Fix breakpoint size when stepping over a permanent breakpoint in GDBServer.
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #ifndef ELFMAG0
50 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
51 then ELFMAG0 will have been defined. If it didn't get included by
52 gdb_proc_service.h then including it will likely introduce a duplicate
53 definition of elf_fpregset_t. */
54 #include <elf.h>
55 #endif
56 #include "nat/linux-namespaces.h"
57
58 #ifndef SPUFS_MAGIC
59 #define SPUFS_MAGIC 0x23c9b64e
60 #endif
61
62 #ifdef HAVE_PERSONALITY
63 # include <sys/personality.h>
64 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
65 # define ADDR_NO_RANDOMIZE 0x0040000
66 # endif
67 #endif
68
69 #ifndef O_LARGEFILE
70 #define O_LARGEFILE 0
71 #endif
72
73 /* Some targets did not define these ptrace constants from the start,
74 so gdbserver defines them locally here. In the future, these may
75 be removed after they are added to asm/ptrace.h. */
76 #if !(defined(PT_TEXT_ADDR) \
77 || defined(PT_DATA_ADDR) \
78 || defined(PT_TEXT_END_ADDR))
79 #if defined(__mcoldfire__)
80 /* These are still undefined in 3.10 kernels. */
81 #define PT_TEXT_ADDR 49*4
82 #define PT_DATA_ADDR 50*4
83 #define PT_TEXT_END_ADDR 51*4
84 /* BFIN already defines these since at least 2.6.32 kernels. */
85 #elif defined(BFIN)
86 #define PT_TEXT_ADDR 220
87 #define PT_TEXT_END_ADDR 224
88 #define PT_DATA_ADDR 228
89 /* These are still undefined in 3.10 kernels. */
90 #elif defined(__TMS320C6X__)
91 #define PT_TEXT_ADDR (0x10000*4)
92 #define PT_DATA_ADDR (0x10004*4)
93 #define PT_TEXT_END_ADDR (0x10008*4)
94 #endif
95 #endif
96
97 #ifdef HAVE_LINUX_BTRACE
98 # include "nat/linux-btrace.h"
99 # include "btrace-common.h"
100 #endif
101
102 #ifndef HAVE_ELF32_AUXV_T
103 /* Copied from glibc's elf.h. */
104 typedef struct
105 {
106 uint32_t a_type; /* Entry type */
107 union
108 {
109 uint32_t a_val; /* Integer value */
110 /* We use to have pointer elements added here. We cannot do that,
111 though, since it does not work when using 32-bit definitions
112 on 64-bit platforms and vice versa. */
113 } a_un;
114 } Elf32_auxv_t;
115 #endif
116
117 #ifndef HAVE_ELF64_AUXV_T
118 /* Copied from glibc's elf.h. */
119 typedef struct
120 {
121 uint64_t a_type; /* Entry type */
122 union
123 {
124 uint64_t a_val; /* Integer value */
125 /* We use to have pointer elements added here. We cannot do that,
126 though, since it does not work when using 32-bit definitions
127 on 64-bit platforms and vice versa. */
128 } a_un;
129 } Elf64_auxv_t;
130 #endif
131
132 /* Does the current host support PTRACE_GETREGSET? */
133 int have_ptrace_getregset = -1;
134
135 /* LWP accessors. */
136
137 /* See nat/linux-nat.h. */
138
139 ptid_t
140 ptid_of_lwp (struct lwp_info *lwp)
141 {
142 return ptid_of (get_lwp_thread (lwp));
143 }
144
145 /* See nat/linux-nat.h. */
146
147 void
148 lwp_set_arch_private_info (struct lwp_info *lwp,
149 struct arch_lwp_info *info)
150 {
151 lwp->arch_private = info;
152 }
153
154 /* See nat/linux-nat.h. */
155
156 struct arch_lwp_info *
157 lwp_arch_private_info (struct lwp_info *lwp)
158 {
159 return lwp->arch_private;
160 }
161
162 /* See nat/linux-nat.h. */
163
164 int
165 lwp_is_stopped (struct lwp_info *lwp)
166 {
167 return lwp->stopped;
168 }
169
170 /* See nat/linux-nat.h. */
171
172 enum target_stop_reason
173 lwp_stop_reason (struct lwp_info *lwp)
174 {
175 return lwp->stop_reason;
176 }
177
178 /* A list of all unknown processes which receive stop signals. Some
179 other process will presumably claim each of these as forked
180 children momentarily. */
181
182 struct simple_pid_list
183 {
184 /* The process ID. */
185 int pid;
186
187 /* The status as reported by waitpid. */
188 int status;
189
190 /* Next in chain. */
191 struct simple_pid_list *next;
192 };
193 struct simple_pid_list *stopped_pids;
194
195 /* Trivial list manipulation functions to keep track of a list of new
196 stopped processes. */
197
198 static void
199 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
200 {
201 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
202
203 new_pid->pid = pid;
204 new_pid->status = status;
205 new_pid->next = *listp;
206 *listp = new_pid;
207 }
208
209 static int
210 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
211 {
212 struct simple_pid_list **p;
213
214 for (p = listp; *p != NULL; p = &(*p)->next)
215 if ((*p)->pid == pid)
216 {
217 struct simple_pid_list *next = (*p)->next;
218
219 *statusp = (*p)->status;
220 xfree (*p);
221 *p = next;
222 return 1;
223 }
224 return 0;
225 }
226
227 enum stopping_threads_kind
228 {
229 /* Not stopping threads presently. */
230 NOT_STOPPING_THREADS,
231
232 /* Stopping threads. */
233 STOPPING_THREADS,
234
235 /* Stopping and suspending threads. */
236 STOPPING_AND_SUSPENDING_THREADS
237 };
238
239 /* This is set while stop_all_lwps is in effect. */
240 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
241
242 /* FIXME make into a target method? */
243 int using_threads = 1;
244
245 /* True if we're presently stabilizing threads (moving them out of
246 jump pads). */
247 static int stabilizing_threads;
248
249 static void linux_resume_one_lwp (struct lwp_info *lwp,
250 int step, int signal, siginfo_t *info);
251 static void linux_resume (struct thread_resume *resume_info, size_t n);
252 static void stop_all_lwps (int suspend, struct lwp_info *except);
253 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
254 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
255 int *wstat, int options);
256 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
257 static struct lwp_info *add_lwp (ptid_t ptid);
258 static void linux_mourn (struct process_info *process);
259 static int linux_stopped_by_watchpoint (void);
260 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
261 static int lwp_is_marked_dead (struct lwp_info *lwp);
262 static void proceed_all_lwps (void);
263 static int finish_step_over (struct lwp_info *lwp);
264 static int kill_lwp (unsigned long lwpid, int signo);
265 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
266 static void complete_ongoing_step_over (void);
267
268 /* When the event-loop is doing a step-over, this points at the thread
269 being stepped. */
270 ptid_t step_over_bkpt;
271
272 /* True if the low target can hardware single-step. Such targets
273 don't need a BREAKPOINT_REINSERT_ADDR callback. */
274
275 static int
276 can_hardware_single_step (void)
277 {
278 return (the_low_target.breakpoint_reinsert_addr == NULL);
279 }
280
281 /* True if the low target supports memory breakpoints. If so, we'll
282 have a GET_PC implementation. */
283
284 static int
285 supports_breakpoints (void)
286 {
287 return (the_low_target.get_pc != NULL);
288 }
289
290 /* Returns true if this target can support fast tracepoints. This
291 does not mean that the in-process agent has been loaded in the
292 inferior. */
293
294 static int
295 supports_fast_tracepoints (void)
296 {
297 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
298 }
299
300 /* True if LWP is stopped in its stepping range. */
301
302 static int
303 lwp_in_step_range (struct lwp_info *lwp)
304 {
305 CORE_ADDR pc = lwp->stop_pc;
306
307 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
308 }
309
310 struct pending_signals
311 {
312 int signal;
313 siginfo_t info;
314 struct pending_signals *prev;
315 };
316
317 /* The read/write ends of the pipe registered as waitable file in the
318 event loop. */
319 static int linux_event_pipe[2] = { -1, -1 };
320
321 /* True if we're currently in async mode. */
322 #define target_is_async_p() (linux_event_pipe[0] != -1)
323
324 static void send_sigstop (struct lwp_info *lwp);
325 static void wait_for_sigstop (void);
326
327 /* Return non-zero if HEADER is a 64-bit ELF file. */
328
329 static int
330 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
331 {
332 if (header->e_ident[EI_MAG0] == ELFMAG0
333 && header->e_ident[EI_MAG1] == ELFMAG1
334 && header->e_ident[EI_MAG2] == ELFMAG2
335 && header->e_ident[EI_MAG3] == ELFMAG3)
336 {
337 *machine = header->e_machine;
338 return header->e_ident[EI_CLASS] == ELFCLASS64;
339
340 }
341 *machine = EM_NONE;
342 return -1;
343 }
344
345 /* Return non-zero if FILE is a 64-bit ELF file,
346 zero if the file is not a 64-bit ELF file,
347 and -1 if the file is not accessible or doesn't exist. */
348
349 static int
350 elf_64_file_p (const char *file, unsigned int *machine)
351 {
352 Elf64_Ehdr header;
353 int fd;
354
355 fd = open (file, O_RDONLY);
356 if (fd < 0)
357 return -1;
358
359 if (read (fd, &header, sizeof (header)) != sizeof (header))
360 {
361 close (fd);
362 return 0;
363 }
364 close (fd);
365
366 return elf_64_header_p (&header, machine);
367 }
368
369 /* Accepts an integer PID; Returns true if the executable PID is
370 running is a 64-bit ELF file.. */
371
372 int
373 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
374 {
375 char file[PATH_MAX];
376
377 sprintf (file, "/proc/%d/exe", pid);
378 return elf_64_file_p (file, machine);
379 }
380
381 static void
382 delete_lwp (struct lwp_info *lwp)
383 {
384 struct thread_info *thr = get_lwp_thread (lwp);
385
386 if (debug_threads)
387 debug_printf ("deleting %ld\n", lwpid_of (thr));
388
389 remove_thread (thr);
390 free (lwp->arch_private);
391 free (lwp);
392 }
393
394 /* Add a process to the common process list, and set its private
395 data. */
396
397 static struct process_info *
398 linux_add_process (int pid, int attached)
399 {
400 struct process_info *proc;
401
402 proc = add_process (pid, attached);
403 proc->priv = XCNEW (struct process_info_private);
404
405 if (the_low_target.new_process != NULL)
406 proc->priv->arch_private = the_low_target.new_process ();
407
408 return proc;
409 }
410
411 static CORE_ADDR get_pc (struct lwp_info *lwp);
412
413 /* Implement the arch_setup target_ops method. */
414
415 static void
416 linux_arch_setup (void)
417 {
418 the_low_target.arch_setup ();
419 }
420
421 /* Call the target arch_setup function on THREAD. */
422
423 static void
424 linux_arch_setup_thread (struct thread_info *thread)
425 {
426 struct thread_info *saved_thread;
427
428 saved_thread = current_thread;
429 current_thread = thread;
430
431 linux_arch_setup ();
432
433 current_thread = saved_thread;
434 }
435
436 /* Handle a GNU/Linux extended wait response. If we see a clone,
437 fork, or vfork event, we need to add the new LWP to our list
438 (and return 0 so as not to report the trap to higher layers).
439 If we see an exec event, we will modify ORIG_EVENT_LWP to point
440 to a new LWP representing the new program. */
441
442 static int
443 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
444 {
445 struct lwp_info *event_lwp = *orig_event_lwp;
446 int event = linux_ptrace_get_extended_event (wstat);
447 struct thread_info *event_thr = get_lwp_thread (event_lwp);
448 struct lwp_info *new_lwp;
449
450 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
451
452 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
453 || (event == PTRACE_EVENT_CLONE))
454 {
455 ptid_t ptid;
456 unsigned long new_pid;
457 int ret, status;
458
459 /* Get the pid of the new lwp. */
460 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
461 &new_pid);
462
463 /* If we haven't already seen the new PID stop, wait for it now. */
464 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
465 {
466 /* The new child has a pending SIGSTOP. We can't affect it until it
467 hits the SIGSTOP, but we're already attached. */
468
469 ret = my_waitpid (new_pid, &status, __WALL);
470
471 if (ret == -1)
472 perror_with_name ("waiting for new child");
473 else if (ret != new_pid)
474 warning ("wait returned unexpected PID %d", ret);
475 else if (!WIFSTOPPED (status))
476 warning ("wait returned unexpected status 0x%x", status);
477 }
478
479 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
480 {
481 struct process_info *parent_proc;
482 struct process_info *child_proc;
483 struct lwp_info *child_lwp;
484 struct thread_info *child_thr;
485 struct target_desc *tdesc;
486
487 ptid = ptid_build (new_pid, new_pid, 0);
488
489 if (debug_threads)
490 {
491 debug_printf ("HEW: Got fork event from LWP %ld, "
492 "new child is %d\n",
493 ptid_get_lwp (ptid_of (event_thr)),
494 ptid_get_pid (ptid));
495 }
496
497 /* Add the new process to the tables and clone the breakpoint
498 lists of the parent. We need to do this even if the new process
499 will be detached, since we will need the process object and the
500 breakpoints to remove any breakpoints from memory when we
501 detach, and the client side will access registers. */
502 child_proc = linux_add_process (new_pid, 0);
503 gdb_assert (child_proc != NULL);
504 child_lwp = add_lwp (ptid);
505 gdb_assert (child_lwp != NULL);
506 child_lwp->stopped = 1;
507 child_lwp->must_set_ptrace_flags = 1;
508 child_lwp->status_pending_p = 0;
509 child_thr = get_lwp_thread (child_lwp);
510 child_thr->last_resume_kind = resume_stop;
511 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
512
513 /* If we're suspending all threads, leave this one suspended
514 too. */
515 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
516 {
517 if (debug_threads)
518 debug_printf ("HEW: leaving child suspended\n");
519 child_lwp->suspended = 1;
520 }
521
522 parent_proc = get_thread_process (event_thr);
523 child_proc->attached = parent_proc->attached;
524 clone_all_breakpoints (&child_proc->breakpoints,
525 &child_proc->raw_breakpoints,
526 parent_proc->breakpoints);
527
528 tdesc = XNEW (struct target_desc);
529 copy_target_description (tdesc, parent_proc->tdesc);
530 child_proc->tdesc = tdesc;
531
532 /* Clone arch-specific process data. */
533 if (the_low_target.new_fork != NULL)
534 the_low_target.new_fork (parent_proc, child_proc);
535
536 /* Save fork info in the parent thread. */
537 if (event == PTRACE_EVENT_FORK)
538 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
539 else if (event == PTRACE_EVENT_VFORK)
540 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
541
542 event_lwp->waitstatus.value.related_pid = ptid;
543
544 /* The status_pending field contains bits denoting the
545 extended event, so when the pending event is handled,
546 the handler will look at lwp->waitstatus. */
547 event_lwp->status_pending_p = 1;
548 event_lwp->status_pending = wstat;
549
550 /* Report the event. */
551 return 0;
552 }
553
554 if (debug_threads)
555 debug_printf ("HEW: Got clone event "
556 "from LWP %ld, new child is LWP %ld\n",
557 lwpid_of (event_thr), new_pid);
558
559 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
560 new_lwp = add_lwp (ptid);
561
562 /* Either we're going to immediately resume the new thread
563 or leave it stopped. linux_resume_one_lwp is a nop if it
564 thinks the thread is currently running, so set this first
565 before calling linux_resume_one_lwp. */
566 new_lwp->stopped = 1;
567
568 /* If we're suspending all threads, leave this one suspended
569 too. */
570 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
571 new_lwp->suspended = 1;
572
573 /* Normally we will get the pending SIGSTOP. But in some cases
574 we might get another signal delivered to the group first.
575 If we do get another signal, be sure not to lose it. */
576 if (WSTOPSIG (status) != SIGSTOP)
577 {
578 new_lwp->stop_expected = 1;
579 new_lwp->status_pending_p = 1;
580 new_lwp->status_pending = status;
581 }
582 else if (report_thread_events)
583 {
584 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
585 new_lwp->status_pending_p = 1;
586 new_lwp->status_pending = status;
587 }
588
589 /* Don't report the event. */
590 return 1;
591 }
592 else if (event == PTRACE_EVENT_VFORK_DONE)
593 {
594 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
595
596 /* Report the event. */
597 return 0;
598 }
599 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
600 {
601 struct process_info *proc;
602 ptid_t event_ptid;
603 pid_t event_pid;
604
605 if (debug_threads)
606 {
607 debug_printf ("HEW: Got exec event from LWP %ld\n",
608 lwpid_of (event_thr));
609 }
610
611 /* Get the event ptid. */
612 event_ptid = ptid_of (event_thr);
613 event_pid = ptid_get_pid (event_ptid);
614
615 /* Delete the execing process and all its threads. */
616 proc = get_thread_process (event_thr);
617 linux_mourn (proc);
618 current_thread = NULL;
619
620 /* Create a new process/lwp/thread. */
621 proc = linux_add_process (event_pid, 0);
622 event_lwp = add_lwp (event_ptid);
623 event_thr = get_lwp_thread (event_lwp);
624 gdb_assert (current_thread == event_thr);
625 linux_arch_setup_thread (event_thr);
626
627 /* Set the event status. */
628 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
629 event_lwp->waitstatus.value.execd_pathname
630 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
631
632 /* Mark the exec status as pending. */
633 event_lwp->stopped = 1;
634 event_lwp->status_pending_p = 1;
635 event_lwp->status_pending = wstat;
636 event_thr->last_resume_kind = resume_continue;
637 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
638
639 /* Report the event. */
640 *orig_event_lwp = event_lwp;
641 return 0;
642 }
643
644 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
645 }
646
647 /* Return the PC as read from the regcache of LWP, without any
648 adjustment. */
649
650 static CORE_ADDR
651 get_pc (struct lwp_info *lwp)
652 {
653 struct thread_info *saved_thread;
654 struct regcache *regcache;
655 CORE_ADDR pc;
656
657 if (the_low_target.get_pc == NULL)
658 return 0;
659
660 saved_thread = current_thread;
661 current_thread = get_lwp_thread (lwp);
662
663 regcache = get_thread_regcache (current_thread, 1);
664 pc = (*the_low_target.get_pc) (regcache);
665
666 if (debug_threads)
667 debug_printf ("pc is 0x%lx\n", (long) pc);
668
669 current_thread = saved_thread;
670 return pc;
671 }
672
673 /* This function should only be called if LWP got a SIGTRAP.
674 The SIGTRAP could mean several things.
675
676 On i386, where decr_pc_after_break is non-zero:
677
678 If we were single-stepping this process using PTRACE_SINGLESTEP, we
679 will get only the one SIGTRAP. The value of $eip will be the next
680 instruction. If the instruction we stepped over was a breakpoint,
681 we need to decrement the PC.
682
683 If we continue the process using PTRACE_CONT, we will get a
684 SIGTRAP when we hit a breakpoint. The value of $eip will be
685 the instruction after the breakpoint (i.e. needs to be
686 decremented). If we report the SIGTRAP to GDB, we must also
687 report the undecremented PC. If the breakpoint is removed, we
688 must resume at the decremented PC.
689
690 On a non-decr_pc_after_break machine with hardware or kernel
691 single-step:
692
693 If we either single-step a breakpoint instruction, or continue and
694 hit a breakpoint instruction, our PC will point at the breakpoint
695 instruction. */
696
697 static int
698 check_stopped_by_breakpoint (struct lwp_info *lwp)
699 {
700 CORE_ADDR pc;
701 CORE_ADDR sw_breakpoint_pc;
702 struct thread_info *saved_thread;
703 #if USE_SIGTRAP_SIGINFO
704 siginfo_t siginfo;
705 #endif
706
707 if (the_low_target.get_pc == NULL)
708 return 0;
709
710 pc = get_pc (lwp);
711 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
712
713 /* breakpoint_at reads from the current thread. */
714 saved_thread = current_thread;
715 current_thread = get_lwp_thread (lwp);
716
717 #if USE_SIGTRAP_SIGINFO
718 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
719 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
720 {
721 if (siginfo.si_signo == SIGTRAP)
722 {
723 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
724 {
725 if (debug_threads)
726 {
727 struct thread_info *thr = get_lwp_thread (lwp);
728
729 debug_printf ("CSBB: %s stopped by software breakpoint\n",
730 target_pid_to_str (ptid_of (thr)));
731 }
732
733 /* Back up the PC if necessary. */
734 if (pc != sw_breakpoint_pc)
735 {
736 struct regcache *regcache
737 = get_thread_regcache (current_thread, 1);
738 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
739 }
740
741 lwp->stop_pc = sw_breakpoint_pc;
742 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
743 current_thread = saved_thread;
744 return 1;
745 }
746 else if (siginfo.si_code == TRAP_HWBKPT)
747 {
748 if (debug_threads)
749 {
750 struct thread_info *thr = get_lwp_thread (lwp);
751
752 debug_printf ("CSBB: %s stopped by hardware "
753 "breakpoint/watchpoint\n",
754 target_pid_to_str (ptid_of (thr)));
755 }
756
757 lwp->stop_pc = pc;
758 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
759 current_thread = saved_thread;
760 return 1;
761 }
762 else if (siginfo.si_code == TRAP_TRACE)
763 {
764 if (debug_threads)
765 {
766 struct thread_info *thr = get_lwp_thread (lwp);
767
768 debug_printf ("CSBB: %s stopped by trace\n",
769 target_pid_to_str (ptid_of (thr)));
770 }
771
772 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
773 }
774 }
775 }
776 #else
777 /* We may have just stepped a breakpoint instruction. E.g., in
778 non-stop mode, GDB first tells the thread A to step a range, and
779 then the user inserts a breakpoint inside the range. In that
780 case we need to report the breakpoint PC. */
781 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
782 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
783 {
784 if (debug_threads)
785 {
786 struct thread_info *thr = get_lwp_thread (lwp);
787
788 debug_printf ("CSBB: %s stopped by software breakpoint\n",
789 target_pid_to_str (ptid_of (thr)));
790 }
791
792 /* Back up the PC if necessary. */
793 if (pc != sw_breakpoint_pc)
794 {
795 struct regcache *regcache
796 = get_thread_regcache (current_thread, 1);
797 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
798 }
799
800 lwp->stop_pc = sw_breakpoint_pc;
801 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
802 current_thread = saved_thread;
803 return 1;
804 }
805
806 if (hardware_breakpoint_inserted_here (pc))
807 {
808 if (debug_threads)
809 {
810 struct thread_info *thr = get_lwp_thread (lwp);
811
812 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
813 target_pid_to_str (ptid_of (thr)));
814 }
815
816 lwp->stop_pc = pc;
817 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
818 current_thread = saved_thread;
819 return 1;
820 }
821 #endif
822
823 current_thread = saved_thread;
824 return 0;
825 }
826
827 static struct lwp_info *
828 add_lwp (ptid_t ptid)
829 {
830 struct lwp_info *lwp;
831
832 lwp = XCNEW (struct lwp_info);
833
834 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
835
836 if (the_low_target.new_thread != NULL)
837 the_low_target.new_thread (lwp);
838
839 lwp->thread = add_thread (ptid, lwp);
840
841 return lwp;
842 }
843
844 /* Start an inferior process and returns its pid.
845 ALLARGS is a vector of program-name and args. */
846
847 static int
848 linux_create_inferior (char *program, char **allargs)
849 {
850 struct lwp_info *new_lwp;
851 int pid;
852 ptid_t ptid;
853 struct cleanup *restore_personality
854 = maybe_disable_address_space_randomization (disable_randomization);
855
856 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
857 pid = vfork ();
858 #else
859 pid = fork ();
860 #endif
861 if (pid < 0)
862 perror_with_name ("fork");
863
864 if (pid == 0)
865 {
866 close_most_fds ();
867 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
868
869 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
870 signal (__SIGRTMIN + 1, SIG_DFL);
871 #endif
872
873 setpgid (0, 0);
874
875 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
876 stdout to stderr so that inferior i/o doesn't corrupt the connection.
877 Also, redirect stdin to /dev/null. */
878 if (remote_connection_is_stdio ())
879 {
880 close (0);
881 open ("/dev/null", O_RDONLY);
882 dup2 (2, 1);
883 if (write (2, "stdin/stdout redirected\n",
884 sizeof ("stdin/stdout redirected\n") - 1) < 0)
885 {
886 /* Errors ignored. */;
887 }
888 }
889
890 execv (program, allargs);
891 if (errno == ENOENT)
892 execvp (program, allargs);
893
894 fprintf (stderr, "Cannot exec %s: %s.\n", program,
895 strerror (errno));
896 fflush (stderr);
897 _exit (0177);
898 }
899
900 do_cleanups (restore_personality);
901
902 linux_add_process (pid, 0);
903
904 ptid = ptid_build (pid, pid, 0);
905 new_lwp = add_lwp (ptid);
906 new_lwp->must_set_ptrace_flags = 1;
907
908 return pid;
909 }
910
911 /* Attach to an inferior process. Returns 0 on success, ERRNO on
912 error. */
913
914 int
915 linux_attach_lwp (ptid_t ptid)
916 {
917 struct lwp_info *new_lwp;
918 int lwpid = ptid_get_lwp (ptid);
919
920 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
921 != 0)
922 return errno;
923
924 new_lwp = add_lwp (ptid);
925
926 /* We need to wait for SIGSTOP before being able to make the next
927 ptrace call on this LWP. */
928 new_lwp->must_set_ptrace_flags = 1;
929
930 if (linux_proc_pid_is_stopped (lwpid))
931 {
932 if (debug_threads)
933 debug_printf ("Attached to a stopped process\n");
934
935 /* The process is definitely stopped. It is in a job control
936 stop, unless the kernel predates the TASK_STOPPED /
937 TASK_TRACED distinction, in which case it might be in a
938 ptrace stop. Make sure it is in a ptrace stop; from there we
939 can kill it, signal it, et cetera.
940
941 First make sure there is a pending SIGSTOP. Since we are
942 already attached, the process can not transition from stopped
943 to running without a PTRACE_CONT; so we know this signal will
944 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
945 probably already in the queue (unless this kernel is old
946 enough to use TASK_STOPPED for ptrace stops); but since
947 SIGSTOP is not an RT signal, it can only be queued once. */
948 kill_lwp (lwpid, SIGSTOP);
949
950 /* Finally, resume the stopped process. This will deliver the
951 SIGSTOP (or a higher priority signal, just like normal
952 PTRACE_ATTACH), which we'll catch later on. */
953 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
954 }
955
956 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
957 brings it to a halt.
