fd46d85ed5af925ce2a2c59656f796d97a59459b
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (struct inferior_list_entry *entry, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417 free (lwp->arch_private);
418 free (lwp);
419 }
420
421 /* Add a process to the common process list, and set its private
422 data. */
423
424 static struct process_info *
425 linux_add_process (int pid, int attached)
426 {
427 struct process_info *proc;
428
429 proc = add_process (pid, attached);
430 proc->priv = XCNEW (struct process_info_private);
431
432 if (the_low_target.new_process != NULL)
433 proc->priv->arch_private = the_low_target.new_process ();
434
435 return proc;
436 }
437
438 static CORE_ADDR get_pc (struct lwp_info *lwp);
439
440 /* Call the target arch_setup function on the current thread. */
441
442 static void
443 linux_arch_setup (void)
444 {
445 the_low_target.arch_setup ();
446 }
447
448 /* Call the target arch_setup function on THREAD. */
449
450 static void
451 linux_arch_setup_thread (struct thread_info *thread)
452 {
453 struct thread_info *saved_thread;
454
455 saved_thread = current_thread;
456 current_thread = thread;
457
458 linux_arch_setup ();
459
460 current_thread = saved_thread;
461 }
462
463 /* Handle a GNU/Linux extended wait response. If we see a clone,
464 fork, or vfork event, we need to add the new LWP to our list
465 (and return 0 so as not to report the trap to higher layers).
466 If we see an exec event, we will modify ORIG_EVENT_LWP to point
467 to a new LWP representing the new program. */
468
469 static int
470 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
471 {
472 struct lwp_info *event_lwp = *orig_event_lwp;
473 int event = linux_ptrace_get_extended_event (wstat);
474 struct thread_info *event_thr = get_lwp_thread (event_lwp);
475 struct lwp_info *new_lwp;
476
477 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
478
479 /* All extended events we currently use are mid-syscall. Only
480 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
481 you have to be using PTRACE_SEIZE to get that. */
482 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
483
484 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
485 || (event == PTRACE_EVENT_CLONE))
486 {
487 ptid_t ptid;
488 unsigned long new_pid;
489 int ret, status;
490
491 /* Get the pid of the new lwp. */
492 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
493 &new_pid);
494
495 /* If we haven't already seen the new PID stop, wait for it now. */
496 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
497 {
498 /* The new child has a pending SIGSTOP. We can't affect it until it
499 hits the SIGSTOP, but we're already attached. */
500
501 ret = my_waitpid (new_pid, &status, __WALL);
502
503 if (ret == -1)
504 perror_with_name ("waiting for new child");
505 else if (ret != new_pid)
506 warning ("wait returned unexpected PID %d", ret);
507 else if (!WIFSTOPPED (status))
508 warning ("wait returned unexpected status 0x%x", status);
509 }
510
511 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
512 {
513 struct process_info *parent_proc;
514 struct process_info *child_proc;
515 struct lwp_info *child_lwp;
516 struct thread_info *child_thr;
517 struct target_desc *tdesc;
518
519 ptid = ptid_build (new_pid, new_pid, 0);
520
521 if (debug_threads)
522 {
523 debug_printf ("HEW: Got fork event from LWP %ld, "
524 "new child is %d\n",
525 ptid_get_lwp (ptid_of (event_thr)),
526 ptid_get_pid (ptid));
527 }
528
529 /* Add the new process to the tables and clone the breakpoint
530 lists of the parent. We need to do this even if the new process
531 will be detached, since we will need the process object and the
532 breakpoints to remove any breakpoints from memory when we
533 detach, and the client side will access registers. */
534 child_proc = linux_add_process (new_pid, 0);
535 gdb_assert (child_proc != NULL);
536 child_lwp = add_lwp (ptid);
537 gdb_assert (child_lwp != NULL);
538 child_lwp->stopped = 1;
539 child_lwp->must_set_ptrace_flags = 1;
540 child_lwp->status_pending_p = 0;
541 child_thr = get_lwp_thread (child_lwp);
542 child_thr->last_resume_kind = resume_stop;
543 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
544
545 /* If we're suspending all threads, leave this one suspended
546 too. If the fork/clone parent is stepping over a breakpoint,
547 all other threads have been suspended already. Leave the
548 child suspended too. */
549 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
550 || event_lwp->bp_reinsert != 0)
551 {
552 if (debug_threads)
553 debug_printf ("HEW: leaving child suspended\n");
554 child_lwp->suspended = 1;
555 }
556
557 parent_proc = get_thread_process (event_thr);
558 child_proc->attached = parent_proc->attached;
559
560 if (event_lwp->bp_reinsert != 0
561 && can_software_single_step ()
562 && event == PTRACE_EVENT_VFORK)
563 {
564 /* If we leave single-step breakpoints there, child will
565 hit it, so uninsert single-step breakpoints from parent
566 (and child). Once vfork child is done, reinsert
567 them back to parent. */
568 uninsert_single_step_breakpoints (event_thr);
569 }
570
571 clone_all_breakpoints (child_thr, event_thr);
572
573 tdesc = XNEW (struct target_desc);
574 copy_target_description (tdesc, parent_proc->tdesc);
575 child_proc->tdesc = tdesc;
576
577 /* Clone arch-specific process data. */
578 if (the_low_target.new_fork != NULL)
579 the_low_target.new_fork (parent_proc, child_proc);
580
581 /* Save fork info in the parent thread. */
582 if (event == PTRACE_EVENT_FORK)
583 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
584 else if (event == PTRACE_EVENT_VFORK)
585 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
586
587 event_lwp->waitstatus.value.related_pid = ptid;
588
589 /* The status_pending field contains bits denoting the
590 extended event, so when the pending event is handled,
591 the handler will look at lwp->waitstatus. */
592 event_lwp->status_pending_p = 1;
593 event_lwp->status_pending = wstat;
594
595 /* Link the threads until the parent event is passed on to
596 higher layers. */
597 event_lwp->fork_relative = child_lwp;
598 child_lwp->fork_relative = event_lwp;
599
600 /* If the parent thread is doing step-over with single-step
601 breakpoints, the list of single-step breakpoints are cloned
602 from the parent's. Remove them from the child process.
603 In case of vfork, we'll reinsert them back once vforked
604 child is done. */
605 if (event_lwp->bp_reinsert != 0
606 && can_software_single_step ())
607 {
608 /* The child process is forked and stopped, so it is safe
609 to access its memory without stopping all other threads
610 from other processes. */
611 delete_single_step_breakpoints (child_thr);
612
613 gdb_assert (has_single_step_breakpoints (event_thr));
614 gdb_assert (!has_single_step_breakpoints (child_thr));
615 }
616
617 /* Report the event. */
618 return 0;
619 }
620
621 if (debug_threads)
622 debug_printf ("HEW: Got clone event "
623 "from LWP %ld, new child is LWP %ld\n",
624 lwpid_of (event_thr), new_pid);
625
626 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
627 new_lwp = add_lwp (ptid);
628
629 /* Either we're going to immediately resume the new thread
630 or leave it stopped. linux_resume_one_lwp is a nop if it
631 thinks the thread is currently running, so set this first
632 before calling linux_resume_one_lwp. */
633 new_lwp->stopped = 1;
634
635 /* If we're suspending all threads, leave this one suspended
636 too. If the fork/clone parent is stepping over a breakpoint,
637 all other threads have been suspended already. Leave the
638 child suspended too. */
639 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
640 || event_lwp->bp_reinsert != 0)
641 new_lwp->suspended = 1;
642
643 /* Normally we will get the pending SIGSTOP. But in some cases
644 we might get another signal delivered to the group first.
645 If we do get another signal, be sure not to lose it. */
646 if (WSTOPSIG (status) != SIGSTOP)
647 {
648 new_lwp->stop_expected = 1;
649 new_lwp->status_pending_p = 1;
650 new_lwp->status_pending = status;
651 }
652 else if (report_thread_events)
653 {
654 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
655 new_lwp->status_pending_p = 1;
656 new_lwp->status_pending = status;
657 }
658
659 /* Don't report the event. */
660 return 1;
661 }
662 else if (event == PTRACE_EVENT_VFORK_DONE)
663 {
664 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
665
666 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
667 {
668 reinsert_single_step_breakpoints (event_thr);
669
670 gdb_assert (has_single_step_breakpoints (event_thr));
671 }
672
673 /* Report the event. */
674 return 0;
675 }
676 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
677 {
678 struct process_info *proc;
679 VEC (int) *syscalls_to_catch;
680 ptid_t event_ptid;
681 pid_t event_pid;
682
683 if (debug_threads)
684 {
685 debug_printf ("HEW: Got exec event from LWP %ld\n",
686 lwpid_of (event_thr));
687 }
688
689 /* Get the event ptid. */
690 event_ptid = ptid_of (event_thr);
691 event_pid = ptid_get_pid (event_ptid);
692
693 /* Save the syscall list from the execing process. */
694 proc = get_thread_process (event_thr);
695 syscalls_to_catch = proc->syscalls_to_catch;
696 proc->syscalls_to_catch = NULL;
697
698 /* Delete the execing process and all its threads. */
699 linux_mourn (proc);
700 current_thread = NULL;
701
702 /* Create a new process/lwp/thread. */
703 proc = linux_add_process (event_pid, 0);
704 event_lwp = add_lwp (event_ptid);
705 event_thr = get_lwp_thread (event_lwp);
706 gdb_assert (current_thread == event_thr);
707 linux_arch_setup_thread (event_thr);
708
709 /* Set the event status. */
710 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
711 event_lwp->waitstatus.value.execd_pathname
712 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
713
714 /* Mark the exec status as pending. */
715 event_lwp->stopped = 1;
716 event_lwp->status_pending_p = 1;
717 event_lwp->status_pending = wstat;
718 event_thr->last_resume_kind = resume_continue;
719 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
720
721 /* Update syscall state in the new lwp, effectively mid-syscall too. */
722 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
723
724 /* Restore the list to catch. Don't rely on the client, which is free
725 to avoid sending a new list when the architecture doesn't change.
726 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
727 proc->syscalls_to_catch = syscalls_to_catch;
728
729 /* Report the event. */
730 *orig_event_lwp = event_lwp;
731 return 0;
732 }
733
734 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
735 }
736
737 /* Return the PC as read from the regcache of LWP, without any
738 adjustment. */
739
740 static CORE_ADDR
741 get_pc (struct lwp_info *lwp)
742 {
743 struct thread_info *saved_thread;
744 struct regcache *regcache;
745 CORE_ADDR pc;
746
747 if (the_low_target.get_pc == NULL)
748 return 0;
749
750 saved_thread = current_thread;
751 current_thread = get_lwp_thread (lwp);
752
753 regcache = get_thread_regcache (current_thread, 1);
754 pc = (*the_low_target.get_pc) (regcache);
755
756 if (debug_threads)
757 debug_printf ("pc is 0x%lx\n", (long) pc);
758
759 current_thread = saved_thread;
760 return pc;
761 }
762
763 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
764 Fill *SYSNO with the syscall nr trapped. */
765
766 static void
767 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
768 {
769 struct thread_info *saved_thread;
770 struct regcache *regcache;
771
772 if (the_low_target.get_syscall_trapinfo == NULL)
773 {
774 /* If we cannot get the syscall trapinfo, report an unknown
775 system call number. */
776 *sysno = UNKNOWN_SYSCALL;
777 return;
778 }
779
780 saved_thread = current_thread;
781 current_thread = get_lwp_thread (lwp);
782
783 regcache = get_thread_regcache (current_thread, 1);
784 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
785
786 if (debug_threads)
787 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
788
789 current_thread = saved_thread;
790 }
791
792 static int check_stopped_by_watchpoint (struct lwp_info *child);
793
794 /* Called when the LWP stopped for a signal/trap. If it stopped for a
795 trap check what caused it (breakpoint, watchpoint, trace, etc.),
796 and save the result in the LWP's stop_reason field. If it stopped
797 for a breakpoint, decrement the PC if necessary on the lwp's
798 architecture. Returns true if we now have the LWP's stop PC. */
799
800 static int
801 save_stop_reason (struct lwp_info *lwp)
802 {
803 CORE_ADDR pc;
804 CORE_ADDR sw_breakpoint_pc;
805 struct thread_info *saved_thread;
806 #if USE_SIGTRAP_SIGINFO
807 siginfo_t siginfo;
808 #endif
809
810 if (the_low_target.get_pc == NULL)
811 return 0;
812
813 pc = get_pc (lwp);
814 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
815
816 /* breakpoint_at reads from the current thread. */
817 saved_thread = current_thread;
818 current_thread = get_lwp_thread (lwp);
819
820 #if USE_SIGTRAP_SIGINFO
821 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
822 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
823 {
824 if (siginfo.si_signo == SIGTRAP)
825 {
826 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
827 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
828 {
829 /* The si_code is ambiguous on this arch -- check debug
830 registers. */
831 if (!check_stopped_by_watchpoint (lwp))
832 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
833 }
834 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
835 {
836 /* If we determine the LWP stopped for a SW breakpoint,
837 trust it. Particularly don't check watchpoint
838 registers, because at least on s390, we'd find
839 stopped-by-watchpoint as long as there's a watchpoint
840 set. */
841 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
842 }
843 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
844 {
845 /* This can indicate either a hardware breakpoint or
846 hardware watchpoint. Check debug registers. */
847 if (!check_stopped_by_watchpoint (lwp))
848 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
849 }
850 else if (siginfo.si_code == TRAP_TRACE)
851 {
852 /* We may have single stepped an instruction that
853 triggered a watchpoint. In that case, on some
854 architectures (such as x86), instead of TRAP_HWBKPT,
855 si_code indicates TRAP_TRACE, and we need to check
856 the debug registers separately. */
857 if (!check_stopped_by_watchpoint (lwp))
858 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
859 }
860 }
861 }
862 #else
863 /* We may have just stepped a breakpoint instruction. E.g., in
864 non-stop mode, GDB first tells the thread A to step a range, and
865 then the user inserts a breakpoint inside the range. In that
866 case we need to report the breakpoint PC. */
867 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
868 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
869 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
870
871 if (hardware_breakpoint_inserted_here (pc))
872 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
873
874 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
875 check_stopped_by_watchpoint (lwp);
876 #endif
877
878 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
879 {
880 if (debug_threads)
881 {
882 struct thread_info *thr = get_lwp_thread (lwp);
883
884 debug_printf ("CSBB: %s stopped by software breakpoint\n",
885 target_pid_to_str (ptid_of (thr)));
886 }
887
888 /* Back up the PC if necessary. */
889 if (pc != sw_breakpoint_pc)
890 {
891 struct regcache *regcache
892 = get_thread_regcache (current_thread, 1);
893 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
894 }
895
896 /* Update this so we record the correct stop PC below. */
897 pc = sw_breakpoint_pc;
898 }
899 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
900 {
901 if (debug_threads)
902 {
903 struct thread_info *thr = get_lwp_thread (lwp);
904
905 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
906 target_pid_to_str (ptid_of (thr)));
907 }
908 }
909 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
910 {
911 if (debug_threads)
912 {
913 struct thread_info *thr = get_lwp_thread (lwp);
914
915 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
916 target_pid_to_str (ptid_of (thr)));
917 }
918 }
919 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
920 {
921 if (debug_threads)
922 {
923 struct thread_info *thr = get_lwp_thread (lwp);
924
925 debug_printf ("CSBB: %s stopped by trace\n",
926 target_pid_to_str (ptid_of (thr)));
927 }
928 }
929
930 lwp->stop_pc = pc;
931 current_thread = saved_thread;
932 return 1;
933 }
934
935 static struct lwp_info *
936 add_lwp (ptid_t ptid)
937 {
938 struct lwp_info *lwp;
939
940 lwp = XCNEW (struct lwp_info);
941
942 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
943
944 if (the_low_target.new_thread != NULL)
945 the_low_target.new_thread (lwp);
946
947 lwp->thread = add_thread (ptid, lwp);
948
949 return lwp;
950 }
951
952 /* Callback to be used when calling fork_inferior, responsible for
953 actually initiating the tracing of the inferior. */
954
955 static void
956 linux_ptrace_fun ()
957 {
958 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
959 (PTRACE_TYPE_ARG4) 0) < 0)
960 trace_start_error_with_name ("ptrace");
961
962 if (setpgid (0, 0) < 0)
963 trace_start_error_with_name ("setpgid");
964
965 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
966 stdout to stderr so that inferior i/o doesn't corrupt the connection.
967 Also, redirect stdin to /dev/null. */
968 if (remote_connection_is_stdio ())
969 {
970 if (close (0) < 0)
971 trace_start_error_with_name ("close");
972 if (open ("/dev/null", O_RDONLY) < 0)
973 trace_start_error_with_name ("open");
974 if (dup2 (2, 1) < 0)
975 trace_start_error_with_name ("dup2");
976 if (write (2, "stdin/stdout redirected\n",
977 sizeof ("stdin/stdout redirected\n") - 1) < 0)
978 {
979 /* Errors ignored. */;
980 }
981 }
982 }
983
984 /* Start an inferior process and returns its pid.
985 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
986 are its arguments. */
987
988 static int
989 linux_create_inferior (const char *program,
990 const std::vector<char *> &program_args)
991 {
992 struct lwp_info *new_lwp;
993 int pid;
994 ptid_t ptid;
995 struct cleanup *restore_personality
996 = maybe_disable_address_space_randomization (disable_randomization);
997 std::string str_program_args = stringify_argv (program_args);
998
999 pid = fork_inferior (program,
1000 str_program_args.c_str (),
1001 get_environ ()->envp (), linux_ptrace_fun,
1002 NULL, NULL, NULL, NULL);
1003
1004 do_cleanups (restore_personality);
1005
1006 linux_add_process (pid, 0);
1007
1008 ptid = ptid_build (pid, pid, 0);
1009 new_lwp = add_lwp (ptid);
1010 new_lwp->must_set_ptrace_flags = 1;
1011
1012 post_fork_inferior (pid, program);
1013
1014 return pid;
1015 }
1016
1017 /* Implement the post_create_inferior target_ops method. */
1018
1019 static void
1020 linux_post_create_inferior (void)
1021 {
1022 struct lwp_info *lwp = get_thread_lwp (current_thread);
1023
1024 linux_arch_setup ();
1025
1026 if (lwp->must_set_ptrace_flags)
1027 {
1028 struct process_info *proc = current_process ();
1029 int options = linux_low_ptrace_options (proc->attached);
1030
1031 linux_enable_event_reporting (lwpid_of (current_thread), options);
1032 lwp->must_set_ptrace_flags = 0;
1033 }
1034 }
1035
1036 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1037 error. */
1038
1039 int
1040 linux_attach_lwp (ptid_t ptid)
1041 {
1042 struct lwp_info *new_lwp;
1043 int lwpid = ptid_get_lwp (ptid);
1044
1045 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1046 != 0)
1047 return errno;
1048
1049 new_lwp = add_lwp (ptid);
1050
1051 /* We need to wait for SIGSTOP before being able to make the next
1052 ptrace call on this LWP. */
1053 new_lwp->must_set_ptrace_flags = 1;
1054
1055 if (linux_proc_pid_is_stopped (lwpid))
1056 {
1057 if (debug_threads)
1058 debug_printf ("Attached to a stopped process\n");
1059
1060 /* The process is definitely stopped. It is in a job control
1061 stop, unless the kernel predates the TASK_STOPPED /
1062 TASK_TRACED distinction, in which case it might be in a
1063 ptrace stop. Make sure it is in a ptrace stop; from there we
1064 can kill it, signal it, et cetera.
1065
1066 First make sure there is a pending SIGSTOP. Since we are
1067 already attached, the process can not transition from stopped
1068 to running without a PTRACE_CONT; so we know this signal will
1069 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1070 probably already in the queue (unless this kernel is old
1071 enough to use TASK_STOPPED for ptrace stops); but since
1072 SIGSTOP is not an RT signal, it can only be queued once. */
1073 kill_lwp (lwpid, SIGSTOP);
1074
1075 /* Finally, resume the stopped process. This will deliver the
1076 SIGSTOP (or a higher priority signal, just like normal
1077 PTRACE_ATTACH), which we'll catch later on. */
1078 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1079 }
1080
1081 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1082 brings it to a halt.
1083
1084 There are several cases to consider here:
1085
1086 1) gdbserver has already attached to the process and is being notified
1087 of a new thread that is being created.
1088 In this case we should ignore that SIGSTOP and resume the
1089 process. This is handled below by setting stop_expected = 1,
1090 and the fact that add_thread sets last_resume_kind ==
1091 resume_continue.
1092
1093 2) This is the first thread (the process thread), and we're attaching
1094 to it via attach_inferior.
1095 In this case we want the process thread to stop.
1096 This is handled by having linux_attach set last_resume_kind ==
1097 resume_stop after we return.
1098
1099 If the pid we are attaching to is also the tgid, we attach to and
1100 stop all the existing threads. Otherwise, we attach to pid and
1101 ignore any other threads in the same group as this pid.
1102
1103 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1104 existing threads.
1105 In this case we want the thread to stop.
1106 FIXME: This case is currently not properly handled.
1107 We should wait for the SIGSTOP but don't. Things work apparently
1108 because enough time passes between when we ptrace (ATTACH) and when
1109 gdb makes the next ptrace call on the thread.
1110
1111 On the other hand, if we are currently trying to stop all threads, we
1112 should treat the new thread as if we had sent it a SIGSTOP. This works
1113 because we are guaranteed that the add_lwp call above added us to the
1114 end of the list, and so the new thread has not yet reached
1115 wait_for_sigstop (but will). */
1116 new_lwp->stop_expected = 1;
1117
1118 return 0;
1119 }
1120
1121 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1122 already attached. Returns true if a new LWP is found, false
1123 otherwise. */
1124
1125 static int
1126 attach_proc_task_lwp_callback (ptid_t ptid)
1127 {
1128 /* Is this a new thread? */
1129 if (find_thread_ptid (ptid) == NULL)
1130 {
1131 int lwpid = ptid_get_lwp (ptid);
1132 int err;
1133
1134 if (debug_threads)
1135 debug_printf ("Found new lwp %d\n", lwpid);
1136
1137 err = linux_attach_lwp (ptid);
1138
1139 /* Be quiet if we simply raced with the thread exiting. EPERM
1140 is returned if the thread's task still exists, and is marked
1141 as exited or zombie, as well as other conditions, so in that
1142 case, confirm the status in /proc/PID/status. */
1143 if (err == ESRCH
1144 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1145 {
1146 if (debug_threads)
1147 {
1148 debug_printf ("Cannot attach to lwp %d: "
1149 "thread is gone (%d: %s)\n",
1150 lwpid, err, strerror (err));
1151 }
1152 }
1153 else if (err != 0)
1154 {
1155 warning (_("Cannot attach to lwp %d: %s"),
1156 lwpid,
1157 linux_ptrace_attach_fail_reason_string (ptid, err));
1158 }
1159
1160 return 1;
1161 }
1162 return 0;
1163 }
1164
1165 static void async_file_mark (void);
1166
1167 /* Attach to PID. If PID is the tgid, attach to it and all
1168 of its threads. */
1169
1170 static int
1171 linux_attach (unsigned long pid)
1172 {
1173 struct process_info *proc;
1174 struct thread_info *initial_thread;
1175 ptid_t ptid = ptid_build (pid, pid, 0);
1176 int err;
1177
1178 /* Attach to PID. We will check for other threads
1179 soon. */
1180 err = linux_attach_lwp (ptid);
1181 if (err != 0)
1182 error ("Cannot attach to process %ld: %s",
1183 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1184
1185 proc = linux_add_process (pid, 1);
1186
1187 /* Don't ignore the initial SIGSTOP if we just attached to this
1188 process. It will be collected by wait shortly. */
1189 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1190 initial_thread->last_resume_kind = resume_stop;
1191
1192 /* We must attach to every LWP. If /proc is mounted, use that to
1193 find them now. On the one hand, the inferior may be using raw
1194 clone instead of using pthreads. On the other hand, even if it
1195 is using pthreads, GDB may not be connected yet (thread_db needs
1196 to do symbol lookups, through qSymbol). Also, thread_db walks
1197 structures in the inferior's address space to find the list of
1198 threads/LWPs, and those structures may well be corrupted. Note
1199 that once thread_db is loaded, we'll still use it to list threads
1200 and associate pthread info with each LWP. */
1201 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1202
1203 /* GDB will shortly read the xml target description for this
1204 process, to figure out the process' architecture. But the target
1205 description is only filled in when the first process/thread in
1206 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1207 that now, otherwise, if GDB is fast enough, it could read the
1208 target description _before_ that initial stop. */
1209 if (non_stop)
1210 {
1211 struct lwp_info *lwp;
1212 int wstat, lwpid;
1213 ptid_t pid_ptid = pid_to_ptid (pid);
1214
1215 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1216 &wstat, __WALL);
1217 gdb_assert (lwpid > 0);
1218
1219 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1220
1221 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1222 {
1223 lwp->status_pending_p = 1;
1224 lwp->status_pending = wstat;
1225 }
1226
1227 initial_thread->last_resume_kind = resume_continue;
1228
1229 async_file_mark ();
1230
1231 gdb_assert (proc->tdesc != NULL);
1232 }
1233
1234 return 0;
1235 }
1236
1237 struct counter
1238 {
1239 int pid;
1240 int count;
1241 };
1242
1243 static int
1244 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1245 {
1246 struct counter *counter = (struct counter *) args;
1247
1248 if (ptid_get_pid (entry->id) == counter->pid)
1249 {
1250 if (++counter->count > 1)
1251 return 1;
1252 }
1253
1254 return 0;
1255 }
1256
1257 static int
1258 last_thread_of_process_p (int pid)
1259 {
1260 struct counter counter = { pid , 0 };
1261
1262 return (find_inferior (&all_threads,
1263 second_thread_of_pid_p, &counter) == NULL);
1264 }
1265
1266 /* Kill LWP. */
1267
1268 static void
1269 linux_kill_one_lwp (struct lwp_info *lwp)
1270 {
1271 struct thread_info *thr = get_lwp_thread (lwp);
1272 int pid = lwpid_of (thr);
1273
1274 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1275 there is no signal context, and ptrace(PTRACE_KILL) (or
1276 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1277 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1278 alternative is to kill with SIGKILL. We only need one SIGKILL
1279 per process, not one for each thread. But since we still support
1280 support debugging programs using raw clone without CLONE_THREAD,
1281 we send one for each thread. For years, we used PTRACE_KILL
1282 only, so we're being a bit paranoid about some old kernels where
1283 PTRACE_KILL might work better (dubious if there are any such, but
1284 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1285 second, and so we're fine everywhere. */
1286
1287 errno = 0;
1288 kill_lwp (pid, SIGKILL);
1289 if (debug_threads)
1290 {
1291 int save_errno = errno;
1292
1293 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1294 target_pid_to_str (ptid_of (thr)),
1295 save_errno ? strerror (save_errno) : "OK");
1296 }
1297
1298 errno = 0;
1299 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1300 if (debug_threads)
1301 {
1302 int save_errno = errno;
1303
1304 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1305 target_pid_to_str (ptid_of (thr)),
1306 save_errno ? strerror (save_errno) : "OK");
1307 }
1308 }
1309
1310 /* Kill LWP and wait for it to die. */
1311
1312 static void
1313 kill_wait_lwp (struct lwp_info *lwp)
1314 {
1315 struct thread_info *thr = get_lwp_thread (lwp);
1316 int pid = ptid_get_pid (ptid_of (thr));
1317 int lwpid = ptid_get_lwp (ptid_of (thr));
1318 int wstat;
1319 int res;
1320
1321 if (debug_threads)
1322 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1323
1324 do
1325 {
1326 linux_kill_one_lwp (lwp);
1327
1328 /* Make sure it died. Notes:
1329
1330 - The loop is most likely unnecessary.
