gdb: Add missing #ifdef USE_THREAD_DB to gdbserver
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static void proceed_one_lwp (thread_info *thread, lwp_info *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424 }
425
426 /* Add a process to the common process list, and set its private
427 data. */
428
429 static struct process_info *
430 linux_add_process (int pid, int attached)
431 {
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441 }
442
443 static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445 /* Call the target arch_setup function on the current thread. */
446
447 static void
448 linux_arch_setup (void)
449 {
450 the_low_target.arch_setup ();
451 }
452
453 /* Call the target arch_setup function on THREAD. */
454
455 static void
456 linux_arch_setup_thread (struct thread_info *thread)
457 {
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466 }
467
468 /* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474 static int
475 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476 {
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 #ifdef USE_THREAD_DB
665 thread_db_notice_clone (event_thr, ptid);
666 #endif
667
668 /* Don't report the event. */
669 return 1;
670 }
671 else if (event == PTRACE_EVENT_VFORK_DONE)
672 {
673 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
674
675 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
676 {
677 reinsert_single_step_breakpoints (event_thr);
678
679 gdb_assert (has_single_step_breakpoints (event_thr));
680 }
681
682 /* Report the event. */
683 return 0;
684 }
685 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
686 {
687 struct process_info *proc;
688 std::vector<int> syscalls_to_catch;
689 ptid_t event_ptid;
690 pid_t event_pid;
691
692 if (debug_threads)
693 {
694 debug_printf ("HEW: Got exec event from LWP %ld\n",
695 lwpid_of (event_thr));
696 }
697
698 /* Get the event ptid. */
699 event_ptid = ptid_of (event_thr);
700 event_pid = ptid_get_pid (event_ptid);
701
702 /* Save the syscall list from the execing process. */
703 proc = get_thread_process (event_thr);
704 syscalls_to_catch = std::move (proc->syscalls_to_catch);
705
706 /* Delete the execing process and all its threads. */
707 linux_mourn (proc);
708 current_thread = NULL;
709
710 /* Create a new process/lwp/thread. */
711 proc = linux_add_process (event_pid, 0);
712 event_lwp = add_lwp (event_ptid);
713 event_thr = get_lwp_thread (event_lwp);
714 gdb_assert (current_thread == event_thr);
715 linux_arch_setup_thread (event_thr);
716
717 /* Set the event status. */
718 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
719 event_lwp->waitstatus.value.execd_pathname
720 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
721
722 /* Mark the exec status as pending. */
723 event_lwp->stopped = 1;
724 event_lwp->status_pending_p = 1;
725 event_lwp->status_pending = wstat;
726 event_thr->last_resume_kind = resume_continue;
727 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
728
729 /* Update syscall state in the new lwp, effectively mid-syscall too. */
730 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
731
732 /* Restore the list to catch. Don't rely on the client, which is free
733 to avoid sending a new list when the architecture doesn't change.
734 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
735 proc->syscalls_to_catch = std::move (syscalls_to_catch);
736
737 /* Report the event. */
738 *orig_event_lwp = event_lwp;
739 return 0;
740 }
741
742 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
743 }
744
745 /* Return the PC as read from the regcache of LWP, without any
746 adjustment. */
747
748 static CORE_ADDR
749 get_pc (struct lwp_info *lwp)
750 {
751 struct thread_info *saved_thread;
752 struct regcache *regcache;
753 CORE_ADDR pc;
754
755 if (the_low_target.get_pc == NULL)
756 return 0;
757
758 saved_thread = current_thread;
759 current_thread = get_lwp_thread (lwp);
760
761 regcache = get_thread_regcache (current_thread, 1);
762 pc = (*the_low_target.get_pc) (regcache);
763
764 if (debug_threads)
765 debug_printf ("pc is 0x%lx\n", (long) pc);
766
767 current_thread = saved_thread;
768 return pc;
769 }
770
771 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
772 Fill *SYSNO with the syscall nr trapped. */
773
774 static void
775 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
776 {
777 struct thread_info *saved_thread;
778 struct regcache *regcache;
779
780 if (the_low_target.get_syscall_trapinfo == NULL)
781 {
782 /* If we cannot get the syscall trapinfo, report an unknown
783 system call number. */
784 *sysno = UNKNOWN_SYSCALL;
785 return;
786 }
787
788 saved_thread = current_thread;
789 current_thread = get_lwp_thread (lwp);
790
791 regcache = get_thread_regcache (current_thread, 1);
792 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
793
794 if (debug_threads)
795 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
796
797 current_thread = saved_thread;
798 }
799
800 static int check_stopped_by_watchpoint (struct lwp_info *child);
801
802 /* Called when the LWP stopped for a signal/trap. If it stopped for a
803 trap check what caused it (breakpoint, watchpoint, trace, etc.),
804 and save the result in the LWP's stop_reason field. If it stopped
805 for a breakpoint, decrement the PC if necessary on the lwp's
806 architecture. Returns true if we now have the LWP's stop PC. */
807
808 static int
809 save_stop_reason (struct lwp_info *lwp)
810 {
811 CORE_ADDR pc;
812 CORE_ADDR sw_breakpoint_pc;
813 struct thread_info *saved_thread;
814 #if USE_SIGTRAP_SIGINFO
815 siginfo_t siginfo;
816 #endif
817
818 if (the_low_target.get_pc == NULL)
819 return 0;
820
821 pc = get_pc (lwp);
822 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
823
824 /* breakpoint_at reads from the current thread. */
825 saved_thread = current_thread;
826 current_thread = get_lwp_thread (lwp);
827
828 #if USE_SIGTRAP_SIGINFO
829 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
830 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
831 {
832 if (siginfo.si_signo == SIGTRAP)
833 {
834 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
835 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
836 {
837 /* The si_code is ambiguous on this arch -- check debug
838 registers. */
839 if (!check_stopped_by_watchpoint (lwp))
840 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
841 }
842 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
843 {
844 /* If we determine the LWP stopped for a SW breakpoint,
845 trust it. Particularly don't check watchpoint
846 registers, because at least on s390, we'd find
847 stopped-by-watchpoint as long as there's a watchpoint
848 set. */
849 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
850 }
851 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
852 {
853 /* This can indicate either a hardware breakpoint or
854 hardware watchpoint. Check debug registers. */
855 if (!check_stopped_by_watchpoint (lwp))
856 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
857 }
858 else if (siginfo.si_code == TRAP_TRACE)
859 {
860 /* We may have single stepped an instruction that
861 triggered a watchpoint. In that case, on some
862 architectures (such as x86), instead of TRAP_HWBKPT,
863 si_code indicates TRAP_TRACE, and we need to check
864 the debug registers separately. */
865 if (!check_stopped_by_watchpoint (lwp))
866 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
867 }
868 }
869 }
870 #else
871 /* We may have just stepped a breakpoint instruction. E.g., in
872 non-stop mode, GDB first tells the thread A to step a range, and
873 then the user inserts a breakpoint inside the range. In that
874 case we need to report the breakpoint PC. */
875 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
876 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
877 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
878
879 if (hardware_breakpoint_inserted_here (pc))
880 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
881
882 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
883 check_stopped_by_watchpoint (lwp);
884 #endif
885
886 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
887 {
888 if (debug_threads)
889 {
890 struct thread_info *thr = get_lwp_thread (lwp);
891
892 debug_printf ("CSBB: %s stopped by software breakpoint\n",
893 target_pid_to_str (ptid_of (thr)));
894 }
895
896 /* Back up the PC if necessary. */
897 if (pc != sw_breakpoint_pc)
898 {
899 struct regcache *regcache
900 = get_thread_regcache (current_thread, 1);
901 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
902 }
903
904 /* Update this so we record the correct stop PC below. */
905 pc = sw_breakpoint_pc;
906 }
907 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
908 {
909 if (debug_threads)
910 {
911 struct thread_info *thr = get_lwp_thread (lwp);
912
913 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
914 target_pid_to_str (ptid_of (thr)));
915 }
916 }
917 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
918 {
919 if (debug_threads)
920 {
921 struct thread_info *thr = get_lwp_thread (lwp);
922
923 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
924 target_pid_to_str (ptid_of (thr)));
925 }
926 }
927 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
928 {
929 if (debug_threads)
930 {
931 struct thread_info *thr = get_lwp_thread (lwp);
932
933 debug_printf ("CSBB: %s stopped by trace\n",
934 target_pid_to_str (ptid_of (thr)));
935 }
936 }
937
938 lwp->stop_pc = pc;
939 current_thread = saved_thread;
940 return 1;
941 }
942
943 static struct lwp_info *
944 add_lwp (ptid_t ptid)
945 {
946 struct lwp_info *lwp;
947
948 lwp = XCNEW (struct lwp_info);
949
950 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
951
952 if (the_low_target.new_thread != NULL)
953 the_low_target.new_thread (lwp);
954
955 lwp->thread = add_thread (ptid, lwp);
956
957 return lwp;
958 }
959
960 /* Callback to be used when calling fork_inferior, responsible for
961 actually initiating the tracing of the inferior. */
962
963 static void
964 linux_ptrace_fun ()
965 {
966 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
967 (PTRACE_TYPE_ARG4) 0) < 0)
968 trace_start_error_with_name ("ptrace");
969
970 if (setpgid (0, 0) < 0)
971 trace_start_error_with_name ("setpgid");
972
973 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
974 stdout to stderr so that inferior i/o doesn't corrupt the connection.
975 Also, redirect stdin to /dev/null. */
976 if (remote_connection_is_stdio ())
977 {
978 if (close (0) < 0)
979 trace_start_error_with_name ("close");
980 if (open ("/dev/null", O_RDONLY) < 0)
981 trace_start_error_with_name ("open");
982 if (dup2 (2, 1) < 0)
983 trace_start_error_with_name ("dup2");
984 if (write (2, "stdin/stdout redirected\n",
985 sizeof ("stdin/stdout redirected\n") - 1) < 0)
986 {
987 /* Errors ignored. */;
988 }
989 }
990 }
991
992 /* Start an inferior process and returns its pid.
993 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
994 are its arguments. */
995
996 static int
997 linux_create_inferior (const char *program,
998 const std::vector<char *> &program_args)
999 {
1000 struct lwp_info *new_lwp;
1001 int pid;
1002 ptid_t ptid;
1003
1004 {
1005 maybe_disable_address_space_randomization restore_personality
1006 (disable_randomization);
1007 std::string str_program_args = stringify_argv (program_args);
1008
1009 pid = fork_inferior (program,
1010 str_program_args.c_str (),
1011 get_environ ()->envp (), linux_ptrace_fun,
1012 NULL, NULL, NULL, NULL);
1013 }
1014
1015 linux_add_process (pid, 0);
1016
1017 ptid = ptid_build (pid, pid, 0);
1018 new_lwp = add_lwp (ptid);
1019 new_lwp->must_set_ptrace_flags = 1;
1020
1021 post_fork_inferior (pid, program);
1022
1023 return pid;
1024 }
1025
1026 /* Implement the post_create_inferior target_ops method. */
1027
1028 static void
1029 linux_post_create_inferior (void)
1030 {
1031 struct lwp_info *lwp = get_thread_lwp (current_thread);
1032
1033 linux_arch_setup ();
1034
1035 if (lwp->must_set_ptrace_flags)
1036 {
1037 struct process_info *proc = current_process ();
1038 int options = linux_low_ptrace_options (proc->attached);
1039
1040 linux_enable_event_reporting (lwpid_of (current_thread), options);
1041 lwp->must_set_ptrace_flags = 0;
1042 }
1043 }
1044
1045 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1046 error. */
1047
1048 int
1049 linux_attach_lwp (ptid_t ptid)
1050 {
1051 struct lwp_info *new_lwp;
1052 int lwpid = ptid_get_lwp (ptid);
1053
1054 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1055 != 0)
1056 return errno;
1057
1058 new_lwp = add_lwp (ptid);
1059
1060 /* We need to wait for SIGSTOP before being able to make the next
1061 ptrace call on this LWP. */
1062 new_lwp->must_set_ptrace_flags = 1;
1063
1064 if (linux_proc_pid_is_stopped (lwpid))
1065 {
1066 if (debug_threads)
1067 debug_printf ("Attached to a stopped process\n");
1068
1069 /* The process is definitely stopped. It is in a job control
1070 stop, unless the kernel predates the TASK_STOPPED /
1071 TASK_TRACED distinction, in which case it might be in a
1072 ptrace stop. Make sure it is in a ptrace stop; from there we
1073 can kill it, signal it, et cetera.
1074
1075 First make sure there is a pending SIGSTOP. Since we are
1076 already attached, the process can not transition from stopped
1077 to running without a PTRACE_CONT; so we know this signal will
1078 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1079 probably already in the queue (unless this kernel is old
1080 enough to use TASK_STOPPED for ptrace stops); but since
1081 SIGSTOP is not an RT signal, it can only be queued once. */
1082 kill_lwp (lwpid, SIGSTOP);
1083
1084 /* Finally, resume the stopped process. This will deliver the
1085 SIGSTOP (or a higher priority signal, just like normal
1086 PTRACE_ATTACH), which we'll catch later on. */
1087 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1088 }
1089
1090 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1091 brings it to a halt.
1092
1093 There are several cases to consider here:
1094
1095 1) gdbserver has already attached to the process and is being notified
1096 of a new thread that is being created.
1097 In this case we should ignore that SIGSTOP and resume the
1098 process. This is handled below by setting stop_expected = 1,
1099 and the fact that add_thread sets last_resume_kind ==
1100 resume_continue.
1101
1102 2) This is the first thread (the process thread), and we're attaching
1103 to it via attach_inferior.
1104 In this case we want the process thread to stop.
1105 This is handled by having linux_attach set last_resume_kind ==
1106 resume_stop after we return.
1107
1108 If the pid we are attaching to is also the tgid, we attach to and
1109 stop all the existing threads. Otherwise, we attach to pid and
1110 ignore any other threads in the same group as this pid.
1111
1112 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1113 existing threads.
1114 In this case we want the thread to stop.
1115 FIXME: This case is currently not properly handled.
1116 We should wait for the SIGSTOP but don't. Things work apparently
1117 because enough time passes between when we ptrace (ATTACH) and when
1118 gdb makes the next ptrace call on the thread.