958
959 There are several cases to consider here:
960
961 1) gdbserver has already attached to the process and is being notified
962 of a new thread that is being created.
963 In this case we should ignore that SIGSTOP and resume the
964 process. This is handled below by setting stop_expected = 1,
965 and the fact that add_thread sets last_resume_kind ==
966 resume_continue.
967
968 2) This is the first thread (the process thread), and we're attaching
969 to it via attach_inferior.
970 In this case we want the process thread to stop.
971 This is handled by having linux_attach set last_resume_kind ==
972 resume_stop after we return.
973
974 If the pid we are attaching to is also the tgid, we attach to and
975 stop all the existing threads. Otherwise, we attach to pid and
976 ignore any other threads in the same group as this pid.
977
978 3) GDB is connecting to gdbserver and is requesting an enumeration of all
979 existing threads.
980 In this case we want the thread to stop.
981 FIXME: This case is currently not properly handled.
982 We should wait for the SIGSTOP but don't. Things work apparently
983 because enough time passes between when we ptrace (ATTACH) and when
984 gdb makes the next ptrace call on the thread.
985
986 On the other hand, if we are currently trying to stop all threads, we
987 should treat the new thread as if we had sent it a SIGSTOP. This works
988 because we are guaranteed that the add_lwp call above added us to the
989 end of the list, and so the new thread has not yet reached
990 wait_for_sigstop (but will). */
991 new_lwp->stop_expected = 1;
992
993 return 0;
994 }
995
996 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
997 already attached. Returns true if a new LWP is found, false
998 otherwise. */
999
1000 static int
1001 attach_proc_task_lwp_callback (ptid_t ptid)
1002 {
1003 /* Is this a new thread? */
1004 if (find_thread_ptid (ptid) == NULL)
1005 {
1006 int lwpid = ptid_get_lwp (ptid);
1007 int err;
1008
1009 if (debug_threads)
1010 debug_printf ("Found new lwp %d\n", lwpid);
1011
1012 err = linux_attach_lwp (ptid);
1013
1014 /* Be quiet if we simply raced with the thread exiting. EPERM
1015 is returned if the thread's task still exists, and is marked
1016 as exited or zombie, as well as other conditions, so in that
1017 case, confirm the status in /proc/PID/status. */
1018 if (err == ESRCH
1019 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1020 {
1021 if (debug_threads)
1022 {
1023 debug_printf ("Cannot attach to lwp %d: "
1024 "thread is gone (%d: %s)\n",
1025 lwpid, err, strerror (err));
1026 }
1027 }
1028 else if (err != 0)
1029 {
1030 warning (_("Cannot attach to lwp %d: %s"),
1031 lwpid,
1032 linux_ptrace_attach_fail_reason_string (ptid, err));
1033 }
1034
1035 return 1;
1036 }
1037 return 0;
1038 }
1039
1040 static void async_file_mark (void);
1041
1042 /* Attach to PID. If PID is the tgid, attach to it and all
1043 of its threads. */
1044
1045 static int
1046 linux_attach (unsigned long pid)
1047 {
1048 struct process_info *proc;
1049 struct thread_info *initial_thread;
1050 ptid_t ptid = ptid_build (pid, pid, 0);
1051 int err;
1052
1053 /* Attach to PID. We will check for other threads
1054 soon. */
1055 err = linux_attach_lwp (ptid);
1056 if (err != 0)
1057 error ("Cannot attach to process %ld: %s",
1058 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1059
1060 proc = linux_add_process (pid, 1);
1061
1062 /* Don't ignore the initial SIGSTOP if we just attached to this
1063 process. It will be collected by wait shortly. */
1064 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1065 initial_thread->last_resume_kind = resume_stop;
1066
1067 /* We must attach to every LWP. If /proc is mounted, use that to
1068 find them now. On the one hand, the inferior may be using raw
1069 clone instead of using pthreads. On the other hand, even if it
1070 is using pthreads, GDB may not be connected yet (thread_db needs
1071 to do symbol lookups, through qSymbol). Also, thread_db walks
1072 structures in the inferior's address space to find the list of
1073 threads/LWPs, and those structures may well be corrupted. Note
1074 that once thread_db is loaded, we'll still use it to list threads
1075 and associate pthread info with each LWP. */
1076 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1077
1078 /* GDB will shortly read the xml target description for this
1079 process, to figure out the process' architecture. But the target
1080 description is only filled in when the first process/thread in
1081 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1082 that now, otherwise, if GDB is fast enough, it could read the
1083 target description _before_ that initial stop. */
1084 if (non_stop)
1085 {
1086 struct lwp_info *lwp;
1087 int wstat, lwpid;
1088 ptid_t pid_ptid = pid_to_ptid (pid);
1089
1090 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1091 &wstat, __WALL);
1092 gdb_assert (lwpid > 0);
1093
1094 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1095
1096 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1097 {
1098 lwp->status_pending_p = 1;
1099 lwp->status_pending = wstat;
1100 }
1101
1102 initial_thread->last_resume_kind = resume_continue;
1103
1104 async_file_mark ();
1105
1106 gdb_assert (proc->tdesc != NULL);
1107 }
1108
1109 return 0;
1110 }
1111
1112 struct counter
1113 {
1114 int pid;
1115 int count;
1116 };
1117
1118 static int
1119 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1120 {
1121 struct counter *counter = (struct counter *) args;
1122
1123 if (ptid_get_pid (entry->id) == counter->pid)
1124 {
1125 if (++counter->count > 1)
1126 return 1;
1127 }
1128
1129 return 0;
1130 }
1131
1132 static int
1133 last_thread_of_process_p (int pid)
1134 {
1135 struct counter counter = { pid , 0 };
1136
1137 return (find_inferior (&all_threads,
1138 second_thread_of_pid_p, &counter) == NULL);
1139 }
1140
1141 /* Kill LWP. */
1142
1143 static void
1144 linux_kill_one_lwp (struct lwp_info *lwp)
1145 {
1146 struct thread_info *thr = get_lwp_thread (lwp);
1147 int pid = lwpid_of (thr);
1148
1149 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1150 there is no signal context, and ptrace(PTRACE_KILL) (or
1151 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1152 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1153 alternative is to kill with SIGKILL. We only need one SIGKILL
1154 per process, not one for each thread. But since we still support
1155 linuxthreads, and we also support debugging programs using raw
1156 clone without CLONE_THREAD, we send one for each thread. For
1157 years, we used PTRACE_KILL only, so we're being a bit paranoid
1158 about some old kernels where PTRACE_KILL might work better
1159 (dubious if there are any such, but that's why it's paranoia), so
1160 we try SIGKILL first, PTRACE_KILL second, and so we're fine
1161 everywhere. */
1162
1163 errno = 0;
1164 kill_lwp (pid, SIGKILL);
1165 if (debug_threads)
1166 {
1167 int save_errno = errno;
1168
1169 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1170 target_pid_to_str (ptid_of (thr)),
1171 save_errno ? strerror (save_errno) : "OK");
1172 }
1173
1174 errno = 0;
1175 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1176 if (debug_threads)
1177 {
1178 int save_errno = errno;
1179
1180 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1181 target_pid_to_str (ptid_of (thr)),
1182 save_errno ? strerror (save_errno) : "OK");
1183 }
1184 }
1185
1186 /* Kill LWP and wait for it to die. */
1187
1188 static void
1189 kill_wait_lwp (struct lwp_info *lwp)
1190 {
1191 struct thread_info *thr = get_lwp_thread (lwp);
1192 int pid = ptid_get_pid (ptid_of (thr));
1193 int lwpid = ptid_get_lwp (ptid_of (thr));
1194 int wstat;
1195 int res;
1196
1197 if (debug_threads)
1198 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1199
1200 do
1201 {
1202 linux_kill_one_lwp (lwp);
1203
1204 /* Make sure it died. Notes:
1205
1206 - The loop is most likely unnecessary.
1207
1208 - We don't use linux_wait_for_event as that could delete lwps
1209 while we're iterating over them. We're not interested in
1210 any pending status at this point, only in making sure all
1211 wait status on the kernel side are collected until the
1212 process is reaped.
1213
1214 - We don't use __WALL here as the __WALL emulation relies on
1215 SIGCHLD, and killing a stopped process doesn't generate
1216 one, nor an exit status.
1217 */
1218 res = my_waitpid (lwpid, &wstat, 0);
1219 if (res == -1 && errno == ECHILD)
1220 res = my_waitpid (lwpid, &wstat, __WCLONE);
1221 } while (res > 0 && WIFSTOPPED (wstat));
1222
1223 /* Even if it was stopped, the child may have already disappeared.
1224 E.g., if it was killed by SIGKILL. */
1225 if (res < 0 && errno != ECHILD)
1226 perror_with_name ("kill_wait_lwp");
1227 }
1228
1229 /* Callback for `find_inferior'. Kills an lwp of a given process,
1230 except the leader. */
1231
1232 static int
1233 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1234 {
1235 struct thread_info *thread = (struct thread_info *) entry;
1236 struct lwp_info *lwp = get_thread_lwp (thread);
1237 int pid = * (int *) args;
1238
1239 if (ptid_get_pid (entry->id) != pid)
1240 return 0;
1241
1242 /* We avoid killing the first thread here, because of a Linux kernel (at
1243 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1244 the children get a chance to be reaped, it will remain a zombie
1245 forever. */
1246
1247 if (lwpid_of (thread) == pid)
1248 {
1249 if (debug_threads)
1250 debug_printf ("lkop: is last of process %s\n",
1251 target_pid_to_str (entry->id));
1252 return 0;
1253 }
1254
1255 kill_wait_lwp (lwp);
1256 return 0;
1257 }
1258
1259 static int
1260 linux_kill (int pid)
1261 {
1262 struct process_info *process;
1263 struct lwp_info *lwp;
1264
1265 process = find_process_pid (pid);
1266 if (process == NULL)
1267 return -1;
1268
1269 /* If we're killing a running inferior, make sure it is stopped
1270 first, as PTRACE_KILL will not work otherwise. */
1271 stop_all_lwps (0, NULL);
1272
1273 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1274
1275 /* See the comment in linux_kill_one_lwp. We did not kill the first
1276 thread in the list, so do so now. */
1277 lwp = find_lwp_pid (pid_to_ptid (pid));
1278
1279 if (lwp == NULL)
1280 {
1281 if (debug_threads)
1282 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1283 pid);
1284 }
1285 else
1286 kill_wait_lwp (lwp);
1287
1288 the_target->mourn (process);
1289
1290 /* Since we presently can only stop all lwps of all processes, we
1291 need to unstop lwps of other processes. */
1292 unstop_all_lwps (0, NULL);
1293 return 0;
1294 }
1295
1296 /* Get pending signal of THREAD, for detaching purposes. This is the
1297 signal the thread last stopped for, which we need to deliver to the
1298 thread when detaching, otherwise, it'd be suppressed/lost. */
1299
1300 static int
1301 get_detach_signal (struct thread_info *thread)
1302 {
1303 enum gdb_signal signo = GDB_SIGNAL_0;
1304 int status;
1305 struct lwp_info *lp = get_thread_lwp (thread);
1306
1307 if (lp->status_pending_p)
1308 status = lp->status_pending;
1309 else
1310 {
1311 /* If the thread had been suspended by gdbserver, and it stopped
1312 cleanly, then it'll have stopped with SIGSTOP. But we don't
1313 want to deliver that SIGSTOP. */
1314 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1315 || thread->last_status.value.sig == GDB_SIGNAL_0)
1316 return 0;
1317
1318 /* Otherwise, we may need to deliver the signal we
1319 intercepted. */
1320 status = lp->last_status;
1321 }
1322
1323 if (!WIFSTOPPED (status))
1324 {
1325 if (debug_threads)
1326 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1327 target_pid_to_str (ptid_of (thread)));
1328 return 0;
1329 }
1330
1331 /* Extended wait statuses aren't real SIGTRAPs. */
1332 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1333 {
1334 if (debug_threads)
1335 debug_printf ("GPS: lwp %s had stopped with extended "
1336 "status: no pending signal\n",
1337 target_pid_to_str (ptid_of (thread)));
1338 return 0;
1339 }
1340
1341 signo = gdb_signal_from_host (WSTOPSIG (status));
1342
1343 if (program_signals_p && !program_signals[signo])
1344 {
1345 if (debug_threads)
1346 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1347 target_pid_to_str (ptid_of (thread)),
1348 gdb_signal_to_string (signo));
1349 return 0;
1350 }
1351 else if (!program_signals_p
1352 /* If we have no way to know which signals GDB does not
1353 want to have passed to the program, assume
1354 SIGTRAP/SIGINT, which is GDB's default. */
1355 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1356 {
1357 if (debug_threads)
1358 debug_printf ("GPS: lwp %s had signal %s, "
1359 "but we don't know if we should pass it. "
1360 "Default to not.\n",
1361 target_pid_to_str (ptid_of (thread)),
1362 gdb_signal_to_string (signo));
1363 return 0;
1364 }
1365 else
1366 {
1367 if (debug_threads)
1368 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1369 target_pid_to_str (ptid_of (thread)),
1370 gdb_signal_to_string (signo));
1371
1372 return WSTOPSIG (status);
1373 }
1374 }
1375
1376 static int
1377 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1378 {
1379 struct thread_info *thread = (struct thread_info *) entry;
1380 struct lwp_info *lwp = get_thread_lwp (thread);
1381 int pid = * (int *) args;
1382 int sig;
1383
1384 if (ptid_get_pid (entry->id) != pid)
1385 return 0;
1386
1387 /* If there is a pending SIGSTOP, get rid of it. */
1388 if (lwp->stop_expected)
1389 {
1390 if (debug_threads)
1391 debug_printf ("Sending SIGCONT to %s\n",
1392 target_pid_to_str (ptid_of (thread)));
1393
1394 kill_lwp (lwpid_of (thread), SIGCONT);
1395 lwp->stop_expected = 0;
1396 }
1397
1398 /* Flush any pending changes to the process's registers. */
1399 regcache_invalidate_thread (thread);
1400
1401 /* Pass on any pending signal for this thread. */
1402 sig = get_detach_signal (thread);
1403
1404 /* Finally, let it resume. */
1405 if (the_low_target.prepare_to_resume != NULL)
1406 the_low_target.prepare_to_resume (lwp);
1407 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1408 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1409 error (_("Can't detach %s: %s"),
1410 target_pid_to_str (ptid_of (thread)),
1411 strerror (errno));
1412
1413 delete_lwp (lwp);
1414 return 0;
1415 }
1416
1417 static int
1418 linux_detach (int pid)
1419 {
1420 struct process_info *process;
1421
1422 process = find_process_pid (pid);
1423 if (process == NULL)
1424 return -1;
1425
1426 /* As there's a step over already in progress, let it finish first,
1427 otherwise nesting a stabilize_threads operation on top gets real
1428 messy. */
1429 complete_ongoing_step_over ();
1430
1431 /* Stop all threads before detaching. First, ptrace requires that
1432 the thread is stopped to sucessfully detach. Second, thread_db
1433 may need to uninstall thread event breakpoints from memory, which
1434 only works with a stopped process anyway. */
1435 stop_all_lwps (0, NULL);
1436
1437 #ifdef USE_THREAD_DB
1438 thread_db_detach (process);
1439 #endif
1440
1441 /* Stabilize threads (move out of jump pads). */
1442 stabilize_threads ();
1443
1444 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1445
1446 the_target->mourn (process);
1447
1448 /* Since we presently can only stop all lwps of all processes, we
1449 need to unstop lwps of other processes. */
1450 unstop_all_lwps (0, NULL);
1451 return 0;
1452 }
1453
1454 /* Remove all LWPs that belong to process PROC from the lwp list. */
1455
1456 static int
1457 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1458 {
1459 struct thread_info *thread = (struct thread_info *) entry;
1460 struct lwp_info *lwp = get_thread_lwp (thread);
1461 struct process_info *process = (struct process_info *) proc;
1462
1463 if (pid_of (thread) == pid_of (process))
1464 delete_lwp (lwp);
1465
1466 return 0;
1467 }
1468
1469 static void
1470 linux_mourn (struct process_info *process)
1471 {
1472 struct process_info_private *priv;
1473
1474 #ifdef USE_THREAD_DB
1475 thread_db_mourn (process);
1476 #endif
1477
1478 find_inferior (&all_threads, delete_lwp_callback, process);
1479
1480 /* Freeing all private data. */
1481 priv = process->priv;
1482 free (priv->arch_private);
1483 free (priv);
1484 process->priv = NULL;
1485
1486 remove_process (process);
1487 }
1488
1489 static void
1490 linux_join (int pid)
1491 {
1492 int status, ret;
1493
1494 do {
1495 ret = my_waitpid (pid, &status, 0);
1496 if (WIFEXITED (status) || WIFSIGNALED (status))
1497 break;
1498 } while (ret != -1 || errno != ECHILD);
1499 }
1500
1501 /* Return nonzero if the given thread is still alive. */
1502 static int
1503 linux_thread_alive (ptid_t ptid)
1504 {
1505 struct lwp_info *lwp = find_lwp_pid (ptid);
1506
1507 /* We assume we always know if a thread exits. If a whole process
1508 exited but we still haven't been able to report it to GDB, we'll
1509 hold on to the last lwp of the dead process. */
1510 if (lwp != NULL)
1511 return !lwp_is_marked_dead (lwp);
1512 else
1513 return 0;
1514 }
1515
1516 /* Return 1 if this lwp still has an interesting status pending. If
1517 not (e.g., it had stopped for a breakpoint that is gone), return
1518 false. */
1519
1520 static int
1521 thread_still_has_status_pending_p (struct thread_info *thread)
1522 {
1523 struct lwp_info *lp = get_thread_lwp (thread);
1524
1525 if (!lp->status_pending_p)
1526 return 0;
1527
1528 if (thread->last_resume_kind != resume_stop
1529 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1530 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1531 {
1532 struct thread_info *saved_thread;
1533 CORE_ADDR pc;
1534 int discard = 0;
1535
1536 gdb_assert (lp->last_status != 0);
1537
1538 pc = get_pc (lp);
1539
1540 saved_thread = current_thread;
1541 current_thread = thread;
1542
1543 if (pc != lp->stop_pc)
1544 {
1545 if (debug_threads)
1546 debug_printf ("PC of %ld changed\n",
1547 lwpid_of (thread));
1548 discard = 1;
1549 }
1550
1551 #if !USE_SIGTRAP_SIGINFO
1552 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1553 && !(*the_low_target.breakpoint_at) (pc))
1554 {
1555 if (debug_threads)
1556 debug_printf ("previous SW breakpoint of %ld gone\n",
1557 lwpid_of (thread));
1558 discard = 1;
1559 }
1560 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1561 && !hardware_breakpoint_inserted_here (pc))
1562 {
1563 if (debug_threads)
1564 debug_printf ("previous HW breakpoint of %ld gone\n",
1565 lwpid_of (thread));
1566 discard = 1;
1567 }
1568 #endif
1569
1570 current_thread = saved_thread;
1571
1572 if (discard)
1573 {
1574 if (debug_threads)
1575 debug_printf ("discarding pending breakpoint status\n");
1576 lp->status_pending_p = 0;
1577 return 0;
1578 }
1579 }
1580
1581 return 1;
1582 }
1583
1584 /* Returns true if LWP is resumed from the client's perspective. */
1585
1586 static int
1587 lwp_resumed (struct lwp_info *lwp)
1588 {
1589 struct thread_info *thread = get_lwp_thread (lwp);
1590
1591 if (thread->last_resume_kind != resume_stop)
1592 return 1;
1593
1594 /* Did gdb send us a `vCont;t', but we haven't reported the
1595 corresponding stop to gdb yet? If so, the thread is still
1596 resumed/running from gdb's perspective. */
1597 if (thread->last_resume_kind == resume_stop
1598 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1599 return 1;
1600
1601 return 0;
1602 }
1603
1604 /* Return 1 if this lwp has an interesting status pending. */
1605 static int
1606 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1607 {
1608 struct thread_info *thread = (struct thread_info *) entry;
1609 struct lwp_info *lp = get_thread_lwp (thread);
1610 ptid_t ptid = * (ptid_t *) arg;
1611
1612 /* Check if we're only interested in events from a specific process
1613 or a specific LWP. */
1614 if (!ptid_match (ptid_of (thread), ptid))
1615 return 0;
1616
1617 if (!lwp_resumed (lp))
1618 return 0;
1619
1620 if (lp->status_pending_p
1621 && !thread_still_has_status_pending_p (thread))
1622 {
1623 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1624 return 0;
1625 }
1626
1627 return lp->status_pending_p;
1628 }
1629
1630 static int
1631 same_lwp (struct inferior_list_entry *entry, void *data)
1632 {
1633 ptid_t ptid = *(ptid_t *) data;
1634 int lwp;
1635
1636 if (ptid_get_lwp (ptid) != 0)
1637 lwp = ptid_get_lwp (ptid);
1638 else
1639 lwp = ptid_get_pid (ptid);
1640
1641 if (ptid_get_lwp (entry->id) == lwp)
1642 return 1;
1643
1644 return 0;
1645 }
1646
1647 struct lwp_info *
1648 find_lwp_pid (ptid_t ptid)
1649 {
1650 struct inferior_list_entry *thread
1651 = find_inferior (&all_threads, same_lwp, &ptid);
1652
1653 if (thread == NULL)
1654 return NULL;
1655
1656 return get_thread_lwp ((struct thread_info *) thread);
1657 }
1658
1659 /* Return the number of known LWPs in the tgid given by PID. */
1660
1661 static int
1662 num_lwps (int pid)
1663 {
1664 struct inferior_list_entry *inf, *tmp;
1665 int count = 0;
1666
1667 ALL_INFERIORS (&all_threads, inf, tmp)
1668 {
1669 if (ptid_get_pid (inf->id) == pid)
1670 count++;
1671 }
1672
1673 return count;
1674 }
1675
1676 /* The arguments passed to iterate_over_lwps. */
1677
1678 struct iterate_over_lwps_args
1679 {
1680 /* The FILTER argument passed to iterate_over_lwps. */
1681 ptid_t filter;
1682
1683 /* The CALLBACK argument passed to iterate_over_lwps. */
1684 iterate_over_lwps_ftype *callback;
1685
1686 /* The DATA argument passed to iterate_over_lwps. */
1687 void *data;
1688 };
1689
1690 /* Callback for find_inferior used by iterate_over_lwps to filter
1691 calls to the callback supplied to that function. Returning a
1692 nonzero value causes find_inferiors to stop iterating and return
1693 the current inferior_list_entry. Returning zero indicates that
1694 find_inferiors should continue iterating. */
1695
1696 static int
1697 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1698 {
1699 struct iterate_over_lwps_args *args
1700 = (struct iterate_over_lwps_args *) args_p;
1701
1702 if (ptid_match (entry->id, args->filter))
1703 {
1704 struct thread_info *thr = (struct thread_info *) entry;
1705 struct lwp_info *lwp = get_thread_lwp (thr);
1706
1707 return (*args->callback) (lwp, args->data);
1708 }
1709
1710 return 0;
1711 }
1712
1713 /* See nat/linux-nat.h. */
1714
1715 struct lwp_info *
1716 iterate_over_lwps (ptid_t filter,
1717 iterate_over_lwps_ftype callback,
1718 void *data)
1719 {
1720 struct iterate_over_lwps_args args = {filter, callback, data};
1721 struct inferior_list_entry *entry;
1722
1723 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1724 if (entry == NULL)
1725 return NULL;
1726
1727 return get_thread_lwp ((struct thread_info *) entry);
1728 }
1729
1730 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1731 their exits until all other threads in the group have exited. */
1732
1733 static void
1734 check_zombie_leaders (void)
1735 {
1736 struct process_info *proc, *tmp;
1737
1738 ALL_PROCESSES (proc, tmp)
1739 {
1740 pid_t leader_pid = pid_of (proc);
1741 struct lwp_info *leader_lp;
1742
1743 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1744
1745 if (debug_threads)
1746 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1747 "num_lwps=%d, zombie=%d\n",
1748 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1749 linux_proc_pid_is_zombie (leader_pid));
1750
1751 if (leader_lp != NULL && !leader_lp->stopped
1752 /* Check if there are other threads in the group, as we may
1753 have raced with the inferior simply exiting. */
1754 && !last_thread_of_process_p (leader_pid)
1755 && linux_proc_pid_is_zombie (leader_pid))
1756 {
1757 /* A leader zombie can mean one of two things:
1758
1759 - It exited, and there's an exit status pending
1760 available, or only the leader exited (not the whole
1761 program). In the latter case, we can't waitpid the
1762 leader's exit status until all other threads are gone.
1763
1764 - There are 3 or more threads in the group, and a thread
1765 other than the leader exec'd. On an exec, the Linux
1766 kernel destroys all other threads (except the execing
1767 one) in the thread group, and resets the execing thread's
1768 tid to the tgid. No exit notification is sent for the
1769 execing thread -- from the ptracer's perspective, it
1770 appears as though the execing thread just vanishes.
1771 Until we reap all other threads except the leader and the
1772 execing thread, the leader will be zombie, and the
1773 execing thread will be in `D (disc sleep)'. As soon as
1774 all other threads are reaped, the execing thread changes
1775 it's tid to the tgid, and the previous (zombie) leader
1776 vanishes, giving place to the "new" leader. We could try
1777 distinguishing the exit and exec cases, by waiting once
1778 more, and seeing if something comes out, but it doesn't
1779 sound useful. The previous leader _does_ go away, and
1780 we'll re-add the new one once we see the exec event
1781 (which is just the same as what would happen if the
1782 previous leader did exit voluntarily before some other
1783 thread execs). */
1784
1785 if (debug_threads)
1786 fprintf (stderr,
1787 "CZL: Thread group leader %d zombie "
1788 "(it exited, or another thread execd).\n",
1789 leader_pid);
1790
1791 delete_lwp (leader_lp);
1792 }
1793 }
1794 }
1795
1796 /* Callback for `find_inferior'. Returns the first LWP that is not
1797 stopped. ARG is a PTID filter. */
1798
1799 static int
1800 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1801 {
1802 struct thread_info *thr = (struct thread_info *) entry;
1803 struct lwp_info *lwp;
1804 ptid_t filter = *(ptid_t *) arg;
1805
1806 if (!ptid_match (ptid_of (thr), filter))
1807 return 0;
1808
1809 lwp = get_thread_lwp (thr);
1810 if (!lwp->stopped)
1811 return 1;
1812
1813 return 0;
1814 }
1815
1816 /* Increment LWP's suspend count. */
1817
1818 static void
1819 lwp_suspended_inc (struct lwp_info *lwp)
1820 {
1821 lwp->suspended++;
1822
1823 if (debug_threads && lwp->suspended > 4)
1824 {
1825 struct thread_info *thread = get_lwp_thread (lwp);
1826
1827 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1828 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1829 }
1830 }
1831
1832 /* Decrement LWP's suspend count. */
1833
1834 static void
1835 lwp_suspended_decr (struct lwp_info *lwp)
1836 {
1837 lwp->suspended--;
1838
1839 if (lwp->suspended < 0)
1840 {
1841 struct thread_info *thread = get_lwp_thread (lwp);
1842
1843 internal_error (__FILE__, __LINE__,
1844 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1845 lwp->suspended);
1846 }
1847 }
1848
1849 /* This function should only be called if the LWP got a SIGTRAP.