1331
1332 - We don't use linux_wait_for_event as that could delete lwps
1333 while we're iterating over them. We're not interested in
1334 any pending status at this point, only in making sure all
1335 wait status on the kernel side are collected until the
1336 process is reaped.
1337
1338 - We don't use __WALL here as the __WALL emulation relies on
1339 SIGCHLD, and killing a stopped process doesn't generate
1340 one, nor an exit status.
1341 */
1342 res = my_waitpid (lwpid, &wstat, 0);
1343 if (res == -1 && errno == ECHILD)
1344 res = my_waitpid (lwpid, &wstat, __WCLONE);
1345 } while (res > 0 && WIFSTOPPED (wstat));
1346
1347 /* Even if it was stopped, the child may have already disappeared.
1348 E.g., if it was killed by SIGKILL. */
1349 if (res < 0 && errno != ECHILD)
1350 perror_with_name ("kill_wait_lwp");
1351 }
1352
1353 /* Callback for `find_inferior'. Kills an lwp of a given process,
1354 except the leader. */
1355
1356 static int
1357 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1358 {
1359 struct thread_info *thread = (struct thread_info *) entry;
1360 struct lwp_info *lwp = get_thread_lwp (thread);
1361 int pid = * (int *) args;
1362
1363 if (ptid_get_pid (entry->id) != pid)
1364 return 0;
1365
1366 /* We avoid killing the first thread here, because of a Linux kernel (at
1367 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1368 the children get a chance to be reaped, it will remain a zombie
1369 forever. */
1370
1371 if (lwpid_of (thread) == pid)
1372 {
1373 if (debug_threads)
1374 debug_printf ("lkop: is last of process %s\n",
1375 target_pid_to_str (entry->id));
1376 return 0;
1377 }
1378
1379 kill_wait_lwp (lwp);
1380 return 0;
1381 }
1382
1383 static int
1384 linux_kill (int pid)
1385 {
1386 struct process_info *process;
1387 struct lwp_info *lwp;
1388
1389 process = find_process_pid (pid);
1390 if (process == NULL)
1391 return -1;
1392
1393 /* If we're killing a running inferior, make sure it is stopped
1394 first, as PTRACE_KILL will not work otherwise. */
1395 stop_all_lwps (0, NULL);
1396
1397 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1398
1399 /* See the comment in linux_kill_one_lwp. We did not kill the first
1400 thread in the list, so do so now. */
1401 lwp = find_lwp_pid (pid_to_ptid (pid));
1402
1403 if (lwp == NULL)
1404 {
1405 if (debug_threads)
1406 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1407 pid);
1408 }
1409 else
1410 kill_wait_lwp (lwp);
1411
1412 the_target->mourn (process);
1413
1414 /* Since we presently can only stop all lwps of all processes, we
1415 need to unstop lwps of other processes. */
1416 unstop_all_lwps (0, NULL);
1417 return 0;
1418 }
1419
1420 /* Get pending signal of THREAD, for detaching purposes. This is the
1421 signal the thread last stopped for, which we need to deliver to the
1422 thread when detaching, otherwise, it'd be suppressed/lost. */
1423
1424 static int
1425 get_detach_signal (struct thread_info *thread)
1426 {
1427 enum gdb_signal signo = GDB_SIGNAL_0;
1428 int status;
1429 struct lwp_info *lp = get_thread_lwp (thread);
1430
1431 if (lp->status_pending_p)
1432 status = lp->status_pending;
1433 else
1434 {
1435 /* If the thread had been suspended by gdbserver, and it stopped
1436 cleanly, then it'll have stopped with SIGSTOP. But we don't
1437 want to deliver that SIGSTOP. */
1438 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1439 || thread->last_status.value.sig == GDB_SIGNAL_0)
1440 return 0;
1441
1442 /* Otherwise, we may need to deliver the signal we
1443 intercepted. */
1444 status = lp->last_status;
1445 }
1446
1447 if (!WIFSTOPPED (status))
1448 {
1449 if (debug_threads)
1450 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1451 target_pid_to_str (ptid_of (thread)));
1452 return 0;
1453 }
1454
1455 /* Extended wait statuses aren't real SIGTRAPs. */
1456 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1457 {
1458 if (debug_threads)
1459 debug_printf ("GPS: lwp %s had stopped with extended "
1460 "status: no pending signal\n",
1461 target_pid_to_str (ptid_of (thread)));
1462 return 0;
1463 }
1464
1465 signo = gdb_signal_from_host (WSTOPSIG (status));
1466
1467 if (program_signals_p && !program_signals[signo])
1468 {
1469 if (debug_threads)
1470 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1471 target_pid_to_str (ptid_of (thread)),
1472 gdb_signal_to_string (signo));
1473 return 0;
1474 }
1475 else if (!program_signals_p
1476 /* If we have no way to know which signals GDB does not
1477 want to have passed to the program, assume
1478 SIGTRAP/SIGINT, which is GDB's default. */
1479 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1480 {
1481 if (debug_threads)
1482 debug_printf ("GPS: lwp %s had signal %s, "
1483 "but we don't know if we should pass it. "
1484 "Default to not.\n",
1485 target_pid_to_str (ptid_of (thread)),
1486 gdb_signal_to_string (signo));
1487 return 0;
1488 }
1489 else
1490 {
1491 if (debug_threads)
1492 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1493 target_pid_to_str (ptid_of (thread)),
1494 gdb_signal_to_string (signo));
1495
1496 return WSTOPSIG (status);
1497 }
1498 }
1499
1500 /* Detach from LWP. */
1501
1502 static void
1503 linux_detach_one_lwp (struct lwp_info *lwp)
1504 {
1505 struct thread_info *thread = get_lwp_thread (lwp);
1506 int sig;
1507 int lwpid;
1508
1509 /* If there is a pending SIGSTOP, get rid of it. */
1510 if (lwp->stop_expected)
1511 {
1512 if (debug_threads)
1513 debug_printf ("Sending SIGCONT to %s\n",
1514 target_pid_to_str (ptid_of (thread)));
1515
1516 kill_lwp (lwpid_of (thread), SIGCONT);
1517 lwp->stop_expected = 0;
1518 }
1519
1520 /* Pass on any pending signal for this thread. */
1521 sig = get_detach_signal (thread);
1522
1523 /* Preparing to resume may try to write registers, and fail if the
1524 lwp is zombie. If that happens, ignore the error. We'll handle
1525 it below, when detach fails with ESRCH. */
1526 TRY
1527 {
1528 /* Flush any pending changes to the process's registers. */
1529 regcache_invalidate_thread (thread);
1530
1531 /* Finally, let it resume. */
1532 if (the_low_target.prepare_to_resume != NULL)
1533 the_low_target.prepare_to_resume (lwp);
1534 }
1535 CATCH (ex, RETURN_MASK_ERROR)
1536 {
1537 if (!check_ptrace_stopped_lwp_gone (lwp))
1538 throw_exception (ex);
1539 }
1540 END_CATCH
1541
1542 lwpid = lwpid_of (thread);
1543 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1544 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1545 {
1546 int save_errno = errno;
1547
1548 /* We know the thread exists, so ESRCH must mean the lwp is
1549 zombie. This can happen if one of the already-detached
1550 threads exits the whole thread group. In that case we're
1551 still attached, and must reap the lwp. */
1552 if (save_errno == ESRCH)
1553 {
1554 int ret, status;
1555
1556 ret = my_waitpid (lwpid, &status, __WALL);
1557 if (ret == -1)
1558 {
1559 warning (_("Couldn't reap LWP %d while detaching: %s"),
1560 lwpid, strerror (errno));
1561 }
1562 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1563 {
1564 warning (_("Reaping LWP %d while detaching "
1565 "returned unexpected status 0x%x"),
1566 lwpid, status);
1567 }
1568 }
1569 else
1570 {
1571 error (_("Can't detach %s: %s"),
1572 target_pid_to_str (ptid_of (thread)),
1573 strerror (save_errno));
1574 }
1575 }
1576 else if (debug_threads)
1577 {
1578 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1579 target_pid_to_str (ptid_of (thread)),
1580 strsignal (sig));
1581 }
1582
1583 delete_lwp (lwp);
1584 }
1585
1586 /* Callback for find_inferior. Detaches from non-leader threads of a
1587 given process. */
1588
1589 static int
1590 linux_detach_lwp_callback (struct inferior_list_entry *entry, void *args)
1591 {
1592 struct thread_info *thread = (struct thread_info *) entry;
1593 struct lwp_info *lwp = get_thread_lwp (thread);
1594 int pid = *(int *) args;
1595 int lwpid = lwpid_of (thread);
1596
1597 /* Skip other processes. */
1598 if (ptid_get_pid (entry->id) != pid)
1599 return 0;
1600
1601 /* We don't actually detach from the thread group leader just yet.
1602 If the thread group exits, we must reap the zombie clone lwps
1603 before we're able to reap the leader. */
1604 if (ptid_get_pid (entry->id) == lwpid)
1605 return 0;
1606
1607 linux_detach_one_lwp (lwp);
1608 return 0;
1609 }
1610
1611 static int
1612 linux_detach (int pid)
1613 {
1614 struct process_info *process;
1615 struct lwp_info *main_lwp;
1616
1617 process = find_process_pid (pid);
1618 if (process == NULL)
1619 return -1;
1620
1621 /* As there's a step over already in progress, let it finish first,
1622 otherwise nesting a stabilize_threads operation on top gets real
1623 messy. */
1624 complete_ongoing_step_over ();
1625
1626 /* Stop all threads before detaching. First, ptrace requires that
1627 the thread is stopped to sucessfully detach. Second, thread_db
1628 may need to uninstall thread event breakpoints from memory, which
1629 only works with a stopped process anyway. */
1630 stop_all_lwps (0, NULL);
1631
1632 #ifdef USE_THREAD_DB
1633 thread_db_detach (process);
1634 #endif
1635
1636 /* Stabilize threads (move out of jump pads). */
1637 stabilize_threads ();
1638
1639 /* Detach from the clone lwps first. If the thread group exits just
1640 while we're detaching, we must reap the clone lwps before we're
1641 able to reap the leader. */
1642 find_inferior (&all_threads, linux_detach_lwp_callback, &pid);
1643
1644 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1645 linux_detach_one_lwp (main_lwp);
1646
1647 the_target->mourn (process);
1648
1649 /* Since we presently can only stop all lwps of all processes, we
1650 need to unstop lwps of other processes. */
1651 unstop_all_lwps (0, NULL);
1652 return 0;
1653 }
1654
1655 /* Remove all LWPs that belong to process PROC from the lwp list. */
1656
1657 static int
1658 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1659 {
1660 struct thread_info *thread = (struct thread_info *) entry;
1661 struct lwp_info *lwp = get_thread_lwp (thread);
1662 struct process_info *process = (struct process_info *) proc;
1663
1664 if (pid_of (thread) == pid_of (process))
1665 delete_lwp (lwp);
1666
1667 return 0;
1668 }
1669
1670 static void
1671 linux_mourn (struct process_info *process)
1672 {
1673 struct process_info_private *priv;
1674
1675 #ifdef USE_THREAD_DB
1676 thread_db_mourn (process);
1677 #endif
1678
1679 find_inferior (&all_threads, delete_lwp_callback, process);
1680
1681 /* Freeing all private data. */
1682 priv = process->priv;
1683 free (priv->arch_private);
1684 free (priv);
1685 process->priv = NULL;
1686
1687 remove_process (process);
1688 }
1689
1690 static void
1691 linux_join (int pid)
1692 {
1693 int status, ret;
1694
1695 do {
1696 ret = my_waitpid (pid, &status, 0);
1697 if (WIFEXITED (status) || WIFSIGNALED (status))
1698 break;
1699 } while (ret != -1 || errno != ECHILD);
1700 }
1701
1702 /* Return nonzero if the given thread is still alive. */
1703 static int
1704 linux_thread_alive (ptid_t ptid)
1705 {
1706 struct lwp_info *lwp = find_lwp_pid (ptid);
1707
1708 /* We assume we always know if a thread exits. If a whole process
1709 exited but we still haven't been able to report it to GDB, we'll
1710 hold on to the last lwp of the dead process. */
1711 if (lwp != NULL)
1712 return !lwp_is_marked_dead (lwp);
1713 else
1714 return 0;
1715 }
1716
1717 /* Return 1 if this lwp still has an interesting status pending. If
1718 not (e.g., it had stopped for a breakpoint that is gone), return
1719 false. */
1720
1721 static int
1722 thread_still_has_status_pending_p (struct thread_info *thread)
1723 {
1724 struct lwp_info *lp = get_thread_lwp (thread);
1725
1726 if (!lp->status_pending_p)
1727 return 0;
1728
1729 if (thread->last_resume_kind != resume_stop
1730 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1731 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1732 {
1733 struct thread_info *saved_thread;
1734 CORE_ADDR pc;
1735 int discard = 0;
1736
1737 gdb_assert (lp->last_status != 0);
1738
1739 pc = get_pc (lp);
1740
1741 saved_thread = current_thread;
1742 current_thread = thread;
1743
1744 if (pc != lp->stop_pc)
1745 {
1746 if (debug_threads)
1747 debug_printf ("PC of %ld changed\n",
1748 lwpid_of (thread));
1749 discard = 1;
1750 }
1751
1752 #if !USE_SIGTRAP_SIGINFO
1753 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1754 && !(*the_low_target.breakpoint_at) (pc))
1755 {
1756 if (debug_threads)
1757 debug_printf ("previous SW breakpoint of %ld gone\n",
1758 lwpid_of (thread));
1759 discard = 1;
1760 }
1761 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1762 && !hardware_breakpoint_inserted_here (pc))
1763 {
1764 if (debug_threads)
1765 debug_printf ("previous HW breakpoint of %ld gone\n",
1766 lwpid_of (thread));
1767 discard = 1;
1768 }
1769 #endif
1770
1771 current_thread = saved_thread;
1772
1773 if (discard)
1774 {
1775 if (debug_threads)
1776 debug_printf ("discarding pending breakpoint status\n");
1777 lp->status_pending_p = 0;
1778 return 0;
1779 }
1780 }
1781
1782 return 1;
1783 }
1784
1785 /* Returns true if LWP is resumed from the client's perspective. */
1786
1787 static int
1788 lwp_resumed (struct lwp_info *lwp)
1789 {
1790 struct thread_info *thread = get_lwp_thread (lwp);
1791
1792 if (thread->last_resume_kind != resume_stop)
1793 return 1;
1794
1795 /* Did gdb send us a `vCont;t', but we haven't reported the
1796 corresponding stop to gdb yet? If so, the thread is still
1797 resumed/running from gdb's perspective. */
1798 if (thread->last_resume_kind == resume_stop
1799 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1800 return 1;
1801
1802 return 0;
1803 }
1804
1805 /* Return 1 if this lwp has an interesting status pending. */
1806 static int
1807 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1808 {
1809 struct thread_info *thread = (struct thread_info *) entry;
1810 struct lwp_info *lp = get_thread_lwp (thread);
1811 ptid_t ptid = * (ptid_t *) arg;
1812
1813 /* Check if we're only interested in events from a specific process
1814 or a specific LWP. */
1815 if (!ptid_match (ptid_of (thread), ptid))
1816 return 0;
1817
1818 if (!lwp_resumed (lp))
1819 return 0;
1820
1821 if (lp->status_pending_p
1822 && !thread_still_has_status_pending_p (thread))
1823 {
1824 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1825 return 0;
1826 }
1827
1828 return lp->status_pending_p;
1829 }
1830
1831 static int
1832 same_lwp (struct inferior_list_entry *entry, void *data)
1833 {
1834 ptid_t ptid = *(ptid_t *) data;
1835 int lwp;
1836
1837 if (ptid_get_lwp (ptid) != 0)
1838 lwp = ptid_get_lwp (ptid);
1839 else
1840 lwp = ptid_get_pid (ptid);
1841
1842 if (ptid_get_lwp (entry->id) == lwp)
1843 return 1;
1844
1845 return 0;
1846 }
1847
1848 struct lwp_info *
1849 find_lwp_pid (ptid_t ptid)
1850 {
1851 struct inferior_list_entry *thread
1852 = find_inferior (&all_threads, same_lwp, &ptid);
1853
1854 if (thread == NULL)
1855 return NULL;
1856
1857 return get_thread_lwp ((struct thread_info *) thread);
1858 }
1859
1860 /* Return the number of known LWPs in the tgid given by PID. */
1861
1862 static int
1863 num_lwps (int pid)
1864 {
1865 struct inferior_list_entry *inf, *tmp;
1866 int count = 0;
1867
1868 ALL_INFERIORS (&all_threads, inf, tmp)
1869 {
1870 if (ptid_get_pid (inf->id) == pid)
1871 count++;
1872 }
1873
1874 return count;
1875 }
1876
1877 /* The arguments passed to iterate_over_lwps. */
1878
1879 struct iterate_over_lwps_args
1880 {
1881 /* The FILTER argument passed to iterate_over_lwps. */
1882 ptid_t filter;
1883
1884 /* The CALLBACK argument passed to iterate_over_lwps. */
1885 iterate_over_lwps_ftype *callback;
1886
1887 /* The DATA argument passed to iterate_over_lwps. */
1888 void *data;
1889 };
1890
1891 /* Callback for find_inferior used by iterate_over_lwps to filter
1892 calls to the callback supplied to that function. Returning a
1893 nonzero value causes find_inferiors to stop iterating and return
1894 the current inferior_list_entry. Returning zero indicates that
1895 find_inferiors should continue iterating. */
1896
1897 static int
1898 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1899 {
1900 struct iterate_over_lwps_args *args
1901 = (struct iterate_over_lwps_args *) args_p;
1902
1903 if (ptid_match (entry->id, args->filter))
1904 {
1905 struct thread_info *thr = (struct thread_info *) entry;
1906 struct lwp_info *lwp = get_thread_lwp (thr);
1907
1908 return (*args->callback) (lwp, args->data);
1909 }
1910
1911 return 0;
1912 }
1913
1914 /* See nat/linux-nat.h. */
1915
1916 struct lwp_info *
1917 iterate_over_lwps (ptid_t filter,
1918 iterate_over_lwps_ftype callback,
1919 void *data)
1920 {
1921 struct iterate_over_lwps_args args = {filter, callback, data};
1922 struct inferior_list_entry *entry;
1923
1924 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1925 if (entry == NULL)
1926 return NULL;
1927
1928 return get_thread_lwp ((struct thread_info *) entry);
1929 }
1930
1931 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1932 their exits until all other threads in the group have exited. */
1933
1934 static void
1935 check_zombie_leaders (void)
1936 {
1937 struct process_info *proc, *tmp;
1938
1939 ALL_PROCESSES (proc, tmp)
1940 {
1941 pid_t leader_pid = pid_of (proc);
1942 struct lwp_info *leader_lp;
1943
1944 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1945
1946 if (debug_threads)
1947 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1948 "num_lwps=%d, zombie=%d\n",
1949 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1950 linux_proc_pid_is_zombie (leader_pid));
1951
1952 if (leader_lp != NULL && !leader_lp->stopped
1953 /* Check if there are other threads in the group, as we may
1954 have raced with the inferior simply exiting. */
1955 && !last_thread_of_process_p (leader_pid)
1956 && linux_proc_pid_is_zombie (leader_pid))
1957 {
1958 /* A leader zombie can mean one of two things:
1959
1960 - It exited, and there's an exit status pending
1961 available, or only the leader exited (not the whole
1962 program). In the latter case, we can't waitpid the
1963 leader's exit status until all other threads are gone.
1964
1965 - There are 3 or more threads in the group, and a thread
1966 other than the leader exec'd. On an exec, the Linux
1967 kernel destroys all other threads (except the execing
1968 one) in the thread group, and resets the execing thread's
1969 tid to the tgid. No exit notification is sent for the
1970 execing thread -- from the ptracer's perspective, it
1971 appears as though the execing thread just vanishes.
1972 Until we reap all other threads except the leader and the
1973 execing thread, the leader will be zombie, and the
1974 execing thread will be in `D (disc sleep)'. As soon as
1975 all other threads are reaped, the execing thread changes
1976 it's tid to the tgid, and the previous (zombie) leader
1977 vanishes, giving place to the "new" leader. We could try
1978 distinguishing the exit and exec cases, by waiting once
1979 more, and seeing if something comes out, but it doesn't
1980 sound useful. The previous leader _does_ go away, and
1981 we'll re-add the new one once we see the exec event
1982 (which is just the same as what would happen if the
1983 previous leader did exit voluntarily before some other
1984 thread execs). */
1985
1986 if (debug_threads)
1987 debug_printf ("CZL: Thread group leader %d zombie "
1988 "(it exited, or another thread execd).\n",
1989 leader_pid);
1990
1991 delete_lwp (leader_lp);
1992 }
1993 }
1994 }
1995
1996 /* Callback for `find_inferior'. Returns the first LWP that is not
1997 stopped. ARG is a PTID filter. */
1998
1999 static int
2000 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
2001 {
2002 struct thread_info *thr = (struct thread_info *) entry;
2003 struct lwp_info *lwp;
2004 ptid_t filter = *(ptid_t *) arg;
2005
2006 if (!ptid_match (ptid_of (thr), filter))
2007 return 0;
2008
2009 lwp = get_thread_lwp (thr);
2010 if (!lwp->stopped)
2011 return 1;
2012
2013 return 0;
2014 }
2015
2016 /* Increment LWP's suspend count. */
2017
2018 static void
2019 lwp_suspended_inc (struct lwp_info *lwp)
2020 {
2021 lwp->suspended++;
2022
2023 if (debug_threads && lwp->suspended > 4)
2024 {
2025 struct thread_info *thread = get_lwp_thread (lwp);
2026
2027 debug_printf ("LWP %ld has a suspiciously high suspend count,"
2028 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
2029 }
2030 }
2031
2032 /* Decrement LWP's suspend count. */
2033
2034 static void
2035 lwp_suspended_decr (struct lwp_info *lwp)
2036 {
2037 lwp->suspended--;
2038
2039 if (lwp->suspended < 0)
2040 {
2041 struct thread_info *thread = get_lwp_thread (lwp);
2042
2043 internal_error (__FILE__, __LINE__,
2044 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
2045 lwp->suspended);
2046 }
2047 }
2048
2049 /* This function should only be called if the LWP got a SIGTRAP.
2050
2051 Handle any tracepoint steps or hits. Return true if a tracepoint
2052 event was handled, 0 otherwise. */
2053
2054 static int
2055 handle_tracepoints (struct lwp_info *lwp)
2056 {
2057 struct thread_info *tinfo = get_lwp_thread (lwp);
2058 int tpoint_related_event = 0;
2059
2060 gdb_assert (lwp->suspended == 0);
2061
2062 /* If this tracepoint hit causes a tracing stop, we'll immediately
2063 uninsert tracepoints. To do this, we temporarily pause all
2064 threads, unpatch away, and then unpause threads. We need to make
2065 sure the unpausing doesn't resume LWP too. */
2066 lwp_suspended_inc (lwp);
2067
2068 /* And we need to be sure that any all-threads-stopping doesn't try
2069 to move threads out of the jump pads, as it could deadlock the
2070 inferior (LWP could be in the jump pad, maybe even holding the
2071 lock.) */
2072
2073 /* Do any necessary step collect actions. */
2074 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2075
2076 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2077
2078 /* See if we just hit a tracepoint and do its main collect
2079 actions. */
2080 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2081
2082 lwp_suspended_decr (lwp);
2083
2084 gdb_assert (lwp->suspended == 0);
2085 gdb_assert (!stabilizing_threads
2086 || (lwp->collecting_fast_tracepoint
2087 != fast_tpoint_collect_result::not_collecting));
2088
2089 if (tpoint_related_event)
2090 {
2091 if (debug_threads)
2092 debug_printf ("got a tracepoint event\n");
2093 return 1;
2094 }
2095
2096 return 0;
2097 }
2098
2099 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2100 collection status. */
2101
2102 static fast_tpoint_collect_result
2103 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2104 struct fast_tpoint_collect_status *status)
2105 {
2106 CORE_ADDR thread_area;
2107 struct thread_info *thread = get_lwp_thread (lwp);
2108
2109 if (the_low_target.get_thread_area == NULL)
2110 return fast_tpoint_collect_result::not_collecting;
2111
2112 /* Get the thread area address. This is used to recognize which
2113 thread is which when tracing with the in-process agent library.
2114 We don't read anything from the address, and treat it as opaque;
2115 it's the address itself that we assume is unique per-thread. */
2116 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2117 return fast_tpoint_collect_result::not_collecting;
2118
2119 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2120 }
2121
2122 /* The reason we resume in the caller, is because we want to be able
2123 to pass lwp->status_pending as WSTAT, and we need to clear
2124 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2125 refuses to resume. */
2126
2127 static int
2128 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2129 {
2130 struct thread_info *saved_thread;
2131
2132 saved_thread = current_thread;
2133 current_thread = get_lwp_thread (lwp);
2134
2135 if ((wstat == NULL
2136 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2137 && supports_fast_tracepoints ()
2138 && agent_loaded_p ())
2139 {
2140 struct fast_tpoint_collect_status status;
2141
2142 if (debug_threads)
2143 debug_printf ("Checking whether LWP %ld needs to move out of the "
2144 "jump pad.\n",
2145 lwpid_of (current_thread));
2146
2147 fast_tpoint_collect_result r
2148 = linux_fast_tracepoint_collecting (lwp, &status);
2149
2150 if (wstat == NULL
2151 || (WSTOPSIG (*wstat) != SIGILL
2152 && WSTOPSIG (*wstat) != SIGFPE
2153 && WSTOPSIG (*wstat) != SIGSEGV
2154 && WSTOPSIG (*wstat) != SIGBUS))
2155 {
2156 lwp->collecting_fast_tracepoint = r;
2157
2158 if (r != fast_tpoint_collect_result::not_collecting)
2159 {
2160 if (r == fast_tpoint_collect_result::before_insn
2161 && lwp->exit_jump_pad_bkpt == NULL)
2162 {
2163 /* Haven't executed the original instruction yet.
