
1595 {
1596 struct lwp_info *lwp = get_thread_lwp (thread);
1597 int pid = *(int *) args;
1598 int lwpid = lwpid_of (thread);
1599
1600 /* Skip other processes. */
1601 if (thread->id.pid () != pid)
1602 return 0;
1603
1604 /* We don't actually detach from the thread group leader just yet.
1605 If the thread group exits, we must reap the zombie clone lwps
1606 before we're able to reap the leader. */
1607 if (thread->id.pid () == lwpid)
1608 return 0;
1609
1610 linux_detach_one_lwp (lwp);
1611 return 0;
1612 }
1613
1614 static int
1615 linux_detach (int pid)
1616 {
1617 struct process_info *process;
1618 struct lwp_info *main_lwp;
1619
1620 process = find_process_pid (pid);
1621 if (process == NULL)
1622 return -1;
1623
1624 /* As there's a step over already in progress, let it finish first,
1625 otherwise nesting a stabilize_threads operation on top gets real
1626 messy. */
1627 complete_ongoing_step_over ();
1628
1629 /* Stop all threads before detaching. First, ptrace requires that
1630 the thread is stopped to sucessfully detach. Second, thread_db
1631 may need to uninstall thread event breakpoints from memory, which
1632 only works with a stopped process anyway. */
1633 stop_all_lwps (0, NULL);
1634
1635 #ifdef USE_THREAD_DB
1636 thread_db_detach (process);
1637 #endif
1638
1639 /* Stabilize threads (move out of jump pads). */
1640 stabilize_threads ();
1641
1642 /* Detach from the clone lwps first. If the thread group exits just
1643 while we're detaching, we must reap the clone lwps before we're
1644 able to reap the leader. */
1645 find_inferior (&all_threads, linux_detach_lwp_callback, &pid);
1646
1647 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1648 linux_detach_one_lwp (main_lwp);
1649
1650 the_target->mourn (process);
1651
1652 /* Since we presently can only stop all lwps of all processes, we
1653 need to unstop lwps of other processes. */
1654 unstop_all_lwps (0, NULL);
1655 return 0;
1656 }
1657
1658 /* Remove all LWPs that belong to process PROC from the lwp list. */
1659
1660 static int
1661 delete_lwp_callback (thread_info *thread, void *proc)
1662 {
1663 struct lwp_info *lwp = get_thread_lwp (thread);
1664 struct process_info *process = (struct process_info *) proc;
1665
1666 if (pid_of (thread) == pid_of (process))
1667 delete_lwp (lwp);
1668
1669 return 0;
1670 }
1671
1672 static void
1673 linux_mourn (struct process_info *process)
1674 {
1675 struct process_info_private *priv;
1676
1677 #ifdef USE_THREAD_DB
1678 thread_db_mourn (process);
1679 #endif
1680
1681 find_inferior (&all_threads, delete_lwp_callback, process);
1682
1683 /* Freeing all private data. */
1684 priv = process->priv;
1685 if (the_low_target.delete_process != NULL)
1686 the_low_target.delete_process (priv->arch_private);
1687 else
1688 gdb_assert (priv->arch_private == NULL);
1689 free (priv);
1690 process->priv = NULL;
1691
1692 remove_process (process);
1693 }
1694
1695 static void
1696 linux_join (int pid)
1697 {
1698 int status, ret;
1699
1700 do {
1701 ret = my_waitpid (pid, &status, 0);
1702 if (WIFEXITED (status) || WIFSIGNALED (status))
1703 break;
1704 } while (ret != -1 || errno != ECHILD);
1705 }
1706
1707 /* Return nonzero if the given thread is still alive. */
1708 static int
1709 linux_thread_alive (ptid_t ptid)
1710 {
1711 struct lwp_info *lwp = find_lwp_pid (ptid);
1712
1713 /* We assume we always know if a thread exits. If a whole process
1714 exited but we still haven't been able to report it to GDB, we'll
1715 hold on to the last lwp of the dead process. */
1716 if (lwp != NULL)
1717 return !lwp_is_marked_dead (lwp);
1718 else
1719 return 0;
1720 }
1721
1722 /* Return 1 if this lwp still has an interesting status pending. If
1723 not (e.g., it had stopped for a breakpoint that is gone), return
1724 false. */
1725
1726 static int
1727 thread_still_has_status_pending_p (struct thread_info *thread)
1728 {
1729 struct lwp_info *lp = get_thread_lwp (thread);
1730
1731 if (!lp->status_pending_p)
1732 return 0;
1733
1734 if (thread->last_resume_kind != resume_stop
1735 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1736 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1737 {
1738 struct thread_info *saved_thread;
1739 CORE_ADDR pc;
1740 int discard = 0;
1741
1742 gdb_assert (lp->last_status != 0);
1743
1744 pc = get_pc (lp);
1745
1746 saved_thread = current_thread;
1747 current_thread = thread;
1748
1749 if (pc != lp->stop_pc)
1750 {
1751 if (debug_threads)
1752 debug_printf ("PC of %ld changed\n",
1753 lwpid_of (thread));
1754 discard = 1;
1755 }
1756
1757 #if !USE_SIGTRAP_SIGINFO
1758 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1759 && !(*the_low_target.breakpoint_at) (pc))
1760 {
1761 if (debug_threads)
1762 debug_printf ("previous SW breakpoint of %ld gone\n",
1763 lwpid_of (thread));
1764 discard = 1;
1765 }
1766 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1767 && !hardware_breakpoint_inserted_here (pc))
1768 {
1769 if (debug_threads)
1770 debug_printf ("previous HW breakpoint of %ld gone\n",
1771 lwpid_of (thread));
1772 discard = 1;
1773 }
1774 #endif
1775
1776 current_thread = saved_thread;
1777
1778 if (discard)
1779 {
1780 if (debug_threads)
1781 debug_printf ("discarding pending breakpoint status\n");
1782 lp->status_pending_p = 0;
1783 return 0;
1784 }
1785 }
1786
1787 return 1;
1788 }
1789
1790 /* Returns true if LWP is resumed from the client's perspective. */
1791
1792 static int
1793 lwp_resumed (struct lwp_info *lwp)
1794 {
1795 struct thread_info *thread = get_lwp_thread (lwp);
1796
1797 if (thread->last_resume_kind != resume_stop)
1798 return 1;
1799
1800 /* Did gdb send us a `vCont;t', but we haven't reported the
1801 corresponding stop to gdb yet? If so, the thread is still
1802 resumed/running from gdb's perspective. */
1803 if (thread->last_resume_kind == resume_stop
1804 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1805 return 1;
1806
1807 return 0;
1808 }
1809
1810 /* Return true if this lwp has an interesting status pending. */
1811 static bool
1812 status_pending_p_callback (thread_info *thread, ptid_t ptid)
1813 {
1814 struct lwp_info *lp = get_thread_lwp (thread);
1815
1816 /* Check if we're only interested in events from a specific process
1817 or a specific LWP. */
1818 if (!thread->id.matches (ptid))
1819 return 0;
1820
1821 if (!lwp_resumed (lp))
1822 return 0;
1823
1824 if (lp->status_pending_p
1825 && !thread_still_has_status_pending_p (thread))
1826 {
1827 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1828 return 0;
1829 }
1830
1831 return lp->status_pending_p;
1832 }
1833
1834 static int
1835 same_lwp (thread_info *thread, void *data)
1836 {
1837 ptid_t ptid = *(ptid_t *) data;
1838 int lwp;
1839
1840 if (ptid_get_lwp (ptid) != 0)
1841 lwp = ptid_get_lwp (ptid);
1842 else
1843 lwp = ptid_get_pid (ptid);
1844
1845 if (thread->id.lwp () == lwp)
1846 return 1;
1847
1848 return 0;
1849 }
1850
1851 struct lwp_info *
1852 find_lwp_pid (ptid_t ptid)
1853 {
1854 thread_info *thread = find_inferior (&all_threads, same_lwp, &ptid);
1855
1856 if (thread == NULL)
1857 return NULL;
1858
1859 return get_thread_lwp (thread);
1860 }
1861
1862 /* Return the number of known LWPs in the tgid given by PID. */
1863
1864 static int
1865 num_lwps (int pid)
1866 {
1867 int count = 0;
1868
1869 for_each_thread (pid, [&] (thread_info *thread)
1870 {
1871 count++;
1872 });
1873
1874 return count;
1875 }
1876
1877 /* See nat/linux-nat.h. */
1878
1879 struct lwp_info *
1880 iterate_over_lwps (ptid_t filter,
1881 iterate_over_lwps_ftype callback,
1882 void *data)
1883 {
1884 thread_info *thread = find_thread (filter, [&] (thread_info *thread)
1885 {
1886 lwp_info *lwp = get_thread_lwp (thread);
1887
1888 return callback (lwp, data);
1889 });
1890
1891 if (thread == NULL)
1892 return NULL;
1893
1894 return get_thread_lwp (thread);
1895 }
1896
1897 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1898 their exits until all other threads in the group have exited. */
1899
1900 static void
1901 check_zombie_leaders (void)
1902 {
1903 for_each_process ([] (process_info *proc) {
1904 pid_t leader_pid = pid_of (proc);
1905 struct lwp_info *leader_lp;
1906
1907 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1908
1909 if (debug_threads)
1910 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1911 "num_lwps=%d, zombie=%d\n",
1912 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1913 linux_proc_pid_is_zombie (leader_pid));
1914
1915 if (leader_lp != NULL && !leader_lp->stopped
1916 /* Check if there are other threads in the group, as we may
1917 have raced with the inferior simply exiting. */
1918 && !last_thread_of_process_p (leader_pid)
1919 && linux_proc_pid_is_zombie (leader_pid))
1920 {
1921 /* A leader zombie can mean one of two things:
1922
1923 - It exited, and there's an exit status pending
1924 available, or only the leader exited (not the whole
1925 program). In the latter case, we can't waitpid the
1926 leader's exit status until all other threads are gone.
1927
1928 - There are 3 or more threads in the group, and a thread
1929 other than the leader exec'd. On an exec, the Linux
1930 kernel destroys all other threads (except the execing
1931 one) in the thread group, and resets the execing thread's
1932 tid to the tgid. No exit notification is sent for the
1933 execing thread -- from the ptracer's perspective, it
1934 appears as though the execing thread just vanishes.
1935 Until we reap all other threads except the leader and the
1936 execing thread, the leader will be zombie, and the
1937 execing thread will be in `D (disc sleep)'. As soon as
1938 all other threads are reaped, the execing thread changes
1939 it's tid to the tgid, and the previous (zombie) leader
1940 vanishes, giving place to the "new" leader. We could try
1941 distinguishing the exit and exec cases, by waiting once
1942 more, and seeing if something comes out, but it doesn't
1943 sound useful. The previous leader _does_ go away, and
1944 we'll re-add the new one once we see the exec event
1945 (which is just the same as what would happen if the
1946 previous leader did exit voluntarily before some other
1947 thread execs). */
1948
1949 if (debug_threads)
1950 debug_printf ("CZL: Thread group leader %d zombie "
1951 "(it exited, or another thread execd).\n",
1952 leader_pid);
1953
1954 delete_lwp (leader_lp);
1955 }
1956 });
1957 }
1958
1959 /* Callback for `find_inferior'. Returns the first LWP that is not
1960 stopped. ARG is a PTID filter. */
1961
1962 static int
1963 not_stopped_callback (thread_info *thread, void *arg)
1964 {
1965 struct lwp_info *lwp;
1966 ptid_t filter = *(ptid_t *) arg;
1967
1968 if (!ptid_match (ptid_of (thread), filter))
1969 return 0;
1970
1971 lwp = get_thread_lwp (thread);
1972 if (!lwp->stopped)
1973 return 1;
1974
1975 return 0;
1976 }
1977
1978 /* Increment LWP's suspend count. */
1979
1980 static void
1981 lwp_suspended_inc (struct lwp_info *lwp)
1982 {
1983 lwp->suspended++;
1984
1985 if (debug_threads && lwp->suspended > 4)
1986 {
1987 struct thread_info *thread = get_lwp_thread (lwp);
1988
1989 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1990 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1991 }
1992 }
1993
1994 /* Decrement LWP's suspend count. */
1995
1996 static void
1997 lwp_suspended_decr (struct lwp_info *lwp)
1998 {
1999 lwp->suspended--;
2000
2001 if (lwp->suspended < 0)
2002 {
2003 struct thread_info *thread = get_lwp_thread (lwp);
2004
2005 internal_error (__FILE__, __LINE__,
2006 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
2007 lwp->suspended);
2008 }
2009 }
2010
2011 /* This function should only be called if the LWP got a SIGTRAP.
2012
2013 Handle any tracepoint steps or hits. Return true if a tracepoint
2014 event was handled, 0 otherwise. */
2015
2016 static int
2017 handle_tracepoints (struct lwp_info *lwp)
2018 {
2019 struct thread_info *tinfo = get_lwp_thread (lwp);
2020 int tpoint_related_event = 0;
2021
2022 gdb_assert (lwp->suspended == 0);
2023
2024 /* If this tracepoint hit causes a tracing stop, we'll immediately
2025 uninsert tracepoints. To do this, we temporarily pause all
2026 threads, unpatch away, and then unpause threads. We need to make
2027 sure the unpausing doesn't resume LWP too. */
2028 lwp_suspended_inc (lwp);
2029
2030 /* And we need to be sure that any all-threads-stopping doesn't try
2031 to move threads out of the jump pads, as it could deadlock the
2032 inferior (LWP could be in the jump pad, maybe even holding the
2033 lock.) */
2034
2035 /* Do any necessary step collect actions. */
2036 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2037
2038 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2039
2040 /* See if we just hit a tracepoint and do its main collect
2041 actions. */
2042 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2043
2044 lwp_suspended_decr (lwp);
2045
2046 gdb_assert (lwp->suspended == 0);
2047 gdb_assert (!stabilizing_threads
2048 || (lwp->collecting_fast_tracepoint
2049 != fast_tpoint_collect_result::not_collecting));
2050
2051 if (tpoint_related_event)
2052 {
2053 if (debug_threads)
2054 debug_printf ("got a tracepoint event\n");
2055 return 1;
2056 }
2057
2058 return 0;
2059 }
2060
2061 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2062 collection status. */
2063
2064 static fast_tpoint_collect_result
2065 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2066 struct fast_tpoint_collect_status *status)
2067 {
2068 CORE_ADDR thread_area;
2069 struct thread_info *thread = get_lwp_thread (lwp);
2070
2071 if (the_low_target.get_thread_area == NULL)
2072 return fast_tpoint_collect_result::not_collecting;
2073
2074 /* Get the thread area address. This is used to recognize which
2075 thread is which when tracing with the in-process agent library.
2076 We don't read anything from the address, and treat it as opaque;
2077 it's the address itself that we assume is unique per-thread. */
2078 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2079 return fast_tpoint_collect_result::not_collecting;
2080
2081 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2082 }
2083
2084 /* The reason we resume in the caller, is because we want to be able
2085 to pass lwp->status_pending as WSTAT, and we need to clear
2086 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2087 refuses to resume. */
2088
2089 static int
2090 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2091 {
2092 struct thread_info *saved_thread;
2093
2094 saved_thread = current_thread;
2095 current_thread = get_lwp_thread (lwp);
2096
2097 if ((wstat == NULL
2098 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2099 && supports_fast_tracepoints ()
2100 && agent_loaded_p ())
2101 {
2102 struct fast_tpoint_collect_status status;
2103
2104 if (debug_threads)
2105 debug_printf ("Checking whether LWP %ld needs to move out of the "
2106 "jump pad.\n",
2107 lwpid_of (current_thread));
2108
2109 fast_tpoint_collect_result r
2110 = linux_fast_tracepoint_collecting (lwp, &status);
2111
2112 if (wstat == NULL
2113 || (WSTOPSIG (*wstat) != SIGILL
2114 && WSTOPSIG (*wstat) != SIGFPE
2115 && WSTOPSIG (*wstat) != SIGSEGV
2116 && WSTOPSIG (*wstat) != SIGBUS))
2117 {
2118 lwp->collecting_fast_tracepoint = r;
2119
2120 if (r != fast_tpoint_collect_result::not_collecting)
2121 {
2122 if (r == fast_tpoint_collect_result::before_insn
2123 && lwp->exit_jump_pad_bkpt == NULL)
2124 {
2125 /* Haven't executed the original instruction yet.
2126 Set breakpoint there, and wait till it's hit,
2127 then single-step until exiting the jump pad. */
2128 lwp->exit_jump_pad_bkpt
2129 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2130 }
2131
2132 if (debug_threads)
2133 debug_printf ("Checking whether LWP %ld needs to move out of "
2134 "the jump pad...it does\n",
2135 lwpid_of (current_thread));
2136 current_thread = saved_thread;
2137
2138 return 1;
2139 }
2140 }
2141 else
2142 {
2143 /* If we get a synchronous signal while collecting, *and*
2144 while executing the (relocated) original instruction,
2145 reset the PC to point at the tpoint address, before
2146 reporting to GDB. Otherwise, it's an IPA lib bug: just
2147 report the signal to GDB, and pray for the best. */
2148
2149 lwp->collecting_fast_tracepoint
2150 = fast_tpoint_collect_result::not_collecting;
2151
2152 if (r != fast_tpoint_collect_result::not_collecting
2153 && (status.adjusted_insn_addr <= lwp->stop_pc
2154 && lwp->stop_pc < status.adjusted_insn_addr_end))
2155 {
2156 siginfo_t info;
2157 struct regcache *regcache;
2158
2159 /* The si_addr on a few signals references the address
2160 of the faulting instruction. Adjust that as
2161 well. */
2162 if ((WSTOPSIG (*wstat) == SIGILL
2163 || WSTOPSIG (*wstat) == SIGFPE
2164 || WSTOPSIG (*wstat) == SIGBUS
2165 || WSTOPSIG (*wstat) == SIGSEGV)
2166 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2167 (PTRACE_TYPE_ARG3) 0, &info) == 0
2168 /* Final check just to make sure we don't clobber
2169 the siginfo of non-kernel-sent signals. */
2170 && (uintptr_t) info.si_addr == lwp->stop_pc)
2171 {
2172 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2173 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2174 (PTRACE_TYPE_ARG3) 0, &info);
2175 }
2176
2177 regcache = get_thread_regcache (current_thread, 1);
2178 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2179 lwp->stop_pc = status.tpoint_addr;
2180
2181 /* Cancel any fast tracepoint lock this thread was
2182 holding. */
2183 force_unlock_trace_buffer ();
2184 }
2185
2186 if (lwp->exit_jump_pad_bkpt != NULL)
2187 {
2188 if (debug_threads)
2189 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2190 "stopping all threads momentarily.\n");
2191
2192 stop_all_lwps (1, lwp);
2193
2194 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2195 lwp->exit_jump_pad_bkpt = NULL;
2196
2197 unstop_all_lwps (1, lwp);
2198
2199 gdb_assert (lwp->suspended >= 0);
2200 }
2201 }
2202 }
2203
2204 if (debug_threads)
2205 debug_printf ("Checking whether LWP %ld needs to move out of the "
2206 "jump pad...no\n",
2207 lwpid_of (current_thread));
2208
2209 current_thread = saved_thread;
2210 return 0;
2211 }
2212
2213 /* Enqueue one signal in the "signals to report later when out of the
2214 jump pad" list. */
2215
2216 static void
2217 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2218 {
2219 struct pending_signals *p_sig;
2220 struct thread_info *thread = get_lwp_thread (lwp);
2221
2222 if (debug_threads)
2223 debug_printf ("Deferring signal %d for LWP %ld.\n",
2224 WSTOPSIG (*wstat), lwpid_of (thread));
2225
2226 if (debug_threads)
2227 {
2228 struct pending_signals *sig;
2229
2230 for (sig = lwp->pending_signals_to_report;
2231 sig != NULL;
2232 sig = sig->prev)
2233 debug_printf (" Already queued %d\n",
2234 sig->signal);
2235
2236 debug_printf (" (no more currently queued signals)\n");
2237 }
2238
2239 /* Don't enqueue non-RT signals if they are already in the deferred
2240 queue. (SIGSTOP being the easiest signal to see ending up here
2241 twice) */
2242 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2243 {
2244 struct pending_signals *sig;
2245
2246 for (sig = lwp->pending_signals_to_report;
2247 sig != NULL;
2248 sig = sig->prev)
2249 {
2250 if (sig->signal == WSTOPSIG (*wstat))
2251 {
2252 if (debug_threads)
2253 debug_printf ("Not requeuing already queued non-RT signal %d"
2254 " for LWP %ld\n",
2255 sig->signal,
2256 lwpid_of (thread));
2257 return;
2258 }
2259 }
2260 }
2261
2262 p_sig = XCNEW (struct pending_signals);
2263 p_sig->prev = lwp->pending_signals_to_report;
2264 p_sig->signal = WSTOPSIG (*wstat);
2265
2266 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2267 &p_sig->info);
2268
2269 lwp->pending_signals_to_report = p_sig;
2270 }
2271
2272 /* Dequeue one signal from the "signals to report later when out of
2273 the jump pad" list. */
2274
2275 static int
2276 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2277 {
2278 struct thread_info *thread = get_lwp_thread (lwp);
2279
2280 if (lwp->pending_signals_to_report != NULL)
2281 {
2282 struct pending_signals **p_sig;
2283
2284 p_sig = &lwp->pending_signals_to_report;
2285 while ((*p_sig)->prev != NULL)
2286 p_sig = &(*p_sig)->prev;
2287
2288 *wstat = W_STOPCODE ((*p_sig)->signal);
2289 if ((*p_sig)->info.si_signo != 0)
2290 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2291 &(*p_sig)->info);
2292 free (*p_sig);
2293 *p_sig = NULL;
2294
2295 if (debug_threads)
2296 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2297 WSTOPSIG (*wstat), lwpid_of (thread));
2298
2299 if (debug_threads)
2300 {
2301 struct pending_signals *sig;
2302
2303 for (sig = lwp->pending_signals_to_report;
2304 sig != NULL;
2305 sig = sig->prev)
2306 debug_printf (" Still queued %d\n",
2307 sig->signal);
2308
2309 debug_printf (" (no more queued signals)\n");
2310 }
2311
2312 return 1;
2313 }
2314
2315 return 0;
2316 }
2317
2318 /* Fetch the possibly triggered data watchpoint info and store it in
2319 CHILD.
2320
2321 On some archs, like x86, that use debug registers to set
2322 watchpoints, it's possible that the way to know which watched
2323 address trapped, is to check the register that is used to select
2324 which address to watch. Problem is, between setting the watchpoint
2325 and reading back which data address trapped, the user may change
2326 the set of watchpoints, and, as a consequence, GDB changes the
2327 debug registers in the inferior. To avoid reading back a stale
2328 stopped-data-address when that happens, we cache in LP the fact
2329 that a watchpoint trapped, and the corresponding data address, as
2330 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2331 registers meanwhile, we have the cached data we can rely on. */
2332
2333 static int
2334 check_stopped_by_watchpoint (struct lwp_info *child)
2335 {
2336 if (the_low_target.stopped_by_watchpoint != NULL)
2337 {
2338 struct thread_info *saved_thread;
2339
2340 saved_thread = current_thread;
2341 current_thread = get_lwp_thread (child);
2342
2343 if (the_low_target.stopped_by_watchpoint ())
2344 {
2345 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2346
2347 if (the_low_target.stopped_data_address != NULL)
2348 child->stopped_data_address
2349 = the_low_target.stopped_data_address ();
2350 else
2351 child->stopped_data_address = 0;
2352 }
2353
2354 current_thread = saved_thread;
2355 }
2356
2357 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2358 }
2359
2360 /* Return the ptrace options that we want to try to enable. */
2361
2362 static int
2363 linux_low_ptrace_options (int attached)
2364 {
2365 int options = 0;
2366
2367 if (!attached)
2368 options |= PTRACE_O_EXITKILL;
2369
2370 if (report_fork_events)
2371 options |= PTRACE_O_TRACEFORK;
2372
2373 if (report_vfork_events)
2374 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2375
2376 if (report_exec_events)
2377 options |= PTRACE_O_TRACEEXEC;
2378
2379 options |= PTRACE_O_TRACESYSGOOD;
2380
2381 return options;
2382 }
2383
2384 /* Do low-level handling of the event, and check if we should go on
2385 and pass it to caller code. Return the affected lwp if we are, or
2386 NULL otherwise. */
2387
2388 static struct lwp_info *
2389 linux_low_filter_event (int lwpid, int wstat)
2390 {
2391 struct lwp_info *child;
2392 struct thread_info *thread;
2393 int have_stop_pc = 0;
2394
2395 child = find_lwp_pid (pid_to_ptid (lwpid));
2396
2397 /* Check for stop events reported by a process we didn't already
2398 know about - anything not already in our LWP list.