1850
1851 Handle any tracepoint steps or hits. Return true if a tracepoint
1852 event was handled, 0 otherwise. */
1853
1854 static int
1855 handle_tracepoints (struct lwp_info *lwp)
1856 {
1857 struct thread_info *tinfo = get_lwp_thread (lwp);
1858 int tpoint_related_event = 0;
1859
1860 gdb_assert (lwp->suspended == 0);
1861
1862 /* If this tracepoint hit causes a tracing stop, we'll immediately
1863 uninsert tracepoints. To do this, we temporarily pause all
1864 threads, unpatch away, and then unpause threads. We need to make
1865 sure the unpausing doesn't resume LWP too. */
1866 lwp_suspended_inc (lwp);
1867
1868 /* And we need to be sure that any all-threads-stopping doesn't try
1869 to move threads out of the jump pads, as it could deadlock the
1870 inferior (LWP could be in the jump pad, maybe even holding the
1871 lock.) */
1872
1873 /* Do any necessary step collect actions. */
1874 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1875
1876 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1877
1878 /* See if we just hit a tracepoint and do its main collect
1879 actions. */
1880 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1881
1882 lwp_suspended_decr (lwp);
1883
1884 gdb_assert (lwp->suspended == 0);
1885 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1886
1887 if (tpoint_related_event)
1888 {
1889 if (debug_threads)
1890 debug_printf ("got a tracepoint event\n");
1891 return 1;
1892 }
1893
1894 return 0;
1895 }
1896
1897 /* Convenience wrapper. Returns true if LWP is presently collecting a
1898 fast tracepoint. */
1899
1900 static int
1901 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1902 struct fast_tpoint_collect_status *status)
1903 {
1904 CORE_ADDR thread_area;
1905 struct thread_info *thread = get_lwp_thread (lwp);
1906
1907 if (the_low_target.get_thread_area == NULL)
1908 return 0;
1909
1910 /* Get the thread area address. This is used to recognize which
1911 thread is which when tracing with the in-process agent library.
1912 We don't read anything from the address, and treat it as opaque;
1913 it's the address itself that we assume is unique per-thread. */
1914 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1915 return 0;
1916
1917 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1918 }
1919
1920 /* The reason we resume in the caller, is because we want to be able
1921 to pass lwp->status_pending as WSTAT, and we need to clear
1922 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1923 refuses to resume. */
1924
1925 static int
1926 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1927 {
1928 struct thread_info *saved_thread;
1929
1930 saved_thread = current_thread;
1931 current_thread = get_lwp_thread (lwp);
1932
1933 if ((wstat == NULL
1934 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1935 && supports_fast_tracepoints ()
1936 && agent_loaded_p ())
1937 {
1938 struct fast_tpoint_collect_status status;
1939 int r;
1940
1941 if (debug_threads)
1942 debug_printf ("Checking whether LWP %ld needs to move out of the "
1943 "jump pad.\n",
1944 lwpid_of (current_thread));
1945
1946 r = linux_fast_tracepoint_collecting (lwp, &status);
1947
1948 if (wstat == NULL
1949 || (WSTOPSIG (*wstat) != SIGILL
1950 && WSTOPSIG (*wstat) != SIGFPE
1951 && WSTOPSIG (*wstat) != SIGSEGV
1952 && WSTOPSIG (*wstat) != SIGBUS))
1953 {
1954 lwp->collecting_fast_tracepoint = r;
1955
1956 if (r != 0)
1957 {
1958 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1959 {
1960 /* Haven't executed the original instruction yet.
1961 Set breakpoint there, and wait till it's hit,
1962 then single-step until exiting the jump pad. */
1963 lwp->exit_jump_pad_bkpt
1964 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1965 }
1966
1967 if (debug_threads)
1968 debug_printf ("Checking whether LWP %ld needs to move out of "
1969 "the jump pad...it does\n",
1970 lwpid_of (current_thread));
1971 current_thread = saved_thread;
1972
1973 return 1;
1974 }
1975 }
1976 else
1977 {
1978 /* If we get a synchronous signal while collecting, *and*
1979 while executing the (relocated) original instruction,
1980 reset the PC to point at the tpoint address, before
1981 reporting to GDB. Otherwise, it's an IPA lib bug: just
1982 report the signal to GDB, and pray for the best. */
1983
1984 lwp->collecting_fast_tracepoint = 0;
1985
1986 if (r != 0
1987 && (status.adjusted_insn_addr <= lwp->stop_pc
1988 && lwp->stop_pc < status.adjusted_insn_addr_end))
1989 {
1990 siginfo_t info;
1991 struct regcache *regcache;
1992
1993 /* The si_addr on a few signals references the address
1994 of the faulting instruction. Adjust that as
1995 well. */
1996 if ((WSTOPSIG (*wstat) == SIGILL
1997 || WSTOPSIG (*wstat) == SIGFPE
1998 || WSTOPSIG (*wstat) == SIGBUS
1999 || WSTOPSIG (*wstat) == SIGSEGV)
2000 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2001 (PTRACE_TYPE_ARG3) 0, &info) == 0
2002 /* Final check just to make sure we don't clobber
2003 the siginfo of non-kernel-sent signals. */
2004 && (uintptr_t) info.si_addr == lwp->stop_pc)
2005 {
2006 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2007 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2008 (PTRACE_TYPE_ARG3) 0, &info);
2009 }
2010
2011 regcache = get_thread_regcache (current_thread, 1);
2012 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2013 lwp->stop_pc = status.tpoint_addr;
2014
2015 /* Cancel any fast tracepoint lock this thread was
2016 holding. */
2017 force_unlock_trace_buffer ();
2018 }
2019
2020 if (lwp->exit_jump_pad_bkpt != NULL)
2021 {
2022 if (debug_threads)
2023 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2024 "stopping all threads momentarily.\n");
2025
2026 stop_all_lwps (1, lwp);
2027
2028 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2029 lwp->exit_jump_pad_bkpt = NULL;
2030
2031 unstop_all_lwps (1, lwp);
2032
2033 gdb_assert (lwp->suspended >= 0);
2034 }
2035 }
2036 }
2037
2038 if (debug_threads)
2039 debug_printf ("Checking whether LWP %ld needs to move out of the "
2040 "jump pad...no\n",
2041 lwpid_of (current_thread));
2042
2043 current_thread = saved_thread;
2044 return 0;
2045 }
2046
2047 /* Enqueue one signal in the "signals to report later when out of the
2048 jump pad" list. */
2049
2050 static void
2051 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2052 {
2053 struct pending_signals *p_sig;
2054 struct thread_info *thread = get_lwp_thread (lwp);
2055
2056 if (debug_threads)
2057 debug_printf ("Deferring signal %d for LWP %ld.\n",
2058 WSTOPSIG (*wstat), lwpid_of (thread));
2059
2060 if (debug_threads)
2061 {
2062 struct pending_signals *sig;
2063
2064 for (sig = lwp->pending_signals_to_report;
2065 sig != NULL;
2066 sig = sig->prev)
2067 debug_printf (" Already queued %d\n",
2068 sig->signal);
2069
2070 debug_printf (" (no more currently queued signals)\n");
2071 }
2072
2073 /* Don't enqueue non-RT signals if they are already in the deferred
2074 queue. (SIGSTOP being the easiest signal to see ending up here
2075 twice) */
2076 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2077 {
2078 struct pending_signals *sig;
2079
2080 for (sig = lwp->pending_signals_to_report;
2081 sig != NULL;
2082 sig = sig->prev)
2083 {
2084 if (sig->signal == WSTOPSIG (*wstat))
2085 {
2086 if (debug_threads)
2087 debug_printf ("Not requeuing already queued non-RT signal %d"
2088 " for LWP %ld\n",
2089 sig->signal,
2090 lwpid_of (thread));
2091 return;
2092 }
2093 }
2094 }
2095
2096 p_sig = XCNEW (struct pending_signals);
2097 p_sig->prev = lwp->pending_signals_to_report;
2098 p_sig->signal = WSTOPSIG (*wstat);
2099
2100 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2101 &p_sig->info);
2102
2103 lwp->pending_signals_to_report = p_sig;
2104 }
2105
2106 /* Dequeue one signal from the "signals to report later when out of
2107 the jump pad" list. */
2108
2109 static int
2110 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2111 {
2112 struct thread_info *thread = get_lwp_thread (lwp);
2113
2114 if (lwp->pending_signals_to_report != NULL)
2115 {
2116 struct pending_signals **p_sig;
2117
2118 p_sig = &lwp->pending_signals_to_report;
2119 while ((*p_sig)->prev != NULL)
2120 p_sig = &(*p_sig)->prev;
2121
2122 *wstat = W_STOPCODE ((*p_sig)->signal);
2123 if ((*p_sig)->info.si_signo != 0)
2124 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2125 &(*p_sig)->info);
2126 free (*p_sig);
2127 *p_sig = NULL;
2128
2129 if (debug_threads)
2130 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2131 WSTOPSIG (*wstat), lwpid_of (thread));
2132
2133 if (debug_threads)
2134 {
2135 struct pending_signals *sig;
2136
2137 for (sig = lwp->pending_signals_to_report;
2138 sig != NULL;
2139 sig = sig->prev)
2140 debug_printf (" Still queued %d\n",
2141 sig->signal);
2142
2143 debug_printf (" (no more queued signals)\n");
2144 }
2145
2146 return 1;
2147 }
2148
2149 return 0;
2150 }
2151
2152 /* Fetch the possibly triggered data watchpoint info and store it in
2153 CHILD.
2154
2155 On some archs, like x86, that use debug registers to set
2156 watchpoints, it's possible that the way to know which watched
2157 address trapped, is to check the register that is used to select
2158 which address to watch. Problem is, between setting the watchpoint
2159 and reading back which data address trapped, the user may change
2160 the set of watchpoints, and, as a consequence, GDB changes the
2161 debug registers in the inferior. To avoid reading back a stale
2162 stopped-data-address when that happens, we cache in LP the fact
2163 that a watchpoint trapped, and the corresponding data address, as
2164 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2165 registers meanwhile, we have the cached data we can rely on. */
2166
2167 static int
2168 check_stopped_by_watchpoint (struct lwp_info *child)
2169 {
2170 if (the_low_target.stopped_by_watchpoint != NULL)
2171 {
2172 struct thread_info *saved_thread;
2173
2174 saved_thread = current_thread;
2175 current_thread = get_lwp_thread (child);
2176
2177 if (the_low_target.stopped_by_watchpoint ())
2178 {
2179 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2180
2181 if (the_low_target.stopped_data_address != NULL)
2182 child->stopped_data_address
2183 = the_low_target.stopped_data_address ();
2184 else
2185 child->stopped_data_address = 0;
2186 }
2187
2188 current_thread = saved_thread;
2189 }
2190
2191 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2192 }
2193
2194 /* Return the ptrace options that we want to try to enable. */
2195
2196 static int
2197 linux_low_ptrace_options (int attached)
2198 {
2199 int options = 0;
2200
2201 if (!attached)
2202 options |= PTRACE_O_EXITKILL;
2203
2204 if (report_fork_events)
2205 options |= PTRACE_O_TRACEFORK;
2206
2207 if (report_vfork_events)
2208 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2209
2210 if (report_exec_events)
2211 options |= PTRACE_O_TRACEEXEC;
2212
2213 return options;
2214 }
2215
2216 /* Do low-level handling of the event, and check if we should go on
2217 and pass it to caller code. Return the affected lwp if we are, or
2218 NULL otherwise. */
2219
2220 static struct lwp_info *
2221 linux_low_filter_event (int lwpid, int wstat)
2222 {
2223 struct lwp_info *child;
2224 struct thread_info *thread;
2225 int have_stop_pc = 0;
2226
2227 child = find_lwp_pid (pid_to_ptid (lwpid));
2228
2229 /* Check for stop events reported by a process we didn't already
2230 know about - anything not already in our LWP list.
2231
2232 If we're expecting to receive stopped processes after
2233 fork, vfork, and clone events, then we'll just add the
2234 new one to our list and go back to waiting for the event
2235 to be reported - the stopped process might be returned
2236 from waitpid before or after the event is.
2237
2238 But note the case of a non-leader thread exec'ing after the
2239 leader having exited, and gone from our lists (because
2240 check_zombie_leaders deleted it). The non-leader thread
2241 changes its tid to the tgid. */
2242
2243 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2244 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2245 {
2246 ptid_t child_ptid;
2247
2248 /* A multi-thread exec after we had seen the leader exiting. */
2249 if (debug_threads)
2250 {
2251 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2252 "after exec.\n", lwpid);
2253 }
2254
2255 child_ptid = ptid_build (lwpid, lwpid, 0);
2256 child = add_lwp (child_ptid);
2257 child->stopped = 1;
2258 current_thread = child->thread;
2259 }
2260
2261 /* If we didn't find a process, one of two things presumably happened:
2262 - A process we started and then detached from has exited. Ignore it.
2263 - A process we are controlling has forked and the new child's stop
2264 was reported to us by the kernel. Save its PID. */
2265 if (child == NULL && WIFSTOPPED (wstat))
2266 {
2267 add_to_pid_list (&stopped_pids, lwpid, wstat);
2268 return NULL;
2269 }
2270 else if (child == NULL)
2271 return NULL;
2272
2273 thread = get_lwp_thread (child);
2274
2275 child->stopped = 1;
2276
2277 child->last_status = wstat;
2278
2279 /* Check if the thread has exited. */
2280 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2281 {
2282 if (debug_threads)
2283 debug_printf ("LLFE: %d exited.\n", lwpid);
2284 /* If there is at least one more LWP, then the exit signal was
2285 not the end of the debugged application and should be
2286 ignored, unless GDB wants to hear about thread exits. */
2287 if (report_thread_events
2288 || last_thread_of_process_p (pid_of (thread)))
2289 {
2290 /* Since events are serialized to GDB core, and we can't
2291 report this one right now. Leave the status pending for
2292 the next time we're able to report it. */
2293 mark_lwp_dead (child, wstat);
2294 return child;
2295 }
2296 else
2297 {
2298 delete_lwp (child);
2299 return NULL;
2300 }
2301 }
2302
2303 gdb_assert (WIFSTOPPED (wstat));
2304
2305 if (WIFSTOPPED (wstat))
2306 {
2307 struct process_info *proc;
2308
2309 /* Architecture-specific setup after inferior is running. */
2310 proc = find_process_pid (pid_of (thread));
2311 if (proc->tdesc == NULL)
2312 {
2313 if (proc->attached)
2314 {
2315 /* This needs to happen after we have attached to the
2316 inferior and it is stopped for the first time, but
2317 before we access any inferior registers. */
2318 linux_arch_setup_thread (thread);
2319 }
2320 else
2321 {
2322 /* The process is started, but GDBserver will do
2323 architecture-specific setup after the program stops at
2324 the first instruction. */
2325 child->status_pending_p = 1;
2326 child->status_pending = wstat;
2327 return child;
2328 }
2329 }
2330 }
2331
2332 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2333 {
2334 struct process_info *proc = find_process_pid (pid_of (thread));
2335 int options = linux_low_ptrace_options (proc->attached);
2336
2337 linux_enable_event_reporting (lwpid, options);
2338 child->must_set_ptrace_flags = 0;
2339 }
2340
2341 /* Be careful to not overwrite stop_pc until
2342 check_stopped_by_breakpoint is called. */
2343 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2344 && linux_is_extended_waitstatus (wstat))
2345 {
2346 child->stop_pc = get_pc (child);
2347 if (handle_extended_wait (&child, wstat))
2348 {
2349 /* The event has been handled, so just return without
2350 reporting it. */
2351 return NULL;
2352 }
2353 }
2354
2355 /* Check first whether this was a SW/HW breakpoint before checking
2356 watchpoints, because at least s390 can't tell the data address of
2357 hardware watchpoint hits, and returns stopped-by-watchpoint as
2358 long as there's a watchpoint set. */
2359 if (WIFSTOPPED (wstat) && linux_wstatus_maybe_breakpoint (wstat))
2360 {
2361 if (check_stopped_by_breakpoint (child))
2362 have_stop_pc = 1;
2363 }
2364
2365 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2366 or hardware watchpoint. Check which is which if we got
2367 TARGET_STOPPED_BY_HW_BREAKPOINT. Likewise, we may have single
2368 stepped an instruction that triggered a watchpoint. In that
2369 case, on some architectures (such as x86), instead of
2370 TRAP_HWBKPT, si_code indicates TRAP_TRACE, and we need to check
2371 the debug registers separately. */
2372 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2373 && child->stop_reason != TARGET_STOPPED_BY_SW_BREAKPOINT)
2374 check_stopped_by_watchpoint (child);
2375
2376 if (!have_stop_pc)
2377 child->stop_pc = get_pc (child);
2378
2379 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2380 && child->stop_expected)
2381 {
2382 if (debug_threads)
2383 debug_printf ("Expected stop.\n");
2384 child->stop_expected = 0;
2385
2386 if (thread->last_resume_kind == resume_stop)
2387 {
2388 /* We want to report the stop to the core. Treat the
2389 SIGSTOP as a normal event. */
2390 if (debug_threads)
2391 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2392 target_pid_to_str (ptid_of (thread)));
2393 }
2394 else if (stopping_threads != NOT_STOPPING_THREADS)
2395 {
2396 /* Stopping threads. We don't want this SIGSTOP to end up
2397 pending. */
2398 if (debug_threads)
2399 debug_printf ("LLW: SIGSTOP caught for %s "
2400 "while stopping threads.\n",
2401 target_pid_to_str (ptid_of (thread)));
2402 return NULL;
2403 }
2404 else
2405 {
2406 /* This is a delayed SIGSTOP. Filter out the event. */
2407 if (debug_threads)
2408 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2409 child->stepping ? "step" : "continue",
2410 target_pid_to_str (ptid_of (thread)));
2411
2412 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2413 return NULL;
2414 }
2415 }
2416
2417 child->status_pending_p = 1;
2418 child->status_pending = wstat;
2419 return child;
2420 }
2421
2422 /* Resume LWPs that are currently stopped without any pending status
2423 to report, but are resumed from the core's perspective. */
2424
2425 static void
2426 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2427 {
2428 struct thread_info *thread = (struct thread_info *) entry;
2429 struct lwp_info *lp = get_thread_lwp (thread);
2430
2431 if (lp->stopped
2432 && !lp->suspended
2433 && !lp->status_pending_p
2434 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2435 {
2436 int step = thread->last_resume_kind == resume_step;
2437
2438 if (debug_threads)
2439 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2440 target_pid_to_str (ptid_of (thread)),
2441 paddress (lp->stop_pc),
2442 step);
2443
2444 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2445 }
2446 }
2447
2448 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2449 match FILTER_PTID (leaving others pending). The PTIDs can be:
2450 minus_one_ptid, to specify any child; a pid PTID, specifying all
2451 lwps of a thread group; or a PTID representing a single lwp. Store
2452 the stop status through the status pointer WSTAT. OPTIONS is
2453 passed to the waitpid call. Return 0 if no event was found and
2454 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2455 was found. Return the PID of the stopped child otherwise. */
2456
2457 static int
2458 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2459 int *wstatp, int options)
2460 {
2461 struct thread_info *event_thread;
2462 struct lwp_info *event_child, *requested_child;
2463 sigset_t block_mask, prev_mask;
2464
2465 retry:
2466 /* N.B. event_thread points to the thread_info struct that contains
2467 event_child. Keep them in sync. */
2468 event_thread = NULL;
2469 event_child = NULL;
2470 requested_child = NULL;
2471
2472 /* Check for a lwp with a pending status. */
2473
2474 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2475 {
2476 event_thread = (struct thread_info *)
2477 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2478 if (event_thread != NULL)
2479 event_child = get_thread_lwp (event_thread);
2480 if (debug_threads && event_thread)
2481 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2482 }
2483 else if (!ptid_equal (filter_ptid, null_ptid))
2484 {
2485 requested_child = find_lwp_pid (filter_ptid);
2486
2487 if (stopping_threads == NOT_STOPPING_THREADS
2488 && requested_child->status_pending_p
2489 && requested_child->collecting_fast_tracepoint)
2490 {
2491 enqueue_one_deferred_signal (requested_child,
2492 &requested_child->status_pending);
2493 requested_child->status_pending_p = 0;
2494 requested_child->status_pending = 0;
2495 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2496 }
2497
2498 if (requested_child->suspended
2499 && requested_child->status_pending_p)
2500 {
2501 internal_error (__FILE__, __LINE__,
2502 "requesting an event out of a"
2503 " suspended child?");
2504 }
2505
2506 if (requested_child->status_pending_p)
2507 {
2508 event_child = requested_child;
2509 event_thread = get_lwp_thread (event_child);
2510 }
2511 }
2512
2513 if (event_child != NULL)
2514 {
2515 if (debug_threads)
2516 debug_printf ("Got an event from pending child %ld (%04x)\n",
2517 lwpid_of (event_thread), event_child->status_pending);
2518 *wstatp = event_child->status_pending;
2519 event_child->status_pending_p = 0;
2520 event_child->status_pending = 0;
2521 current_thread = event_thread;
2522 return lwpid_of (event_thread);
2523 }
2524
2525 /* But if we don't find a pending event, we'll have to wait.
2526
2527 We only enter this loop if no process has a pending wait status.
2528 Thus any action taken in response to a wait status inside this
2529 loop is responding as soon as we detect the status, not after any
2530 pending events. */
2531
2532 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2533 all signals while here. */
2534 sigfillset (&block_mask);
2535 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2536
2537 /* Always pull all events out of the kernel. We'll randomly select
2538 an event LWP out of all that have events, to prevent
2539 starvation. */
2540 while (event_child == NULL)
2541 {
2542 pid_t ret = 0;
2543
2544 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2545 quirks:
2546
2547 - If the thread group leader exits while other threads in the
2548 thread group still exist, waitpid(TGID, ...) hangs. That
2549 waitpid won't return an exit status until the other threads
2550 in the group are reaped.