2164 Set breakpoint there, and wait till it's hit,
2165 then single-step until exiting the jump pad. */
2166 lwp->exit_jump_pad_bkpt
2167 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2168 }
2169
2170 if (debug_threads)
2171 debug_printf ("Checking whether LWP %ld needs to move out of "
2172 "the jump pad...it does\n",
2173 lwpid_of (current_thread));
2174 current_thread = saved_thread;
2175
2176 return 1;
2177 }
2178 }
2179 else
2180 {
2181 /* If we get a synchronous signal while collecting, *and*
2182 while executing the (relocated) original instruction,
2183 reset the PC to point at the tpoint address, before
2184 reporting to GDB. Otherwise, it's an IPA lib bug: just
2185 report the signal to GDB, and pray for the best. */
2186
2187 lwp->collecting_fast_tracepoint
2188 = fast_tpoint_collect_result::not_collecting;
2189
2190 if (r != fast_tpoint_collect_result::not_collecting
2191 && (status.adjusted_insn_addr <= lwp->stop_pc
2192 && lwp->stop_pc < status.adjusted_insn_addr_end))
2193 {
2194 siginfo_t info;
2195 struct regcache *regcache;
2196
2197 /* The si_addr on a few signals references the address
2198 of the faulting instruction. Adjust that as
2199 well. */
2200 if ((WSTOPSIG (*wstat) == SIGILL
2201 || WSTOPSIG (*wstat) == SIGFPE
2202 || WSTOPSIG (*wstat) == SIGBUS
2203 || WSTOPSIG (*wstat) == SIGSEGV)
2204 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2205 (PTRACE_TYPE_ARG3) 0, &info) == 0
2206 /* Final check just to make sure we don't clobber
2207 the siginfo of non-kernel-sent signals. */
2208 && (uintptr_t) info.si_addr == lwp->stop_pc)
2209 {
2210 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2211 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2212 (PTRACE_TYPE_ARG3) 0, &info);
2213 }
2214
2215 regcache = get_thread_regcache (current_thread, 1);
2216 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2217 lwp->stop_pc = status.tpoint_addr;
2218
2219 /* Cancel any fast tracepoint lock this thread was
2220 holding. */
2221 force_unlock_trace_buffer ();
2222 }
2223
2224 if (lwp->exit_jump_pad_bkpt != NULL)
2225 {
2226 if (debug_threads)
2227 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2228 "stopping all threads momentarily.\n");
2229
2230 stop_all_lwps (1, lwp);
2231
2232 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2233 lwp->exit_jump_pad_bkpt = NULL;
2234
2235 unstop_all_lwps (1, lwp);
2236
2237 gdb_assert (lwp->suspended >= 0);
2238 }
2239 }
2240 }
2241
2242 if (debug_threads)
2243 debug_printf ("Checking whether LWP %ld needs to move out of the "
2244 "jump pad...no\n",
2245 lwpid_of (current_thread));
2246
2247 current_thread = saved_thread;
2248 return 0;
2249 }
2250
2251 /* Enqueue one signal in the "signals to report later when out of the
2252 jump pad" list. */
2253
2254 static void
2255 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2256 {
2257 struct pending_signals *p_sig;
2258 struct thread_info *thread = get_lwp_thread (lwp);
2259
2260 if (debug_threads)
2261 debug_printf ("Deferring signal %d for LWP %ld.\n",
2262 WSTOPSIG (*wstat), lwpid_of (thread));
2263
2264 if (debug_threads)
2265 {
2266 struct pending_signals *sig;
2267
2268 for (sig = lwp->pending_signals_to_report;
2269 sig != NULL;
2270 sig = sig->prev)
2271 debug_printf (" Already queued %d\n",
2272 sig->signal);
2273
2274 debug_printf (" (no more currently queued signals)\n");
2275 }
2276
2277 /* Don't enqueue non-RT signals if they are already in the deferred
2278 queue. (SIGSTOP being the easiest signal to see ending up here
2279 twice) */
2280 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2281 {
2282 struct pending_signals *sig;
2283
2284 for (sig = lwp->pending_signals_to_report;
2285 sig != NULL;
2286 sig = sig->prev)
2287 {
2288 if (sig->signal == WSTOPSIG (*wstat))
2289 {
2290 if (debug_threads)
2291 debug_printf ("Not requeuing already queued non-RT signal %d"
2292 " for LWP %ld\n",
2293 sig->signal,
2294 lwpid_of (thread));
2295 return;
2296 }
2297 }
2298 }
2299
2300 p_sig = XCNEW (struct pending_signals);
2301 p_sig->prev = lwp->pending_signals_to_report;
2302 p_sig->signal = WSTOPSIG (*wstat);
2303
2304 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2305 &p_sig->info);
2306
2307 lwp->pending_signals_to_report = p_sig;
2308 }
2309
2310 /* Dequeue one signal from the "signals to report later when out of
2311 the jump pad" list. */
2312
2313 static int
2314 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2315 {
2316 struct thread_info *thread = get_lwp_thread (lwp);
2317
2318 if (lwp->pending_signals_to_report != NULL)
2319 {
2320 struct pending_signals **p_sig;
2321
2322 p_sig = &lwp->pending_signals_to_report;
2323 while ((*p_sig)->prev != NULL)
2324 p_sig = &(*p_sig)->prev;
2325
2326 *wstat = W_STOPCODE ((*p_sig)->signal);
2327 if ((*p_sig)->info.si_signo != 0)
2328 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2329 &(*p_sig)->info);
2330 free (*p_sig);
2331 *p_sig = NULL;
2332
2333 if (debug_threads)
2334 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2335 WSTOPSIG (*wstat), lwpid_of (thread));
2336
2337 if (debug_threads)
2338 {
2339 struct pending_signals *sig;
2340
2341 for (sig = lwp->pending_signals_to_report;
2342 sig != NULL;
2343 sig = sig->prev)
2344 debug_printf (" Still queued %d\n",
2345 sig->signal);
2346
2347 debug_printf (" (no more queued signals)\n");
2348 }
2349
2350 return 1;
2351 }
2352
2353 return 0;
2354 }
2355
2356 /* Fetch the possibly triggered data watchpoint info and store it in
2357 CHILD.
2358
2359 On some archs, like x86, that use debug registers to set
2360 watchpoints, it's possible that the way to know which watched
2361 address trapped, is to check the register that is used to select
2362 which address to watch. Problem is, between setting the watchpoint
2363 and reading back which data address trapped, the user may change
2364 the set of watchpoints, and, as a consequence, GDB changes the
2365 debug registers in the inferior. To avoid reading back a stale
2366 stopped-data-address when that happens, we cache in LP the fact
2367 that a watchpoint trapped, and the corresponding data address, as
2368 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2369 registers meanwhile, we have the cached data we can rely on. */
2370
2371 static int
2372 check_stopped_by_watchpoint (struct lwp_info *child)
2373 {
2374 if (the_low_target.stopped_by_watchpoint != NULL)
2375 {
2376 struct thread_info *saved_thread;
2377
2378 saved_thread = current_thread;
2379 current_thread = get_lwp_thread (child);
2380
2381 if (the_low_target.stopped_by_watchpoint ())
2382 {
2383 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2384
2385 if (the_low_target.stopped_data_address != NULL)
2386 child->stopped_data_address
2387 = the_low_target.stopped_data_address ();
2388 else
2389 child->stopped_data_address = 0;
2390 }
2391
2392 current_thread = saved_thread;
2393 }
2394
2395 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2396 }
2397
2398 /* Return the ptrace options that we want to try to enable. */
2399
2400 static int
2401 linux_low_ptrace_options (int attached)
2402 {
2403 int options = 0;
2404
2405 if (!attached)
2406 options |= PTRACE_O_EXITKILL;
2407
2408 if (report_fork_events)
2409 options |= PTRACE_O_TRACEFORK;
2410
2411 if (report_vfork_events)
2412 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2413
2414 if (report_exec_events)
2415 options |= PTRACE_O_TRACEEXEC;
2416
2417 options |= PTRACE_O_TRACESYSGOOD;
2418
2419 return options;
2420 }
2421
2422 /* Do low-level handling of the event, and check if we should go on
2423 and pass it to caller code. Return the affected lwp if we are, or
2424 NULL otherwise. */
2425
2426 static struct lwp_info *
2427 linux_low_filter_event (int lwpid, int wstat)
2428 {
2429 struct lwp_info *child;
2430 struct thread_info *thread;
2431 int have_stop_pc = 0;
2432
2433 child = find_lwp_pid (pid_to_ptid (lwpid));
2434
2435 /* Check for stop events reported by a process we didn't already
2436 know about - anything not already in our LWP list.
2437
2438 If we're expecting to receive stopped processes after
2439 fork, vfork, and clone events, then we'll just add the
2440 new one to our list and go back to waiting for the event
2441 to be reported - the stopped process might be returned
2442 from waitpid before or after the event is.
2443
2444 But note the case of a non-leader thread exec'ing after the
2445 leader having exited, and gone from our lists (because
2446 check_zombie_leaders deleted it). The non-leader thread
2447 changes its tid to the tgid. */
2448
2449 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2450 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2451 {
2452 ptid_t child_ptid;
2453
2454 /* A multi-thread exec after we had seen the leader exiting. */
2455 if (debug_threads)
2456 {
2457 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2458 "after exec.\n", lwpid);
2459 }
2460
2461 child_ptid = ptid_build (lwpid, lwpid, 0);
2462 child = add_lwp (child_ptid);
2463 child->stopped = 1;
2464 current_thread = child->thread;
2465 }
2466
2467 /* If we didn't find a process, one of two things presumably happened:
2468 - A process we started and then detached from has exited. Ignore it.
2469 - A process we are controlling has forked and the new child's stop
2470 was reported to us by the kernel. Save its PID. */
2471 if (child == NULL && WIFSTOPPED (wstat))
2472 {
2473 add_to_pid_list (&stopped_pids, lwpid, wstat);
2474 return NULL;
2475 }
2476 else if (child == NULL)
2477 return NULL;
2478
2479 thread = get_lwp_thread (child);
2480
2481 child->stopped = 1;
2482
2483 child->last_status = wstat;
2484
2485 /* Check if the thread has exited. */
2486 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2487 {
2488 if (debug_threads)
2489 debug_printf ("LLFE: %d exited.\n", lwpid);
2490
2491 if (finish_step_over (child))
2492 {
2493 /* Unsuspend all other LWPs, and set them back running again. */
2494 unsuspend_all_lwps (child);
2495 }
2496
2497 /* If there is at least one more LWP, then the exit signal was
2498 not the end of the debugged application and should be
2499 ignored, unless GDB wants to hear about thread exits. */
2500 if (report_thread_events
2501 || last_thread_of_process_p (pid_of (thread)))
2502 {
2503 /* Since events are serialized to GDB core, and we can't
2504 report this one right now. Leave the status pending for
2505 the next time we're able to report it. */
2506 mark_lwp_dead (child, wstat);
2507 return child;
2508 }
2509 else
2510 {
2511 delete_lwp (child);
2512 return NULL;
2513 }
2514 }
2515
2516 gdb_assert (WIFSTOPPED (wstat));
2517
2518 if (WIFSTOPPED (wstat))
2519 {
2520 struct process_info *proc;
2521
2522 /* Architecture-specific setup after inferior is running. */
2523 proc = find_process_pid (pid_of (thread));
2524 if (proc->tdesc == NULL)
2525 {
2526 if (proc->attached)
2527 {
2528 /* This needs to happen after we have attached to the
2529 inferior and it is stopped for the first time, but
2530 before we access any inferior registers. */
2531 linux_arch_setup_thread (thread);
2532 }
2533 else
2534 {
2535 /* The process is started, but GDBserver will do
2536 architecture-specific setup after the program stops at
2537 the first instruction. */
2538 child->status_pending_p = 1;
2539 child->status_pending = wstat;
2540 return child;
2541 }
2542 }
2543 }
2544
2545 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2546 {
2547 struct process_info *proc = find_process_pid (pid_of (thread));
2548 int options = linux_low_ptrace_options (proc->attached);
2549
2550 linux_enable_event_reporting (lwpid, options);
2551 child->must_set_ptrace_flags = 0;
2552 }
2553
2554 /* Always update syscall_state, even if it will be filtered later. */
2555 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2556 {
2557 child->syscall_state
2558 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2559 ? TARGET_WAITKIND_SYSCALL_RETURN
2560 : TARGET_WAITKIND_SYSCALL_ENTRY);
2561 }
2562 else
2563 {
2564 /* Almost all other ptrace-stops are known to be outside of system
2565 calls, with further exceptions in handle_extended_wait. */
2566 child->syscall_state = TARGET_WAITKIND_IGNORE;
2567 }
2568
2569 /* Be careful to not overwrite stop_pc until save_stop_reason is
2570 called. */
2571 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2572 && linux_is_extended_waitstatus (wstat))
2573 {
2574 child->stop_pc = get_pc (child);
2575 if (handle_extended_wait (&child, wstat))
2576 {
2577 /* The event has been handled, so just return without
2578 reporting it. */
2579 return NULL;
2580 }
2581 }
2582
2583 if (linux_wstatus_maybe_breakpoint (wstat))
2584 {
2585 if (save_stop_reason (child))
2586 have_stop_pc = 1;
2587 }
2588
2589 if (!have_stop_pc)
2590 child->stop_pc = get_pc (child);
2591
2592 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2593 && child->stop_expected)
2594 {
2595 if (debug_threads)
2596 debug_printf ("Expected stop.\n");
2597 child->stop_expected = 0;
2598
2599 if (thread->last_resume_kind == resume_stop)
2600 {
2601 /* We want to report the stop to the core. Treat the
2602 SIGSTOP as a normal event. */
2603 if (debug_threads)
2604 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2605 target_pid_to_str (ptid_of (thread)));
2606 }
2607 else if (stopping_threads != NOT_STOPPING_THREADS)
2608 {
2609 /* Stopping threads. We don't want this SIGSTOP to end up
2610 pending. */
2611 if (debug_threads)
2612 debug_printf ("LLW: SIGSTOP caught for %s "
2613 "while stopping threads.\n",
2614 target_pid_to_str (ptid_of (thread)));
2615 return NULL;
2616 }
2617 else
2618 {
2619 /* This is a delayed SIGSTOP. Filter out the event. */
2620 if (debug_threads)
2621 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2622 child->stepping ? "step" : "continue",
2623 target_pid_to_str (ptid_of (thread)));
2624
2625 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2626 return NULL;
2627 }
2628 }
2629
2630 child->status_pending_p = 1;
2631 child->status_pending = wstat;
2632 return child;
2633 }
2634
2635 /* Return true if THREAD is doing hardware single step. */
2636
2637 static int
2638 maybe_hw_step (struct thread_info *thread)
2639 {
2640 if (can_hardware_single_step ())
2641 return 1;
2642 else
2643 {
2644 /* GDBserver must insert single-step breakpoint for software
2645 single step. */
2646 gdb_assert (has_single_step_breakpoints (thread));
2647 return 0;
2648 }
2649 }
2650
2651 /* Resume LWPs that are currently stopped without any pending status
2652 to report, but are resumed from the core's perspective. */
2653
2654 static void
2655 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2656 {
2657 struct thread_info *thread = (struct thread_info *) entry;
2658 struct lwp_info *lp = get_thread_lwp (thread);
2659
2660 if (lp->stopped
2661 && !lp->suspended
2662 && !lp->status_pending_p
2663 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2664 {
2665 int step = 0;
2666
2667 if (thread->last_resume_kind == resume_step)
2668 step = maybe_hw_step (thread);
2669
2670 if (debug_threads)
2671 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2672 target_pid_to_str (ptid_of (thread)),
2673 paddress (lp->stop_pc),
2674 step);
2675
2676 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2677 }
2678 }
2679
2680 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2681 match FILTER_PTID (leaving others pending). The PTIDs can be:
2682 minus_one_ptid, to specify any child; a pid PTID, specifying all
2683 lwps of a thread group; or a PTID representing a single lwp. Store
2684 the stop status through the status pointer WSTAT. OPTIONS is
2685 passed to the waitpid call. Return 0 if no event was found and
2686 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2687 was found. Return the PID of the stopped child otherwise. */
2688
2689 static int
2690 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2691 int *wstatp, int options)
2692 {
2693 struct thread_info *event_thread;
2694 struct lwp_info *event_child, *requested_child;
2695 sigset_t block_mask, prev_mask;
2696
2697 retry:
2698 /* N.B. event_thread points to the thread_info struct that contains
2699 event_child. Keep them in sync. */
2700 event_thread = NULL;
2701 event_child = NULL;
2702 requested_child = NULL;
2703
2704 /* Check for a lwp with a pending status. */
2705
2706 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2707 {
2708 event_thread = (struct thread_info *)
2709 find_inferior_in_random (&all_threads, status_pending_p_callback,
2710 &filter_ptid);
2711 if (event_thread != NULL)
2712 event_child = get_thread_lwp (event_thread);
2713 if (debug_threads && event_thread)
2714 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2715 }
2716 else if (!ptid_equal (filter_ptid, null_ptid))
2717 {
2718 requested_child = find_lwp_pid (filter_ptid);
2719
2720 if (stopping_threads == NOT_STOPPING_THREADS
2721 && requested_child->status_pending_p
2722 && (requested_child->collecting_fast_tracepoint
2723 != fast_tpoint_collect_result::not_collecting))
2724 {
2725 enqueue_one_deferred_signal (requested_child,
2726 &requested_child->status_pending);
2727 requested_child->status_pending_p = 0;
2728 requested_child->status_pending = 0;
2729 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2730 }
2731
2732 if (requested_child->suspended
2733 && requested_child->status_pending_p)
2734 {
2735 internal_error (__FILE__, __LINE__,
2736 "requesting an event out of a"
2737 " suspended child?");
2738 }
2739
2740 if (requested_child->status_pending_p)
2741 {
2742 event_child = requested_child;
2743 event_thread = get_lwp_thread (event_child);
2744 }
2745 }
2746
2747 if (event_child != NULL)
2748 {
2749 if (debug_threads)
2750 debug_printf ("Got an event from pending child %ld (%04x)\n",
2751 lwpid_of (event_thread), event_child->status_pending);
2752 *wstatp = event_child->status_pending;
2753 event_child->status_pending_p = 0;
2754 event_child->status_pending = 0;
2755 current_thread = event_thread;
2756 return lwpid_of (event_thread);
2757 }
2758
2759 /* But if we don't find a pending event, we'll have to wait.
2760
2761 We only enter this loop if no process has a pending wait status.
2762 Thus any action taken in response to a wait status inside this
2763 loop is responding as soon as we detect the status, not after any
2764 pending events. */
2765
2766 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2767 all signals while here. */
2768 sigfillset (&block_mask);
2769 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2770
2771 /* Always pull all events out of the kernel. We'll randomly select
2772 an event LWP out of all that have events, to prevent
2773 starvation. */
2774 while (event_child == NULL)
2775 {
2776 pid_t ret = 0;
2777
2778 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2779 quirks:
2780
2781 - If the thread group leader exits while other threads in the
2782 thread group still exist, waitpid(TGID, ...) hangs. That
2783 waitpid won't return an exit status until the other threads
2784 in the group are reaped.
2785
2786 - When a non-leader thread execs, that thread just vanishes
2787 without reporting an exit (so we'd hang if we waited for it
2788 explicitly in that case). The exec event is reported to
2789 the TGID pid. */
2790 errno = 0;
2791 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2792
2793 if (debug_threads)
2794 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2795 ret, errno ? strerror (errno) : "ERRNO-OK");
2796
2797 if (ret > 0)
2798 {
2799 if (debug_threads)
2800 {
2801 debug_printf ("LLW: waitpid %ld received %s\n",
2802 (long) ret, status_to_str (*wstatp));
2803 }
2804
2805 /* Filter all events. IOW, leave all events pending. We'll
2806 randomly select an event LWP out of all that have events
2807 below. */
2808 linux_low_filter_event (ret, *wstatp);
2809 /* Retry until nothing comes out of waitpid. A single
2810 SIGCHLD can indicate more than one child stopped. */
2811 continue;
2812 }
2813
2814 /* Now that we've pulled all events out of the kernel, resume
2815 LWPs that don't have an interesting event to report. */
2816 if (stopping_threads == NOT_STOPPING_THREADS)
2817 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2818
2819 /* ... and find an LWP with a status to report to the core, if
2820 any. */
2821 event_thread = (struct thread_info *)
2822 find_inferior_in_random (&all_threads, status_pending_p_callback,
2823 &filter_ptid);
2824 if (event_thread != NULL)
2825 {
2826 event_child = get_thread_lwp (event_thread);
2827 *wstatp = event_child->status_pending;
2828 event_child->status_pending_p = 0;
2829 event_child->status_pending = 0;
2830 break;
2831 }
2832
2833 /* Check for zombie thread group leaders. Those can't be reaped
2834 until all other threads in the thread group are. */
2835 check_zombie_leaders ();
2836
2837 /* If there are no resumed children left in the set of LWPs we
2838 want to wait for, bail. We can't just block in
2839 waitpid/sigsuspend, because lwps might have been left stopped
2840 in trace-stop state, and we'd be stuck forever waiting for
2841 their status to change (which would only happen if we resumed
2842 them). Even if WNOHANG is set, this return code is preferred
2843 over 0 (below), as it is more detailed. */
2844 if ((find_inferior (&all_threads,
2845 not_stopped_callback,
2846 &wait_ptid) == NULL))
2847 {
2848 if (debug_threads)
2849 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2850 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2851 return -1;
2852 }
2853
2854 /* No interesting event to report to the caller. */
2855 if ((options & WNOHANG))
2856 {
2857 if (debug_threads)
2858 debug_printf ("WNOHANG set, no event found\n");
2859
2860 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2861 return 0;
2862 }
2863
2864 /* Block until we get an event reported with SIGCHLD. */
2865 if (debug_threads)
2866 debug_printf ("sigsuspend'ing\n");
2867
2868 sigsuspend (&prev_mask);
2869 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2870 goto retry;
2871 }
2872
2873 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2874
2875 current_thread = event_thread;
2876
2877 return lwpid_of (event_thread);
2878 }
2879
2880 /* Wait for an event from child(ren) PTID. PTIDs can be:
2881 minus_one_ptid, to specify any child; a pid PTID, specifying all
2882 lwps of a thread group; or a PTID representing a single lwp. Store
2883 the stop status through the status pointer WSTAT. OPTIONS is
2884 passed to the waitpid call. Return 0 if no event was found and
2885 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2886 was found. Return the PID of the stopped child otherwise. */
2887
2888 static int
2889 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2890 {
2891 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2892 }
2893
2894 /* Count the LWP's that have had events. */
2895
2896 static int
2897 count_events_callback (struct inferior_list_entry *entry, void *data)
2898 {
2899 struct thread_info *thread = (struct thread_info *) entry;
2900 struct lwp_info *lp = get_thread_lwp (thread);
2901 int *count = (int *) data;
2902
2903 gdb_assert (count != NULL);
2904
2905 /* Count only resumed LWPs that have an event pending. */
2906 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2907 && lp->status_pending_p)
2908 (*count)++;
2909
2910 return 0;
2911 }
2912
2913 /* Select the LWP (if any) that is currently being single-stepped. */
2914
2915 static int
2916 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2917 {
2918 struct thread_info *thread = (struct thread_info *) entry;
2919 struct lwp_info *lp = get_thread_lwp (thread);
2920
2921 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2922 && thread->last_resume_kind == resume_step
2923 && lp->status_pending_p)
2924 return 1;
2925 else
2926 return 0;
2927 }
2928
2929 /* Select the Nth LWP that has had an event. */
2930
2931 static int
2932 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2933 {
2934 struct thread_info *thread = (struct thread_info *) entry;
2935 struct lwp_info *lp = get_thread_lwp (thread);
2936 int *selector = (int *) data;
2937
2938 gdb_assert (selector != NULL);
2939
2940 /* Select only resumed LWPs that have an event pending. */
2941 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2942 && lp->status_pending_p)
2943 if ((*selector)-- == 0)
2944 return 1;
2945
2946 return 0;
2947 }
2948
2949 /* Select one LWP out of those that have events pending. */
2950
2951 static void
2952 select_event_lwp (struct lwp_info **orig_lp)
2953 {
2954 int num_events = 0;
2955 int random_selector;
2956 struct thread_info *event_thread = NULL;
2957
2958 /* In all-stop, give preference to the LWP that is being
2959 single-stepped. There will be at most one, and it's the LWP that
2960 the core is most interested in. If we didn't do this, then we'd
2961 have to handle pending step SIGTRAPs somehow in case the core
2962 later continues the previously-stepped thread, otherwise we'd
2963 report the pending SIGTRAP, and the core, not having stepped the
2964 thread, wouldn't understand what the trap was for, and therefore
2965 would report it to the user as a random signal. */
2966 if (!non_stop)
2967 {
2968 event_thread
2969 = (struct thread_info *) find_inferior (&all_threads,
2970 select_singlestep_lwp_callback,
2971 NULL);
2972 if (event_thread != NULL)
2973 {
2974 if (debug_threads)
2975 debug_printf ("SEL: Select single-step %s\n",
2976 target_pid_to_str (ptid_of (event_thread)));
2977 }
2978 }
2979 if (event_thread == NULL)
2980 {
2981 /* No single-stepping LWP. Select one at random, out of those
2982 which have had events. */
2983
2984 /* First see how many events we have. */
2985 find_inferior (&all_threads, count_events_callback, &num_events);
2986 gdb_assert (num_events > 0);
2987
2988 /* Now randomly pick a LWP out of those that have had
2989 events. */
2990 random_selector = (int)
2991 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2992
2993 if (debug_threads && num_events > 1)
2994 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2995 num_events, random_selector);
2996
2997 event_thread
2998 = (struct thread_info *) find_inferior (&all_threads,
2999 select_event_lwp_callback,
3000 &random_selector);
3001 }
3002
3003 if (event_thread != NULL)
3004 {
3005 struct lwp_info *event_lp = get_thread_lwp (event_thread);
3006
3007 /* Switch the event LWP. */
3008 *orig_lp = event_lp;
3009 }
3010 }
3011
3012 /* Decrement the suspend count of an LWP. */
3013
3014 static int
3015 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
3016 {
3017 struct thread_info *thread = (struct thread_info *) entry;
3018 struct lwp_info *lwp = get_thread_lwp (thread);
3019
3020 /* Ignore EXCEPT. */
3021 if (lwp == except)
3022 return 0;
3023
3024 lwp_suspended_decr (lwp);
3025 return 0;
3026 }
3027
3028 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
3029 NULL. */
3030
3031 static void
3032 unsuspend_all_lwps (struct lwp_info *except)
3033 {
3034 find_inferior (&all_threads, unsuspend_one_lwp, except);
3035 }
3036
3037 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
3038 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
3039 void *data);
3040 static int lwp_running (struct inferior_list_entry *entry, void *data);
3041 static ptid_t linux_wait_1 (ptid_t ptid,
3042 struct target_waitstatus *ourstatus,
3043 int target_options);
3044
3045 /* Stabilize threads (move out of jump pads).
3046
3047 If a thread is midway collecting a fast tracepoint, we need to
3048 finish the collection and move it out of the jump pad before
3049 reporting the signal.
3050
3051 This avoids recursion while collecting (when a signal arrives
3052 midway, and the signal handler itself collects), which would trash
3053 the trace buffer. In case the user set a breakpoint in a signal
3054 handler, this avoids the backtrace showing the jump pad, etc..
3055 Most importantly, there are certain things we can't do safely if
3056 threads are stopped in a jump pad (or in its callee's). For
3057 example:
3058
3059 - starting a new trace run. A thread still collecting the
3060 previous run, could trash the trace buffer when resumed. The trace
3061 buffer control structures would have been reset but the thread had
3062 no way to tell. The thread could even midway memcpy'ing to the
3063 buffer, which would mean that when resumed, it would clobber the
3064 trace buffer that had been set for a new run.