2399
2400 If we're expecting to receive stopped processes after
2401 fork, vfork, and clone events, then we'll just add the
2402 new one to our list and go back to waiting for the event
2403 to be reported - the stopped process might be returned
2404 from waitpid before or after the event is.
2405
2406 But note the case of a non-leader thread exec'ing after the
2407 leader having exited, and gone from our lists (because
2408 check_zombie_leaders deleted it). The non-leader thread
2409 changes its tid to the tgid. */
2410
2411 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2412 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2413 {
2414 ptid_t child_ptid;
2415
2416 /* A multi-thread exec after we had seen the leader exiting. */
2417 if (debug_threads)
2418 {
2419 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2420 "after exec.\n", lwpid);
2421 }
2422
2423 child_ptid = ptid_build (lwpid, lwpid, 0);
2424 child = add_lwp (child_ptid);
2425 child->stopped = 1;
2426 current_thread = child->thread;
2427 }
2428
2429 /* If we didn't find a process, one of two things presumably happened:
2430 - A process we started and then detached from has exited. Ignore it.
2431 - A process we are controlling has forked and the new child's stop
2432 was reported to us by the kernel. Save its PID. */
2433 if (child == NULL && WIFSTOPPED (wstat))
2434 {
2435 add_to_pid_list (&stopped_pids, lwpid, wstat);
2436 return NULL;
2437 }
2438 else if (child == NULL)
2439 return NULL;
2440
2441 thread = get_lwp_thread (child);
2442
2443 child->stopped = 1;
2444
2445 child->last_status = wstat;
2446
2447 /* Check if the thread has exited. */
2448 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2449 {
2450 if (debug_threads)
2451 debug_printf ("LLFE: %d exited.\n", lwpid);
2452
2453 if (finish_step_over (child))
2454 {
2455 /* Unsuspend all other LWPs, and set them back running again. */
2456 unsuspend_all_lwps (child);
2457 }
2458
2459 /* If there is at least one more LWP, then the exit signal was
2460 not the end of the debugged application and should be
2461 ignored, unless GDB wants to hear about thread exits. */
2462 if (report_thread_events
2463 || last_thread_of_process_p (pid_of (thread)))
2464 {
2465 /* Since events are serialized to GDB core, and we can't
2466 report this one right now. Leave the status pending for
2467 the next time we're able to report it. */
2468 mark_lwp_dead (child, wstat);
2469 return child;
2470 }
2471 else
2472 {
2473 delete_lwp (child);
2474 return NULL;
2475 }
2476 }
2477
2478 gdb_assert (WIFSTOPPED (wstat));
2479
2480 if (WIFSTOPPED (wstat))
2481 {
2482 struct process_info *proc;
2483
2484 /* Architecture-specific setup after inferior is running. */
2485 proc = find_process_pid (pid_of (thread));
2486 if (proc->tdesc == NULL)
2487 {
2488 if (proc->attached)
2489 {
2490 /* This needs to happen after we have attached to the
2491 inferior and it is stopped for the first time, but
2492 before we access any inferior registers. */
2493 linux_arch_setup_thread (thread);
2494 }
2495 else
2496 {
2497 /* The process is started, but GDBserver will do
2498 architecture-specific setup after the program stops at
2499 the first instruction. */
2500 child->status_pending_p = 1;
2501 child->status_pending = wstat;
2502 return child;
2503 }
2504 }
2505 }
2506
2507 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2508 {
2509 struct process_info *proc = find_process_pid (pid_of (thread));
2510 int options = linux_low_ptrace_options (proc->attached);
2511
2512 linux_enable_event_reporting (lwpid, options);
2513 child->must_set_ptrace_flags = 0;
2514 }
2515
2516 /* Always update syscall_state, even if it will be filtered later. */
2517 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2518 {
2519 child->syscall_state
2520 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2521 ? TARGET_WAITKIND_SYSCALL_RETURN
2522 : TARGET_WAITKIND_SYSCALL_ENTRY);
2523 }
2524 else
2525 {
2526 /* Almost all other ptrace-stops are known to be outside of system
2527 calls, with further exceptions in handle_extended_wait. */
2528 child->syscall_state = TARGET_WAITKIND_IGNORE;
2529 }
2530
2531 /* Be careful to not overwrite stop_pc until save_stop_reason is
2532 called. */
2533 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2534 && linux_is_extended_waitstatus (wstat))
2535 {
2536 child->stop_pc = get_pc (child);
2537 if (handle_extended_wait (&child, wstat))
2538 {
2539 /* The event has been handled, so just return without
2540 reporting it. */
2541 return NULL;
2542 }
2543 }
2544
2545 if (linux_wstatus_maybe_breakpoint (wstat))
2546 {
2547 if (save_stop_reason (child))
2548 have_stop_pc = 1;
2549 }
2550
2551 if (!have_stop_pc)
2552 child->stop_pc = get_pc (child);
2553
2554 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2555 && child->stop_expected)
2556 {
2557 if (debug_threads)
2558 debug_printf ("Expected stop.\n");
2559 child->stop_expected = 0;
2560
2561 if (thread->last_resume_kind == resume_stop)
2562 {
2563 /* We want to report the stop to the core. Treat the
2564 SIGSTOP as a normal event. */
2565 if (debug_threads)
2566 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2567 target_pid_to_str (ptid_of (thread)));
2568 }
2569 else if (stopping_threads != NOT_STOPPING_THREADS)
2570 {
2571 /* Stopping threads. We don't want this SIGSTOP to end up
2572 pending. */
2573 if (debug_threads)
2574 debug_printf ("LLW: SIGSTOP caught for %s "
2575 "while stopping threads.\n",
2576 target_pid_to_str (ptid_of (thread)));
2577 return NULL;
2578 }
2579 else
2580 {
2581 /* This is a delayed SIGSTOP. Filter out the event. */
2582 if (debug_threads)
2583 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2584 child->stepping ? "step" : "continue",
2585 target_pid_to_str (ptid_of (thread)));
2586
2587 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2588 return NULL;
2589 }
2590 }
2591
2592 child->status_pending_p = 1;
2593 child->status_pending = wstat;
2594 return child;
2595 }
2596
2597 /* Return true if THREAD is doing hardware single step. */
2598
2599 static int
2600 maybe_hw_step (struct thread_info *thread)
2601 {
2602 if (can_hardware_single_step ())
2603 return 1;
2604 else
2605 {
2606 /* GDBserver must insert single-step breakpoint for software
2607 single step. */
2608 gdb_assert (has_single_step_breakpoints (thread));
2609 return 0;
2610 }
2611 }
2612
2613 /* Resume LWPs that are currently stopped without any pending status
2614 to report, but are resumed from the core's perspective. */
2615
2616 static void
2617 resume_stopped_resumed_lwps (thread_info *thread)
2618 {
2619 struct lwp_info *lp = get_thread_lwp (thread);
2620
2621 if (lp->stopped
2622 && !lp->suspended
2623 && !lp->status_pending_p
2624 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2625 {
2626 int step = 0;
2627
2628 if (thread->last_resume_kind == resume_step)
2629 step = maybe_hw_step (thread);
2630
2631 if (debug_threads)
2632 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2633 target_pid_to_str (ptid_of (thread)),
2634 paddress (lp->stop_pc),
2635 step);
2636
2637 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2638 }
2639 }
2640
2641 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2642 match FILTER_PTID (leaving others pending). The PTIDs can be:
2643 minus_one_ptid, to specify any child; a pid PTID, specifying all
2644 lwps of a thread group; or a PTID representing a single lwp. Store
2645 the stop status through the status pointer WSTAT. OPTIONS is
2646 passed to the waitpid call. Return 0 if no event was found and
2647 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2648 was found. Return the PID of the stopped child otherwise. */
2649
2650 static int
2651 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2652 int *wstatp, int options)
2653 {
2654 struct thread_info *event_thread;
2655 struct lwp_info *event_child, *requested_child;
2656 sigset_t block_mask, prev_mask;
2657
2658 retry:
2659 /* N.B. event_thread points to the thread_info struct that contains
2660 event_child. Keep them in sync. */
2661 event_thread = NULL;
2662 event_child = NULL;
2663 requested_child = NULL;
2664
2665 /* Check for a lwp with a pending status. */
2666
2667 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2668 {
2669 event_thread = find_thread_in_random ([&] (thread_info *thread)
2670 {
2671 return status_pending_p_callback (thread, filter_ptid);
2672 });
2673
2674 if (event_thread != NULL)
2675 event_child = get_thread_lwp (event_thread);
2676 if (debug_threads && event_thread)
2677 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2678 }
2679 else if (!ptid_equal (filter_ptid, null_ptid))
2680 {
2681 requested_child = find_lwp_pid (filter_ptid);
2682
2683 if (stopping_threads == NOT_STOPPING_THREADS
2684 && requested_child->status_pending_p
2685 && (requested_child->collecting_fast_tracepoint
2686 != fast_tpoint_collect_result::not_collecting))
2687 {
2688 enqueue_one_deferred_signal (requested_child,
2689 &requested_child->status_pending);
2690 requested_child->status_pending_p = 0;
2691 requested_child->status_pending = 0;
2692 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2693 }
2694
2695 if (requested_child->suspended
2696 && requested_child->status_pending_p)
2697 {
2698 internal_error (__FILE__, __LINE__,
2699 "requesting an event out of a"
2700 " suspended child?");
2701 }
2702
2703 if (requested_child->status_pending_p)
2704 {
2705 event_child = requested_child;
2706 event_thread = get_lwp_thread (event_child);
2707 }
2708 }
2709
2710 if (event_child != NULL)
2711 {
2712 if (debug_threads)
2713 debug_printf ("Got an event from pending child %ld (%04x)\n",
2714 lwpid_of (event_thread), event_child->status_pending);
2715 *wstatp = event_child->status_pending;
2716 event_child->status_pending_p = 0;
2717 event_child->status_pending = 0;
2718 current_thread = event_thread;
2719 return lwpid_of (event_thread);
2720 }
2721
2722 /* But if we don't find a pending event, we'll have to wait.
2723
2724 We only enter this loop if no process has a pending wait status.
2725 Thus any action taken in response to a wait status inside this
2726 loop is responding as soon as we detect the status, not after any
2727 pending events. */
2728
2729 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2730 all signals while here. */
2731 sigfillset (&block_mask);
2732 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2733
2734 /* Always pull all events out of the kernel. We'll randomly select
2735 an event LWP out of all that have events, to prevent
2736 starvation. */
2737 while (event_child == NULL)
2738 {
2739 pid_t ret = 0;
2740
2741 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2742 quirks:
2743
2744 - If the thread group leader exits while other threads in the
2745 thread group still exist, waitpid(TGID, ...) hangs. That
2746 waitpid won't return an exit status until the other threads
2747 in the group are reaped.
2748
2749 - When a non-leader thread execs, that thread just vanishes
2750 without reporting an exit (so we'd hang if we waited for it
2751 explicitly in that case). The exec event is reported to
2752 the TGID pid. */
2753 errno = 0;
2754 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2755
2756 if (debug_threads)
2757 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2758 ret, errno ? strerror (errno) : "ERRNO-OK");
2759
2760 if (ret > 0)
2761 {
2762 if (debug_threads)
2763 {
2764 debug_printf ("LLW: waitpid %ld received %s\n",
2765 (long) ret, status_to_str (*wstatp));
2766 }
2767
2768 /* Filter all events. IOW, leave all events pending. We'll
2769 randomly select an event LWP out of all that have events
2770 below. */
2771 linux_low_filter_event (ret, *wstatp);
2772 /* Retry until nothing comes out of waitpid. A single
2773 SIGCHLD can indicate more than one child stopped. */
2774 continue;
2775 }
2776
2777 /* Now that we've pulled all events out of the kernel, resume
2778 LWPs that don't have an interesting event to report. */
2779 if (stopping_threads == NOT_STOPPING_THREADS)
2780 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2781
2782 /* ... and find an LWP with a status to report to the core, if
2783 any. */
2784 event_thread = find_thread_in_random ([&] (thread_info *thread)
2785 {
2786 return status_pending_p_callback (thread, filter_ptid);
2787 });
2788
2789 if (event_thread != NULL)
2790 {
2791 event_child = get_thread_lwp (event_thread);
2792 *wstatp = event_child->status_pending;
2793 event_child->status_pending_p = 0;
2794 event_child->status_pending = 0;
2795 break;
2796 }
2797
2798 /* Check for zombie thread group leaders. Those can't be reaped
2799 until all other threads in the thread group are. */
2800 check_zombie_leaders ();
2801
2802 /* If there are no resumed children left in the set of LWPs we
2803 want to wait for, bail. We can't just block in
2804 waitpid/sigsuspend, because lwps might have been left stopped
2805 in trace-stop state, and we'd be stuck forever waiting for
2806 their status to change (which would only happen if we resumed
2807 them). Even if WNOHANG is set, this return code is preferred
2808 over 0 (below), as it is more detailed. */
2809 if ((find_inferior (&all_threads,
2810 not_stopped_callback,
2811 &wait_ptid) == NULL))
2812 {
2813 if (debug_threads)
2814 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2815 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2816 return -1;
2817 }
2818
2819 /* No interesting event to report to the caller. */
2820 if ((options & WNOHANG))
2821 {
2822 if (debug_threads)
2823 debug_printf ("WNOHANG set, no event found\n");
2824
2825 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2826 return 0;
2827 }
2828
2829 /* Block until we get an event reported with SIGCHLD. */
2830 if (debug_threads)
2831 debug_printf ("sigsuspend'ing\n");
2832
2833 sigsuspend (&prev_mask);
2834 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2835 goto retry;
2836 }
2837
2838 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2839
2840 current_thread = event_thread;
2841
2842 return lwpid_of (event_thread);
2843 }
2844
2845 /* Wait for an event from child(ren) PTID. PTIDs can be:
2846 minus_one_ptid, to specify any child; a pid PTID, specifying all
2847 lwps of a thread group; or a PTID representing a single lwp. Store
2848 the stop status through the status pointer WSTAT. OPTIONS is
2849 passed to the waitpid call. Return 0 if no event was found and
2850 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2851 was found. Return the PID of the stopped child otherwise. */
2852
2853 static int
2854 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2855 {
2856 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2857 }
2858
2859 /* Count the LWP's that have had events. */
2860
2861 static int
2862 count_events_callback (thread_info *thread, void *data)
2863 {
2864 struct lwp_info *lp = get_thread_lwp (thread);
2865 int *count = (int *) data;
2866
2867 gdb_assert (count != NULL);
2868
2869 /* Count only resumed LWPs that have an event pending. */
2870 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2871 && lp->status_pending_p)
2872 (*count)++;
2873
2874 return 0;
2875 }
2876
2877 /* Select the LWP (if any) that is currently being single-stepped. */
2878
2879 static int
2880 select_singlestep_lwp_callback (thread_info *thread, void *data)
2881 {
2882 struct lwp_info *lp = get_thread_lwp (thread);
2883
2884 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2885 && thread->last_resume_kind == resume_step
2886 && lp->status_pending_p)
2887 return 1;
2888 else
2889 return 0;
2890 }
2891
2892 /* Select the Nth LWP that has had an event. */
2893
2894 static int
2895 select_event_lwp_callback (thread_info *thread, void *data)
2896 {
2897 struct lwp_info *lp = get_thread_lwp (thread);
2898 int *selector = (int *) data;
2899
2900 gdb_assert (selector != NULL);
2901
2902 /* Select only resumed LWPs that have an event pending. */
2903 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2904 && lp->status_pending_p)
2905 if ((*selector)-- == 0)
2906 return 1;
2907
2908 return 0;
2909 }
2910
2911 /* Select one LWP out of those that have events pending. */
2912
2913 static void
2914 select_event_lwp (struct lwp_info **orig_lp)
2915 {
2916 int num_events = 0;
2917 int random_selector;
2918 struct thread_info *event_thread = NULL;
2919
2920 /* In all-stop, give preference to the LWP that is being
2921 single-stepped. There will be at most one, and it's the LWP that
2922 the core is most interested in. If we didn't do this, then we'd
2923 have to handle pending step SIGTRAPs somehow in case the core
2924 later continues the previously-stepped thread, otherwise we'd
2925 report the pending SIGTRAP, and the core, not having stepped the
2926 thread, wouldn't understand what the trap was for, and therefore
2927 would report it to the user as a random signal. */
2928 if (!non_stop)
2929 {
2930 event_thread
2931 = (struct thread_info *) find_inferior (&all_threads,
2932 select_singlestep_lwp_callback,
2933 NULL);
2934 if (event_thread != NULL)
2935 {
2936 if (debug_threads)
2937 debug_printf ("SEL: Select single-step %s\n",
2938 target_pid_to_str (ptid_of (event_thread)));
2939 }
2940 }
2941 if (event_thread == NULL)
2942 {
2943 /* No single-stepping LWP. Select one at random, out of those
2944 which have had events. */
2945
2946 /* First see how many events we have. */
2947 find_inferior (&all_threads, count_events_callback, &num_events);
2948 gdb_assert (num_events > 0);
2949
2950 /* Now randomly pick a LWP out of those that have had
2951 events. */
2952 random_selector = (int)
2953 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2954
2955 if (debug_threads && num_events > 1)
2956 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2957 num_events, random_selector);
2958
2959 event_thread
2960 = (struct thread_info *) find_inferior (&all_threads,
2961 select_event_lwp_callback,
2962 &random_selector);
2963 }
2964
2965 if (event_thread != NULL)
2966 {
2967 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2968
2969 /* Switch the event LWP. */
2970 *orig_lp = event_lp;
2971 }
2972 }
2973
2974 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2975 NULL. */
2976
2977 static void
2978 unsuspend_all_lwps (struct lwp_info *except)
2979 {
2980 for_each_thread ([&] (thread_info *thread)
2981 {
2982 lwp_info *lwp = get_thread_lwp (thread);
2983
2984 if (lwp != except)
2985 lwp_suspended_decr (lwp);
2986 });
2987 }
2988
2989 static void move_out_of_jump_pad_callback (thread_info *thread);
2990 static bool stuck_in_jump_pad_callback (thread_info *thread);
2991 static int lwp_running (thread_info *thread, void *data);
2992 static ptid_t linux_wait_1 (ptid_t ptid,
2993 struct target_waitstatus *ourstatus,
2994 int target_options);
2995
2996 /* Stabilize threads (move out of jump pads).
2997
2998 If a thread is midway collecting a fast tracepoint, we need to
2999 finish the collection and move it out of the jump pad before
3000 reporting the signal.
3001
3002 This avoids recursion while collecting (when a signal arrives
3003 midway, and the signal handler itself collects), which would trash
3004 the trace buffer. In case the user set a breakpoint in a signal
3005 handler, this avoids the backtrace showing the jump pad, etc..
3006 Most importantly, there are certain things we can't do safely if
3007 threads are stopped in a jump pad (or in its callee's). For
3008 example:
3009
3010 - starting a new trace run. A thread still collecting the
3011 previous run, could trash the trace buffer when resumed. The trace
3012 buffer control structures would have been reset but the thread had
3013 no way to tell. The thread could even midway memcpy'ing to the
3014 buffer, which would mean that when resumed, it would clobber the
3015 trace buffer that had been set for a new run.