2551
2552 - When a non-leader thread execs, that thread just vanishes
2553 without reporting an exit (so we'd hang if we waited for it
2554 explicitly in that case). The exec event is reported to
2555 the TGID pid. */
2556 errno = 0;
2557 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2558
2559 if (debug_threads)
2560 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2561 ret, errno ? strerror (errno) : "ERRNO-OK");
2562
2563 if (ret > 0)
2564 {
2565 if (debug_threads)
2566 {
2567 debug_printf ("LLW: waitpid %ld received %s\n",
2568 (long) ret, status_to_str (*wstatp));
2569 }
2570
2571 /* Filter all events. IOW, leave all events pending. We'll
2572 randomly select an event LWP out of all that have events
2573 below. */
2574 linux_low_filter_event (ret, *wstatp);
2575 /* Retry until nothing comes out of waitpid. A single
2576 SIGCHLD can indicate more than one child stopped. */
2577 continue;
2578 }
2579
2580 /* Now that we've pulled all events out of the kernel, resume
2581 LWPs that don't have an interesting event to report. */
2582 if (stopping_threads == NOT_STOPPING_THREADS)
2583 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2584
2585 /* ... and find an LWP with a status to report to the core, if
2586 any. */
2587 event_thread = (struct thread_info *)
2588 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2589 if (event_thread != NULL)
2590 {
2591 event_child = get_thread_lwp (event_thread);
2592 *wstatp = event_child->status_pending;
2593 event_child->status_pending_p = 0;
2594 event_child->status_pending = 0;
2595 break;
2596 }
2597
2598 /* Check for zombie thread group leaders. Those can't be reaped
2599 until all other threads in the thread group are. */
2600 check_zombie_leaders ();
2601
2602 /* If there are no resumed children left in the set of LWPs we
2603 want to wait for, bail. We can't just block in
2604 waitpid/sigsuspend, because lwps might have been left stopped
2605 in trace-stop state, and we'd be stuck forever waiting for
2606 their status to change (which would only happen if we resumed
2607 them). Even if WNOHANG is set, this return code is preferred
2608 over 0 (below), as it is more detailed. */
2609 if ((find_inferior (&all_threads,
2610 not_stopped_callback,
2611 &wait_ptid) == NULL))
2612 {
2613 if (debug_threads)
2614 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2615 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2616 return -1;
2617 }
2618
2619 /* No interesting event to report to the caller. */
2620 if ((options & WNOHANG))
2621 {
2622 if (debug_threads)
2623 debug_printf ("WNOHANG set, no event found\n");
2624
2625 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2626 return 0;
2627 }
2628
2629 /* Block until we get an event reported with SIGCHLD. */
2630 if (debug_threads)
2631 debug_printf ("sigsuspend'ing\n");
2632
2633 sigsuspend (&prev_mask);
2634 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2635 goto retry;
2636 }
2637
2638 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2639
2640 current_thread = event_thread;
2641
2642 return lwpid_of (event_thread);
2643 }
2644
2645 /* Wait for an event from child(ren) PTID. PTIDs can be:
2646 minus_one_ptid, to specify any child; a pid PTID, specifying all
2647 lwps of a thread group; or a PTID representing a single lwp. Store
2648 the stop status through the status pointer WSTAT. OPTIONS is
2649 passed to the waitpid call. Return 0 if no event was found and
2650 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2651 was found. Return the PID of the stopped child otherwise. */
2652
2653 static int
2654 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2655 {
2656 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2657 }
2658
2659 /* Count the LWP's that have had events. */
2660
2661 static int
2662 count_events_callback (struct inferior_list_entry *entry, void *data)
2663 {
2664 struct thread_info *thread = (struct thread_info *) entry;
2665 struct lwp_info *lp = get_thread_lwp (thread);
2666 int *count = (int *) data;
2667
2668 gdb_assert (count != NULL);
2669
2670 /* Count only resumed LWPs that have an event pending. */
2671 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2672 && lp->status_pending_p)
2673 (*count)++;
2674
2675 return 0;
2676 }
2677
2678 /* Select the LWP (if any) that is currently being single-stepped. */
2679
2680 static int
2681 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2682 {
2683 struct thread_info *thread = (struct thread_info *) entry;
2684 struct lwp_info *lp = get_thread_lwp (thread);
2685
2686 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2687 && thread->last_resume_kind == resume_step
2688 && lp->status_pending_p)
2689 return 1;
2690 else
2691 return 0;
2692 }
2693
2694 /* Select the Nth LWP that has had an event. */
2695
2696 static int
2697 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2698 {
2699 struct thread_info *thread = (struct thread_info *) entry;
2700 struct lwp_info *lp = get_thread_lwp (thread);
2701 int *selector = (int *) data;
2702
2703 gdb_assert (selector != NULL);
2704
2705 /* Select only resumed LWPs that have an event pending. */
2706 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2707 && lp->status_pending_p)
2708 if ((*selector)-- == 0)
2709 return 1;
2710
2711 return 0;
2712 }
2713
2714 /* Select one LWP out of those that have events pending. */
2715
2716 static void
2717 select_event_lwp (struct lwp_info **orig_lp)
2718 {
2719 int num_events = 0;
2720 int random_selector;
2721 struct thread_info *event_thread = NULL;
2722
2723 /* In all-stop, give preference to the LWP that is being
2724 single-stepped. There will be at most one, and it's the LWP that
2725 the core is most interested in. If we didn't do this, then we'd
2726 have to handle pending step SIGTRAPs somehow in case the core
2727 later continues the previously-stepped thread, otherwise we'd
2728 report the pending SIGTRAP, and the core, not having stepped the
2729 thread, wouldn't understand what the trap was for, and therefore
2730 would report it to the user as a random signal. */
2731 if (!non_stop)
2732 {
2733 event_thread
2734 = (struct thread_info *) find_inferior (&all_threads,
2735 select_singlestep_lwp_callback,
2736 NULL);
2737 if (event_thread != NULL)
2738 {
2739 if (debug_threads)
2740 debug_printf ("SEL: Select single-step %s\n",
2741 target_pid_to_str (ptid_of (event_thread)));
2742 }
2743 }
2744 if (event_thread == NULL)
2745 {
2746 /* No single-stepping LWP. Select one at random, out of those
2747 which have had events. */
2748
2749 /* First see how many events we have. */
2750 find_inferior (&all_threads, count_events_callback, &num_events);
2751 gdb_assert (num_events > 0);
2752
2753 /* Now randomly pick a LWP out of those that have had
2754 events. */
2755 random_selector = (int)
2756 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2757
2758 if (debug_threads && num_events > 1)
2759 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2760 num_events, random_selector);
2761
2762 event_thread
2763 = (struct thread_info *) find_inferior (&all_threads,
2764 select_event_lwp_callback,
2765 &random_selector);
2766 }
2767
2768 if (event_thread != NULL)
2769 {
2770 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2771
2772 /* Switch the event LWP. */
2773 *orig_lp = event_lp;
2774 }
2775 }
2776
2777 /* Decrement the suspend count of an LWP. */
2778
2779 static int
2780 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2781 {
2782 struct thread_info *thread = (struct thread_info *) entry;
2783 struct lwp_info *lwp = get_thread_lwp (thread);
2784
2785 /* Ignore EXCEPT. */
2786 if (lwp == except)
2787 return 0;
2788
2789 lwp_suspended_decr (lwp);
2790 return 0;
2791 }
2792
2793 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2794 NULL. */
2795
2796 static void
2797 unsuspend_all_lwps (struct lwp_info *except)
2798 {
2799 find_inferior (&all_threads, unsuspend_one_lwp, except);
2800 }
2801
2802 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2803 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2804 void *data);
2805 static int lwp_running (struct inferior_list_entry *entry, void *data);
2806 static ptid_t linux_wait_1 (ptid_t ptid,
2807 struct target_waitstatus *ourstatus,
2808 int target_options);
2809
2810 /* Stabilize threads (move out of jump pads).
2811
2812 If a thread is midway collecting a fast tracepoint, we need to
2813 finish the collection and move it out of the jump pad before
2814 reporting the signal.
2815
2816 This avoids recursion while collecting (when a signal arrives
2817 midway, and the signal handler itself collects), which would trash
2818 the trace buffer. In case the user set a breakpoint in a signal
2819 handler, this avoids the backtrace showing the jump pad, etc..
2820 Most importantly, there are certain things we can't do safely if
2821 threads are stopped in a jump pad (or in its callee's). For
2822 example:
2823
2824 - starting a new trace run. A thread still collecting the
2825 previous run, could trash the trace buffer when resumed. The trace
2826 buffer control structures would have been reset but the thread had
2827 no way to tell. The thread could even midway memcpy'ing to the
2828 buffer, which would mean that when resumed, it would clobber the
2829 trace buffer that had been set for a new run.
2830
2831 - we can't rewrite/reuse the jump pads for new tracepoints
2832 safely. Say you do tstart while a thread is stopped midway while
2833 collecting. When the thread is later resumed, it finishes the
2834 collection, and returns to the jump pad, to execute the original
2835 instruction that was under the tracepoint jump at the time the
2836 older run had been started. If the jump pad had been rewritten
2837 since for something else in the new run, the thread would now
2838 execute the wrong / random instructions. */
2839
2840 static void
2841 linux_stabilize_threads (void)
2842 {
2843 struct thread_info *saved_thread;
2844 struct thread_info *thread_stuck;
2845
2846 thread_stuck
2847 = (struct thread_info *) find_inferior (&all_threads,
2848 stuck_in_jump_pad_callback,
2849 NULL);
2850 if (thread_stuck != NULL)
2851 {
2852 if (debug_threads)
2853 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2854 lwpid_of (thread_stuck));
2855 return;
2856 }
2857
2858 saved_thread = current_thread;
2859
2860 stabilizing_threads = 1;
2861
2862 /* Kick 'em all. */
2863 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2864
2865 /* Loop until all are stopped out of the jump pads. */
2866 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2867 {
2868 struct target_waitstatus ourstatus;
2869 struct lwp_info *lwp;
2870 int wstat;
2871
2872 /* Note that we go through the full wait even loop. While
2873 moving threads out of jump pad, we need to be able to step
2874 over internal breakpoints and such. */
2875 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2876
2877 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2878 {
2879 lwp = get_thread_lwp (current_thread);
2880
2881 /* Lock it. */
2882 lwp_suspended_inc (lwp);
2883
2884 if (ourstatus.value.sig != GDB_SIGNAL_0
2885 || current_thread->last_resume_kind == resume_stop)
2886 {
2887 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2888 enqueue_one_deferred_signal (lwp, &wstat);
2889 }
2890 }
2891 }
2892
2893 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2894
2895 stabilizing_threads = 0;
2896
2897 current_thread = saved_thread;
2898
2899 if (debug_threads)
2900 {
2901 thread_stuck
2902 = (struct thread_info *) find_inferior (&all_threads,
2903 stuck_in_jump_pad_callback,
2904 NULL);
2905 if (thread_stuck != NULL)
2906 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2907 lwpid_of (thread_stuck));
2908 }
2909 }
2910
2911 /* Convenience function that is called when the kernel reports an
2912 event that is not passed out to GDB. */
2913
2914 static ptid_t
2915 ignore_event (struct target_waitstatus *ourstatus)
2916 {
2917 /* If we got an event, there may still be others, as a single
2918 SIGCHLD can indicate more than one child stopped. This forces
2919 another target_wait call. */
2920 async_file_mark ();
2921
2922 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2923 return null_ptid;
2924 }
2925
2926 /* Convenience function that is called when the kernel reports an exit
2927 event. This decides whether to report the event to GDB as a
2928 process exit event, a thread exit event, or to suppress the
2929 event. */
2930
2931 static ptid_t
2932 filter_exit_event (struct lwp_info *event_child,
2933 struct target_waitstatus *ourstatus)
2934 {
2935 struct thread_info *thread = get_lwp_thread (event_child);
2936 ptid_t ptid = ptid_of (thread);
2937
2938 if (!last_thread_of_process_p (pid_of (thread)))
2939 {
2940 if (report_thread_events)
2941 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
2942 else
2943 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2944
2945 delete_lwp (event_child);
2946 }
2947 return ptid;
2948 }
2949
2950 /* Wait for process, returns status. */
2951
2952 static ptid_t
2953 linux_wait_1 (ptid_t ptid,
2954 struct target_waitstatus *ourstatus, int target_options)
2955 {
2956 int w;
2957 struct lwp_info *event_child;
2958 int options;
2959 int pid;
2960 int step_over_finished;
2961 int bp_explains_trap;
2962 int maybe_internal_trap;
2963 int report_to_gdb;
2964 int trace_event;
2965 int in_step_range;
2966 int any_resumed;
2967
2968 if (debug_threads)
2969 {
2970 debug_enter ();
2971 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2972 }
2973
2974 /* Translate generic target options into linux options. */
2975 options = __WALL;
2976 if (target_options & TARGET_WNOHANG)
2977 options |= WNOHANG;
2978
2979 bp_explains_trap = 0;
2980 trace_event = 0;
2981 in_step_range = 0;
2982 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2983
2984 /* Find a resumed LWP, if any. */
2985 if (find_inferior (&all_threads,
2986 status_pending_p_callback,
2987 &minus_one_ptid) != NULL)
2988 any_resumed = 1;
2989 else if ((find_inferior (&all_threads,
2990 not_stopped_callback,
2991 &minus_one_ptid) != NULL))
2992 any_resumed = 1;
2993 else
2994 any_resumed = 0;
2995
2996 if (ptid_equal (step_over_bkpt, null_ptid))
2997 pid = linux_wait_for_event (ptid, &w, options);
2998 else
2999 {
3000 if (debug_threads)
3001 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3002 target_pid_to_str (step_over_bkpt));
3003 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3004 }
3005
3006 if (pid == 0 || (pid == -1 && !any_resumed))
3007 {
3008 gdb_assert (target_options & TARGET_WNOHANG);
3009
3010 if (debug_threads)
3011 {
3012 debug_printf ("linux_wait_1 ret = null_ptid, "
3013 "TARGET_WAITKIND_IGNORE\n");
3014 debug_exit ();
3015 }
3016
3017 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3018 return null_ptid;
3019 }
3020 else if (pid == -1)
3021 {
3022 if (debug_threads)
3023 {
3024 debug_printf ("linux_wait_1 ret = null_ptid, "
3025 "TARGET_WAITKIND_NO_RESUMED\n");
3026 debug_exit ();
3027 }
3028
3029 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3030 return null_ptid;
3031 }
3032
3033 event_child = get_thread_lwp (current_thread);
3034
3035 /* linux_wait_for_event only returns an exit status for the last
3036 child of a process. Report it. */
3037 if (WIFEXITED (w) || WIFSIGNALED (w))
3038 {
3039 if (WIFEXITED (w))
3040 {
3041 ourstatus->kind = TARGET_WAITKIND_EXITED;
3042 ourstatus->value.integer = WEXITSTATUS (w);
3043
3044 if (debug_threads)
3045 {
3046 debug_printf ("linux_wait_1 ret = %s, exited with "
3047 "retcode %d\n",
3048 target_pid_to_str (ptid_of (current_thread)),
3049 WEXITSTATUS (w));
3050 debug_exit ();
3051 }
3052 }
3053 else
3054 {
3055 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3056 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3057
3058 if (debug_threads)
3059 {
3060 debug_printf ("linux_wait_1 ret = %s, terminated with "
3061 "signal %d\n",
3062 target_pid_to_str (ptid_of (current_thread)),
3063 WTERMSIG (w));
3064 debug_exit ();
3065 }
3066 }
3067
3068 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3069 return filter_exit_event (event_child, ourstatus);
3070
3071 return ptid_of (current_thread);
3072 }
3073
3074 /* If step-over executes a breakpoint instruction, it means a
3075 gdb/gdbserver breakpoint had been planted on top of a permanent
3076 breakpoint. The PC has been adjusted by
3077 check_stopped_by_breakpoint to point at the breakpoint address.
3078 Advance the PC manually past the breakpoint, otherwise the
3079 program would keep trapping the permanent breakpoint forever. */
3080 if (!ptid_equal (step_over_bkpt, null_ptid)
3081 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
3082 {
3083 int increment_pc = 0;
3084 int breakpoint_kind = 0;
3085 CORE_ADDR stop_pc = event_child->stop_pc;
3086
3087 breakpoint_kind =
3088 the_target->breakpoint_kind_from_current_state (&stop_pc);
3089 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3090
3091 if (debug_threads)
3092 {
3093 debug_printf ("step-over for %s executed software breakpoint\n",
3094 target_pid_to_str (ptid_of (current_thread)));
3095 }
3096
3097 if (increment_pc != 0)
3098 {
3099 struct regcache *regcache
3100 = get_thread_regcache (current_thread, 1);
3101
3102 event_child->stop_pc += increment_pc;
3103 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3104
3105 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3106 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3107 }
3108 }
3109
3110 /* If this event was not handled before, and is not a SIGTRAP, we
3111 report it. SIGILL and SIGSEGV are also treated as traps in case
3112 a breakpoint is inserted at the current PC. If this target does
3113 not support internal breakpoints at all, we also report the
3114 SIGTRAP without further processing; it's of no concern to us. */
3115 maybe_internal_trap
3116 = (supports_breakpoints ()
3117 && (WSTOPSIG (w) == SIGTRAP
3118 || ((WSTOPSIG (w) == SIGILL
3119 || WSTOPSIG (w) == SIGSEGV)
3120 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3121
3122 if (maybe_internal_trap)
3123 {
3124 /* Handle anything that requires bookkeeping before deciding to
3125 report the event or continue waiting. */
3126
3127 /* First check if we can explain the SIGTRAP with an internal
3128 breakpoint, or if we should possibly report the event to GDB.
3129 Do this before anything that may remove or insert a
3130 breakpoint. */
3131 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3132
3133 /* We have a SIGTRAP, possibly a step-over dance has just
3134 finished. If so, tweak the state machine accordingly,
3135 reinsert breakpoints and delete any reinsert (software
3136 single-step) breakpoints. */
3137 step_over_finished = finish_step_over (event_child);
3138
3139 /* Now invoke the callbacks of any internal breakpoints there. */
3140 check_breakpoints (event_child->stop_pc);
3141
3142 /* Handle tracepoint data collecting. This may overflow the
3143 trace buffer, and cause a tracing stop, removing
3144 breakpoints. */
3145 trace_event = handle_tracepoints (event_child);
3146
3147 if (bp_explains_trap)
3148 {
3149 /* If we stepped or ran into an internal breakpoint, we've
3150 already handled it. So next time we resume (from this
3151 PC), we should step over it. */
3152 if (debug_threads)
3153 debug_printf ("Hit a gdbserver breakpoint.\n");
3154
3155 if (breakpoint_here (event_child->stop_pc))
3156 event_child->need_step_over = 1;
3157 }
3158 }
3159 else
3160 {
3161 /* We have some other signal, possibly a step-over dance was in
3162 progress, and it should be cancelled too. */
3163 step_over_finished = finish_step_over (event_child);
3164 }
3165
3166 /* We have all the data we need. Either report the event to GDB, or
3167 resume threads and keep waiting for more. */
3168
3169 /* If we're collecting a fast tracepoint, finish the collection and
3170 move out of the jump pad before delivering a signal. See
3171 linux_stabilize_threads. */
3172
3173 if (WIFSTOPPED (w)
3174 && WSTOPSIG (w) != SIGTRAP
3175 && supports_fast_tracepoints ()
3176 && agent_loaded_p ())
3177 {
3178 if (debug_threads)
3179 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3180 "to defer or adjust it.\n",
3181 WSTOPSIG (w), lwpid_of (current_thread));
3182
3183 /* Allow debugging the jump pad itself. */
3184 if (current_thread->last_resume_kind != resume_step
3185 && maybe_move_out_of_jump_pad (event_child, &w))
3186 {
3187 enqueue_one_deferred_signal (event_child, &w);
3188
3189 if (debug_threads)
3190 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3191 WSTOPSIG (w), lwpid_of (current_thread));
3192
3193 linux_resume_one_lwp (event_child, 0, 0, NULL);
3194
3195 return ignore_event (ourstatus);
3196 }
3197 }
3198
3199 if (event_child->collecting_fast_tracepoint)
3200 {
3201 if (debug_threads)
3202 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3203 "Check if we're already there.\n",
3204 lwpid_of (current_thread),
3205 event_child->collecting_fast_tracepoint);
3206
3207 trace_event = 1;
3208
3209 event_child->collecting_fast_tracepoint
3210 = linux_fast_tracepoint_collecting (event_child, NULL);
3211
3212 if (event_child->collecting_fast_tracepoint != 1)
3213 {
3214 /* No longer need this breakpoint. */
3215 if (event_child->exit_jump_pad_bkpt != NULL)
3216 {
3217 if (debug_threads)
3218 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3219 "stopping all threads momentarily.\n");
3220
3221 /* Other running threads could hit this breakpoint.
3222 We don't handle moribund locations like GDB does,
3223 instead we always pause all threads when removing
3224 breakpoints, so that any step-over or
3225 decr_pc_after_break adjustment is always taken
3226 care of while the breakpoint is still
3227 inserted. */
3228 stop_all_lwps (1, event_child);
3229
3230 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3231 event_child->exit_jump_pad_bkpt = NULL;
3232
3233 unstop_all_lwps (1, event_child);
3234
3235 gdb_assert (event_child->suspended >= 0);
3236 }
3237 }
3238
3239 if (event_child->collecting_fast_tracepoint == 0)
3240 {
3241 if (debug_threads)
3242 debug_printf ("fast tracepoint finished "
3243 "collecting successfully.\n");
3244
3245 /* We may have a deferred signal to report. */
3246 if (dequeue_one_deferred_signal (event_child, &w))
3247 {
3248 if (debug_threads)
3249 debug_printf ("dequeued one signal.\n");
3250 }
3251 else
3252 {
3253 if (debug_threads)
3254 debug_printf ("no deferred signals.\n");
3255
3256 if (stabilizing_threads)
3257 {
3258 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3259 ourstatus->value.sig = GDB_SIGNAL_0;
3260
3261 if (debug_threads)
3262 {
3263 debug_printf ("linux_wait_1 ret = %s, stopped "
3264 "while stabilizing threads\n",
3265 target_pid_to_str (ptid_of (current_thread)));
3266 debug_exit ();
3267 }
3268
3269 return ptid_of (current_thread);
3270 }
3271 }
3272 }
3273 }
3274
3275 /* Check whether GDB would be interested in this event. */
3276
3277 /* If GDB is not interested in this signal, don't stop other
3278 threads, and don't report it to GDB. Just resume the inferior
3279 right away. We do this for threading-related signals as well as
3280 any that GDB specifically requested we ignore. But never ignore
3281 SIGSTOP if we sent it ourselves, and do not ignore signals when
3282 stepping - they may require special handling to skip the signal
3283 handler. Also never ignore signals that could be caused by a
3284 breakpoint. */
3285 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
3286 thread library? */
3287 if (WIFSTOPPED (w)
3288 && current_thread->last_resume_kind != resume_step
3289 && (
3290 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3291 (current_process ()->priv->thread_db != NULL
3292 && (WSTOPSIG (w) == __SIGRTMIN
3293 || WSTOPSIG (w) == __SIGRTMIN + 1))
3294 ||
3295 #endif
3296 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3297 && !(WSTOPSIG (w) == SIGSTOP
3298 && current_thread->last_resume_kind == resume_stop)
3299 && !linux_wstatus_maybe_breakpoint (w))))
3300 {
3301 siginfo_t info, *info_p;
3302
3303 if (debug_threads)
3304 debug_printf ("Ignored signal %d for LWP %ld.\n",
3305 WSTOPSIG (w), lwpid_of (current_thread));
3306
3307 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3308 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3309 info_p = &info;
3310 else
3311 info_p = NULL;
3312
3313 if (step_over_finished)
3314 {
3315 /* We cancelled this thread's step-over above. We still
3316 need to unsuspend all other LWPs, and set them back
3317 running again while the signal handler runs. */
3318 unsuspend_all_lwps (event_child);
3319
3320 /* Enqueue the pending signal info so that proceed_all_lwps
3321 doesn't lose it. */
3322 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3323
3324 proceed_all_lwps ();
3325 }
3326 else
3327 {
3328 linux_resume_one_lwp (event_child, event_child->stepping,
3329 WSTOPSIG (w), info_p);
3330 }
3331 return ignore_event (ourstatus);
3332 }
3333
3334 /* Note that all addresses are always "out of the step range" when
3335 there's no range to begin with. */
3336 in_step_range = lwp_in_step_range (event_child);
3337
3338 /* If GDB wanted this thread to single step, and the thread is out
3339 of the step range, we always want to report the SIGTRAP, and let
3340 GDB handle it. Watchpoints should always be reported. So should
3341 signals we can't explain. A SIGTRAP we can't explain could be a
3342 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3343 do, we're be able to handle GDB breakpoints on top of internal
3344 breakpoints, by handling the internal breakpoint and still
3345 reporting the event to GDB. If we don't, we're out of luck, GDB
3346 won't see the breakpoint hit. If we see a single-step event but
3347 the thread should be continuing, don't pass the trap to gdb.