1119
1120 On the other hand, if we are currently trying to stop all threads, we
1121 should treat the new thread as if we had sent it a SIGSTOP. This works
1122 because we are guaranteed that the add_lwp call above added us to the
1123 end of the list, and so the new thread has not yet reached
1124 wait_for_sigstop (but will). */
1125 new_lwp->stop_expected = 1;
1126
1127 return 0;
1128 }
1129
1130 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1131 already attached. Returns true if a new LWP is found, false
1132 otherwise. */
1133
1134 static int
1135 attach_proc_task_lwp_callback (ptid_t ptid)
1136 {
1137 /* Is this a new thread? */
1138 if (find_thread_ptid (ptid) == NULL)
1139 {
1140 int lwpid = ptid_get_lwp (ptid);
1141 int err;
1142
1143 if (debug_threads)
1144 debug_printf ("Found new lwp %d\n", lwpid);
1145
1146 err = linux_attach_lwp (ptid);
1147
1148 /* Be quiet if we simply raced with the thread exiting. EPERM
1149 is returned if the thread's task still exists, and is marked
1150 as exited or zombie, as well as other conditions, so in that
1151 case, confirm the status in /proc/PID/status. */
1152 if (err == ESRCH
1153 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1154 {
1155 if (debug_threads)
1156 {
1157 debug_printf ("Cannot attach to lwp %d: "
1158 "thread is gone (%d: %s)\n",
1159 lwpid, err, strerror (err));
1160 }
1161 }
1162 else if (err != 0)
1163 {
1164 std::string reason
1165 = linux_ptrace_attach_fail_reason_string (ptid, err);
1166
1167 warning (_("Cannot attach to lwp %d: %s"), lwpid, reason.c_str ());
1168 }
1169
1170 return 1;
1171 }
1172 return 0;
1173 }
1174
1175 static void async_file_mark (void);
1176
1177 /* Attach to PID. If PID is the tgid, attach to it and all
1178 of its threads. */
1179
1180 static int
1181 linux_attach (unsigned long pid)
1182 {
1183 struct process_info *proc;
1184 struct thread_info *initial_thread;
1185 ptid_t ptid = ptid_build (pid, pid, 0);
1186 int err;
1187
1188 /* Attach to PID. We will check for other threads
1189 soon. */
1190 err = linux_attach_lwp (ptid);
1191 if (err != 0)
1192 {
1193 std::string reason = linux_ptrace_attach_fail_reason_string (ptid, err);
1194
1195 error ("Cannot attach to process %ld: %s", pid, reason.c_str ());
1196 }
1197
1198 proc = linux_add_process (pid, 1);
1199
1200 /* Don't ignore the initial SIGSTOP if we just attached to this
1201 process. It will be collected by wait shortly. */
1202 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1203 initial_thread->last_resume_kind = resume_stop;
1204
1205 /* We must attach to every LWP. If /proc is mounted, use that to
1206 find them now. On the one hand, the inferior may be using raw
1207 clone instead of using pthreads. On the other hand, even if it
1208 is using pthreads, GDB may not be connected yet (thread_db needs
1209 to do symbol lookups, through qSymbol). Also, thread_db walks
1210 structures in the inferior's address space to find the list of
1211 threads/LWPs, and those structures may well be corrupted. Note
1212 that once thread_db is loaded, we'll still use it to list threads
1213 and associate pthread info with each LWP. */
1214 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1215
1216 /* GDB will shortly read the xml target description for this
1217 process, to figure out the process' architecture. But the target
1218 description is only filled in when the first process/thread in
1219 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1220 that now, otherwise, if GDB is fast enough, it could read the
1221 target description _before_ that initial stop. */
1222 if (non_stop)
1223 {
1224 struct lwp_info *lwp;
1225 int wstat, lwpid;
1226 ptid_t pid_ptid = pid_to_ptid (pid);
1227
1228 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1229 &wstat, __WALL);
1230 gdb_assert (lwpid > 0);
1231
1232 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1233
1234 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1235 {
1236 lwp->status_pending_p = 1;
1237 lwp->status_pending = wstat;
1238 }
1239
1240 initial_thread->last_resume_kind = resume_continue;
1241
1242 async_file_mark ();
1243
1244 gdb_assert (proc->tdesc != NULL);
1245 }
1246
1247 return 0;
1248 }
1249
1250 static int
1251 last_thread_of_process_p (int pid)
1252 {
1253 bool seen_one = false;
1254
1255 thread_info *thread = find_thread (pid, [&] (thread_info *thread)
1256 {
1257 if (!seen_one)
1258 {
1259 /* This is the first thread of this process we see. */
1260 seen_one = true;
1261 return false;
1262 }
1263 else
1264 {
1265 /* This is the second thread of this process we see. */
1266 return true;
1267 }
1268 });
1269
1270 return thread == NULL;
1271 }
1272
1273 /* Kill LWP. */
1274
1275 static void
1276 linux_kill_one_lwp (struct lwp_info *lwp)
1277 {
1278 struct thread_info *thr = get_lwp_thread (lwp);
1279 int pid = lwpid_of (thr);
1280
1281 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1282 there is no signal context, and ptrace(PTRACE_KILL) (or
1283 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1284 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1285 alternative is to kill with SIGKILL. We only need one SIGKILL
1286 per process, not one for each thread. But since we still support
1287 support debugging programs using raw clone without CLONE_THREAD,
1288 we send one for each thread. For years, we used PTRACE_KILL
1289 only, so we're being a bit paranoid about some old kernels where
1290 PTRACE_KILL might work better (dubious if there are any such, but
1291 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1292 second, and so we're fine everywhere. */
1293
1294 errno = 0;
1295 kill_lwp (pid, SIGKILL);
1296 if (debug_threads)
1297 {
1298 int save_errno = errno;
1299
1300 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1301 target_pid_to_str (ptid_of (thr)),
1302 save_errno ? strerror (save_errno) : "OK");
1303 }
1304
1305 errno = 0;
1306 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1307 if (debug_threads)
1308 {
1309 int save_errno = errno;
1310
1311 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1312 target_pid_to_str (ptid_of (thr)),
1313 save_errno ? strerror (save_errno) : "OK");
1314 }
1315 }
1316
1317 /* Kill LWP and wait for it to die. */
1318
1319 static void
1320 kill_wait_lwp (struct lwp_info *lwp)
1321 {
1322 struct thread_info *thr = get_lwp_thread (lwp);
1323 int pid = ptid_get_pid (ptid_of (thr));
1324 int lwpid = ptid_get_lwp (ptid_of (thr));
1325 int wstat;
1326 int res;
1327
1328 if (debug_threads)
1329 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1330
1331 do
1332 {
1333 linux_kill_one_lwp (lwp);
1334
1335 /* Make sure it died. Notes:
1336
1337 - The loop is most likely unnecessary.
1338
1339 - We don't use linux_wait_for_event as that could delete lwps
1340 while we're iterating over them. We're not interested in
1341 any pending status at this point, only in making sure all
1342 wait status on the kernel side are collected until the
1343 process is reaped.
1344
1345 - We don't use __WALL here as the __WALL emulation relies on
1346 SIGCHLD, and killing a stopped process doesn't generate
1347 one, nor an exit status.
1348 */
1349 res = my_waitpid (lwpid, &wstat, 0);
1350 if (res == -1 && errno == ECHILD)
1351 res = my_waitpid (lwpid, &wstat, __WCLONE);
1352 } while (res > 0 && WIFSTOPPED (wstat));
1353
1354 /* Even if it was stopped, the child may have already disappeared.
1355 E.g., if it was killed by SIGKILL. */
1356 if (res < 0 && errno != ECHILD)
1357 perror_with_name ("kill_wait_lwp");
1358 }
1359
1360 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1361 except the leader. */
1362
1363 static void
1364 kill_one_lwp_callback (thread_info *thread, int pid)
1365 {
1366 struct lwp_info *lwp = get_thread_lwp (thread);
1367
1368 /* We avoid killing the first thread here, because of a Linux kernel (at
1369 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1370 the children get a chance to be reaped, it will remain a zombie
1371 forever. */
1372
1373 if (lwpid_of (thread) == pid)
1374 {
1375 if (debug_threads)
1376 debug_printf ("lkop: is last of process %s\n",
1377 target_pid_to_str (thread->id));
1378 return;
1379 }
1380
1381 kill_wait_lwp (lwp);
1382 }
1383
1384 static int
1385 linux_kill (int pid)
1386 {
1387 struct process_info *process;
1388 struct lwp_info *lwp;
1389
1390 process = find_process_pid (pid);
1391 if (process == NULL)
1392 return -1;
1393
1394 /* If we're killing a running inferior, make sure it is stopped
1395 first, as PTRACE_KILL will not work otherwise. */
1396 stop_all_lwps (0, NULL);
1397
1398 for_each_thread (pid, [&] (thread_info *thread)
1399 {
1400 kill_one_lwp_callback (thread, pid);
1401 });
1402
1403 /* See the comment in linux_kill_one_lwp. We did not kill the first
1404 thread in the list, so do so now. */
1405 lwp = find_lwp_pid (pid_to_ptid (pid));
1406
1407 if (lwp == NULL)
1408 {
1409 if (debug_threads)
1410 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1411 pid);
1412 }
1413 else
1414 kill_wait_lwp (lwp);
1415
1416 the_target->mourn (process);
1417
1418 /* Since we presently can only stop all lwps of all processes, we
1419 need to unstop lwps of other processes. */
1420 unstop_all_lwps (0, NULL);
1421 return 0;
1422 }
1423
1424 /* Get pending signal of THREAD, for detaching purposes. This is the
1425 signal the thread last stopped for, which we need to deliver to the
1426 thread when detaching, otherwise, it'd be suppressed/lost. */
1427
1428 static int
1429 get_detach_signal (struct thread_info *thread)
1430 {
1431 enum gdb_signal signo = GDB_SIGNAL_0;
1432 int status;
1433 struct lwp_info *lp = get_thread_lwp (thread);
1434
1435 if (lp->status_pending_p)
1436 status = lp->status_pending;
1437 else
1438 {
1439 /* If the thread had been suspended by gdbserver, and it stopped
1440 cleanly, then it'll have stopped with SIGSTOP. But we don't
1441 want to deliver that SIGSTOP. */
1442 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1443 || thread->last_status.value.sig == GDB_SIGNAL_0)
1444 return 0;
1445
1446 /* Otherwise, we may need to deliver the signal we
1447 intercepted. */
1448 status = lp->last_status;
1449 }
1450
1451 if (!WIFSTOPPED (status))
1452 {
1453 if (debug_threads)
1454 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1455 target_pid_to_str (ptid_of (thread)));
1456 return 0;
1457 }
1458
1459 /* Extended wait statuses aren't real SIGTRAPs. */
1460 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1461 {
1462 if (debug_threads)
1463 debug_printf ("GPS: lwp %s had stopped with extended "
1464 "status: no pending signal\n",
1465 target_pid_to_str (ptid_of (thread)));
1466 return 0;
1467 }
1468
1469 signo = gdb_signal_from_host (WSTOPSIG (status));
1470
1471 if (program_signals_p && !program_signals[signo])
1472 {
1473 if (debug_threads)
1474 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1475 target_pid_to_str (ptid_of (thread)),
1476 gdb_signal_to_string (signo));
1477 return 0;
1478 }
1479 else if (!program_signals_p
1480 /* If we have no way to know which signals GDB does not
1481 want to have passed to the program, assume
1482 SIGTRAP/SIGINT, which is GDB's default. */
1483 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1484 {
1485 if (debug_threads)
1486 debug_printf ("GPS: lwp %s had signal %s, "
1487 "but we don't know if we should pass it. "
1488 "Default to not.\n",
1489 target_pid_to_str (ptid_of (thread)),
1490 gdb_signal_to_string (signo));
1491 return 0;
1492 }
1493 else
1494 {
1495 if (debug_threads)
1496 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1497 target_pid_to_str (ptid_of (thread)),
1498 gdb_signal_to_string (signo));
1499
1500 return WSTOPSIG (status);
1501 }
1502 }
1503
1504 /* Detach from LWP. */
1505
1506 static void
1507 linux_detach_one_lwp (struct lwp_info *lwp)
1508 {
1509 struct thread_info *thread = get_lwp_thread (lwp);
1510 int sig;
1511 int lwpid;
1512
1513 /* If there is a pending SIGSTOP, get rid of it. */
1514 if (lwp->stop_expected)
1515 {
1516 if (debug_threads)
1517 debug_printf ("Sending SIGCONT to %s\n",
1518 target_pid_to_str (ptid_of (thread)));
1519
1520 kill_lwp (lwpid_of (thread), SIGCONT);
1521 lwp->stop_expected = 0;
1522 }
1523
1524 /* Pass on any pending signal for this thread. */
1525 sig = get_detach_signal (thread);
1526
1527 /* Preparing to resume may try to write registers, and fail if the
1528 lwp is zombie. If that happens, ignore the error. We'll handle
1529 it below, when detach fails with ESRCH. */
1530 TRY
1531 {
1532 /* Flush any pending changes to the process's registers. */
1533 regcache_invalidate_thread (thread);
1534
1535 /* Finally, let it resume. */
1536 if (the_low_target.prepare_to_resume != NULL)
1537 the_low_target.prepare_to_resume (lwp);
1538 }
1539 CATCH (ex, RETURN_MASK_ERROR)
1540 {
1541 if (!check_ptrace_stopped_lwp_gone (lwp))
1542 throw_exception (ex);
1543 }
1544 END_CATCH
1545
1546 lwpid = lwpid_of (thread);
1547 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1548 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1549 {
1550 int save_errno = errno;
1551
1552 /* We know the thread exists, so ESRCH must mean the lwp is
1553 zombie. This can happen if one of the already-detached
1554 threads exits the whole thread group. In that case we're
1555 still attached, and must reap the lwp. */
1556 if (save_errno == ESRCH)
1557 {
1558 int ret, status;
1559
1560 ret = my_waitpid (lwpid, &status, __WALL);
1561 if (ret == -1)
1562 {
1563 warning (_("Couldn't reap LWP %d while detaching: %s"),
1564 lwpid, strerror (errno));
1565 }
1566 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1567 {
1568 warning (_("Reaping LWP %d while detaching "
1569 "returned unexpected status 0x%x"),
1570 lwpid, status);
1571 }
1572 }
1573 else
1574 {
1575 error (_("Can't detach %s: %s"),
1576 target_pid_to_str (ptid_of (thread)),
1577 strerror (save_errno));
1578 }
1579 }
1580 else if (debug_threads)
1581 {
1582 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1583 target_pid_to_str (ptid_of (thread)),
1584 strsignal (sig));
1585 }
1586
1587 delete_lwp (lwp);
1588 }
1589
1590 /* Callback for for_each_thread. Detaches from non-leader threads of a
1591 given process. */
1592
1593 static void
1594 linux_detach_lwp_callback (thread_info *thread)
1595 {
1596 /* We don't actually detach from the thread group leader just yet.
1597 If the thread group exits, we must reap the zombie clone lwps
1598 before we're able to reap the leader. */
1599 if (thread->id.pid () == thread->id.lwp ())
1600 return;
1601
1602 lwp_info *lwp = get_thread_lwp (thread);
1603 linux_detach_one_lwp (lwp);
1604 }
1605
1606 static int
1607 linux_detach (int pid)
1608 {
1609 struct process_info *process;
1610 struct lwp_info *main_lwp;
1611
1612 process = find_process_pid (pid);
1613 if (process == NULL)
1614 return -1;
1615
1616 /* As there's a step over already in progress, let it finish first,
1617 otherwise nesting a stabilize_threads operation on top gets real
1618 messy. */
1619 complete_ongoing_step_over ();
1620
1621 /* Stop all threads before detaching. First, ptrace requires that
1622 the thread is stopped to sucessfully detach. Second, thread_db
1623 may need to uninstall thread event breakpoints from memory, which
1624 only works with a stopped process anyway. */
1625 stop_all_lwps (0, NULL);
1626
1627 #ifdef USE_THREAD_DB
1628 thread_db_detach (process);
1629 #endif
1630
1631 /* Stabilize threads (move out of jump pads). */
1632 stabilize_threads ();
1633
1634 /* Detach from the clone lwps first. If the thread group exits just
1635 while we're detaching, we must reap the clone lwps before we're
1636 able to reap the leader. */
1637 for_each_thread (pid, linux_detach_lwp_callback);
1638
1639 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1640 linux_detach_one_lwp (main_lwp);
1641
1642 the_target->mourn (process);
1643
1644 /* Since we presently can only stop all lwps of all processes, we
1645 need to unstop lwps of other processes. */
1646 unstop_all_lwps (0, NULL);
1647 return 0;
1648 }
1649
1650 /* Remove all LWPs that belong to process PROC from the lwp list. */
1651
1652 static void
1653 linux_mourn (struct process_info *process)
1654 {
1655 struct process_info_private *priv;
1656
1657 #ifdef USE_THREAD_DB
1658 thread_db_mourn (process);
1659 #endif
1660
1661 for_each_thread (process->pid, [] (thread_info *thread)
1662 {
1663 delete_lwp (get_thread_lwp (thread));
1664 });
1665
1666 /* Freeing all private data. */
1667 priv = process->priv;
1668 if (the_low_target.delete_process != NULL)
1669 the_low_target.delete_process (priv->arch_private);
1670 else
1671 gdb_assert (priv->arch_private == NULL);
1672 free (priv);
1673 process->priv = NULL;
1674
1675 remove_process (process);
1676 }
1677
1678 static void
1679 linux_join (int pid)
1680 {
1681 int status, ret;
1682
1683 do {
1684 ret = my_waitpid (pid, &status, 0);
1685 if (WIFEXITED (status) || WIFSIGNALED (status))
1686 break;
1687 } while (ret != -1 || errno != ECHILD);
1688 }
1689
1690 /* Return nonzero if the given thread is still alive. */
1691 static int
1692 linux_thread_alive (ptid_t ptid)
1693 {
1694 struct lwp_info *lwp = find_lwp_pid (ptid);
1695
1696 /* We assume we always know if a thread exits. If a whole process
1697 exited but we still haven't been able to report it to GDB, we'll
1698 hold on to the last lwp of the dead process. */
1699 if (lwp != NULL)
1700 return !lwp_is_marked_dead (lwp);
1701 else
1702 return 0;
1703 }
1704
1705 /* Return 1 if this lwp still has an interesting status pending. If
1706 not (e.g., it had stopped for a breakpoint that is gone), return
1707 false. */
1708
1709 static int
1710 thread_still_has_status_pending_p (struct thread_info *thread)
1711 {
1712 struct lwp_info *lp = get_thread_lwp (thread);
1713
1714 if (!lp->status_pending_p)
1715 return 0;
1716
1717 if (thread->last_resume_kind != resume_stop
1718 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1719 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1720 {
1721 struct thread_info *saved_thread;
1722 CORE_ADDR pc;
1723 int discard = 0;
1724
1725 gdb_assert (lp->last_status != 0);
1726
1727 pc = get_pc (lp);
1728
1729 saved_thread = current_thread;
1730 current_thread = thread;
1731
1732 if (pc != lp->stop_pc)
1733 {
1734 if (debug_threads)
1735 debug_printf ("PC of %ld changed\n",
1736 lwpid_of (thread));
1737 discard = 1;
1738 }
1739
1740 #if !USE_SIGTRAP_SIGINFO
1741 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1742 && !(*the_low_target.breakpoint_at) (pc))
1743 {
1744 if (debug_threads)
1745 debug_printf ("previous SW breakpoint of %ld gone\n",
1746 lwpid_of (thread));
1747 discard = 1;
1748 }
1749 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1750 && !hardware_breakpoint_inserted_here (pc))
1751 {
1752 if (debug_threads)
1753 debug_printf ("previous HW breakpoint of %ld gone\n",
1754 lwpid_of (thread));
1755 discard = 1;
1756 }
1757 #endif
1758
1759 current_thread = saved_thread;
1760
1761 if (discard)
1762 {
1763 if (debug_threads)
1764 debug_printf ("discarding pending breakpoint status\n");
1765 lp->status_pending_p = 0;
1766 return 0;
1767 }
1768 }
1769
1770 return 1;
1771 }
1772
1773 /* Returns true if LWP is resumed from the client's perspective. */
1774
1775 static int
1776 lwp_resumed (struct lwp_info *lwp)
1777 {
1778 struct thread_info *thread = get_lwp_thread (lwp);
1779
1780 if (thread->last_resume_kind != resume_stop)
1781 return 1;
1782
1783 /* Did gdb send us a `vCont;t', but we haven't reported the
1784 corresponding stop to gdb yet? If so, the thread is still
1785 resumed/running from gdb's perspective. */
1786 if (thread->last_resume_kind == resume_stop
1787 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1788 return 1;
1789
1790 return 0;
1791 }
1792
1793 /* Return true if this lwp has an interesting status pending. */
1794 static bool
1795 status_pending_p_callback (thread_info *thread, ptid_t ptid)
1796 {
1797 struct lwp_info *lp = get_thread_lwp (thread);
1798
1799 /* Check if we're only interested in events from a specific process
1800 or a specific LWP. */
1801 if (!thread->id.matches (ptid))
1802 return 0;
1803
1804 if (!lwp_resumed (lp))
1805 return 0;
1806
1807 if (lp->status_pending_p
1808 && !thread_still_has_status_pending_p (thread))
1809 {
1810 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1811 return 0;
1812 }
1813
1814 return lp->status_pending_p;
1815 }
1816
1817 struct lwp_info *
1818 find_lwp_pid (ptid_t ptid)
1819 {
1820 thread_info *thread = find_thread ([&] (thread_info *thread)
1821 {
1822 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1823 return thread->id.lwp () == lwp;
1824 });
1825
1826 if (thread == NULL)
1827 return NULL;
1828
1829 return get_thread_lwp (thread);
1830 }
1831
1832 /* Return the number of known LWPs in the tgid given by PID. */
1833
1834 static int
1835 num_lwps (int pid)
1836 {
1837 int count = 0;
1838
1839 for_each_thread (pid, [&] (thread_info *thread)
1840 {
1841 count++;
1842 });
1843
1844 return count;
1845 }
1846
1847 /* See nat/linux-nat.h. */
1848
1849 struct lwp_info *
1850 iterate_over_lwps (ptid_t filter,
1851 iterate_over_lwps_ftype callback,
1852 void *data)
1853 {
1854 thread_info *thread = find_thread (filter, [&] (thread_info *thread)
1855 {
1856 lwp_info *lwp = get_thread_lwp (thread);
1857
1858 return callback (lwp, data);
1859 });
1860
1861 if (thread == NULL)
1862 return NULL;
1863
1864 return get_thread_lwp (thread);
1865 }
1866
1867 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1868 their exits until all other threads in the group have exited. */
1869
1870 static void
1871 check_zombie_leaders (void)
1872 {
1873 for_each_process ([] (process_info *proc) {
1874 pid_t leader_pid = pid_of (proc);
1875 struct lwp_info *leader_lp;
1876
1877 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1878
1879 if (debug_threads)
1880 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1881 "num_lwps=%d, zombie=%d\n",
1882 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1883 linux_proc_pid_is_zombie (leader_pid));
1884
1885 if (leader_lp != NULL && !leader_lp->stopped
1886 /* Check if there are other threads in the group, as we may
1887 have raced with the inferior simply exiting. */
1888 && !last_thread_of_process_p (leader_pid)
1889 && linux_proc_pid_is_zombie (leader_pid))
1890 {
1891 /* A leader zombie can mean one of two things:
1892
1893 - It exited, and there's an exit status pending
1894 available, or only the leader exited (not the whole
1895 program). In the latter case, we can't waitpid the
1896 leader's exit status until all other threads are gone.