3016
3017 - we can't rewrite/reuse the jump pads for new tracepoints
3018 safely. Say you do tstart while a thread is stopped midway while
3019 collecting. When the thread is later resumed, it finishes the
3020 collection, and returns to the jump pad, to execute the original
3021 instruction that was under the tracepoint jump at the time the
3022 older run had been started. If the jump pad had been rewritten
3023 since for something else in the new run, the thread would now
3024 execute the wrong / random instructions. */
3025
3026 static void
3027 linux_stabilize_threads (void)
3028 {
3029 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
3030
3031 if (thread_stuck != NULL)
3032 {
3033 if (debug_threads)
3034 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
3035 lwpid_of (thread_stuck));
3036 return;
3037 }
3038
3039 thread_info *saved_thread = current_thread;
3040
3041 stabilizing_threads = 1;
3042
3043 /* Kick 'em all. */
3044 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3045
3046 /* Loop until all are stopped out of the jump pads. */
3047 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3048 {
3049 struct target_waitstatus ourstatus;
3050 struct lwp_info *lwp;
3051 int wstat;
3052
3053 /* Note that we go through the full wait even loop. While
3054 moving threads out of jump pad, we need to be able to step
3055 over internal breakpoints and such. */
3056 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3057
3058 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3059 {
3060 lwp = get_thread_lwp (current_thread);
3061
3062 /* Lock it. */
3063 lwp_suspended_inc (lwp);
3064
3065 if (ourstatus.value.sig != GDB_SIGNAL_0
3066 || current_thread->last_resume_kind == resume_stop)
3067 {
3068 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3069 enqueue_one_deferred_signal (lwp, &wstat);
3070 }
3071 }
3072 }
3073
3074 unsuspend_all_lwps (NULL);
3075
3076 stabilizing_threads = 0;
3077
3078 current_thread = saved_thread;
3079
3080 if (debug_threads)
3081 {
3082 thread_stuck = find_thread (stuck_in_jump_pad_callback);
3083
3084 if (thread_stuck != NULL)
3085 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3086 lwpid_of (thread_stuck));
3087 }
3088 }
3089
3090 /* Convenience function that is called when the kernel reports an
3091 event that is not passed out to GDB. */
3092
3093 static ptid_t
3094 ignore_event (struct target_waitstatus *ourstatus)
3095 {
3096 /* If we got an event, there may still be others, as a single
3097 SIGCHLD can indicate more than one child stopped. This forces
3098 another target_wait call. */
3099 async_file_mark ();
3100
3101 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3102 return null_ptid;
3103 }
3104
3105 /* Convenience function that is called when the kernel reports an exit
3106 event. This decides whether to report the event to GDB as a
3107 process exit event, a thread exit event, or to suppress the
3108 event. */
3109
3110 static ptid_t
3111 filter_exit_event (struct lwp_info *event_child,
3112 struct target_waitstatus *ourstatus)
3113 {
3114 struct thread_info *thread = get_lwp_thread (event_child);
3115 ptid_t ptid = ptid_of (thread);
3116
3117 if (!last_thread_of_process_p (pid_of (thread)))
3118 {
3119 if (report_thread_events)
3120 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3121 else
3122 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3123
3124 delete_lwp (event_child);
3125 }
3126 return ptid;
3127 }
3128
3129 /* Returns 1 if GDB is interested in any event_child syscalls. */
3130
3131 static int
3132 gdb_catching_syscalls_p (struct lwp_info *event_child)
3133 {
3134 struct thread_info *thread = get_lwp_thread (event_child);
3135 struct process_info *proc = get_thread_process (thread);
3136
3137 return !proc->syscalls_to_catch.empty ();
3138 }
3139
3140 /* Returns 1 if GDB is interested in the event_child syscall.
3141 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3142
3143 static int
3144 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3145 {
3146 int sysno;
3147 struct thread_info *thread = get_lwp_thread (event_child);
3148 struct process_info *proc = get_thread_process (thread);
3149
3150 if (proc->syscalls_to_catch.empty ())
3151 return 0;
3152
3153 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3154 return 1;
3155
3156 get_syscall_trapinfo (event_child, &sysno);
3157
3158 for (int iter : proc->syscalls_to_catch)
3159 if (iter == sysno)
3160 return 1;
3161
3162 return 0;
3163 }
3164
3165 /* Wait for process, returns status. */
3166
3167 static ptid_t
3168 linux_wait_1 (ptid_t ptid,
3169 struct target_waitstatus *ourstatus, int target_options)
3170 {
3171 int w;
3172 struct lwp_info *event_child;
3173 int options;
3174 int pid;
3175 int step_over_finished;
3176 int bp_explains_trap;
3177 int maybe_internal_trap;
3178 int report_to_gdb;
3179 int trace_event;
3180 int in_step_range;
3181 int any_resumed;
3182
3183 if (debug_threads)
3184 {
3185 debug_enter ();
3186 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3187 }
3188
3189 /* Translate generic target options into linux options. */
3190 options = __WALL;
3191 if (target_options & TARGET_WNOHANG)
3192 options |= WNOHANG;
3193
3194 bp_explains_trap = 0;
3195 trace_event = 0;
3196 in_step_range = 0;
3197 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3198
3199 auto status_pending_p_any = [&] (thread_info *thread)
3200 {
3201 return status_pending_p_callback (thread, minus_one_ptid);
3202 };
3203
3204 /* Find a resumed LWP, if any. */
3205 if (find_thread (status_pending_p_any) != NULL)
3206 any_resumed = 1;
3207 else if ((find_inferior (&all_threads,
3208 not_stopped_callback,
3209 &minus_one_ptid) != NULL))
3210 any_resumed = 1;
3211 else
3212 any_resumed = 0;
3213
3214 if (ptid_equal (step_over_bkpt, null_ptid))
3215 pid = linux_wait_for_event (ptid, &w, options);
3216 else
3217 {
3218 if (debug_threads)
3219 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3220 target_pid_to_str (step_over_bkpt));
3221 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3222 }
3223
3224 if (pid == 0 || (pid == -1 && !any_resumed))
3225 {
3226 gdb_assert (target_options & TARGET_WNOHANG);
3227
3228 if (debug_threads)
3229 {
3230 debug_printf ("linux_wait_1 ret = null_ptid, "
3231 "TARGET_WAITKIND_IGNORE\n");
3232 debug_exit ();
3233 }
3234
3235 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3236 return null_ptid;
3237 }
3238 else if (pid == -1)
3239 {
3240 if (debug_threads)
3241 {
3242 debug_printf ("linux_wait_1 ret = null_ptid, "
3243 "TARGET_WAITKIND_NO_RESUMED\n");
3244 debug_exit ();
3245 }
3246
3247 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3248 return null_ptid;
3249 }
3250
3251 event_child = get_thread_lwp (current_thread);
3252
3253 /* linux_wait_for_event only returns an exit status for the last
3254 child of a process. Report it. */
3255 if (WIFEXITED (w) || WIFSIGNALED (w))
3256 {
3257 if (WIFEXITED (w))
3258 {
3259 ourstatus->kind = TARGET_WAITKIND_EXITED;
3260 ourstatus->value.integer = WEXITSTATUS (w);
3261
3262 if (debug_threads)
3263 {
3264 debug_printf ("linux_wait_1 ret = %s, exited with "
3265 "retcode %d\n",
3266 target_pid_to_str (ptid_of (current_thread)),
3267 WEXITSTATUS (w));
3268 debug_exit ();
3269 }
3270 }
3271 else
3272 {
3273 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3274 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3275
3276 if (debug_threads)
3277 {
3278 debug_printf ("linux_wait_1 ret = %s, terminated with "
3279 "signal %d\n",
3280 target_pid_to_str (ptid_of (current_thread)),
3281 WTERMSIG (w));
3282 debug_exit ();
3283 }
3284 }
3285
3286 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3287 return filter_exit_event (event_child, ourstatus);
3288
3289 return ptid_of (current_thread);
3290 }
3291
3292 /* If step-over executes a breakpoint instruction, in the case of a
3293 hardware single step it means a gdb/gdbserver breakpoint had been
3294 planted on top of a permanent breakpoint, in the case of a software
3295 single step it may just mean that gdbserver hit the reinsert breakpoint.
3296 The PC has been adjusted by save_stop_reason to point at
3297 the breakpoint address.
3298 So in the case of the hardware single step advance the PC manually
3299 past the breakpoint and in the case of software single step advance only
3300 if it's not the single_step_breakpoint we are hitting.
3301 This avoids that a program would keep trapping a permanent breakpoint
3302 forever. */
3303 if (!ptid_equal (step_over_bkpt, null_ptid)
3304 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3305 && (event_child->stepping
3306 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3307 {
3308 int increment_pc = 0;
3309 int breakpoint_kind = 0;
3310 CORE_ADDR stop_pc = event_child->stop_pc;
3311
3312 breakpoint_kind =
3313 the_target->breakpoint_kind_from_current_state (&stop_pc);
3314 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3315
3316 if (debug_threads)
3317 {
3318 debug_printf ("step-over for %s executed software breakpoint\n",
3319 target_pid_to_str (ptid_of (current_thread)));
3320 }
3321
3322 if (increment_pc != 0)
3323 {
3324 struct regcache *regcache
3325 = get_thread_regcache (current_thread, 1);
3326
3327 event_child->stop_pc += increment_pc;
3328 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3329
3330 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3331 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3332 }
3333 }
3334
3335 /* If this event was not handled before, and is not a SIGTRAP, we
3336 report it. SIGILL and SIGSEGV are also treated as traps in case
3337 a breakpoint is inserted at the current PC. If this target does
3338 not support internal breakpoints at all, we also report the
3339 SIGTRAP without further processing; it's of no concern to us. */
3340 maybe_internal_trap
3341 = (supports_breakpoints ()
3342 && (WSTOPSIG (w) == SIGTRAP
3343 || ((WSTOPSIG (w) == SIGILL
3344 || WSTOPSIG (w) == SIGSEGV)
3345 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3346
3347 if (maybe_internal_trap)
3348 {
3349 /* Handle anything that requires bookkeeping before deciding to
3350 report the event or continue waiting. */
3351
3352 /* First check if we can explain the SIGTRAP with an internal
3353 breakpoint, or if we should possibly report the event to GDB.
3354 Do this before anything that may remove or insert a
3355 breakpoint. */
3356 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3357
3358 /* We have a SIGTRAP, possibly a step-over dance has just
3359 finished. If so, tweak the state machine accordingly,
3360 reinsert breakpoints and delete any single-step
3361 breakpoints. */
3362 step_over_finished = finish_step_over (event_child);
3363
3364 /* Now invoke the callbacks of any internal breakpoints there. */
3365 check_breakpoints (event_child->stop_pc);
3366
3367 /* Handle tracepoint data collecting. This may overflow the
3368 trace buffer, and cause a tracing stop, removing
3369 breakpoints. */
3370 trace_event = handle_tracepoints (event_child);
3371
3372 if (bp_explains_trap)
3373 {
3374 if (debug_threads)
3375 debug_printf ("Hit a gdbserver breakpoint.\n");
3376 }
3377 }
3378 else
3379 {
3380 /* We have some other signal, possibly a step-over dance was in
3381 progress, and it should be cancelled too. */
3382 step_over_finished = finish_step_over (event_child);
3383 }
3384
3385 /* We have all the data we need. Either report the event to GDB, or
3386 resume threads and keep waiting for more. */
3387
3388 /* If we're collecting a fast tracepoint, finish the collection and
3389 move out of the jump pad before delivering a signal. See
3390 linux_stabilize_threads. */
3391
3392 if (WIFSTOPPED (w)
3393 && WSTOPSIG (w) != SIGTRAP
3394 && supports_fast_tracepoints ()
3395 && agent_loaded_p ())
3396 {
3397 if (debug_threads)
3398 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3399 "to defer or adjust it.\n",
3400 WSTOPSIG (w), lwpid_of (current_thread));
3401
3402 /* Allow debugging the jump pad itself. */
3403 if (current_thread->last_resume_kind != resume_step
3404 && maybe_move_out_of_jump_pad (event_child, &w))
3405 {
3406 enqueue_one_deferred_signal (event_child, &w);
3407
3408 if (debug_threads)
3409 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3410 WSTOPSIG (w), lwpid_of (current_thread));
3411
3412 linux_resume_one_lwp (event_child, 0, 0, NULL);
3413
3414 if (debug_threads)
3415 debug_exit ();
3416 return ignore_event (ourstatus);
3417 }
3418 }
3419
3420 if (event_child->collecting_fast_tracepoint
3421 != fast_tpoint_collect_result::not_collecting)
3422 {
3423 if (debug_threads)
3424 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3425 "Check if we're already there.\n",
3426 lwpid_of (current_thread),
3427 (int) event_child->collecting_fast_tracepoint);
3428
3429 trace_event = 1;
3430
3431 event_child->collecting_fast_tracepoint
3432 = linux_fast_tracepoint_collecting (event_child, NULL);
3433
3434 if (event_child->collecting_fast_tracepoint
3435 != fast_tpoint_collect_result::before_insn)
3436 {
3437 /* No longer need this breakpoint. */
3438 if (event_child->exit_jump_pad_bkpt != NULL)
3439 {
3440 if (debug_threads)
3441 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3442 "stopping all threads momentarily.\n");
3443
3444 /* Other running threads could hit this breakpoint.
3445 We don't handle moribund locations like GDB does,
3446 instead we always pause all threads when removing
3447 breakpoints, so that any step-over or
3448 decr_pc_after_break adjustment is always taken
3449 care of while the breakpoint is still
3450 inserted. */
3451 stop_all_lwps (1, event_child);
3452
3453 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3454 event_child->exit_jump_pad_bkpt = NULL;
3455
3456 unstop_all_lwps (1, event_child);
3457
3458 gdb_assert (event_child->suspended >= 0);
3459 }
3460 }
3461
3462 if (event_child->collecting_fast_tracepoint
3463 == fast_tpoint_collect_result::not_collecting)
3464 {
3465 if (debug_threads)
3466 debug_printf ("fast tracepoint finished "
3467 "collecting successfully.\n");
3468
3469 /* We may have a deferred signal to report. */
3470 if (dequeue_one_deferred_signal (event_child, &w))
3471 {
3472 if (debug_threads)
3473 debug_printf ("dequeued one signal.\n");
3474 }
3475 else
3476 {
3477 if (debug_threads)
3478 debug_printf ("no deferred signals.\n");
3479
3480 if (stabilizing_threads)
3481 {
3482 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3483 ourstatus->value.sig = GDB_SIGNAL_0;
3484
3485 if (debug_threads)
3486 {
3487 debug_printf ("linux_wait_1 ret = %s, stopped "
3488 "while stabilizing threads\n",
3489 target_pid_to_str (ptid_of (current_thread)));
3490 debug_exit ();
3491 }
3492
3493 return ptid_of (current_thread);
3494 }
3495 }
3496 }
3497 }
3498
3499 /* Check whether GDB would be interested in this event. */
3500
3501 /* Check if GDB is interested in this syscall. */
3502 if (WIFSTOPPED (w)
3503 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3504 && !gdb_catch_this_syscall_p (event_child))
3505 {
3506 if (debug_threads)
3507 {
3508 debug_printf ("Ignored syscall for LWP %ld.\n",
3509 lwpid_of (current_thread));
3510 }
3511
3512 linux_resume_one_lwp (event_child, event_child->stepping,
3513 0, NULL);
3514
3515 if (debug_threads)
3516 debug_exit ();
3517 return ignore_event (ourstatus);
3518 }
3519
3520 /* If GDB is not interested in this signal, don't stop other
3521 threads, and don't report it to GDB. Just resume the inferior
3522 right away. We do this for threading-related signals as well as
3523 any that GDB specifically requested we ignore. But never ignore
3524 SIGSTOP if we sent it ourselves, and do not ignore signals when
3525 stepping - they may require special handling to skip the signal
3526 handler. Also never ignore signals that could be caused by a
3527 breakpoint. */
3528 if (WIFSTOPPED (w)
3529 && current_thread->last_resume_kind != resume_step
3530 && (
3531 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3532 (current_process ()->priv->thread_db != NULL
3533 && (WSTOPSIG (w) == __SIGRTMIN
3534 || WSTOPSIG (w) == __SIGRTMIN + 1))
3535 ||
3536 #endif
3537 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3538 && !(WSTOPSIG (w) == SIGSTOP
3539 && current_thread->last_resume_kind == resume_stop)
3540 && !linux_wstatus_maybe_breakpoint (w))))
3541 {
3542 siginfo_t info, *info_p;
3543
3544 if (debug_threads)
3545 debug_printf ("Ignored signal %d for LWP %ld.\n",
3546 WSTOPSIG (w), lwpid_of (current_thread));
3547
3548 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3549 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3550 info_p = &info;
3551 else
3552 info_p = NULL;
3553
3554 if (step_over_finished)
3555 {
3556 /* We cancelled this thread's step-over above. We still
3557 need to unsuspend all other LWPs, and set them back
3558 running again while the signal handler runs. */
3559 unsuspend_all_lwps (event_child);
3560
3561 /* Enqueue the pending signal info so that proceed_all_lwps
3562 doesn't lose it. */
3563 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3564
3565 proceed_all_lwps ();
3566 }
3567 else
3568 {
3569 linux_resume_one_lwp (event_child, event_child->stepping,
3570 WSTOPSIG (w), info_p);
3571 }
3572
3573 if (debug_threads)
3574 debug_exit ();
3575
3576 return ignore_event (ourstatus);
3577 }
3578
3579 /* Note that all addresses are always "out of the step range" when
3580 there's no range to begin with. */
3581 in_step_range = lwp_in_step_range (event_child);
3582
3583 /* If GDB wanted this thread to single step, and the thread is out
3584 of the step range, we always want to report the SIGTRAP, and let
3585 GDB handle it. Watchpoints should always be reported. So should
3586 signals we can't explain. A SIGTRAP we can't explain could be a
3587 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3588 do, we're be able to handle GDB breakpoints on top of internal
3589 breakpoints, by handling the internal breakpoint and still
3590 reporting the event to GDB. If we don't, we're out of luck, GDB
3591 won't see the breakpoint hit. If we see a single-step event but
3592 the thread should be continuing, don't pass the trap to gdb.
3593 That indicates that we had previously finished a single-step but
3594 left the single-step pending -- see
3595 complete_ongoing_step_over. */
3596 report_to_gdb = (!maybe_internal_trap
3597 || (current_thread->last_resume_kind == resume_step
3598 && !in_step_range)
3599 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3600 || (!in_step_range
3601 && !bp_explains_trap
3602 && !trace_event
3603 && !step_over_finished
3604 && !(current_thread->last_resume_kind == resume_continue
3605 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3606 || (gdb_breakpoint_here (event_child->stop_pc)
3607 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3608 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3609 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3610
3611 run_breakpoint_commands (event_child->stop_pc);
3612
3613 /* We found no reason GDB would want us to stop. We either hit one
3614 of our own breakpoints, or finished an internal step GDB
3615 shouldn't know about. */
3616 if (!report_to_gdb)
3617 {
3618 if (debug_threads)
3619 {
3620 if (bp_explains_trap)
3621 debug_printf ("Hit a gdbserver breakpoint.\n");
3622 if (step_over_finished)
3623 debug_printf ("Step-over finished.\n");
3624 if (trace_event)
3625 debug_printf ("Tracepoint event.\n");
3626 if (lwp_in_step_range (event_child))
3627 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3628 paddress (event_child->stop_pc),
3629 paddress (event_child->step_range_start),
3630 paddress (event_child->step_range_end));
3631 }
3632
3633 /* We're not reporting this breakpoint to GDB, so apply the
3634 decr_pc_after_break adjustment to the inferior's regcache
3635 ourselves. */
3636
3637 if (the_low_target.set_pc != NULL)
3638 {
3639 struct regcache *regcache
3640 = get_thread_regcache (current_thread, 1);
3641 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3642 }
3643
3644 if (step_over_finished)
3645 {
3646 /* If we have finished stepping over a breakpoint, we've
3647 stopped and suspended all LWPs momentarily except the
3648 stepping one. This is where we resume them all again.