3348 That indicates that we had previously finished a single-step but
3349 left the single-step pending -- see
3350 complete_ongoing_step_over. */
3351 report_to_gdb = (!maybe_internal_trap
3352 || (current_thread->last_resume_kind == resume_step
3353 && !in_step_range)
3354 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3355 || (!in_step_range
3356 && !bp_explains_trap
3357 && !trace_event
3358 && !step_over_finished
3359 && !(current_thread->last_resume_kind == resume_continue
3360 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3361 || (gdb_breakpoint_here (event_child->stop_pc)
3362 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3363 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3364 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3365
3366 run_breakpoint_commands (event_child->stop_pc);
3367
3368 /* We found no reason GDB would want us to stop. We either hit one
3369 of our own breakpoints, or finished an internal step GDB
3370 shouldn't know about. */
3371 if (!report_to_gdb)
3372 {
3373 if (debug_threads)
3374 {
3375 if (bp_explains_trap)
3376 debug_printf ("Hit a gdbserver breakpoint.\n");
3377 if (step_over_finished)
3378 debug_printf ("Step-over finished.\n");
3379 if (trace_event)
3380 debug_printf ("Tracepoint event.\n");
3381 if (lwp_in_step_range (event_child))
3382 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3383 paddress (event_child->stop_pc),
3384 paddress (event_child->step_range_start),
3385 paddress (event_child->step_range_end));
3386 }
3387
3388 /* We're not reporting this breakpoint to GDB, so apply the
3389 decr_pc_after_break adjustment to the inferior's regcache
3390 ourselves. */
3391
3392 if (the_low_target.set_pc != NULL)
3393 {
3394 struct regcache *regcache
3395 = get_thread_regcache (current_thread, 1);
3396 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3397 }
3398
3399 /* We may have finished stepping over a breakpoint. If so,
3400 we've stopped and suspended all LWPs momentarily except the
3401 stepping one. This is where we resume them all again. We're
3402 going to keep waiting, so use proceed, which handles stepping
3403 over the next breakpoint. */
3404 if (debug_threads)
3405 debug_printf ("proceeding all threads.\n");
3406
3407 if (step_over_finished)
3408 unsuspend_all_lwps (event_child);
3409
3410 proceed_all_lwps ();
3411 return ignore_event (ourstatus);
3412 }
3413
3414 if (debug_threads)
3415 {
3416 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3417 {
3418 char *str;
3419
3420 str = target_waitstatus_to_string (&event_child->waitstatus);
3421 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3422 lwpid_of (get_lwp_thread (event_child)), str);
3423 xfree (str);
3424 }
3425 if (current_thread->last_resume_kind == resume_step)
3426 {
3427 if (event_child->step_range_start == event_child->step_range_end)
3428 debug_printf ("GDB wanted to single-step, reporting event.\n");
3429 else if (!lwp_in_step_range (event_child))
3430 debug_printf ("Out of step range, reporting event.\n");
3431 }
3432 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3433 debug_printf ("Stopped by watchpoint.\n");
3434 else if (gdb_breakpoint_here (event_child->stop_pc))
3435 debug_printf ("Stopped by GDB breakpoint.\n");
3436 if (debug_threads)
3437 debug_printf ("Hit a non-gdbserver trap event.\n");
3438 }
3439
3440 /* Alright, we're going to report a stop. */
3441
3442 if (!stabilizing_threads)
3443 {
3444 /* In all-stop, stop all threads. */
3445 if (!non_stop)
3446 stop_all_lwps (0, NULL);
3447
3448 /* If we're not waiting for a specific LWP, choose an event LWP
3449 from among those that have had events. Giving equal priority
3450 to all LWPs that have had events helps prevent
3451 starvation. */
3452 if (ptid_equal (ptid, minus_one_ptid))
3453 {
3454 event_child->status_pending_p = 1;
3455 event_child->status_pending = w;
3456
3457 select_event_lwp (&event_child);
3458
3459 /* current_thread and event_child must stay in sync. */
3460 current_thread = get_lwp_thread (event_child);
3461
3462 event_child->status_pending_p = 0;
3463 w = event_child->status_pending;
3464 }
3465
3466 if (step_over_finished)
3467 {
3468 if (!non_stop)
3469 {
3470 /* If we were doing a step-over, all other threads but
3471 the stepping one had been paused in start_step_over,
3472 with their suspend counts incremented. We don't want
3473 to do a full unstop/unpause, because we're in
3474 all-stop mode (so we want threads stopped), but we
3475 still need to unsuspend the other threads, to
3476 decrement their `suspended' count back. */
3477 unsuspend_all_lwps (event_child);
3478 }
3479 else
3480 {
3481 /* If we just finished a step-over, then all threads had
3482 been momentarily paused. In all-stop, that's fine,
3483 we want threads stopped by now anyway. In non-stop,
3484 we need to re-resume threads that GDB wanted to be
3485 running. */
3486 unstop_all_lwps (1, event_child);
3487 }
3488 }
3489
3490 /* Stabilize threads (move out of jump pads). */
3491 if (!non_stop)
3492 stabilize_threads ();
3493 }
3494 else
3495 {
3496 /* If we just finished a step-over, then all threads had been
3497 momentarily paused. In all-stop, that's fine, we want
3498 threads stopped by now anyway. In non-stop, we need to
3499 re-resume threads that GDB wanted to be running. */
3500 if (step_over_finished)
3501 unstop_all_lwps (1, event_child);
3502 }
3503
3504 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3505 {
3506 /* If the reported event is an exit, fork, vfork or exec, let
3507 GDB know. */
3508 *ourstatus = event_child->waitstatus;
3509 /* Clear the event lwp's waitstatus since we handled it already. */
3510 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3511 }
3512 else
3513 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3514
3515 /* Now that we've selected our final event LWP, un-adjust its PC if
3516 it was a software breakpoint, and the client doesn't know we can
3517 adjust the breakpoint ourselves. */
3518 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3519 && !swbreak_feature)
3520 {
3521 int decr_pc = the_low_target.decr_pc_after_break;
3522
3523 if (decr_pc != 0)
3524 {
3525 struct regcache *regcache
3526 = get_thread_regcache (current_thread, 1);
3527 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3528 }
3529 }
3530
3531 if (current_thread->last_resume_kind == resume_stop
3532 && WSTOPSIG (w) == SIGSTOP)
3533 {
3534 /* A thread that has been requested to stop by GDB with vCont;t,
3535 and it stopped cleanly, so report as SIG0. The use of
3536 SIGSTOP is an implementation detail. */
3537 ourstatus->value.sig = GDB_SIGNAL_0;
3538 }
3539 else if (current_thread->last_resume_kind == resume_stop
3540 && WSTOPSIG (w) != SIGSTOP)
3541 {
3542 /* A thread that has been requested to stop by GDB with vCont;t,
3543 but, it stopped for other reasons. */
3544 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3545 }
3546 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3547 {
3548 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3549 }
3550
3551 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3552
3553 if (debug_threads)
3554 {
3555 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3556 target_pid_to_str (ptid_of (current_thread)),
3557 ourstatus->kind, ourstatus->value.sig);
3558 debug_exit ();
3559 }
3560
3561 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3562 return filter_exit_event (event_child, ourstatus);
3563
3564 return ptid_of (current_thread);
3565 }
3566
3567 /* Get rid of any pending event in the pipe. */
3568 static void
3569 async_file_flush (void)
3570 {
3571 int ret;
3572 char buf;
3573
3574 do
3575 ret = read (linux_event_pipe[0], &buf, 1);
3576 while (ret >= 0 || (ret == -1 && errno == EINTR));
3577 }
3578
3579 /* Put something in the pipe, so the event loop wakes up. */
3580 static void
3581 async_file_mark (void)
3582 {
3583 int ret;
3584
3585 async_file_flush ();
3586
3587 do
3588 ret = write (linux_event_pipe[1], "+", 1);
3589 while (ret == 0 || (ret == -1 && errno == EINTR));
3590
3591 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3592 be awakened anyway. */
3593 }
3594
3595 static ptid_t
3596 linux_wait (ptid_t ptid,
3597 struct target_waitstatus *ourstatus, int target_options)
3598 {
3599 ptid_t event_ptid;
3600
3601 /* Flush the async file first. */
3602 if (target_is_async_p ())
3603 async_file_flush ();
3604
3605 do
3606 {
3607 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3608 }
3609 while ((target_options & TARGET_WNOHANG) == 0
3610 && ptid_equal (event_ptid, null_ptid)
3611 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3612
3613 /* If at least one stop was reported, there may be more. A single
3614 SIGCHLD can signal more than one child stop. */
3615 if (target_is_async_p ()
3616 && (target_options & TARGET_WNOHANG) != 0
3617 && !ptid_equal (event_ptid, null_ptid))
3618 async_file_mark ();
3619
3620 return event_ptid;
3621 }
3622
3623 /* Send a signal to an LWP. */
3624
3625 static int
3626 kill_lwp (unsigned long lwpid, int signo)
3627 {
3628 /* Use tkill, if possible, in case we are using nptl threads. If tkill
3629 fails, then we are not using nptl threads and we should be using kill. */
3630
3631 #ifdef __NR_tkill
3632 {
3633 static int tkill_failed;
3634
3635 if (!tkill_failed)
3636 {
3637 int ret;
3638
3639 errno = 0;
3640 ret = syscall (__NR_tkill, lwpid, signo);
3641 if (errno != ENOSYS)
3642 return ret;
3643 tkill_failed = 1;
3644 }
3645 }
3646 #endif
3647
3648 return kill (lwpid, signo);
3649 }
3650
3651 void
3652 linux_stop_lwp (struct lwp_info *lwp)
3653 {
3654 send_sigstop (lwp);
3655 }
3656
3657 static void
3658 send_sigstop (struct lwp_info *lwp)
3659 {
3660 int pid;
3661
3662 pid = lwpid_of (get_lwp_thread (lwp));
3663
3664 /* If we already have a pending stop signal for this process, don't
3665 send another. */
3666 if (lwp->stop_expected)
3667 {
3668 if (debug_threads)
3669 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3670
3671 return;
3672 }
3673
3674 if (debug_threads)
3675 debug_printf ("Sending sigstop to lwp %d\n", pid);
3676
3677 lwp->stop_expected = 1;
3678 kill_lwp (pid, SIGSTOP);
3679 }
3680
3681 static int
3682 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3683 {
3684 struct thread_info *thread = (struct thread_info *) entry;
3685 struct lwp_info *lwp = get_thread_lwp (thread);
3686
3687 /* Ignore EXCEPT. */
3688 if (lwp == except)
3689 return 0;
3690
3691 if (lwp->stopped)
3692 return 0;
3693
3694 send_sigstop (lwp);
3695 return 0;
3696 }
3697
3698 /* Increment the suspend count of an LWP, and stop it, if not stopped
3699 yet. */
3700 static int
3701 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3702 void *except)
3703 {
3704 struct thread_info *thread = (struct thread_info *) entry;
3705 struct lwp_info *lwp = get_thread_lwp (thread);
3706
3707 /* Ignore EXCEPT. */
3708 if (lwp == except)
3709 return 0;
3710
3711 lwp_suspended_inc (lwp);
3712
3713 return send_sigstop_callback (entry, except);
3714 }
3715
3716 static void
3717 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3718 {
3719 /* Store the exit status for later. */
3720 lwp->status_pending_p = 1;
3721 lwp->status_pending = wstat;
3722
3723 /* Store in waitstatus as well, as there's nothing else to process
3724 for this event. */
3725 if (WIFEXITED (wstat))
3726 {
3727 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3728 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3729 }
3730 else if (WIFSIGNALED (wstat))
3731 {
3732 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3733 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3734 }
3735
3736 /* Prevent trying to stop it. */
3737 lwp->stopped = 1;
3738
3739 /* No further stops are expected from a dead lwp. */
3740 lwp->stop_expected = 0;
3741 }
3742
3743 /* Return true if LWP has exited already, and has a pending exit event
3744 to report to GDB. */
3745
3746 static int
3747 lwp_is_marked_dead (struct lwp_info *lwp)
3748 {
3749 return (lwp->status_pending_p
3750 && (WIFEXITED (lwp->status_pending)
3751 || WIFSIGNALED (lwp->status_pending)));
3752 }
3753
3754 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3755
3756 static void
3757 wait_for_sigstop (void)
3758 {
3759 struct thread_info *saved_thread;
3760 ptid_t saved_tid;
3761 int wstat;
3762 int ret;
3763
3764 saved_thread = current_thread;
3765 if (saved_thread != NULL)
3766 saved_tid = saved_thread->entry.id;
3767 else
3768 saved_tid = null_ptid; /* avoid bogus unused warning */
3769
3770 if (debug_threads)
3771 debug_printf ("wait_for_sigstop: pulling events\n");
3772
3773 /* Passing NULL_PTID as filter indicates we want all events to be
3774 left pending. Eventually this returns when there are no
3775 unwaited-for children left. */
3776 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3777 &wstat, __WALL);
3778 gdb_assert (ret == -1);
3779
3780 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3781 current_thread = saved_thread;
3782 else
3783 {
3784 if (debug_threads)
3785 debug_printf ("Previously current thread died.\n");
3786
3787 /* We can't change the current inferior behind GDB's back,
3788 otherwise, a subsequent command may apply to the wrong
3789 process. */
3790 current_thread = NULL;
3791 }
3792 }
3793
3794 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3795 move it out, because we need to report the stop event to GDB. For
3796 example, if the user puts a breakpoint in the jump pad, it's
3797 because she wants to debug it. */
3798
3799 static int
3800 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3801 {
3802 struct thread_info *thread = (struct thread_info *) entry;
3803 struct lwp_info *lwp = get_thread_lwp (thread);
3804
3805 if (lwp->suspended != 0)
3806 {
3807 internal_error (__FILE__, __LINE__,
3808 "LWP %ld is suspended, suspended=%d\n",
3809 lwpid_of (thread), lwp->suspended);
3810 }
3811 gdb_assert (lwp->stopped);
3812
3813 /* Allow debugging the jump pad, gdb_collect, etc.. */
3814 return (supports_fast_tracepoints ()
3815 && agent_loaded_p ()
3816 && (gdb_breakpoint_here (lwp->stop_pc)
3817 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3818 || thread->last_resume_kind == resume_step)
3819 && linux_fast_tracepoint_collecting (lwp, NULL));
3820 }
3821
3822 static void
3823 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3824 {
3825 struct thread_info *thread = (struct thread_info *) entry;
3826 struct thread_info *saved_thread;
3827 struct lwp_info *lwp = get_thread_lwp (thread);
3828 int *wstat;
3829
3830 if (lwp->suspended != 0)
3831 {
3832 internal_error (__FILE__, __LINE__,
3833 "LWP %ld is suspended, suspended=%d\n",
3834 lwpid_of (thread), lwp->suspended);
3835 }
3836 gdb_assert (lwp->stopped);
3837
3838 /* For gdb_breakpoint_here. */
3839 saved_thread = current_thread;
3840 current_thread = thread;
3841
3842 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3843
3844 /* Allow debugging the jump pad, gdb_collect, etc. */
3845 if (!gdb_breakpoint_here (lwp->stop_pc)
3846 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3847 && thread->last_resume_kind != resume_step
3848 && maybe_move_out_of_jump_pad (lwp, wstat))
3849 {
3850 if (debug_threads)
3851 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3852 lwpid_of (thread));
3853
3854 if (wstat)
3855 {
3856 lwp->status_pending_p = 0;
3857 enqueue_one_deferred_signal (lwp, wstat);
3858
3859 if (debug_threads)
3860 debug_printf ("Signal %d for LWP %ld deferred "
3861 "(in jump pad)\n",
3862 WSTOPSIG (*wstat), lwpid_of (thread));
3863 }
3864
3865 linux_resume_one_lwp (lwp, 0, 0, NULL);
3866 }
3867 else
3868 lwp_suspended_inc (lwp);
3869
3870 current_thread = saved_thread;
3871 }
3872
3873 static int
3874 lwp_running (struct inferior_list_entry *entry, void *data)
3875 {
3876 struct thread_info *thread = (struct thread_info *) entry;
3877 struct lwp_info *lwp = get_thread_lwp (thread);
3878
3879 if (lwp_is_marked_dead (lwp))
3880 return 0;
3881 if (lwp->stopped)
3882 return 0;
3883 return 1;
3884 }
3885
3886 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3887 If SUSPEND, then also increase the suspend count of every LWP,
3888 except EXCEPT. */
3889
3890 static void
3891 stop_all_lwps (int suspend, struct lwp_info *except)
3892 {
3893 /* Should not be called recursively. */
3894 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3895
3896 if (debug_threads)
3897 {
3898 debug_enter ();
3899 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3900 suspend ? "stop-and-suspend" : "stop",
3901 except != NULL
3902 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3903 : "none");
3904 }
3905
3906 stopping_threads = (suspend
3907 ? STOPPING_AND_SUSPENDING_THREADS
3908 : STOPPING_THREADS);
3909
3910 if (suspend)
3911 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3912 else
3913 find_inferior (&all_threads, send_sigstop_callback, except);
3914 wait_for_sigstop ();
3915 stopping_threads = NOT_STOPPING_THREADS;
3916
3917 if (debug_threads)
3918 {
3919 debug_printf ("stop_all_lwps done, setting stopping_threads "
3920 "back to !stopping\n");
3921 debug_exit ();
3922 }
3923 }
3924
3925 /* Enqueue one signal in the chain of signals which need to be
3926 delivered to this process on next resume. */
3927
3928 static void
3929 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
3930 {
3931 struct pending_signals *p_sig = XNEW (struct pending_signals);
3932
3933 p_sig->prev = lwp->pending_signals;
3934 p_sig->signal = signal;
3935 if (info == NULL)
3936 memset (&p_sig->info, 0, sizeof (siginfo_t));
3937 else
3938 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3939 lwp->pending_signals = p_sig;
3940 }
3941
3942 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
3943 SIGNAL is nonzero, give it that signal. */
3944
3945 static void
3946 linux_resume_one_lwp_throw (struct lwp_info *lwp,
3947 int step, int signal, siginfo_t *info)
3948 {
3949 struct thread_info *thread = get_lwp_thread (lwp);
3950 struct thread_info *saved_thread;
3951 int fast_tp_collecting;
3952 struct process_info *proc = get_thread_process (thread);
3953
3954 /* Note that target description may not be initialised
3955 (proc->tdesc == NULL) at this point because the program hasn't
3956 stopped at the first instruction yet. It means GDBserver skips
3957 the extra traps from the wrapper program (see option --wrapper).
3958 Code in this function that requires register access should be
3959 guarded by proc->tdesc == NULL or something else. */
3960
3961 if (lwp->stopped == 0)
3962 return;
3963
3964 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
3965
3966 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3967
3968 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3969
3970 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3971 user used the "jump" command, or "set $pc = foo"). */
3972 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
3973 {
3974 /* Collecting 'while-stepping' actions doesn't make sense
3975 anymore. */
3976 release_while_stepping_state_list (thread);
3977 }
3978
3979 /* If we have pending signals or status, and a new signal, enqueue the
3980 signal. Also enqueue the signal if we are waiting to reinsert a
3981 breakpoint; it will be picked up again below. */
3982 if (signal != 0
3983 && (lwp->status_pending_p
3984 || lwp->pending_signals != NULL
3985 || lwp->bp_reinsert != 0
3986 || fast_tp_collecting))
3987 {
3988 struct pending_signals *p_sig = XNEW (struct pending_signals);
3989
3990 p_sig->prev = lwp->pending_signals;
3991 p_sig->signal = signal;
3992 if (info == NULL)
3993 memset (&p_sig->info, 0, sizeof (siginfo_t));
3994 else
3995 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3996 lwp->pending_signals = p_sig;
3997 }
3998
3999 if (lwp->status_pending_p)
4000 {
4001 if (debug_threads)
4002 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
4003 " has pending status\n",
4004 lwpid_of (thread), step ? "step" : "continue", signal,
4005 lwp->stop_expected ? "expected" : "not expected");
4006 return;
4007 }
4008
4009 saved_thread = current_thread;
4010 current_thread = thread;
4011
4012 if (debug_threads)
4013 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4014 lwpid_of (thread), step ? "step" : "continue", signal,
4015 lwp->stop_expected ? "expected" : "not expected");
4016
4017 /* This bit needs some thinking about. If we get a signal that
4018 we must report while a single-step reinsert is still pending,
4019 we often end up resuming the thread. It might be better to
4020 (ew) allow a stack of pending events; then we could be sure that
4021 the reinsert happened right away and not lose any signals.
4022
4023 Making this stack would also shrink the window in which breakpoints are
4024 uninserted (see comment in linux_wait_for_lwp) but not enough for
4025 complete correctness, so it won't solve that problem. It may be
4026 worthwhile just to solve this one, however. */
4027 if (lwp->bp_reinsert != 0)
4028 {
4029 if (debug_threads)
4030 debug_printf (" pending reinsert at 0x%s\n",
4031 paddress (lwp->bp_reinsert));
4032
4033 if (can_hardware_single_step ())
4034 {
4035 if (fast_tp_collecting == 0)
4036 {
4037 if (step == 0)
4038 fprintf (stderr, "BAD - reinserting but not stepping.\n");
4039 if (lwp->suspended)
4040 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
4041 lwp->suspended);
4042 }
4043
4044 step = 1;
4045 }
4046
4047 /* Postpone any pending signal. It was enqueued above. */
4048 signal = 0;
4049 }
4050
4051 if (fast_tp_collecting == 1)
4052 {
4053 if (debug_threads)
4054 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4055 " (exit-jump-pad-bkpt)\n",
4056 lwpid_of (thread));
4057
4058 /* Postpone any pending signal. It was enqueued above. */
4059 signal = 0;
4060 }
4061 else if (fast_tp_collecting == 2)
4062 {
4063 if (debug_threads)
4064 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4065 " single-stepping\n",
4066 lwpid_of (thread));
4067
4068 if (can_hardware_single_step ())
4069 step = 1;
4070 else
4071 {
4072 internal_error (__FILE__, __LINE__,
4073 "moving out of jump pad single-stepping"
4074 " not implemented on this target");
4075 }
4076
4077 /* Postpone any pending signal. It was enqueued above. */
4078 signal = 0;
4079 }
4080
4081 /* If we have while-stepping actions in this thread set it stepping.
4082 If we have a signal to deliver, it may or may not be set to
4083 SIG_IGN, we don't know. Assume so, and allow collecting
4084 while-stepping into a signal handler. A possible smart thing to
4085 do would be to set an internal breakpoint at the signal return
4086 address, continue, and carry on catching this while-stepping
4087 action only when that breakpoint is hit. A future
4088 enhancement. */
4089 if (thread->while_stepping != NULL
4090 && can_hardware_single_step ())
4091 {
4092 if (debug_threads)
4093 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4094 lwpid_of (thread));
4095 step = 1;
4096 }
4097
4098 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4099 {
4100 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4101
4102 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4103
4104 if (debug_threads)
4105 {
4106 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4107 (long) lwp->stop_pc);
4108 }
4109 }
4110
4111 /* If we have pending signals, consume one unless we are trying to
4112 reinsert a breakpoint or we're trying to finish a fast tracepoint
4113 collect. */
4114 if (lwp->pending_signals != NULL
4115 && lwp->bp_reinsert == 0
4116 && fast_tp_collecting == 0)
4117 {
4118 struct pending_signals **p_sig;
4119
4120 p_sig = &lwp->pending_signals;
4121 while ((*p_sig)->prev != NULL)
4122 p_sig = &(*p_sig)->prev;
4123
4124 signal = (*p_sig)->signal;
4125 if ((*p_sig)->info.si_signo != 0)
4126 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4127 &(*p_sig)->info);
4128
4129 free (*p_sig);
4130 *p_sig = NULL;
4131 }
4132
4133 if (the_low_target.prepare_to_resume != NULL)
4134 the_low_target.prepare_to_resume (lwp);
4135
4136 regcache_invalidate_thread (thread);
4137 errno = 0;
4138 lwp->stepping = step;
4139 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
4140 (PTRACE_TYPE_ARG3) 0,
4141 /* Coerce to a uintptr_t first to avoid potential gcc warning
4142 of coercing an 8 byte integer to a 4 byte pointer. */
4143 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4144
4145 current_thread = saved_thread;
4146 if (errno)
4147 perror_with_name ("resuming thread");
4148
4149 /* Successfully resumed. Clear state that no longer makes sense,
4150 and mark the LWP as running. Must not do this before resuming
4151 otherwise if that fails other code will be confused. E.g., we'd
4152 later try to stop the LWP and hang forever waiting for a stop
4153 status. Note that we must not throw after this is cleared,
4154 otherwise handle_zombie_lwp_error would get confused. */
4155 lwp->stopped = 0;
4156 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4157 }
4158
4159 /* Called when we try to resume a stopped LWP and that errors out. If
4160 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4161 or about to become), discard the error, clear any pending status
4162 the LWP may have, and return true (we'll collect the exit status
4163 soon enough). Otherwise, return false. */
4164
4165 static int
4166 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4167 {
4168 struct thread_info *thread = get_lwp_thread (lp);
4169
4170 /* If we get an error after resuming the LWP successfully, we'd
4171 confuse !T state for the LWP being gone. */
4172 gdb_assert (lp->stopped);
4173
4174 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4175 because even if ptrace failed with ESRCH, the tracee may be "not
4176 yet fully dead", but already refusing ptrace requests. In that
4177 case the tracee has 'R (Running)' state for a little bit
4178 (observed in Linux 3.18). See also the note on ESRCH in the
4179 ptrace(2) man page. Instead, check whether the LWP has any state
4180 other than ptrace-stopped. */
4181
4182 /* Don't assume anything if /proc/PID/status can't be read. */
4183 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4184 {
4185 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4186 lp->status_pending_p = 0;
4187 return 1;
4188 }
4189 return 0;
4190 }
4191
4192 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4193 disappears while we try to resume it. */
4194
4195 static void
4196 linux_resume_one_lwp (struct lwp_info *lwp,
4197 int step, int signal, siginfo_t *info)
4198 {
4199 TRY
4200 {
4201 linux_resume_one_lwp_throw (lwp, step, signal, info);
4202 }
4203 CATCH (ex, RETURN_MASK_ERROR)
4204 {
4205 if (!check_ptrace_stopped_lwp_gone (lwp))
4206 throw_exception (ex);
4207 }
4208 END_CATCH
4209 }
4210
4211 struct thread_resume_array
4212 {
4213 struct thread_resume *resume;
4214 size_t n;
4215 };
4216
4217 /* This function is called once per thread via find_inferior.
4218 ARG is a pointer to a thread_resume_array struct.
4219 We look up the thread specified by ENTRY in ARG, and mark the thread
4220 with a pointer to the appropriate resume request.
4221
4222 This algorithm is O(threads * resume elements), but resume elements
4223 is small (and will remain small at least until GDB supports thread
4224 suspension). */
4225
4226 static int
4227 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4228 {
4229 struct thread_info *thread = (struct thread_info *) entry;
4230 struct lwp_info *lwp = get_thread_lwp (thread);
4231 int ndx;
4232 struct thread_resume_array *r;
4233
4234 r = (struct thread_resume_array *) arg;
4235
4236 for (ndx = 0; ndx < r->n; ndx++)
4237 {
4238 ptid_t ptid = r->resume[ndx].thread;
4239 if (ptid_equal (ptid, minus_one_ptid)
4240 || ptid_equal (ptid, entry->id)
4241 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4242 of PID'. */
4243 || (ptid_get_pid (ptid) == pid_of (thread)
4244 && (ptid_is_pid (ptid)
4245 || ptid_get_lwp (ptid) == -1)))
4246 {
4247 if (r->resume[ndx].kind == resume_stop
4248 && thread->last_resume_kind == resume_stop)
4249 {
4250 if (debug_threads)
4251 debug_printf ("already %s LWP %ld at GDB's request\n",
4252 (thread->last_status.kind
4253 == TARGET_WAITKIND_STOPPED)
4254 ? "stopped"
4255 : "stopping",
4256 lwpid_of (thread));
4257
4258 continue;
4259 }
4260
4261 lwp->resume = &r->resume[ndx];
4262 thread->last_resume_kind = lwp->resume->kind;
4263
4264 lwp->step_range_start = lwp->resume->step_range_start;
4265 lwp->step_range_end = lwp->resume->step_range_end;
4266
4267 /* If we had a deferred signal to report, dequeue one now.
4268 This can happen if LWP gets more than one signal while
4269 trying to get out of a jump pad. */
4270 if (lwp->stopped
4271 && !lwp->status_pending_p
4272 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4273 {
4274 lwp->status_pending_p = 1;
4275
4276 if (debug_threads)
4277 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4278 "leaving status pending.\n",
4279 WSTOPSIG (lwp->status_pending),
4280 lwpid_of (thread));
4281 }
4282
4283 return 0;
4284 }
4285 }
4286
4287 /* No resume action for this thread. */
4288 lwp->resume = NULL;
4289
4290 return 0;
4291 }
4292
4293 /* find_inferior callback for linux_resume.
4294 Set *FLAG_P if this lwp has an interesting status pending. */
4295
4296 static int
4297 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4298 {
4299 struct thread_info *thread = (struct thread_info *) entry;
4300 struct lwp_info *lwp = get_thread_lwp (thread);
4301
4302 /* LWPs which will not be resumed are not interesting, because
4303 we might not wait for them next time through linux_wait. */
4304 if (lwp->resume == NULL)
4305 return 0;
4306
4307 if (thread_still_has_status_pending_p (thread))
4308 * (int *) flag_p = 1;
4309
4310 return 0;
4311 }
4312
4313 /* Return 1 if this lwp that GDB wants running is stopped at an
4314 internal breakpoint that we need to step over. It assumes that any
4315 required STOP_PC adjustment has already been propagated to the
4316 inferior's regcache. */
4317
4318 static int
4319 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4320 {
4321 struct thread_info *thread = (struct thread_info *) entry;
4322 struct lwp_info *lwp = get_thread_lwp (thread);
4323 struct thread_info *saved_thread;
4324 CORE_ADDR pc;
4325 struct process_info *proc = get_thread_process (thread);
4326
4327 /* GDBserver is skipping the extra traps from the wrapper program,
4328 don't have to do step over. */
4329 if (proc->tdesc == NULL)
4330 return 0;
4331
4332 /* LWPs which will not be resumed are not interesting, because we
4333 might not wait for them next time through linux_wait. */
4334
4335 if (!lwp->stopped)
4336 {
4337 if (debug_threads)
4338 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4339 lwpid_of (thread));
4340 return 0;
4341 }
4342
4343 if (thread->last_resume_kind == resume_stop)
4344 {
4345 if (debug_threads)
4346 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4347 " stopped\n",
4348 lwpid_of (thread));
4349 return 0;
4350 }
4351
4352 gdb_assert (lwp->suspended >= 0);
4353
4354 if (lwp->suspended)
4355 {
4356 if (debug_threads)
4357 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4358 lwpid_of (thread));
4359 return 0;
4360 }
4361
4362 if (!lwp->need_step_over)
4363 {
4364 if (debug_threads)
4365 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
4366 }
4367
4368 if (lwp->status_pending_p)
4369 {
4370 if (debug_threads)
4371 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4372 " status.\n",
4373 lwpid_of (thread));
4374 return 0;
4375 }
4376
4377 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4378 or we have. */
4379 pc = get_pc (lwp);
4380
4381 /* If the PC has changed since we stopped, then don't do anything,
4382 and let the breakpoint/tracepoint be hit. This happens if, for
4383 instance, GDB handled the decr_pc_after_break subtraction itself,
4384 GDB is OOL stepping this thread, or the user has issued a "jump"
4385 command, or poked thread's registers herself. */
4386 if (pc != lwp->stop_pc)
4387 {
4388 if (debug_threads)
4389 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4390 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4391 lwpid_of (thread),
4392 paddress (lwp->stop_pc), paddress (pc));
4393
4394 lwp->need_step_over = 0;
4395 return 0;
4396 }
4397
4398 saved_thread = current_thread;
4399 current_thread = thread;
4400
4401 /* We can only step over breakpoints we know about. */
4402 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4403 {
4404 /* Don't step over a breakpoint that GDB expects to hit
4405 though. If the condition is being evaluated on the target's side
4406 and it evaluate to false, step over this breakpoint as well. */
4407 if (gdb_breakpoint_here (pc)
4408 && gdb_condition_true_at_breakpoint (pc)
4409 && gdb_no_commands_at_breakpoint (pc))
4410 {
4411 if (debug_threads)
4412 debug_printf ("Need step over [LWP %ld]? yes, but found"
4413 " GDB breakpoint at 0x%s; skipping step over\n",
4414 lwpid_of (thread), paddress (pc));
4415
4416 current_thread = saved_thread;
4417 return 0;
4418 }
4419 else
4420 {
4421 if (debug_threads)
4422 debug_printf ("Need step over [LWP %ld]? yes, "
4423 "found breakpoint at 0x%s\n",
4424 lwpid_of (thread), paddress (pc));
4425
4426 /* We've found an lwp that needs stepping over --- return 1 so
4427 that find_inferior stops looking. */
4428 current_thread = saved_thread;
4429
4430 /* If the step over is cancelled, this is set again. */
4431 lwp->need_step_over = 0;
4432 return 1;
4433 }
4434 }
4435
4436 current_thread = saved_thread;
4437
4438 if (debug_threads)
4439 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4440 " at 0x%s\n",
4441 lwpid_of (thread), paddress (pc));
4442
4443 return 0;
4444 }
4445
4446 /* Start a step-over operation on LWP. When LWP stopped at a
4447 breakpoint, to make progress, we need to remove the breakpoint out
4448 of the way. If we let other threads run while we do that, they may
4449 pass by the breakpoint location and miss hitting it. To avoid
4450 that, a step-over momentarily stops all threads while LWP is
4451 single-stepped while the breakpoint is temporarily uninserted from
4452 the inferior. When the single-step finishes, we reinsert the
4453 breakpoint, and let all threads that are supposed to be running,
4454 run again.