3065
3066 - we can't rewrite/reuse the jump pads for new tracepoints
3067 safely. Say you do tstart while a thread is stopped midway while
3068 collecting. When the thread is later resumed, it finishes the
3069 collection, and returns to the jump pad, to execute the original
3070 instruction that was under the tracepoint jump at the time the
3071 older run had been started. If the jump pad had been rewritten
3072 since for something else in the new run, the thread would now
3073 execute the wrong / random instructions. */
3074
3075 static void
3076 linux_stabilize_threads (void)
3077 {
3078 struct thread_info *saved_thread;
3079 struct thread_info *thread_stuck;
3080
3081 thread_stuck
3082 = (struct thread_info *) find_inferior (&all_threads,
3083 stuck_in_jump_pad_callback,
3084 NULL);
3085 if (thread_stuck != NULL)
3086 {
3087 if (debug_threads)
3088 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
3089 lwpid_of (thread_stuck));
3090 return;
3091 }
3092
3093 saved_thread = current_thread;
3094
3095 stabilizing_threads = 1;
3096
3097 /* Kick 'em all. */
3098 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3099
3100 /* Loop until all are stopped out of the jump pads. */
3101 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3102 {
3103 struct target_waitstatus ourstatus;
3104 struct lwp_info *lwp;
3105 int wstat;
3106
3107 /* Note that we go through the full wait even loop. While
3108 moving threads out of jump pad, we need to be able to step
3109 over internal breakpoints and such. */
3110 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3111
3112 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3113 {
3114 lwp = get_thread_lwp (current_thread);
3115
3116 /* Lock it. */
3117 lwp_suspended_inc (lwp);
3118
3119 if (ourstatus.value.sig != GDB_SIGNAL_0
3120 || current_thread->last_resume_kind == resume_stop)
3121 {
3122 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3123 enqueue_one_deferred_signal (lwp, &wstat);
3124 }
3125 }
3126 }
3127
3128 unsuspend_all_lwps (NULL);
3129
3130 stabilizing_threads = 0;
3131
3132 current_thread = saved_thread;
3133
3134 if (debug_threads)
3135 {
3136 thread_stuck
3137 = (struct thread_info *) find_inferior (&all_threads,
3138 stuck_in_jump_pad_callback,
3139 NULL);
3140 if (thread_stuck != NULL)
3141 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3142 lwpid_of (thread_stuck));
3143 }
3144 }
3145
3146 /* Convenience function that is called when the kernel reports an
3147 event that is not passed out to GDB. */
3148
3149 static ptid_t
3150 ignore_event (struct target_waitstatus *ourstatus)
3151 {
3152 /* If we got an event, there may still be others, as a single
3153 SIGCHLD can indicate more than one child stopped. This forces
3154 another target_wait call. */
3155 async_file_mark ();
3156
3157 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3158 return null_ptid;
3159 }
3160
3161 /* Convenience function that is called when the kernel reports an exit
3162 event. This decides whether to report the event to GDB as a
3163 process exit event, a thread exit event, or to suppress the
3164 event. */
3165
3166 static ptid_t
3167 filter_exit_event (struct lwp_info *event_child,
3168 struct target_waitstatus *ourstatus)
3169 {
3170 struct thread_info *thread = get_lwp_thread (event_child);
3171 ptid_t ptid = ptid_of (thread);
3172
3173 if (!last_thread_of_process_p (pid_of (thread)))
3174 {
3175 if (report_thread_events)
3176 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3177 else
3178 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3179
3180 delete_lwp (event_child);
3181 }
3182 return ptid;
3183 }
3184
3185 /* Returns 1 if GDB is interested in any event_child syscalls. */
3186
3187 static int
3188 gdb_catching_syscalls_p (struct lwp_info *event_child)
3189 {
3190 struct thread_info *thread = get_lwp_thread (event_child);
3191 struct process_info *proc = get_thread_process (thread);
3192
3193 return !VEC_empty (int, proc->syscalls_to_catch);
3194 }
3195
3196 /* Returns 1 if GDB is interested in the event_child syscall.
3197 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3198
3199 static int
3200 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3201 {
3202 int i, iter;
3203 int sysno;
3204 struct thread_info *thread = get_lwp_thread (event_child);
3205 struct process_info *proc = get_thread_process (thread);
3206
3207 if (VEC_empty (int, proc->syscalls_to_catch))
3208 return 0;
3209
3210 if (VEC_index (int, proc->syscalls_to_catch, 0) == ANY_SYSCALL)
3211 return 1;
3212
3213 get_syscall_trapinfo (event_child, &sysno);
3214 for (i = 0;
3215 VEC_iterate (int, proc->syscalls_to_catch, i, iter);
3216 i++)
3217 if (iter == sysno)
3218 return 1;
3219
3220 return 0;
3221 }
3222
3223 /* Wait for process, returns status. */
3224
3225 static ptid_t
3226 linux_wait_1 (ptid_t ptid,
3227 struct target_waitstatus *ourstatus, int target_options)
3228 {
3229 int w;
3230 struct lwp_info *event_child;
3231 int options;
3232 int pid;
3233 int step_over_finished;
3234 int bp_explains_trap;
3235 int maybe_internal_trap;
3236 int report_to_gdb;
3237 int trace_event;
3238 int in_step_range;
3239 int any_resumed;
3240
3241 if (debug_threads)
3242 {
3243 debug_enter ();
3244 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3245 }
3246
3247 /* Translate generic target options into linux options. */
3248 options = __WALL;
3249 if (target_options & TARGET_WNOHANG)
3250 options |= WNOHANG;
3251
3252 bp_explains_trap = 0;
3253 trace_event = 0;
3254 in_step_range = 0;
3255 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3256
3257 /* Find a resumed LWP, if any. */
3258 if (find_inferior (&all_threads,
3259 status_pending_p_callback,
3260 &minus_one_ptid) != NULL)
3261 any_resumed = 1;
3262 else if ((find_inferior (&all_threads,
3263 not_stopped_callback,
3264 &minus_one_ptid) != NULL))
3265 any_resumed = 1;
3266 else
3267 any_resumed = 0;
3268
3269 if (ptid_equal (step_over_bkpt, null_ptid))
3270 pid = linux_wait_for_event (ptid, &w, options);
3271 else
3272 {
3273 if (debug_threads)
3274 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3275 target_pid_to_str (step_over_bkpt));
3276 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3277 }
3278
3279 if (pid == 0 || (pid == -1 && !any_resumed))
3280 {
3281 gdb_assert (target_options & TARGET_WNOHANG);
3282
3283 if (debug_threads)
3284 {
3285 debug_printf ("linux_wait_1 ret = null_ptid, "
3286 "TARGET_WAITKIND_IGNORE\n");
3287 debug_exit ();
3288 }
3289
3290 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3291 return null_ptid;
3292 }
3293 else if (pid == -1)
3294 {
3295 if (debug_threads)
3296 {
3297 debug_printf ("linux_wait_1 ret = null_ptid, "
3298 "TARGET_WAITKIND_NO_RESUMED\n");
3299 debug_exit ();
3300 }
3301
3302 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3303 return null_ptid;
3304 }
3305
3306 event_child = get_thread_lwp (current_thread);
3307
3308 /* linux_wait_for_event only returns an exit status for the last
3309 child of a process. Report it. */
3310 if (WIFEXITED (w) || WIFSIGNALED (w))
3311 {
3312 if (WIFEXITED (w))
3313 {
3314 ourstatus->kind = TARGET_WAITKIND_EXITED;
3315 ourstatus->value.integer = WEXITSTATUS (w);
3316
3317 if (debug_threads)
3318 {
3319 debug_printf ("linux_wait_1 ret = %s, exited with "
3320 "retcode %d\n",
3321 target_pid_to_str (ptid_of (current_thread)),
3322 WEXITSTATUS (w));
3323 debug_exit ();
3324 }
3325 }
3326 else
3327 {
3328 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3329 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3330
3331 if (debug_threads)
3332 {
3333 debug_printf ("linux_wait_1 ret = %s, terminated with "
3334 "signal %d\n",
3335 target_pid_to_str (ptid_of (current_thread)),
3336 WTERMSIG (w));
3337 debug_exit ();
3338 }
3339 }
3340
3341 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3342 return filter_exit_event (event_child, ourstatus);
3343
3344 return ptid_of (current_thread);
3345 }
3346
3347 /* If step-over executes a breakpoint instruction, in the case of a
3348 hardware single step it means a gdb/gdbserver breakpoint had been
3349 planted on top of a permanent breakpoint, in the case of a software
3350 single step it may just mean that gdbserver hit the reinsert breakpoint.
3351 The PC has been adjusted by save_stop_reason to point at
3352 the breakpoint address.
3353 So in the case of the hardware single step advance the PC manually
3354 past the breakpoint and in the case of software single step advance only
3355 if it's not the single_step_breakpoint we are hitting.
3356 This avoids that a program would keep trapping a permanent breakpoint
3357 forever. */
3358 if (!ptid_equal (step_over_bkpt, null_ptid)
3359 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3360 && (event_child->stepping
3361 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3362 {
3363 int increment_pc = 0;
3364 int breakpoint_kind = 0;
3365 CORE_ADDR stop_pc = event_child->stop_pc;
3366
3367 breakpoint_kind =
3368 the_target->breakpoint_kind_from_current_state (&stop_pc);
3369 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3370
3371 if (debug_threads)
3372 {
3373 debug_printf ("step-over for %s executed software breakpoint\n",
3374 target_pid_to_str (ptid_of (current_thread)));
3375 }
3376
3377 if (increment_pc != 0)
3378 {
3379 struct regcache *regcache
3380 = get_thread_regcache (current_thread, 1);
3381
3382 event_child->stop_pc += increment_pc;
3383 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3384
3385 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3386 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3387 }
3388 }
3389
3390 /* If this event was not handled before, and is not a SIGTRAP, we
3391 report it. SIGILL and SIGSEGV are also treated as traps in case
3392 a breakpoint is inserted at the current PC. If this target does
3393 not support internal breakpoints at all, we also report the
3394 SIGTRAP without further processing; it's of no concern to us. */
3395 maybe_internal_trap
3396 = (supports_breakpoints ()
3397 && (WSTOPSIG (w) == SIGTRAP
3398 || ((WSTOPSIG (w) == SIGILL
3399 || WSTOPSIG (w) == SIGSEGV)
3400 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3401
3402 if (maybe_internal_trap)
3403 {
3404 /* Handle anything that requires bookkeeping before deciding to
3405 report the event or continue waiting. */
3406
3407 /* First check if we can explain the SIGTRAP with an internal
3408 breakpoint, or if we should possibly report the event to GDB.
3409 Do this before anything that may remove or insert a
3410 breakpoint. */
3411 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3412
3413 /* We have a SIGTRAP, possibly a step-over dance has just
3414 finished. If so, tweak the state machine accordingly,
3415 reinsert breakpoints and delete any single-step
3416 breakpoints. */
3417 step_over_finished = finish_step_over (event_child);
3418
3419 /* Now invoke the callbacks of any internal breakpoints there. */
3420 check_breakpoints (event_child->stop_pc);
3421
3422 /* Handle tracepoint data collecting. This may overflow the
3423 trace buffer, and cause a tracing stop, removing
3424 breakpoints. */
3425 trace_event = handle_tracepoints (event_child);
3426
3427 if (bp_explains_trap)
3428 {
3429 if (debug_threads)
3430 debug_printf ("Hit a gdbserver breakpoint.\n");
3431 }
3432 }
3433 else
3434 {
3435 /* We have some other signal, possibly a step-over dance was in
3436 progress, and it should be cancelled too. */
3437 step_over_finished = finish_step_over (event_child);
3438 }
3439
3440 /* We have all the data we need. Either report the event to GDB, or
3441 resume threads and keep waiting for more. */
3442
3443 /* If we're collecting a fast tracepoint, finish the collection and
3444 move out of the jump pad before delivering a signal. See
3445 linux_stabilize_threads. */
3446
3447 if (WIFSTOPPED (w)
3448 && WSTOPSIG (w) != SIGTRAP
3449 && supports_fast_tracepoints ()
3450 && agent_loaded_p ())
3451 {
3452 if (debug_threads)
3453 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3454 "to defer or adjust it.\n",
3455 WSTOPSIG (w), lwpid_of (current_thread));
3456
3457 /* Allow debugging the jump pad itself. */
3458 if (current_thread->last_resume_kind != resume_step
3459 && maybe_move_out_of_jump_pad (event_child, &w))
3460 {
3461 enqueue_one_deferred_signal (event_child, &w);
3462
3463 if (debug_threads)
3464 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3465 WSTOPSIG (w), lwpid_of (current_thread));
3466
3467 linux_resume_one_lwp (event_child, 0, 0, NULL);
3468
3469 if (debug_threads)
3470 debug_exit ();
3471 return ignore_event (ourstatus);
3472 }
3473 }
3474
3475 if (event_child->collecting_fast_tracepoint
3476 != fast_tpoint_collect_result::not_collecting)
3477 {
3478 if (debug_threads)
3479 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3480 "Check if we're already there.\n",
3481 lwpid_of (current_thread),
3482 (int) event_child->collecting_fast_tracepoint);
3483
3484 trace_event = 1;
3485
3486 event_child->collecting_fast_tracepoint
3487 = linux_fast_tracepoint_collecting (event_child, NULL);
3488
3489 if (event_child->collecting_fast_tracepoint
3490 != fast_tpoint_collect_result::before_insn)
3491 {
3492 /* No longer need this breakpoint. */
3493 if (event_child->exit_jump_pad_bkpt != NULL)
3494 {
3495 if (debug_threads)
3496 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3497 "stopping all threads momentarily.\n");
3498
3499 /* Other running threads could hit this breakpoint.
3500 We don't handle moribund locations like GDB does,
3501 instead we always pause all threads when removing
3502 breakpoints, so that any step-over or
3503 decr_pc_after_break adjustment is always taken
3504 care of while the breakpoint is still
3505 inserted. */
3506 stop_all_lwps (1, event_child);
3507
3508 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3509 event_child->exit_jump_pad_bkpt = NULL;
3510
3511 unstop_all_lwps (1, event_child);
3512
3513 gdb_assert (event_child->suspended >= 0);
3514 }
3515 }
3516
3517 if (event_child->collecting_fast_tracepoint
3518 == fast_tpoint_collect_result::not_collecting)
3519 {
3520 if (debug_threads)
3521 debug_printf ("fast tracepoint finished "
3522 "collecting successfully.\n");
3523
3524 /* We may have a deferred signal to report. */
3525 if (dequeue_one_deferred_signal (event_child, &w))
3526 {
3527 if (debug_threads)
3528 debug_printf ("dequeued one signal.\n");
3529 }
3530 else
3531 {
3532 if (debug_threads)
3533 debug_printf ("no deferred signals.\n");
3534
3535 if (stabilizing_threads)
3536 {
3537 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3538 ourstatus->value.sig = GDB_SIGNAL_0;
3539
3540 if (debug_threads)
3541 {
3542 debug_printf ("linux_wait_1 ret = %s, stopped "
3543 "while stabilizing threads\n",
3544 target_pid_to_str (ptid_of (current_thread)));
3545 debug_exit ();
3546 }
3547
3548 return ptid_of (current_thread);
3549 }
3550 }
3551 }
3552 }
3553
3554 /* Check whether GDB would be interested in this event. */
3555
3556 /* Check if GDB is interested in this syscall. */
3557 if (WIFSTOPPED (w)
3558 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3559 && !gdb_catch_this_syscall_p (event_child))
3560 {
3561 if (debug_threads)
3562 {
3563 debug_printf ("Ignored syscall for LWP %ld.\n",
3564 lwpid_of (current_thread));
3565 }
3566
3567 linux_resume_one_lwp (event_child, event_child->stepping,
3568 0, NULL);
3569
3570 if (debug_threads)
3571 debug_exit ();
3572 return ignore_event (ourstatus);
3573 }
3574
3575 /* If GDB is not interested in this signal, don't stop other
3576 threads, and don't report it to GDB. Just resume the inferior
3577 right away. We do this for threading-related signals as well as
3578 any that GDB specifically requested we ignore. But never ignore
3579 SIGSTOP if we sent it ourselves, and do not ignore signals when
3580 stepping - they may require special handling to skip the signal
3581 handler. Also never ignore signals that could be caused by a
3582 breakpoint. */
3583 if (WIFSTOPPED (w)
3584 && current_thread->last_resume_kind != resume_step
3585 && (
3586 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3587 (current_process ()->priv->thread_db != NULL
3588 && (WSTOPSIG (w) == __SIGRTMIN
3589 || WSTOPSIG (w) == __SIGRTMIN + 1))
3590 ||
3591 #endif
3592 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3593 && !(WSTOPSIG (w) == SIGSTOP
3594 && current_thread->last_resume_kind == resume_stop)
3595 && !linux_wstatus_maybe_breakpoint (w))))
3596 {
3597 siginfo_t info, *info_p;
3598
3599 if (debug_threads)
3600 debug_printf ("Ignored signal %d for LWP %ld.\n",
3601 WSTOPSIG (w), lwpid_of (current_thread));
3602
3603 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3604 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3605 info_p = &info;
3606 else
3607 info_p = NULL;
3608
3609 if (step_over_finished)
3610 {
3611 /* We cancelled this thread's step-over above. We still
3612 need to unsuspend all other LWPs, and set them back
3613 running again while the signal handler runs. */
3614 unsuspend_all_lwps (event_child);
3615
3616 /* Enqueue the pending signal info so that proceed_all_lwps
3617 doesn't lose it. */
3618 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3619
3620 proceed_all_lwps ();
3621 }
3622 else
3623 {
3624 linux_resume_one_lwp (event_child, event_child->stepping,
3625 WSTOPSIG (w), info_p);
3626 }
3627
3628 if (debug_threads)
3629 debug_exit ();
3630
3631 return ignore_event (ourstatus);
3632 }
3633
3634 /* Note that all addresses are always "out of the step range" when
3635 there's no range to begin with. */
3636 in_step_range = lwp_in_step_range (event_child);
3637
3638 /* If GDB wanted this thread to single step, and the thread is out
3639 of the step range, we always want to report the SIGTRAP, and let
3640 GDB handle it. Watchpoints should always be reported. So should
3641 signals we can't explain. A SIGTRAP we can't explain could be a
3642 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3643 do, we're be able to handle GDB breakpoints on top of internal
3644 breakpoints, by handling the internal breakpoint and still
3645 reporting the event to GDB. If we don't, we're out of luck, GDB
3646 won't see the breakpoint hit. If we see a single-step event but
3647 the thread should be continuing, don't pass the trap to gdb.
3648 That indicates that we had previously finished a single-step but
3649 left the single-step pending -- see
3650 complete_ongoing_step_over. */
3651 report_to_gdb = (!maybe_internal_trap
3652 || (current_thread->last_resume_kind == resume_step
3653 && !in_step_range)
3654 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3655 || (!in_step_range
3656 && !bp_explains_trap
3657 && !trace_event
3658 && !step_over_finished
3659 && !(current_thread->last_resume_kind == resume_continue
3660 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3661 || (gdb_breakpoint_here (event_child->stop_pc)
3662 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3663 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3664 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3665
3666 run_breakpoint_commands (event_child->stop_pc);
3667
3668 /* We found no reason GDB would want us to stop. We either hit one
3669 of our own breakpoints, or finished an internal step GDB
3670 shouldn't know about. */
3671 if (!report_to_gdb)
3672 {
3673 if (debug_threads)
3674 {
3675 if (bp_explains_trap)
3676 debug_printf ("Hit a gdbserver breakpoint.\n");
3677 if (step_over_finished)
3678 debug_printf ("Step-over finished.\n");
3679 if (trace_event)
3680 debug_printf ("Tracepoint event.\n");
3681 if (lwp_in_step_range (event_child))
3682 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3683 paddress (event_child->stop_pc),
3684 paddress (event_child->step_range_start),
3685 paddress (event_child->step_range_end));
3686 }
3687
3688 /* We're not reporting this breakpoint to GDB, so apply the
3689 decr_pc_after_break adjustment to the inferior's regcache
3690 ourselves. */
3691
3692 if (the_low_target.set_pc != NULL)
3693 {
3694 struct regcache *regcache
3695 = get_thread_regcache (current_thread, 1);
3696 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3697 }
3698
3699 if (step_over_finished)
3700 {
3701 /* If we have finished stepping over a breakpoint, we've
3702 stopped and suspended all LWPs momentarily except the
3703 stepping one. This is where we resume them all again.