3649 We're going to keep waiting, so use proceed, which
3650 handles stepping over the next breakpoint. */
3651 unsuspend_all_lwps (event_child);
3652 }
3653 else
3654 {
3655 /* Remove the single-step breakpoints if any. Note that
3656 there isn't single-step breakpoint if we finished stepping
3657 over. */
3658 if (can_software_single_step ()
3659 && has_single_step_breakpoints (current_thread))
3660 {
3661 stop_all_lwps (0, event_child);
3662 delete_single_step_breakpoints (current_thread);
3663 unstop_all_lwps (0, event_child);
3664 }
3665 }
3666
3667 if (debug_threads)
3668 debug_printf ("proceeding all threads.\n");
3669 proceed_all_lwps ();
3670
3671 if (debug_threads)
3672 debug_exit ();
3673
3674 return ignore_event (ourstatus);
3675 }
3676
3677 if (debug_threads)
3678 {
3679 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3680 {
3681 std::string str
3682 = target_waitstatus_to_string (&event_child->waitstatus);
3683
3684 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3685 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3686 }
3687 if (current_thread->last_resume_kind == resume_step)
3688 {
3689 if (event_child->step_range_start == event_child->step_range_end)
3690 debug_printf ("GDB wanted to single-step, reporting event.\n");
3691 else if (!lwp_in_step_range (event_child))
3692 debug_printf ("Out of step range, reporting event.\n");
3693 }
3694 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3695 debug_printf ("Stopped by watchpoint.\n");
3696 else if (gdb_breakpoint_here (event_child->stop_pc))
3697 debug_printf ("Stopped by GDB breakpoint.\n");
3698 if (debug_threads)
3699 debug_printf ("Hit a non-gdbserver trap event.\n");
3700 }
3701
3702 /* Alright, we're going to report a stop. */
3703
3704 /* Remove single-step breakpoints. */
3705 if (can_software_single_step ())
3706 {
3707 /* Remove single-step breakpoints or not. It it is true, stop all
3708 lwps, so that other threads won't hit the breakpoint in the
3709 staled memory. */
3710 int remove_single_step_breakpoints_p = 0;
3711
3712 if (non_stop)
3713 {
3714 remove_single_step_breakpoints_p
3715 = has_single_step_breakpoints (current_thread);
3716 }
3717 else
3718 {
3719 /* In all-stop, a stop reply cancels all previous resume
3720 requests. Delete all single-step breakpoints. */
3721
3722 find_thread ([&] (thread_info *thread) {
3723 if (has_single_step_breakpoints (thread))
3724 {
3725 remove_single_step_breakpoints_p = 1;
3726 return true;
3727 }
3728
3729 return false;
3730 });
3731 }
3732
3733 if (remove_single_step_breakpoints_p)
3734 {
3735 /* If we remove single-step breakpoints from memory, stop all lwps,
3736 so that other threads won't hit the breakpoint in the staled
3737 memory. */
3738 stop_all_lwps (0, event_child);
3739
3740 if (non_stop)
3741 {
3742 gdb_assert (has_single_step_breakpoints (current_thread));
3743 delete_single_step_breakpoints (current_thread);
3744 }
3745 else
3746 {
3747 for_each_thread ([] (thread_info *thread){
3748 if (has_single_step_breakpoints (thread))
3749 delete_single_step_breakpoints (thread);
3750 });
3751 }
3752
3753 unstop_all_lwps (0, event_child);
3754 }
3755 }
3756
3757 if (!stabilizing_threads)
3758 {
3759 /* In all-stop, stop all threads. */
3760 if (!non_stop)
3761 stop_all_lwps (0, NULL);
3762
3763 if (step_over_finished)
3764 {
3765 if (!non_stop)
3766 {
3767 /* If we were doing a step-over, all other threads but
3768 the stepping one had been paused in start_step_over,
3769 with their suspend counts incremented. We don't want
3770 to do a full unstop/unpause, because we're in
3771 all-stop mode (so we want threads stopped), but we
3772 still need to unsuspend the other threads, to
3773 decrement their `suspended' count back. */
3774 unsuspend_all_lwps (event_child);
3775 }
3776 else
3777 {
3778 /* If we just finished a step-over, then all threads had
3779 been momentarily paused. In all-stop, that's fine,
3780 we want threads stopped by now anyway. In non-stop,
3781 we need to re-resume threads that GDB wanted to be
3782 running. */
3783 unstop_all_lwps (1, event_child);
3784 }
3785 }
3786
3787 /* If we're not waiting for a specific LWP, choose an event LWP
3788 from among those that have had events. Giving equal priority
3789 to all LWPs that have had events helps prevent
3790 starvation. */
3791 if (ptid_equal (ptid, minus_one_ptid))
3792 {
3793 event_child->status_pending_p = 1;
3794 event_child->status_pending = w;
3795
3796 select_event_lwp (&event_child);
3797
3798 /* current_thread and event_child must stay in sync. */
3799 current_thread = get_lwp_thread (event_child);
3800
3801 event_child->status_pending_p = 0;
3802 w = event_child->status_pending;
3803 }
3804
3805
3806 /* Stabilize threads (move out of jump pads). */
3807 if (!non_stop)
3808 stabilize_threads ();
3809 }
3810 else
3811 {
3812 /* If we just finished a step-over, then all threads had been
3813 momentarily paused. In all-stop, that's fine, we want
3814 threads stopped by now anyway. In non-stop, we need to
3815 re-resume threads that GDB wanted to be running. */
3816 if (step_over_finished)
3817 unstop_all_lwps (1, event_child);
3818 }
3819
3820 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3821 {
3822 /* If the reported event is an exit, fork, vfork or exec, let
3823 GDB know. */
3824
3825 /* Break the unreported fork relationship chain. */
3826 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3827 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3828 {
3829 event_child->fork_relative->fork_relative = NULL;
3830 event_child->fork_relative = NULL;
3831 }
3832
3833 *ourstatus = event_child->waitstatus;
3834 /* Clear the event lwp's waitstatus since we handled it already. */
3835 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3836 }
3837 else
3838 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3839
3840 /* Now that we've selected our final event LWP, un-adjust its PC if
3841 it was a software breakpoint, and the client doesn't know we can
3842 adjust the breakpoint ourselves. */
3843 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3844 && !swbreak_feature)
3845 {
3846 int decr_pc = the_low_target.decr_pc_after_break;
3847
3848 if (decr_pc != 0)
3849 {
3850 struct regcache *regcache
3851 = get_thread_regcache (current_thread, 1);
3852 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3853 }
3854 }
3855
3856 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3857 {
3858 get_syscall_trapinfo (event_child,
3859 &ourstatus->value.syscall_number);
3860 ourstatus->kind = event_child->syscall_state;
3861 }
3862 else if (current_thread->last_resume_kind == resume_stop
3863 && WSTOPSIG (w) == SIGSTOP)
3864 {
3865 /* A thread that has been requested to stop by GDB with vCont;t,
3866 and it stopped cleanly, so report as SIG0. The use of
3867 SIGSTOP is an implementation detail. */
3868 ourstatus->value.sig = GDB_SIGNAL_0;
3869 }
3870 else if (current_thread->last_resume_kind == resume_stop
3871 && WSTOPSIG (w) != SIGSTOP)
3872 {
3873 /* A thread that has been requested to stop by GDB with vCont;t,
3874 but, it stopped for other reasons. */
3875 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3876 }
3877 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3878 {
3879 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3880 }
3881
3882 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3883
3884 if (debug_threads)
3885 {
3886 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3887 target_pid_to_str (ptid_of (current_thread)),
3888 ourstatus->kind, ourstatus->value.sig);
3889 debug_exit ();
3890 }
3891
3892 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3893 return filter_exit_event (event_child, ourstatus);
3894
3895 return ptid_of (current_thread);
3896 }
3897
3898 /* Get rid of any pending event in the pipe. */
3899 static void
3900 async_file_flush (void)
3901 {
3902 int ret;
3903 char buf;
3904
3905 do
3906 ret = read (linux_event_pipe[0], &buf, 1);
3907 while (ret >= 0 || (ret == -1 && errno == EINTR));
3908 }
3909
3910 /* Put something in the pipe, so the event loop wakes up. */
3911 static void
3912 async_file_mark (void)
3913 {
3914 int ret;
3915
3916 async_file_flush ();
3917
3918 do
3919 ret = write (linux_event_pipe[1], "+", 1);
3920 while (ret == 0 || (ret == -1 && errno == EINTR));
3921
3922 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3923 be awakened anyway. */
3924 }
3925
3926 static ptid_t
3927 linux_wait (ptid_t ptid,
3928 struct target_waitstatus *ourstatus, int target_options)
3929 {
3930 ptid_t event_ptid;
3931
3932 /* Flush the async file first. */
3933 if (target_is_async_p ())
3934 async_file_flush ();
3935
3936 do
3937 {
3938 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3939 }
3940 while ((target_options & TARGET_WNOHANG) == 0
3941 && ptid_equal (event_ptid, null_ptid)
3942 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3943
3944 /* If at least one stop was reported, there may be more. A single
3945 SIGCHLD can signal more than one child stop. */
3946 if (target_is_async_p ()
3947 && (target_options & TARGET_WNOHANG) != 0
3948 && !ptid_equal (event_ptid, null_ptid))
3949 async_file_mark ();
3950
3951 return event_ptid;
3952 }
3953
3954 /* Send a signal to an LWP. */
3955
3956 static int
3957 kill_lwp (unsigned long lwpid, int signo)
3958 {
3959 int ret;
3960
3961 errno = 0;
3962 ret = syscall (__NR_tkill, lwpid, signo);
3963 if (errno == ENOSYS)
3964 {
3965 /* If tkill fails, then we are not using nptl threads, a
3966 configuration we no longer support. */
3967 perror_with_name (("tkill"));
3968 }
3969 return ret;
3970 }
3971
3972 void
3973 linux_stop_lwp (struct lwp_info *lwp)
3974 {
3975 send_sigstop (lwp);
3976 }
3977
3978 static void
3979 send_sigstop (struct lwp_info *lwp)
3980 {
3981 int pid;
3982
3983 pid = lwpid_of (get_lwp_thread (lwp));
3984
3985 /* If we already have a pending stop signal for this process, don't
3986 send another. */
3987 if (lwp->stop_expected)
3988 {
3989 if (debug_threads)
3990 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3991
3992 return;
3993 }
3994
3995 if (debug_threads)
3996 debug_printf ("Sending sigstop to lwp %d\n", pid);
3997
3998 lwp->stop_expected = 1;
3999 kill_lwp (pid, SIGSTOP);
4000 }
4001
4002 static int
4003 send_sigstop_callback (thread_info *thread, void *except)
4004 {
4005 struct lwp_info *lwp = get_thread_lwp (thread);
4006
4007 /* Ignore EXCEPT. */
4008 if (lwp == except)
4009 return 0;
4010
4011 if (lwp->stopped)
4012 return 0;
4013
4014 send_sigstop (lwp);
4015 return 0;
4016 }
4017
4018 /* Increment the suspend count of an LWP, and stop it, if not stopped
4019 yet. */
4020 static int
4021 suspend_and_send_sigstop_callback (thread_info *thread, void *except)
4022 {
4023 struct lwp_info *lwp = get_thread_lwp (thread);
4024
4025 /* Ignore EXCEPT. */
4026 if (lwp == except)
4027 return 0;
4028
4029 lwp_suspended_inc (lwp);
4030
4031 return send_sigstop_callback (thread, except);
4032 }
4033
4034 static void
4035 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4036 {
4037 /* Store the exit status for later. */
4038 lwp->status_pending_p = 1;
4039 lwp->status_pending = wstat;
4040
4041 /* Store in waitstatus as well, as there's nothing else to process
4042 for this event. */
4043 if (WIFEXITED (wstat))
4044 {
4045 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4046 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4047 }
4048 else if (WIFSIGNALED (wstat))
4049 {
4050 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4051 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4052 }
4053
4054 /* Prevent trying to stop it. */
4055 lwp->stopped = 1;
4056
4057 /* No further stops are expected from a dead lwp. */
4058 lwp->stop_expected = 0;
4059 }
4060
4061 /* Return true if LWP has exited already, and has a pending exit event
4062 to report to GDB. */
4063
4064 static int
4065 lwp_is_marked_dead (struct lwp_info *lwp)
4066 {
4067 return (lwp->status_pending_p
4068 && (WIFEXITED (lwp->status_pending)
4069 || WIFSIGNALED (lwp->status_pending)));
4070 }
4071
4072 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4073
4074 static void
4075 wait_for_sigstop (void)
4076 {
4077 struct thread_info *saved_thread;
4078 ptid_t saved_tid;
4079 int wstat;
4080 int ret;
4081
4082 saved_thread = current_thread;
4083 if (saved_thread != NULL)
4084 saved_tid = saved_thread->id;
4085 else
4086 saved_tid = null_ptid; /* avoid bogus unused warning */
4087
4088 if (debug_threads)
4089 debug_printf ("wait_for_sigstop: pulling events\n");
4090
4091 /* Passing NULL_PTID as filter indicates we want all events to be
4092 left pending. Eventually this returns when there are no
4093 unwaited-for children left. */
4094 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4095 &wstat, __WALL);
4096 gdb_assert (ret == -1);
4097
4098 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4099 current_thread = saved_thread;
4100 else
4101 {
4102 if (debug_threads)
4103 debug_printf ("Previously current thread died.\n");
4104
4105 /* We can't change the current inferior behind GDB's back,
4106 otherwise, a subsequent command may apply to the wrong
4107 process. */
4108 current_thread = NULL;
4109 }
4110 }
4111
4112 /* Returns true if THREAD is stopped in a jump pad, and we can't
4113 move it out, because we need to report the stop event to GDB. For
4114 example, if the user puts a breakpoint in the jump pad, it's
4115 because she wants to debug it. */
4116
4117 static bool
4118 stuck_in_jump_pad_callback (thread_info *thread)
4119 {
4120 struct lwp_info *lwp = get_thread_lwp (thread);
4121
4122 if (lwp->suspended != 0)
4123 {
4124 internal_error (__FILE__, __LINE__,
4125 "LWP %ld is suspended, suspended=%d\n",
4126 lwpid_of (thread), lwp->suspended);
4127 }
4128 gdb_assert (lwp->stopped);
4129
4130 /* Allow debugging the jump pad, gdb_collect, etc.. */
4131 return (supports_fast_tracepoints ()
4132 && agent_loaded_p ()
4133 && (gdb_breakpoint_here (lwp->stop_pc)
4134 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4135 || thread->last_resume_kind == resume_step)
4136 && (linux_fast_tracepoint_collecting (lwp, NULL)
4137 != fast_tpoint_collect_result::not_collecting));
4138 }
4139
4140 static void
4141 move_out_of_jump_pad_callback (thread_info *thread)
4142 {
4143 struct thread_info *saved_thread;
4144 struct lwp_info *lwp = get_thread_lwp (thread);
4145 int *wstat;
4146
4147 if (lwp->suspended != 0)
4148 {
4149 internal_error (__FILE__, __LINE__,
4150 "LWP %ld is suspended, suspended=%d\n",
4151 lwpid_of (thread), lwp->suspended);
4152 }
4153 gdb_assert (lwp->stopped);
4154
4155 /* For gdb_breakpoint_here. */
4156 saved_thread = current_thread;
4157 current_thread = thread;
4158
4159 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4160
4161 /* Allow debugging the jump pad, gdb_collect, etc. */
4162 if (!gdb_breakpoint_here (lwp->stop_pc)
4163 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4164 && thread->last_resume_kind != resume_step
4165 && maybe_move_out_of_jump_pad (lwp, wstat))
4166 {
4167 if (debug_threads)
4168 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4169 lwpid_of (thread));
4170
4171 if (wstat)
4172 {
4173 lwp->status_pending_p = 0;
4174 enqueue_one_deferred_signal (lwp, wstat);
4175
4176 if (debug_threads)
4177 debug_printf ("Signal %d for LWP %ld deferred "
4178 "(in jump pad)\n",
4179 WSTOPSIG (*wstat), lwpid_of (thread));
4180 }
4181
4182 linux_resume_one_lwp (lwp, 0, 0, NULL);
4183 }
4184 else
4185 lwp_suspended_inc (lwp);
4186
4187 current_thread = saved_thread;
4188 }
4189
4190 static int
4191 lwp_running (thread_info *thread, void *data)
4192 {
4193 struct lwp_info *lwp = get_thread_lwp (thread);
4194
4195 if (lwp_is_marked_dead (lwp))
4196 return 0;
4197 if (lwp->stopped)
4198 return 0;
4199 return 1;
4200 }
4201
4202 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4203 If SUSPEND, then also increase the suspend count of every LWP,
4204 except EXCEPT. */
4205
4206 static void
4207 stop_all_lwps (int suspend, struct lwp_info *except)
4208 {
4209 /* Should not be called recursively. */
4210 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4211
4212 if (debug_threads)
4213 {
4214 debug_enter ();
4215 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4216 suspend ? "stop-and-suspend" : "stop",
4217 except != NULL
4218 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4219 : "none");
4220 }
4221
4222 stopping_threads = (suspend
4223 ? STOPPING_AND_SUSPENDING_THREADS
4224 : STOPPING_THREADS);
4225
4226 if (suspend)
4227 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4228 else
4229 find_inferior (&all_threads, send_sigstop_callback, except);
4230 wait_for_sigstop ();
4231 stopping_threads = NOT_STOPPING_THREADS;
4232
4233 if (debug_threads)
4234 {
4235 debug_printf ("stop_all_lwps done, setting stopping_threads "
4236 "back to !stopping\n");
4237 debug_exit ();
4238 }
4239 }
4240
4241 /* Enqueue one signal in the chain of signals which need to be
4242 delivered to this process on next resume. */
4243
4244 static void
4245 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4246 {
4247 struct pending_signals *p_sig = XNEW (struct pending_signals);
4248
4249 p_sig->prev = lwp->pending_signals;
4250 p_sig->signal = signal;
4251 if (info == NULL)
4252 memset (&p_sig->info, 0, sizeof (siginfo_t));
4253 else
4254 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4255 lwp->pending_signals = p_sig;
4256 }
4257
4258 /* Install breakpoints for software single stepping. */
4259
4260 static void
4261 install_software_single_step_breakpoints (struct lwp_info *lwp)
4262 {
4263 struct thread_info *thread = get_lwp_thread (lwp);
4264 struct regcache *regcache = get_thread_regcache (thread, 1);
4265 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4266
4267 current_thread = thread;
4268 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4269
4270 for (CORE_ADDR pc : next_pcs)
4271 set_single_step_breakpoint (pc, current_ptid);
4272
4273 do_cleanups (old_chain);
4274 }
4275
4276 /* Single step via hardware or software single step.
4277 Return 1 if hardware single stepping, 0 if software single stepping
4278 or can't single step. */
4279
4280 static int
4281 single_step (struct lwp_info* lwp)
4282 {
4283 int step = 0;
4284
4285 if (can_hardware_single_step ())
4286 {
4287 step = 1;
4288 }
4289 else if (can_software_single_step ())
4290 {
4291 install_software_single_step_breakpoints (lwp);
4292 step = 0;
4293 }
4294 else
4295 {
4296 if (debug_threads)
4297 debug_printf ("stepping is not implemented on this target");
4298 }
4299
4300 return step;
4301 }
4302
4303 /* The signal can be delivered to the inferior if we are not trying to
4304 finish a fast tracepoint collect. Since signal can be delivered in
4305 the step-over, the program may go to signal handler and trap again
4306 after return from the signal handler. We can live with the spurious
4307 double traps. */
4308
4309 static int
4310 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4311 {
4312 return (lwp->collecting_fast_tracepoint
4313 == fast_tpoint_collect_result::not_collecting);
4314 }
4315
4316 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4317 SIGNAL is nonzero, give it that signal. */
4318
4319 static void
4320 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4321 int step, int signal, siginfo_t *info)
4322 {
4323 struct thread_info *thread = get_lwp_thread (lwp);
4324 struct thread_info *saved_thread;
4325 int ptrace_request;
4326 struct process_info *proc = get_thread_process (thread);
4327
4328 /* Note that target description may not be initialised
4329 (proc->tdesc == NULL) at this point because the program hasn't
4330 stopped at the first instruction yet. It means GDBserver skips
4331 the extra traps from the wrapper program (see option --wrapper).
4332 Code in this function that requires register access should be
4333 guarded by proc->tdesc == NULL or something else. */
4334
4335 if (lwp->stopped == 0)
4336 return;
4337
4338 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4339
4340 fast_tpoint_collect_result fast_tp_collecting
4341 = lwp->collecting_fast_tracepoint;
4342
4343 gdb_assert (!stabilizing_threads
4344 || (fast_tp_collecting
4345 != fast_tpoint_collect_result::not_collecting));
4346
4347 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4348 user used the "jump" command, or "set $pc = foo"). */
4349 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4350 {
4351 /* Collecting 'while-stepping' actions doesn't make sense
4352 anymore. */
4353 release_while_stepping_state_list (thread);
4354 }
4355
4356 /* If we have pending signals or status, and a new signal, enqueue the
4357 signal. Also enqueue the signal if it can't be delivered to the
4358 inferior right now. */
4359 if (signal != 0
4360 && (lwp->status_pending_p
4361 || lwp->pending_signals != NULL
4362 || !lwp_signal_can_be_delivered (lwp)))
4363 {
4364 enqueue_pending_signal (lwp, signal, info);
4365
4366 /* Postpone any pending signal. It was enqueued above. */
4367 signal = 0;
4368 }
4369
4370 if (lwp->status_pending_p)
4371 {
4372 if (debug_threads)
4373 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4374 " has pending status\n",
4375 lwpid_of (thread), step ? "step" : "continue",
4376 lwp->stop_expected ? "expected" : "not expected");
4377 return;
4378 }
4379
4380 saved_thread = current_thread;
4381 current_thread = thread;
4382
4383 /* This bit needs some thinking about. If we get a signal that
4384 we must report while a single-step reinsert is still pending,
4385 we often end up resuming the thread. It might be better to
4386 (ew) allow a stack of pending events; then we could be sure that
4387 the reinsert happened right away and not lose any signals.
4388
4389 Making this stack would also shrink the window in which breakpoints are
4390 uninserted (see comment in linux_wait_for_lwp) but not enough for
4391 complete correctness, so it won't solve that problem. It may be
4392 worthwhile just to solve this one, however. */
4393 if (lwp->bp_reinsert != 0)
4394 {
4395 if (debug_threads)
4396 debug_printf (" pending reinsert at 0x%s\n",
4397 paddress (lwp->bp_reinsert));
4398
4399 if (can_hardware_single_step ())
4400 {
4401 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4402 {
4403 if (step == 0)
4404 warning ("BAD - reinserting but not stepping.");
4405 if (lwp->suspended)
4406 warning ("BAD - reinserting and suspended(%d).",
4407 lwp->suspended);
4408 }
4409 }
4410
4411 step = maybe_hw_step (thread);
4412 }
4413
4414 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4415 {
4416 if (debug_threads)
4417 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4418 " (exit-jump-pad-bkpt)\n",
4419 lwpid_of (thread));
4420 }
4421 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4422 {
4423 if (debug_threads)
4424 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4425 " single-stepping\n",
4426 lwpid_of (thread));
4427
4428 if (can_hardware_single_step ())
4429 step = 1;
4430 else
4431 {
4432 internal_error (__FILE__, __LINE__,
4433 "moving out of jump pad single-stepping"
4434 " not implemented on this target");
4435 }
4436 }
4437
4438 /* If we have while-stepping actions in this thread set it stepping.