4455
4456 On targets that don't support hardware single-step, we don't
4457 currently support full software single-stepping. Instead, we only
4458 support stepping over the thread event breakpoint, by asking the
4459 low target where to place a reinsert breakpoint. Since this
4460 routine assumes the breakpoint being stepped over is a thread event
4461 breakpoint, it usually assumes the return address of the current
4462 function is a good enough place to set the reinsert breakpoint. */
4463
4464 static int
4465 start_step_over (struct lwp_info *lwp)
4466 {
4467 struct thread_info *thread = get_lwp_thread (lwp);
4468 struct thread_info *saved_thread;
4469 CORE_ADDR pc;
4470 int step;
4471
4472 if (debug_threads)
4473 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4474 lwpid_of (thread));
4475
4476 stop_all_lwps (1, lwp);
4477
4478 if (lwp->suspended != 0)
4479 {
4480 internal_error (__FILE__, __LINE__,
4481 "LWP %ld suspended=%d\n", lwpid_of (thread),
4482 lwp->suspended);
4483 }
4484
4485 if (debug_threads)
4486 debug_printf ("Done stopping all threads for step-over.\n");
4487
4488 /* Note, we should always reach here with an already adjusted PC,
4489 either by GDB (if we're resuming due to GDB's request), or by our
4490 caller, if we just finished handling an internal breakpoint GDB
4491 shouldn't care about. */
4492 pc = get_pc (lwp);
4493
4494 saved_thread = current_thread;
4495 current_thread = thread;
4496
4497 lwp->bp_reinsert = pc;
4498 uninsert_breakpoints_at (pc);
4499 uninsert_fast_tracepoint_jumps_at (pc);
4500
4501 if (can_hardware_single_step ())
4502 {
4503 step = 1;
4504 }
4505 else
4506 {
4507 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
4508 set_reinsert_breakpoint (raddr);
4509 step = 0;
4510 }
4511
4512 current_thread = saved_thread;
4513
4514 linux_resume_one_lwp (lwp, step, 0, NULL);
4515
4516 /* Require next event from this LWP. */
4517 step_over_bkpt = thread->entry.id;
4518 return 1;
4519 }
4520
4521 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4522 start_step_over, if still there, and delete any reinsert
4523 breakpoints we've set, on non hardware single-step targets. */
4524
4525 static int
4526 finish_step_over (struct lwp_info *lwp)
4527 {
4528 if (lwp->bp_reinsert != 0)
4529 {
4530 if (debug_threads)
4531 debug_printf ("Finished step over.\n");
4532
4533 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4534 may be no breakpoint to reinsert there by now. */
4535 reinsert_breakpoints_at (lwp->bp_reinsert);
4536 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4537
4538 lwp->bp_reinsert = 0;
4539
4540 /* Delete any software-single-step reinsert breakpoints. No
4541 longer needed. We don't have to worry about other threads
4542 hitting this trap, and later not being able to explain it,
4543 because we were stepping over a breakpoint, and we hold all
4544 threads but LWP stopped while doing that. */
4545 if (!can_hardware_single_step ())
4546 delete_reinsert_breakpoints ();
4547
4548 step_over_bkpt = null_ptid;
4549 return 1;
4550 }
4551 else
4552 return 0;
4553 }
4554
4555 /* If there's a step over in progress, wait until all threads stop
4556 (that is, until the stepping thread finishes its step), and
4557 unsuspend all lwps. The stepping thread ends with its status
4558 pending, which is processed later when we get back to processing
4559 events. */
4560
4561 static void
4562 complete_ongoing_step_over (void)
4563 {
4564 if (!ptid_equal (step_over_bkpt, null_ptid))
4565 {
4566 struct lwp_info *lwp;
4567 int wstat;
4568 int ret;
4569
4570 if (debug_threads)
4571 debug_printf ("detach: step over in progress, finish it first\n");
4572
4573 /* Passing NULL_PTID as filter indicates we want all events to
4574 be left pending. Eventually this returns when there are no
4575 unwaited-for children left. */
4576 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4577 &wstat, __WALL);
4578 gdb_assert (ret == -1);
4579
4580 lwp = find_lwp_pid (step_over_bkpt);
4581 if (lwp != NULL)
4582 finish_step_over (lwp);
4583 step_over_bkpt = null_ptid;
4584 unsuspend_all_lwps (lwp);
4585 }
4586 }
4587
4588 /* This function is called once per thread. We check the thread's resume
4589 request, which will tell us whether to resume, step, or leave the thread
4590 stopped; and what signal, if any, it should be sent.
4591
4592 For threads which we aren't explicitly told otherwise, we preserve
4593 the stepping flag; this is used for stepping over gdbserver-placed
4594 breakpoints.
4595
4596 If pending_flags was set in any thread, we queue any needed
4597 signals, since we won't actually resume. We already have a pending
4598 event to report, so we don't need to preserve any step requests;
4599 they should be re-issued if necessary. */
4600
4601 static int
4602 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4603 {
4604 struct thread_info *thread = (struct thread_info *) entry;
4605 struct lwp_info *lwp = get_thread_lwp (thread);
4606 int step;
4607 int leave_all_stopped = * (int *) arg;
4608 int leave_pending;
4609
4610 if (lwp->resume == NULL)
4611 return 0;
4612
4613 if (lwp->resume->kind == resume_stop)
4614 {
4615 if (debug_threads)
4616 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4617
4618 if (!lwp->stopped)
4619 {
4620 if (debug_threads)
4621 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4622
4623 /* Stop the thread, and wait for the event asynchronously,
4624 through the event loop. */
4625 send_sigstop (lwp);
4626 }
4627 else
4628 {
4629 if (debug_threads)
4630 debug_printf ("already stopped LWP %ld\n",
4631 lwpid_of (thread));
4632
4633 /* The LWP may have been stopped in an internal event that
4634 was not meant to be notified back to GDB (e.g., gdbserver
4635 breakpoint), so we should be reporting a stop event in
4636 this case too. */
4637
4638 /* If the thread already has a pending SIGSTOP, this is a
4639 no-op. Otherwise, something later will presumably resume
4640 the thread and this will cause it to cancel any pending
4641 operation, due to last_resume_kind == resume_stop. If
4642 the thread already has a pending status to report, we
4643 will still report it the next time we wait - see
4644 status_pending_p_callback. */
4645
4646 /* If we already have a pending signal to report, then
4647 there's no need to queue a SIGSTOP, as this means we're
4648 midway through moving the LWP out of the jumppad, and we
4649 will report the pending signal as soon as that is
4650 finished. */
4651 if (lwp->pending_signals_to_report == NULL)
4652 send_sigstop (lwp);
4653 }
4654
4655 /* For stop requests, we're done. */
4656 lwp->resume = NULL;
4657 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4658 return 0;
4659 }
4660
4661 /* If this thread which is about to be resumed has a pending status,
4662 then don't resume it - we can just report the pending status.
4663 Likewise if it is suspended, because e.g., another thread is
4664 stepping past a breakpoint. Make sure to queue any signals that
4665 would otherwise be sent. In all-stop mode, we do this decision
4666 based on if *any* thread has a pending status. If there's a
4667 thread that needs the step-over-breakpoint dance, then don't
4668 resume any other thread but that particular one. */
4669 leave_pending = (lwp->suspended
4670 || lwp->status_pending_p
4671 || leave_all_stopped);
4672
4673 if (!leave_pending)
4674 {
4675 if (debug_threads)
4676 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4677
4678 step = (lwp->resume->kind == resume_step);
4679 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4680 }
4681 else
4682 {
4683 if (debug_threads)
4684 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4685
4686 /* If we have a new signal, enqueue the signal. */
4687 if (lwp->resume->sig != 0)
4688 {
4689 struct pending_signals *p_sig = XCNEW (struct pending_signals);
4690
4691 p_sig->prev = lwp->pending_signals;
4692 p_sig->signal = lwp->resume->sig;
4693
4694 /* If this is the same signal we were previously stopped by,
4695 make sure to queue its siginfo. We can ignore the return
4696 value of ptrace; if it fails, we'll skip
4697 PTRACE_SETSIGINFO. */
4698 if (WIFSTOPPED (lwp->last_status)
4699 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4700 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4701 &p_sig->info);
4702
4703 lwp->pending_signals = p_sig;
4704 }
4705 }
4706
4707 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4708 lwp->resume = NULL;
4709 return 0;
4710 }
4711
4712 static void
4713 linux_resume (struct thread_resume *resume_info, size_t n)
4714 {
4715 struct thread_resume_array array = { resume_info, n };
4716 struct thread_info *need_step_over = NULL;
4717 int any_pending;
4718 int leave_all_stopped;
4719
4720 if (debug_threads)
4721 {
4722 debug_enter ();
4723 debug_printf ("linux_resume:\n");
4724 }
4725
4726 find_inferior (&all_threads, linux_set_resume_request, &array);
4727
4728 /* If there is a thread which would otherwise be resumed, which has
4729 a pending status, then don't resume any threads - we can just
4730 report the pending status. Make sure to queue any signals that
4731 would otherwise be sent. In non-stop mode, we'll apply this
4732 logic to each thread individually. We consume all pending events
4733 before considering to start a step-over (in all-stop). */
4734 any_pending = 0;
4735 if (!non_stop)
4736 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4737
4738 /* If there is a thread which would otherwise be resumed, which is
4739 stopped at a breakpoint that needs stepping over, then don't
4740 resume any threads - have it step over the breakpoint with all
4741 other threads stopped, then resume all threads again. Make sure
4742 to queue any signals that would otherwise be delivered or
4743 queued. */
4744 if (!any_pending && supports_breakpoints ())
4745 need_step_over
4746 = (struct thread_info *) find_inferior (&all_threads,
4747 need_step_over_p, NULL);
4748
4749 leave_all_stopped = (need_step_over != NULL || any_pending);
4750
4751 if (debug_threads)
4752 {
4753 if (need_step_over != NULL)
4754 debug_printf ("Not resuming all, need step over\n");
4755 else if (any_pending)
4756 debug_printf ("Not resuming, all-stop and found "
4757 "an LWP with pending status\n");
4758 else
4759 debug_printf ("Resuming, no pending status or step over needed\n");
4760 }
4761
4762 /* Even if we're leaving threads stopped, queue all signals we'd
4763 otherwise deliver. */
4764 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4765
4766 if (need_step_over)
4767 start_step_over (get_thread_lwp (need_step_over));
4768
4769 if (debug_threads)
4770 {
4771 debug_printf ("linux_resume done\n");
4772 debug_exit ();
4773 }
4774
4775 /* We may have events that were pending that can/should be sent to
4776 the client now. Trigger a linux_wait call. */
4777 if (target_is_async_p ())
4778 async_file_mark ();
4779 }
4780
4781 /* This function is called once per thread. We check the thread's
4782 last resume request, which will tell us whether to resume, step, or
4783 leave the thread stopped. Any signal the client requested to be
4784 delivered has already been enqueued at this point.
4785
4786 If any thread that GDB wants running is stopped at an internal
4787 breakpoint that needs stepping over, we start a step-over operation
4788 on that particular thread, and leave all others stopped. */
4789
4790 static int
4791 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4792 {
4793 struct thread_info *thread = (struct thread_info *) entry;
4794 struct lwp_info *lwp = get_thread_lwp (thread);
4795 int step;
4796
4797 if (lwp == except)
4798 return 0;
4799
4800 if (debug_threads)
4801 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4802
4803 if (!lwp->stopped)
4804 {
4805 if (debug_threads)
4806 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4807 return 0;
4808 }
4809
4810 if (thread->last_resume_kind == resume_stop
4811 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4812 {
4813 if (debug_threads)
4814 debug_printf (" client wants LWP to remain %ld stopped\n",
4815 lwpid_of (thread));
4816 return 0;
4817 }
4818
4819 if (lwp->status_pending_p)
4820 {
4821 if (debug_threads)
4822 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4823 lwpid_of (thread));
4824 return 0;
4825 }
4826
4827 gdb_assert (lwp->suspended >= 0);
4828
4829 if (lwp->suspended)
4830 {
4831 if (debug_threads)
4832 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4833 return 0;
4834 }
4835
4836 if (thread->last_resume_kind == resume_stop
4837 && lwp->pending_signals_to_report == NULL
4838 && lwp->collecting_fast_tracepoint == 0)
4839 {
4840 /* We haven't reported this LWP as stopped yet (otherwise, the
4841 last_status.kind check above would catch it, and we wouldn't
4842 reach here. This LWP may have been momentarily paused by a
4843 stop_all_lwps call while handling for example, another LWP's
4844 step-over. In that case, the pending expected SIGSTOP signal
4845 that was queued at vCont;t handling time will have already
4846 been consumed by wait_for_sigstop, and so we need to requeue
4847 another one here. Note that if the LWP already has a SIGSTOP
4848 pending, this is a no-op. */
4849
4850 if (debug_threads)
4851 debug_printf ("Client wants LWP %ld to stop. "
4852 "Making sure it has a SIGSTOP pending\n",
4853 lwpid_of (thread));
4854
4855 send_sigstop (lwp);
4856 }
4857
4858 if (thread->last_resume_kind == resume_step)
4859 {
4860 if (debug_threads)
4861 debug_printf (" stepping LWP %ld, client wants it stepping\n",
4862 lwpid_of (thread));
4863 step = 1;
4864 }
4865 else if (lwp->bp_reinsert != 0)
4866 {
4867 if (debug_threads)
4868 debug_printf (" stepping LWP %ld, reinsert set\n",
4869 lwpid_of (thread));
4870 step = 1;
4871 }
4872 else
4873 step = 0;
4874
4875 linux_resume_one_lwp (lwp, step, 0, NULL);
4876 return 0;
4877 }
4878
4879 static int
4880 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4881 {
4882 struct thread_info *thread = (struct thread_info *) entry;
4883 struct lwp_info *lwp = get_thread_lwp (thread);
4884
4885 if (lwp == except)
4886 return 0;
4887
4888 lwp_suspended_decr (lwp);
4889
4890 return proceed_one_lwp (entry, except);
4891 }
4892
4893 /* When we finish a step-over, set threads running again. If there's
4894 another thread that may need a step-over, now's the time to start
4895 it. Eventually, we'll move all threads past their breakpoints. */
4896
4897 static void
4898 proceed_all_lwps (void)
4899 {
4900 struct thread_info *need_step_over;
4901
4902 /* If there is a thread which would otherwise be resumed, which is
4903 stopped at a breakpoint that needs stepping over, then don't
4904 resume any threads - have it step over the breakpoint with all
4905 other threads stopped, then resume all threads again. */
4906
4907 if (supports_breakpoints ())
4908 {
4909 need_step_over
4910 = (struct thread_info *) find_inferior (&all_threads,
4911 need_step_over_p, NULL);
4912
4913 if (need_step_over != NULL)
4914 {
4915 if (debug_threads)
4916 debug_printf ("proceed_all_lwps: found "
4917 "thread %ld needing a step-over\n",
4918 lwpid_of (need_step_over));
4919
4920 start_step_over (get_thread_lwp (need_step_over));
4921 return;
4922 }
4923 }
4924
4925 if (debug_threads)
4926 debug_printf ("Proceeding, no step-over needed\n");
4927
4928 find_inferior (&all_threads, proceed_one_lwp, NULL);
4929 }
4930
4931 /* Stopped LWPs that the client wanted to be running, that don't have
4932 pending statuses, are set to run again, except for EXCEPT, if not
4933 NULL. This undoes a stop_all_lwps call. */
4934
4935 static void
4936 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4937 {
4938 if (debug_threads)
4939 {
4940 debug_enter ();
4941 if (except)
4942 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4943 lwpid_of (get_lwp_thread (except)));
4944 else
4945 debug_printf ("unstopping all lwps\n");
4946 }
4947
4948 if (unsuspend)
4949 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4950 else
4951 find_inferior (&all_threads, proceed_one_lwp, except);
4952
4953 if (debug_threads)
4954 {
4955 debug_printf ("unstop_all_lwps done\n");
4956 debug_exit ();
4957 }
4958 }
4959
4960
4961 #ifdef HAVE_LINUX_REGSETS
4962
4963 #define use_linux_regsets 1
4964
4965 /* Returns true if REGSET has been disabled. */
4966
4967 static int
4968 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4969 {
4970 return (info->disabled_regsets != NULL
4971 && info->disabled_regsets[regset - info->regsets]);
4972 }
4973
4974 /* Disable REGSET. */
4975
4976 static void
4977 disable_regset (struct regsets_info *info, struct regset_info *regset)
4978 {
4979 int dr_offset;
4980
4981 dr_offset = regset - info->regsets;
4982 if (info->disabled_regsets == NULL)
4983 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
4984 info->disabled_regsets[dr_offset] = 1;
4985 }
4986
4987 static int
4988 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
4989 struct regcache *regcache)
4990 {
4991 struct regset_info *regset;
4992 int saw_general_regs = 0;
4993 int pid;
4994 struct iovec iov;
4995
4996 pid = lwpid_of (current_thread);
4997 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4998 {
4999 void *buf, *data;
5000 int nt_type, res;
5001
5002 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5003 continue;
5004
5005 buf = xmalloc (regset->size);
5006
5007 nt_type = regset->nt_type;
5008 if (nt_type)
5009 {
5010 iov.iov_base = buf;
5011 iov.iov_len = regset->size;
5012 data = (void *) &iov;
5013 }
5014 else
5015 data = buf;
5016
5017 #ifndef __sparc__
5018 res = ptrace (regset->get_request, pid,
5019 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5020 #else
5021 res = ptrace (regset->get_request, pid, data, nt_type);
5022 #endif
5023 if (res < 0)
5024 {
5025 if (errno == EIO)
5026 {
5027 /* If we get EIO on a regset, do not try it again for
5028 this process mode. */
5029 disable_regset (regsets_info, regset);
5030 }
5031 else if (errno == ENODATA)
5032 {
5033 /* ENODATA may be returned if the regset is currently
5034 not "active". This can happen in normal operation,
5035 so suppress the warning in this case. */
5036 }
5037 else
5038 {
5039 char s[256];
5040 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5041 pid);
5042 perror (s);
5043 }
5044 }
5045 else
5046 {
5047 if (regset->type == GENERAL_REGS)
5048 saw_general_regs = 1;
5049 regset->store_function (regcache, buf);
5050 }
5051 free (buf);
5052 }
5053 if (saw_general_regs)
5054 return 0;
5055 else
5056 return 1;
5057 }
5058
5059 static int
5060 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5061 struct regcache *regcache)
5062 {
5063 struct regset_info *regset;
5064 int saw_general_regs = 0;
5065 int pid;
5066 struct iovec iov;
5067
5068 pid = lwpid_of (current_thread);
5069 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5070 {
5071 void *buf, *data;
5072 int nt_type, res;
5073
5074 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5075 || regset->fill_function == NULL)
5076 continue;
5077
5078 buf = xmalloc (regset->size);
5079
5080 /* First fill the buffer with the current register set contents,
5081 in case there are any items in the kernel's regset that are
5082 not in gdbserver's regcache. */
5083
5084 nt_type = regset->nt_type;
5085 if (nt_type)
5086 {
5087 iov.iov_base = buf;
5088 iov.iov_len = regset->size;
5089 data = (void *) &iov;
5090 }
5091 else
5092 data = buf;
5093
5094 #ifndef __sparc__
5095 res = ptrace (regset->get_request, pid,
5096 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5097 #else
5098 res = ptrace (regset->get_request, pid, data, nt_type);
5099 #endif
5100
5101 if (res == 0)
5102 {
5103 /* Then overlay our cached registers on that. */
5104 regset->fill_function (regcache, buf);
5105
5106 /* Only now do we write the register set. */
5107 #ifndef __sparc__
5108 res = ptrace (regset->set_request, pid,
5109 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5110 #else
5111 res = ptrace (regset->set_request, pid, data, nt_type);
5112 #endif
5113 }
5114
5115 if (res < 0)
5116 {
5117 if (errno == EIO)
5118 {
5119 /* If we get EIO on a regset, do not try it again for
5120 this process mode. */
5121 disable_regset (regsets_info, regset);
5122 }
5123 else if (errno == ESRCH)
5124 {
5125 /* At this point, ESRCH should mean the process is
5126 already gone, in which case we simply ignore attempts
5127 to change its registers. See also the related
5128 comment in linux_resume_one_lwp. */
5129 free (buf);
5130 return 0;
5131 }
5132 else
5133 {
5134 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5135 }
5136 }
5137 else if (regset->type == GENERAL_REGS)
5138 saw_general_regs = 1;
5139 free (buf);
5140 }
5141 if (saw_general_regs)
5142 return 0;
5143 else
5144 return 1;
5145 }
5146
5147 #else /* !HAVE_LINUX_REGSETS */
5148
5149 #define use_linux_regsets 0
5150 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5151 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5152
5153 #endif
5154
5155 /* Return 1 if register REGNO is supported by one of the regset ptrace
5156 calls or 0 if it has to be transferred individually. */
5157
5158 static int
5159 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5160 {
5161 unsigned char mask = 1 << (regno % 8);
5162 size_t index = regno / 8;
5163
5164 return (use_linux_regsets
5165 && (regs_info->regset_bitmap == NULL
5166 || (regs_info->regset_bitmap[index] & mask) != 0));
5167 }
5168
5169 #ifdef HAVE_LINUX_USRREGS
5170
5171 int
5172 register_addr (const struct usrregs_info *usrregs, int regnum)
5173 {
5174 int addr;
5175
5176 if (regnum < 0 || regnum >= usrregs->num_regs)
5177 error ("Invalid register number %d.", regnum);
5178
5179 addr = usrregs->regmap[regnum];
5180
5181 return addr;
5182 }
5183
5184 /* Fetch one register. */
5185 static void
5186 fetch_register (const struct usrregs_info *usrregs,
5187 struct regcache *regcache, int regno)
5188 {
5189 CORE_ADDR regaddr;
5190 int i, size;
5191 char *buf;
5192 int pid;
5193
5194 if (regno >= usrregs->num_regs)
5195 return;
5196 if ((*the_low_target.cannot_fetch_register) (regno))
5197 return;
5198
5199 regaddr = register_addr (usrregs, regno);
5200 if (regaddr == -1)
5201 return;
5202
5203 size = ((register_size (regcache->tdesc, regno)
5204 + sizeof (PTRACE_XFER_TYPE) - 1)
5205 & -sizeof (PTRACE_XFER_TYPE));
5206 buf = (char *) alloca (size);
5207
5208 pid = lwpid_of (current_thread);
5209 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5210 {
5211 errno = 0;
5212 *(PTRACE_XFER_TYPE *) (buf + i) =
5213 ptrace (PTRACE_PEEKUSER, pid,
5214 /* Coerce to a uintptr_t first to avoid potential gcc warning
5215 of coercing an 8 byte integer to a 4 byte pointer. */
5216 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5217 regaddr += sizeof (PTRACE_XFER_TYPE);
5218 if (errno != 0)
5219 error ("reading register %d: %s", regno, strerror (errno));
5220 }
5221
5222 if (the_low_target.supply_ptrace_register)
5223 the_low_target.supply_ptrace_register (regcache, regno, buf);
5224 else
5225 supply_register (regcache, regno, buf);
5226 }
5227
5228 /* Store one register. */
5229 static void
5230 store_register (const struct usrregs_info *usrregs,
5231 struct regcache *regcache, int regno)
5232 {
5233 CORE_ADDR regaddr;
5234 int i, size;
5235 char *buf;
5236 int pid;
5237
5238 if (regno >= usrregs->num_regs)
5239 return;
5240 if ((*the_low_target.cannot_store_register) (regno))
5241 return;
5242
5243 regaddr = register_addr (usrregs, regno);
5244 if (regaddr == -1)
5245 return;
5246
5247 size = ((register_size (regcache->tdesc, regno)
5248 + sizeof (PTRACE_XFER_TYPE) - 1)
5249 & -sizeof (PTRACE_XFER_TYPE));
5250 buf = (char *) alloca (size);
5251 memset (buf, 0, size);
5252
5253 if (the_low_target.collect_ptrace_register)
5254 the_low_target.collect_ptrace_register (regcache, regno, buf);
5255 else
5256 collect_register (regcache, regno, buf);
5257
5258 pid = lwpid_of (current_thread);
5259 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5260 {
5261 errno = 0;
5262 ptrace (PTRACE_POKEUSER, pid,
5263 /* Coerce to a uintptr_t first to avoid potential gcc warning
5264 about coercing an 8 byte integer to a 4 byte pointer. */
5265 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5266 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5267 if (errno != 0)
5268 {
5269 /* At this point, ESRCH should mean the process is
5270 already gone, in which case we simply ignore attempts
5271 to change its registers. See also the related
5272 comment in linux_resume_one_lwp. */
5273 if (errno == ESRCH)
5274 return;
5275
5276 if ((*the_low_target.cannot_store_register) (regno) == 0)
5277 error ("writing register %d: %s", regno, strerror (errno));
5278 }
5279 regaddr += sizeof (PTRACE_XFER_TYPE);
5280 }
5281 }
5282
5283 /* Fetch all registers, or just one, from the child process.