1897
1898 - There are 3 or more threads in the group, and a thread
1899 other than the leader exec'd. On an exec, the Linux
1900 kernel destroys all other threads (except the execing
1901 one) in the thread group, and resets the execing thread's
1902 tid to the tgid. No exit notification is sent for the
1903 execing thread -- from the ptracer's perspective, it
1904 appears as though the execing thread just vanishes.
1905 Until we reap all other threads except the leader and the
1906 execing thread, the leader will be zombie, and the
1907 execing thread will be in `D (disc sleep)'. As soon as
1908 all other threads are reaped, the execing thread changes
1909 it's tid to the tgid, and the previous (zombie) leader
1910 vanishes, giving place to the "new" leader. We could try
1911 distinguishing the exit and exec cases, by waiting once
1912 more, and seeing if something comes out, but it doesn't
1913 sound useful. The previous leader _does_ go away, and
1914 we'll re-add the new one once we see the exec event
1915 (which is just the same as what would happen if the
1916 previous leader did exit voluntarily before some other
1917 thread execs). */
1918
1919 if (debug_threads)
1920 debug_printf ("CZL: Thread group leader %d zombie "
1921 "(it exited, or another thread execd).\n",
1922 leader_pid);
1923
1924 delete_lwp (leader_lp);
1925 }
1926 });
1927 }
1928
1929 /* Callback for `find_thread'. Returns the first LWP that is not
1930 stopped. */
1931
1932 static bool
1933 not_stopped_callback (thread_info *thread, ptid_t filter)
1934 {
1935 if (!thread->id.matches (filter))
1936 return false;
1937
1938 lwp_info *lwp = get_thread_lwp (thread);
1939
1940 return !lwp->stopped;
1941 }
1942
1943 /* Increment LWP's suspend count. */
1944
1945 static void
1946 lwp_suspended_inc (struct lwp_info *lwp)
1947 {
1948 lwp->suspended++;
1949
1950 if (debug_threads && lwp->suspended > 4)
1951 {
1952 struct thread_info *thread = get_lwp_thread (lwp);
1953
1954 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1955 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1956 }
1957 }
1958
1959 /* Decrement LWP's suspend count. */
1960
1961 static void
1962 lwp_suspended_decr (struct lwp_info *lwp)
1963 {
1964 lwp->suspended--;
1965
1966 if (lwp->suspended < 0)
1967 {
1968 struct thread_info *thread = get_lwp_thread (lwp);
1969
1970 internal_error (__FILE__, __LINE__,
1971 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1972 lwp->suspended);
1973 }
1974 }
1975
1976 /* This function should only be called if the LWP got a SIGTRAP.
1977
1978 Handle any tracepoint steps or hits. Return true if a tracepoint
1979 event was handled, 0 otherwise. */
1980
1981 static int
1982 handle_tracepoints (struct lwp_info *lwp)
1983 {
1984 struct thread_info *tinfo = get_lwp_thread (lwp);
1985 int tpoint_related_event = 0;
1986
1987 gdb_assert (lwp->suspended == 0);
1988
1989 /* If this tracepoint hit causes a tracing stop, we'll immediately
1990 uninsert tracepoints. To do this, we temporarily pause all
1991 threads, unpatch away, and then unpause threads. We need to make
1992 sure the unpausing doesn't resume LWP too. */
1993 lwp_suspended_inc (lwp);
1994
1995 /* And we need to be sure that any all-threads-stopping doesn't try
1996 to move threads out of the jump pads, as it could deadlock the
1997 inferior (LWP could be in the jump pad, maybe even holding the
1998 lock.) */
1999
2000 /* Do any necessary step collect actions. */
2001 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2002
2003 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2004
2005 /* See if we just hit a tracepoint and do its main collect
2006 actions. */
2007 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2008
2009 lwp_suspended_decr (lwp);
2010
2011 gdb_assert (lwp->suspended == 0);
2012 gdb_assert (!stabilizing_threads
2013 || (lwp->collecting_fast_tracepoint
2014 != fast_tpoint_collect_result::not_collecting));
2015
2016 if (tpoint_related_event)
2017 {
2018 if (debug_threads)
2019 debug_printf ("got a tracepoint event\n");
2020 return 1;
2021 }
2022
2023 return 0;
2024 }
2025
2026 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2027 collection status. */
2028
2029 static fast_tpoint_collect_result
2030 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2031 struct fast_tpoint_collect_status *status)
2032 {
2033 CORE_ADDR thread_area;
2034 struct thread_info *thread = get_lwp_thread (lwp);
2035
2036 if (the_low_target.get_thread_area == NULL)
2037 return fast_tpoint_collect_result::not_collecting;
2038
2039 /* Get the thread area address. This is used to recognize which
2040 thread is which when tracing with the in-process agent library.
2041 We don't read anything from the address, and treat it as opaque;
2042 it's the address itself that we assume is unique per-thread. */
2043 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2044 return fast_tpoint_collect_result::not_collecting;
2045
2046 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2047 }
2048
2049 /* The reason we resume in the caller, is because we want to be able
2050 to pass lwp->status_pending as WSTAT, and we need to clear
2051 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2052 refuses to resume. */
2053
2054 static int
2055 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2056 {
2057 struct thread_info *saved_thread;
2058
2059 saved_thread = current_thread;
2060 current_thread = get_lwp_thread (lwp);
2061
2062 if ((wstat == NULL
2063 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2064 && supports_fast_tracepoints ()
2065 && agent_loaded_p ())
2066 {
2067 struct fast_tpoint_collect_status status;
2068
2069 if (debug_threads)
2070 debug_printf ("Checking whether LWP %ld needs to move out of the "
2071 "jump pad.\n",
2072 lwpid_of (current_thread));
2073
2074 fast_tpoint_collect_result r
2075 = linux_fast_tracepoint_collecting (lwp, &status);
2076
2077 if (wstat == NULL
2078 || (WSTOPSIG (*wstat) != SIGILL
2079 && WSTOPSIG (*wstat) != SIGFPE
2080 && WSTOPSIG (*wstat) != SIGSEGV
2081 && WSTOPSIG (*wstat) != SIGBUS))
2082 {
2083 lwp->collecting_fast_tracepoint = r;
2084
2085 if (r != fast_tpoint_collect_result::not_collecting)
2086 {
2087 if (r == fast_tpoint_collect_result::before_insn
2088 && lwp->exit_jump_pad_bkpt == NULL)
2089 {
2090 /* Haven't executed the original instruction yet.
2091 Set breakpoint there, and wait till it's hit,
2092 then single-step until exiting the jump pad. */
2093 lwp->exit_jump_pad_bkpt
2094 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2095 }
2096
2097 if (debug_threads)
2098 debug_printf ("Checking whether LWP %ld needs to move out of "
2099 "the jump pad...it does\n",
2100 lwpid_of (current_thread));
2101 current_thread = saved_thread;
2102
2103 return 1;
2104 }
2105 }
2106 else
2107 {
2108 /* If we get a synchronous signal while collecting, *and*
2109 while executing the (relocated) original instruction,
2110 reset the PC to point at the tpoint address, before
2111 reporting to GDB. Otherwise, it's an IPA lib bug: just
2112 report the signal to GDB, and pray for the best. */
2113
2114 lwp->collecting_fast_tracepoint
2115 = fast_tpoint_collect_result::not_collecting;
2116
2117 if (r != fast_tpoint_collect_result::not_collecting
2118 && (status.adjusted_insn_addr <= lwp->stop_pc
2119 && lwp->stop_pc < status.adjusted_insn_addr_end))
2120 {
2121 siginfo_t info;
2122 struct regcache *regcache;
2123
2124 /* The si_addr on a few signals references the address
2125 of the faulting instruction. Adjust that as
2126 well. */
2127 if ((WSTOPSIG (*wstat) == SIGILL
2128 || WSTOPSIG (*wstat) == SIGFPE
2129 || WSTOPSIG (*wstat) == SIGBUS
2130 || WSTOPSIG (*wstat) == SIGSEGV)
2131 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2132 (PTRACE_TYPE_ARG3) 0, &info) == 0
2133 /* Final check just to make sure we don't clobber
2134 the siginfo of non-kernel-sent signals. */
2135 && (uintptr_t) info.si_addr == lwp->stop_pc)
2136 {
2137 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2138 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2139 (PTRACE_TYPE_ARG3) 0, &info);
2140 }
2141
2142 regcache = get_thread_regcache (current_thread, 1);
2143 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2144 lwp->stop_pc = status.tpoint_addr;
2145
2146 /* Cancel any fast tracepoint lock this thread was
2147 holding. */
2148 force_unlock_trace_buffer ();
2149 }
2150
2151 if (lwp->exit_jump_pad_bkpt != NULL)
2152 {
2153 if (debug_threads)
2154 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2155 "stopping all threads momentarily.\n");
2156
2157 stop_all_lwps (1, lwp);
2158
2159 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2160 lwp->exit_jump_pad_bkpt = NULL;
2161
2162 unstop_all_lwps (1, lwp);
2163
2164 gdb_assert (lwp->suspended >= 0);
2165 }
2166 }
2167 }
2168
2169 if (debug_threads)
2170 debug_printf ("Checking whether LWP %ld needs to move out of the "
2171 "jump pad...no\n",
2172 lwpid_of (current_thread));
2173
2174 current_thread = saved_thread;
2175 return 0;
2176 }
2177
2178 /* Enqueue one signal in the "signals to report later when out of the
2179 jump pad" list. */
2180
2181 static void
2182 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2183 {
2184 struct pending_signals *p_sig;
2185 struct thread_info *thread = get_lwp_thread (lwp);
2186
2187 if (debug_threads)
2188 debug_printf ("Deferring signal %d for LWP %ld.\n",
2189 WSTOPSIG (*wstat), lwpid_of (thread));
2190
2191 if (debug_threads)
2192 {
2193 struct pending_signals *sig;
2194
2195 for (sig = lwp->pending_signals_to_report;
2196 sig != NULL;
2197 sig = sig->prev)
2198 debug_printf (" Already queued %d\n",
2199 sig->signal);
2200
2201 debug_printf (" (no more currently queued signals)\n");
2202 }
2203
2204 /* Don't enqueue non-RT signals if they are already in the deferred
2205 queue. (SIGSTOP being the easiest signal to see ending up here
2206 twice) */
2207 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2208 {
2209 struct pending_signals *sig;
2210
2211 for (sig = lwp->pending_signals_to_report;
2212 sig != NULL;
2213 sig = sig->prev)
2214 {
2215 if (sig->signal == WSTOPSIG (*wstat))
2216 {
2217 if (debug_threads)
2218 debug_printf ("Not requeuing already queued non-RT signal %d"
2219 " for LWP %ld\n",
2220 sig->signal,
2221 lwpid_of (thread));
2222 return;
2223 }
2224 }
2225 }
2226
2227 p_sig = XCNEW (struct pending_signals);
2228 p_sig->prev = lwp->pending_signals_to_report;
2229 p_sig->signal = WSTOPSIG (*wstat);
2230
2231 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2232 &p_sig->info);
2233
2234 lwp->pending_signals_to_report = p_sig;
2235 }
2236
2237 /* Dequeue one signal from the "signals to report later when out of
2238 the jump pad" list. */
2239
2240 static int
2241 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2242 {
2243 struct thread_info *thread = get_lwp_thread (lwp);
2244
2245 if (lwp->pending_signals_to_report != NULL)
2246 {
2247 struct pending_signals **p_sig;
2248
2249 p_sig = &lwp->pending_signals_to_report;
2250 while ((*p_sig)->prev != NULL)
2251 p_sig = &(*p_sig)->prev;
2252
2253 *wstat = W_STOPCODE ((*p_sig)->signal);
2254 if ((*p_sig)->info.si_signo != 0)
2255 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2256 &(*p_sig)->info);
2257 free (*p_sig);
2258 *p_sig = NULL;
2259
2260 if (debug_threads)
2261 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2262 WSTOPSIG (*wstat), lwpid_of (thread));
2263
2264 if (debug_threads)
2265 {
2266 struct pending_signals *sig;
2267
2268 for (sig = lwp->pending_signals_to_report;
2269 sig != NULL;
2270 sig = sig->prev)
2271 debug_printf (" Still queued %d\n",
2272 sig->signal);
2273
2274 debug_printf (" (no more queued signals)\n");
2275 }
2276
2277 return 1;
2278 }
2279
2280 return 0;
2281 }
2282
2283 /* Fetch the possibly triggered data watchpoint info and store it in
2284 CHILD.
2285
2286 On some archs, like x86, that use debug registers to set
2287 watchpoints, it's possible that the way to know which watched
2288 address trapped, is to check the register that is used to select
2289 which address to watch. Problem is, between setting the watchpoint
2290 and reading back which data address trapped, the user may change
2291 the set of watchpoints, and, as a consequence, GDB changes the
2292 debug registers in the inferior. To avoid reading back a stale
2293 stopped-data-address when that happens, we cache in LP the fact
2294 that a watchpoint trapped, and the corresponding data address, as
2295 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2296 registers meanwhile, we have the cached data we can rely on. */
2297
2298 static int
2299 check_stopped_by_watchpoint (struct lwp_info *child)
2300 {
2301 if (the_low_target.stopped_by_watchpoint != NULL)
2302 {
2303 struct thread_info *saved_thread;
2304
2305 saved_thread = current_thread;
2306 current_thread = get_lwp_thread (child);
2307
2308 if (the_low_target.stopped_by_watchpoint ())
2309 {
2310 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2311
2312 if (the_low_target.stopped_data_address != NULL)
2313 child->stopped_data_address
2314 = the_low_target.stopped_data_address ();
2315 else
2316 child->stopped_data_address = 0;
2317 }
2318
2319 current_thread = saved_thread;
2320 }
2321
2322 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2323 }
2324
2325 /* Return the ptrace options that we want to try to enable. */
2326
2327 static int
2328 linux_low_ptrace_options (int attached)
2329 {
2330 int options = 0;
2331
2332 if (!attached)
2333 options |= PTRACE_O_EXITKILL;
2334
2335 if (report_fork_events)
2336 options |= PTRACE_O_TRACEFORK;
2337
2338 if (report_vfork_events)
2339 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2340
2341 if (report_exec_events)
2342 options |= PTRACE_O_TRACEEXEC;
2343
2344 options |= PTRACE_O_TRACESYSGOOD;
2345
2346 return options;
2347 }
2348
2349 /* Do low-level handling of the event, and check if we should go on
2350 and pass it to caller code. Return the affected lwp if we are, or
2351 NULL otherwise. */
2352
2353 static struct lwp_info *
2354 linux_low_filter_event (int lwpid, int wstat)
2355 {
2356 struct lwp_info *child;
2357 struct thread_info *thread;
2358 int have_stop_pc = 0;
2359
2360 child = find_lwp_pid (pid_to_ptid (lwpid));
2361
2362 /* Check for stop events reported by a process we didn't already
2363 know about - anything not already in our LWP list.