4439 If we have a signal to deliver, it may or may not be set to
4440 SIG_IGN, we don't know. Assume so, and allow collecting
4441 while-stepping into a signal handler. A possible smart thing to
4442 do would be to set an internal breakpoint at the signal return
4443 address, continue, and carry on catching this while-stepping
4444 action only when that breakpoint is hit. A future
4445 enhancement. */
4446 if (thread->while_stepping != NULL)
4447 {
4448 if (debug_threads)
4449 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4450 lwpid_of (thread));
4451
4452 step = single_step (lwp);
4453 }
4454
4455 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4456 {
4457 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4458
4459 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4460
4461 if (debug_threads)
4462 {
4463 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4464 (long) lwp->stop_pc);
4465 }
4466 }
4467
4468 /* If we have pending signals, consume one if it can be delivered to
4469 the inferior. */
4470 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4471 {
4472 struct pending_signals **p_sig;
4473
4474 p_sig = &lwp->pending_signals;
4475 while ((*p_sig)->prev != NULL)
4476 p_sig = &(*p_sig)->prev;
4477
4478 signal = (*p_sig)->signal;
4479 if ((*p_sig)->info.si_signo != 0)
4480 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4481 &(*p_sig)->info);
4482
4483 free (*p_sig);
4484 *p_sig = NULL;
4485 }
4486
4487 if (debug_threads)
4488 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4489 lwpid_of (thread), step ? "step" : "continue", signal,
4490 lwp->stop_expected ? "expected" : "not expected");
4491
4492 if (the_low_target.prepare_to_resume != NULL)
4493 the_low_target.prepare_to_resume (lwp);
4494
4495 regcache_invalidate_thread (thread);
4496 errno = 0;
4497 lwp->stepping = step;
4498 if (step)
4499 ptrace_request = PTRACE_SINGLESTEP;
4500 else if (gdb_catching_syscalls_p (lwp))
4501 ptrace_request = PTRACE_SYSCALL;
4502 else
4503 ptrace_request = PTRACE_CONT;
4504 ptrace (ptrace_request,
4505 lwpid_of (thread),
4506 (PTRACE_TYPE_ARG3) 0,
4507 /* Coerce to a uintptr_t first to avoid potential gcc warning
4508 of coercing an 8 byte integer to a 4 byte pointer. */
4509 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4510
4511 current_thread = saved_thread;
4512 if (errno)
4513 perror_with_name ("resuming thread");
4514
4515 /* Successfully resumed. Clear state that no longer makes sense,
4516 and mark the LWP as running. Must not do this before resuming
4517 otherwise if that fails other code will be confused. E.g., we'd
4518 later try to stop the LWP and hang forever waiting for a stop
4519 status. Note that we must not throw after this is cleared,
4520 otherwise handle_zombie_lwp_error would get confused. */
4521 lwp->stopped = 0;
4522 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4523 }
4524
4525 /* Called when we try to resume a stopped LWP and that errors out. If
4526 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4527 or about to become), discard the error, clear any pending status
4528 the LWP may have, and return true (we'll collect the exit status
4529 soon enough). Otherwise, return false. */
4530
4531 static int
4532 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4533 {
4534 struct thread_info *thread = get_lwp_thread (lp);
4535
4536 /* If we get an error after resuming the LWP successfully, we'd
4537 confuse !T state for the LWP being gone. */
4538 gdb_assert (lp->stopped);
4539
4540 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4541 because even if ptrace failed with ESRCH, the tracee may be "not
4542 yet fully dead", but already refusing ptrace requests. In that
4543 case the tracee has 'R (Running)' state for a little bit
4544 (observed in Linux 3.18). See also the note on ESRCH in the
4545 ptrace(2) man page. Instead, check whether the LWP has any state
4546 other than ptrace-stopped. */
4547
4548 /* Don't assume anything if /proc/PID/status can't be read. */
4549 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4550 {
4551 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4552 lp->status_pending_p = 0;
4553 return 1;
4554 }
4555 return 0;
4556 }
4557
4558 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4559 disappears while we try to resume it. */
4560
4561 static void
4562 linux_resume_one_lwp (struct lwp_info *lwp,
4563 int step, int signal, siginfo_t *info)
4564 {
4565 TRY
4566 {
4567 linux_resume_one_lwp_throw (lwp, step, signal, info);
4568 }
4569 CATCH (ex, RETURN_MASK_ERROR)
4570 {
4571 if (!check_ptrace_stopped_lwp_gone (lwp))
4572 throw_exception (ex);
4573 }
4574 END_CATCH
4575 }
4576
4577 /* This function is called once per thread via for_each_thread.
4578 We look up which resume request applies to THREAD and mark it with a
4579 pointer to the appropriate resume request.
4580
4581 This algorithm is O(threads * resume elements), but resume elements
4582 is small (and will remain small at least until GDB supports thread
4583 suspension). */
4584
4585 static void
4586 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4587 {
4588 struct lwp_info *lwp = get_thread_lwp (thread);
4589
4590 for (int ndx = 0; ndx < n; ndx++)
4591 {
4592 ptid_t ptid = resume[ndx].thread;
4593 if (ptid_equal (ptid, minus_one_ptid)
4594 || ptid == thread->id
4595 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4596 of PID'. */
4597 || (ptid_get_pid (ptid) == pid_of (thread)
4598 && (ptid_is_pid (ptid)
4599 || ptid_get_lwp (ptid) == -1)))
4600 {
4601 if (resume[ndx].kind == resume_stop
4602 && thread->last_resume_kind == resume_stop)
4603 {
4604 if (debug_threads)
4605 debug_printf ("already %s LWP %ld at GDB's request\n",
4606 (thread->last_status.kind
4607 == TARGET_WAITKIND_STOPPED)
4608 ? "stopped"
4609 : "stopping",
4610 lwpid_of (thread));
4611
4612 continue;
4613 }
4614
4615 /* Ignore (wildcard) resume requests for already-resumed
4616 threads. */
4617 if (resume[ndx].kind != resume_stop
4618 && thread->last_resume_kind != resume_stop)
4619 {
4620 if (debug_threads)
4621 debug_printf ("already %s LWP %ld at GDB's request\n",
4622 (thread->last_resume_kind
4623 == resume_step)
4624 ? "stepping"
4625 : "continuing",
4626 lwpid_of (thread));
4627 continue;
4628 }
4629
4630 /* Don't let wildcard resumes resume fork children that GDB
4631 does not yet know are new fork children. */
4632 if (lwp->fork_relative != NULL)
4633 {
4634 struct lwp_info *rel = lwp->fork_relative;
4635
4636 if (rel->status_pending_p
4637 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4638 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4639 {
4640 if (debug_threads)
4641 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4642 lwpid_of (thread));
4643 continue;
4644 }
4645 }
4646
4647 /* If the thread has a pending event that has already been
4648 reported to GDBserver core, but GDB has not pulled the
4649 event out of the vStopped queue yet, likewise, ignore the
4650 (wildcard) resume request. */
4651 if (in_queued_stop_replies (thread->id))
4652 {
4653 if (debug_threads)
4654 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4655 lwpid_of (thread));
4656 continue;
4657 }
4658
4659 lwp->resume = &resume[ndx];
4660 thread->last_resume_kind = lwp->resume->kind;
4661
4662 lwp->step_range_start = lwp->resume->step_range_start;
4663 lwp->step_range_end = lwp->resume->step_range_end;
4664
4665 /* If we had a deferred signal to report, dequeue one now.
4666 This can happen if LWP gets more than one signal while
4667 trying to get out of a jump pad. */
4668 if (lwp->stopped
4669 && !lwp->status_pending_p
4670 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4671 {
4672 lwp->status_pending_p = 1;
4673
4674 if (debug_threads)
4675 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4676 "leaving status pending.\n",
4677 WSTOPSIG (lwp->status_pending),
4678 lwpid_of (thread));
4679 }
4680
4681 return;
4682 }
4683 }
4684
4685 /* No resume action for this thread. */
4686 lwp->resume = NULL;
4687 }
4688
4689 /* find_inferior callback for linux_resume.
4690 Set *FLAG_P if this lwp has an interesting status pending. */
4691
4692 static bool
4693 resume_status_pending_p (thread_info *thread)
4694 {
4695 struct lwp_info *lwp = get_thread_lwp (thread);
4696
4697 /* LWPs which will not be resumed are not interesting, because
4698 we might not wait for them next time through linux_wait. */
4699 if (lwp->resume == NULL)
4700 return false;
4701
4702 return thread_still_has_status_pending_p (thread);
4703 }
4704
4705 /* Return 1 if this lwp that GDB wants running is stopped at an
4706 internal breakpoint that we need to step over. It assumes that any
4707 required STOP_PC adjustment has already been propagated to the
4708 inferior's regcache. */
4709
4710 static bool
4711 need_step_over_p (thread_info *thread)
4712 {
4713 struct lwp_info *lwp = get_thread_lwp (thread);
4714 struct thread_info *saved_thread;
4715 CORE_ADDR pc;
4716 struct process_info *proc = get_thread_process (thread);
4717
4718 /* GDBserver is skipping the extra traps from the wrapper program,
4719 don't have to do step over. */
4720 if (proc->tdesc == NULL)
4721 return false;
4722
4723 /* LWPs which will not be resumed are not interesting, because we
4724 might not wait for them next time through linux_wait. */
4725
4726 if (!lwp->stopped)
4727 {
4728 if (debug_threads)
4729 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4730 lwpid_of (thread));
4731 return false;
4732 }
4733
4734 if (thread->last_resume_kind == resume_stop)
4735 {
4736 if (debug_threads)
4737 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4738 " stopped\n",
4739 lwpid_of (thread));
4740 return false;
4741 }
4742
4743 gdb_assert (lwp->suspended >= 0);
4744
4745 if (lwp->suspended)
4746 {
4747 if (debug_threads)
4748 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4749 lwpid_of (thread));
4750 return false;
4751 }
4752
4753 if (lwp->status_pending_p)
4754 {
4755 if (debug_threads)
4756 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4757 " status.\n",
4758 lwpid_of (thread));
4759 return false;
4760 }
4761
4762 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4763 or we have. */
4764 pc = get_pc (lwp);
4765
4766 /* If the PC has changed since we stopped, then don't do anything,
4767 and let the breakpoint/tracepoint be hit. This happens if, for
4768 instance, GDB handled the decr_pc_after_break subtraction itself,
4769 GDB is OOL stepping this thread, or the user has issued a "jump"
4770 command, or poked thread's registers herself. */
4771 if (pc != lwp->stop_pc)
4772 {
4773 if (debug_threads)
4774 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4775 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4776 lwpid_of (thread),
4777 paddress (lwp->stop_pc), paddress (pc));
4778 return false;
4779 }
4780
4781 /* On software single step target, resume the inferior with signal
4782 rather than stepping over. */
4783 if (can_software_single_step ()
4784 && lwp->pending_signals != NULL
4785 && lwp_signal_can_be_delivered (lwp))
4786 {
4787 if (debug_threads)
4788 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4789 " signals.\n",
4790 lwpid_of (thread));
4791
4792 return false;
4793 }
4794
4795 saved_thread = current_thread;
4796 current_thread = thread;
4797
4798 /* We can only step over breakpoints we know about. */
4799 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4800 {
4801 /* Don't step over a breakpoint that GDB expects to hit
4802 though. If the condition is being evaluated on the target's side
4803 and it evaluate to false, step over this breakpoint as well. */
4804 if (gdb_breakpoint_here (pc)
4805 && gdb_condition_true_at_breakpoint (pc)
4806 && gdb_no_commands_at_breakpoint (pc))
4807 {
4808 if (debug_threads)
4809 debug_printf ("Need step over [LWP %ld]? yes, but found"
4810 " GDB breakpoint at 0x%s; skipping step over\n",
4811 lwpid_of (thread), paddress (pc));
4812
4813 current_thread = saved_thread;
4814 return false;
4815 }
4816 else
4817 {
4818 if (debug_threads)
4819 debug_printf ("Need step over [LWP %ld]? yes, "
4820 "found breakpoint at 0x%s\n",
4821 lwpid_of (thread), paddress (pc));
4822
4823 /* We've found an lwp that needs stepping over --- return 1 so
4824 that find_inferior stops looking. */
4825 current_thread = saved_thread;
4826
4827 return true;
4828 }
4829 }
4830
4831 current_thread = saved_thread;
4832
4833 if (debug_threads)
4834 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4835 " at 0x%s\n",
4836 lwpid_of (thread), paddress (pc));
4837
4838 return false;
4839 }
4840
4841 /* Start a step-over operation on LWP. When LWP stopped at a
4842 breakpoint, to make progress, we need to remove the breakpoint out
4843 of the way. If we let other threads run while we do that, they may
4844 pass by the breakpoint location and miss hitting it. To avoid
4845 that, a step-over momentarily stops all threads while LWP is
4846 single-stepped by either hardware or software while the breakpoint
4847 is temporarily uninserted from the inferior. When the single-step
4848 finishes, we reinsert the breakpoint, and let all threads that are
4849 supposed to be running, run again. */
4850
4851 static int
4852 start_step_over (struct lwp_info *lwp)
4853 {
4854 struct thread_info *thread = get_lwp_thread (lwp);
4855 struct thread_info *saved_thread;
4856 CORE_ADDR pc;
4857 int step;
4858
4859 if (debug_threads)
4860 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4861 lwpid_of (thread));
4862
4863 stop_all_lwps (1, lwp);
4864
4865 if (lwp->suspended != 0)
4866 {
4867 internal_error (__FILE__, __LINE__,
4868 "LWP %ld suspended=%d\n", lwpid_of (thread),
4869 lwp->suspended);
4870 }
4871
4872 if (debug_threads)
4873 debug_printf ("Done stopping all threads for step-over.\n");
4874
4875 /* Note, we should always reach here with an already adjusted PC,
4876 either by GDB (if we're resuming due to GDB's request), or by our
4877 caller, if we just finished handling an internal breakpoint GDB
4878 shouldn't care about. */
4879 pc = get_pc (lwp);
4880
4881 saved_thread = current_thread;
4882 current_thread = thread;
4883
4884 lwp->bp_reinsert = pc;
4885 uninsert_breakpoints_at (pc);
4886 uninsert_fast_tracepoint_jumps_at (pc);
4887
4888 step = single_step (lwp);
4889
4890 current_thread = saved_thread;
4891
4892 linux_resume_one_lwp (lwp, step, 0, NULL);
4893
4894 /* Require next event from this LWP. */
4895 step_over_bkpt = thread->id;
4896 return 1;
4897 }
4898
4899 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4900 start_step_over, if still there, and delete any single-step
4901 breakpoints we've set, on non hardware single-step targets. */
4902
4903 static int
4904 finish_step_over (struct lwp_info *lwp)
4905 {
4906 if (lwp->bp_reinsert != 0)
4907 {
4908 struct thread_info *saved_thread = current_thread;
4909
4910 if (debug_threads)
4911 debug_printf ("Finished step over.\n");
4912
4913 current_thread = get_lwp_thread (lwp);
4914
4915 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4916 may be no breakpoint to reinsert there by now. */
4917 reinsert_breakpoints_at (lwp->bp_reinsert);
4918 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4919
4920 lwp->bp_reinsert = 0;
4921
4922 /* Delete any single-step breakpoints. No longer needed. We
4923 don't have to worry about other threads hitting this trap,
4924 and later not being able to explain it, because we were
4925 stepping over a breakpoint, and we hold all threads but
4926 LWP stopped while doing that. */
4927 if (!can_hardware_single_step ())
4928 {
4929 gdb_assert (has_single_step_breakpoints (current_thread));
4930 delete_single_step_breakpoints (current_thread);
4931 }
4932
4933 step_over_bkpt = null_ptid;
4934 current_thread = saved_thread;
4935 return 1;
4936 }
4937 else
4938 return 0;
4939 }
4940
4941 /* If there's a step over in progress, wait until all threads stop
4942 (that is, until the stepping thread finishes its step), and
4943 unsuspend all lwps. The stepping thread ends with its status
4944 pending, which is processed later when we get back to processing
4945 events. */
4946
4947 static void
4948 complete_ongoing_step_over (void)
4949 {
4950 if (!ptid_equal (step_over_bkpt, null_ptid))
4951 {
4952 struct lwp_info *lwp;
4953 int wstat;
4954 int ret;
4955
4956 if (debug_threads)
4957 debug_printf ("detach: step over in progress, finish it first\n");
4958
4959 /* Passing NULL_PTID as filter indicates we want all events to
4960 be left pending. Eventually this returns when there are no
4961 unwaited-for children left. */
4962 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4963 &wstat, __WALL);
4964 gdb_assert (ret == -1);
4965
4966 lwp = find_lwp_pid (step_over_bkpt);
4967 if (lwp != NULL)
4968 finish_step_over (lwp);
4969 step_over_bkpt = null_ptid;
4970 unsuspend_all_lwps (lwp);
4971 }
4972 }
4973
4974 /* This function is called once per thread. We check the thread's resume
4975 request, which will tell us whether to resume, step, or leave the thread
4976 stopped; and what signal, if any, it should be sent.
4977
4978 For threads which we aren't explicitly told otherwise, we preserve
4979 the stepping flag; this is used for stepping over gdbserver-placed
4980 breakpoints.
4981
4982 If pending_flags was set in any thread, we queue any needed
4983 signals, since we won't actually resume. We already have a pending
4984 event to report, so we don't need to preserve any step requests;
4985 they should be re-issued if necessary. */
4986
4987 static int
4988 linux_resume_one_thread (thread_info *thread, void *arg)
4989 {
4990 struct lwp_info *lwp = get_thread_lwp (thread);
4991 int leave_all_stopped = * (int *) arg;
4992 int leave_pending;
4993
4994 if (lwp->resume == NULL)
4995 return 0;
4996
4997 if (lwp->resume->kind == resume_stop)
4998 {
4999 if (debug_threads)
5000 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
5001
5002 if (!lwp->stopped)
5003 {
5004 if (debug_threads)
5005 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
5006
5007 /* Stop the thread, and wait for the event asynchronously,
5008 through the event loop. */
5009 send_sigstop (lwp);
5010 }
5011 else
5012 {
5013 if (debug_threads)
5014 debug_printf ("already stopped LWP %ld\n",
5015 lwpid_of (thread));
5016
5017 /* The LWP may have been stopped in an internal event that
5018 was not meant to be notified back to GDB (e.g., gdbserver
5019 breakpoint), so we should be reporting a stop event in
5020 this case too. */
5021
5022 /* If the thread already has a pending SIGSTOP, this is a
5023 no-op. Otherwise, something later will presumably resume
5024 the thread and this will cause it to cancel any pending
5025 operation, due to last_resume_kind == resume_stop. If
5026 the thread already has a pending status to report, we
5027 will still report it the next time we wait - see
5028 status_pending_p_callback. */
5029
5030 /* If we already have a pending signal to report, then
5031 there's no need to queue a SIGSTOP, as this means we're
5032 midway through moving the LWP out of the jumppad, and we
5033 will report the pending signal as soon as that is
5034 finished. */
5035 if (lwp->pending_signals_to_report == NULL)
5036 send_sigstop (lwp);
5037 }
5038
5039 /* For stop requests, we're done. */
5040 lwp->resume = NULL;
5041 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5042 return 0;
5043 }
5044
5045 /* If this thread which is about to be resumed has a pending status,
5046 then don't resume it - we can just report the pending status.
5047 Likewise if it is suspended, because e.g., another thread is
5048 stepping past a breakpoint. Make sure to queue any signals that
5049 would otherwise be sent. In all-stop mode, we do this decision
5050 based on if *any* thread has a pending status. If there's a
5051 thread that needs the step-over-breakpoint dance, then don't
5052 resume any other thread but that particular one. */
5053 leave_pending = (lwp->suspended
5054 || lwp->status_pending_p
5055 || leave_all_stopped);
5056
5057 /* If we have a new signal, enqueue the signal. */
5058 if (lwp->resume->sig != 0)
5059 {
5060 siginfo_t info, *info_p;
5061
5062 /* If this is the same signal we were previously stopped by,
5063 make sure to queue its siginfo. */
5064 if (WIFSTOPPED (lwp->last_status)
5065 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5066 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5067 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5068 info_p = &info;
5069 else
5070 info_p = NULL;
5071
5072 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5073 }
5074
5075 if (!leave_pending)
5076 {
5077 if (debug_threads)
5078 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5079
5080 proceed_one_lwp (thread, NULL);
5081 }
5082 else
5083 {
5084 if (debug_threads)
5085 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5086 }
5087
5088 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5089 lwp->resume = NULL;
5090 return 0;
5091 }
5092
5093 static void
5094 linux_resume (struct thread_resume *resume_info, size_t n)
5095 {
5096 struct thread_info *need_step_over = NULL;
5097 int leave_all_stopped;
5098
5099 if (debug_threads)
5100 {
5101 debug_enter ();
5102 debug_printf ("linux_resume:\n");
5103 }
5104
5105 for_each_thread ([&] (thread_info *thread)
5106 {
5107 linux_set_resume_request (thread, resume_info, n);
5108 });
5109
5110 /* If there is a thread which would otherwise be resumed, which has
5111 a pending status, then don't resume any threads - we can just
5112 report the pending status. Make sure to queue any signals that
5113 would otherwise be sent. In non-stop mode, we'll apply this
5114 logic to each thread individually. We consume all pending events
5115 before considering to start a step-over (in all-stop). */
5116 bool any_pending = false;
5117 if (!non_stop)
5118 any_pending = find_thread (resume_status_pending_p) != NULL;
5119
5120 /* If there is a thread which would otherwise be resumed, which is
5121 stopped at a breakpoint that needs stepping over, then don't
5122 resume any threads - have it step over the breakpoint with all
5123 other threads stopped, then resume all threads again. Make sure
5124 to queue any signals that would otherwise be delivered or
5125 queued. */
5126 if (!any_pending && supports_breakpoints ())
5127 need_step_over = find_thread (need_step_over_p);
5128
5129 leave_all_stopped = (need_step_over != NULL || any_pending);
5130
5131 if (debug_threads)
5132 {
5133 if (need_step_over != NULL)
5134 debug_printf ("Not resuming all, need step over\n");
5135 else if (any_pending)
5136 debug_printf ("Not resuming, all-stop and found "
5137 "an LWP with pending status\n");
5138 else
5139 debug_printf ("Resuming, no pending status or step over needed\n");
5140 }
5141
5142 /* Even if we're leaving threads stopped, queue all signals we'd
5143 otherwise deliver. */
5144 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5145
5146 if (need_step_over)
5147 start_step_over (get_thread_lwp (need_step_over));
5148
5149 if (debug_threads)
5150 {
5151 debug_printf ("linux_resume done\n");
5152 debug_exit ();
5153 }
5154
5155 /* We may have events that were pending that can/should be sent to
5156 the client now. Trigger a linux_wait call. */
5157 if (target_is_async_p ())
5158 async_file_mark ();
5159 }
5160
5161 /* This function is called once per thread. We check the thread's
5162 last resume request, which will tell us whether to resume, step, or
5163 leave the thread stopped. Any signal the client requested to be
5164 delivered has already been enqueued at this point.