5284 If REGNO is -1, do this for all registers, skipping any that are
5285 assumed to have been retrieved by regsets_fetch_inferior_registers,
5286 unless ALL is non-zero.
5287 Otherwise, REGNO specifies which register (so we can save time). */
5288 static void
5289 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5290 struct regcache *regcache, int regno, int all)
5291 {
5292 struct usrregs_info *usr = regs_info->usrregs;
5293
5294 if (regno == -1)
5295 {
5296 for (regno = 0; regno < usr->num_regs; regno++)
5297 if (all || !linux_register_in_regsets (regs_info, regno))
5298 fetch_register (usr, regcache, regno);
5299 }
5300 else
5301 fetch_register (usr, regcache, regno);
5302 }
5303
5304 /* Store our register values back into the inferior.
5305 If REGNO is -1, do this for all registers, skipping any that are
5306 assumed to have been saved by regsets_store_inferior_registers,
5307 unless ALL is non-zero.
5308 Otherwise, REGNO specifies which register (so we can save time). */
5309 static void
5310 usr_store_inferior_registers (const struct regs_info *regs_info,
5311 struct regcache *regcache, int regno, int all)
5312 {
5313 struct usrregs_info *usr = regs_info->usrregs;
5314
5315 if (regno == -1)
5316 {
5317 for (regno = 0; regno < usr->num_regs; regno++)
5318 if (all || !linux_register_in_regsets (regs_info, regno))
5319 store_register (usr, regcache, regno);
5320 }
5321 else
5322 store_register (usr, regcache, regno);
5323 }
5324
5325 #else /* !HAVE_LINUX_USRREGS */
5326
5327 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5328 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5329
5330 #endif
5331
5332
5333 void
5334 linux_fetch_registers (struct regcache *regcache, int regno)
5335 {
5336 int use_regsets;
5337 int all = 0;
5338 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5339
5340 if (regno == -1)
5341 {
5342 if (the_low_target.fetch_register != NULL
5343 && regs_info->usrregs != NULL)
5344 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5345 (*the_low_target.fetch_register) (regcache, regno);
5346
5347 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5348 if (regs_info->usrregs != NULL)
5349 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5350 }
5351 else
5352 {
5353 if (the_low_target.fetch_register != NULL
5354 && (*the_low_target.fetch_register) (regcache, regno))
5355 return;
5356
5357 use_regsets = linux_register_in_regsets (regs_info, regno);
5358 if (use_regsets)
5359 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5360 regcache);
5361 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5362 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5363 }
5364 }
5365
5366 void
5367 linux_store_registers (struct regcache *regcache, int regno)
5368 {
5369 int use_regsets;
5370 int all = 0;
5371 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5372
5373 if (regno == -1)
5374 {
5375 all = regsets_store_inferior_registers (regs_info->regsets_info,
5376 regcache);
5377 if (regs_info->usrregs != NULL)
5378 usr_store_inferior_registers (regs_info, regcache, regno, all);
5379 }
5380 else
5381 {
5382 use_regsets = linux_register_in_regsets (regs_info, regno);
5383 if (use_regsets)
5384 all = regsets_store_inferior_registers (regs_info->regsets_info,
5385 regcache);
5386 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5387 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5388 }
5389 }
5390
5391
5392 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5393 to debugger memory starting at MYADDR. */
5394
5395 static int
5396 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5397 {
5398 int pid = lwpid_of (current_thread);
5399 register PTRACE_XFER_TYPE *buffer;
5400 register CORE_ADDR addr;
5401 register int count;
5402 char filename[64];
5403 register int i;
5404 int ret;
5405 int fd;
5406
5407 /* Try using /proc. Don't bother for one word. */
5408 if (len >= 3 * sizeof (long))
5409 {
5410 int bytes;
5411
5412 /* We could keep this file open and cache it - possibly one per
5413 thread. That requires some juggling, but is even faster. */
5414 sprintf (filename, "/proc/%d/mem", pid);
5415 fd = open (filename, O_RDONLY | O_LARGEFILE);
5416 if (fd == -1)
5417 goto no_proc;
5418
5419 /* If pread64 is available, use it. It's faster if the kernel
5420 supports it (only one syscall), and it's 64-bit safe even on
5421 32-bit platforms (for instance, SPARC debugging a SPARC64
5422 application). */
5423 #ifdef HAVE_PREAD64
5424 bytes = pread64 (fd, myaddr, len, memaddr);
5425 #else
5426 bytes = -1;
5427 if (lseek (fd, memaddr, SEEK_SET) != -1)
5428 bytes = read (fd, myaddr, len);
5429 #endif
5430
5431 close (fd);
5432 if (bytes == len)
5433 return 0;
5434
5435 /* Some data was read, we'll try to get the rest with ptrace. */
5436 if (bytes > 0)
5437 {
5438 memaddr += bytes;
5439 myaddr += bytes;
5440 len -= bytes;
5441 }
5442 }
5443
5444 no_proc:
5445 /* Round starting address down to longword boundary. */
5446 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5447 /* Round ending address up; get number of longwords that makes. */
5448 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5449 / sizeof (PTRACE_XFER_TYPE));
5450 /* Allocate buffer of that many longwords. */
5451 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5452
5453 /* Read all the longwords */
5454 errno = 0;
5455 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5456 {
5457 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5458 about coercing an 8 byte integer to a 4 byte pointer. */
5459 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5460 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5461 (PTRACE_TYPE_ARG4) 0);
5462 if (errno)
5463 break;
5464 }
5465 ret = errno;
5466
5467 /* Copy appropriate bytes out of the buffer. */
5468 if (i > 0)
5469 {
5470 i *= sizeof (PTRACE_XFER_TYPE);
5471 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5472 memcpy (myaddr,
5473 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5474 i < len ? i : len);
5475 }
5476
5477 return ret;
5478 }
5479
5480 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5481 memory at MEMADDR. On failure (cannot write to the inferior)
5482 returns the value of errno. Always succeeds if LEN is zero. */
5483
5484 static int
5485 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5486 {
5487 register int i;
5488 /* Round starting address down to longword boundary. */
5489 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5490 /* Round ending address up; get number of longwords that makes. */
5491 register int count
5492 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5493 / sizeof (PTRACE_XFER_TYPE);
5494
5495 /* Allocate buffer of that many longwords. */
5496 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5497
5498 int pid = lwpid_of (current_thread);
5499
5500 if (len == 0)
5501 {
5502 /* Zero length write always succeeds. */
5503 return 0;
5504 }
5505
5506 if (debug_threads)
5507 {
5508 /* Dump up to four bytes. */
5509 char str[4 * 2 + 1];
5510 char *p = str;
5511 int dump = len < 4 ? len : 4;
5512
5513 for (i = 0; i < dump; i++)
5514 {
5515 sprintf (p, "%02x", myaddr[i]);
5516 p += 2;
5517 }
5518 *p = '\0';
5519
5520 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5521 str, (long) memaddr, pid);
5522 }
5523
5524 /* Fill start and end extra bytes of buffer with existing memory data. */
5525
5526 errno = 0;
5527 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5528 about coercing an 8 byte integer to a 4 byte pointer. */
5529 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5530 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5531 (PTRACE_TYPE_ARG4) 0);
5532 if (errno)
5533 return errno;
5534
5535 if (count > 1)
5536 {
5537 errno = 0;
5538 buffer[count - 1]
5539 = ptrace (PTRACE_PEEKTEXT, pid,
5540 /* Coerce to a uintptr_t first to avoid potential gcc warning
5541 about coercing an 8 byte integer to a 4 byte pointer. */
5542 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5543 * sizeof (PTRACE_XFER_TYPE)),
5544 (PTRACE_TYPE_ARG4) 0);
5545 if (errno)
5546 return errno;
5547 }
5548
5549 /* Copy data to be written over corresponding part of buffer. */
5550
5551 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5552 myaddr, len);
5553
5554 /* Write the entire buffer. */
5555
5556 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5557 {
5558 errno = 0;
5559 ptrace (PTRACE_POKETEXT, pid,
5560 /* Coerce to a uintptr_t first to avoid potential gcc warning
5561 about coercing an 8 byte integer to a 4 byte pointer. */
5562 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5563 (PTRACE_TYPE_ARG4) buffer[i]);
5564 if (errno)
5565 return errno;
5566 }
5567
5568 return 0;
5569 }
5570
5571 static void
5572 linux_look_up_symbols (void)
5573 {
5574 #ifdef USE_THREAD_DB
5575 struct process_info *proc = current_process ();
5576
5577 if (proc->priv->thread_db != NULL)
5578 return;
5579
5580 /* If the kernel supports tracing clones, then we don't need to
5581 use the magic thread event breakpoint to learn about
5582 threads. */
5583 thread_db_init (!linux_supports_traceclone ());
5584 #endif
5585 }
5586
5587 static void
5588 linux_request_interrupt (void)
5589 {
5590 extern unsigned long signal_pid;
5591
5592 /* Send a SIGINT to the process group. This acts just like the user
5593 typed a ^C on the controlling terminal. */
5594 kill (-signal_pid, SIGINT);
5595 }
5596
5597 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5598 to debugger memory starting at MYADDR. */
5599
5600 static int
5601 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5602 {
5603 char filename[PATH_MAX];
5604 int fd, n;
5605 int pid = lwpid_of (current_thread);
5606
5607 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5608
5609 fd = open (filename, O_RDONLY);
5610 if (fd < 0)
5611 return -1;
5612
5613 if (offset != (CORE_ADDR) 0
5614 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5615 n = -1;
5616 else
5617 n = read (fd, myaddr, len);
5618
5619 close (fd);
5620
5621 return n;
5622 }
5623
5624 /* These breakpoint and watchpoint related wrapper functions simply
5625 pass on the function call if the target has registered a
5626 corresponding function. */
5627
5628 static int
5629 linux_supports_z_point_type (char z_type)
5630 {
5631 return (the_low_target.supports_z_point_type != NULL
5632 && the_low_target.supports_z_point_type (z_type));
5633 }
5634
5635 static int
5636 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5637 int size, struct raw_breakpoint *bp)
5638 {
5639 if (type == raw_bkpt_type_sw)
5640 return insert_memory_breakpoint (bp);
5641 else if (the_low_target.insert_point != NULL)
5642 return the_low_target.insert_point (type, addr, size, bp);
5643 else
5644 /* Unsupported (see target.h). */
5645 return 1;
5646 }
5647
5648 static int
5649 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5650 int size, struct raw_breakpoint *bp)
5651 {
5652 if (type == raw_bkpt_type_sw)
5653 return remove_memory_breakpoint (bp);
5654 else if (the_low_target.remove_point != NULL)
5655 return the_low_target.remove_point (type, addr, size, bp);
5656 else
5657 /* Unsupported (see target.h). */
5658 return 1;
5659 }
5660
5661 /* Implement the to_stopped_by_sw_breakpoint target_ops
5662 method. */
5663
5664 static int
5665 linux_stopped_by_sw_breakpoint (void)
5666 {
5667 struct lwp_info *lwp = get_thread_lwp (current_thread);
5668
5669 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5670 }
5671
5672 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5673 method. */
5674
5675 static int
5676 linux_supports_stopped_by_sw_breakpoint (void)
5677 {
5678 return USE_SIGTRAP_SIGINFO;
5679 }
5680
5681 /* Implement the to_stopped_by_hw_breakpoint target_ops
5682 method. */
5683
5684 static int
5685 linux_stopped_by_hw_breakpoint (void)
5686 {
5687 struct lwp_info *lwp = get_thread_lwp (current_thread);
5688
5689 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5690 }
5691
5692 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5693 method. */
5694
5695 static int
5696 linux_supports_stopped_by_hw_breakpoint (void)
5697 {
5698 return USE_SIGTRAP_SIGINFO;
5699 }
5700
5701 /* Implement the supports_hardware_single_step target_ops method. */
5702
5703 static int
5704 linux_supports_hardware_single_step (void)
5705 {
5706 return can_hardware_single_step ();
5707 }
5708
5709 static int
5710 linux_stopped_by_watchpoint (void)
5711 {
5712 struct lwp_info *lwp = get_thread_lwp (current_thread);
5713
5714 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5715 }
5716
5717 static CORE_ADDR
5718 linux_stopped_data_address (void)
5719 {
5720 struct lwp_info *lwp = get_thread_lwp (current_thread);
5721
5722 return lwp->stopped_data_address;
5723 }
5724
5725 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5726 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5727 && defined(PT_TEXT_END_ADDR)
5728
5729 /* This is only used for targets that define PT_TEXT_ADDR,
5730 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5731 the target has different ways of acquiring this information, like
5732 loadmaps. */
5733
5734 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5735 to tell gdb about. */
5736
5737 static int
5738 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5739 {
5740 unsigned long text, text_end, data;
5741 int pid = lwpid_of (current_thread);
5742
5743 errno = 0;
5744
5745 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5746 (PTRACE_TYPE_ARG4) 0);
5747 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5748 (PTRACE_TYPE_ARG4) 0);
5749 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5750 (PTRACE_TYPE_ARG4) 0);
5751
5752 if (errno == 0)
5753 {
5754 /* Both text and data offsets produced at compile-time (and so
5755 used by gdb) are relative to the beginning of the program,
5756 with the data segment immediately following the text segment.
5757 However, the actual runtime layout in memory may put the data
5758 somewhere else, so when we send gdb a data base-address, we
5759 use the real data base address and subtract the compile-time
5760 data base-address from it (which is just the length of the
5761 text segment). BSS immediately follows data in both
5762 cases. */
5763 *text_p = text;
5764 *data_p = data - (text_end - text);
5765
5766 return 1;
5767 }
5768 return 0;
5769 }
5770 #endif
5771
5772 static int
5773 linux_qxfer_osdata (const char *annex,
5774 unsigned char *readbuf, unsigned const char *writebuf,
5775 CORE_ADDR offset, int len)
5776 {
5777 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5778 }
5779
5780 /* Convert a native/host siginfo object, into/from the siginfo in the
5781 layout of the inferiors' architecture. */
5782
5783 static void
5784 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
5785 {
5786 int done = 0;
5787
5788 if (the_low_target.siginfo_fixup != NULL)
5789 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5790
5791 /* If there was no callback, or the callback didn't do anything,
5792 then just do a straight memcpy. */
5793 if (!done)
5794 {
5795 if (direction == 1)
5796 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5797 else
5798 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5799 }
5800 }
5801
5802 static int
5803 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5804 unsigned const char *writebuf, CORE_ADDR offset, int len)
5805 {
5806 int pid;
5807 siginfo_t siginfo;
5808 char inf_siginfo[sizeof (siginfo_t)];
5809
5810 if (current_thread == NULL)
5811 return -1;
5812
5813 pid = lwpid_of (current_thread);
5814
5815 if (debug_threads)
5816 debug_printf ("%s siginfo for lwp %d.\n",
5817 readbuf != NULL ? "Reading" : "Writing",
5818 pid);
5819
5820 if (offset >= sizeof (siginfo))
5821 return -1;
5822
5823 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5824 return -1;
5825
5826 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5827 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5828 inferior with a 64-bit GDBSERVER should look the same as debugging it
5829 with a 32-bit GDBSERVER, we need to convert it. */
5830 siginfo_fixup (&siginfo, inf_siginfo, 0);
5831
5832 if (offset + len > sizeof (siginfo))
5833 len = sizeof (siginfo) - offset;
5834
5835 if (readbuf != NULL)
5836 memcpy (readbuf, inf_siginfo + offset, len);
5837 else
5838 {
5839 memcpy (inf_siginfo + offset, writebuf, len);
5840
5841 /* Convert back to ptrace layout before flushing it out. */
5842 siginfo_fixup (&siginfo, inf_siginfo, 1);
5843
5844 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5845 return -1;
5846 }
5847
5848 return len;
5849 }
5850
5851 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5852 so we notice when children change state; as the handler for the
5853 sigsuspend in my_waitpid. */
5854
5855 static void
5856 sigchld_handler (int signo)
5857 {
5858 int old_errno = errno;
5859
5860 if (debug_threads)
5861 {
5862 do
5863 {
5864 /* fprintf is not async-signal-safe, so call write
5865 directly. */
5866 if (write (2, "sigchld_handler\n",
5867 sizeof ("sigchld_handler\n") - 1) < 0)
5868 break; /* just ignore */
5869 } while (0);
5870 }
5871
5872 if (target_is_async_p ())
5873 async_file_mark (); /* trigger a linux_wait */
5874
5875 errno = old_errno;
5876 }
5877
5878 static int
5879 linux_supports_non_stop (void)
5880 {
5881 return 1;
5882 }
5883
5884 static int
5885 linux_async (int enable)
5886 {
5887 int previous = target_is_async_p ();
5888
5889 if (debug_threads)
5890 debug_printf ("linux_async (%d), previous=%d\n",
5891 enable, previous);
5892
5893 if (previous != enable)
5894 {
5895 sigset_t mask;
5896 sigemptyset (&mask);
5897 sigaddset (&mask, SIGCHLD);
5898
5899 sigprocmask (SIG_BLOCK, &mask, NULL);
5900
5901 if (enable)
5902 {
5903 if (pipe (linux_event_pipe) == -1)
5904 {
5905 linux_event_pipe[0] = -1;
5906 linux_event_pipe[1] = -1;
5907 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5908
5909 warning ("creating event pipe failed.");
5910 return previous;
5911 }
5912
5913 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5914 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5915
5916 /* Register the event loop handler. */
5917 add_file_handler (linux_event_pipe[0],
5918 handle_target_event, NULL);
5919
5920 /* Always trigger a linux_wait. */
5921 async_file_mark ();
5922 }
5923 else
5924 {
5925 delete_file_handler (linux_event_pipe[0]);
5926
5927 close (linux_event_pipe[0]);
5928 close (linux_event_pipe[1]);
5929 linux_event_pipe[0] = -1;
5930 linux_event_pipe[1] = -1;
5931 }
5932
5933 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5934 }
5935
5936 return previous;
5937 }
5938
5939 static int
5940 linux_start_non_stop (int nonstop)
5941 {
5942 /* Register or unregister from event-loop accordingly. */
5943 linux_async (nonstop);
5944
5945 if (target_is_async_p () != (nonstop != 0))
5946 return -1;
5947
5948 return 0;
5949 }
5950
5951 static int
5952 linux_supports_multi_process (void)
5953 {
5954 return 1;
5955 }
5956
5957 /* Check if fork events are supported. */
5958
5959 static int
5960 linux_supports_fork_events (void)
5961 {
5962 return linux_supports_tracefork ();
5963 }
5964
5965 /* Check if vfork events are supported. */
5966
5967 static int
5968 linux_supports_vfork_events (void)
5969 {
5970 return linux_supports_tracefork ();
5971 }
5972
5973 /* Check if exec events are supported. */
5974
5975 static int
5976 linux_supports_exec_events (void)
5977 {
5978 return linux_supports_traceexec ();
5979 }
5980
5981 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
5982 options for the specified lwp. */
5983
5984 static int
5985 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
5986 void *args)
5987 {
5988 struct thread_info *thread = (struct thread_info *) entry;
5989 struct lwp_info *lwp = get_thread_lwp (thread);
5990
5991 if (!lwp->stopped)
5992 {
5993 /* Stop the lwp so we can modify its ptrace options. */
5994 lwp->must_set_ptrace_flags = 1;
5995 linux_stop_lwp (lwp);
5996 }
5997 else
5998 {
5999 /* Already stopped; go ahead and set the ptrace options. */
6000 struct process_info *proc = find_process_pid (pid_of (thread));
6001 int options = linux_low_ptrace_options (proc->attached);
6002
6003 linux_enable_event_reporting (lwpid_of (thread), options);
6004 lwp->must_set_ptrace_flags = 0;
6005 }
6006
6007 return 0;
6008 }
6009
6010 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6011 ptrace flags for all inferiors. This is in case the new GDB connection
6012 doesn't support the same set of events that the previous one did. */
6013
6014 static void
6015 linux_handle_new_gdb_connection (void)
6016 {
6017 pid_t pid;
6018
6019 /* Request that all the lwps reset their ptrace options. */
6020 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6021 }
6022
6023 static int
6024 linux_supports_disable_randomization (void)
6025 {
6026 #ifdef HAVE_PERSONALITY
6027 return 1;
6028 #else
6029 return 0;
6030 #endif
6031 }
6032
6033 static int
6034 linux_supports_agent (void)
6035 {
6036 return 1;
6037 }
6038
6039 static int
6040 linux_supports_range_stepping (void)
6041 {
6042 if (*the_low_target.supports_range_stepping == NULL)
6043 return 0;
6044
6045 return (*the_low_target.supports_range_stepping) ();
6046 }
6047
6048 /* Enumerate spufs IDs for process PID. */
6049 static int
6050 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6051 {
6052 int pos = 0;
6053 int written = 0;
6054 char path[128];
6055 DIR *dir;
6056 struct dirent *entry;
6057
6058 sprintf (path, "/proc/%ld/fd", pid);
6059 dir = opendir (path);
6060 if (!dir)
6061 return -1;
6062
6063 rewinddir (dir);
6064 while ((entry = readdir (dir)) != NULL)
6065 {
6066 struct stat st;
6067 struct statfs stfs;
6068 int fd;
6069
6070 fd = atoi (entry->d_name);
6071 if (!fd)
6072 continue;
6073
6074 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6075 if (stat (path, &st) != 0)
6076 continue;
6077 if (!S_ISDIR (st.st_mode))
6078 continue;
6079
6080 if (statfs (path, &stfs) != 0)
6081 continue;
6082 if (stfs.f_type != SPUFS_MAGIC)
6083 continue;
6084
6085 if (pos >= offset && pos + 4 <= offset + len)
6086 {
6087 *(unsigned int *)(buf + pos - offset) = fd;
6088 written += 4;
6089 }
6090 pos += 4;
6091 }
6092
6093 closedir (dir);
6094 return written;
6095 }
6096
6097 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6098 object type, using the /proc file system. */
6099 static int
6100 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6101 unsigned const char *writebuf,
6102 CORE_ADDR offset, int len)
6103 {
6104 long pid = lwpid_of (current_thread);
6105 char buf[128];
6106 int fd = 0;
6107 int ret = 0;
6108
6109 if (!writebuf && !readbuf)
6110 return -1;
6111
6112 if (!*annex)
6113 {
6114 if (!readbuf)
6115 return -1;
6116 else
6117 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6118 }
6119
6120 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6121 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6122 if (fd <= 0)
6123 return -1;
6124
6125 if (offset != 0
6126 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6127 {
6128 close (fd);
6129 return 0;
6130 }
6131
6132 if (writebuf)
6133 ret = write (fd, writebuf, (size_t) len);
6134 else
6135 ret = read (fd, readbuf, (size_t) len);
6136
6137 close (fd);
6138 return ret;
6139 }
6140
6141 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6142 struct target_loadseg
6143 {
6144 /* Core address to which the segment is mapped. */
6145 Elf32_Addr addr;
6146 /* VMA recorded in the program header. */
6147 Elf32_Addr p_vaddr;
6148 /* Size of this segment in memory. */
6149 Elf32_Word p_memsz;
6150 };
6151
6152 # if defined PT_GETDSBT
6153 struct target_loadmap
6154 {
6155 /* Protocol version number, must be zero. */
6156 Elf32_Word version;
6157 /* Pointer to the DSBT table, its size, and the DSBT index. */
6158 unsigned *dsbt_table;
6159 unsigned dsbt_size, dsbt_index;
6160 /* Number of segments in this map. */
6161 Elf32_Word nsegs;
6162 /* The actual memory map. */
6163 struct target_loadseg segs[/*nsegs*/];
6164 };
6165 # define LINUX_LOADMAP PT_GETDSBT
6166 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6167 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6168 # else
6169 struct target_loadmap
6170 {
6171 /* Protocol version number, must be zero. */
6172 Elf32_Half version;
6173 /* Number of segments in this map. */
6174 Elf32_Half nsegs;
6175 /* The actual memory map. */
6176 struct target_loadseg segs[/*nsegs*/];
6177 };
6178 # define LINUX_LOADMAP PTRACE_GETFDPIC
6179 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6180 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6181 # endif
6182
6183 static int
6184 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6185 unsigned char *myaddr, unsigned int len)
6186 {
6187 int pid = lwpid_of (current_thread);
6188 int addr = -1;
6189 struct target_loadmap *data = NULL;
6190 unsigned int actual_length, copy_length;
6191
6192 if (strcmp (annex, "exec") == 0)
6193 addr = (int) LINUX_LOADMAP_EXEC;
6194 else if (strcmp (annex, "interp") == 0)
6195 addr = (int) LINUX_LOADMAP_INTERP;
6196 else
6197 return -1;
6198
6199 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6200 return -1;
6201
6202 if (data == NULL)
6203 return -1;
6204
6205 actual_length = sizeof (struct target_loadmap)
6206 + sizeof (struct target_loadseg) * data->nsegs;
6207
6208 if (offset < 0 || offset > actual_length)
6209 return -1;
6210
6211 copy_length = actual_length - offset < len ? actual_length - offset : len;
6212 memcpy (myaddr, (char *) data + offset, copy_length);
6213 return copy_length;
6214 }
6215 #else
6216 # define linux_read_loadmap NULL
6217 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6218
6219 static void
6220 linux_process_qsupported (char **features, int count)
6221 {
6222 if (the_low_target.process_qsupported != NULL)
6223 the_low_target.process_qsupported (features, count);
6224 }
6225
6226 static int
6227 linux_supports_tracepoints (void)
6228 {
6229 if (*the_low_target.supports_tracepoints == NULL)
6230 return 0;
6231
6232 return (*the_low_target.supports_tracepoints) ();
6233 }
6234
6235 static CORE_ADDR
6236 linux_read_pc (struct regcache *regcache)
6237 {
6238 if (the_low_target.get_pc == NULL)
6239 return 0;
6240
6241 return (*the_low_target.get_pc) (regcache);
6242 }
6243
6244 static void
6245 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6246 {
6247 gdb_assert (the_low_target.set_pc != NULL);
6248
6249 (*the_low_target.set_pc) (regcache, pc);
6250 }
6251
6252 static int
6253 linux_thread_stopped (struct thread_info *thread)
6254 {
6255 return get_thread_lwp (thread)->stopped;
6256 }
6257
6258 /* This exposes stop-all-threads functionality to other modules. */
6259
6260 static void
6261 linux_pause_all (int freeze)
6262 {
6263 stop_all_lwps (freeze, NULL);
6264 }
6265
6266 /* This exposes unstop-all-threads functionality to other gdbserver
6267 modules. */
6268
6269 static void
6270 linux_unpause_all (int unfreeze)
6271 {
6272 unstop_all_lwps (unfreeze, NULL);
6273 }
6274
6275 static int
6276 linux_prepare_to_access_memory (void)
6277 {
6278 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6279 running LWP. */
6280 if (non_stop)
6281 linux_pause_all (1);
6282 return 0;
6283 }
6284
6285 static void
6286 linux_done_accessing_memory (void)
6287 {
6288 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6289 running LWP. */
6290 if (non_stop)
6291 linux_unpause_all (1);
6292 }
6293
6294 static int
6295 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6296 CORE_ADDR collector,
6297 CORE_ADDR lockaddr,
6298 ULONGEST orig_size,
6299 CORE_ADDR *jump_entry,
6300 CORE_ADDR *trampoline,
6301 ULONGEST *trampoline_size,
6302 unsigned char *jjump_pad_insn,
6303 ULONGEST *jjump_pad_insn_size,
6304 CORE_ADDR *adjusted_insn_addr,
6305 CORE_ADDR *adjusted_insn_addr_end,
6306 char *err)
6307 {
6308 return (*the_low_target.install_fast_tracepoint_jump_pad)
6309 (tpoint, tpaddr, collector, lockaddr, orig_size,
6310 jump_entry, trampoline, trampoline_size,
6311 jjump_pad_insn, jjump_pad_insn_size,
6312 adjusted_insn_addr, adjusted_insn_addr_end,
6313 err);
6314 }
6315
6316 static struct emit_ops *
6317 linux_emit_ops (void)
6318 {
6319 if (the_low_target.emit_ops != NULL)
6320 return (*the_low_target.emit_ops) ();
6321 else
6322 return NULL;
6323 }
6324
6325 static int
6326 linux_get_min_fast_tracepoint_insn_len (void)
6327 {
6328 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6329 }
6330
6331 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6332
6333 static int
6334 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6335 CORE_ADDR *phdr_memaddr, int *num_phdr)
6336 {
6337 char filename[PATH_MAX];
6338 int fd;
6339 const int auxv_size = is_elf64
6340 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6341 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6342
6343 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6344
6345 fd = open (filename, O_RDONLY);
6346 if (fd < 0)
6347 return 1;
6348
6349 *phdr_memaddr = 0;
6350 *num_phdr = 0;
6351 while (read (fd, buf, auxv_size) == auxv_size
6352 && (*phdr_memaddr == 0 || *num_phdr == 0))
6353 {
6354 if (is_elf64)
6355 {
6356 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6357
6358 switch (aux->a_type)
6359 {
6360 case AT_PHDR:
6361 *phdr_memaddr = aux->a_un.a_val;
6362 break;
6363 case AT_PHNUM:
6364 *num_phdr = aux->a_un.a_val;
6365 break;
6366 }
6367 }
6368 else
6369 {
6370 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6371
6372 switch (aux->a_type)
6373 {
6374 case AT_PHDR:
6375 *phdr_memaddr = aux->a_un.a_val;
6376 break;
6377 case AT_PHNUM:
6378 *num_phdr = aux->a_un.a_val;
6379 break;
6380 }
6381 }
6382 }
6383
6384 close (fd);
6385
6386 if (*phdr_memaddr == 0 || *num_phdr == 0)
6387 {
6388 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6389 "phdr_memaddr = %ld, phdr_num = %d",
6390 (long) *phdr_memaddr, *num_phdr);
6391 return 2;
6392 }
6393
6394 return 0;
6395 }
6396
6397 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6398
6399 static CORE_ADDR
6400 get_dynamic (const int pid, const int is_elf64)
6401 {
6402 CORE_ADDR phdr_memaddr, relocation;
6403 int num_phdr, i;
6404 unsigned char *phdr_buf;
6405 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6406
6407 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6408 return 0;
6409
6410 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6411 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6412
6413 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6414 return 0;
6415
6416 /* Compute relocation: it is expected to be 0 for "regular" executables,
6417 non-zero for PIE ones. */
6418 relocation = -1;
6419 for (i = 0; relocation == -1 && i < num_phdr; i++)
6420 if (is_elf64)
6421 {
6422 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6423
6424 if (p->p_type == PT_PHDR)
6425 relocation = phdr_memaddr - p->p_vaddr;
6426 }
6427 else
6428 {
6429 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6430
6431 if (p->p_type == PT_PHDR)
6432 relocation = phdr_memaddr - p->p_vaddr;
6433 }
6434
6435 if (relocation == -1)
6436 {
6437 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6438 any real world executables, including PIE executables, have always
6439 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6440 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6441 or present DT_DEBUG anyway (fpc binaries are statically linked).