3704 We're going to keep waiting, so use proceed, which
3705 handles stepping over the next breakpoint. */
3706 unsuspend_all_lwps (event_child);
3707 }
3708 else
3709 {
3710 /* Remove the single-step breakpoints if any. Note that
3711 there isn't single-step breakpoint if we finished stepping
3712 over. */
3713 if (can_software_single_step ()
3714 && has_single_step_breakpoints (current_thread))
3715 {
3716 stop_all_lwps (0, event_child);
3717 delete_single_step_breakpoints (current_thread);
3718 unstop_all_lwps (0, event_child);
3719 }
3720 }
3721
3722 if (debug_threads)
3723 debug_printf ("proceeding all threads.\n");
3724 proceed_all_lwps ();
3725
3726 if (debug_threads)
3727 debug_exit ();
3728
3729 return ignore_event (ourstatus);
3730 }
3731
3732 if (debug_threads)
3733 {
3734 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3735 {
3736 char *str;
3737
3738 str = target_waitstatus_to_string (&event_child->waitstatus);
3739 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3740 lwpid_of (get_lwp_thread (event_child)), str);
3741 xfree (str);
3742 }
3743 if (current_thread->last_resume_kind == resume_step)
3744 {
3745 if (event_child->step_range_start == event_child->step_range_end)
3746 debug_printf ("GDB wanted to single-step, reporting event.\n");
3747 else if (!lwp_in_step_range (event_child))
3748 debug_printf ("Out of step range, reporting event.\n");
3749 }
3750 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3751 debug_printf ("Stopped by watchpoint.\n");
3752 else if (gdb_breakpoint_here (event_child->stop_pc))
3753 debug_printf ("Stopped by GDB breakpoint.\n");
3754 if (debug_threads)
3755 debug_printf ("Hit a non-gdbserver trap event.\n");
3756 }
3757
3758 /* Alright, we're going to report a stop. */
3759
3760 /* Remove single-step breakpoints. */
3761 if (can_software_single_step ())
3762 {
3763 /* Remove single-step breakpoints or not. It it is true, stop all
3764 lwps, so that other threads won't hit the breakpoint in the
3765 staled memory. */
3766 int remove_single_step_breakpoints_p = 0;
3767
3768 if (non_stop)
3769 {
3770 remove_single_step_breakpoints_p
3771 = has_single_step_breakpoints (current_thread);
3772 }
3773 else
3774 {
3775 /* In all-stop, a stop reply cancels all previous resume
3776 requests. Delete all single-step breakpoints. */
3777 struct inferior_list_entry *inf, *tmp;
3778
3779 ALL_INFERIORS (&all_threads, inf, tmp)
3780 {
3781 struct thread_info *thread = (struct thread_info *) inf;
3782
3783 if (has_single_step_breakpoints (thread))
3784 {
3785 remove_single_step_breakpoints_p = 1;
3786 break;
3787 }
3788 }
3789 }
3790
3791 if (remove_single_step_breakpoints_p)
3792 {
3793 /* If we remove single-step breakpoints from memory, stop all lwps,
3794 so that other threads won't hit the breakpoint in the staled
3795 memory. */
3796 stop_all_lwps (0, event_child);
3797
3798 if (non_stop)
3799 {
3800 gdb_assert (has_single_step_breakpoints (current_thread));
3801 delete_single_step_breakpoints (current_thread);
3802 }
3803 else
3804 {
3805 struct inferior_list_entry *inf, *tmp;
3806
3807 ALL_INFERIORS (&all_threads, inf, tmp)
3808 {
3809 struct thread_info *thread = (struct thread_info *) inf;
3810
3811 if (has_single_step_breakpoints (thread))
3812 delete_single_step_breakpoints (thread);
3813 }
3814 }
3815
3816 unstop_all_lwps (0, event_child);
3817 }
3818 }
3819
3820 if (!stabilizing_threads)
3821 {
3822 /* In all-stop, stop all threads. */
3823 if (!non_stop)
3824 stop_all_lwps (0, NULL);
3825
3826 if (step_over_finished)
3827 {
3828 if (!non_stop)
3829 {
3830 /* If we were doing a step-over, all other threads but
3831 the stepping one had been paused in start_step_over,
3832 with their suspend counts incremented. We don't want
3833 to do a full unstop/unpause, because we're in
3834 all-stop mode (so we want threads stopped), but we
3835 still need to unsuspend the other threads, to
3836 decrement their `suspended' count back. */
3837 unsuspend_all_lwps (event_child);
3838 }
3839 else
3840 {
3841 /* If we just finished a step-over, then all threads had
3842 been momentarily paused. In all-stop, that's fine,
3843 we want threads stopped by now anyway. In non-stop,
3844 we need to re-resume threads that GDB wanted to be
3845 running. */
3846 unstop_all_lwps (1, event_child);
3847 }
3848 }
3849
3850 /* If we're not waiting for a specific LWP, choose an event LWP
3851 from among those that have had events. Giving equal priority
3852 to all LWPs that have had events helps prevent
3853 starvation. */
3854 if (ptid_equal (ptid, minus_one_ptid))
3855 {
3856 event_child->status_pending_p = 1;
3857 event_child->status_pending = w;
3858
3859 select_event_lwp (&event_child);
3860
3861 /* current_thread and event_child must stay in sync. */
3862 current_thread = get_lwp_thread (event_child);
3863
3864 event_child->status_pending_p = 0;
3865 w = event_child->status_pending;
3866 }
3867
3868
3869 /* Stabilize threads (move out of jump pads). */
3870 if (!non_stop)
3871 stabilize_threads ();
3872 }
3873 else
3874 {
3875 /* If we just finished a step-over, then all threads had been
3876 momentarily paused. In all-stop, that's fine, we want
3877 threads stopped by now anyway. In non-stop, we need to
3878 re-resume threads that GDB wanted to be running. */
3879 if (step_over_finished)
3880 unstop_all_lwps (1, event_child);
3881 }
3882
3883 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3884 {
3885 /* If the reported event is an exit, fork, vfork or exec, let
3886 GDB know. */
3887
3888 /* Break the unreported fork relationship chain. */
3889 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3890 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3891 {
3892 event_child->fork_relative->fork_relative = NULL;
3893 event_child->fork_relative = NULL;
3894 }
3895
3896 *ourstatus = event_child->waitstatus;
3897 /* Clear the event lwp's waitstatus since we handled it already. */
3898 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3899 }
3900 else
3901 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3902
3903 /* Now that we've selected our final event LWP, un-adjust its PC if
3904 it was a software breakpoint, and the client doesn't know we can
3905 adjust the breakpoint ourselves. */
3906 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3907 && !swbreak_feature)
3908 {
3909 int decr_pc = the_low_target.decr_pc_after_break;
3910
3911 if (decr_pc != 0)
3912 {
3913 struct regcache *regcache
3914 = get_thread_regcache (current_thread, 1);
3915 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3916 }
3917 }
3918
3919 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3920 {
3921 get_syscall_trapinfo (event_child,
3922 &ourstatus->value.syscall_number);
3923 ourstatus->kind = event_child->syscall_state;
3924 }
3925 else if (current_thread->last_resume_kind == resume_stop
3926 && WSTOPSIG (w) == SIGSTOP)
3927 {
3928 /* A thread that has been requested to stop by GDB with vCont;t,
3929 and it stopped cleanly, so report as SIG0. The use of
3930 SIGSTOP is an implementation detail. */
3931 ourstatus->value.sig = GDB_SIGNAL_0;
3932 }
3933 else if (current_thread->last_resume_kind == resume_stop
3934 && WSTOPSIG (w) != SIGSTOP)
3935 {
3936 /* A thread that has been requested to stop by GDB with vCont;t,
3937 but, it stopped for other reasons. */
3938 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3939 }
3940 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3941 {
3942 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3943 }
3944
3945 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3946
3947 if (debug_threads)
3948 {
3949 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3950 target_pid_to_str (ptid_of (current_thread)),
3951 ourstatus->kind, ourstatus->value.sig);
3952 debug_exit ();
3953 }
3954
3955 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3956 return filter_exit_event (event_child, ourstatus);
3957
3958 return ptid_of (current_thread);
3959 }
3960
3961 /* Get rid of any pending event in the pipe. */
3962 static void
3963 async_file_flush (void)
3964 {
3965 int ret;
3966 char buf;
3967
3968 do
3969 ret = read (linux_event_pipe[0], &buf, 1);
3970 while (ret >= 0 || (ret == -1 && errno == EINTR));
3971 }
3972
3973 /* Put something in the pipe, so the event loop wakes up. */
3974 static void
3975 async_file_mark (void)
3976 {
3977 int ret;
3978
3979 async_file_flush ();
3980
3981 do
3982 ret = write (linux_event_pipe[1], "+", 1);
3983 while (ret == 0 || (ret == -1 && errno == EINTR));
3984
3985 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3986 be awakened anyway. */
3987 }
3988
3989 static ptid_t
3990 linux_wait (ptid_t ptid,
3991 struct target_waitstatus *ourstatus, int target_options)
3992 {
3993 ptid_t event_ptid;
3994
3995 /* Flush the async file first. */
3996 if (target_is_async_p ())
3997 async_file_flush ();
3998
3999 do
4000 {
4001 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
4002 }
4003 while ((target_options & TARGET_WNOHANG) == 0
4004 && ptid_equal (event_ptid, null_ptid)
4005 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
4006
4007 /* If at least one stop was reported, there may be more. A single
4008 SIGCHLD can signal more than one child stop. */
4009 if (target_is_async_p ()
4010 && (target_options & TARGET_WNOHANG) != 0
4011 && !ptid_equal (event_ptid, null_ptid))
4012 async_file_mark ();
4013
4014 return event_ptid;
4015 }
4016
4017 /* Send a signal to an LWP. */
4018
4019 static int
4020 kill_lwp (unsigned long lwpid, int signo)
4021 {
4022 int ret;
4023
4024 errno = 0;
4025 ret = syscall (__NR_tkill, lwpid, signo);
4026 if (errno == ENOSYS)
4027 {
4028 /* If tkill fails, then we are not using nptl threads, a
4029 configuration we no longer support. */
4030 perror_with_name (("tkill"));
4031 }
4032 return ret;
4033 }
4034
4035 void
4036 linux_stop_lwp (struct lwp_info *lwp)
4037 {
4038 send_sigstop (lwp);
4039 }
4040
4041 static void
4042 send_sigstop (struct lwp_info *lwp)
4043 {
4044 int pid;
4045
4046 pid = lwpid_of (get_lwp_thread (lwp));
4047
4048 /* If we already have a pending stop signal for this process, don't
4049 send another. */
4050 if (lwp->stop_expected)
4051 {
4052 if (debug_threads)
4053 debug_printf ("Have pending sigstop for lwp %d\n", pid);
4054
4055 return;
4056 }
4057
4058 if (debug_threads)
4059 debug_printf ("Sending sigstop to lwp %d\n", pid);
4060
4061 lwp->stop_expected = 1;
4062 kill_lwp (pid, SIGSTOP);
4063 }
4064
4065 static int
4066 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
4067 {
4068 struct thread_info *thread = (struct thread_info *) entry;
4069 struct lwp_info *lwp = get_thread_lwp (thread);
4070
4071 /* Ignore EXCEPT. */
4072 if (lwp == except)
4073 return 0;
4074
4075 if (lwp->stopped)
4076 return 0;
4077
4078 send_sigstop (lwp);
4079 return 0;
4080 }
4081
4082 /* Increment the suspend count of an LWP, and stop it, if not stopped
4083 yet. */
4084 static int
4085 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
4086 void *except)
4087 {
4088 struct thread_info *thread = (struct thread_info *) entry;
4089 struct lwp_info *lwp = get_thread_lwp (thread);
4090
4091 /* Ignore EXCEPT. */
4092 if (lwp == except)
4093 return 0;
4094
4095 lwp_suspended_inc (lwp);
4096
4097 return send_sigstop_callback (entry, except);
4098 }
4099
4100 static void
4101 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4102 {
4103 /* Store the exit status for later. */
4104 lwp->status_pending_p = 1;
4105 lwp->status_pending = wstat;
4106
4107 /* Store in waitstatus as well, as there's nothing else to process
4108 for this event. */
4109 if (WIFEXITED (wstat))
4110 {
4111 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4112 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4113 }
4114 else if (WIFSIGNALED (wstat))
4115 {
4116 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4117 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4118 }
4119
4120 /* Prevent trying to stop it. */
4121 lwp->stopped = 1;
4122
4123 /* No further stops are expected from a dead lwp. */
4124 lwp->stop_expected = 0;
4125 }
4126
4127 /* Return true if LWP has exited already, and has a pending exit event
4128 to report to GDB. */
4129
4130 static int
4131 lwp_is_marked_dead (struct lwp_info *lwp)
4132 {
4133 return (lwp->status_pending_p
4134 && (WIFEXITED (lwp->status_pending)
4135 || WIFSIGNALED (lwp->status_pending)));
4136 }
4137
4138 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4139
4140 static void
4141 wait_for_sigstop (void)
4142 {
4143 struct thread_info *saved_thread;
4144 ptid_t saved_tid;
4145 int wstat;
4146 int ret;
4147
4148 saved_thread = current_thread;
4149 if (saved_thread != NULL)
4150 saved_tid = saved_thread->entry.id;
4151 else
4152 saved_tid = null_ptid; /* avoid bogus unused warning */
4153
4154 if (debug_threads)
4155 debug_printf ("wait_for_sigstop: pulling events\n");
4156
4157 /* Passing NULL_PTID as filter indicates we want all events to be
4158 left pending. Eventually this returns when there are no
4159 unwaited-for children left. */
4160 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4161 &wstat, __WALL);
4162 gdb_assert (ret == -1);
4163
4164 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4165 current_thread = saved_thread;
4166 else
4167 {
4168 if (debug_threads)
4169 debug_printf ("Previously current thread died.\n");
4170
4171 /* We can't change the current inferior behind GDB's back,
4172 otherwise, a subsequent command may apply to the wrong
4173 process. */
4174 current_thread = NULL;
4175 }
4176 }
4177
4178 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
4179 move it out, because we need to report the stop event to GDB. For
4180 example, if the user puts a breakpoint in the jump pad, it's
4181 because she wants to debug it. */
4182
4183 static int
4184 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
4185 {
4186 struct thread_info *thread = (struct thread_info *) entry;
4187 struct lwp_info *lwp = get_thread_lwp (thread);
4188
4189 if (lwp->suspended != 0)
4190 {
4191 internal_error (__FILE__, __LINE__,
4192 "LWP %ld is suspended, suspended=%d\n",
4193 lwpid_of (thread), lwp->suspended);
4194 }
4195 gdb_assert (lwp->stopped);
4196
4197 /* Allow debugging the jump pad, gdb_collect, etc.. */
4198 return (supports_fast_tracepoints ()
4199 && agent_loaded_p ()
4200 && (gdb_breakpoint_here (lwp->stop_pc)
4201 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4202 || thread->last_resume_kind == resume_step)
4203 && (linux_fast_tracepoint_collecting (lwp, NULL)
4204 != fast_tpoint_collect_result::not_collecting));
4205 }
4206
4207 static void
4208 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
4209 {
4210 struct thread_info *thread = (struct thread_info *) entry;
4211 struct thread_info *saved_thread;
4212 struct lwp_info *lwp = get_thread_lwp (thread);
4213 int *wstat;
4214
4215 if (lwp->suspended != 0)
4216 {
4217 internal_error (__FILE__, __LINE__,
4218 "LWP %ld is suspended, suspended=%d\n",
4219 lwpid_of (thread), lwp->suspended);
4220 }
4221 gdb_assert (lwp->stopped);
4222
4223 /* For gdb_breakpoint_here. */
4224 saved_thread = current_thread;
4225 current_thread = thread;
4226
4227 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4228
4229 /* Allow debugging the jump pad, gdb_collect, etc. */
4230 if (!gdb_breakpoint_here (lwp->stop_pc)
4231 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4232 && thread->last_resume_kind != resume_step
4233 && maybe_move_out_of_jump_pad (lwp, wstat))
4234 {
4235 if (debug_threads)
4236 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4237 lwpid_of (thread));
4238
4239 if (wstat)
4240 {
4241 lwp->status_pending_p = 0;
4242 enqueue_one_deferred_signal (lwp, wstat);
4243
4244 if (debug_threads)
4245 debug_printf ("Signal %d for LWP %ld deferred "
4246 "(in jump pad)\n",
4247 WSTOPSIG (*wstat), lwpid_of (thread));
4248 }
4249
4250 linux_resume_one_lwp (lwp, 0, 0, NULL);
4251 }
4252 else
4253 lwp_suspended_inc (lwp);
4254
4255 current_thread = saved_thread;
4256 }
4257
4258 static int
4259 lwp_running (struct inferior_list_entry *entry, void *data)
4260 {
4261 struct thread_info *thread = (struct thread_info *) entry;
4262 struct lwp_info *lwp = get_thread_lwp (thread);
4263
4264 if (lwp_is_marked_dead (lwp))
4265 return 0;
4266 if (lwp->stopped)
4267 return 0;
4268 return 1;
4269 }
4270
4271 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4272 If SUSPEND, then also increase the suspend count of every LWP,
4273 except EXCEPT. */
4274
4275 static void
4276 stop_all_lwps (int suspend, struct lwp_info *except)
4277 {
4278 /* Should not be called recursively. */
4279 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4280
4281 if (debug_threads)
4282 {
4283 debug_enter ();
4284 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4285 suspend ? "stop-and-suspend" : "stop",
4286 except != NULL
4287 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4288 : "none");
4289 }
4290
4291 stopping_threads = (suspend
4292 ? STOPPING_AND_SUSPENDING_THREADS
4293 : STOPPING_THREADS);
4294
4295 if (suspend)
4296 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4297 else
4298 find_inferior (&all_threads, send_sigstop_callback, except);
4299 wait_for_sigstop ();
4300 stopping_threads = NOT_STOPPING_THREADS;
4301
4302 if (debug_threads)
4303 {
4304 debug_printf ("stop_all_lwps done, setting stopping_threads "
4305 "back to !stopping\n");
4306 debug_exit ();
4307 }
4308 }
4309
4310 /* Enqueue one signal in the chain of signals which need to be
4311 delivered to this process on next resume. */
4312
4313 static void
4314 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4315 {
4316 struct pending_signals *p_sig = XNEW (struct pending_signals);
4317
4318 p_sig->prev = lwp->pending_signals;
4319 p_sig->signal = signal;
4320 if (info == NULL)
4321 memset (&p_sig->info, 0, sizeof (siginfo_t));
4322 else
4323 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4324 lwp->pending_signals = p_sig;
4325 }
4326
4327 /* Install breakpoints for software single stepping. */
4328
4329 static void
4330 install_software_single_step_breakpoints (struct lwp_info *lwp)
4331 {
4332 struct thread_info *thread = get_lwp_thread (lwp);
4333 struct regcache *regcache = get_thread_regcache (thread, 1);
4334 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4335
4336 current_thread = thread;
4337 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4338
4339 for (CORE_ADDR pc : next_pcs)
4340 set_single_step_breakpoint (pc, current_ptid);
4341
4342 do_cleanups (old_chain);
4343 }
4344
4345 /* Single step via hardware or software single step.
4346 Return 1 if hardware single stepping, 0 if software single stepping
4347 or can't single step. */
4348
4349 static int
4350 single_step (struct lwp_info* lwp)
4351 {
4352 int step = 0;
4353
4354 if (can_hardware_single_step ())
4355 {
4356 step = 1;
4357 }
4358 else if (can_software_single_step ())
4359 {
4360 install_software_single_step_breakpoints (lwp);
4361 step = 0;
4362 }
4363 else
4364 {
4365 if (debug_threads)
4366 debug_printf ("stepping is not implemented on this target");
4367 }
4368
4369 return step;
4370 }
4371
4372 /* The signal can be delivered to the inferior if we are not trying to
4373 finish a fast tracepoint collect. Since signal can be delivered in
4374 the step-over, the program may go to signal handler and trap again
4375 after return from the signal handler. We can live with the spurious
4376 double traps. */
4377
4378 static int
4379 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4380 {
4381 return (lwp->collecting_fast_tracepoint
4382 == fast_tpoint_collect_result::not_collecting);
4383 }
4384
4385 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4386 SIGNAL is nonzero, give it that signal. */
4387
4388 static void
4389 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4390 int step, int signal, siginfo_t *info)
4391 {
4392 struct thread_info *thread = get_lwp_thread (lwp);
4393 struct thread_info *saved_thread;
4394 int ptrace_request;
4395 struct process_info *proc = get_thread_process (thread);
4396
4397 /* Note that target description may not be initialised
4398 (proc->tdesc == NULL) at this point because the program hasn't
4399 stopped at the first instruction yet. It means GDBserver skips
4400 the extra traps from the wrapper program (see option --wrapper).
4401 Code in this function that requires register access should be
4402 guarded by proc->tdesc == NULL or something else. */
4403
4404 if (lwp->stopped == 0)
4405 return;
4406
4407 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4408
4409 fast_tpoint_collect_result fast_tp_collecting
4410 = lwp->collecting_fast_tracepoint;
4411
4412 gdb_assert (!stabilizing_threads
4413 || (fast_tp_collecting
4414 != fast_tpoint_collect_result::not_collecting));
4415
4416 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4417 user used the "jump" command, or "set $pc = foo"). */
4418 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4419 {
4420 /* Collecting 'while-stepping' actions doesn't make sense
4421 anymore. */
4422 release_while_stepping_state_list (thread);
4423 }
4424
4425 /* If we have pending signals or status, and a new signal, enqueue the
4426 signal. Also enqueue the signal if it can't be delivered to the
4427 inferior right now. */
4428 if (signal != 0
4429 && (lwp->status_pending_p
4430 || lwp->pending_signals != NULL
4431 || !lwp_signal_can_be_delivered (lwp)))
4432 {
4433 enqueue_pending_signal (lwp, signal, info);
4434
4435 /* Postpone any pending signal. It was enqueued above. */
4436 signal = 0;
4437 }
4438
4439 if (lwp->status_pending_p)
4440 {
4441 if (debug_threads)
4442 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4443 " has pending status\n",
4444 lwpid_of (thread), step ? "step" : "continue",
4445 lwp->stop_expected ? "expected" : "not expected");
4446 return;
4447 }
4448
4449 saved_thread = current_thread;
4450 current_thread = thread;
4451
4452 /* This bit needs some thinking about. If we get a signal that
4453 we must report while a single-step reinsert is still pending,
4454 we often end up resuming the thread. It might be better to
4455 (ew) allow a stack of pending events; then we could be sure that
4456 the reinsert happened right away and not lose any signals.
4457
4458 Making this stack would also shrink the window in which breakpoints are
4459 uninserted (see comment in linux_wait_for_lwp) but not enough for
4460 complete correctness, so it won't solve that problem. It may be
4461 worthwhile just to solve this one, however. */
4462 if (lwp->bp_reinsert != 0)
4463 {
4464 if (debug_threads)
4465 debug_printf (" pending reinsert at 0x%s\n",
4466 paddress (lwp->bp_reinsert));
4467
4468 if (can_hardware_single_step ())
4469 {
4470 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4471 {
4472 if (step == 0)
4473 warning ("BAD - reinserting but not stepping.");
4474 if (lwp->suspended)
4475 warning ("BAD - reinserting and suspended(%d).",
4476 lwp->suspended);
4477 }
4478 }
4479
4480 step = maybe_hw_step (thread);
4481 }
4482
4483 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4484 {
4485 if (debug_threads)
4486 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4487 " (exit-jump-pad-bkpt)\n",
4488 lwpid_of (thread));
4489 }
4490 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4491 {
4492 if (debug_threads)
4493 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4494 " single-stepping\n",
4495 lwpid_of (thread));
4496
4497 if (can_hardware_single_step ())
4498 step = 1;
4499 else
4500 {
4501 internal_error (__FILE__, __LINE__,
4502 "moving out of jump pad single-stepping"
4503 " not implemented on this target");
4504 }
4505 }
4506
4507 /* If we have while-stepping actions in this thread set it stepping.
4508 If we have a signal to deliver, it may or may not be set to
4509 SIG_IGN, we don't know. Assume so, and allow collecting
4510 while-stepping into a signal handler. A possible smart thing to
4511 do would be to set an internal breakpoint at the signal return
4512 address, continue, and carry on catching this while-stepping
4513 action only when that breakpoint is hit. A future
4514 enhancement. */
4515 if (thread->while_stepping != NULL)
4516 {
4517 if (debug_threads)
4518 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4519 lwpid_of (thread));
4520
4521 step = single_step (lwp);
4522 }
4523
4524 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4525 {
4526 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4527
4528 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4529
4530 if (debug_threads)
4531 {
4532 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4533 (long) lwp->stop_pc);
4534 }
4535 }
4536
4537 /* If we have pending signals, consume one if it can be delivered to
4538 the inferior. */
4539 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4540 {
4541 struct pending_signals **p_sig;
4542
4543 p_sig = &lwp->pending_signals;
4544 while ((*p_sig)->prev != NULL)
4545 p_sig = &(*p_sig)->prev;
4546
4547 signal = (*p_sig)->signal;
4548 if ((*p_sig)->info.si_signo != 0)
4549 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4550 &(*p_sig)->info);
4551
4552 free (*p_sig);
4553 *p_sig = NULL;
4554 }
4555
4556 if (debug_threads)
4557 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4558 lwpid_of (thread), step ? "step" : "continue", signal,
4559 lwp->stop_expected ? "expected" : "not expected");
4560
4561 if (the_low_target.prepare_to_resume != NULL)
4562 the_low_target.prepare_to_resume (lwp);
4563
4564 regcache_invalidate_thread (thread);
4565 errno = 0;
4566 lwp->stepping = step;
4567 if (step)
4568 ptrace_request = PTRACE_SINGLESTEP;
4569 else if (gdb_catching_syscalls_p (lwp))
4570 ptrace_request = PTRACE_SYSCALL;
4571 else
4572 ptrace_request = PTRACE_CONT;
4573 ptrace (ptrace_request,
4574 lwpid_of (thread),
4575 (PTRACE_TYPE_ARG3) 0,
4576 /* Coerce to a uintptr_t first to avoid potential gcc warning
4577 of coercing an 8 byte integer to a 4 byte pointer. */
4578 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4579
4580 current_thread = saved_thread;
4581 if (errno)
4582 perror_with_name ("resuming thread");
4583
4584 /* Successfully resumed. Clear state that no longer makes sense,
4585 and mark the LWP as running. Must not do this before resuming
4586 otherwise if that fails other code will be confused. E.g., we'd
4587 later try to stop the LWP and hang forever waiting for a stop
4588 status. Note that we must not throw after this is cleared,
4589 otherwise handle_zombie_lwp_error would get confused. */
4590 lwp->stopped = 0;
4591 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4592 }
4593
4594 /* Called when we try to resume a stopped LWP and that errors out. If
4595 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4596 or about to become), discard the error, clear any pending status
4597 the LWP may have, and return true (we'll collect the exit status
4598 soon enough). Otherwise, return false. */
4599
4600 static int
4601 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4602 {
4603 struct thread_info *thread = get_lwp_thread (lp);
4604
4605 /* If we get an error after resuming the LWP successfully, we'd
4606 confuse !T state for the LWP being gone. */
4607 gdb_assert (lp->stopped);
4608
4609 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4610 because even if ptrace failed with ESRCH, the tracee may be "not
4611 yet fully dead", but already refusing ptrace requests. In that
4612 case the tracee has 'R (Running)' state for a little bit
4613 (observed in Linux 3.18). See also the note on ESRCH in the
4614 ptrace(2) man page. Instead, check whether the LWP has any state
4615 other than ptrace-stopped. */
4616
4617 /* Don't assume anything if /proc/PID/status can't be read. */
4618 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4619 {
4620 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4621 lp->status_pending_p = 0;
4622 return 1;
4623 }
4624 return 0;
4625 }
4626
4627 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4628 disappears while we try to resume it. */
4629
4630 static void
4631 linux_resume_one_lwp (struct lwp_info *lwp,
4632 int step, int signal, siginfo_t *info)
4633 {
4634 TRY
4635 {
4636 linux_resume_one_lwp_throw (lwp, step, signal, info);
4637 }
4638 CATCH (ex, RETURN_MASK_ERROR)
4639 {
4640 if (!check_ptrace_stopped_lwp_gone (lwp))
4641 throw_exception (ex);
4642 }
4643 END_CATCH
4644 }
4645
4646 struct thread_resume_array
4647 {
4648 struct thread_resume *resume;
4649 size_t n;
4650 };
4651
4652 /* This function is called once per thread via find_inferior.
4653 ARG is a pointer to a thread_resume_array struct.
4654 We look up the thread specified by ENTRY in ARG, and mark the thread
4655 with a pointer to the appropriate resume request.
4656
4657 This algorithm is O(threads * resume elements), but resume elements
4658 is small (and will remain small at least until GDB supports thread
4659 suspension). */
4660
4661 static int
4662 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4663 {
4664 struct thread_info *thread = (struct thread_info *) entry;
4665 struct lwp_info *lwp = get_thread_lwp (thread);
4666 int ndx;
4667 struct thread_resume_array *r;
4668
4669 r = (struct thread_resume_array *) arg;
4670
4671 for (ndx = 0; ndx < r->n; ndx++)
4672 {
4673 ptid_t ptid = r->resume[ndx].thread;
4674 if (ptid_equal (ptid, minus_one_ptid)
4675 || ptid_equal (ptid, entry->id)
4676 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4677 of PID'. */
4678 || (ptid_get_pid (ptid) == pid_of (thread)
4679 && (ptid_is_pid (ptid)
4680 || ptid_get_lwp (ptid) == -1)))
4681 {
4682 if (r->resume[ndx].kind == resume_stop
4683 && thread->last_resume_kind == resume_stop)
4684 {
4685 if (debug_threads)
4686 debug_printf ("already %s LWP %ld at GDB's request\n",
4687 (thread->last_status.kind
4688 == TARGET_WAITKIND_STOPPED)
4689 ? "stopped"
4690 : "stopping",
4691 lwpid_of (thread));
4692
4693 continue;
4694 }
4695
4696 /* Ignore (wildcard) resume requests for already-resumed
4697 threads. */
4698 if (r->resume[ndx].kind != resume_stop
4699 && thread->last_resume_kind != resume_stop)
4700 {
4701 if (debug_threads)
4702 debug_printf ("already %s LWP %ld at GDB's request\n",
4703 (thread->last_resume_kind
4704 == resume_step)
4705 ? "stepping"
4706 : "continuing",
4707 lwpid_of (thread));
4708 continue;
4709 }
4710
4711 /* Don't let wildcard resumes resume fork children that GDB
4712 does not yet know are new fork children. */
4713 if (lwp->fork_relative != NULL)
4714 {
4715 struct inferior_list_entry *inf, *tmp;
4716 struct lwp_info *rel = lwp->fork_relative;
4717
4718 if (rel->status_pending_p
4719 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4720 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4721 {
4722 if (debug_threads)
4723 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4724 lwpid_of (thread));
4725 continue;
4726 }
4727 }
4728
4729 /* If the thread has a pending event that has already been
4730 reported to GDBserver core, but GDB has not pulled the
4731 event out of the vStopped queue yet, likewise, ignore the
4732 (wildcard) resume request. */
4733 if (in_queued_stop_replies (entry->id))
4734 {
4735 if (debug_threads)
4736 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4737 lwpid_of (thread));
4738 continue;
4739 }
4740
4741 lwp->resume = &r->resume[ndx];
4742 thread->last_resume_kind = lwp->resume->kind;
4743
4744 lwp->step_range_start = lwp->resume->step_range_start;
4745 lwp->step_range_end = lwp->resume->step_range_end;
4746
4747 /* If we had a deferred signal to report, dequeue one now.
4748 This can happen if LWP gets more than one signal while
4749 trying to get out of a jump pad. */
4750 if (lwp->stopped
4751 && !lwp->status_pending_p
4752 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4753 {
4754 lwp->status_pending_p = 1;
4755
4756 if (debug_threads)
4757 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4758 "leaving status pending.\n",
4759 WSTOPSIG (lwp->status_pending),
4760 lwpid_of (thread));
4761 }
4762
4763 return 0;
4764 }
4765 }
4766
4767 /* No resume action for this thread. */
4768 lwp->resume = NULL;
4769
4770 return 0;
4771 }
4772
4773 /* find_inferior callback for linux_resume.