2364
2365 If we're expecting to receive stopped processes after
2366 fork, vfork, and clone events, then we'll just add the
2367 new one to our list and go back to waiting for the event
2368 to be reported - the stopped process might be returned
2369 from waitpid before or after the event is.
2370
2371 But note the case of a non-leader thread exec'ing after the
2372 leader having exited, and gone from our lists (because
2373 check_zombie_leaders deleted it). The non-leader thread
2374 changes its tid to the tgid. */
2375
2376 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2377 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2378 {
2379 ptid_t child_ptid;
2380
2381 /* A multi-thread exec after we had seen the leader exiting. */
2382 if (debug_threads)
2383 {
2384 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2385 "after exec.\n", lwpid);
2386 }
2387
2388 child_ptid = ptid_build (lwpid, lwpid, 0);
2389 child = add_lwp (child_ptid);
2390 child->stopped = 1;
2391 current_thread = child->thread;
2392 }
2393
2394 /* If we didn't find a process, one of two things presumably happened:
2395 - A process we started and then detached from has exited. Ignore it.
2396 - A process we are controlling has forked and the new child's stop
2397 was reported to us by the kernel. Save its PID. */
2398 if (child == NULL && WIFSTOPPED (wstat))
2399 {
2400 add_to_pid_list (&stopped_pids, lwpid, wstat);
2401 return NULL;
2402 }
2403 else if (child == NULL)
2404 return NULL;
2405
2406 thread = get_lwp_thread (child);
2407
2408 child->stopped = 1;
2409
2410 child->last_status = wstat;
2411
2412 /* Check if the thread has exited. */
2413 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2414 {
2415 if (debug_threads)
2416 debug_printf ("LLFE: %d exited.\n", lwpid);
2417
2418 if (finish_step_over (child))
2419 {
2420 /* Unsuspend all other LWPs, and set them back running again. */
2421 unsuspend_all_lwps (child);
2422 }
2423
2424 /* If there is at least one more LWP, then the exit signal was
2425 not the end of the debugged application and should be
2426 ignored, unless GDB wants to hear about thread exits. */
2427 if (report_thread_events
2428 || last_thread_of_process_p (pid_of (thread)))
2429 {
2430 /* Since events are serialized to GDB core, and we can't
2431 report this one right now. Leave the status pending for
2432 the next time we're able to report it. */
2433 mark_lwp_dead (child, wstat);
2434 return child;
2435 }
2436 else
2437 {
2438 delete_lwp (child);
2439 return NULL;
2440 }
2441 }
2442
2443 gdb_assert (WIFSTOPPED (wstat));
2444
2445 if (WIFSTOPPED (wstat))
2446 {
2447 struct process_info *proc;
2448
2449 /* Architecture-specific setup after inferior is running. */
2450 proc = find_process_pid (pid_of (thread));
2451 if (proc->tdesc == NULL)
2452 {
2453 if (proc->attached)
2454 {
2455 /* This needs to happen after we have attached to the
2456 inferior and it is stopped for the first time, but
2457 before we access any inferior registers. */
2458 linux_arch_setup_thread (thread);
2459 }
2460 else
2461 {
2462 /* The process is started, but GDBserver will do
2463 architecture-specific setup after the program stops at
2464 the first instruction. */
2465 child->status_pending_p = 1;
2466 child->status_pending = wstat;
2467 return child;
2468 }
2469 }
2470 }
2471
2472 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2473 {
2474 struct process_info *proc = find_process_pid (pid_of (thread));
2475 int options = linux_low_ptrace_options (proc->attached);
2476
2477 linux_enable_event_reporting (lwpid, options);
2478 child->must_set_ptrace_flags = 0;
2479 }
2480
2481 /* Always update syscall_state, even if it will be filtered later. */
2482 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2483 {
2484 child->syscall_state
2485 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2486 ? TARGET_WAITKIND_SYSCALL_RETURN
2487 : TARGET_WAITKIND_SYSCALL_ENTRY);
2488 }
2489 else
2490 {
2491 /* Almost all other ptrace-stops are known to be outside of system
2492 calls, with further exceptions in handle_extended_wait. */
2493 child->syscall_state = TARGET_WAITKIND_IGNORE;
2494 }
2495
2496 /* Be careful to not overwrite stop_pc until save_stop_reason is
2497 called. */
2498 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2499 && linux_is_extended_waitstatus (wstat))
2500 {
2501 child->stop_pc = get_pc (child);
2502 if (handle_extended_wait (&child, wstat))
2503 {
2504 /* The event has been handled, so just return without
2505 reporting it. */
2506 return NULL;
2507 }
2508 }
2509
2510 if (linux_wstatus_maybe_breakpoint (wstat))
2511 {
2512 if (save_stop_reason (child))
2513 have_stop_pc = 1;
2514 }
2515
2516 if (!have_stop_pc)
2517 child->stop_pc = get_pc (child);
2518
2519 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2520 && child->stop_expected)
2521 {
2522 if (debug_threads)
2523 debug_printf ("Expected stop.\n");
2524 child->stop_expected = 0;
2525
2526 if (thread->last_resume_kind == resume_stop)
2527 {
2528 /* We want to report the stop to the core. Treat the
2529 SIGSTOP as a normal event. */
2530 if (debug_threads)
2531 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2532 target_pid_to_str (ptid_of (thread)));
2533 }
2534 else if (stopping_threads != NOT_STOPPING_THREADS)
2535 {
2536 /* Stopping threads. We don't want this SIGSTOP to end up
2537 pending. */
2538 if (debug_threads)
2539 debug_printf ("LLW: SIGSTOP caught for %s "
2540 "while stopping threads.\n",
2541 target_pid_to_str (ptid_of (thread)));
2542 return NULL;
2543 }
2544 else
2545 {
2546 /* This is a delayed SIGSTOP. Filter out the event. */
2547 if (debug_threads)
2548 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2549 child->stepping ? "step" : "continue",
2550 target_pid_to_str (ptid_of (thread)));
2551
2552 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2553 return NULL;
2554 }
2555 }
2556
2557 child->status_pending_p = 1;
2558 child->status_pending = wstat;
2559 return child;
2560 }
2561
2562 /* Return true if THREAD is doing hardware single step. */
2563
2564 static int
2565 maybe_hw_step (struct thread_info *thread)
2566 {
2567 if (can_hardware_single_step ())
2568 return 1;
2569 else
2570 {
2571 /* GDBserver must insert single-step breakpoint for software
2572 single step. */
2573 gdb_assert (has_single_step_breakpoints (thread));
2574 return 0;
2575 }
2576 }
2577
2578 /* Resume LWPs that are currently stopped without any pending status
2579 to report, but are resumed from the core's perspective. */
2580
2581 static void
2582 resume_stopped_resumed_lwps (thread_info *thread)
2583 {
2584 struct lwp_info *lp = get_thread_lwp (thread);
2585
2586 if (lp->stopped
2587 && !lp->suspended
2588 && !lp->status_pending_p
2589 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2590 {
2591 int step = 0;
2592
2593 if (thread->last_resume_kind == resume_step)
2594 step = maybe_hw_step (thread);
2595
2596 if (debug_threads)
2597 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2598 target_pid_to_str (ptid_of (thread)),
2599 paddress (lp->stop_pc),
2600 step);
2601
2602 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2603 }
2604 }
2605
2606 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2607 match FILTER_PTID (leaving others pending). The PTIDs can be:
2608 minus_one_ptid, to specify any child; a pid PTID, specifying all
2609 lwps of a thread group; or a PTID representing a single lwp. Store
2610 the stop status through the status pointer WSTAT. OPTIONS is
2611 passed to the waitpid call. Return 0 if no event was found and
2612 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2613 was found. Return the PID of the stopped child otherwise. */
2614
2615 static int
2616 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2617 int *wstatp, int options)
2618 {
2619 struct thread_info *event_thread;
2620 struct lwp_info *event_child, *requested_child;
2621 sigset_t block_mask, prev_mask;
2622
2623 retry:
2624 /* N.B. event_thread points to the thread_info struct that contains
2625 event_child. Keep them in sync. */
2626 event_thread = NULL;
2627 event_child = NULL;
2628 requested_child = NULL;
2629
2630 /* Check for a lwp with a pending status. */
2631
2632 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2633 {
2634 event_thread = find_thread_in_random ([&] (thread_info *thread)
2635 {
2636 return status_pending_p_callback (thread, filter_ptid);
2637 });
2638
2639 if (event_thread != NULL)
2640 event_child = get_thread_lwp (event_thread);
2641 if (debug_threads && event_thread)
2642 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2643 }
2644 else if (!ptid_equal (filter_ptid, null_ptid))
2645 {
2646 requested_child = find_lwp_pid (filter_ptid);
2647
2648 if (stopping_threads == NOT_STOPPING_THREADS
2649 && requested_child->status_pending_p
2650 && (requested_child->collecting_fast_tracepoint
2651 != fast_tpoint_collect_result::not_collecting))
2652 {
2653 enqueue_one_deferred_signal (requested_child,
2654 &requested_child->status_pending);
2655 requested_child->status_pending_p = 0;
2656 requested_child->status_pending = 0;
2657 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2658 }
2659
2660 if (requested_child->suspended
2661 && requested_child->status_pending_p)
2662 {
2663 internal_error (__FILE__, __LINE__,
2664 "requesting an event out of a"
2665 " suspended child?");
2666 }
2667
2668 if (requested_child->status_pending_p)
2669 {
2670 event_child = requested_child;
2671 event_thread = get_lwp_thread (event_child);
2672 }
2673 }
2674
2675 if (event_child != NULL)
2676 {
2677 if (debug_threads)
2678 debug_printf ("Got an event from pending child %ld (%04x)\n",
2679 lwpid_of (event_thread), event_child->status_pending);
2680 *wstatp = event_child->status_pending;
2681 event_child->status_pending_p = 0;
2682 event_child->status_pending = 0;
2683 current_thread = event_thread;
2684 return lwpid_of (event_thread);
2685 }
2686
2687 /* But if we don't find a pending event, we'll have to wait.
2688
2689 We only enter this loop if no process has a pending wait status.
2690 Thus any action taken in response to a wait status inside this
2691 loop is responding as soon as we detect the status, not after any
2692 pending events. */
2693
2694 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2695 all signals while here. */
2696 sigfillset (&block_mask);
2697 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2698
2699 /* Always pull all events out of the kernel. We'll randomly select
2700 an event LWP out of all that have events, to prevent
2701 starvation. */
2702 while (event_child == NULL)
2703 {
2704 pid_t ret = 0;
2705
2706 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2707 quirks:
2708
2709 - If the thread group leader exits while other threads in the
2710 thread group still exist, waitpid(TGID, ...) hangs. That
2711 waitpid won't return an exit status until the other threads
2712 in the group are reaped.
2713
2714 - When a non-leader thread execs, that thread just vanishes
2715 without reporting an exit (so we'd hang if we waited for it
2716 explicitly in that case). The exec event is reported to
2717 the TGID pid. */
2718 errno = 0;
2719 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2720
2721 if (debug_threads)
2722 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2723 ret, errno ? strerror (errno) : "ERRNO-OK");
2724
2725 if (ret > 0)
2726 {
2727 if (debug_threads)
2728 {
2729 debug_printf ("LLW: waitpid %ld received %s\n",
2730 (long) ret, status_to_str (*wstatp));
2731 }
2732
2733 /* Filter all events. IOW, leave all events pending. We'll
2734 randomly select an event LWP out of all that have events
2735 below. */
2736 linux_low_filter_event (ret, *wstatp);
2737 /* Retry until nothing comes out of waitpid. A single
2738 SIGCHLD can indicate more than one child stopped. */
2739 continue;
2740 }
2741
2742 /* Now that we've pulled all events out of the kernel, resume
2743 LWPs that don't have an interesting event to report. */
2744 if (stopping_threads == NOT_STOPPING_THREADS)
2745 for_each_thread (resume_stopped_resumed_lwps);
2746
2747 /* ... and find an LWP with a status to report to the core, if
2748 any. */
2749 event_thread = find_thread_in_random ([&] (thread_info *thread)
2750 {
2751 return status_pending_p_callback (thread, filter_ptid);
2752 });
2753
2754 if (event_thread != NULL)
2755 {
2756 event_child = get_thread_lwp (event_thread);
2757 *wstatp = event_child->status_pending;
2758 event_child->status_pending_p = 0;
2759 event_child->status_pending = 0;
2760 break;
2761 }
2762
2763 /* Check for zombie thread group leaders. Those can't be reaped
2764 until all other threads in the thread group are. */
2765 check_zombie_leaders ();
2766
2767 auto not_stopped = [&] (thread_info *thread)
2768 {
2769 return not_stopped_callback (thread, wait_ptid);
2770 };
2771
2772 /* If there are no resumed children left in the set of LWPs we
2773 want to wait for, bail. We can't just block in
2774 waitpid/sigsuspend, because lwps might have been left stopped
2775 in trace-stop state, and we'd be stuck forever waiting for
2776 their status to change (which would only happen if we resumed
2777 them). Even if WNOHANG is set, this return code is preferred
2778 over 0 (below), as it is more detailed. */
2779 if (find_thread (not_stopped) == NULL)
2780 {
2781 if (debug_threads)
2782 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2783 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2784 return -1;
2785 }
2786
2787 /* No interesting event to report to the caller. */
2788 if ((options & WNOHANG))
2789 {
2790 if (debug_threads)
2791 debug_printf ("WNOHANG set, no event found\n");
2792
2793 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2794 return 0;
2795 }
2796
2797 /* Block until we get an event reported with SIGCHLD. */
2798 if (debug_threads)
2799 debug_printf ("sigsuspend'ing\n");
2800
2801 sigsuspend (&prev_mask);
2802 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2803 goto retry;
2804 }
2805
2806 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2807
2808 current_thread = event_thread;
2809
2810 return lwpid_of (event_thread);
2811 }
2812
2813 /* Wait for an event from child(ren) PTID. PTIDs can be:
2814 minus_one_ptid, to specify any child; a pid PTID, specifying all
2815 lwps of a thread group; or a PTID representing a single lwp. Store
2816 the stop status through the status pointer WSTAT. OPTIONS is
2817 passed to the waitpid call. Return 0 if no event was found and
2818 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2819 was found. Return the PID of the stopped child otherwise. */
2820
2821 static int
2822 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2823 {
2824 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2825 }
2826
2827 /* Select one LWP out of those that have events pending. */
2828
2829 static void
2830 select_event_lwp (struct lwp_info **orig_lp)
2831 {
2832 int random_selector;
2833 struct thread_info *event_thread = NULL;
2834
2835 /* In all-stop, give preference to the LWP that is being
2836 single-stepped. There will be at most one, and it's the LWP that
2837 the core is most interested in. If we didn't do this, then we'd
2838 have to handle pending step SIGTRAPs somehow in case the core
2839 later continues the previously-stepped thread, otherwise we'd
2840 report the pending SIGTRAP, and the core, not having stepped the
2841 thread, wouldn't understand what the trap was for, and therefore
2842 would report it to the user as a random signal. */
2843 if (!non_stop)
2844 {
2845 event_thread = find_thread ([] (thread_info *thread)
2846 {
2847 lwp_info *lp = get_thread_lwp (thread);
2848
2849 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2850 && thread->last_resume_kind == resume_step
2851 && lp->status_pending_p);
2852 });
2853
2854 if (event_thread != NULL)
2855 {
2856 if (debug_threads)
2857 debug_printf ("SEL: Select single-step %s\n",
2858 target_pid_to_str (ptid_of (event_thread)));
2859 }
2860 }
2861 if (event_thread == NULL)
2862 {
2863 /* No single-stepping LWP. Select one at random, out of those
2864 which have had events. */
2865
2866 /* First see how many events we have. */
2867 int num_events = 0;
2868 for_each_thread ([&] (thread_info *thread)
2869 {
2870 lwp_info *lp = get_thread_lwp (thread);
2871
2872 /* Count only resumed LWPs that have an event pending. */
2873 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2874 && lp->status_pending_p)
2875 num_events++;
2876 });
2877 gdb_assert (num_events > 0);
2878
2879 /* Now randomly pick a LWP out of those that have had
2880 events. */
2881 random_selector = (int)
2882 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2883
2884 if (debug_threads && num_events > 1)
2885 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2886 num_events, random_selector);
2887
2888 event_thread = find_thread ([&] (thread_info *thread)
2889 {
2890 lwp_info *lp = get_thread_lwp (thread);
2891
2892 /* Select only resumed LWPs that have an event pending. */
2893 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2894 && lp->status_pending_p)
2895 if (random_selector-- == 0)
2896 return true;
2897
2898 return false;
2899 });
2900 }
2901
2902 if (event_thread != NULL)
2903 {
2904 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2905
2906 /* Switch the event LWP. */
2907 *orig_lp = event_lp;
2908 }
2909 }
2910
2911 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2912 NULL. */
2913
2914 static void
2915 unsuspend_all_lwps (struct lwp_info *except)
2916 {
2917 for_each_thread ([&] (thread_info *thread)
2918 {
2919 lwp_info *lwp = get_thread_lwp (thread);
2920
2921 if (lwp != except)
2922 lwp_suspended_decr (lwp);
2923 });
2924 }
2925
2926 static void move_out_of_jump_pad_callback (thread_info *thread);
2927 static bool stuck_in_jump_pad_callback (thread_info *thread);
2928 static bool lwp_running (thread_info *thread);
2929 static ptid_t linux_wait_1 (ptid_t ptid,
2930 struct target_waitstatus *ourstatus,
2931 int target_options);
2932
2933 /* Stabilize threads (move out of jump pads).