6442
6443 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6444
6445 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6446
6447 return 0;
6448 }
6449
6450 for (i = 0; i < num_phdr; i++)
6451 {
6452 if (is_elf64)
6453 {
6454 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6455
6456 if (p->p_type == PT_DYNAMIC)
6457 return p->p_vaddr + relocation;
6458 }
6459 else
6460 {
6461 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6462
6463 if (p->p_type == PT_DYNAMIC)
6464 return p->p_vaddr + relocation;
6465 }
6466 }
6467
6468 return 0;
6469 }
6470
6471 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6472 can be 0 if the inferior does not yet have the library list initialized.
6473 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6474 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6475
6476 static CORE_ADDR
6477 get_r_debug (const int pid, const int is_elf64)
6478 {
6479 CORE_ADDR dynamic_memaddr;
6480 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6481 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6482 CORE_ADDR map = -1;
6483
6484 dynamic_memaddr = get_dynamic (pid, is_elf64);
6485 if (dynamic_memaddr == 0)
6486 return map;
6487
6488 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6489 {
6490 if (is_elf64)
6491 {
6492 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6493 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6494 union
6495 {
6496 Elf64_Xword map;
6497 unsigned char buf[sizeof (Elf64_Xword)];
6498 }
6499 rld_map;
6500 #endif
6501 #ifdef DT_MIPS_RLD_MAP
6502 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6503 {
6504 if (linux_read_memory (dyn->d_un.d_val,
6505 rld_map.buf, sizeof (rld_map.buf)) == 0)
6506 return rld_map.map;
6507 else
6508 break;
6509 }
6510 #endif /* DT_MIPS_RLD_MAP */
6511 #ifdef DT_MIPS_RLD_MAP_REL
6512 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6513 {
6514 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6515 rld_map.buf, sizeof (rld_map.buf)) == 0)
6516 return rld_map.map;
6517 else
6518 break;
6519 }
6520 #endif /* DT_MIPS_RLD_MAP_REL */
6521
6522 if (dyn->d_tag == DT_DEBUG && map == -1)
6523 map = dyn->d_un.d_val;
6524
6525 if (dyn->d_tag == DT_NULL)
6526 break;
6527 }
6528 else
6529 {
6530 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6531 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6532 union
6533 {
6534 Elf32_Word map;
6535 unsigned char buf[sizeof (Elf32_Word)];
6536 }
6537 rld_map;
6538 #endif
6539 #ifdef DT_MIPS_RLD_MAP
6540 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6541 {
6542 if (linux_read_memory (dyn->d_un.d_val,
6543 rld_map.buf, sizeof (rld_map.buf)) == 0)
6544 return rld_map.map;
6545 else
6546 break;
6547 }
6548 #endif /* DT_MIPS_RLD_MAP */
6549 #ifdef DT_MIPS_RLD_MAP_REL
6550 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6551 {
6552 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6553 rld_map.buf, sizeof (rld_map.buf)) == 0)
6554 return rld_map.map;
6555 else
6556 break;
6557 }
6558 #endif /* DT_MIPS_RLD_MAP_REL */
6559
6560 if (dyn->d_tag == DT_DEBUG && map == -1)
6561 map = dyn->d_un.d_val;
6562
6563 if (dyn->d_tag == DT_NULL)
6564 break;
6565 }
6566
6567 dynamic_memaddr += dyn_size;
6568 }
6569
6570 return map;
6571 }
6572
6573 /* Read one pointer from MEMADDR in the inferior. */
6574
6575 static int
6576 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6577 {
6578 int ret;
6579
6580 /* Go through a union so this works on either big or little endian
6581 hosts, when the inferior's pointer size is smaller than the size
6582 of CORE_ADDR. It is assumed the inferior's endianness is the
6583 same of the superior's. */
6584 union
6585 {
6586 CORE_ADDR core_addr;
6587 unsigned int ui;
6588 unsigned char uc;
6589 } addr;
6590
6591 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6592 if (ret == 0)
6593 {
6594 if (ptr_size == sizeof (CORE_ADDR))
6595 *ptr = addr.core_addr;
6596 else if (ptr_size == sizeof (unsigned int))
6597 *ptr = addr.ui;
6598 else
6599 gdb_assert_not_reached ("unhandled pointer size");
6600 }
6601 return ret;
6602 }
6603
6604 struct link_map_offsets
6605 {
6606 /* Offset and size of r_debug.r_version. */
6607 int r_version_offset;
6608
6609 /* Offset and size of r_debug.r_map. */
6610 int r_map_offset;
6611
6612 /* Offset to l_addr field in struct link_map. */
6613 int l_addr_offset;
6614
6615 /* Offset to l_name field in struct link_map. */
6616 int l_name_offset;
6617
6618 /* Offset to l_ld field in struct link_map. */
6619 int l_ld_offset;
6620
6621 /* Offset to l_next field in struct link_map. */
6622 int l_next_offset;
6623
6624 /* Offset to l_prev field in struct link_map. */
6625 int l_prev_offset;
6626 };
6627
6628 /* Construct qXfer:libraries-svr4:read reply. */
6629
6630 static int
6631 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6632 unsigned const char *writebuf,
6633 CORE_ADDR offset, int len)
6634 {
6635 char *document;
6636 unsigned document_len;
6637 struct process_info_private *const priv = current_process ()->priv;
6638 char filename[PATH_MAX];
6639 int pid, is_elf64;
6640
6641 static const struct link_map_offsets lmo_32bit_offsets =
6642 {
6643 0, /* r_version offset. */
6644 4, /* r_debug.r_map offset. */
6645 0, /* l_addr offset in link_map. */
6646 4, /* l_name offset in link_map. */
6647 8, /* l_ld offset in link_map. */
6648 12, /* l_next offset in link_map. */
6649 16 /* l_prev offset in link_map. */
6650 };
6651
6652 static const struct link_map_offsets lmo_64bit_offsets =
6653 {
6654 0, /* r_version offset. */
6655 8, /* r_debug.r_map offset. */
6656 0, /* l_addr offset in link_map. */
6657 8, /* l_name offset in link_map. */
6658 16, /* l_ld offset in link_map. */
6659 24, /* l_next offset in link_map. */
6660 32 /* l_prev offset in link_map. */
6661 };
6662 const struct link_map_offsets *lmo;
6663 unsigned int machine;
6664 int ptr_size;
6665 CORE_ADDR lm_addr = 0, lm_prev = 0;
6666 int allocated = 1024;
6667 char *p;
6668 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6669 int header_done = 0;
6670
6671 if (writebuf != NULL)
6672 return -2;
6673 if (readbuf == NULL)
6674 return -1;
6675
6676 pid = lwpid_of (current_thread);
6677 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6678 is_elf64 = elf_64_file_p (filename, &machine);
6679 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6680 ptr_size = is_elf64 ? 8 : 4;
6681
6682 while (annex[0] != '\0')
6683 {
6684 const char *sep;
6685 CORE_ADDR *addrp;
6686 int len;
6687
6688 sep = strchr (annex, '=');
6689 if (sep == NULL)
6690 break;
6691
6692 len = sep - annex;
6693 if (len == 5 && startswith (annex, "start"))
6694 addrp = &lm_addr;
6695 else if (len == 4 && startswith (annex, "prev"))
6696 addrp = &lm_prev;
6697 else
6698 {
6699 annex = strchr (sep, ';');
6700 if (annex == NULL)
6701 break;
6702 annex++;
6703 continue;
6704 }
6705
6706 annex = decode_address_to_semicolon (addrp, sep + 1);
6707 }
6708
6709 if (lm_addr == 0)
6710 {
6711 int r_version = 0;
6712
6713 if (priv->r_debug == 0)
6714 priv->r_debug = get_r_debug (pid, is_elf64);
6715
6716 /* We failed to find DT_DEBUG. Such situation will not change
6717 for this inferior - do not retry it. Report it to GDB as
6718 E01, see for the reasons at the GDB solib-svr4.c side. */
6719 if (priv->r_debug == (CORE_ADDR) -1)
6720 return -1;
6721
6722 if (priv->r_debug != 0)
6723 {
6724 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6725 (unsigned char *) &r_version,
6726 sizeof (r_version)) != 0
6727 || r_version != 1)
6728 {
6729 warning ("unexpected r_debug version %d", r_version);
6730 }
6731 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6732 &lm_addr, ptr_size) != 0)
6733 {
6734 warning ("unable to read r_map from 0x%lx",
6735 (long) priv->r_debug + lmo->r_map_offset);
6736 }
6737 }
6738 }
6739
6740 document = (char *) xmalloc (allocated);
6741 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6742 p = document + strlen (document);
6743
6744 while (lm_addr
6745 && read_one_ptr (lm_addr + lmo->l_name_offset,
6746 &l_name, ptr_size) == 0
6747 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6748 &l_addr, ptr_size) == 0
6749 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6750 &l_ld, ptr_size) == 0
6751 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6752 &l_prev, ptr_size) == 0
6753 && read_one_ptr (lm_addr + lmo->l_next_offset,
6754 &l_next, ptr_size) == 0)
6755 {
6756 unsigned char libname[PATH_MAX];
6757
6758 if (lm_prev != l_prev)
6759 {
6760 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6761 (long) lm_prev, (long) l_prev);
6762 break;
6763 }
6764
6765 /* Ignore the first entry even if it has valid name as the first entry
6766 corresponds to the main executable. The first entry should not be
6767 skipped if the dynamic loader was loaded late by a static executable
6768 (see solib-svr4.c parameter ignore_first). But in such case the main
6769 executable does not have PT_DYNAMIC present and this function already
6770 exited above due to failed get_r_debug. */
6771 if (lm_prev == 0)
6772 {
6773 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6774 p = p + strlen (p);
6775 }
6776 else
6777 {
6778 /* Not checking for error because reading may stop before
6779 we've got PATH_MAX worth of characters. */
6780 libname[0] = '\0';
6781 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6782 libname[sizeof (libname) - 1] = '\0';
6783 if (libname[0] != '\0')
6784 {
6785 /* 6x the size for xml_escape_text below. */
6786 size_t len = 6 * strlen ((char *) libname);
6787 char *name;
6788
6789 if (!header_done)
6790 {
6791 /* Terminate `<library-list-svr4'. */
6792 *p++ = '>';
6793 header_done = 1;
6794 }
6795
6796 while (allocated < p - document + len + 200)
6797 {
6798 /* Expand to guarantee sufficient storage. */
6799 uintptr_t document_len = p - document;
6800
6801 document = (char *) xrealloc (document, 2 * allocated);
6802 allocated *= 2;
6803 p = document + document_len;
6804 }
6805
6806 name = xml_escape_text ((char *) libname);
6807 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6808 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6809 name, (unsigned long) lm_addr,
6810 (unsigned long) l_addr, (unsigned long) l_ld);
6811 free (name);
6812 }
6813 }
6814
6815 lm_prev = lm_addr;
6816 lm_addr = l_next;
6817 }
6818
6819 if (!header_done)
6820 {
6821 /* Empty list; terminate `<library-list-svr4'. */
6822 strcpy (p, "/>");
6823 }
6824 else
6825 strcpy (p, "</library-list-svr4>");
6826
6827 document_len = strlen (document);
6828 if (offset < document_len)
6829 document_len -= offset;
6830 else
6831 document_len = 0;
6832 if (len > document_len)
6833 len = document_len;
6834
6835 memcpy (readbuf, document + offset, len);
6836 xfree (document);
6837
6838 return len;
6839 }
6840
6841 #ifdef HAVE_LINUX_BTRACE
6842
6843 /* See to_disable_btrace target method. */
6844
6845 static int
6846 linux_low_disable_btrace (struct btrace_target_info *tinfo)
6847 {
6848 enum btrace_error err;
6849
6850 err = linux_disable_btrace (tinfo);
6851 return (err == BTRACE_ERR_NONE ? 0 : -1);
6852 }
6853
6854 /* Encode an Intel(R) Processor Trace configuration. */
6855
6856 static void
6857 linux_low_encode_pt_config (struct buffer *buffer,
6858 const struct btrace_data_pt_config *config)
6859 {
6860 buffer_grow_str (buffer, "<pt-config>\n");
6861
6862 switch (config->cpu.vendor)
6863 {
6864 case CV_INTEL:
6865 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
6866 "model=\"%u\" stepping=\"%u\"/>\n",
6867 config->cpu.family, config->cpu.model,
6868 config->cpu.stepping);
6869 break;
6870
6871 default:
6872 break;
6873 }
6874
6875 buffer_grow_str (buffer, "</pt-config>\n");
6876 }
6877
6878 /* Encode a raw buffer. */
6879
6880 static void
6881 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
6882 unsigned int size)
6883 {
6884 if (size == 0)
6885 return;
6886
6887 /* We use hex encoding - see common/rsp-low.h. */
6888 buffer_grow_str (buffer, "<raw>\n");
6889
6890 while (size-- > 0)
6891 {
6892 char elem[2];
6893
6894 elem[0] = tohex ((*data >> 4) & 0xf);
6895 elem[1] = tohex (*data++ & 0xf);
6896
6897 buffer_grow (buffer, elem, 2);
6898 }
6899
6900 buffer_grow_str (buffer, "</raw>\n");
6901 }
6902
6903 /* See to_read_btrace target method. */
6904
6905 static int
6906 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
6907 enum btrace_read_type type)
6908 {
6909 struct btrace_data btrace;
6910 struct btrace_block *block;
6911 enum btrace_error err;
6912 int i;
6913
6914 btrace_data_init (&btrace);
6915
6916 err = linux_read_btrace (&btrace, tinfo, type);
6917 if (err != BTRACE_ERR_NONE)
6918 {
6919 if (err == BTRACE_ERR_OVERFLOW)
6920 buffer_grow_str0 (buffer, "E.Overflow.");
6921 else
6922 buffer_grow_str0 (buffer, "E.Generic Error.");
6923
6924 goto err;
6925 }
6926
6927 switch (btrace.format)
6928 {
6929 case BTRACE_FORMAT_NONE:
6930 buffer_grow_str0 (buffer, "E.No Trace.");
6931 goto err;
6932
6933 case BTRACE_FORMAT_BTS:
6934 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6935 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6936
6937 for (i = 0;
6938 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
6939 i++)
6940 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6941 paddress (block->begin), paddress (block->end));
6942
6943 buffer_grow_str0 (buffer, "</btrace>\n");
6944 break;
6945
6946 case BTRACE_FORMAT_PT:
6947 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6948 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6949 buffer_grow_str (buffer, "<pt>\n");
6950
6951 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
6952
6953 linux_low_encode_raw (buffer, btrace.variant.pt.data,
6954 btrace.variant.pt.size);
6955
6956 buffer_grow_str (buffer, "</pt>\n");
6957 buffer_grow_str0 (buffer, "</btrace>\n");
6958 break;
6959
6960 default:
6961 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
6962 goto err;
6963 }
6964
6965 btrace_data_fini (&btrace);
6966 return 0;
6967
6968 err:
6969 btrace_data_fini (&btrace);
6970 return -1;
6971 }
6972
6973 /* See to_btrace_conf target method. */
6974
6975 static int
6976 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
6977 struct buffer *buffer)
6978 {
6979 const struct btrace_config *conf;
6980
6981 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
6982 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
6983
6984 conf = linux_btrace_conf (tinfo);
6985 if (conf != NULL)
6986 {
6987 switch (conf->format)
6988 {
6989 case BTRACE_FORMAT_NONE:
6990 break;
6991
6992 case BTRACE_FORMAT_BTS:
6993 buffer_xml_printf (buffer, "<bts");
6994 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
6995 buffer_xml_printf (buffer, " />\n");
6996 break;
6997
6998 case BTRACE_FORMAT_PT:
6999 buffer_xml_printf (buffer, "<pt");
7000 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7001 buffer_xml_printf (buffer, "/>\n");
7002 break;
7003 }
7004 }
7005
7006 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7007 return 0;
7008 }
7009 #endif /* HAVE_LINUX_BTRACE */
7010
7011 /* See nat/linux-nat.h. */
7012
7013 ptid_t
7014 current_lwp_ptid (void)
7015 {
7016 return ptid_of (current_thread);
7017 }
7018
7019 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7020
7021 static int
7022 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7023 {
7024 if (the_low_target.breakpoint_kind_from_pc != NULL)
7025 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7026 else
7027 return default_breakpoint_kind_from_pc (pcptr);
7028 }
7029
7030 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7031
7032 static const gdb_byte *
7033 linux_sw_breakpoint_from_kind (int kind, int *size)
7034 {
7035 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7036
7037 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7038 }
7039
7040 /* Implementation of the target_ops method
7041 "breakpoint_kind_from_current_state". */
7042
7043 static int
7044 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7045 {
7046 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7047 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7048 else
7049 return linux_breakpoint_kind_from_pc (pcptr);
7050 }
7051
7052 static struct target_ops linux_target_ops = {
7053 linux_create_inferior,
7054 linux_arch_setup,
7055 linux_attach,
7056 linux_kill,
7057 linux_detach,
7058 linux_mourn,
7059 linux_join,
7060 linux_thread_alive,
7061 linux_resume,
7062 linux_wait,
7063 linux_fetch_registers,
7064 linux_store_registers,
7065 linux_prepare_to_access_memory,
7066 linux_done_accessing_memory,
7067 linux_read_memory,
7068 linux_write_memory,
7069 linux_look_up_symbols,
7070 linux_request_interrupt,
7071 linux_read_auxv,
7072 linux_supports_z_point_type,
7073 linux_insert_point,
7074 linux_remove_point,
7075 linux_stopped_by_sw_breakpoint,
7076 linux_supports_stopped_by_sw_breakpoint,
7077 linux_stopped_by_hw_breakpoint,
7078 linux_supports_stopped_by_hw_breakpoint,
7079 linux_supports_hardware_single_step,
7080 linux_stopped_by_watchpoint,
7081 linux_stopped_data_address,
7082 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7083 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7084 && defined(PT_TEXT_END_ADDR)
7085 linux_read_offsets,
7086 #else
7087 NULL,
7088 #endif
7089 #ifdef USE_THREAD_DB
7090 thread_db_get_tls_address,
7091 #else
7092 NULL,
7093 #endif
7094 linux_qxfer_spu,
7095 hostio_last_error_from_errno,
7096 linux_qxfer_osdata,
7097 linux_xfer_siginfo,
7098 linux_supports_non_stop,
7099 linux_async,
7100 linux_start_non_stop,
7101 linux_supports_multi_process,
7102 linux_supports_fork_events,
7103 linux_supports_vfork_events,
7104 linux_supports_exec_events,
7105 linux_handle_new_gdb_connection,
7106 #ifdef USE_THREAD_DB
7107 thread_db_handle_monitor_command,
7108 #else
7109 NULL,
7110 #endif
7111 linux_common_core_of_thread,
7112 linux_read_loadmap,
7113 linux_process_qsupported,
7114 linux_supports_tracepoints,
7115 linux_read_pc,
7116 linux_write_pc,
7117 linux_thread_stopped,
7118 NULL,
7119 linux_pause_all,
7120 linux_unpause_all,
7121 linux_stabilize_threads,
7122 linux_install_fast_tracepoint_jump_pad,
7123 linux_emit_ops,
7124 linux_supports_disable_randomization,
7125 linux_get_min_fast_tracepoint_insn_len,
7126 linux_qxfer_libraries_svr4,
7127 linux_supports_agent,
7128 #ifdef HAVE_LINUX_BTRACE
7129 linux_supports_btrace,
7130 linux_enable_btrace,
7131 linux_low_disable_btrace,
7132 linux_low_read_btrace,
7133 linux_low_btrace_conf,
7134 #else
7135 NULL,
7136 NULL,
7137 NULL,
7138 NULL,
7139 NULL,
7140 #endif
7141 linux_supports_range_stepping,
7142 linux_proc_pid_to_exec_file,
7143 linux_mntns_open_cloexec,
7144 linux_mntns_unlink,
7145 linux_mntns_readlink,
7146 linux_breakpoint_kind_from_pc,
7147 linux_sw_breakpoint_from_kind,
7148 linux_proc_tid_get_name,
7149 linux_breakpoint_kind_from_current_state
7150 };
7151
7152 static void
7153 linux_init_signals ()
7154 {
7155 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
7156 to find what the cancel signal actually is. */
7157 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
7158 signal (__SIGRTMIN+1, SIG_IGN);
7159 #endif
7160 }
7161
7162 #ifdef HAVE_LINUX_REGSETS
7163 void
7164 initialize_regsets_info (struct regsets_info *info)
7165 {
7166 for (info->num_regsets = 0;
7167 info->regsets[info->num_regsets].size >= 0;
7168 info->num_regsets++)
7169 ;
7170 }
7171 #endif
7172
7173 void
7174 initialize_low (void)
7175 {
7176 struct sigaction sigchld_action;
7177
7178 memset (&sigchld_action, 0, sizeof (sigchld_action));
7179 set_target_ops (&linux_target_ops);
7180
7181 linux_init_signals ();
7182 linux_ptrace_init_warnings ();
7183
7184 sigchld_action.sa_handler = sigchld_handler;
7185 sigemptyset (&sigchld_action.sa_mask);
7186 sigchld_action.sa_flags = SA_RESTART;
7187 sigaction (SIGCHLD, &sigchld_action, NULL);
7188
7189 initialize_low_arch ();
7190
7191 linux_check_ptrace_features ();
7192 }
This page took 0.210228 seconds and 5 git commands to generate.