4774 Set *FLAG_P if this lwp has an interesting status pending. */
4775
4776 static int
4777 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4778 {
4779 struct thread_info *thread = (struct thread_info *) entry;
4780 struct lwp_info *lwp = get_thread_lwp (thread);
4781
4782 /* LWPs which will not be resumed are not interesting, because
4783 we might not wait for them next time through linux_wait. */
4784 if (lwp->resume == NULL)
4785 return 0;
4786
4787 if (thread_still_has_status_pending_p (thread))
4788 * (int *) flag_p = 1;
4789
4790 return 0;
4791 }
4792
4793 /* Return 1 if this lwp that GDB wants running is stopped at an
4794 internal breakpoint that we need to step over. It assumes that any
4795 required STOP_PC adjustment has already been propagated to the
4796 inferior's regcache. */
4797
4798 static int
4799 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4800 {
4801 struct thread_info *thread = (struct thread_info *) entry;
4802 struct lwp_info *lwp = get_thread_lwp (thread);
4803 struct thread_info *saved_thread;
4804 CORE_ADDR pc;
4805 struct process_info *proc = get_thread_process (thread);
4806
4807 /* GDBserver is skipping the extra traps from the wrapper program,
4808 don't have to do step over. */
4809 if (proc->tdesc == NULL)
4810 return 0;
4811
4812 /* LWPs which will not be resumed are not interesting, because we
4813 might not wait for them next time through linux_wait. */
4814
4815 if (!lwp->stopped)
4816 {
4817 if (debug_threads)
4818 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4819 lwpid_of (thread));
4820 return 0;
4821 }
4822
4823 if (thread->last_resume_kind == resume_stop)
4824 {
4825 if (debug_threads)
4826 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4827 " stopped\n",
4828 lwpid_of (thread));
4829 return 0;
4830 }
4831
4832 gdb_assert (lwp->suspended >= 0);
4833
4834 if (lwp->suspended)
4835 {
4836 if (debug_threads)
4837 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4838 lwpid_of (thread));
4839 return 0;
4840 }
4841
4842 if (lwp->status_pending_p)
4843 {
4844 if (debug_threads)
4845 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4846 " status.\n",
4847 lwpid_of (thread));
4848 return 0;
4849 }
4850
4851 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4852 or we have. */
4853 pc = get_pc (lwp);
4854
4855 /* If the PC has changed since we stopped, then don't do anything,
4856 and let the breakpoint/tracepoint be hit. This happens if, for
4857 instance, GDB handled the decr_pc_after_break subtraction itself,
4858 GDB is OOL stepping this thread, or the user has issued a "jump"
4859 command, or poked thread's registers herself. */
4860 if (pc != lwp->stop_pc)
4861 {
4862 if (debug_threads)
4863 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4864 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4865 lwpid_of (thread),
4866 paddress (lwp->stop_pc), paddress (pc));
4867 return 0;
4868 }
4869
4870 /* On software single step target, resume the inferior with signal
4871 rather than stepping over. */
4872 if (can_software_single_step ()
4873 && lwp->pending_signals != NULL
4874 && lwp_signal_can_be_delivered (lwp))
4875 {
4876 if (debug_threads)
4877 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4878 " signals.\n",
4879 lwpid_of (thread));
4880
4881 return 0;
4882 }
4883
4884 saved_thread = current_thread;
4885 current_thread = thread;
4886
4887 /* We can only step over breakpoints we know about. */
4888 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4889 {
4890 /* Don't step over a breakpoint that GDB expects to hit
4891 though. If the condition is being evaluated on the target's side
4892 and it evaluate to false, step over this breakpoint as well. */
4893 if (gdb_breakpoint_here (pc)
4894 && gdb_condition_true_at_breakpoint (pc)
4895 && gdb_no_commands_at_breakpoint (pc))
4896 {
4897 if (debug_threads)
4898 debug_printf ("Need step over [LWP %ld]? yes, but found"
4899 " GDB breakpoint at 0x%s; skipping step over\n",
4900 lwpid_of (thread), paddress (pc));
4901
4902 current_thread = saved_thread;
4903 return 0;
4904 }
4905 else
4906 {
4907 if (debug_threads)
4908 debug_printf ("Need step over [LWP %ld]? yes, "
4909 "found breakpoint at 0x%s\n",
4910 lwpid_of (thread), paddress (pc));
4911
4912 /* We've found an lwp that needs stepping over --- return 1 so
4913 that find_inferior stops looking. */
4914 current_thread = saved_thread;
4915
4916 return 1;
4917 }
4918 }
4919
4920 current_thread = saved_thread;
4921
4922 if (debug_threads)
4923 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4924 " at 0x%s\n",
4925 lwpid_of (thread), paddress (pc));
4926
4927 return 0;
4928 }
4929
4930 /* Start a step-over operation on LWP. When LWP stopped at a
4931 breakpoint, to make progress, we need to remove the breakpoint out
4932 of the way. If we let other threads run while we do that, they may
4933 pass by the breakpoint location and miss hitting it. To avoid
4934 that, a step-over momentarily stops all threads while LWP is
4935 single-stepped by either hardware or software while the breakpoint
4936 is temporarily uninserted from the inferior. When the single-step
4937 finishes, we reinsert the breakpoint, and let all threads that are
4938 supposed to be running, run again. */
4939
4940 static int
4941 start_step_over (struct lwp_info *lwp)
4942 {
4943 struct thread_info *thread = get_lwp_thread (lwp);
4944 struct thread_info *saved_thread;
4945 CORE_ADDR pc;
4946 int step;
4947
4948 if (debug_threads)
4949 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4950 lwpid_of (thread));
4951
4952 stop_all_lwps (1, lwp);
4953
4954 if (lwp->suspended != 0)
4955 {
4956 internal_error (__FILE__, __LINE__,
4957 "LWP %ld suspended=%d\n", lwpid_of (thread),
4958 lwp->suspended);
4959 }
4960
4961 if (debug_threads)
4962 debug_printf ("Done stopping all threads for step-over.\n");
4963
4964 /* Note, we should always reach here with an already adjusted PC,
4965 either by GDB (if we're resuming due to GDB's request), or by our
4966 caller, if we just finished handling an internal breakpoint GDB
4967 shouldn't care about. */
4968 pc = get_pc (lwp);
4969
4970 saved_thread = current_thread;
4971 current_thread = thread;
4972
4973 lwp->bp_reinsert = pc;
4974 uninsert_breakpoints_at (pc);
4975 uninsert_fast_tracepoint_jumps_at (pc);
4976
4977 step = single_step (lwp);
4978
4979 current_thread = saved_thread;
4980
4981 linux_resume_one_lwp (lwp, step, 0, NULL);
4982
4983 /* Require next event from this LWP. */
4984 step_over_bkpt = thread->entry.id;
4985 return 1;
4986 }
4987
4988 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4989 start_step_over, if still there, and delete any single-step
4990 breakpoints we've set, on non hardware single-step targets. */
4991
4992 static int
4993 finish_step_over (struct lwp_info *lwp)
4994 {
4995 if (lwp->bp_reinsert != 0)
4996 {
4997 struct thread_info *saved_thread = current_thread;
4998
4999 if (debug_threads)
5000 debug_printf ("Finished step over.\n");
5001
5002 current_thread = get_lwp_thread (lwp);
5003
5004 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
5005 may be no breakpoint to reinsert there by now. */
5006 reinsert_breakpoints_at (lwp->bp_reinsert);
5007 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
5008
5009 lwp->bp_reinsert = 0;
5010
5011 /* Delete any single-step breakpoints. No longer needed. We
5012 don't have to worry about other threads hitting this trap,
5013 and later not being able to explain it, because we were
5014 stepping over a breakpoint, and we hold all threads but
5015 LWP stopped while doing that. */
5016 if (!can_hardware_single_step ())
5017 {
5018 gdb_assert (has_single_step_breakpoints (current_thread));
5019 delete_single_step_breakpoints (current_thread);
5020 }
5021
5022 step_over_bkpt = null_ptid;
5023 current_thread = saved_thread;
5024 return 1;
5025 }
5026 else
5027 return 0;
5028 }
5029
5030 /* If there's a step over in progress, wait until all threads stop
5031 (that is, until the stepping thread finishes its step), and
5032 unsuspend all lwps. The stepping thread ends with its status
5033 pending, which is processed later when we get back to processing
5034 events. */
5035
5036 static void
5037 complete_ongoing_step_over (void)
5038 {
5039 if (!ptid_equal (step_over_bkpt, null_ptid))
5040 {
5041 struct lwp_info *lwp;
5042 int wstat;
5043 int ret;
5044
5045 if (debug_threads)
5046 debug_printf ("detach: step over in progress, finish it first\n");
5047
5048 /* Passing NULL_PTID as filter indicates we want all events to
5049 be left pending. Eventually this returns when there are no
5050 unwaited-for children left. */
5051 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
5052 &wstat, __WALL);
5053 gdb_assert (ret == -1);
5054
5055 lwp = find_lwp_pid (step_over_bkpt);
5056 if (lwp != NULL)
5057 finish_step_over (lwp);
5058 step_over_bkpt = null_ptid;
5059 unsuspend_all_lwps (lwp);
5060 }
5061 }
5062
5063 /* This function is called once per thread. We check the thread's resume
5064 request, which will tell us whether to resume, step, or leave the thread
5065 stopped; and what signal, if any, it should be sent.
5066
5067 For threads which we aren't explicitly told otherwise, we preserve
5068 the stepping flag; this is used for stepping over gdbserver-placed
5069 breakpoints.
5070
5071 If pending_flags was set in any thread, we queue any needed
5072 signals, since we won't actually resume. We already have a pending
5073 event to report, so we don't need to preserve any step requests;
5074 they should be re-issued if necessary. */
5075
5076 static int
5077 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
5078 {
5079 struct thread_info *thread = (struct thread_info *) entry;
5080 struct lwp_info *lwp = get_thread_lwp (thread);
5081 int leave_all_stopped = * (int *) arg;
5082 int leave_pending;
5083
5084 if (lwp->resume == NULL)
5085 return 0;
5086
5087 if (lwp->resume->kind == resume_stop)
5088 {
5089 if (debug_threads)
5090 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
5091
5092 if (!lwp->stopped)
5093 {
5094 if (debug_threads)
5095 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
5096
5097 /* Stop the thread, and wait for the event asynchronously,
5098 through the event loop. */
5099 send_sigstop (lwp);
5100 }
5101 else
5102 {
5103 if (debug_threads)
5104 debug_printf ("already stopped LWP %ld\n",
5105 lwpid_of (thread));
5106
5107 /* The LWP may have been stopped in an internal event that
5108 was not meant to be notified back to GDB (e.g., gdbserver
5109 breakpoint), so we should be reporting a stop event in
5110 this case too. */
5111
5112 /* If the thread already has a pending SIGSTOP, this is a
5113 no-op. Otherwise, something later will presumably resume
5114 the thread and this will cause it to cancel any pending
5115 operation, due to last_resume_kind == resume_stop. If
5116 the thread already has a pending status to report, we
5117 will still report it the next time we wait - see
5118 status_pending_p_callback. */
5119
5120 /* If we already have a pending signal to report, then
5121 there's no need to queue a SIGSTOP, as this means we're
5122 midway through moving the LWP out of the jumppad, and we
5123 will report the pending signal as soon as that is
5124 finished. */
5125 if (lwp->pending_signals_to_report == NULL)
5126 send_sigstop (lwp);
5127 }
5128
5129 /* For stop requests, we're done. */
5130 lwp->resume = NULL;
5131 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5132 return 0;
5133 }
5134
5135 /* If this thread which is about to be resumed has a pending status,
5136 then don't resume it - we can just report the pending status.
5137 Likewise if it is suspended, because e.g., another thread is
5138 stepping past a breakpoint. Make sure to queue any signals that
5139 would otherwise be sent. In all-stop mode, we do this decision
5140 based on if *any* thread has a pending status. If there's a
5141 thread that needs the step-over-breakpoint dance, then don't
5142 resume any other thread but that particular one. */
5143 leave_pending = (lwp->suspended
5144 || lwp->status_pending_p
5145 || leave_all_stopped);
5146
5147 /* If we have a new signal, enqueue the signal. */
5148 if (lwp->resume->sig != 0)
5149 {
5150 siginfo_t info, *info_p;
5151
5152 /* If this is the same signal we were previously stopped by,
5153 make sure to queue its siginfo. */
5154 if (WIFSTOPPED (lwp->last_status)
5155 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5156 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5157 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5158 info_p = &info;
5159 else
5160 info_p = NULL;
5161
5162 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5163 }
5164
5165 if (!leave_pending)
5166 {
5167 if (debug_threads)
5168 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5169
5170 proceed_one_lwp (entry, NULL);
5171 }
5172 else
5173 {
5174 if (debug_threads)
5175 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5176 }
5177
5178 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5179 lwp->resume = NULL;
5180 return 0;
5181 }
5182
5183 static void
5184 linux_resume (struct thread_resume *resume_info, size_t n)
5185 {
5186 struct thread_resume_array array = { resume_info, n };
5187 struct thread_info *need_step_over = NULL;
5188 int any_pending;
5189 int leave_all_stopped;
5190
5191 if (debug_threads)
5192 {
5193 debug_enter ();
5194 debug_printf ("linux_resume:\n");
5195 }
5196
5197 find_inferior (&all_threads, linux_set_resume_request, &array);
5198
5199 /* If there is a thread which would otherwise be resumed, which has
5200 a pending status, then don't resume any threads - we can just
5201 report the pending status. Make sure to queue any signals that
5202 would otherwise be sent. In non-stop mode, we'll apply this
5203 logic to each thread individually. We consume all pending events
5204 before considering to start a step-over (in all-stop). */
5205 any_pending = 0;
5206 if (!non_stop)
5207 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
5208
5209 /* If there is a thread which would otherwise be resumed, which is
5210 stopped at a breakpoint that needs stepping over, then don't
5211 resume any threads - have it step over the breakpoint with all
5212 other threads stopped, then resume all threads again. Make sure
5213 to queue any signals that would otherwise be delivered or
5214 queued. */
5215 if (!any_pending && supports_breakpoints ())
5216 need_step_over
5217 = (struct thread_info *) find_inferior (&all_threads,
5218 need_step_over_p, NULL);
5219
5220 leave_all_stopped = (need_step_over != NULL || any_pending);
5221
5222 if (debug_threads)
5223 {
5224 if (need_step_over != NULL)
5225 debug_printf ("Not resuming all, need step over\n");
5226 else if (any_pending)
5227 debug_printf ("Not resuming, all-stop and found "
5228 "an LWP with pending status\n");
5229 else
5230 debug_printf ("Resuming, no pending status or step over needed\n");
5231 }
5232
5233 /* Even if we're leaving threads stopped, queue all signals we'd
5234 otherwise deliver. */
5235 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5236
5237 if (need_step_over)
5238 start_step_over (get_thread_lwp (need_step_over));
5239
5240 if (debug_threads)
5241 {
5242 debug_printf ("linux_resume done\n");
5243 debug_exit ();
5244 }
5245
5246 /* We may have events that were pending that can/should be sent to
5247 the client now. Trigger a linux_wait call. */
5248 if (target_is_async_p ())
5249 async_file_mark ();
5250 }
5251
5252 /* This function is called once per thread. We check the thread's
5253 last resume request, which will tell us whether to resume, step, or
5254 leave the thread stopped. Any signal the client requested to be
5255 delivered has already been enqueued at this point.
5256
5257 If any thread that GDB wants running is stopped at an internal
5258 breakpoint that needs stepping over, we start a step-over operation
5259 on that particular thread, and leave all others stopped. */
5260
5261 static int
5262 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5263 {
5264 struct thread_info *thread = (struct thread_info *) entry;
5265 struct lwp_info *lwp = get_thread_lwp (thread);
5266 int step;
5267
5268 if (lwp == except)
5269 return 0;
5270
5271 if (debug_threads)
5272 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5273
5274 if (!lwp->stopped)
5275 {
5276 if (debug_threads)
5277 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5278 return 0;
5279 }
5280
5281 if (thread->last_resume_kind == resume_stop
5282 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5283 {
5284 if (debug_threads)
5285 debug_printf (" client wants LWP to remain %ld stopped\n",
5286 lwpid_of (thread));
5287 return 0;
5288 }
5289
5290 if (lwp->status_pending_p)
5291 {
5292 if (debug_threads)
5293 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5294 lwpid_of (thread));
5295 return 0;
5296 }
5297
5298 gdb_assert (lwp->suspended >= 0);
5299
5300 if (lwp->suspended)
5301 {
5302 if (debug_threads)
5303 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5304 return 0;
5305 }
5306
5307 if (thread->last_resume_kind == resume_stop
5308 && lwp->pending_signals_to_report == NULL
5309 && (lwp->collecting_fast_tracepoint
5310 == fast_tpoint_collect_result::not_collecting))
5311 {
5312 /* We haven't reported this LWP as stopped yet (otherwise, the
5313 last_status.kind check above would catch it, and we wouldn't
5314 reach here. This LWP may have been momentarily paused by a
5315 stop_all_lwps call while handling for example, another LWP's
5316 step-over. In that case, the pending expected SIGSTOP signal
5317 that was queued at vCont;t handling time will have already
5318 been consumed by wait_for_sigstop, and so we need to requeue
5319 another one here. Note that if the LWP already has a SIGSTOP
5320 pending, this is a no-op. */
5321
5322 if (debug_threads)
5323 debug_printf ("Client wants LWP %ld to stop. "
5324 "Making sure it has a SIGSTOP pending\n",
5325 lwpid_of (thread));
5326
5327 send_sigstop (lwp);
5328 }
5329
5330 if (thread->last_resume_kind == resume_step)
5331 {
5332 if (debug_threads)
5333 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5334 lwpid_of (thread));
5335
5336 /* If resume_step is requested by GDB, install single-step
5337 breakpoints when the thread is about to be actually resumed if
5338 the single-step breakpoints weren't removed. */
5339 if (can_software_single_step ()
5340 && !has_single_step_breakpoints (thread))
5341 install_software_single_step_breakpoints (lwp);
5342
5343 step = maybe_hw_step (thread);
5344 }
5345 else if (lwp->bp_reinsert != 0)
5346 {
5347 if (debug_threads)
5348 debug_printf (" stepping LWP %ld, reinsert set\n",
5349 lwpid_of (thread));
5350
5351 step = maybe_hw_step (thread);
5352 }
5353 else
5354 step = 0;
5355
5356 linux_resume_one_lwp (lwp, step, 0, NULL);
5357 return 0;
5358 }
5359
5360 static int
5361 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5362 {
5363 struct thread_info *thread = (struct thread_info *) entry;
5364 struct lwp_info *lwp = get_thread_lwp (thread);
5365
5366 if (lwp == except)
5367 return 0;
5368
5369 lwp_suspended_decr (lwp);
5370
5371 return proceed_one_lwp (entry, except);
5372 }
5373
5374 /* When we finish a step-over, set threads running again. If there's
5375 another thread that may need a step-over, now's the time to start
5376 it. Eventually, we'll move all threads past their breakpoints. */
5377
5378 static void
5379 proceed_all_lwps (void)
5380 {
5381 struct thread_info *need_step_over;
5382
5383 /* If there is a thread which would otherwise be resumed, which is
5384 stopped at a breakpoint that needs stepping over, then don't
5385 resume any threads - have it step over the breakpoint with all
5386 other threads stopped, then resume all threads again. */
5387
5388 if (supports_breakpoints ())
5389 {
5390 need_step_over
5391 = (struct thread_info *) find_inferior (&all_threads,
5392 need_step_over_p, NULL);
5393
5394 if (need_step_over != NULL)
5395 {
5396 if (debug_threads)
5397 debug_printf ("proceed_all_lwps: found "
5398 "thread %ld needing a step-over\n",
5399 lwpid_of (need_step_over));
5400
5401 start_step_over (get_thread_lwp (need_step_over));
5402 return;
5403 }
5404 }
5405
5406 if (debug_threads)
5407 debug_printf ("Proceeding, no step-over needed\n");
5408
5409 find_inferior (&all_threads, proceed_one_lwp, NULL);
5410 }
5411
5412 /* Stopped LWPs that the client wanted to be running, that don't have
5413 pending statuses, are set to run again, except for EXCEPT, if not
5414 NULL. This undoes a stop_all_lwps call. */
5415
5416 static void
5417 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5418 {
5419 if (debug_threads)
5420 {
5421 debug_enter ();
5422 if (except)
5423 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5424 lwpid_of (get_lwp_thread (except)));
5425 else
5426 debug_printf ("unstopping all lwps\n");
5427 }
5428
5429 if (unsuspend)
5430 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5431 else
5432 find_inferior (&all_threads, proceed_one_lwp, except);
5433
5434 if (debug_threads)
5435 {
5436 debug_printf ("unstop_all_lwps done\n");
5437 debug_exit ();
5438 }
5439 }
5440
5441
5442 #ifdef HAVE_LINUX_REGSETS
5443
5444 #define use_linux_regsets 1
5445
5446 /* Returns true if REGSET has been disabled. */
5447
5448 static int
5449 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5450 {
5451 return (info->disabled_regsets != NULL
5452 && info->disabled_regsets[regset - info->regsets]);
5453 }
5454
5455 /* Disable REGSET. */
5456
5457 static void
5458 disable_regset (struct regsets_info *info, struct regset_info *regset)
5459 {
5460 int dr_offset;
5461
5462 dr_offset = regset - info->regsets;
5463 if (info->disabled_regsets == NULL)
5464 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5465 info->disabled_regsets[dr_offset] = 1;
5466 }
5467
5468 static int
5469 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5470 struct regcache *regcache)
5471 {
5472 struct regset_info *regset;
5473 int saw_general_regs = 0;
5474 int pid;
5475 struct iovec iov;
5476
5477 pid = lwpid_of (current_thread);
5478 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5479 {
5480 void *buf, *data;
5481 int nt_type, res;
5482
5483 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5484 continue;
5485
5486 buf = xmalloc (regset->size);
5487
5488 nt_type = regset->nt_type;
5489 if (nt_type)
5490 {
5491 iov.iov_base = buf;
5492 iov.iov_len = regset->size;
5493 data = (void *) &iov;
5494 }
5495 else
5496 data = buf;
5497
5498 #ifndef __sparc__
5499 res = ptrace (regset->get_request, pid,
5500 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5501 #else
5502 res = ptrace (regset->get_request, pid, data, nt_type);
5503 #endif
5504 if (res < 0)
5505 {
5506 if (errno == EIO)
5507 {
5508 /* If we get EIO on a regset, do not try it again for
5509 this process mode. */
5510 disable_regset (regsets_info, regset);
5511 }
5512 else if (errno == ENODATA)
5513 {
5514 /* ENODATA may be returned if the regset is currently
5515 not "active". This can happen in normal operation,
5516 so suppress the warning in this case. */
5517 }
5518 else if (errno == ESRCH)
5519 {
5520 /* At this point, ESRCH should mean the process is
5521 already gone, in which case we simply ignore attempts
5522 to read its registers. */
5523 }
5524 else
5525 {
5526 char s[256];
5527 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5528 pid);
5529 perror (s);
5530 }
5531 }
5532 else
5533 {
5534 if (regset->type == GENERAL_REGS)
5535 saw_general_regs = 1;
5536 regset->store_function (regcache, buf);
5537 }
5538 free (buf);
5539 }
5540 if (saw_general_regs)
5541 return 0;
5542 else
5543 return 1;
5544 }
5545
5546 static int
5547 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5548 struct regcache *regcache)
5549 {
5550 struct regset_info *regset;
5551 int saw_general_regs = 0;
5552 int pid;
5553 struct iovec iov;
5554
5555 pid = lwpid_of (current_thread);
5556 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5557 {
5558 void *buf, *data;
5559 int nt_type, res;
5560
5561 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5562 || regset->fill_function == NULL)
5563 continue;
5564
5565 buf = xmalloc (regset->size);
5566
5567 /* First fill the buffer with the current register set contents,
5568 in case there are any items in the kernel's regset that are
5569 not in gdbserver's regcache. */
5570
5571 nt_type = regset->nt_type;
5572 if (nt_type)
5573 {
5574 iov.iov_base = buf;
5575 iov.iov_len = regset->size;
5576 data = (void *) &iov;
5577 }
5578 else
5579 data = buf;
5580
5581 #ifndef __sparc__
5582 res = ptrace (regset->get_request, pid,
5583 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5584 #else
5585 res = ptrace (regset->get_request, pid, data, nt_type);
5586 #endif
5587
5588 if (res == 0)
5589 {
5590 /* Then overlay our cached registers on that. */
5591 regset->fill_function (regcache, buf);
5592
5593 /* Only now do we write the register set. */
5594 #ifndef __sparc__
5595 res = ptrace (regset->set_request, pid,
5596 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5597 #else
5598 res = ptrace (regset->set_request, pid, data, nt_type);
5599 #endif
5600 }
5601
5602 if (res < 0)
5603 {
5604 if (errno == EIO)
5605 {
5606 /* If we get EIO on a regset, do not try it again for
5607 this process mode. */
5608 disable_regset (regsets_info, regset);
5609 }
5610 else if (errno == ESRCH)
5611 {
5612 /* At this point, ESRCH should mean the process is
5613 already gone, in which case we simply ignore attempts
5614 to change its registers. See also the related
5615 comment in linux_resume_one_lwp. */
5616 free (buf);
5617 return 0;
5618 }
5619 else
5620 {
5621 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5622 }
5623 }
5624 else if (regset->type == GENERAL_REGS)
5625 saw_general_regs = 1;
5626 free (buf);
5627 }
5628 if (saw_general_regs)
5629 return 0;
5630 else
5631 return 1;
5632 }
5633
5634 #else /* !HAVE_LINUX_REGSETS */
5635
5636 #define use_linux_regsets 0
5637 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5638 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5639
5640 #endif
5641
5642 /* Return 1 if register REGNO is supported by one of the regset ptrace
5643 calls or 0 if it has to be transferred individually. */
5644
5645 static int
5646 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5647 {
5648 unsigned char mask = 1 << (regno % 8);
5649 size_t index = regno / 8;
5650
5651 return (use_linux_regsets
5652 && (regs_info->regset_bitmap == NULL
5653 || (regs_info->regset_bitmap[index] & mask) != 0));
5654 }
5655
5656 #ifdef HAVE_LINUX_USRREGS
5657
5658 static int
5659 register_addr (const struct usrregs_info *usrregs, int regnum)
5660 {
5661 int addr;
5662
5663 if (regnum < 0 || regnum >= usrregs->num_regs)
5664 error ("Invalid register number %d.", regnum);
5665
5666 addr = usrregs->regmap[regnum];
5667
5668 return addr;
5669 }
5670
5671 /* Fetch one register. */
5672 static void
5673 fetch_register (const struct usrregs_info *usrregs,
5674 struct regcache *regcache, int regno)
5675 {
5676 CORE_ADDR regaddr;
5677 int i, size;
5678 char *buf;
5679 int pid;
5680
5681 if (regno >= usrregs->num_regs)
5682 return;
5683 if ((*the_low_target.cannot_fetch_register) (regno))
5684 return;
5685
5686 regaddr = register_addr (usrregs, regno);
5687 if (regaddr == -1)
5688 return;
5689
5690 size = ((register_size (regcache->tdesc, regno)
5691 + sizeof (PTRACE_XFER_TYPE) - 1)
5692 & -sizeof (PTRACE_XFER_TYPE));
5693 buf = (char *) alloca (size);
5694
5695 pid = lwpid_of (current_thread);
5696 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5697 {
5698 errno = 0;
5699 *(PTRACE_XFER_TYPE *) (buf + i) =
5700 ptrace (PTRACE_PEEKUSER, pid,
5701 /* Coerce to a uintptr_t first to avoid potential gcc warning
5702 of coercing an 8 byte integer to a 4 byte pointer. */
5703 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5704 regaddr += sizeof (PTRACE_XFER_TYPE);
5705 if (errno != 0)
5706 error ("reading register %d: %s", regno, strerror (errno));
5707 }
5708
5709 if (the_low_target.supply_ptrace_register)
5710 the_low_target.supply_ptrace_register (regcache, regno, buf);
5711 else
5712 supply_register (regcache, regno, buf);
5713 }
5714
5715 /* Store one register. */
5716 static void
5717 store_register (const struct usrregs_info *usrregs,
5718 struct regcache *regcache, int regno)
5719 {
5720 CORE_ADDR regaddr;
5721 int i, size;
5722 char *buf;
5723 int pid;
5724
5725 if (regno >= usrregs->num_regs)
5726 return;
5727 if ((*the_low_target.cannot_store_register) (regno))
5728 return;
5729
5730 regaddr = register_addr (usrregs, regno);
5731 if (regaddr == -1)
5732 return;
5733
5734 size = ((register_size (regcache->tdesc, regno)
5735 + sizeof (PTRACE_XFER_TYPE) - 1)
5736 & -sizeof (PTRACE_XFER_TYPE));
5737 buf = (char *) alloca (size);
5738 memset (buf, 0, size);
5739
5740 if (the_low_target.collect_ptrace_register)
5741 the_low_target.collect_ptrace_register (regcache, regno, buf);
5742 else
5743 collect_register (regcache, regno, buf);
5744
5745 pid = lwpid_of (current_thread);
5746 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5747 {
5748 errno = 0;
5749 ptrace (PTRACE_POKEUSER, pid,
5750 /* Coerce to a uintptr_t first to avoid potential gcc warning
5751 about coercing an 8 byte integer to a 4 byte pointer. */
5752 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5753 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5754 if (errno != 0)
5755 {
5756 /* At this point, ESRCH should mean the process is
5757 already gone, in which case we simply ignore attempts
5758 to change its registers. See also the related
5759 comment in linux_resume_one_lwp. */
5760 if (errno == ESRCH)
5761 return;
5762
5763 if ((*the_low_target.cannot_store_register) (regno) == 0)
5764 error ("writing register %d: %s", regno, strerror (errno));
5765 }
5766 regaddr += sizeof (PTRACE_XFER_TYPE);
5767 }
5768 }
5769
5770 /* Fetch all registers, or just one, from the child process.