5165
5166 If any thread that GDB wants running is stopped at an internal
5167 breakpoint that needs stepping over, we start a step-over operation
5168 on that particular thread, and leave all others stopped. */
5169
5170 static int
5171 proceed_one_lwp (thread_info *thread, void *except)
5172 {
5173 struct lwp_info *lwp = get_thread_lwp (thread);
5174 int step;
5175
5176 if (lwp == except)
5177 return 0;
5178
5179 if (debug_threads)
5180 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5181
5182 if (!lwp->stopped)
5183 {
5184 if (debug_threads)
5185 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5186 return 0;
5187 }
5188
5189 if (thread->last_resume_kind == resume_stop
5190 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5191 {
5192 if (debug_threads)
5193 debug_printf (" client wants LWP to remain %ld stopped\n",
5194 lwpid_of (thread));
5195 return 0;
5196 }
5197
5198 if (lwp->status_pending_p)
5199 {
5200 if (debug_threads)
5201 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5202 lwpid_of (thread));
5203 return 0;
5204 }
5205
5206 gdb_assert (lwp->suspended >= 0);
5207
5208 if (lwp->suspended)
5209 {
5210 if (debug_threads)
5211 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5212 return 0;
5213 }
5214
5215 if (thread->last_resume_kind == resume_stop
5216 && lwp->pending_signals_to_report == NULL
5217 && (lwp->collecting_fast_tracepoint
5218 == fast_tpoint_collect_result::not_collecting))
5219 {
5220 /* We haven't reported this LWP as stopped yet (otherwise, the
5221 last_status.kind check above would catch it, and we wouldn't
5222 reach here. This LWP may have been momentarily paused by a
5223 stop_all_lwps call while handling for example, another LWP's
5224 step-over. In that case, the pending expected SIGSTOP signal
5225 that was queued at vCont;t handling time will have already
5226 been consumed by wait_for_sigstop, and so we need to requeue
5227 another one here. Note that if the LWP already has a SIGSTOP
5228 pending, this is a no-op. */
5229
5230 if (debug_threads)
5231 debug_printf ("Client wants LWP %ld to stop. "
5232 "Making sure it has a SIGSTOP pending\n",
5233 lwpid_of (thread));
5234
5235 send_sigstop (lwp);
5236 }
5237
5238 if (thread->last_resume_kind == resume_step)
5239 {
5240 if (debug_threads)
5241 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5242 lwpid_of (thread));
5243
5244 /* If resume_step is requested by GDB, install single-step
5245 breakpoints when the thread is about to be actually resumed if
5246 the single-step breakpoints weren't removed. */
5247 if (can_software_single_step ()
5248 && !has_single_step_breakpoints (thread))
5249 install_software_single_step_breakpoints (lwp);
5250
5251 step = maybe_hw_step (thread);
5252 }
5253 else if (lwp->bp_reinsert != 0)
5254 {
5255 if (debug_threads)
5256 debug_printf (" stepping LWP %ld, reinsert set\n",
5257 lwpid_of (thread));
5258
5259 step = maybe_hw_step (thread);
5260 }
5261 else
5262 step = 0;
5263
5264 linux_resume_one_lwp (lwp, step, 0, NULL);
5265 return 0;
5266 }
5267
5268 static int
5269 unsuspend_and_proceed_one_lwp (thread_info *thread, void *except)
5270 {
5271 struct lwp_info *lwp = get_thread_lwp (thread);
5272
5273 if (lwp == except)
5274 return 0;
5275
5276 lwp_suspended_decr (lwp);
5277
5278 return proceed_one_lwp (thread, except);
5279 }
5280
5281 /* When we finish a step-over, set threads running again. If there's
5282 another thread that may need a step-over, now's the time to start
5283 it. Eventually, we'll move all threads past their breakpoints. */
5284
5285 static void
5286 proceed_all_lwps (void)
5287 {
5288 struct thread_info *need_step_over;
5289
5290 /* If there is a thread which would otherwise be resumed, which is
5291 stopped at a breakpoint that needs stepping over, then don't
5292 resume any threads - have it step over the breakpoint with all
5293 other threads stopped, then resume all threads again. */
5294
5295 if (supports_breakpoints ())
5296 {
5297 need_step_over = find_thread (need_step_over_p);
5298
5299 if (need_step_over != NULL)
5300 {
5301 if (debug_threads)
5302 debug_printf ("proceed_all_lwps: found "
5303 "thread %ld needing a step-over\n",
5304 lwpid_of (need_step_over));
5305
5306 start_step_over (get_thread_lwp (need_step_over));
5307 return;
5308 }
5309 }
5310
5311 if (debug_threads)
5312 debug_printf ("Proceeding, no step-over needed\n");
5313
5314 find_inferior (&all_threads, proceed_one_lwp, NULL);
5315 }
5316
5317 /* Stopped LWPs that the client wanted to be running, that don't have
5318 pending statuses, are set to run again, except for EXCEPT, if not
5319 NULL. This undoes a stop_all_lwps call. */
5320
5321 static void
5322 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5323 {
5324 if (debug_threads)
5325 {
5326 debug_enter ();
5327 if (except)
5328 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5329 lwpid_of (get_lwp_thread (except)));
5330 else
5331 debug_printf ("unstopping all lwps\n");
5332 }
5333
5334 if (unsuspend)
5335 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5336 else
5337 find_inferior (&all_threads, proceed_one_lwp, except);
5338
5339 if (debug_threads)
5340 {
5341 debug_printf ("unstop_all_lwps done\n");
5342 debug_exit ();
5343 }
5344 }
5345
5346
5347 #ifdef HAVE_LINUX_REGSETS
5348
5349 #define use_linux_regsets 1
5350
5351 /* Returns true if REGSET has been disabled. */
5352
5353 static int
5354 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5355 {
5356 return (info->disabled_regsets != NULL
5357 && info->disabled_regsets[regset - info->regsets]);
5358 }
5359
5360 /* Disable REGSET. */
5361
5362 static void
5363 disable_regset (struct regsets_info *info, struct regset_info *regset)
5364 {
5365 int dr_offset;
5366
5367 dr_offset = regset - info->regsets;
5368 if (info->disabled_regsets == NULL)
5369 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5370 info->disabled_regsets[dr_offset] = 1;
5371 }
5372
5373 static int
5374 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5375 struct regcache *regcache)
5376 {
5377 struct regset_info *regset;
5378 int saw_general_regs = 0;
5379 int pid;
5380 struct iovec iov;
5381
5382 pid = lwpid_of (current_thread);
5383 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5384 {
5385 void *buf, *data;
5386 int nt_type, res;
5387
5388 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5389 continue;
5390
5391 buf = xmalloc (regset->size);
5392
5393 nt_type = regset->nt_type;
5394 if (nt_type)
5395 {
5396 iov.iov_base = buf;
5397 iov.iov_len = regset->size;
5398 data = (void *) &iov;
5399 }
5400 else
5401 data = buf;
5402
5403 #ifndef __sparc__
5404 res = ptrace (regset->get_request, pid,
5405 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5406 #else
5407 res = ptrace (regset->get_request, pid, data, nt_type);
5408 #endif
5409 if (res < 0)
5410 {
5411 if (errno == EIO)
5412 {
5413 /* If we get EIO on a regset, do not try it again for
5414 this process mode. */
5415 disable_regset (regsets_info, regset);
5416 }
5417 else if (errno == ENODATA)
5418 {
5419 /* ENODATA may be returned if the regset is currently
5420 not "active". This can happen in normal operation,
5421 so suppress the warning in this case. */
5422 }
5423 else if (errno == ESRCH)
5424 {
5425 /* At this point, ESRCH should mean the process is
5426 already gone, in which case we simply ignore attempts
5427 to read its registers. */
5428 }
5429 else
5430 {
5431 char s[256];
5432 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5433 pid);
5434 perror (s);
5435 }
5436 }
5437 else
5438 {
5439 if (regset->type == GENERAL_REGS)
5440 saw_general_regs = 1;
5441 regset->store_function (regcache, buf);
5442 }
5443 free (buf);
5444 }
5445 if (saw_general_regs)
5446 return 0;
5447 else
5448 return 1;
5449 }
5450
5451 static int
5452 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5453 struct regcache *regcache)
5454 {
5455 struct regset_info *regset;
5456 int saw_general_regs = 0;
5457 int pid;
5458 struct iovec iov;
5459
5460 pid = lwpid_of (current_thread);
5461 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5462 {
5463 void *buf, *data;
5464 int nt_type, res;
5465
5466 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5467 || regset->fill_function == NULL)
5468 continue;
5469
5470 buf = xmalloc (regset->size);
5471
5472 /* First fill the buffer with the current register set contents,
5473 in case there are any items in the kernel's regset that are
5474 not in gdbserver's regcache. */
5475
5476 nt_type = regset->nt_type;
5477 if (nt_type)
5478 {
5479 iov.iov_base = buf;
5480 iov.iov_len = regset->size;
5481 data = (void *) &iov;
5482 }
5483 else
5484 data = buf;
5485
5486 #ifndef __sparc__
5487 res = ptrace (regset->get_request, pid,
5488 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5489 #else
5490 res = ptrace (regset->get_request, pid, data, nt_type);
5491 #endif
5492
5493 if (res == 0)
5494 {
5495 /* Then overlay our cached registers on that. */
5496 regset->fill_function (regcache, buf);
5497
5498 /* Only now do we write the register set. */
5499 #ifndef __sparc__
5500 res = ptrace (regset->set_request, pid,
5501 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5502 #else
5503 res = ptrace (regset->set_request, pid, data, nt_type);
5504 #endif
5505 }
5506
5507 if (res < 0)
5508 {
5509 if (errno == EIO)
5510 {
5511 /* If we get EIO on a regset, do not try it again for
5512 this process mode. */
5513 disable_regset (regsets_info, regset);
5514 }
5515 else if (errno == ESRCH)
5516 {
5517 /* At this point, ESRCH should mean the process is
5518 already gone, in which case we simply ignore attempts
5519 to change its registers. See also the related
5520 comment in linux_resume_one_lwp. */
5521 free (buf);
5522 return 0;
5523 }
5524 else
5525 {
5526 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5527 }
5528 }
5529 else if (regset->type == GENERAL_REGS)
5530 saw_general_regs = 1;
5531 free (buf);
5532 }
5533 if (saw_general_regs)
5534 return 0;
5535 else
5536 return 1;
5537 }
5538
5539 #else /* !HAVE_LINUX_REGSETS */
5540
5541 #define use_linux_regsets 0
5542 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5543 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5544
5545 #endif
5546
5547 /* Return 1 if register REGNO is supported by one of the regset ptrace
5548 calls or 0 if it has to be transferred individually. */
5549
5550 static int
5551 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5552 {
5553 unsigned char mask = 1 << (regno % 8);
5554 size_t index = regno / 8;
5555
5556 return (use_linux_regsets
5557 && (regs_info->regset_bitmap == NULL
5558 || (regs_info->regset_bitmap[index] & mask) != 0));
5559 }
5560
5561 #ifdef HAVE_LINUX_USRREGS
5562
5563 static int
5564 register_addr (const struct usrregs_info *usrregs, int regnum)
5565 {
5566 int addr;
5567
5568 if (regnum < 0 || regnum >= usrregs->num_regs)
5569 error ("Invalid register number %d.", regnum);
5570
5571 addr = usrregs->regmap[regnum];
5572
5573 return addr;
5574 }
5575
5576 /* Fetch one register. */
5577 static void
5578 fetch_register (const struct usrregs_info *usrregs,
5579 struct regcache *regcache, int regno)
5580 {
5581 CORE_ADDR regaddr;
5582 int i, size;
5583 char *buf;
5584 int pid;
5585
5586 if (regno >= usrregs->num_regs)
5587 return;
5588 if ((*the_low_target.cannot_fetch_register) (regno))
5589 return;
5590
5591 regaddr = register_addr (usrregs, regno);
5592 if (regaddr == -1)
5593 return;
5594
5595 size = ((register_size (regcache->tdesc, regno)
5596 + sizeof (PTRACE_XFER_TYPE) - 1)
5597 & -sizeof (PTRACE_XFER_TYPE));
5598 buf = (char *) alloca (size);
5599
5600 pid = lwpid_of (current_thread);
5601 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5602 {
5603 errno = 0;
5604 *(PTRACE_XFER_TYPE *) (buf + i) =
5605 ptrace (PTRACE_PEEKUSER, pid,
5606 /* Coerce to a uintptr_t first to avoid potential gcc warning
5607 of coercing an 8 byte integer to a 4 byte pointer. */
5608 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5609 regaddr += sizeof (PTRACE_XFER_TYPE);
5610 if (errno != 0)
5611 error ("reading register %d: %s", regno, strerror (errno));
5612 }
5613
5614 if (the_low_target.supply_ptrace_register)
5615 the_low_target.supply_ptrace_register (regcache, regno, buf);
5616 else
5617 supply_register (regcache, regno, buf);
5618 }
5619
5620 /* Store one register. */
5621 static void
5622 store_register (const struct usrregs_info *usrregs,
5623 struct regcache *regcache, int regno)
5624 {
5625 CORE_ADDR regaddr;
5626 int i, size;
5627 char *buf;
5628 int pid;
5629
5630 if (regno >= usrregs->num_regs)
5631 return;
5632 if ((*the_low_target.cannot_store_register) (regno))
5633 return;
5634
5635 regaddr = register_addr (usrregs, regno);
5636 if (regaddr == -1)
5637 return;
5638
5639 size = ((register_size (regcache->tdesc, regno)
5640 + sizeof (PTRACE_XFER_TYPE) - 1)
5641 & -sizeof (PTRACE_XFER_TYPE));
5642 buf = (char *) alloca (size);
5643 memset (buf, 0, size);
5644
5645 if (the_low_target.collect_ptrace_register)
5646 the_low_target.collect_ptrace_register (regcache, regno, buf);
5647 else
5648 collect_register (regcache, regno, buf);
5649
5650 pid = lwpid_of (current_thread);
5651 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5652 {
5653 errno = 0;
5654 ptrace (PTRACE_POKEUSER, pid,
5655 /* Coerce to a uintptr_t first to avoid potential gcc warning
5656 about coercing an 8 byte integer to a 4 byte pointer. */
5657 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5658 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5659 if (errno != 0)
5660 {
5661 /* At this point, ESRCH should mean the process is
5662 already gone, in which case we simply ignore attempts
5663 to change its registers. See also the related
5664 comment in linux_resume_one_lwp. */
5665 if (errno == ESRCH)
5666 return;
5667
5668 if ((*the_low_target.cannot_store_register) (regno) == 0)
5669 error ("writing register %d: %s", regno, strerror (errno));
5670 }
5671 regaddr += sizeof (PTRACE_XFER_TYPE);
5672 }
5673 }
5674
5675 /* Fetch all registers, or just one, from the child process.
5676 If REGNO is -1, do this for all registers, skipping any that are
5677 assumed to have been retrieved by regsets_fetch_inferior_registers,
5678 unless ALL is non-zero.
5679 Otherwise, REGNO specifies which register (so we can save time). */
5680 static void
5681 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5682 struct regcache *regcache, int regno, int all)
5683 {
5684 struct usrregs_info *usr = regs_info->usrregs;
5685
5686 if (regno == -1)
5687 {
5688 for (regno = 0; regno < usr->num_regs; regno++)
5689 if (all || !linux_register_in_regsets (regs_info, regno))
5690 fetch_register (usr, regcache, regno);
5691 }
5692 else
5693 fetch_register (usr, regcache, regno);
5694 }
5695
5696 /* Store our register values back into the inferior.
5697 If REGNO is -1, do this for all registers, skipping any that are
5698 assumed to have been saved by regsets_store_inferior_registers,
5699 unless ALL is non-zero.
5700 Otherwise, REGNO specifies which register (so we can save time). */
5701 static void
5702 usr_store_inferior_registers (const struct regs_info *regs_info,
5703 struct regcache *regcache, int regno, int all)
5704 {
5705 struct usrregs_info *usr = regs_info->usrregs;
5706
5707 if (regno == -1)
5708 {
5709 for (regno = 0; regno < usr->num_regs; regno++)
5710 if (all || !linux_register_in_regsets (regs_info, regno))
5711 store_register (usr, regcache, regno);
5712 }
5713 else
5714 store_register (usr, regcache, regno);
5715 }
5716
5717 #else /* !HAVE_LINUX_USRREGS */
5718
5719 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5720 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5721
5722 #endif
5723
5724
5725 static void
5726 linux_fetch_registers (struct regcache *regcache, int regno)
5727 {
5728 int use_regsets;
5729 int all = 0;
5730 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5731
5732 if (regno == -1)
5733 {
5734 if (the_low_target.fetch_register != NULL
5735 && regs_info->usrregs != NULL)
5736 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5737 (*the_low_target.fetch_register) (regcache, regno);
5738
5739 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5740 if (regs_info->usrregs != NULL)
5741 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5742 }
5743 else
5744 {
5745 if (the_low_target.fetch_register != NULL
5746 && (*the_low_target.fetch_register) (regcache, regno))
5747 return;
5748
5749 use_regsets = linux_register_in_regsets (regs_info, regno);
5750 if (use_regsets)
5751 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5752 regcache);
5753 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5754 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5755 }
5756 }
5757
5758 static void
5759 linux_store_registers (struct regcache *regcache, int regno)
5760 {
5761 int use_regsets;
5762 int all = 0;
5763 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5764
5765 if (regno == -1)
5766 {
5767 all = regsets_store_inferior_registers (regs_info->regsets_info,
5768 regcache);
5769 if (regs_info->usrregs != NULL)
5770 usr_store_inferior_registers (regs_info, regcache, regno, all);
5771 }
5772 else
5773 {
5774 use_regsets = linux_register_in_regsets (regs_info, regno);
5775 if (use_regsets)
5776 all = regsets_store_inferior_registers (regs_info->regsets_info,
5777 regcache);
5778 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5779 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5780 }
5781 }
5782
5783
5784 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5785 to debugger memory starting at MYADDR. */
5786
5787 static int
5788 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5789 {
5790 int pid = lwpid_of (current_thread);
5791 PTRACE_XFER_TYPE *buffer;
5792 CORE_ADDR addr;
5793 int count;
5794 char filename[64];
5795 int i;
5796 int ret;
5797 int fd;
5798
5799 /* Try using /proc. Don't bother for one word. */
5800 if (len >= 3 * sizeof (long))
5801 {
5802 int bytes;
5803
5804 /* We could keep this file open and cache it - possibly one per
5805 thread. That requires some juggling, but is even faster. */
5806 sprintf (filename, "/proc/%d/mem", pid);
5807 fd = open (filename, O_RDONLY | O_LARGEFILE);
5808 if (fd == -1)
5809 goto no_proc;
5810
5811 /* If pread64 is available, use it. It's faster if the kernel
5812 supports it (only one syscall), and it's 64-bit safe even on
5813 32-bit platforms (for instance, SPARC debugging a SPARC64
5814 application). */
5815 #ifdef HAVE_PREAD64
5816 bytes = pread64 (fd, myaddr, len, memaddr);
5817 #else
5818 bytes = -1;
5819 if (lseek (fd, memaddr, SEEK_SET) != -1)
5820 bytes = read (fd, myaddr, len);
5821 #endif
5822
5823 close (fd);
5824 if (bytes == len)
5825 return 0;
5826
5827 /* Some data was read, we'll try to get the rest with ptrace. */
5828 if (bytes > 0)
5829 {
5830 memaddr += bytes;
5831 myaddr += bytes;
5832 len -= bytes;
5833 }
5834 }
5835
5836 no_proc:
5837 /* Round starting address down to longword boundary. */
5838 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5839 /* Round ending address up; get number of longwords that makes. */
5840 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5841 / sizeof (PTRACE_XFER_TYPE));
5842 /* Allocate buffer of that many longwords. */
5843 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5844
5845 /* Read all the longwords */
5846 errno = 0;
5847 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5848 {
5849 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5850 about coercing an 8 byte integer to a 4 byte pointer. */
5851 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5852 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5853 (PTRACE_TYPE_ARG4) 0);
5854 if (errno)
5855 break;
5856 }
5857 ret = errno;
5858
5859 /* Copy appropriate bytes out of the buffer. */
5860 if (i > 0)
5861 {
5862 i *= sizeof (PTRACE_XFER_TYPE);
5863 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5864 memcpy (myaddr,
5865 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5866 i < len ? i : len);
5867 }
5868
5869 return ret;
5870 }
5871
5872 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5873 memory at MEMADDR. On failure (cannot write to the inferior)
5874 returns the value of errno. Always succeeds if LEN is zero. */
5875
5876 static int
5877 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5878 {
5879 int i;
5880 /* Round starting address down to longword boundary. */
5881 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5882 /* Round ending address up; get number of longwords that makes. */
5883 int count
5884 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5885 / sizeof (PTRACE_XFER_TYPE);
5886
5887 /* Allocate buffer of that many longwords. */
5888 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5889
5890 int pid = lwpid_of (current_thread);
5891
5892 if (len == 0)
5893 {
5894 /* Zero length write always succeeds. */
5895 return 0;
5896 }
5897
5898 if (debug_threads)
5899 {
5900 /* Dump up to four bytes. */
5901 char str[4 * 2 + 1];
5902 char *p = str;
5903 int dump = len < 4 ? len : 4;
5904
5905 for (i = 0; i < dump; i++)
5906 {
5907 sprintf (p, "%02x", myaddr[i]);
5908 p += 2;
5909 }
5910 *p = '\0';
5911
5912 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5913 str, (long) memaddr, pid);
5914 }
5915
5916 /* Fill start and end extra bytes of buffer with existing memory data. */
5917
5918 errno = 0;
5919 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5920 about coercing an 8 byte integer to a 4 byte pointer. */
5921 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5922 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5923 (PTRACE_TYPE_ARG4) 0);
5924 if (errno)
5925 return errno;
5926
5927 if (count > 1)
5928 {
5929 errno = 0;
5930 buffer[count - 1]
5931 = ptrace (PTRACE_PEEKTEXT, pid,
5932 /* Coerce to a uintptr_t first to avoid potential gcc warning
5933 about coercing an 8 byte integer to a 4 byte pointer. */
5934 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5935 * sizeof (PTRACE_XFER_TYPE)),
5936 (PTRACE_TYPE_ARG4) 0);
5937 if (errno)
5938 return errno;
5939 }
5940
5941 /* Copy data to be written over corresponding part of buffer. */
5942
5943 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5944 myaddr, len);
5945
5946 /* Write the entire buffer. */
5947
5948 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5949 {
5950 errno = 0;
5951 ptrace (PTRACE_POKETEXT, pid,
5952 /* Coerce to a uintptr_t first to avoid potential gcc warning
5953 about coercing an 8 byte integer to a 4 byte pointer. */
5954 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5955 (PTRACE_TYPE_ARG4) buffer[i]);
5956 if (errno)
5957 return errno;
5958 }
5959
5960 return 0;
5961 }
5962
5963 static void
5964 linux_look_up_symbols (void)
5965 {
5966 #ifdef USE_THREAD_DB
5967 struct process_info *proc = current_process ();
5968
5969 if (proc->priv->thread_db != NULL)
5970 return;
5971
5972 thread_db_init ();
5973 #endif
5974 }
5975
5976 static void
5977 linux_request_interrupt (void)
5978 {
5979 /* Send a SIGINT to the process group. This acts just like the user
5980 typed a ^C on the controlling terminal. */
5981 kill (-signal_pid, SIGINT);
5982 }
5983
5984 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5985 to debugger memory starting at MYADDR. */
5986
5987 static int
5988 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5989 {
5990 char filename[PATH_MAX];
5991 int fd, n;
5992 int pid = lwpid_of (current_thread);
5993
5994 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5995
5996 fd = open (filename, O_RDONLY);
5997 if (fd < 0)
5998 return -1;
5999
6000 if (offset != (CORE_ADDR) 0
6001 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6002 n = -1;
6003 else
6004 n = read (fd, myaddr, len);
6005
6006 close (fd);
6007
6008 return n;
6009 }
6010
6011 /* These breakpoint and watchpoint related wrapper functions simply
6012 pass on the function call if the target has registered a
6013 corresponding function. */
6014
6015 static int
6016 linux_supports_z_point_type (char z_type)
6017 {
6018 return (the_low_target.supports_z_point_type != NULL
6019 && the_low_target.supports_z_point_type (z_type));
6020 }
6021
6022 static int
6023 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
6024 int size, struct raw_breakpoint *bp)
6025 {
6026 if (type == raw_bkpt_type_sw)
6027 return insert_memory_breakpoint (bp);
6028 else if (the_low_target.insert_point != NULL)
6029 return the_low_target.insert_point (type, addr, size, bp);
6030 else
6031 /* Unsupported (see target.h). */
6032 return 1;
6033 }
6034
6035 static int
6036 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6037 int size, struct raw_breakpoint *bp)
6038 {
6039 if (type == raw_bkpt_type_sw)
6040 return remove_memory_breakpoint (bp);
6041 else if (the_low_target.remove_point != NULL)
6042 return the_low_target.remove_point (type, addr, size, bp);
6043 else
6044 /* Unsupported (see target.h). */
6045 return 1;
6046 }
6047
6048 /* Implement the to_stopped_by_sw_breakpoint target_ops
6049 method. */
6050
6051 static int
6052 linux_stopped_by_sw_breakpoint (void)
6053 {
6054 struct lwp_info *lwp = get_thread_lwp (current_thread);
6055
6056 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6057 }
6058
6059 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6060 method. */
6061
6062 static int
6063 linux_supports_stopped_by_sw_breakpoint (void)
6064 {
6065 return USE_SIGTRAP_SIGINFO;
6066 }
6067
6068 /* Implement the to_stopped_by_hw_breakpoint target_ops
6069 method. */
6070
6071 static int
6072 linux_stopped_by_hw_breakpoint (void)
6073 {
6074 struct lwp_info *lwp = get_thread_lwp (current_thread);
6075
6076 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6077 }
6078
6079 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6080 method. */
6081
6082 static int
6083 linux_supports_stopped_by_hw_breakpoint (void)
6084 {
6085 return USE_SIGTRAP_SIGINFO;
6086 }
6087
6088 /* Implement the supports_hardware_single_step target_ops method. */
6089
6090 static int
6091 linux_supports_hardware_single_step (void)
6092 {
6093 return can_hardware_single_step ();
6094 }
6095
6096 static int
6097 linux_supports_software_single_step (void)
6098 {
6099 return can_software_single_step ();
6100 }
6101
6102 static int
6103 linux_stopped_by_watchpoint (void)
6104 {
6105 struct lwp_info *lwp = get_thread_lwp (current_thread);
6106
6107 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6108 }
6109
6110 static CORE_ADDR
6111 linux_stopped_data_address (void)
6112 {
6113 struct lwp_info *lwp = get_thread_lwp (current_thread);
6114
6115 return lwp->stopped_data_address;
6116 }
6117
6118 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6119 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6120 && defined(PT_TEXT_END_ADDR)
6121
6122 /* This is only used for targets that define PT_TEXT_ADDR,
6123 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6124 the target has different ways of acquiring this information, like
6125 loadmaps. */
6126
6127 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6128 to tell gdb about. */
6129
6130 static int
6131 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6132 {
6133 unsigned long text, text_end, data;
6134 int pid = lwpid_of (current_thread);
6135
6136 errno = 0;
6137
6138 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6139 (PTRACE_TYPE_ARG4) 0);
6140 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6141 (PTRACE_TYPE_ARG4) 0);
6142 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6143 (PTRACE_TYPE_ARG4) 0);
6144
6145 if (errno == 0)
6146 {
6147 /* Both text and data offsets produced at compile-time (and so
6148 used by gdb) are relative to the beginning of the program,
6149 with the data segment immediately following the text segment.