2934
2935 If a thread is midway collecting a fast tracepoint, we need to
2936 finish the collection and move it out of the jump pad before
2937 reporting the signal.
2938
2939 This avoids recursion while collecting (when a signal arrives
2940 midway, and the signal handler itself collects), which would trash
2941 the trace buffer. In case the user set a breakpoint in a signal
2942 handler, this avoids the backtrace showing the jump pad, etc..
2943 Most importantly, there are certain things we can't do safely if
2944 threads are stopped in a jump pad (or in its callee's). For
2945 example:
2946
2947 - starting a new trace run. A thread still collecting the
2948 previous run, could trash the trace buffer when resumed. The trace
2949 buffer control structures would have been reset but the thread had
2950 no way to tell. The thread could even midway memcpy'ing to the
2951 buffer, which would mean that when resumed, it would clobber the
2952 trace buffer that had been set for a new run.
2953
2954 - we can't rewrite/reuse the jump pads for new tracepoints
2955 safely. Say you do tstart while a thread is stopped midway while
2956 collecting. When the thread is later resumed, it finishes the
2957 collection, and returns to the jump pad, to execute the original
2958 instruction that was under the tracepoint jump at the time the
2959 older run had been started. If the jump pad had been rewritten
2960 since for something else in the new run, the thread would now
2961 execute the wrong / random instructions. */
2962
2963 static void
2964 linux_stabilize_threads (void)
2965 {
2966 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
2967
2968 if (thread_stuck != NULL)
2969 {
2970 if (debug_threads)
2971 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2972 lwpid_of (thread_stuck));
2973 return;
2974 }
2975
2976 thread_info *saved_thread = current_thread;
2977
2978 stabilizing_threads = 1;
2979
2980 /* Kick 'em all. */
2981 for_each_thread (move_out_of_jump_pad_callback);
2982
2983 /* Loop until all are stopped out of the jump pads. */
2984 while (find_thread (lwp_running) != NULL)
2985 {
2986 struct target_waitstatus ourstatus;
2987 struct lwp_info *lwp;
2988 int wstat;
2989
2990 /* Note that we go through the full wait even loop. While
2991 moving threads out of jump pad, we need to be able to step
2992 over internal breakpoints and such. */
2993 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2994
2995 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2996 {
2997 lwp = get_thread_lwp (current_thread);
2998
2999 /* Lock it. */
3000 lwp_suspended_inc (lwp);
3001
3002 if (ourstatus.value.sig != GDB_SIGNAL_0
3003 || current_thread->last_resume_kind == resume_stop)
3004 {
3005 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3006 enqueue_one_deferred_signal (lwp, &wstat);
3007 }
3008 }
3009 }
3010
3011 unsuspend_all_lwps (NULL);
3012
3013 stabilizing_threads = 0;
3014
3015 current_thread = saved_thread;
3016
3017 if (debug_threads)
3018 {
3019 thread_stuck = find_thread (stuck_in_jump_pad_callback);
3020
3021 if (thread_stuck != NULL)
3022 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3023 lwpid_of (thread_stuck));
3024 }
3025 }
3026
3027 /* Convenience function that is called when the kernel reports an
3028 event that is not passed out to GDB. */
3029
3030 static ptid_t
3031 ignore_event (struct target_waitstatus *ourstatus)
3032 {
3033 /* If we got an event, there may still be others, as a single
3034 SIGCHLD can indicate more than one child stopped. This forces
3035 another target_wait call. */
3036 async_file_mark ();
3037
3038 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3039 return null_ptid;
3040 }
3041
3042 /* Convenience function that is called when the kernel reports an exit
3043 event. This decides whether to report the event to GDB as a
3044 process exit event, a thread exit event, or to suppress the
3045 event. */
3046
3047 static ptid_t
3048 filter_exit_event (struct lwp_info *event_child,
3049 struct target_waitstatus *ourstatus)
3050 {
3051 struct thread_info *thread = get_lwp_thread (event_child);
3052 ptid_t ptid = ptid_of (thread);
3053
3054 if (!last_thread_of_process_p (pid_of (thread)))
3055 {
3056 if (report_thread_events)
3057 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3058 else
3059 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3060
3061 delete_lwp (event_child);
3062 }
3063 return ptid;
3064 }
3065
3066 /* Returns 1 if GDB is interested in any event_child syscalls. */
3067
3068 static int
3069 gdb_catching_syscalls_p (struct lwp_info *event_child)
3070 {
3071 struct thread_info *thread = get_lwp_thread (event_child);
3072 struct process_info *proc = get_thread_process (thread);
3073
3074 return !proc->syscalls_to_catch.empty ();
3075 }
3076
3077 /* Returns 1 if GDB is interested in the event_child syscall.
3078 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3079
3080 static int
3081 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3082 {
3083 int sysno;
3084 struct thread_info *thread = get_lwp_thread (event_child);
3085 struct process_info *proc = get_thread_process (thread);
3086
3087 if (proc->syscalls_to_catch.empty ())
3088 return 0;
3089
3090 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3091 return 1;
3092
3093 get_syscall_trapinfo (event_child, &sysno);
3094
3095 for (int iter : proc->syscalls_to_catch)
3096 if (iter == sysno)
3097 return 1;
3098
3099 return 0;
3100 }
3101
3102 /* Wait for process, returns status. */
3103
3104 static ptid_t
3105 linux_wait_1 (ptid_t ptid,
3106 struct target_waitstatus *ourstatus, int target_options)
3107 {
3108 int w;
3109 struct lwp_info *event_child;
3110 int options;
3111 int pid;
3112 int step_over_finished;
3113 int bp_explains_trap;
3114 int maybe_internal_trap;
3115 int report_to_gdb;
3116 int trace_event;
3117 int in_step_range;
3118 int any_resumed;
3119
3120 if (debug_threads)
3121 {
3122 debug_enter ();
3123 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3124 }
3125
3126 /* Translate generic target options into linux options. */
3127 options = __WALL;
3128 if (target_options & TARGET_WNOHANG)
3129 options |= WNOHANG;
3130
3131 bp_explains_trap = 0;
3132 trace_event = 0;
3133 in_step_range = 0;
3134 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3135
3136 auto status_pending_p_any = [&] (thread_info *thread)
3137 {
3138 return status_pending_p_callback (thread, minus_one_ptid);
3139 };
3140
3141 auto not_stopped = [&] (thread_info *thread)
3142 {
3143 return not_stopped_callback (thread, minus_one_ptid);
3144 };
3145
3146 /* Find a resumed LWP, if any. */
3147 if (find_thread (status_pending_p_any) != NULL)
3148 any_resumed = 1;
3149 else if (find_thread (not_stopped) != NULL)
3150 any_resumed = 1;
3151 else
3152 any_resumed = 0;
3153
3154 if (ptid_equal (step_over_bkpt, null_ptid))
3155 pid = linux_wait_for_event (ptid, &w, options);
3156 else
3157 {
3158 if (debug_threads)
3159 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3160 target_pid_to_str (step_over_bkpt));
3161 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3162 }
3163
3164 if (pid == 0 || (pid == -1 && !any_resumed))
3165 {
3166 gdb_assert (target_options & TARGET_WNOHANG);
3167
3168 if (debug_threads)
3169 {
3170 debug_printf ("linux_wait_1 ret = null_ptid, "
3171 "TARGET_WAITKIND_IGNORE\n");
3172 debug_exit ();
3173 }
3174
3175 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3176 return null_ptid;
3177 }
3178 else if (pid == -1)
3179 {
3180 if (debug_threads)
3181 {
3182 debug_printf ("linux_wait_1 ret = null_ptid, "
3183 "TARGET_WAITKIND_NO_RESUMED\n");
3184 debug_exit ();
3185 }
3186
3187 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3188 return null_ptid;
3189 }
3190
3191 event_child = get_thread_lwp (current_thread);
3192
3193 /* linux_wait_for_event only returns an exit status for the last
3194 child of a process. Report it. */
3195 if (WIFEXITED (w) || WIFSIGNALED (w))
3196 {
3197 if (WIFEXITED (w))
3198 {
3199 ourstatus->kind = TARGET_WAITKIND_EXITED;
3200 ourstatus->value.integer = WEXITSTATUS (w);
3201
3202 if (debug_threads)
3203 {
3204 debug_printf ("linux_wait_1 ret = %s, exited with "
3205 "retcode %d\n",
3206 target_pid_to_str (ptid_of (current_thread)),
3207 WEXITSTATUS (w));
3208 debug_exit ();
3209 }
3210 }
3211 else
3212 {
3213 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3214 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3215
3216 if (debug_threads)
3217 {
3218 debug_printf ("linux_wait_1 ret = %s, terminated with "
3219 "signal %d\n",
3220 target_pid_to_str (ptid_of (current_thread)),
3221 WTERMSIG (w));
3222 debug_exit ();
3223 }
3224 }
3225
3226 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3227 return filter_exit_event (event_child, ourstatus);
3228
3229 return ptid_of (current_thread);
3230 }
3231
3232 /* If step-over executes a breakpoint instruction, in the case of a
3233 hardware single step it means a gdb/gdbserver breakpoint had been
3234 planted on top of a permanent breakpoint, in the case of a software
3235 single step it may just mean that gdbserver hit the reinsert breakpoint.
3236 The PC has been adjusted by save_stop_reason to point at
3237 the breakpoint address.
3238 So in the case of the hardware single step advance the PC manually
3239 past the breakpoint and in the case of software single step advance only
3240 if it's not the single_step_breakpoint we are hitting.
3241 This avoids that a program would keep trapping a permanent breakpoint
3242 forever. */
3243 if (!ptid_equal (step_over_bkpt, null_ptid)
3244 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3245 && (event_child->stepping
3246 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3247 {
3248 int increment_pc = 0;
3249 int breakpoint_kind = 0;
3250 CORE_ADDR stop_pc = event_child->stop_pc;
3251
3252 breakpoint_kind =
3253 the_target->breakpoint_kind_from_current_state (&stop_pc);
3254 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3255
3256 if (debug_threads)
3257 {
3258 debug_printf ("step-over for %s executed software breakpoint\n",
3259 target_pid_to_str (ptid_of (current_thread)));
3260 }
3261
3262 if (increment_pc != 0)
3263 {
3264 struct regcache *regcache
3265 = get_thread_regcache (current_thread, 1);
3266
3267 event_child->stop_pc += increment_pc;
3268 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3269
3270 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3271 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3272 }
3273 }
3274
3275 /* If this event was not handled before, and is not a SIGTRAP, we
3276 report it. SIGILL and SIGSEGV are also treated as traps in case
3277 a breakpoint is inserted at the current PC. If this target does
3278 not support internal breakpoints at all, we also report the
3279 SIGTRAP without further processing; it's of no concern to us. */
3280 maybe_internal_trap
3281 = (supports_breakpoints ()
3282 && (WSTOPSIG (w) == SIGTRAP
3283 || ((WSTOPSIG (w) == SIGILL
3284 || WSTOPSIG (w) == SIGSEGV)
3285 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3286
3287 if (maybe_internal_trap)
3288 {
3289 /* Handle anything that requires bookkeeping before deciding to
3290 report the event or continue waiting. */
3291
3292 /* First check if we can explain the SIGTRAP with an internal
3293 breakpoint, or if we should possibly report the event to GDB.
3294 Do this before anything that may remove or insert a
3295 breakpoint. */
3296 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3297
3298 /* We have a SIGTRAP, possibly a step-over dance has just
3299 finished. If so, tweak the state machine accordingly,
3300 reinsert breakpoints and delete any single-step
3301 breakpoints. */
3302 step_over_finished = finish_step_over (event_child);
3303
3304 /* Now invoke the callbacks of any internal breakpoints there. */
3305 check_breakpoints (event_child->stop_pc);
3306
3307 /* Handle tracepoint data collecting. This may overflow the
3308 trace buffer, and cause a tracing stop, removing
3309 breakpoints. */
3310 trace_event = handle_tracepoints (event_child);
3311
3312 if (bp_explains_trap)
3313 {
3314 if (debug_threads)
3315 debug_printf ("Hit a gdbserver breakpoint.\n");
3316 }
3317 }
3318 else
3319 {
3320 /* We have some other signal, possibly a step-over dance was in
3321 progress, and it should be cancelled too. */
3322 step_over_finished = finish_step_over (event_child);
3323 }
3324
3325 /* We have all the data we need. Either report the event to GDB, or
3326 resume threads and keep waiting for more. */
3327
3328 /* If we're collecting a fast tracepoint, finish the collection and
3329 move out of the jump pad before delivering a signal. See
3330 linux_stabilize_threads. */
3331
3332 if (WIFSTOPPED (w)
3333 && WSTOPSIG (w) != SIGTRAP
3334 && supports_fast_tracepoints ()
3335 && agent_loaded_p ())
3336 {
3337 if (debug_threads)
3338 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3339 "to defer or adjust it.\n",
3340 WSTOPSIG (w), lwpid_of (current_thread));
3341
3342 /* Allow debugging the jump pad itself. */
3343 if (current_thread->last_resume_kind != resume_step
3344 && maybe_move_out_of_jump_pad (event_child, &w))
3345 {
3346 enqueue_one_deferred_signal (event_child, &w);
3347
3348 if (debug_threads)
3349 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3350 WSTOPSIG (w), lwpid_of (current_thread));
3351
3352 linux_resume_one_lwp (event_child, 0, 0, NULL);
3353
3354 if (debug_threads)
3355 debug_exit ();
3356 return ignore_event (ourstatus);
3357 }
3358 }
3359
3360 if (event_child->collecting_fast_tracepoint
3361 != fast_tpoint_collect_result::not_collecting)
3362 {
3363 if (debug_threads)
3364 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3365 "Check if we're already there.\n",
3366 lwpid_of (current_thread),
3367 (int) event_child->collecting_fast_tracepoint);
3368
3369 trace_event = 1;
3370
3371 event_child->collecting_fast_tracepoint
3372 = linux_fast_tracepoint_collecting (event_child, NULL);
3373
3374 if (event_child->collecting_fast_tracepoint
3375 != fast_tpoint_collect_result::before_insn)
3376 {
3377 /* No longer need this breakpoint. */
3378 if (event_child->exit_jump_pad_bkpt != NULL)
3379 {
3380 if (debug_threads)
3381 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3382 "stopping all threads momentarily.\n");
3383
3384 /* Other running threads could hit this breakpoint.