5771 If REGNO is -1, do this for all registers, skipping any that are
5772 assumed to have been retrieved by regsets_fetch_inferior_registers,
5773 unless ALL is non-zero.
5774 Otherwise, REGNO specifies which register (so we can save time). */
5775 static void
5776 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5777 struct regcache *regcache, int regno, int all)
5778 {
5779 struct usrregs_info *usr = regs_info->usrregs;
5780
5781 if (regno == -1)
5782 {
5783 for (regno = 0; regno < usr->num_regs; regno++)
5784 if (all || !linux_register_in_regsets (regs_info, regno))
5785 fetch_register (usr, regcache, regno);
5786 }
5787 else
5788 fetch_register (usr, regcache, regno);
5789 }
5790
5791 /* Store our register values back into the inferior.
5792 If REGNO is -1, do this for all registers, skipping any that are
5793 assumed to have been saved by regsets_store_inferior_registers,
5794 unless ALL is non-zero.
5795 Otherwise, REGNO specifies which register (so we can save time). */
5796 static void
5797 usr_store_inferior_registers (const struct regs_info *regs_info,
5798 struct regcache *regcache, int regno, int all)
5799 {
5800 struct usrregs_info *usr = regs_info->usrregs;
5801
5802 if (regno == -1)
5803 {
5804 for (regno = 0; regno < usr->num_regs; regno++)
5805 if (all || !linux_register_in_regsets (regs_info, regno))
5806 store_register (usr, regcache, regno);
5807 }
5808 else
5809 store_register (usr, regcache, regno);
5810 }
5811
5812 #else /* !HAVE_LINUX_USRREGS */
5813
5814 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5815 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5816
5817 #endif
5818
5819
5820 static void
5821 linux_fetch_registers (struct regcache *regcache, int regno)
5822 {
5823 int use_regsets;
5824 int all = 0;
5825 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5826
5827 if (regno == -1)
5828 {
5829 if (the_low_target.fetch_register != NULL
5830 && regs_info->usrregs != NULL)
5831 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5832 (*the_low_target.fetch_register) (regcache, regno);
5833
5834 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5835 if (regs_info->usrregs != NULL)
5836 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5837 }
5838 else
5839 {
5840 if (the_low_target.fetch_register != NULL
5841 && (*the_low_target.fetch_register) (regcache, regno))
5842 return;
5843
5844 use_regsets = linux_register_in_regsets (regs_info, regno);
5845 if (use_regsets)
5846 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5847 regcache);
5848 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5849 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5850 }
5851 }
5852
5853 static void
5854 linux_store_registers (struct regcache *regcache, int regno)
5855 {
5856 int use_regsets;
5857 int all = 0;
5858 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5859
5860 if (regno == -1)
5861 {
5862 all = regsets_store_inferior_registers (regs_info->regsets_info,
5863 regcache);
5864 if (regs_info->usrregs != NULL)
5865 usr_store_inferior_registers (regs_info, regcache, regno, all);
5866 }
5867 else
5868 {
5869 use_regsets = linux_register_in_regsets (regs_info, regno);
5870 if (use_regsets)
5871 all = regsets_store_inferior_registers (regs_info->regsets_info,
5872 regcache);
5873 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5874 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5875 }
5876 }
5877
5878
5879 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5880 to debugger memory starting at MYADDR. */
5881
5882 static int
5883 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5884 {
5885 int pid = lwpid_of (current_thread);
5886 PTRACE_XFER_TYPE *buffer;
5887 CORE_ADDR addr;
5888 int count;
5889 char filename[64];
5890 int i;
5891 int ret;
5892 int fd;
5893
5894 /* Try using /proc. Don't bother for one word. */
5895 if (len >= 3 * sizeof (long))
5896 {
5897 int bytes;
5898
5899 /* We could keep this file open and cache it - possibly one per
5900 thread. That requires some juggling, but is even faster. */
5901 sprintf (filename, "/proc/%d/mem", pid);
5902 fd = open (filename, O_RDONLY | O_LARGEFILE);
5903 if (fd == -1)
5904 goto no_proc;
5905
5906 /* If pread64 is available, use it. It's faster if the kernel
5907 supports it (only one syscall), and it's 64-bit safe even on
5908 32-bit platforms (for instance, SPARC debugging a SPARC64
5909 application). */
5910 #ifdef HAVE_PREAD64
5911 bytes = pread64 (fd, myaddr, len, memaddr);
5912 #else
5913 bytes = -1;
5914 if (lseek (fd, memaddr, SEEK_SET) != -1)
5915 bytes = read (fd, myaddr, len);
5916 #endif
5917
5918 close (fd);
5919 if (bytes == len)
5920 return 0;
5921
5922 /* Some data was read, we'll try to get the rest with ptrace. */
5923 if (bytes > 0)
5924 {
5925 memaddr += bytes;
5926 myaddr += bytes;
5927 len -= bytes;
5928 }
5929 }
5930
5931 no_proc:
5932 /* Round starting address down to longword boundary. */
5933 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5934 /* Round ending address up; get number of longwords that makes. */
5935 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5936 / sizeof (PTRACE_XFER_TYPE));
5937 /* Allocate buffer of that many longwords. */
5938 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5939
5940 /* Read all the longwords */
5941 errno = 0;
5942 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5943 {
5944 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5945 about coercing an 8 byte integer to a 4 byte pointer. */
5946 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5947 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5948 (PTRACE_TYPE_ARG4) 0);
5949 if (errno)
5950 break;
5951 }
5952 ret = errno;
5953
5954 /* Copy appropriate bytes out of the buffer. */
5955 if (i > 0)
5956 {
5957 i *= sizeof (PTRACE_XFER_TYPE);
5958 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5959 memcpy (myaddr,
5960 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5961 i < len ? i : len);
5962 }
5963
5964 return ret;
5965 }
5966
5967 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5968 memory at MEMADDR. On failure (cannot write to the inferior)
5969 returns the value of errno. Always succeeds if LEN is zero. */
5970
5971 static int
5972 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5973 {
5974 int i;
5975 /* Round starting address down to longword boundary. */
5976 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5977 /* Round ending address up; get number of longwords that makes. */
5978 int count
5979 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5980 / sizeof (PTRACE_XFER_TYPE);
5981
5982 /* Allocate buffer of that many longwords. */
5983 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5984
5985 int pid = lwpid_of (current_thread);
5986
5987 if (len == 0)
5988 {
5989 /* Zero length write always succeeds. */
5990 return 0;
5991 }
5992
5993 if (debug_threads)
5994 {
5995 /* Dump up to four bytes. */
5996 char str[4 * 2 + 1];
5997 char *p = str;
5998 int dump = len < 4 ? len : 4;
5999
6000 for (i = 0; i < dump; i++)
6001 {
6002 sprintf (p, "%02x", myaddr[i]);
6003 p += 2;
6004 }
6005 *p = '\0';
6006
6007 debug_printf ("Writing %s to 0x%08lx in process %d\n",
6008 str, (long) memaddr, pid);
6009 }
6010
6011 /* Fill start and end extra bytes of buffer with existing memory data. */
6012
6013 errno = 0;
6014 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
6015 about coercing an 8 byte integer to a 4 byte pointer. */
6016 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
6017 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6018 (PTRACE_TYPE_ARG4) 0);
6019 if (errno)
6020 return errno;
6021
6022 if (count > 1)
6023 {
6024 errno = 0;
6025 buffer[count - 1]
6026 = ptrace (PTRACE_PEEKTEXT, pid,
6027 /* Coerce to a uintptr_t first to avoid potential gcc warning
6028 about coercing an 8 byte integer to a 4 byte pointer. */
6029 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
6030 * sizeof (PTRACE_XFER_TYPE)),
6031 (PTRACE_TYPE_ARG4) 0);
6032 if (errno)
6033 return errno;
6034 }
6035
6036 /* Copy data to be written over corresponding part of buffer. */
6037
6038 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
6039 myaddr, len);
6040
6041 /* Write the entire buffer. */
6042
6043 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
6044 {
6045 errno = 0;
6046 ptrace (PTRACE_POKETEXT, pid,
6047 /* Coerce to a uintptr_t first to avoid potential gcc warning
6048 about coercing an 8 byte integer to a 4 byte pointer. */
6049 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6050 (PTRACE_TYPE_ARG4) buffer[i]);
6051 if (errno)
6052 return errno;
6053 }
6054
6055 return 0;
6056 }
6057
6058 static void
6059 linux_look_up_symbols (void)
6060 {
6061 #ifdef USE_THREAD_DB
6062 struct process_info *proc = current_process ();
6063
6064 if (proc->priv->thread_db != NULL)
6065 return;
6066
6067 thread_db_init ();
6068 #endif
6069 }
6070
6071 static void
6072 linux_request_interrupt (void)
6073 {
6074 /* Send a SIGINT to the process group. This acts just like the user
6075 typed a ^C on the controlling terminal. */
6076 kill (-signal_pid, SIGINT);
6077 }
6078
6079 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
6080 to debugger memory starting at MYADDR. */
6081
6082 static int
6083 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
6084 {
6085 char filename[PATH_MAX];
6086 int fd, n;
6087 int pid = lwpid_of (current_thread);
6088
6089 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6090
6091 fd = open (filename, O_RDONLY);
6092 if (fd < 0)
6093 return -1;
6094
6095 if (offset != (CORE_ADDR) 0
6096 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6097 n = -1;
6098 else
6099 n = read (fd, myaddr, len);
6100
6101 close (fd);
6102
6103 return n;
6104 }
6105
6106 /* These breakpoint and watchpoint related wrapper functions simply
6107 pass on the function call if the target has registered a
6108 corresponding function. */
6109
6110 static int
6111 linux_supports_z_point_type (char z_type)
6112 {
6113 return (the_low_target.supports_z_point_type != NULL
6114 && the_low_target.supports_z_point_type (z_type));
6115 }
6116
6117 static int
6118 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
6119 int size, struct raw_breakpoint *bp)
6120 {
6121 if (type == raw_bkpt_type_sw)
6122 return insert_memory_breakpoint (bp);
6123 else if (the_low_target.insert_point != NULL)
6124 return the_low_target.insert_point (type, addr, size, bp);
6125 else
6126 /* Unsupported (see target.h). */
6127 return 1;
6128 }
6129
6130 static int
6131 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6132 int size, struct raw_breakpoint *bp)
6133 {
6134 if (type == raw_bkpt_type_sw)
6135 return remove_memory_breakpoint (bp);
6136 else if (the_low_target.remove_point != NULL)
6137 return the_low_target.remove_point (type, addr, size, bp);
6138 else
6139 /* Unsupported (see target.h). */
6140 return 1;
6141 }
6142
6143 /* Implement the to_stopped_by_sw_breakpoint target_ops
6144 method. */
6145
6146 static int
6147 linux_stopped_by_sw_breakpoint (void)
6148 {
6149 struct lwp_info *lwp = get_thread_lwp (current_thread);
6150
6151 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6152 }
6153
6154 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6155 method. */
6156
6157 static int
6158 linux_supports_stopped_by_sw_breakpoint (void)
6159 {
6160 return USE_SIGTRAP_SIGINFO;
6161 }
6162
6163 /* Implement the to_stopped_by_hw_breakpoint target_ops
6164 method. */
6165
6166 static int
6167 linux_stopped_by_hw_breakpoint (void)
6168 {
6169 struct lwp_info *lwp = get_thread_lwp (current_thread);
6170
6171 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6172 }
6173
6174 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6175 method. */
6176
6177 static int
6178 linux_supports_stopped_by_hw_breakpoint (void)
6179 {
6180 return USE_SIGTRAP_SIGINFO;
6181 }
6182
6183 /* Implement the supports_hardware_single_step target_ops method. */
6184
6185 static int
6186 linux_supports_hardware_single_step (void)
6187 {
6188 return can_hardware_single_step ();
6189 }
6190
6191 static int
6192 linux_supports_software_single_step (void)
6193 {
6194 return can_software_single_step ();
6195 }
6196
6197 static int
6198 linux_stopped_by_watchpoint (void)
6199 {
6200 struct lwp_info *lwp = get_thread_lwp (current_thread);
6201
6202 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6203 }
6204
6205 static CORE_ADDR
6206 linux_stopped_data_address (void)
6207 {
6208 struct lwp_info *lwp = get_thread_lwp (current_thread);
6209
6210 return lwp->stopped_data_address;
6211 }
6212
6213 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6214 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6215 && defined(PT_TEXT_END_ADDR)
6216
6217 /* This is only used for targets that define PT_TEXT_ADDR,
6218 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6219 the target has different ways of acquiring this information, like
6220 loadmaps. */
6221
6222 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6223 to tell gdb about. */
6224
6225 static int
6226 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6227 {
6228 unsigned long text, text_end, data;
6229 int pid = lwpid_of (current_thread);
6230
6231 errno = 0;
6232
6233 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6234 (PTRACE_TYPE_ARG4) 0);
6235 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6236 (PTRACE_TYPE_ARG4) 0);
6237 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6238 (PTRACE_TYPE_ARG4) 0);
6239
6240 if (errno == 0)
6241 {
6242 /* Both text and data offsets produced at compile-time (and so
6243 used by gdb) are relative to the beginning of the program,
6244 with the data segment immediately following the text segment.
6245 However, the actual runtime layout in memory may put the data
6246 somewhere else, so when we send gdb a data base-address, we
6247 use the real data base address and subtract the compile-time
6248 data base-address from it (which is just the length of the
6249 text segment). BSS immediately follows data in both
6250 cases. */
6251 *text_p = text;
6252 *data_p = data - (text_end - text);
6253
6254 return 1;
6255 }
6256 return 0;
6257 }
6258 #endif
6259
6260 static int
6261 linux_qxfer_osdata (const char *annex,
6262 unsigned char *readbuf, unsigned const char *writebuf,
6263 CORE_ADDR offset, int len)
6264 {
6265 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6266 }
6267
6268 /* Convert a native/host siginfo object, into/from the siginfo in the
6269 layout of the inferiors' architecture. */
6270
6271 static void
6272 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6273 {
6274 int done = 0;
6275
6276 if (the_low_target.siginfo_fixup != NULL)
6277 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6278
6279 /* If there was no callback, or the callback didn't do anything,
6280 then just do a straight memcpy. */
6281 if (!done)
6282 {
6283 if (direction == 1)
6284 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6285 else
6286 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6287 }
6288 }
6289
6290 static int
6291 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6292 unsigned const char *writebuf, CORE_ADDR offset, int len)
6293 {
6294 int pid;
6295 siginfo_t siginfo;
6296 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6297
6298 if (current_thread == NULL)
6299 return -1;
6300
6301 pid = lwpid_of (current_thread);
6302
6303 if (debug_threads)
6304 debug_printf ("%s siginfo for lwp %d.\n",
6305 readbuf != NULL ? "Reading" : "Writing",
6306 pid);
6307
6308 if (offset >= sizeof (siginfo))
6309 return -1;
6310
6311 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6312 return -1;
6313
6314 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6315 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6316 inferior with a 64-bit GDBSERVER should look the same as debugging it
6317 with a 32-bit GDBSERVER, we need to convert it. */
6318 siginfo_fixup (&siginfo, inf_siginfo, 0);
6319
6320 if (offset + len > sizeof (siginfo))
6321 len = sizeof (siginfo) - offset;
6322
6323 if (readbuf != NULL)
6324 memcpy (readbuf, inf_siginfo + offset, len);
6325 else
6326 {
6327 memcpy (inf_siginfo + offset, writebuf, len);
6328
6329 /* Convert back to ptrace layout before flushing it out. */
6330 siginfo_fixup (&siginfo, inf_siginfo, 1);
6331
6332 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6333 return -1;
6334 }
6335
6336 return len;
6337 }
6338
6339 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6340 so we notice when children change state; as the handler for the
6341 sigsuspend in my_waitpid. */
6342
6343 static void
6344 sigchld_handler (int signo)
6345 {
6346 int old_errno = errno;
6347
6348 if (debug_threads)
6349 {
6350 do
6351 {
6352 /* fprintf is not async-signal-safe, so call write
6353 directly. */
6354 if (write (2, "sigchld_handler\n",
6355 sizeof ("sigchld_handler\n") - 1) < 0)
6356 break; /* just ignore */
6357 } while (0);
6358 }
6359
6360 if (target_is_async_p ())
6361 async_file_mark (); /* trigger a linux_wait */
6362
6363 errno = old_errno;
6364 }
6365
6366 static int
6367 linux_supports_non_stop (void)
6368 {
6369 return 1;
6370 }
6371
6372 static int
6373 linux_async (int enable)
6374 {
6375 int previous = target_is_async_p ();
6376
6377 if (debug_threads)
6378 debug_printf ("linux_async (%d), previous=%d\n",
6379 enable, previous);
6380
6381 if (previous != enable)
6382 {
6383 sigset_t mask;
6384 sigemptyset (&mask);
6385 sigaddset (&mask, SIGCHLD);
6386
6387 sigprocmask (SIG_BLOCK, &mask, NULL);
6388
6389 if (enable)
6390 {
6391 if (pipe (linux_event_pipe) == -1)
6392 {
6393 linux_event_pipe[0] = -1;
6394 linux_event_pipe[1] = -1;
6395 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6396
6397 warning ("creating event pipe failed.");
6398 return previous;
6399 }
6400
6401 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6402 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6403
6404 /* Register the event loop handler. */
6405 add_file_handler (linux_event_pipe[0],
6406 handle_target_event, NULL);
6407
6408 /* Always trigger a linux_wait. */
6409 async_file_mark ();
6410 }
6411 else
6412 {
6413 delete_file_handler (linux_event_pipe[0]);
6414
6415 close (linux_event_pipe[0]);
6416 close (linux_event_pipe[1]);
6417 linux_event_pipe[0] = -1;
6418 linux_event_pipe[1] = -1;
6419 }
6420
6421 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6422 }
6423
6424 return previous;
6425 }
6426
6427 static int
6428 linux_start_non_stop (int nonstop)
6429 {
6430 /* Register or unregister from event-loop accordingly. */
6431 linux_async (nonstop);
6432
6433 if (target_is_async_p () != (nonstop != 0))
6434 return -1;
6435
6436 return 0;
6437 }
6438
6439 static int
6440 linux_supports_multi_process (void)
6441 {
6442 return 1;
6443 }
6444
6445 /* Check if fork events are supported. */
6446
6447 static int
6448 linux_supports_fork_events (void)
6449 {
6450 return linux_supports_tracefork ();
6451 }
6452
6453 /* Check if vfork events are supported. */
6454
6455 static int
6456 linux_supports_vfork_events (void)
6457 {
6458 return linux_supports_tracefork ();
6459 }
6460
6461 /* Check if exec events are supported. */
6462
6463 static int
6464 linux_supports_exec_events (void)
6465 {
6466 return linux_supports_traceexec ();
6467 }
6468
6469 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6470 options for the specified lwp. */
6471
6472 static int
6473 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6474 void *args)
6475 {
6476 struct thread_info *thread = (struct thread_info *) entry;
6477 struct lwp_info *lwp = get_thread_lwp (thread);
6478
6479 if (!lwp->stopped)
6480 {
6481 /* Stop the lwp so we can modify its ptrace options. */
6482 lwp->must_set_ptrace_flags = 1;
6483 linux_stop_lwp (lwp);
6484 }
6485 else
6486 {
6487 /* Already stopped; go ahead and set the ptrace options. */
6488 struct process_info *proc = find_process_pid (pid_of (thread));
6489 int options = linux_low_ptrace_options (proc->attached);
6490
6491 linux_enable_event_reporting (lwpid_of (thread), options);
6492 lwp->must_set_ptrace_flags = 0;
6493 }
6494
6495 return 0;
6496 }
6497
6498 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6499 ptrace flags for all inferiors. This is in case the new GDB connection
6500 doesn't support the same set of events that the previous one did. */
6501
6502 static void
6503 linux_handle_new_gdb_connection (void)
6504 {
6505 pid_t pid;
6506
6507 /* Request that all the lwps reset their ptrace options. */
6508 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6509 }
6510
6511 static int
6512 linux_supports_disable_randomization (void)
6513 {
6514 #ifdef HAVE_PERSONALITY
6515 return 1;
6516 #else
6517 return 0;
6518 #endif
6519 }
6520
6521 static int
6522 linux_supports_agent (void)
6523 {
6524 return 1;
6525 }
6526
6527 static int
6528 linux_supports_range_stepping (void)
6529 {
6530 if (can_software_single_step ())
6531 return 1;
6532 if (*the_low_target.supports_range_stepping == NULL)
6533 return 0;
6534
6535 return (*the_low_target.supports_range_stepping) ();
6536 }
6537
6538 /* Enumerate spufs IDs for process PID. */
6539 static int
6540 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6541 {
6542 int pos = 0;
6543 int written = 0;
6544 char path[128];
6545 DIR *dir;
6546 struct dirent *entry;
6547
6548 sprintf (path, "/proc/%ld/fd", pid);
6549 dir = opendir (path);
6550 if (!dir)
6551 return -1;
6552
6553 rewinddir (dir);
6554 while ((entry = readdir (dir)) != NULL)
6555 {
6556 struct stat st;
6557 struct statfs stfs;
6558 int fd;
6559
6560 fd = atoi (entry->d_name);
6561 if (!fd)
6562 continue;
6563
6564 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6565 if (stat (path, &st) != 0)
6566 continue;
6567 if (!S_ISDIR (st.st_mode))
6568 continue;
6569
6570 if (statfs (path, &stfs) != 0)
6571 continue;
6572 if (stfs.f_type != SPUFS_MAGIC)
6573 continue;
6574
6575 if (pos >= offset && pos + 4 <= offset + len)
6576 {
6577 *(unsigned int *)(buf + pos - offset) = fd;
6578 written += 4;
6579 }
6580 pos += 4;
6581 }
6582
6583 closedir (dir);
6584 return written;
6585 }
6586
6587 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6588 object type, using the /proc file system. */
6589 static int
6590 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6591 unsigned const char *writebuf,
6592 CORE_ADDR offset, int len)
6593 {
6594 long pid = lwpid_of (current_thread);
6595 char buf[128];
6596 int fd = 0;
6597 int ret = 0;
6598
6599 if (!writebuf && !readbuf)
6600 return -1;
6601
6602 if (!*annex)
6603 {
6604 if (!readbuf)
6605 return -1;
6606 else
6607 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6608 }
6609
6610 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6611 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6612 if (fd <= 0)
6613 return -1;
6614
6615 if (offset != 0
6616 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6617 {
6618 close (fd);
6619 return 0;
6620 }
6621
6622 if (writebuf)
6623 ret = write (fd, writebuf, (size_t) len);
6624 else
6625 ret = read (fd, readbuf, (size_t) len);
6626
6627 close (fd);
6628 return ret;
6629 }
6630
6631 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6632 struct target_loadseg
6633 {
6634 /* Core address to which the segment is mapped. */
6635 Elf32_Addr addr;
6636 /* VMA recorded in the program header. */
6637 Elf32_Addr p_vaddr;
6638 /* Size of this segment in memory. */
6639 Elf32_Word p_memsz;
6640 };
6641
6642 # if defined PT_GETDSBT
6643 struct target_loadmap
6644 {
6645 /* Protocol version number, must be zero. */
6646 Elf32_Word version;
6647 /* Pointer to the DSBT table, its size, and the DSBT index. */
6648 unsigned *dsbt_table;
6649 unsigned dsbt_size, dsbt_index;
6650 /* Number of segments in this map. */
6651 Elf32_Word nsegs;
6652 /* The actual memory map. */
6653 struct target_loadseg segs[/*nsegs*/];
6654 };
6655 # define LINUX_LOADMAP PT_GETDSBT
6656 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6657 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6658 # else
6659 struct target_loadmap
6660 {
6661 /* Protocol version number, must be zero. */
6662 Elf32_Half version;
6663 /* Number of segments in this map. */
6664 Elf32_Half nsegs;
6665 /* The actual memory map. */
6666 struct target_loadseg segs[/*nsegs*/];
6667 };
6668 # define LINUX_LOADMAP PTRACE_GETFDPIC
6669 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6670 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6671 # endif
6672
6673 static int
6674 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6675 unsigned char *myaddr, unsigned int len)
6676 {
6677 int pid = lwpid_of (current_thread);
6678 int addr = -1;
6679 struct target_loadmap *data = NULL;
6680 unsigned int actual_length, copy_length;
6681
6682 if (strcmp (annex, "exec") == 0)
6683 addr = (int) LINUX_LOADMAP_EXEC;
6684 else if (strcmp (annex, "interp") == 0)
6685 addr = (int) LINUX_LOADMAP_INTERP;
6686 else
6687 return -1;
6688
6689 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6690 return -1;
6691
6692 if (data == NULL)
6693 return -1;
6694
6695 actual_length = sizeof (struct target_loadmap)
6696 + sizeof (struct target_loadseg) * data->nsegs;
6697
6698 if (offset < 0 || offset > actual_length)
6699 return -1;
6700
6701 copy_length = actual_length - offset < len ? actual_length - offset : len;
6702 memcpy (myaddr, (char *) data + offset, copy_length);
6703 return copy_length;
6704 }
6705 #else
6706 # define linux_read_loadmap NULL
6707 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6708
6709 static void
6710 linux_process_qsupported (char **features, int count)
6711 {
6712 if (the_low_target.process_qsupported != NULL)
6713 the_low_target.process_qsupported (features, count);
6714 }
6715
6716 static int
6717 linux_supports_catch_syscall (void)
6718 {
6719 return (the_low_target.get_syscall_trapinfo != NULL
6720 && linux_supports_tracesysgood ());
6721 }
6722
6723 static int
6724 linux_get_ipa_tdesc_idx (void)
6725 {
6726 if (the_low_target.get_ipa_tdesc_idx == NULL)
6727 return 0;
6728
6729 return (*the_low_target.get_ipa_tdesc_idx) ();
6730 }
6731
6732 static int
6733 linux_supports_tracepoints (void)
6734 {
6735 if (*the_low_target.supports_tracepoints == NULL)
6736 return 0;
6737
6738 return (*the_low_target.supports_tracepoints) ();
6739 }
6740
6741 static CORE_ADDR
6742 linux_read_pc (struct regcache *regcache)
6743 {
6744 if (the_low_target.get_pc == NULL)
6745 return 0;
6746
6747 return (*the_low_target.get_pc) (regcache);
6748 }
6749
6750 static void
6751 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6752 {
6753 gdb_assert (the_low_target.set_pc != NULL);
6754
6755 (*the_low_target.set_pc) (regcache, pc);
6756 }
6757
6758 static int
6759 linux_thread_stopped (struct thread_info *thread)
6760 {
6761 return get_thread_lwp (thread)->stopped;
6762 }
6763
6764 /* This exposes stop-all-threads functionality to other modules. */
6765
6766 static void
6767 linux_pause_all (int freeze)
6768 {
6769 stop_all_lwps (freeze, NULL);
6770 }
6771
6772 /* This exposes unstop-all-threads functionality to other gdbserver
6773 modules. */
6774
6775 static void
6776 linux_unpause_all (int unfreeze)
6777 {
6778 unstop_all_lwps (unfreeze, NULL);
6779 }
6780
6781 static int
6782 linux_prepare_to_access_memory (void)
6783 {
6784 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6785 running LWP. */
6786 if (non_stop)
6787 linux_pause_all (1);
6788 return 0;
6789 }
6790
6791 static void
6792 linux_done_accessing_memory (void)
6793 {
6794 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6795 running LWP. */
6796 if (non_stop)
6797 linux_unpause_all (1);
6798 }
6799
6800 static int
6801 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6802 CORE_ADDR collector,
6803 CORE_ADDR lockaddr,
6804 ULONGEST orig_size,
6805 CORE_ADDR *jump_entry,
6806 CORE_ADDR *trampoline,
6807 ULONGEST *trampoline_size,
6808 unsigned char *jjump_pad_insn,
6809 ULONGEST *jjump_pad_insn_size,
6810 CORE_ADDR *adjusted_insn_addr,
6811 CORE_ADDR *adjusted_insn_addr_end,
6812 char *err)
6813 {
6814 return (*the_low_target.install_fast_tracepoint_jump_pad)
6815 (tpoint, tpaddr, collector, lockaddr, orig_size,
6816 jump_entry, trampoline, trampoline_size,
6817 jjump_pad_insn, jjump_pad_insn_size,
6818 adjusted_insn_addr, adjusted_insn_addr_end,
6819 err);
6820 }
6821
6822 static struct emit_ops *
6823 linux_emit_ops (void)
6824 {
6825 if (the_low_target.emit_ops != NULL)
6826 return (*the_low_target.emit_ops) ();
6827 else
6828 return NULL;
6829 }
6830
6831 static int
6832 linux_get_min_fast_tracepoint_insn_len (void)
6833 {
6834 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6835 }
6836
6837 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6838
6839 static int
6840 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6841 CORE_ADDR *phdr_memaddr, int *num_phdr)
6842 {
6843 char filename[PATH_MAX];
6844 int fd;
6845 const int auxv_size = is_elf64
6846 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6847 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6848
6849 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6850
6851 fd = open (filename, O_RDONLY);
6852 if (fd < 0)
6853 return 1;
6854
6855 *phdr_memaddr = 0;
6856 *num_phdr = 0;
6857 while (read (fd, buf, auxv_size) == auxv_size
6858 && (*phdr_memaddr == 0 || *num_phdr == 0))
6859 {
6860 if (is_elf64)
6861 {
6862 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6863
6864 switch (aux->a_type)
6865 {
6866 case AT_PHDR:
6867 *phdr_memaddr = aux->a_un.a_val;
6868 break;
6869 case AT_PHNUM:
6870 *num_phdr = aux->a_un.a_val;
6871 break;
6872 }
6873 }
6874 else
6875 {
6876 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6877
6878 switch (aux->a_type)
6879 {
6880 case AT_PHDR:
6881 *phdr_memaddr = aux->a_un.a_val;
6882 break;
6883 case AT_PHNUM:
6884 *num_phdr = aux->a_un.a_val;
6885 break;
6886 }
6887 }
6888 }
6889
6890 close (fd);
6891
6892 if (*phdr_memaddr == 0 || *num_phdr == 0)
6893 {
6894 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6895 "phdr_memaddr = %ld, phdr_num = %d",
6896 (long) *phdr_memaddr, *num_phdr);
6897 return 2;
6898 }
6899
6900 return 0;
6901 }
6902
6903 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6904
6905 static CORE_ADDR
6906 get_dynamic (const int pid, const int is_elf64)
6907 {
6908 CORE_ADDR phdr_memaddr, relocation;
6909 int num_phdr, i;
6910 unsigned char *phdr_buf;
6911 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6912
6913 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6914 return 0;
6915
6916 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6917 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6918
6919 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6920 return 0;
6921
6922 /* Compute relocation: it is expected to be 0 for "regular" executables,
6923 non-zero for PIE ones. */
6924 relocation = -1;
6925 for (i = 0; relocation == -1 && i < num_phdr; i++)
6926 if (is_elf64)
6927 {
6928 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6929
6930 if (p->p_type == PT_PHDR)
6931 relocation = phdr_memaddr - p->p_vaddr;
6932 }
6933 else
6934 {
6935 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6936
6937 if (p->p_type == PT_PHDR)
6938 relocation = phdr_memaddr - p->p_vaddr;
6939 }
6940
6941 if (relocation == -1)
6942 {
6943 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6944 any real world executables, including PIE executables, have always
6945 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6946 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6947 or present DT_DEBUG anyway (fpc binaries are statically linked).