6150 However, the actual runtime layout in memory may put the data
6151 somewhere else, so when we send gdb a data base-address, we
6152 use the real data base address and subtract the compile-time
6153 data base-address from it (which is just the length of the
6154 text segment). BSS immediately follows data in both
6155 cases. */
6156 *text_p = text;
6157 *data_p = data - (text_end - text);
6158
6159 return 1;
6160 }
6161 return 0;
6162 }
6163 #endif
6164
6165 static int
6166 linux_qxfer_osdata (const char *annex,
6167 unsigned char *readbuf, unsigned const char *writebuf,
6168 CORE_ADDR offset, int len)
6169 {
6170 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6171 }
6172
6173 /* Convert a native/host siginfo object, into/from the siginfo in the
6174 layout of the inferiors' architecture. */
6175
6176 static void
6177 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6178 {
6179 int done = 0;
6180
6181 if (the_low_target.siginfo_fixup != NULL)
6182 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6183
6184 /* If there was no callback, or the callback didn't do anything,
6185 then just do a straight memcpy. */
6186 if (!done)
6187 {
6188 if (direction == 1)
6189 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6190 else
6191 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6192 }
6193 }
6194
6195 static int
6196 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6197 unsigned const char *writebuf, CORE_ADDR offset, int len)
6198 {
6199 int pid;
6200 siginfo_t siginfo;
6201 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6202
6203 if (current_thread == NULL)
6204 return -1;
6205
6206 pid = lwpid_of (current_thread);
6207
6208 if (debug_threads)
6209 debug_printf ("%s siginfo for lwp %d.\n",
6210 readbuf != NULL ? "Reading" : "Writing",
6211 pid);
6212
6213 if (offset >= sizeof (siginfo))
6214 return -1;
6215
6216 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6217 return -1;
6218
6219 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6220 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6221 inferior with a 64-bit GDBSERVER should look the same as debugging it
6222 with a 32-bit GDBSERVER, we need to convert it. */
6223 siginfo_fixup (&siginfo, inf_siginfo, 0);
6224
6225 if (offset + len > sizeof (siginfo))
6226 len = sizeof (siginfo) - offset;
6227
6228 if (readbuf != NULL)
6229 memcpy (readbuf, inf_siginfo + offset, len);
6230 else
6231 {
6232 memcpy (inf_siginfo + offset, writebuf, len);
6233
6234 /* Convert back to ptrace layout before flushing it out. */
6235 siginfo_fixup (&siginfo, inf_siginfo, 1);
6236
6237 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6238 return -1;
6239 }
6240
6241 return len;
6242 }
6243
6244 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6245 so we notice when children change state; as the handler for the
6246 sigsuspend in my_waitpid. */
6247
6248 static void
6249 sigchld_handler (int signo)
6250 {
6251 int old_errno = errno;
6252
6253 if (debug_threads)
6254 {
6255 do
6256 {
6257 /* fprintf is not async-signal-safe, so call write
6258 directly. */
6259 if (write (2, "sigchld_handler\n",
6260 sizeof ("sigchld_handler\n") - 1) < 0)
6261 break; /* just ignore */
6262 } while (0);
6263 }
6264
6265 if (target_is_async_p ())
6266 async_file_mark (); /* trigger a linux_wait */
6267
6268 errno = old_errno;
6269 }
6270
6271 static int
6272 linux_supports_non_stop (void)
6273 {
6274 return 1;
6275 }
6276
6277 static int
6278 linux_async (int enable)
6279 {
6280 int previous = target_is_async_p ();
6281
6282 if (debug_threads)
6283 debug_printf ("linux_async (%d), previous=%d\n",
6284 enable, previous);
6285
6286 if (previous != enable)
6287 {
6288 sigset_t mask;
6289 sigemptyset (&mask);
6290 sigaddset (&mask, SIGCHLD);
6291
6292 sigprocmask (SIG_BLOCK, &mask, NULL);
6293
6294 if (enable)
6295 {
6296 if (pipe (linux_event_pipe) == -1)
6297 {
6298 linux_event_pipe[0] = -1;
6299 linux_event_pipe[1] = -1;
6300 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6301
6302 warning ("creating event pipe failed.");
6303 return previous;
6304 }
6305
6306 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6307 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6308
6309 /* Register the event loop handler. */
6310 add_file_handler (linux_event_pipe[0],
6311 handle_target_event, NULL);
6312
6313 /* Always trigger a linux_wait. */
6314 async_file_mark ();
6315 }
6316 else
6317 {
6318 delete_file_handler (linux_event_pipe[0]);
6319
6320 close (linux_event_pipe[0]);
6321 close (linux_event_pipe[1]);
6322 linux_event_pipe[0] = -1;
6323 linux_event_pipe[1] = -1;
6324 }
6325
6326 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6327 }
6328
6329 return previous;
6330 }
6331
6332 static int
6333 linux_start_non_stop (int nonstop)
6334 {
6335 /* Register or unregister from event-loop accordingly. */
6336 linux_async (nonstop);
6337
6338 if (target_is_async_p () != (nonstop != 0))
6339 return -1;
6340
6341 return 0;
6342 }
6343
6344 static int
6345 linux_supports_multi_process (void)
6346 {
6347 return 1;
6348 }
6349
6350 /* Check if fork events are supported. */
6351
6352 static int
6353 linux_supports_fork_events (void)
6354 {
6355 return linux_supports_tracefork ();
6356 }
6357
6358 /* Check if vfork events are supported. */
6359
6360 static int
6361 linux_supports_vfork_events (void)
6362 {
6363 return linux_supports_tracefork ();
6364 }
6365
6366 /* Check if exec events are supported. */
6367
6368 static int
6369 linux_supports_exec_events (void)
6370 {
6371 return linux_supports_traceexec ();
6372 }
6373
6374 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6375 ptrace flags for all inferiors. This is in case the new GDB connection
6376 doesn't support the same set of events that the previous one did. */
6377
6378 static void
6379 linux_handle_new_gdb_connection (void)
6380 {
6381 /* Request that all the lwps reset their ptrace options. */
6382 for_each_thread ([] (thread_info *thread)
6383 {
6384 struct lwp_info *lwp = get_thread_lwp (thread);
6385
6386 if (!lwp->stopped)
6387 {
6388 /* Stop the lwp so we can modify its ptrace options. */
6389 lwp->must_set_ptrace_flags = 1;
6390 linux_stop_lwp (lwp);
6391 }
6392 else
6393 {
6394 /* Already stopped; go ahead and set the ptrace options. */
6395 struct process_info *proc = find_process_pid (pid_of (thread));
6396 int options = linux_low_ptrace_options (proc->attached);
6397
6398 linux_enable_event_reporting (lwpid_of (thread), options);
6399 lwp->must_set_ptrace_flags = 0;
6400 }
6401 });
6402 }
6403
6404 static int
6405 linux_supports_disable_randomization (void)
6406 {
6407 #ifdef HAVE_PERSONALITY
6408 return 1;
6409 #else
6410 return 0;
6411 #endif
6412 }
6413
6414 static int
6415 linux_supports_agent (void)
6416 {
6417 return 1;
6418 }
6419
6420 static int
6421 linux_supports_range_stepping (void)
6422 {
6423 if (can_software_single_step ())
6424 return 1;
6425 if (*the_low_target.supports_range_stepping == NULL)
6426 return 0;
6427
6428 return (*the_low_target.supports_range_stepping) ();
6429 }
6430
6431 /* Enumerate spufs IDs for process PID. */
6432 static int
6433 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6434 {
6435 int pos = 0;
6436 int written = 0;
6437 char path[128];
6438 DIR *dir;
6439 struct dirent *entry;
6440
6441 sprintf (path, "/proc/%ld/fd", pid);
6442 dir = opendir (path);
6443 if (!dir)
6444 return -1;
6445
6446 rewinddir (dir);
6447 while ((entry = readdir (dir)) != NULL)
6448 {
6449 struct stat st;
6450 struct statfs stfs;
6451 int fd;
6452
6453 fd = atoi (entry->d_name);
6454 if (!fd)
6455 continue;
6456
6457 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6458 if (stat (path, &st) != 0)
6459 continue;
6460 if (!S_ISDIR (st.st_mode))
6461 continue;
6462
6463 if (statfs (path, &stfs) != 0)
6464 continue;
6465 if (stfs.f_type != SPUFS_MAGIC)
6466 continue;
6467
6468 if (pos >= offset && pos + 4 <= offset + len)
6469 {
6470 *(unsigned int *)(buf + pos - offset) = fd;
6471 written += 4;
6472 }
6473 pos += 4;
6474 }
6475
6476 closedir (dir);
6477 return written;
6478 }
6479
6480 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6481 object type, using the /proc file system. */
6482 static int
6483 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6484 unsigned const char *writebuf,
6485 CORE_ADDR offset, int len)
6486 {
6487 long pid = lwpid_of (current_thread);
6488 char buf[128];
6489 int fd = 0;
6490 int ret = 0;
6491
6492 if (!writebuf && !readbuf)
6493 return -1;
6494
6495 if (!*annex)
6496 {
6497 if (!readbuf)
6498 return -1;
6499 else
6500 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6501 }
6502
6503 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6504 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6505 if (fd <= 0)
6506 return -1;
6507
6508 if (offset != 0
6509 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6510 {
6511 close (fd);
6512 return 0;
6513 }
6514
6515 if (writebuf)
6516 ret = write (fd, writebuf, (size_t) len);
6517 else
6518 ret = read (fd, readbuf, (size_t) len);
6519
6520 close (fd);
6521 return ret;
6522 }
6523
6524 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6525 struct target_loadseg
6526 {
6527 /* Core address to which the segment is mapped. */
6528 Elf32_Addr addr;
6529 /* VMA recorded in the program header. */
6530 Elf32_Addr p_vaddr;
6531 /* Size of this segment in memory. */
6532 Elf32_Word p_memsz;
6533 };
6534
6535 # if defined PT_GETDSBT
6536 struct target_loadmap
6537 {
6538 /* Protocol version number, must be zero. */
6539 Elf32_Word version;
6540 /* Pointer to the DSBT table, its size, and the DSBT index. */
6541 unsigned *dsbt_table;
6542 unsigned dsbt_size, dsbt_index;
6543 /* Number of segments in this map. */
6544 Elf32_Word nsegs;
6545 /* The actual memory map. */
6546 struct target_loadseg segs[/*nsegs*/];
6547 };
6548 # define LINUX_LOADMAP PT_GETDSBT
6549 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6550 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6551 # else
6552 struct target_loadmap
6553 {
6554 /* Protocol version number, must be zero. */
6555 Elf32_Half version;
6556 /* Number of segments in this map. */
6557 Elf32_Half nsegs;
6558 /* The actual memory map. */
6559 struct target_loadseg segs[/*nsegs*/];
6560 };
6561 # define LINUX_LOADMAP PTRACE_GETFDPIC
6562 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6563 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6564 # endif
6565
6566 static int
6567 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6568 unsigned char *myaddr, unsigned int len)
6569 {
6570 int pid = lwpid_of (current_thread);
6571 int addr = -1;
6572 struct target_loadmap *data = NULL;
6573 unsigned int actual_length, copy_length;
6574
6575 if (strcmp (annex, "exec") == 0)
6576 addr = (int) LINUX_LOADMAP_EXEC;
6577 else if (strcmp (annex, "interp") == 0)
6578 addr = (int) LINUX_LOADMAP_INTERP;
6579 else
6580 return -1;
6581
6582 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6583 return -1;
6584
6585 if (data == NULL)
6586 return -1;
6587
6588 actual_length = sizeof (struct target_loadmap)
6589 + sizeof (struct target_loadseg) * data->nsegs;
6590
6591 if (offset < 0 || offset > actual_length)
6592 return -1;
6593
6594 copy_length = actual_length - offset < len ? actual_length - offset : len;
6595 memcpy (myaddr, (char *) data + offset, copy_length);
6596 return copy_length;
6597 }
6598 #else
6599 # define linux_read_loadmap NULL
6600 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6601
6602 static void
6603 linux_process_qsupported (char **features, int count)
6604 {
6605 if (the_low_target.process_qsupported != NULL)
6606 the_low_target.process_qsupported (features, count);
6607 }
6608
6609 static int
6610 linux_supports_catch_syscall (void)
6611 {
6612 return (the_low_target.get_syscall_trapinfo != NULL
6613 && linux_supports_tracesysgood ());
6614 }
6615
6616 static int
6617 linux_get_ipa_tdesc_idx (void)
6618 {
6619 if (the_low_target.get_ipa_tdesc_idx == NULL)
6620 return 0;
6621
6622 return (*the_low_target.get_ipa_tdesc_idx) ();
6623 }
6624
6625 static int
6626 linux_supports_tracepoints (void)
6627 {
6628 if (*the_low_target.supports_tracepoints == NULL)
6629 return 0;
6630
6631 return (*the_low_target.supports_tracepoints) ();
6632 }
6633
6634 static CORE_ADDR
6635 linux_read_pc (struct regcache *regcache)
6636 {
6637 if (the_low_target.get_pc == NULL)
6638 return 0;
6639
6640 return (*the_low_target.get_pc) (regcache);
6641 }
6642
6643 static void
6644 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6645 {
6646 gdb_assert (the_low_target.set_pc != NULL);
6647
6648 (*the_low_target.set_pc) (regcache, pc);
6649 }
6650
6651 static int
6652 linux_thread_stopped (struct thread_info *thread)
6653 {
6654 return get_thread_lwp (thread)->stopped;
6655 }
6656
6657 /* This exposes stop-all-threads functionality to other modules. */
6658
6659 static void
6660 linux_pause_all (int freeze)
6661 {
6662 stop_all_lwps (freeze, NULL);
6663 }
6664
6665 /* This exposes unstop-all-threads functionality to other gdbserver
6666 modules. */
6667
6668 static void
6669 linux_unpause_all (int unfreeze)
6670 {
6671 unstop_all_lwps (unfreeze, NULL);
6672 }
6673
6674 static int
6675 linux_prepare_to_access_memory (void)
6676 {
6677 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6678 running LWP. */
6679 if (non_stop)
6680 linux_pause_all (1);
6681 return 0;
6682 }
6683
6684 static void
6685 linux_done_accessing_memory (void)
6686 {
6687 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6688 running LWP. */
6689 if (non_stop)
6690 linux_unpause_all (1);
6691 }
6692
6693 static int
6694 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6695 CORE_ADDR collector,
6696 CORE_ADDR lockaddr,
6697 ULONGEST orig_size,
6698 CORE_ADDR *jump_entry,
6699 CORE_ADDR *trampoline,
6700 ULONGEST *trampoline_size,
6701 unsigned char *jjump_pad_insn,
6702 ULONGEST *jjump_pad_insn_size,
6703 CORE_ADDR *adjusted_insn_addr,
6704 CORE_ADDR *adjusted_insn_addr_end,
6705 char *err)
6706 {
6707 return (*the_low_target.install_fast_tracepoint_jump_pad)
6708 (tpoint, tpaddr, collector, lockaddr, orig_size,
6709 jump_entry, trampoline, trampoline_size,
6710 jjump_pad_insn, jjump_pad_insn_size,
6711 adjusted_insn_addr, adjusted_insn_addr_end,
6712 err);
6713 }
6714
6715 static struct emit_ops *
6716 linux_emit_ops (void)
6717 {
6718 if (the_low_target.emit_ops != NULL)
6719 return (*the_low_target.emit_ops) ();
6720 else
6721 return NULL;
6722 }
6723
6724 static int
6725 linux_get_min_fast_tracepoint_insn_len (void)
6726 {
6727 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6728 }
6729
6730 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6731
6732 static int
6733 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6734 CORE_ADDR *phdr_memaddr, int *num_phdr)
6735 {
6736 char filename[PATH_MAX];
6737 int fd;
6738 const int auxv_size = is_elf64
6739 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6740 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6741
6742 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6743
6744 fd = open (filename, O_RDONLY);
6745 if (fd < 0)
6746 return 1;
6747
6748 *phdr_memaddr = 0;
6749 *num_phdr = 0;
6750 while (read (fd, buf, auxv_size) == auxv_size
6751 && (*phdr_memaddr == 0 || *num_phdr == 0))
6752 {
6753 if (is_elf64)
6754 {
6755 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6756
6757 switch (aux->a_type)
6758 {
6759 case AT_PHDR:
6760 *phdr_memaddr = aux->a_un.a_val;
6761 break;
6762 case AT_PHNUM:
6763 *num_phdr = aux->a_un.a_val;
6764 break;
6765 }
6766 }
6767 else
6768 {
6769 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6770
6771 switch (aux->a_type)
6772 {
6773 case AT_PHDR:
6774 *phdr_memaddr = aux->a_un.a_val;
6775 break;
6776 case AT_PHNUM:
6777 *num_phdr = aux->a_un.a_val;
6778 break;
6779 }
6780 }
6781 }
6782
6783 close (fd);
6784
6785 if (*phdr_memaddr == 0 || *num_phdr == 0)
6786 {
6787 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6788 "phdr_memaddr = %ld, phdr_num = %d",
6789 (long) *phdr_memaddr, *num_phdr);
6790 return 2;
6791 }
6792
6793 return 0;
6794 }
6795
6796 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6797
6798 static CORE_ADDR
6799 get_dynamic (const int pid, const int is_elf64)
6800 {
6801 CORE_ADDR phdr_memaddr, relocation;
6802 int num_phdr, i;
6803 unsigned char *phdr_buf;
6804 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6805
6806 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6807 return 0;
6808
6809 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6810 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6811
6812 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6813 return 0;
6814
6815 /* Compute relocation: it is expected to be 0 for "regular" executables,
6816 non-zero for PIE ones. */
6817 relocation = -1;
6818 for (i = 0; relocation == -1 && i < num_phdr; i++)
6819 if (is_elf64)
6820 {
6821 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6822
6823 if (p->p_type == PT_PHDR)
6824 relocation = phdr_memaddr - p->p_vaddr;
6825 }
6826 else
6827 {
6828 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6829
6830 if (p->p_type == PT_PHDR)
6831 relocation = phdr_memaddr - p->p_vaddr;
6832 }
6833
6834 if (relocation == -1)
6835 {
6836 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6837 any real world executables, including PIE executables, have always
6838 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6839 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6840 or present DT_DEBUG anyway (fpc binaries are statically linked).