3385 We don't handle moribund locations like GDB does,
3386 instead we always pause all threads when removing
3387 breakpoints, so that any step-over or
3388 decr_pc_after_break adjustment is always taken
3389 care of while the breakpoint is still
3390 inserted. */
3391 stop_all_lwps (1, event_child);
3392
3393 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3394 event_child->exit_jump_pad_bkpt = NULL;
3395
3396 unstop_all_lwps (1, event_child);
3397
3398 gdb_assert (event_child->suspended >= 0);
3399 }
3400 }
3401
3402 if (event_child->collecting_fast_tracepoint
3403 == fast_tpoint_collect_result::not_collecting)
3404 {
3405 if (debug_threads)
3406 debug_printf ("fast tracepoint finished "
3407 "collecting successfully.\n");
3408
3409 /* We may have a deferred signal to report. */
3410 if (dequeue_one_deferred_signal (event_child, &w))
3411 {
3412 if (debug_threads)
3413 debug_printf ("dequeued one signal.\n");
3414 }
3415 else
3416 {
3417 if (debug_threads)
3418 debug_printf ("no deferred signals.\n");
3419
3420 if (stabilizing_threads)
3421 {
3422 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3423 ourstatus->value.sig = GDB_SIGNAL_0;
3424
3425 if (debug_threads)
3426 {
3427 debug_printf ("linux_wait_1 ret = %s, stopped "
3428 "while stabilizing threads\n",
3429 target_pid_to_str (ptid_of (current_thread)));
3430 debug_exit ();
3431 }
3432
3433 return ptid_of (current_thread);
3434 }
3435 }
3436 }
3437 }
3438
3439 /* Check whether GDB would be interested in this event. */
3440
3441 /* Check if GDB is interested in this syscall. */
3442 if (WIFSTOPPED (w)
3443 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3444 && !gdb_catch_this_syscall_p (event_child))
3445 {
3446 if (debug_threads)
3447 {
3448 debug_printf ("Ignored syscall for LWP %ld.\n",
3449 lwpid_of (current_thread));
3450 }
3451
3452 linux_resume_one_lwp (event_child, event_child->stepping,
3453 0, NULL);
3454
3455 if (debug_threads)
3456 debug_exit ();
3457 return ignore_event (ourstatus);
3458 }
3459
3460 /* If GDB is not interested in this signal, don't stop other
3461 threads, and don't report it to GDB. Just resume the inferior
3462 right away. We do this for threading-related signals as well as
3463 any that GDB specifically requested we ignore. But never ignore
3464 SIGSTOP if we sent it ourselves, and do not ignore signals when
3465 stepping - they may require special handling to skip the signal
3466 handler. Also never ignore signals that could be caused by a
3467 breakpoint. */
3468 if (WIFSTOPPED (w)
3469 && current_thread->last_resume_kind != resume_step
3470 && (
3471 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3472 (current_process ()->priv->thread_db != NULL
3473 && (WSTOPSIG (w) == __SIGRTMIN
3474 || WSTOPSIG (w) == __SIGRTMIN + 1))
3475 ||
3476 #endif
3477 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3478 && !(WSTOPSIG (w) == SIGSTOP
3479 && current_thread->last_resume_kind == resume_stop)
3480 && !linux_wstatus_maybe_breakpoint (w))))
3481 {
3482 siginfo_t info, *info_p;
3483
3484 if (debug_threads)
3485 debug_printf ("Ignored signal %d for LWP %ld.\n",
3486 WSTOPSIG (w), lwpid_of (current_thread));
3487
3488 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3489 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3490 info_p = &info;
3491 else
3492 info_p = NULL;
3493
3494 if (step_over_finished)
3495 {
3496 /* We cancelled this thread's step-over above. We still
3497 need to unsuspend all other LWPs, and set them back
3498 running again while the signal handler runs. */
3499 unsuspend_all_lwps (event_child);
3500
3501 /* Enqueue the pending signal info so that proceed_all_lwps
3502 doesn't lose it. */
3503 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3504
3505 proceed_all_lwps ();
3506 }
3507 else
3508 {
3509 linux_resume_one_lwp (event_child, event_child->stepping,
3510 WSTOPSIG (w), info_p);
3511 }
3512
3513 if (debug_threads)
3514 debug_exit ();
3515
3516 return ignore_event (ourstatus);
3517 }
3518
3519 /* Note that all addresses are always "out of the step range" when
3520 there's no range to begin with. */
3521 in_step_range = lwp_in_step_range (event_child);
3522
3523 /* If GDB wanted this thread to single step, and the thread is out
3524 of the step range, we always want to report the SIGTRAP, and let
3525 GDB handle it. Watchpoints should always be reported. So should
3526 signals we can't explain. A SIGTRAP we can't explain could be a
3527 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3528 do, we're be able to handle GDB breakpoints on top of internal
3529 breakpoints, by handling the internal breakpoint and still
3530 reporting the event to GDB. If we don't, we're out of luck, GDB
3531 won't see the breakpoint hit. If we see a single-step event but
3532 the thread should be continuing, don't pass the trap to gdb.
3533 That indicates that we had previously finished a single-step but
3534 left the single-step pending -- see
3535 complete_ongoing_step_over. */
3536 report_to_gdb = (!maybe_internal_trap
3537 || (current_thread->last_resume_kind == resume_step
3538 && !in_step_range)
3539 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3540 || (!in_step_range
3541 && !bp_explains_trap
3542 && !trace_event
3543 && !step_over_finished
3544 && !(current_thread->last_resume_kind == resume_continue
3545 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3546 || (gdb_breakpoint_here (event_child->stop_pc)
3547 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3548 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3549 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3550
3551 run_breakpoint_commands (event_child->stop_pc);
3552
3553 /* We found no reason GDB would want us to stop. We either hit one
3554 of our own breakpoints, or finished an internal step GDB
3555 shouldn't know about. */
3556 if (!report_to_gdb)
3557 {
3558 if (debug_threads)
3559 {
3560 if (bp_explains_trap)
3561 debug_printf ("Hit a gdbserver breakpoint.\n");
3562 if (step_over_finished)
3563 debug_printf ("Step-over finished.\n");
3564 if (trace_event)
3565 debug_printf ("Tracepoint event.\n");
3566 if (lwp_in_step_range (event_child))
3567 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3568 paddress (event_child->stop_pc),
3569 paddress (event_child->step_range_start),
3570 paddress (event_child->step_range_end));
3571 }
3572
3573 /* We're not reporting this breakpoint to GDB, so apply the
3574 decr_pc_after_break adjustment to the inferior's regcache
3575 ourselves. */
3576
3577 if (the_low_target.set_pc != NULL)
3578 {
3579 struct regcache *regcache
3580 = get_thread_regcache (current_thread, 1);
3581 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3582 }
3583
3584 if (step_over_finished)
3585 {
3586 /* If we have finished stepping over a breakpoint, we've
3587 stopped and suspended all LWPs momentarily except the
3588 stepping one. This is where we resume them all again.
3589 We're going to keep waiting, so use proceed, which
3590 handles stepping over the next breakpoint. */
3591 unsuspend_all_lwps (event_child);
3592 }
3593 else
3594 {
3595 /* Remove the single-step breakpoints if any. Note that
3596 there isn't single-step breakpoint if we finished stepping
3597 over. */
3598 if (can_software_single_step ()
3599 && has_single_step_breakpoints (current_thread))
3600 {
3601 stop_all_lwps (0, event_child);
3602 delete_single_step_breakpoints (current_thread);
3603 unstop_all_lwps (0, event_child);
3604 }
3605 }
3606
3607 if (debug_threads)
3608 debug_printf ("proceeding all threads.\n");
3609 proceed_all_lwps ();
3610
3611 if (debug_threads)
3612 debug_exit ();
3613
3614 return ignore_event (ourstatus);
3615 }
3616
3617 if (debug_threads)
3618 {
3619 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3620 {
3621 std::string str
3622 = target_waitstatus_to_string (&event_child->waitstatus);
3623
3624 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3625 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3626 }
3627 if (current_thread->last_resume_kind == resume_step)
3628 {
3629 if (event_child->step_range_start == event_child->step_range_end)
3630 debug_printf ("GDB wanted to single-step, reporting event.\n");
3631 else if (!lwp_in_step_range (event_child))
3632 debug_printf ("Out of step range, reporting event.\n");
3633 }
3634 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3635 debug_printf ("Stopped by watchpoint.\n");
3636 else if (gdb_breakpoint_here (event_child->stop_pc))
3637 debug_printf ("Stopped by GDB breakpoint.\n");
3638 if (debug_threads)
3639 debug_printf ("Hit a non-gdbserver trap event.\n");
3640 }
3641
3642 /* Alright, we're going to report a stop. */
3643
3644 /* Remove single-step breakpoints. */
3645 if (can_software_single_step ())
3646 {
3647 /* Remove single-step breakpoints or not. It it is true, stop all
3648 lwps, so that other threads won't hit the breakpoint in the
3649 staled memory. */
3650 int remove_single_step_breakpoints_p = 0;
3651
3652 if (non_stop)
3653 {
3654 remove_single_step_breakpoints_p
3655 = has_single_step_breakpoints (current_thread);
3656 }
3657 else
3658 {
3659 /* In all-stop, a stop reply cancels all previous resume
3660 requests. Delete all single-step breakpoints. */
3661
3662 find_thread ([&] (thread_info *thread) {
3663 if (has_single_step_breakpoints (thread))
3664 {
3665 remove_single_step_breakpoints_p = 1;
3666 return true;
3667 }
3668
3669 return false;
3670 });
3671 }
3672
3673 if (remove_single_step_breakpoints_p)
3674 {
3675 /* If we remove single-step breakpoints from memory, stop all lwps,
3676 so that other threads won't hit the breakpoint in the staled
3677 memory. */
3678 stop_all_lwps (0, event_child);
3679
3680 if (non_stop)
3681 {
3682 gdb_assert (has_single_step_breakpoints (current_thread));
3683 delete_single_step_breakpoints (current_thread);
3684 }
3685 else
3686 {
3687 for_each_thread ([] (thread_info *thread){
3688 if (has_single_step_breakpoints (thread))
3689 delete_single_step_breakpoints (thread);
3690 });
3691 }
3692
3693 unstop_all_lwps (0, event_child);
3694 }
3695 }
3696
3697 if (!stabilizing_threads)
3698 {
3699 /* In all-stop, stop all threads. */
3700 if (!non_stop)
3701 stop_all_lwps (0, NULL);
3702
3703 if (step_over_finished)
3704 {
3705 if (!non_stop)
3706 {
3707 /* If we were doing a step-over, all other threads but
3708 the stepping one had been paused in start_step_over,
3709 with their suspend counts incremented. We don't want
3710 to do a full unstop/unpause, because we're in
3711 all-stop mode (so we want threads stopped), but we
3712 still need to unsuspend the other threads, to
3713 decrement their `suspended' count back. */
3714 unsuspend_all_lwps (event_child);
3715 }
3716 else
3717 {
3718 /* If we just finished a step-over, then all threads had
3719 been momentarily paused. In all-stop, that's fine,
3720 we want threads stopped by now anyway. In non-stop,
3721 we need to re-resume threads that GDB wanted to be
3722 running. */
3723 unstop_all_lwps (1, event_child);
3724 }
3725 }
3726
3727 /* If we're not waiting for a specific LWP, choose an event LWP
3728 from among those that have had events. Giving equal priority
3729 to all LWPs that have had events helps prevent
3730 starvation. */
3731 if (ptid_equal (ptid, minus_one_ptid))
3732 {
3733 event_child->status_pending_p = 1;
3734 event_child->status_pending = w;
3735
3736 select_event_lwp (&event_child);
3737
3738 /* current_thread and event_child must stay in sync. */
3739 current_thread = get_lwp_thread (event_child);
3740
3741 event_child->status_pending_p = 0;
3742 w = event_child->status_pending;
3743 }
3744
3745
3746 /* Stabilize threads (move out of jump pads). */
3747 if (!non_stop)
3748 stabilize_threads ();
3749 }
3750 else
3751 {
3752 /* If we just finished a step-over, then all threads had been
3753 momentarily paused. In all-stop, that's fine, we want
3754 threads stopped by now anyway. In non-stop, we need to
3755 re-resume threads that GDB wanted to be running. */
3756 if (step_over_finished)
3757 unstop_all_lwps (1, event_child);
3758 }
3759
3760 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3761 {
3762 /* If the reported event is an exit, fork, vfork or exec, let
3763 GDB know. */
3764
3765 /* Break the unreported fork relationship chain. */
3766 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3767 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3768 {
3769 event_child->fork_relative->fork_relative = NULL;
3770 event_child->fork_relative = NULL;
3771 }
3772
3773 *ourstatus = event_child->waitstatus;
3774 /* Clear the event lwp's waitstatus since we handled it already. */
3775 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3776 }
3777 else
3778 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3779
3780 /* Now that we've selected our final event LWP, un-adjust its PC if
3781 it was a software breakpoint, and the client doesn't know we can
3782 adjust the breakpoint ourselves. */
3783 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3784 && !swbreak_feature)
3785 {
3786 int decr_pc = the_low_target.decr_pc_after_break;
3787
3788 if (decr_pc != 0)
3789 {
3790 struct regcache *regcache
3791 = get_thread_regcache (current_thread, 1);
3792 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3793 }
3794 }
3795
3796 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3797 {
3798 get_syscall_trapinfo (event_child,
3799 &ourstatus->value.syscall_number);
3800 ourstatus->kind = event_child->syscall_state;
3801 }
3802 else if (current_thread->last_resume_kind == resume_stop
3803 && WSTOPSIG (w) == SIGSTOP)
3804 {
3805 /* A thread that has been requested to stop by GDB with vCont;t,
3806 and it stopped cleanly, so report as SIG0. The use of
3807 SIGSTOP is an implementation detail. */
3808 ourstatus->value.sig = GDB_SIGNAL_0;
3809 }
3810 else if (current_thread->last_resume_kind == resume_stop
3811 && WSTOPSIG (w) != SIGSTOP)
3812 {
3813 /* A thread that has been requested to stop by GDB with vCont;t,
3814 but, it stopped for other reasons. */
3815 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3816 }
3817 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3818 {
3819 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3820 }
3821
3822 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3823
3824 if (debug_threads)
3825 {
3826 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3827 target_pid_to_str (ptid_of (current_thread)),
3828 ourstatus->kind, ourstatus->value.sig);
3829 debug_exit ();
3830 }
3831
3832 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3833 return filter_exit_event (event_child, ourstatus);
3834
3835 return ptid_of (current_thread);
3836 }
3837
3838 /* Get rid of any pending event in the pipe. */
3839 static void
3840 async_file_flush (void)
3841 {
3842 int ret;
3843 char buf;
3844
3845 do
3846 ret = read (linux_event_pipe[0], &buf, 1);
3847 while (ret >= 0 || (ret == -1 && errno == EINTR));
3848 }
3849
3850 /* Put something in the pipe, so the event loop wakes up. */
3851 static void
3852 async_file_mark (void)
3853 {
3854 int ret;
3855
3856 async_file_flush ();
3857
3858 do
3859 ret = write (linux_event_pipe[1], "+", 1);
3860 while (ret == 0 || (ret == -1 && errno == EINTR));
3861
3862 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3863 be awakened anyway. */
3864 }
3865
3866 static ptid_t
3867 linux_wait (ptid_t ptid,
3868 struct target_waitstatus *ourstatus, int target_options)
3869 {
3870 ptid_t event_ptid;
3871
3872 /* Flush the async file first. */
3873 if (target_is_async_p ())
3874 async_file_flush ();
3875
3876 do
3877 {
3878 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3879 }
3880 while ((target_options & TARGET_WNOHANG) == 0
3881 && ptid_equal (event_ptid, null_ptid)
3882 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3883
3884 /* If at least one stop was reported, there may be more. A single
3885 SIGCHLD can signal more than one child stop. */
3886 if (target_is_async_p ()
3887 && (target_options & TARGET_WNOHANG) != 0
3888 && !ptid_equal (event_ptid, null_ptid))
3889 async_file_mark ();
3890
3891 return event_ptid;
3892 }
3893
3894 /* Send a signal to an LWP. */
3895
3896 static int
3897 kill_lwp (unsigned long lwpid, int signo)
3898 {
3899 int ret;
3900
3901 errno = 0;
3902 ret = syscall (__NR_tkill, lwpid, signo);
3903 if (errno == ENOSYS)
3904 {
3905 /* If tkill fails, then we are not using nptl threads, a
3906 configuration we no longer support. */
3907 perror_with_name (("tkill"));
3908 }
3909 return ret;
3910 }
3911
3912 void
3913 linux_stop_lwp (struct lwp_info *lwp)
3914 {
3915 send_sigstop (lwp);
3916 }
3917
3918 static void
3919 send_sigstop (struct lwp_info *lwp)
3920 {
3921 int pid;
3922
3923 pid = lwpid_of (get_lwp_thread (lwp));
3924
3925 /* If we already have a pending stop signal for this process, don't
3926 send another. */
3927 if (lwp->stop_expected)
3928 {
3929 if (debug_threads)
3930 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3931
3932 return;
3933 }
3934
3935 if (debug_threads)
3936 debug_printf ("Sending sigstop to lwp %d\n", pid);
3937
3938 lwp->stop_expected = 1;
3939 kill_lwp (pid, SIGSTOP);
3940 }
3941
3942 static void
3943 send_sigstop (thread_info *thread, lwp_info *except)
3944 {
3945 struct lwp_info *lwp = get_thread_lwp (thread);
3946
3947 /* Ignore EXCEPT. */
3948 if (lwp == except)
3949 return;
3950
3951 if (lwp->stopped)
3952 return;
3953
3954 send_sigstop (lwp);
3955 }
3956
3957 /* Increment the suspend count of an LWP, and stop it, if not stopped
3958 yet. */
3959 static void
3960 suspend_and_send_sigstop (thread_info *thread, lwp_info *except)
3961 {
3962 struct lwp_info *lwp = get_thread_lwp (thread);
3963
3964 /* Ignore EXCEPT. */
3965 if (lwp == except)
3966 return;
3967
3968 lwp_suspended_inc (lwp);
3969
3970 send_sigstop (thread, except);
3971 }
3972
3973 static void
3974 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3975 {
3976 /* Store the exit status for later. */
3977 lwp->status_pending_p = 1;
3978 lwp->status_pending = wstat;
3979
3980 /* Store in waitstatus as well, as there's nothing else to process
3981 for this event. */
3982 if (WIFEXITED (wstat))
3983 {
3984 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3985 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3986 }
3987 else if (WIFSIGNALED (wstat))
3988 {
3989 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3990 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3991 }
3992
3993 /* Prevent trying to stop it. */
3994 lwp->stopped = 1;
3995
3996 /* No further stops are expected from a dead lwp. */
3997 lwp->stop_expected = 0;
3998 }
3999
4000 /* Return true if LWP has exited already, and has a pending exit event
4001 to report to GDB. */
4002
4003 static int
4004 lwp_is_marked_dead (struct lwp_info *lwp)
4005 {