6948
6949 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6950
6951 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6952
6953 return 0;
6954 }
6955
6956 for (i = 0; i < num_phdr; i++)
6957 {
6958 if (is_elf64)
6959 {
6960 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6961
6962 if (p->p_type == PT_DYNAMIC)
6963 return p->p_vaddr + relocation;
6964 }
6965 else
6966 {
6967 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6968
6969 if (p->p_type == PT_DYNAMIC)
6970 return p->p_vaddr + relocation;
6971 }
6972 }
6973
6974 return 0;
6975 }
6976
6977 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6978 can be 0 if the inferior does not yet have the library list initialized.
6979 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6980 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6981
6982 static CORE_ADDR
6983 get_r_debug (const int pid, const int is_elf64)
6984 {
6985 CORE_ADDR dynamic_memaddr;
6986 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6987 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6988 CORE_ADDR map = -1;
6989
6990 dynamic_memaddr = get_dynamic (pid, is_elf64);
6991 if (dynamic_memaddr == 0)
6992 return map;
6993
6994 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6995 {
6996 if (is_elf64)
6997 {
6998 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6999 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
7000 union
7001 {
7002 Elf64_Xword map;
7003 unsigned char buf[sizeof (Elf64_Xword)];
7004 }
7005 rld_map;
7006 #endif
7007 #ifdef DT_MIPS_RLD_MAP
7008 if (dyn->d_tag == DT_MIPS_RLD_MAP)
7009 {
7010 if (linux_read_memory (dyn->d_un.d_val,
7011 rld_map.buf, sizeof (rld_map.buf)) == 0)
7012 return rld_map.map;
7013 else
7014 break;
7015 }
7016 #endif /* DT_MIPS_RLD_MAP */
7017 #ifdef DT_MIPS_RLD_MAP_REL
7018 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7019 {
7020 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7021 rld_map.buf, sizeof (rld_map.buf)) == 0)
7022 return rld_map.map;
7023 else
7024 break;
7025 }
7026 #endif /* DT_MIPS_RLD_MAP_REL */
7027
7028 if (dyn->d_tag == DT_DEBUG && map == -1)
7029 map = dyn->d_un.d_val;
7030
7031 if (dyn->d_tag == DT_NULL)
7032 break;
7033 }
7034 else
7035 {
7036 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
7037 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
7038 union
7039 {
7040 Elf32_Word map;
7041 unsigned char buf[sizeof (Elf32_Word)];
7042 }
7043 rld_map;
7044 #endif
7045 #ifdef DT_MIPS_RLD_MAP
7046 if (dyn->d_tag == DT_MIPS_RLD_MAP)
7047 {
7048 if (linux_read_memory (dyn->d_un.d_val,
7049 rld_map.buf, sizeof (rld_map.buf)) == 0)
7050 return rld_map.map;
7051 else
7052 break;
7053 }
7054 #endif /* DT_MIPS_RLD_MAP */
7055 #ifdef DT_MIPS_RLD_MAP_REL
7056 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7057 {
7058 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7059 rld_map.buf, sizeof (rld_map.buf)) == 0)
7060 return rld_map.map;
7061 else
7062 break;
7063 }
7064 #endif /* DT_MIPS_RLD_MAP_REL */
7065
7066 if (dyn->d_tag == DT_DEBUG && map == -1)
7067 map = dyn->d_un.d_val;
7068
7069 if (dyn->d_tag == DT_NULL)
7070 break;
7071 }
7072
7073 dynamic_memaddr += dyn_size;
7074 }
7075
7076 return map;
7077 }
7078
7079 /* Read one pointer from MEMADDR in the inferior. */
7080
7081 static int
7082 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
7083 {
7084 int ret;
7085
7086 /* Go through a union so this works on either big or little endian
7087 hosts, when the inferior's pointer size is smaller than the size
7088 of CORE_ADDR. It is assumed the inferior's endianness is the
7089 same of the superior's. */
7090 union
7091 {
7092 CORE_ADDR core_addr;
7093 unsigned int ui;
7094 unsigned char uc;
7095 } addr;
7096
7097 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
7098 if (ret == 0)
7099 {
7100 if (ptr_size == sizeof (CORE_ADDR))
7101 *ptr = addr.core_addr;
7102 else if (ptr_size == sizeof (unsigned int))
7103 *ptr = addr.ui;
7104 else
7105 gdb_assert_not_reached ("unhandled pointer size");
7106 }
7107 return ret;
7108 }
7109
7110 struct link_map_offsets
7111 {
7112 /* Offset and size of r_debug.r_version. */
7113 int r_version_offset;
7114
7115 /* Offset and size of r_debug.r_map. */
7116 int r_map_offset;
7117
7118 /* Offset to l_addr field in struct link_map. */
7119 int l_addr_offset;
7120
7121 /* Offset to l_name field in struct link_map. */
7122 int l_name_offset;
7123
7124 /* Offset to l_ld field in struct link_map. */
7125 int l_ld_offset;
7126
7127 /* Offset to l_next field in struct link_map. */
7128 int l_next_offset;
7129
7130 /* Offset to l_prev field in struct link_map. */
7131 int l_prev_offset;
7132 };
7133
7134 /* Construct qXfer:libraries-svr4:read reply. */
7135
7136 static int
7137 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
7138 unsigned const char *writebuf,
7139 CORE_ADDR offset, int len)
7140 {
7141 char *document;
7142 unsigned document_len;
7143 struct process_info_private *const priv = current_process ()->priv;
7144 char filename[PATH_MAX];
7145 int pid, is_elf64;
7146
7147 static const struct link_map_offsets lmo_32bit_offsets =
7148 {
7149 0, /* r_version offset. */
7150 4, /* r_debug.r_map offset. */
7151 0, /* l_addr offset in link_map. */
7152 4, /* l_name offset in link_map. */
7153 8, /* l_ld offset in link_map. */
7154 12, /* l_next offset in link_map. */
7155 16 /* l_prev offset in link_map. */
7156 };
7157
7158 static const struct link_map_offsets lmo_64bit_offsets =
7159 {
7160 0, /* r_version offset. */
7161 8, /* r_debug.r_map offset. */
7162 0, /* l_addr offset in link_map. */
7163 8, /* l_name offset in link_map. */
7164 16, /* l_ld offset in link_map. */
7165 24, /* l_next offset in link_map. */
7166 32 /* l_prev offset in link_map. */
7167 };
7168 const struct link_map_offsets *lmo;
7169 unsigned int machine;
7170 int ptr_size;
7171 CORE_ADDR lm_addr = 0, lm_prev = 0;
7172 int allocated = 1024;
7173 char *p;
7174 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7175 int header_done = 0;
7176
7177 if (writebuf != NULL)
7178 return -2;
7179 if (readbuf == NULL)
7180 return -1;
7181
7182 pid = lwpid_of (current_thread);
7183 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7184 is_elf64 = elf_64_file_p (filename, &machine);
7185 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7186 ptr_size = is_elf64 ? 8 : 4;
7187
7188 while (annex[0] != '\0')
7189 {
7190 const char *sep;
7191 CORE_ADDR *addrp;
7192 int len;
7193
7194 sep = strchr (annex, '=');
7195 if (sep == NULL)
7196 break;
7197
7198 len = sep - annex;
7199 if (len == 5 && startswith (annex, "start"))
7200 addrp = &lm_addr;
7201 else if (len == 4 && startswith (annex, "prev"))
7202 addrp = &lm_prev;
7203 else
7204 {
7205 annex = strchr (sep, ';');
7206 if (annex == NULL)
7207 break;
7208 annex++;
7209 continue;
7210 }
7211
7212 annex = decode_address_to_semicolon (addrp, sep + 1);
7213 }
7214
7215 if (lm_addr == 0)
7216 {
7217 int r_version = 0;
7218
7219 if (priv->r_debug == 0)
7220 priv->r_debug = get_r_debug (pid, is_elf64);
7221
7222 /* We failed to find DT_DEBUG. Such situation will not change
7223 for this inferior - do not retry it. Report it to GDB as
7224 E01, see for the reasons at the GDB solib-svr4.c side. */
7225 if (priv->r_debug == (CORE_ADDR) -1)
7226 return -1;
7227
7228 if (priv->r_debug != 0)
7229 {
7230 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7231 (unsigned char *) &r_version,
7232 sizeof (r_version)) != 0
7233 || r_version != 1)
7234 {
7235 warning ("unexpected r_debug version %d", r_version);
7236 }
7237 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7238 &lm_addr, ptr_size) != 0)
7239 {
7240 warning ("unable to read r_map from 0x%lx",
7241 (long) priv->r_debug + lmo->r_map_offset);
7242 }
7243 }
7244 }
7245
7246 document = (char *) xmalloc (allocated);
7247 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7248 p = document + strlen (document);
7249
7250 while (lm_addr
7251 && read_one_ptr (lm_addr + lmo->l_name_offset,
7252 &l_name, ptr_size) == 0
7253 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7254 &l_addr, ptr_size) == 0
7255 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7256 &l_ld, ptr_size) == 0
7257 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7258 &l_prev, ptr_size) == 0
7259 && read_one_ptr (lm_addr + lmo->l_next_offset,
7260 &l_next, ptr_size) == 0)
7261 {
7262 unsigned char libname[PATH_MAX];
7263
7264 if (lm_prev != l_prev)
7265 {
7266 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7267 (long) lm_prev, (long) l_prev);
7268 break;
7269 }
7270
7271 /* Ignore the first entry even if it has valid name as the first entry
7272 corresponds to the main executable. The first entry should not be
7273 skipped if the dynamic loader was loaded late by a static executable
7274 (see solib-svr4.c parameter ignore_first). But in such case the main
7275 executable does not have PT_DYNAMIC present and this function already
7276 exited above due to failed get_r_debug. */
7277 if (lm_prev == 0)
7278 {
7279 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7280 p = p + strlen (p);
7281 }
7282 else
7283 {
7284 /* Not checking for error because reading may stop before
7285 we've got PATH_MAX worth of characters. */
7286 libname[0] = '\0';
7287 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7288 libname[sizeof (libname) - 1] = '\0';
7289 if (libname[0] != '\0')
7290 {
7291 /* 6x the size for xml_escape_text below. */
7292 size_t len = 6 * strlen ((char *) libname);
7293 char *name;
7294
7295 if (!header_done)
7296 {
7297 /* Terminate `<library-list-svr4'. */
7298 *p++ = '>';
7299 header_done = 1;
7300 }
7301
7302 while (allocated < p - document + len + 200)
7303 {
7304 /* Expand to guarantee sufficient storage. */
7305 uintptr_t document_len = p - document;
7306
7307 document = (char *) xrealloc (document, 2 * allocated);
7308 allocated *= 2;
7309 p = document + document_len;
7310 }
7311
7312 name = xml_escape_text ((char *) libname);
7313 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7314 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7315 name, (unsigned long) lm_addr,
7316 (unsigned long) l_addr, (unsigned long) l_ld);
7317 free (name);
7318 }
7319 }
7320
7321 lm_prev = lm_addr;
7322 lm_addr = l_next;
7323 }
7324
7325 if (!header_done)
7326 {
7327 /* Empty list; terminate `<library-list-svr4'. */
7328 strcpy (p, "/>");
7329 }
7330 else
7331 strcpy (p, "</library-list-svr4>");
7332
7333 document_len = strlen (document);
7334 if (offset < document_len)
7335 document_len -= offset;
7336 else
7337 document_len = 0;
7338 if (len > document_len)
7339 len = document_len;
7340
7341 memcpy (readbuf, document + offset, len);
7342 xfree (document);
7343
7344 return len;
7345 }
7346
7347 #ifdef HAVE_LINUX_BTRACE
7348
7349 /* See to_disable_btrace target method. */
7350
7351 static int
7352 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7353 {
7354 enum btrace_error err;
7355
7356 err = linux_disable_btrace (tinfo);
7357 return (err == BTRACE_ERR_NONE ? 0 : -1);
7358 }
7359
7360 /* Encode an Intel Processor Trace configuration. */
7361
7362 static void
7363 linux_low_encode_pt_config (struct buffer *buffer,
7364 const struct btrace_data_pt_config *config)
7365 {
7366 buffer_grow_str (buffer, "<pt-config>\n");
7367
7368 switch (config->cpu.vendor)
7369 {
7370 case CV_INTEL:
7371 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7372 "model=\"%u\" stepping=\"%u\"/>\n",
7373 config->cpu.family, config->cpu.model,
7374 config->cpu.stepping);
7375 break;
7376
7377 default:
7378 break;
7379 }
7380
7381 buffer_grow_str (buffer, "</pt-config>\n");
7382 }
7383
7384 /* Encode a raw buffer. */
7385
7386 static void
7387 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7388 unsigned int size)
7389 {
7390 if (size == 0)
7391 return;
7392
7393 /* We use hex encoding - see common/rsp-low.h. */
7394 buffer_grow_str (buffer, "<raw>\n");
7395
7396 while (size-- > 0)
7397 {
7398 char elem[2];
7399
7400 elem[0] = tohex ((*data >> 4) & 0xf);
7401 elem[1] = tohex (*data++ & 0xf);
7402
7403 buffer_grow (buffer, elem, 2);
7404 }
7405
7406 buffer_grow_str (buffer, "</raw>\n");
7407 }
7408
7409 /* See to_read_btrace target method. */
7410
7411 static int
7412 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7413 enum btrace_read_type type)
7414 {
7415 struct btrace_data btrace;
7416 struct btrace_block *block;
7417 enum btrace_error err;
7418 int i;
7419
7420 btrace_data_init (&btrace);
7421
7422 err = linux_read_btrace (&btrace, tinfo, type);
7423 if (err != BTRACE_ERR_NONE)
7424 {
7425 if (err == BTRACE_ERR_OVERFLOW)
7426 buffer_grow_str0 (buffer, "E.Overflow.");
7427 else
7428 buffer_grow_str0 (buffer, "E.Generic Error.");
7429
7430 goto err;
7431 }
7432
7433 switch (btrace.format)
7434 {
7435 case BTRACE_FORMAT_NONE:
7436 buffer_grow_str0 (buffer, "E.No Trace.");
7437 goto err;
7438
7439 case BTRACE_FORMAT_BTS:
7440 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7441 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7442
7443 for (i = 0;
7444 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7445 i++)
7446 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7447 paddress (block->begin), paddress (block->end));
7448
7449 buffer_grow_str0 (buffer, "</btrace>\n");
7450 break;
7451
7452 case BTRACE_FORMAT_PT:
7453 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7454 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7455 buffer_grow_str (buffer, "<pt>\n");
7456
7457 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7458
7459 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7460 btrace.variant.pt.size);
7461
7462 buffer_grow_str (buffer, "</pt>\n");
7463 buffer_grow_str0 (buffer, "</btrace>\n");
7464 break;
7465
7466 default:
7467 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7468 goto err;
7469 }
7470
7471 btrace_data_fini (&btrace);
7472 return 0;
7473
7474 err:
7475 btrace_data_fini (&btrace);
7476 return -1;
7477 }
7478
7479 /* See to_btrace_conf target method. */
7480
7481 static int
7482 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7483 struct buffer *buffer)
7484 {
7485 const struct btrace_config *conf;
7486
7487 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7488 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7489
7490 conf = linux_btrace_conf (tinfo);
7491 if (conf != NULL)
7492 {
7493 switch (conf->format)
7494 {
7495 case BTRACE_FORMAT_NONE:
7496 break;
7497
7498 case BTRACE_FORMAT_BTS:
7499 buffer_xml_printf (buffer, "<bts");
7500 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7501 buffer_xml_printf (buffer, " />\n");
7502 break;
7503
7504 case BTRACE_FORMAT_PT:
7505 buffer_xml_printf (buffer, "<pt");
7506 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7507 buffer_xml_printf (buffer, "/>\n");
7508 break;
7509 }
7510 }
7511
7512 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7513 return 0;
7514 }
7515 #endif /* HAVE_LINUX_BTRACE */
7516
7517 /* See nat/linux-nat.h. */
7518
7519 ptid_t
7520 current_lwp_ptid (void)
7521 {
7522 return ptid_of (current_thread);
7523 }
7524
7525 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7526
7527 static int
7528 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7529 {
7530 if (the_low_target.breakpoint_kind_from_pc != NULL)
7531 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7532 else
7533 return default_breakpoint_kind_from_pc (pcptr);
7534 }
7535
7536 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7537
7538 static const gdb_byte *
7539 linux_sw_breakpoint_from_kind (int kind, int *size)
7540 {
7541 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7542
7543 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7544 }
7545
7546 /* Implementation of the target_ops method
7547 "breakpoint_kind_from_current_state". */
7548
7549 static int
7550 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7551 {
7552 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7553 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7554 else
7555 return linux_breakpoint_kind_from_pc (pcptr);
7556 }
7557
7558 /* Default implementation of linux_target_ops method "set_pc" for
7559 32-bit pc register which is literally named "pc". */
7560
7561 void
7562 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7563 {
7564 uint32_t newpc = pc;
7565
7566 supply_register_by_name (regcache, "pc", &newpc);
7567 }
7568
7569 /* Default implementation of linux_target_ops method "get_pc" for
7570 32-bit pc register which is literally named "pc". */
7571
7572 CORE_ADDR
7573 linux_get_pc_32bit (struct regcache *regcache)
7574 {
7575 uint32_t pc;
7576
7577 collect_register_by_name (regcache, "pc", &pc);
7578 if (debug_threads)
7579 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7580 return pc;
7581 }
7582
7583 /* Default implementation of linux_target_ops method "set_pc" for
7584 64-bit pc register which is literally named "pc". */
7585
7586 void
7587 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7588 {
7589 uint64_t newpc = pc;
7590
7591 supply_register_by_name (regcache, "pc", &newpc);
7592 }
7593
7594 /* Default implementation of linux_target_ops method "get_pc" for
7595 64-bit pc register which is literally named "pc". */
7596
7597 CORE_ADDR
7598 linux_get_pc_64bit (struct regcache *regcache)
7599 {
7600 uint64_t pc;
7601
7602 collect_register_by_name (regcache, "pc", &pc);
7603 if (debug_threads)
7604 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7605 return pc;
7606 }
7607
7608
7609 static struct target_ops linux_target_ops = {
7610 linux_create_inferior,
7611 linux_post_create_inferior,
7612 linux_attach,
7613 linux_kill,
7614 linux_detach,
7615 linux_mourn,
7616 linux_join,
7617 linux_thread_alive,
7618 linux_resume,
7619 linux_wait,
7620 linux_fetch_registers,
7621 linux_store_registers,
7622 linux_prepare_to_access_memory,
7623 linux_done_accessing_memory,
7624 linux_read_memory,
7625 linux_write_memory,
7626 linux_look_up_symbols,
7627 linux_request_interrupt,
7628 linux_read_auxv,
7629 linux_supports_z_point_type,
7630 linux_insert_point,
7631 linux_remove_point,
7632 linux_stopped_by_sw_breakpoint,
7633 linux_supports_stopped_by_sw_breakpoint,
7634 linux_stopped_by_hw_breakpoint,
7635 linux_supports_stopped_by_hw_breakpoint,
7636 linux_supports_hardware_single_step,
7637 linux_stopped_by_watchpoint,
7638 linux_stopped_data_address,
7639 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7640 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7641 && defined(PT_TEXT_END_ADDR)
7642 linux_read_offsets,
7643 #else
7644 NULL,
7645 #endif
7646 #ifdef USE_THREAD_DB
7647 thread_db_get_tls_address,
7648 #else
7649 NULL,
7650 #endif
7651 linux_qxfer_spu,
7652 hostio_last_error_from_errno,
7653 linux_qxfer_osdata,
7654 linux_xfer_siginfo,
7655 linux_supports_non_stop,
7656 linux_async,
7657 linux_start_non_stop,
7658 linux_supports_multi_process,
7659 linux_supports_fork_events,
7660 linux_supports_vfork_events,
7661 linux_supports_exec_events,
7662 linux_handle_new_gdb_connection,
7663 #ifdef USE_THREAD_DB
7664 thread_db_handle_monitor_command,
7665 #else
7666 NULL,
7667 #endif
7668 linux_common_core_of_thread,
7669 linux_read_loadmap,
7670 linux_process_qsupported,
7671 linux_supports_tracepoints,
7672 linux_read_pc,
7673 linux_write_pc,
7674 linux_thread_stopped,
7675 NULL,
7676 linux_pause_all,
7677 linux_unpause_all,
7678 linux_stabilize_threads,
7679 linux_install_fast_tracepoint_jump_pad,
7680 linux_emit_ops,
7681 linux_supports_disable_randomization,
7682 linux_get_min_fast_tracepoint_insn_len,
7683 linux_qxfer_libraries_svr4,
7684 linux_supports_agent,
7685 #ifdef HAVE_LINUX_BTRACE
7686 linux_supports_btrace,
7687 linux_enable_btrace,
7688 linux_low_disable_btrace,
7689 linux_low_read_btrace,
7690 linux_low_btrace_conf,
7691 #else
7692 NULL,
7693 NULL,
7694 NULL,
7695 NULL,
7696 NULL,
7697 #endif
7698 linux_supports_range_stepping,
7699 linux_proc_pid_to_exec_file,
7700 linux_mntns_open_cloexec,
7701 linux_mntns_unlink,
7702 linux_mntns_readlink,
7703 linux_breakpoint_kind_from_pc,
7704 linux_sw_breakpoint_from_kind,
7705 linux_proc_tid_get_name,
7706 linux_breakpoint_kind_from_current_state,
7707 linux_supports_software_single_step,
7708 linux_supports_catch_syscall,
7709 linux_get_ipa_tdesc_idx,
7710 };
7711
7712 #ifdef HAVE_LINUX_REGSETS
7713 void
7714 initialize_regsets_info (struct regsets_info *info)
7715 {
7716 for (info->num_regsets = 0;
7717 info->regsets[info->num_regsets].size >= 0;
7718 info->num_regsets++)
7719 ;
7720 }
7721 #endif
7722
7723 void
7724 initialize_low (void)
7725 {
7726 struct sigaction sigchld_action;
7727
7728 memset (&sigchld_action, 0, sizeof (sigchld_action));
7729 set_target_ops (&linux_target_ops);
7730
7731 linux_ptrace_init_warnings ();
7732
7733 sigchld_action.sa_handler = sigchld_handler;
7734 sigemptyset (&sigchld_action.sa_mask);
7735 sigchld_action.sa_flags = SA_RESTART;
7736 sigaction (SIGCHLD, &sigchld_action, NULL);
7737
7738 initialize_low_arch ();
7739
7740 linux_check_ptrace_features ();
7741 }
This page took 0.232783 seconds and 4 git commands to generate.