6841
6842 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6843
6844 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6845
6846 return 0;
6847 }
6848
6849 for (i = 0; i < num_phdr; i++)
6850 {
6851 if (is_elf64)
6852 {
6853 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6854
6855 if (p->p_type == PT_DYNAMIC)
6856 return p->p_vaddr + relocation;
6857 }
6858 else
6859 {
6860 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6861
6862 if (p->p_type == PT_DYNAMIC)
6863 return p->p_vaddr + relocation;
6864 }
6865 }
6866
6867 return 0;
6868 }
6869
6870 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6871 can be 0 if the inferior does not yet have the library list initialized.
6872 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6873 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6874
6875 static CORE_ADDR
6876 get_r_debug (const int pid, const int is_elf64)
6877 {
6878 CORE_ADDR dynamic_memaddr;
6879 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6880 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6881 CORE_ADDR map = -1;
6882
6883 dynamic_memaddr = get_dynamic (pid, is_elf64);
6884 if (dynamic_memaddr == 0)
6885 return map;
6886
6887 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6888 {
6889 if (is_elf64)
6890 {
6891 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6892 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6893 union
6894 {
6895 Elf64_Xword map;
6896 unsigned char buf[sizeof (Elf64_Xword)];
6897 }
6898 rld_map;
6899 #endif
6900 #ifdef DT_MIPS_RLD_MAP
6901 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6902 {
6903 if (linux_read_memory (dyn->d_un.d_val,
6904 rld_map.buf, sizeof (rld_map.buf)) == 0)
6905 return rld_map.map;
6906 else
6907 break;
6908 }
6909 #endif /* DT_MIPS_RLD_MAP */
6910 #ifdef DT_MIPS_RLD_MAP_REL
6911 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6912 {
6913 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6914 rld_map.buf, sizeof (rld_map.buf)) == 0)
6915 return rld_map.map;
6916 else
6917 break;
6918 }
6919 #endif /* DT_MIPS_RLD_MAP_REL */
6920
6921 if (dyn->d_tag == DT_DEBUG && map == -1)
6922 map = dyn->d_un.d_val;
6923
6924 if (dyn->d_tag == DT_NULL)
6925 break;
6926 }
6927 else
6928 {
6929 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6930 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6931 union
6932 {
6933 Elf32_Word map;
6934 unsigned char buf[sizeof (Elf32_Word)];
6935 }
6936 rld_map;
6937 #endif
6938 #ifdef DT_MIPS_RLD_MAP
6939 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6940 {
6941 if (linux_read_memory (dyn->d_un.d_val,
6942 rld_map.buf, sizeof (rld_map.buf)) == 0)
6943 return rld_map.map;
6944 else
6945 break;
6946 }
6947 #endif /* DT_MIPS_RLD_MAP */
6948 #ifdef DT_MIPS_RLD_MAP_REL
6949 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6950 {
6951 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6952 rld_map.buf, sizeof (rld_map.buf)) == 0)
6953 return rld_map.map;
6954 else
6955 break;
6956 }
6957 #endif /* DT_MIPS_RLD_MAP_REL */
6958
6959 if (dyn->d_tag == DT_DEBUG && map == -1)
6960 map = dyn->d_un.d_val;
6961
6962 if (dyn->d_tag == DT_NULL)
6963 break;
6964 }
6965
6966 dynamic_memaddr += dyn_size;
6967 }
6968
6969 return map;
6970 }
6971
6972 /* Read one pointer from MEMADDR in the inferior. */
6973
6974 static int
6975 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6976 {
6977 int ret;
6978
6979 /* Go through a union so this works on either big or little endian
6980 hosts, when the inferior's pointer size is smaller than the size
6981 of CORE_ADDR. It is assumed the inferior's endianness is the
6982 same of the superior's. */
6983 union
6984 {
6985 CORE_ADDR core_addr;
6986 unsigned int ui;
6987 unsigned char uc;
6988 } addr;
6989
6990 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6991 if (ret == 0)
6992 {
6993 if (ptr_size == sizeof (CORE_ADDR))
6994 *ptr = addr.core_addr;
6995 else if (ptr_size == sizeof (unsigned int))
6996 *ptr = addr.ui;
6997 else
6998 gdb_assert_not_reached ("unhandled pointer size");
6999 }
7000 return ret;
7001 }
7002
7003 struct link_map_offsets
7004 {
7005 /* Offset and size of r_debug.r_version. */
7006 int r_version_offset;
7007
7008 /* Offset and size of r_debug.r_map. */
7009 int r_map_offset;
7010
7011 /* Offset to l_addr field in struct link_map. */
7012 int l_addr_offset;
7013
7014 /* Offset to l_name field in struct link_map. */
7015 int l_name_offset;
7016
7017 /* Offset to l_ld field in struct link_map. */
7018 int l_ld_offset;
7019
7020 /* Offset to l_next field in struct link_map. */
7021 int l_next_offset;
7022
7023 /* Offset to l_prev field in struct link_map. */
7024 int l_prev_offset;
7025 };
7026
7027 /* Construct qXfer:libraries-svr4:read reply. */
7028
7029 static int
7030 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
7031 unsigned const char *writebuf,
7032 CORE_ADDR offset, int len)
7033 {
7034 char *document;
7035 unsigned document_len;
7036 struct process_info_private *const priv = current_process ()->priv;
7037 char filename[PATH_MAX];
7038 int pid, is_elf64;
7039
7040 static const struct link_map_offsets lmo_32bit_offsets =
7041 {
7042 0, /* r_version offset. */
7043 4, /* r_debug.r_map offset. */
7044 0, /* l_addr offset in link_map. */
7045 4, /* l_name offset in link_map. */
7046 8, /* l_ld offset in link_map. */
7047 12, /* l_next offset in link_map. */
7048 16 /* l_prev offset in link_map. */
7049 };
7050
7051 static const struct link_map_offsets lmo_64bit_offsets =
7052 {
7053 0, /* r_version offset. */
7054 8, /* r_debug.r_map offset. */
7055 0, /* l_addr offset in link_map. */
7056 8, /* l_name offset in link_map. */
7057 16, /* l_ld offset in link_map. */
7058 24, /* l_next offset in link_map. */
7059 32 /* l_prev offset in link_map. */
7060 };
7061 const struct link_map_offsets *lmo;
7062 unsigned int machine;
7063 int ptr_size;
7064 CORE_ADDR lm_addr = 0, lm_prev = 0;
7065 int allocated = 1024;
7066 char *p;
7067 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7068 int header_done = 0;
7069
7070 if (writebuf != NULL)
7071 return -2;
7072 if (readbuf == NULL)
7073 return -1;
7074
7075 pid = lwpid_of (current_thread);
7076 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7077 is_elf64 = elf_64_file_p (filename, &machine);
7078 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7079 ptr_size = is_elf64 ? 8 : 4;
7080
7081 while (annex[0] != '\0')
7082 {
7083 const char *sep;
7084 CORE_ADDR *addrp;
7085 int len;
7086
7087 sep = strchr (annex, '=');
7088 if (sep == NULL)
7089 break;
7090
7091 len = sep - annex;
7092 if (len == 5 && startswith (annex, "start"))
7093 addrp = &lm_addr;
7094 else if (len == 4 && startswith (annex, "prev"))
7095 addrp = &lm_prev;
7096 else
7097 {
7098 annex = strchr (sep, ';');
7099 if (annex == NULL)
7100 break;
7101 annex++;
7102 continue;
7103 }
7104
7105 annex = decode_address_to_semicolon (addrp, sep + 1);
7106 }
7107
7108 if (lm_addr == 0)
7109 {
7110 int r_version = 0;
7111
7112 if (priv->r_debug == 0)
7113 priv->r_debug = get_r_debug (pid, is_elf64);
7114
7115 /* We failed to find DT_DEBUG. Such situation will not change
7116 for this inferior - do not retry it. Report it to GDB as
7117 E01, see for the reasons at the GDB solib-svr4.c side. */
7118 if (priv->r_debug == (CORE_ADDR) -1)
7119 return -1;
7120
7121 if (priv->r_debug != 0)
7122 {
7123 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7124 (unsigned char *) &r_version,
7125 sizeof (r_version)) != 0
7126 || r_version != 1)
7127 {
7128 warning ("unexpected r_debug version %d", r_version);
7129 }
7130 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7131 &lm_addr, ptr_size) != 0)
7132 {
7133 warning ("unable to read r_map from 0x%lx",
7134 (long) priv->r_debug + lmo->r_map_offset);
7135 }
7136 }
7137 }
7138
7139 document = (char *) xmalloc (allocated);
7140 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7141 p = document + strlen (document);
7142
7143 while (lm_addr
7144 && read_one_ptr (lm_addr + lmo->l_name_offset,
7145 &l_name, ptr_size) == 0
7146 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7147 &l_addr, ptr_size) == 0
7148 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7149 &l_ld, ptr_size) == 0
7150 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7151 &l_prev, ptr_size) == 0
7152 && read_one_ptr (lm_addr + lmo->l_next_offset,
7153 &l_next, ptr_size) == 0)
7154 {
7155 unsigned char libname[PATH_MAX];
7156
7157 if (lm_prev != l_prev)
7158 {
7159 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7160 (long) lm_prev, (long) l_prev);
7161 break;
7162 }
7163
7164 /* Ignore the first entry even if it has valid name as the first entry
7165 corresponds to the main executable. The first entry should not be
7166 skipped if the dynamic loader was loaded late by a static executable
7167 (see solib-svr4.c parameter ignore_first). But in such case the main
7168 executable does not have PT_DYNAMIC present and this function already
7169 exited above due to failed get_r_debug. */
7170 if (lm_prev == 0)
7171 {
7172 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7173 p = p + strlen (p);
7174 }
7175 else
7176 {
7177 /* Not checking for error because reading may stop before
7178 we've got PATH_MAX worth of characters. */
7179 libname[0] = '\0';
7180 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7181 libname[sizeof (libname) - 1] = '\0';
7182 if (libname[0] != '\0')
7183 {
7184 /* 6x the size for xml_escape_text below. */
7185 size_t len = 6 * strlen ((char *) libname);
7186
7187 if (!header_done)
7188 {
7189 /* Terminate `<library-list-svr4'. */
7190 *p++ = '>';
7191 header_done = 1;
7192 }
7193
7194 while (allocated < p - document + len + 200)
7195 {
7196 /* Expand to guarantee sufficient storage. */
7197 uintptr_t document_len = p - document;
7198
7199 document = (char *) xrealloc (document, 2 * allocated);
7200 allocated *= 2;
7201 p = document + document_len;
7202 }
7203
7204 std::string name = xml_escape_text ((char *) libname);
7205 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7206 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7207 name.c_str (), (unsigned long) lm_addr,
7208 (unsigned long) l_addr, (unsigned long) l_ld);
7209 }
7210 }
7211
7212 lm_prev = lm_addr;
7213 lm_addr = l_next;
7214 }
7215
7216 if (!header_done)
7217 {
7218 /* Empty list; terminate `<library-list-svr4'. */
7219 strcpy (p, "/>");
7220 }
7221 else
7222 strcpy (p, "</library-list-svr4>");
7223
7224 document_len = strlen (document);
7225 if (offset < document_len)
7226 document_len -= offset;
7227 else
7228 document_len = 0;
7229 if (len > document_len)
7230 len = document_len;
7231
7232 memcpy (readbuf, document + offset, len);
7233 xfree (document);
7234
7235 return len;
7236 }
7237
7238 #ifdef HAVE_LINUX_BTRACE
7239
7240 /* See to_disable_btrace target method. */
7241
7242 static int
7243 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7244 {
7245 enum btrace_error err;
7246
7247 err = linux_disable_btrace (tinfo);
7248 return (err == BTRACE_ERR_NONE ? 0 : -1);
7249 }
7250
7251 /* Encode an Intel Processor Trace configuration. */
7252
7253 static void
7254 linux_low_encode_pt_config (struct buffer *buffer,
7255 const struct btrace_data_pt_config *config)
7256 {
7257 buffer_grow_str (buffer, "<pt-config>\n");
7258
7259 switch (config->cpu.vendor)
7260 {
7261 case CV_INTEL:
7262 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7263 "model=\"%u\" stepping=\"%u\"/>\n",
7264 config->cpu.family, config->cpu.model,
7265 config->cpu.stepping);
7266 break;
7267
7268 default:
7269 break;
7270 }
7271
7272 buffer_grow_str (buffer, "</pt-config>\n");
7273 }
7274
7275 /* Encode a raw buffer. */
7276
7277 static void
7278 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7279 unsigned int size)
7280 {
7281 if (size == 0)
7282 return;
7283
7284 /* We use hex encoding - see common/rsp-low.h. */
7285 buffer_grow_str (buffer, "<raw>\n");
7286
7287 while (size-- > 0)
7288 {
7289 char elem[2];
7290
7291 elem[0] = tohex ((*data >> 4) & 0xf);
7292 elem[1] = tohex (*data++ & 0xf);
7293
7294 buffer_grow (buffer, elem, 2);
7295 }
7296
7297 buffer_grow_str (buffer, "</raw>\n");
7298 }
7299
7300 /* See to_read_btrace target method. */
7301
7302 static int
7303 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7304 enum btrace_read_type type)
7305 {
7306 struct btrace_data btrace;
7307 struct btrace_block *block;
7308 enum btrace_error err;
7309 int i;
7310
7311 btrace_data_init (&btrace);
7312
7313 err = linux_read_btrace (&btrace, tinfo, type);
7314 if (err != BTRACE_ERR_NONE)
7315 {
7316 if (err == BTRACE_ERR_OVERFLOW)
7317 buffer_grow_str0 (buffer, "E.Overflow.");
7318 else
7319 buffer_grow_str0 (buffer, "E.Generic Error.");
7320
7321 goto err;
7322 }
7323
7324 switch (btrace.format)
7325 {
7326 case BTRACE_FORMAT_NONE:
7327 buffer_grow_str0 (buffer, "E.No Trace.");
7328 goto err;
7329
7330 case BTRACE_FORMAT_BTS:
7331 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7332 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7333
7334 for (i = 0;
7335 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7336 i++)
7337 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7338 paddress (block->begin), paddress (block->end));
7339
7340 buffer_grow_str0 (buffer, "</btrace>\n");
7341 break;
7342
7343 case BTRACE_FORMAT_PT:
7344 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7345 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7346 buffer_grow_str (buffer, "<pt>\n");
7347
7348 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7349
7350 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7351 btrace.variant.pt.size);
7352
7353 buffer_grow_str (buffer, "</pt>\n");
7354 buffer_grow_str0 (buffer, "</btrace>\n");
7355 break;
7356
7357 default:
7358 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7359 goto err;
7360 }
7361
7362 btrace_data_fini (&btrace);
7363 return 0;
7364
7365 err:
7366 btrace_data_fini (&btrace);
7367 return -1;
7368 }
7369
7370 /* See to_btrace_conf target method. */
7371
7372 static int
7373 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7374 struct buffer *buffer)
7375 {
7376 const struct btrace_config *conf;
7377
7378 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7379 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7380
7381 conf = linux_btrace_conf (tinfo);
7382 if (conf != NULL)
7383 {
7384 switch (conf->format)
7385 {
7386 case BTRACE_FORMAT_NONE:
7387 break;
7388
7389 case BTRACE_FORMAT_BTS:
7390 buffer_xml_printf (buffer, "<bts");
7391 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7392 buffer_xml_printf (buffer, " />\n");
7393 break;
7394
7395 case BTRACE_FORMAT_PT:
7396 buffer_xml_printf (buffer, "<pt");
7397 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7398 buffer_xml_printf (buffer, "/>\n");
7399 break;
7400 }
7401 }
7402
7403 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7404 return 0;
7405 }
7406 #endif /* HAVE_LINUX_BTRACE */
7407
7408 /* See nat/linux-nat.h. */
7409
7410 ptid_t
7411 current_lwp_ptid (void)
7412 {
7413 return ptid_of (current_thread);
7414 }
7415
7416 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7417
7418 static int
7419 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7420 {
7421 if (the_low_target.breakpoint_kind_from_pc != NULL)
7422 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7423 else
7424 return default_breakpoint_kind_from_pc (pcptr);
7425 }
7426
7427 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7428
7429 static const gdb_byte *
7430 linux_sw_breakpoint_from_kind (int kind, int *size)
7431 {
7432 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7433
7434 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7435 }
7436
7437 /* Implementation of the target_ops method
7438 "breakpoint_kind_from_current_state". */
7439
7440 static int
7441 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7442 {
7443 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7444 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7445 else
7446 return linux_breakpoint_kind_from_pc (pcptr);
7447 }
7448
7449 /* Default implementation of linux_target_ops method "set_pc" for
7450 32-bit pc register which is literally named "pc". */
7451
7452 void
7453 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7454 {
7455 uint32_t newpc = pc;
7456
7457 supply_register_by_name (regcache, "pc", &newpc);
7458 }
7459
7460 /* Default implementation of linux_target_ops method "get_pc" for
7461 32-bit pc register which is literally named "pc". */
7462
7463 CORE_ADDR
7464 linux_get_pc_32bit (struct regcache *regcache)
7465 {
7466 uint32_t pc;
7467
7468 collect_register_by_name (regcache, "pc", &pc);
7469 if (debug_threads)
7470 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7471 return pc;
7472 }
7473
7474 /* Default implementation of linux_target_ops method "set_pc" for
7475 64-bit pc register which is literally named "pc". */
7476
7477 void
7478 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7479 {
7480 uint64_t newpc = pc;
7481
7482 supply_register_by_name (regcache, "pc", &newpc);
7483 }
7484
7485 /* Default implementation of linux_target_ops method "get_pc" for
7486 64-bit pc register which is literally named "pc". */
7487
7488 CORE_ADDR
7489 linux_get_pc_64bit (struct regcache *regcache)
7490 {
7491 uint64_t pc;
7492
7493 collect_register_by_name (regcache, "pc", &pc);
7494 if (debug_threads)
7495 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7496 return pc;
7497 }
7498
7499
7500 static struct target_ops linux_target_ops = {
7501 linux_create_inferior,
7502 linux_post_create_inferior,
7503 linux_attach,
7504 linux_kill,
7505 linux_detach,
7506 linux_mourn,
7507 linux_join,
7508 linux_thread_alive,
7509 linux_resume,
7510 linux_wait,
7511 linux_fetch_registers,
7512 linux_store_registers,
7513 linux_prepare_to_access_memory,
7514 linux_done_accessing_memory,
7515 linux_read_memory,
7516 linux_write_memory,
7517 linux_look_up_symbols,
7518 linux_request_interrupt,
7519 linux_read_auxv,
7520 linux_supports_z_point_type,
7521 linux_insert_point,
7522 linux_remove_point,
7523 linux_stopped_by_sw_breakpoint,
7524 linux_supports_stopped_by_sw_breakpoint,
7525 linux_stopped_by_hw_breakpoint,
7526 linux_supports_stopped_by_hw_breakpoint,
7527 linux_supports_hardware_single_step,
7528 linux_stopped_by_watchpoint,
7529 linux_stopped_data_address,
7530 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7531 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7532 && defined(PT_TEXT_END_ADDR)
7533 linux_read_offsets,
7534 #else
7535 NULL,
7536 #endif
7537 #ifdef USE_THREAD_DB
7538 thread_db_get_tls_address,
7539 #else
7540 NULL,
7541 #endif
7542 linux_qxfer_spu,
7543 hostio_last_error_from_errno,
7544 linux_qxfer_osdata,
7545 linux_xfer_siginfo,
7546 linux_supports_non_stop,
7547 linux_async,
7548 linux_start_non_stop,
7549 linux_supports_multi_process,
7550 linux_supports_fork_events,
7551 linux_supports_vfork_events,
7552 linux_supports_exec_events,
7553 linux_handle_new_gdb_connection,
7554 #ifdef USE_THREAD_DB
7555 thread_db_handle_monitor_command,
7556 #else
7557 NULL,
7558 #endif
7559 linux_common_core_of_thread,
7560 linux_read_loadmap,
7561 linux_process_qsupported,
7562 linux_supports_tracepoints,
7563 linux_read_pc,
7564 linux_write_pc,
7565 linux_thread_stopped,
7566 NULL,
7567 linux_pause_all,
7568 linux_unpause_all,
7569 linux_stabilize_threads,
7570 linux_install_fast_tracepoint_jump_pad,
7571 linux_emit_ops,
7572 linux_supports_disable_randomization,
7573 linux_get_min_fast_tracepoint_insn_len,
7574 linux_qxfer_libraries_svr4,
7575 linux_supports_agent,
7576 #ifdef HAVE_LINUX_BTRACE
7577 linux_supports_btrace,
7578 linux_enable_btrace,
7579 linux_low_disable_btrace,
7580 linux_low_read_btrace,
7581 linux_low_btrace_conf,
7582 #else
7583 NULL,
7584 NULL,
7585 NULL,
7586 NULL,
7587 NULL,
7588 #endif
7589 linux_supports_range_stepping,
7590 linux_proc_pid_to_exec_file,
7591 linux_mntns_open_cloexec,
7592 linux_mntns_unlink,
7593 linux_mntns_readlink,
7594 linux_breakpoint_kind_from_pc,
7595 linux_sw_breakpoint_from_kind,
7596 linux_proc_tid_get_name,
7597 linux_breakpoint_kind_from_current_state,
7598 linux_supports_software_single_step,
7599 linux_supports_catch_syscall,
7600 linux_get_ipa_tdesc_idx,
7601 #if USE_THREAD_DB
7602 thread_db_thread_handle,
7603 #else
7604 NULL,
7605 #endif
7606 };
7607
7608 #ifdef HAVE_LINUX_REGSETS
7609 void
7610 initialize_regsets_info (struct regsets_info *info)
7611 {
7612 for (info->num_regsets = 0;
7613 info->regsets[info->num_regsets].size >= 0;
7614 info->num_regsets++)
7615 ;
7616 }
7617 #endif
7618
7619 void
7620 initialize_low (void)
7621 {
7622 struct sigaction sigchld_action;
7623
7624 memset (&sigchld_action, 0, sizeof (sigchld_action));
7625 set_target_ops (&linux_target_ops);
7626
7627 linux_ptrace_init_warnings ();
7628
7629 sigchld_action.sa_handler = sigchld_handler;
7630 sigemptyset (&sigchld_action.sa_mask);
7631 sigchld_action.sa_flags = SA_RESTART;
7632 sigaction (SIGCHLD, &sigchld_action, NULL);
7633
7634 initialize_low_arch ();
7635
7636 linux_check_ptrace_features ();
7637 }
This page took 0.25876 seconds and 4 git commands to generate.