4006 return (lwp->status_pending_p
4007 && (WIFEXITED (lwp->status_pending)
4008 || WIFSIGNALED (lwp->status_pending)));
4009 }
4010
4011 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4012
4013 static void
4014 wait_for_sigstop (void)
4015 {
4016 struct thread_info *saved_thread;
4017 ptid_t saved_tid;
4018 int wstat;
4019 int ret;
4020
4021 saved_thread = current_thread;
4022 if (saved_thread != NULL)
4023 saved_tid = saved_thread->id;
4024 else
4025 saved_tid = null_ptid; /* avoid bogus unused warning */
4026
4027 if (debug_threads)
4028 debug_printf ("wait_for_sigstop: pulling events\n");
4029
4030 /* Passing NULL_PTID as filter indicates we want all events to be
4031 left pending. Eventually this returns when there are no
4032 unwaited-for children left. */
4033 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4034 &wstat, __WALL);
4035 gdb_assert (ret == -1);
4036
4037 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4038 current_thread = saved_thread;
4039 else
4040 {
4041 if (debug_threads)
4042 debug_printf ("Previously current thread died.\n");
4043
4044 /* We can't change the current inferior behind GDB's back,
4045 otherwise, a subsequent command may apply to the wrong
4046 process. */
4047 current_thread = NULL;
4048 }
4049 }
4050
4051 /* Returns true if THREAD is stopped in a jump pad, and we can't
4052 move it out, because we need to report the stop event to GDB. For
4053 example, if the user puts a breakpoint in the jump pad, it's
4054 because she wants to debug it. */
4055
4056 static bool
4057 stuck_in_jump_pad_callback (thread_info *thread)
4058 {
4059 struct lwp_info *lwp = get_thread_lwp (thread);
4060
4061 if (lwp->suspended != 0)
4062 {
4063 internal_error (__FILE__, __LINE__,
4064 "LWP %ld is suspended, suspended=%d\n",
4065 lwpid_of (thread), lwp->suspended);
4066 }
4067 gdb_assert (lwp->stopped);
4068
4069 /* Allow debugging the jump pad, gdb_collect, etc.. */
4070 return (supports_fast_tracepoints ()
4071 && agent_loaded_p ()
4072 && (gdb_breakpoint_here (lwp->stop_pc)
4073 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4074 || thread->last_resume_kind == resume_step)
4075 && (linux_fast_tracepoint_collecting (lwp, NULL)
4076 != fast_tpoint_collect_result::not_collecting));
4077 }
4078
4079 static void
4080 move_out_of_jump_pad_callback (thread_info *thread)
4081 {
4082 struct thread_info *saved_thread;
4083 struct lwp_info *lwp = get_thread_lwp (thread);
4084 int *wstat;
4085
4086 if (lwp->suspended != 0)
4087 {
4088 internal_error (__FILE__, __LINE__,
4089 "LWP %ld is suspended, suspended=%d\n",
4090 lwpid_of (thread), lwp->suspended);
4091 }
4092 gdb_assert (lwp->stopped);
4093
4094 /* For gdb_breakpoint_here. */
4095 saved_thread = current_thread;
4096 current_thread = thread;
4097
4098 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4099
4100 /* Allow debugging the jump pad, gdb_collect, etc. */
4101 if (!gdb_breakpoint_here (lwp->stop_pc)
4102 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4103 && thread->last_resume_kind != resume_step
4104 && maybe_move_out_of_jump_pad (lwp, wstat))
4105 {
4106 if (debug_threads)
4107 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4108 lwpid_of (thread));
4109
4110 if (wstat)
4111 {
4112 lwp->status_pending_p = 0;
4113 enqueue_one_deferred_signal (lwp, wstat);
4114
4115 if (debug_threads)
4116 debug_printf ("Signal %d for LWP %ld deferred "
4117 "(in jump pad)\n",
4118 WSTOPSIG (*wstat), lwpid_of (thread));
4119 }
4120
4121 linux_resume_one_lwp (lwp, 0, 0, NULL);
4122 }
4123 else
4124 lwp_suspended_inc (lwp);
4125
4126 current_thread = saved_thread;
4127 }
4128
4129 static bool
4130 lwp_running (thread_info *thread)
4131 {
4132 struct lwp_info *lwp = get_thread_lwp (thread);
4133
4134 if (lwp_is_marked_dead (lwp))
4135 return false;
4136
4137 return !lwp->stopped;
4138 }
4139
4140 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4141 If SUSPEND, then also increase the suspend count of every LWP,
4142 except EXCEPT. */
4143
4144 static void
4145 stop_all_lwps (int suspend, struct lwp_info *except)
4146 {
4147 /* Should not be called recursively. */
4148 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4149
4150 if (debug_threads)
4151 {
4152 debug_enter ();
4153 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4154 suspend ? "stop-and-suspend" : "stop",
4155 except != NULL
4156 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4157 : "none");
4158 }
4159
4160 stopping_threads = (suspend
4161 ? STOPPING_AND_SUSPENDING_THREADS
4162 : STOPPING_THREADS);
4163
4164 if (suspend)
4165 for_each_thread ([&] (thread_info *thread)
4166 {
4167 suspend_and_send_sigstop (thread, except);
4168 });
4169 else
4170 for_each_thread ([&] (thread_info *thread)
4171 {
4172 send_sigstop (thread, except);
4173 });
4174
4175 wait_for_sigstop ();
4176 stopping_threads = NOT_STOPPING_THREADS;
4177
4178 if (debug_threads)
4179 {
4180 debug_printf ("stop_all_lwps done, setting stopping_threads "
4181 "back to !stopping\n");
4182 debug_exit ();
4183 }
4184 }
4185
4186 /* Enqueue one signal in the chain of signals which need to be
4187 delivered to this process on next resume. */
4188
4189 static void
4190 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4191 {
4192 struct pending_signals *p_sig = XNEW (struct pending_signals);
4193
4194 p_sig->prev = lwp->pending_signals;
4195 p_sig->signal = signal;
4196 if (info == NULL)
4197 memset (&p_sig->info, 0, sizeof (siginfo_t));
4198 else
4199 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4200 lwp->pending_signals = p_sig;
4201 }
4202
4203 /* Install breakpoints for software single stepping. */
4204
4205 static void
4206 install_software_single_step_breakpoints (struct lwp_info *lwp)
4207 {
4208 struct thread_info *thread = get_lwp_thread (lwp);
4209 struct regcache *regcache = get_thread_regcache (thread, 1);
4210 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4211
4212 current_thread = thread;
4213 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4214
4215 for (CORE_ADDR pc : next_pcs)
4216 set_single_step_breakpoint (pc, current_ptid);
4217
4218 do_cleanups (old_chain);
4219 }
4220
4221 /* Single step via hardware or software single step.
4222 Return 1 if hardware single stepping, 0 if software single stepping
4223 or can't single step. */
4224
4225 static int
4226 single_step (struct lwp_info* lwp)
4227 {
4228 int step = 0;
4229
4230 if (can_hardware_single_step ())
4231 {
4232 step = 1;
4233 }
4234 else if (can_software_single_step ())
4235 {
4236 install_software_single_step_breakpoints (lwp);
4237 step = 0;
4238 }
4239 else
4240 {
4241 if (debug_threads)
4242 debug_printf ("stepping is not implemented on this target");
4243 }
4244
4245 return step;
4246 }
4247
4248 /* The signal can be delivered to the inferior if we are not trying to
4249 finish a fast tracepoint collect. Since signal can be delivered in
4250 the step-over, the program may go to signal handler and trap again
4251 after return from the signal handler. We can live with the spurious
4252 double traps. */
4253
4254 static int
4255 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4256 {
4257 return (lwp->collecting_fast_tracepoint
4258 == fast_tpoint_collect_result::not_collecting);
4259 }
4260
4261 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4262 SIGNAL is nonzero, give it that signal. */
4263
4264 static void
4265 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4266 int step, int signal, siginfo_t *info)
4267 {
4268 struct thread_info *thread = get_lwp_thread (lwp);
4269 struct thread_info *saved_thread;
4270 int ptrace_request;
4271 struct process_info *proc = get_thread_process (thread);
4272
4273 /* Note that target description may not be initialised
4274 (proc->tdesc == NULL) at this point because the program hasn't
4275 stopped at the first instruction yet. It means GDBserver skips
4276 the extra traps from the wrapper program (see option --wrapper).
4277 Code in this function that requires register access should be
4278 guarded by proc->tdesc == NULL or something else. */
4279
4280 if (lwp->stopped == 0)
4281 return;
4282
4283 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4284
4285 fast_tpoint_collect_result fast_tp_collecting
4286 = lwp->collecting_fast_tracepoint;
4287
4288 gdb_assert (!stabilizing_threads
4289 || (fast_tp_collecting
4290 != fast_tpoint_collect_result::not_collecting));
4291
4292 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4293 user used the "jump" command, or "set $pc = foo"). */
4294 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4295 {
4296 /* Collecting 'while-stepping' actions doesn't make sense
4297 anymore. */
4298 release_while_stepping_state_list (thread);
4299 }
4300
4301 /* If we have pending signals or status, and a new signal, enqueue the
4302 signal. Also enqueue the signal if it can't be delivered to the
4303 inferior right now. */
4304 if (signal != 0
4305 && (lwp->status_pending_p
4306 || lwp->pending_signals != NULL
4307 || !lwp_signal_can_be_delivered (lwp)))
4308 {
4309 enqueue_pending_signal (lwp, signal, info);
4310
4311 /* Postpone any pending signal. It was enqueued above. */
4312 signal = 0;
4313 }
4314
4315 if (lwp->status_pending_p)
4316 {
4317 if (debug_threads)
4318 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4319 " has pending status\n",
4320 lwpid_of (thread), step ? "step" : "continue",
4321 lwp->stop_expected ? "expected" : "not expected");
4322 return;
4323 }
4324
4325 saved_thread = current_thread;
4326 current_thread = thread;
4327
4328 /* This bit needs some thinking about. If we get a signal that
4329 we must report while a single-step reinsert is still pending,
4330 we often end up resuming the thread. It might be better to
4331 (ew) allow a stack of pending events; then we could be sure that
4332 the reinsert happened right away and not lose any signals.
4333
4334 Making this stack would also shrink the window in which breakpoints are
4335 uninserted (see comment in linux_wait_for_lwp) but not enough for
4336 complete correctness, so it won't solve that problem. It may be
4337 worthwhile just to solve this one, however. */
4338 if (lwp->bp_reinsert != 0)
4339 {
4340 if (debug_threads)
4341 debug_printf (" pending reinsert at 0x%s\n",
4342 paddress (lwp->bp_reinsert));
4343
4344 if (can_hardware_single_step ())
4345 {
4346 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4347 {
4348 if (step == 0)
4349 warning ("BAD - reinserting but not stepping.");
4350 if (lwp->suspended)
4351 warning ("BAD - reinserting and suspended(%d).",
4352 lwp->suspended);
4353 }
4354 }
4355
4356 step = maybe_hw_step (thread);
4357 }
4358
4359 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4360 {
4361 if (debug_threads)
4362 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4363 " (exit-jump-pad-bkpt)\n",
4364 lwpid_of (thread));
4365 }
4366 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4367 {
4368 if (debug_threads)
4369 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4370 " single-stepping\n",
4371 lwpid_of (thread));
4372
4373 if (can_hardware_single_step ())
4374 step = 1;
4375 else
4376 {
4377 internal_error (__FILE__, __LINE__,
4378 "moving out of jump pad single-stepping"
4379 " not implemented on this target");
4380 }
4381 }
4382
4383 /* If we have while-stepping actions in this thread set it stepping.
4384 If we have a signal to deliver, it may or may not be set to
4385 SIG_IGN, we don't know. Assume so, and allow collecting
4386 while-stepping into a signal handler. A possible smart thing to
4387 do would be to set an internal breakpoint at the signal return
4388 address, continue, and carry on catching this while-stepping
4389 action only when that breakpoint is hit. A future
4390 enhancement. */
4391 if (thread->while_stepping != NULL)
4392 {
4393 if (debug_threads)
4394 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4395 lwpid_of (thread));
4396
4397 step = single_step (lwp);
4398 }
4399
4400 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4401 {
4402 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4403
4404 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4405
4406 if (debug_threads)
4407 {
4408 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4409 (long) lwp->stop_pc);
4410 }
4411 }
4412
4413 /* If we have pending signals, consume one if it can be delivered to
4414 the inferior. */
4415 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4416 {
4417 struct pending_signals **p_sig;
4418
4419 p_sig = &lwp->pending_signals;
4420 while ((*p_sig)->prev != NULL)
4421 p_sig = &(*p_sig)->prev;
4422
4423 signal = (*p_sig)->signal;
4424 if ((*p_sig)->info.si_signo != 0)
4425 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4426 &(*p_sig)->info);
4427
4428 free (*p_sig);
4429 *p_sig = NULL;
4430 }
4431
4432 if (debug_threads)
4433 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4434 lwpid_of (thread), step ? "step" : "continue", signal,
4435 lwp->stop_expected ? "expected" : "not expected");
4436
4437 if (the_low_target.prepare_to_resume != NULL)
4438 the_low_target.prepare_to_resume (lwp);
4439
4440 regcache_invalidate_thread (thread);
4441 errno = 0;
4442 lwp->stepping = step;
4443 if (step)
4444 ptrace_request = PTRACE_SINGLESTEP;
4445 else if (gdb_catching_syscalls_p (lwp))
4446 ptrace_request = PTRACE_SYSCALL;
4447 else
4448 ptrace_request = PTRACE_CONT;
4449 ptrace (ptrace_request,
4450 lwpid_of (thread),
4451 (PTRACE_TYPE_ARG3) 0,
4452 /* Coerce to a uintptr_t first to avoid potential gcc warning
4453 of coercing an 8 byte integer to a 4 byte pointer. */
4454 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4455
4456 current_thread = saved_thread;
4457 if (errno)
4458 perror_with_name ("resuming thread");
4459
4460 /* Successfully resumed. Clear state that no longer makes sense,
4461 and mark the LWP as running. Must not do this before resuming
4462 otherwise if that fails other code will be confused. E.g., we'd
4463 later try to stop the LWP and hang forever waiting for a stop
4464 status. Note that we must not throw after this is cleared,
4465 otherwise handle_zombie_lwp_error would get confused. */
4466 lwp->stopped = 0;
4467 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4468 }
4469
4470 /* Called when we try to resume a stopped LWP and that errors out. If
4471 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4472 or about to become), discard the error, clear any pending status
4473 the LWP may have, and return true (we'll collect the exit status
4474 soon enough). Otherwise, return false. */
4475
4476 static int
4477 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4478 {
4479 struct thread_info *thread = get_lwp_thread (lp);
4480
4481 /* If we get an error after resuming the LWP successfully, we'd
4482 confuse !T state for the LWP being gone. */
4483 gdb_assert (lp->stopped);
4484
4485 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4486 because even if ptrace failed with ESRCH, the tracee may be "not
4487 yet fully dead", but already refusing ptrace requests. In that
4488 case the tracee has 'R (Running)' state for a little bit
4489 (observed in Linux 3.18). See also the note on ESRCH in the
4490 ptrace(2) man page. Instead, check whether the LWP has any state
4491 other than ptrace-stopped. */
4492
4493 /* Don't assume anything if /proc/PID/status can't be read. */
4494 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4495 {
4496 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4497 lp->status_pending_p = 0;
4498 return 1;
4499 }
4500 return 0;
4501 }
4502
4503 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4504 disappears while we try to resume it. */
4505
4506 static void
4507 linux_resume_one_lwp (struct lwp_info *lwp,
4508 int step, int signal, siginfo_t *info)
4509 {
4510 TRY
4511 {
4512 linux_resume_one_lwp_throw (lwp, step, signal, info);
4513 }
4514 CATCH (ex, RETURN_MASK_ERROR)
4515 {
4516 if (!check_ptrace_stopped_lwp_gone (lwp))
4517 throw_exception (ex);
4518 }
4519 END_CATCH
4520 }
4521
4522 /* This function is called once per thread via for_each_thread.
4523 We look up which resume request applies to THREAD and mark it with a
4524 pointer to the appropriate resume request.
4525
4526 This algorithm is O(threads * resume elements), but resume elements
4527 is small (and will remain small at least until GDB supports thread
4528 suspension). */
4529
4530 static void
4531 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4532 {
4533 struct lwp_info *lwp = get_thread_lwp (thread);
4534
4535 for (int ndx = 0; ndx < n; ndx++)
4536 {
4537 ptid_t ptid = resume[ndx].thread;
4538 if (ptid_equal (ptid, minus_one_ptid)
4539 || ptid == thread->id
4540 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4541 of PID'. */
4542 || (ptid_get_pid (ptid) == pid_of (thread)
4543 && (ptid_is_pid (ptid)
4544 || ptid_get_lwp (ptid) == -1)))
4545 {
4546 if (resume[ndx].kind == resume_stop
4547 && thread->last_resume_kind == resume_stop)
4548 {
4549 if (debug_threads)
4550 debug_printf ("already %s LWP %ld at GDB's request\n",
4551 (thread->last_status.kind
4552 == TARGET_WAITKIND_STOPPED)
4553 ? "stopped"
4554 : "stopping",
4555 lwpid_of (thread));
4556
4557 continue;
4558 }
4559
4560 /* Ignore (wildcard) resume requests for already-resumed
4561 threads. */
4562 if (resume[ndx].kind != resume_stop
4563 && thread->last_resume_kind != resume_stop)
4564 {
4565 if (debug_threads)
4566 debug_printf ("already %s LWP %ld at GDB's request\n",
4567 (thread->last_resume_kind
4568 == resume_step)
4569 ? "stepping"
4570 : "continuing",
4571 lwpid_of (thread));
4572 continue;
4573 }
4574
4575 /* Don't let wildcard resumes resume fork children that GDB
4576 does not yet know are new fork children. */
4577 if (lwp->fork_relative != NULL)
4578 {
4579 struct lwp_info *rel = lwp->fork_relative;
4580
4581 if (rel->status_pending_p
4582 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4583 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4584 {
4585 if (debug_threads)
4586 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4587 lwpid_of (thread));
4588 continue;
4589 }
4590 }
4591
4592 /* If the thread has a pending event that has already been
4593 reported to GDBserver core, but GDB has not pulled the
4594 event out of the vStopped queue yet, likewise, ignore the
4595 (wildcard) resume request. */
4596 if (in_queued_stop_replies (thread->id))
4597 {
4598 if (debug_threads)
4599 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4600 lwpid_of (thread));
4601 continue;
4602 }
4603
4604 lwp->resume = &resume[ndx];
4605 thread->last_resume_kind = lwp->resume->kind;
4606
4607 lwp->step_range_start = lwp->resume->step_range_start;
4608 lwp->step_range_end = lwp->resume->step_range_end;
4609
4610 /* If we had a deferred signal to report, dequeue one now.
4611 This can happen if LWP gets more than one signal while
4612 trying to get out of a jump pad. */
4613 if (lwp->stopped
4614 && !lwp->status_pending_p
4615 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4616 {
4617 lwp->status_pending_p = 1;
4618
4619 if (debug_threads)
4620 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4621 "leaving status pending.\n",
4622 WSTOPSIG (lwp->status_pending),
4623 lwpid_of (thread));
4624 }
4625
4626 return;
4627 }
4628 }
4629
4630 /* No resume action for this thread. */
4631 lwp->resume = NULL;
4632 }
4633
4634 /* find_thread callback for linux_resume. Return true if this lwp has an
4635 interesting status pending. */
4636
4637 static bool
4638 resume_status_pending_p (thread_info *thread)
4639 {
4640 struct lwp_info *lwp = get_thread_lwp (thread);
4641
4642 /* LWPs which will not be resumed are not interesting, because
4643 we might not wait for them next time through linux_wait. */
4644 if (lwp->resume == NULL)
4645 return false;
4646
4647 return thread_still_has_status_pending_p (thread);
4648 }
4649
4650 /* Return 1 if this lwp that GDB wants running is stopped at an
4651 internal breakpoint that we need to step over. It assumes that any
4652 required STOP_PC adjustment has already been propagated to the
4653 inferior's regcache. */
4654
4655 static bool
4656 need_step_over_p (thread_info *thread)
4657 {
4658 struct lwp_info *lwp = get_thread_lwp (thread);
4659 struct thread_info *saved_thread;
4660 CORE_ADDR pc;
4661 struct process_info *proc = get_thread_process (thread);
4662
4663 /* GDBserver is skipping the extra traps from the wrapper program,
4664 don't have to do step over. */
4665 if (proc->tdesc == NULL)
4666 return false;
4667
4668 /* LWPs which will not be resumed are not interesting, because we
4669 might not wait for them next time through linux_wait. */
4670
4671 if (!lwp->stopped)
4672 {
4673 if (debug_threads)
4674 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4675 lwpid_of (thread));
4676 return false;
4677 }
4678
4679 if (thread->last_resume_kind == resume_stop)
4680 {
4681 if (debug_threads)
4682 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4683 " stopped\n",
4684 lwpid_of (thread));
4685 return false;
4686 }
4687
4688 gdb_assert (lwp->suspended >= 0);
4689
4690 if (lwp->suspended)
4691 {
4692 if (debug_threads)
4693 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4694 lwpid_of (thread));
4695 return false;
4696 }
4697
4698 if (lwp->status_pending_p)
4699 {
4700 if (debug_threads)
4701 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4702 " status.\n",
4703 lwpid_of (thread));
4704 return false;
4705 }
4706
4707 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4708 or we have. */
4709 pc = get_pc (lwp);
4710
4711 /* If the PC has changed since we stopped, then don't do anything,
4712 and let the breakpoint/tracepoint be hit. This happens if, for
4713 instance, GDB handled the decr_pc_after_break subtraction itself,
4714 GDB is OOL stepping this thread, or the user has issued a "jump"
4715 command, or poked thread's registers herself. */
4716 if (pc != lwp->stop_pc)
4717 {
4718 if (debug_threads)
4719 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4720 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4721 lwpid_of (thread),
4722 paddress (lwp->stop_pc), paddress (pc));
4723 return false;
4724 }
4725
4726 /* On software single step target, resume the inferior with signal
4727 rather than stepping over. */
4728 if (can_software_single_step ()
4729 && lwp->pending_signals != NULL
4730 && lwp_signal_can_be_delivered (lwp))
4731 {
4732 if (debug_threads)
4733 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4734 " signals.\n",
4735 lwpid_of (thread));
4736
4737 return false;
4738 }
4739
4740 saved_thread = current_thread;
4741 current_thread = thread;
4742
4743 /* We can only step over breakpoints we know about. */
4744 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4745 {
4746 /* Don't step over a breakpoint that GDB expects to hit
4747 though. If the condition is being evaluated on the target's side
4748 and it evaluate to false, step over this breakpoint as well. */
4749 if (gdb_breakpoint_here (pc)
4750 && gdb_condition_true_at_breakpoint (pc)
4751 && gdb_no_commands_at_breakpoint (pc))
4752 {
4753 if (debug_threads)
4754 debug_printf ("Need step over [LWP %ld]? yes, but found"
4755 " GDB breakpoint at 0x%s; skipping step over\n",
4756 lwpid_of (thread), paddress (pc));
4757
4758 current_thread = saved_thread;
4759 return false;
4760 }
4761 else
4762 {
4763 if (debug_threads)
4764 debug_printf ("Need step over [LWP %ld]? yes, "
4765 "found breakpoint at 0x%s\n",
4766 lwpid_of (thread), paddress (pc));
4767
4768 /* We've found an lwp that needs stepping over --- return 1 so
4769 that find_thread stops looking. */
4770 current_thread = saved_thread;
4771
4772 return true;
4773 }
4774 }
4775
4776 current_thread = saved_thread;
4777
4778 if (debug_threads)
4779 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4780 " at 0x%s\n",
4781 lwpid_of (thread), paddress (pc));
4782
4783 return false;
4784 }
4785
4786 /* Start a step-over operation on LWP. When LWP stopped at a
4787 breakpoint, to make progress, we need to remove the breakpoint out
4788 of the way. If we let other threads run while we do that, they may
4789 pass by the breakpoint location and miss hitting it. To avoid
4790 that, a step-over momentarily stops all threads while LWP is
4791 single-stepped by either hardware or software while the breakpoint
4792 is temporarily uninserted from the inferior. When the single-step
4793 finishes, we reinsert the breakpoint, and let all threads that are
4794 supposed to be running, run again. */
4795
4796 static int
4797 start_step_over (struct lwp_info *lwp)
4798 {
4799 struct thread_info *thread = get_lwp_thread (lwp);
4800 struct thread_info *saved_thread;
4801 CORE_ADDR pc;
4802 int step;
4803
4804 if (debug_threads)
4805 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4806 lwpid_of (thread));
4807
4808 stop_all_lwps (1, lwp);
4809
4810 if (lwp->suspended != 0)
4811 {
4812 internal_error (__FILE__, __LINE__,
4813 "LWP %ld suspended=%d\n", lwpid_of (thread),
4814 lwp->suspended);
4815 }
4816
4817 if (debug_threads)
4818 debug_printf ("Done stopping all threads for step-over.\n");
4819
4820 /* Note, we should always reach here with an already adjusted PC,
4821 either by GDB (if we're resuming due to GDB's request), or by our
4822 caller, if we just finished handling an internal breakpoint GDB
4823 shouldn't care about. */
4824 pc = get_pc (lwp);
4825
4826 saved_thread = current_thread;
4827 current_thread = thread;
4828
4829 lwp->bp_reinsert = pc;
4830 uninsert_breakpoints_at (pc);
4831 uninsert_fast_tracepoint_jumps_at (pc);
4832
4833 step = single_step (lwp);
4834
4835 current_thread = saved_thread;
4836
4837 linux_resume_one_lwp (lwp, step, 0, NULL);
4838
4839 /* Require next event from this LWP. */
4840 step_over_bkpt = thread->id;
4841 return 1;
4842 }
4843
4844 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4845 start_step_over, if still there, and delete any single-step
4846 breakpoints we've set, on non hardware single-step targets. */
4847
4848 static int
4849 finish_step_over (struct lwp_info *lwp)
4850 {
4851 if (lwp->bp_reinsert != 0)
4852 {
4853 struct thread_info *saved_thread = current_thread;
4854
4855 if (debug_threads)
4856 debug_printf ("Finished step over.\n");
4857
4858 current_thread = get_lwp_thread (lwp);
4859
4860 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4861 may be no breakpoint to reinsert there by now. */
4862 reinsert_breakpoints_at (lwp->bp_reinsert);
4863 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4864
4865 lwp->bp_reinsert = 0;
4866
4867 /* Delete any single-step breakpoints. No longer needed. We
4868 don't have to worry about other threads hitting this trap,
4869 and later not being able to explain it, because we were
4870 stepping over a breakpoint, and we hold all threads but
4871 LWP stopped while doing that. */
4872 if (!can_hardware_single_step ())
4873 {
4874 gdb_assert (has_single_step_breakpoints (current_thread));
4875 delete_single_step_breakpoints (current_thread);
4876 }
4877
4878 step_over_bkpt = null_ptid;
4879 current_thread = saved_thread;
4880 return 1;
4881 }
4882 else
4883 return 0;
4884 }
4885
4886 /* If there's a step over in progress, wait until all threads stop
4887 (that is, until the stepping thread finishes its step), and
4888 unsuspend all lwps. The stepping thread ends with its status
4889 pending, which is processed later when we get back to processing
4890 events. */
4891
4892 static void
4893 complete_ongoing_step_over (void)
4894 {
4895 if (!ptid_equal (step_over_bkpt, null_ptid))
4896 {
4897 struct lwp_info *lwp;
4898 int wstat;
4899 int ret;
4900
4901 if (debug_threads)
4902 debug_printf ("detach: step over in progress, finish it first\n");
4903
4904 /* Passing NULL_PTID as filter indicates we want all events to
4905 be left pending. Eventually this returns when there are no
4906 unwaited-for children left. */
4907 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4908 &wstat, __WALL);
4909 gdb_assert (ret == -1);
4910
4911 lwp = find_lwp_pid (step_over_bkpt);
4912 if (lwp != NULL)
4913 finish_step_over (lwp);
4914 step_over_bkpt = null_ptid;
4915 unsuspend_all_lwps (lwp);
4916 }
4917 }
4918
4919 /* This function is called once per thread. We check the thread's resume
4920 request, which will tell us whether to resume, step, or leave the thread
4921 stopped; and what signal, if any, it should be sent.
4922
4923 For threads which we aren't explicitly told otherwise, we preserve
4924 the stepping flag; this is used for stepping over gdbserver-placed
4925 breakpoints.
4926
4927 If pending_flags was set in any thread, we queue any needed
4928 signals, since we won't actually resume. We already have a pending
4929 event to report, so we don't need to preserve any step requests;
4930 they should be re-issued if necessary. */
4931
4932 static void
4933 linux_resume_one_thread (thread_info *thread, bool leave_all_stopped)
4934 {
4935 struct lwp_info *lwp = get_thread_lwp (thread);
4936 int leave_pending;
4937
4938 if (lwp->resume == NULL)
4939 return;
4940
4941 if (lwp->resume->kind == resume_stop)
4942 {
4943 if (debug_threads)
4944 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4945
4946 if (!lwp->stopped)
4947 {
4948 if (debug_threads)
4949 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4950
4951 /* Stop the thread, and wait for the event asynchronously,
4952 through the event loop. */
4953 send_sigstop (lwp);
4954 }
4955 else
4956 {
4957 if (debug_threads)
4958 debug_printf ("already stopped LWP %ld\n",
4959 lwpid_of (thread));
4960
4961 /* The LWP may have been stopped in an internal event that
4962 was not meant to be notified back to GDB (e.g., gdbserver
4963 breakpoint), so we should be reporting a stop event in
4964 this case too. */
4965
4966 /* If the thread already has a pending SIGSTOP, this is a
4967 no-op. Otherwise, something later will presumably resume
4968 the thread and this will cause it to cancel any pending
4969 operation, due to last_resume_kind == resume_stop. If
4970 the thread already has a pending status to report, we
4971 will still report it the next time we wait - see
4972 status_pending_p_callback. */
4973
4974 /* If we already have a pending signal to report, then
4975 there's no need to queue a SIGSTOP, as this means we're
4976 midway through moving the LWP out of the jumppad, and we
4977 will report the pending signal as soon as that is
4978 finished. */
4979 if (lwp->pending_signals_to_report == NULL)
4980 send_sigstop (lwp);
4981 }
4982
4983 /* For stop requests, we're done. */
4984 lwp->resume = NULL;
4985 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4986 return;
4987 }
4988
4989 /* If this thread which is about to be resumed has a pending status,
4990 then don't resume it - we can just report the pending status.
4991 Likewise if it is suspended, because e.g., another thread is
4992 stepping past a breakpoint. Make sure to queue any signals that
4993 would otherwise be sent. In all-stop mode, we do this decision
4994 based on if *any* thread has a pending status. If there's a
4995 thread that needs the step-over-breakpoint dance, then don't
4996 resume any other thread but that particular one. */
4997 leave_pending = (lwp->suspended
4998 || lwp->status_pending_p
4999 || leave_all_stopped);
5000
5001 /* If we have a new signal, enqueue the signal. */
5002 if (lwp->resume->sig != 0)
5003 {
5004 siginfo_t info, *info_p;
5005
5006 /* If this is the same signal we were previously stopped by,
5007 make sure to queue its siginfo. */
5008 if (WIFSTOPPED (lwp->last_status)
5009 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5010 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5011 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5012 info_p = &info;
5013 else
5014 info_p = NULL;
5015
5016 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5017 }
5018
5019 if (!leave_pending)
5020 {
5021 if (debug_threads)
5022 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5023
5024 proceed_one_lwp (thread, NULL);
5025 }
5026 else
5027 {
5028 if (debug_threads)
5029 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5030 }
5031
5032 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5033 lwp->resume = NULL;
5034 }
5035
5036 static void
5037 linux_resume (struct thread_resume *resume_info, size_t n)
5038 {
5039 struct thread_info *need_step_over = NULL;
5040
5041 if (debug_threads)
5042 {
5043 debug_enter ();
5044 debug_printf ("linux_resume:\n");
5045 }
5046
5047 for_each_thread ([&] (thread_info *thread)
5048 {
5049 linux_set_resume_request (thread, resume_info, n);
5050 });
5051
5052 /* If there is a thread which would otherwise be resumed, which has
5053 a pending status, then don't resume any threads - we can just
5054 report the pending status. Make sure to queue any signals that
5055 would otherwise be sent. In non-stop mode, we'll apply this
5056 logic to each thread individually. We consume all pending events
5057 before considering to start a step-over (in all-stop). */
5058 bool any_pending = false;
5059 if (!non_stop)
5060 any_pending = find_thread (resume_status_pending_p) != NULL;
5061
5062 /* If there is a thread which would otherwise be resumed, which is
5063 stopped at a breakpoint that needs stepping over, then don't
5064 resume any threads - have it step over the breakpoint with all
5065 other threads stopped, then resume all threads again. Make sure
5066 to queue any signals that would otherwise be delivered or
5067 queued. */
5068 if (!any_pending && supports_breakpoints ())
5069 need_step_over = find_thread (need_step_over_p);
5070
5071 bool leave_all_stopped = (need_step_over != NULL || any_pending);
5072
5073 if (debug_threads)
5074 {
5075 if (need_step_over != NULL)
5076 debug_printf ("Not resuming all, need step over\n");
5077 else if (any_pending)
5078 debug_printf ("Not resuming, all-stop and found "
5079 "an LWP with pending status\n");
5080 else
5081 debug_printf ("Resuming, no pending status or step over needed\n");
5082 }
5083
5084 /* Even if we're leaving threads stopped, queue all signals we'd
5085 otherwise deliver. */
5086 for_each_thread ([&] (thread_info *thread)
5087 {
5088 linux_resume_one_thread (thread, leave_all_stopped);
5089 });
5090
5091 if (need_step_over)
5092 start_step_over (get_thread_lwp (need_step_over));
5093
5094 if (debug_threads)
5095 {
5096 debug_printf ("linux_resume done\n");
5097 debug_exit ();
5098 }
5099
5100 /* We may have events that were pending that can/should be sent to
5101 the client now. Trigger a linux_wait call. */
5102 if (target_is_async_p ())
5103 async_file_mark ();
5104 }
5105
5106 /* This function is called once per thread. We check the thread's
5107 last resume request, which will tell us whether to resume, step, or
5108 leave the thread stopped. Any signal the client requested to be
5109 delivered has already been enqueued at this point.
5110
5111 If any thread that GDB wants running is stopped at an internal
5112 breakpoint that needs stepping over, we start a step-over operation
5113 on that particular thread, and leave all others stopped. */
5114
5115 static void
5116 proceed_one_lwp (thread_info *thread, lwp_info *except)
5117 {
5118 struct lwp_info *lwp = get_thread_lwp (thread);
5119 int step;
5120
5121 if (lwp == except)
5122 return;
5123
5124 if (debug_threads)
5125 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5126
5127 if (!lwp->stopped)
5128 {
5129 if (debug_threads)
5130 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5131 return;
5132 }
5133
5134 if (thread->last_resume_kind == resume_stop
5135 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5136 {
5137 if (debug_threads)
5138 debug_printf (" client wants LWP to remain %ld stopped\n",
5139 lwpid_of (thread));
5140 return;
5141 }
5142
5143 if (lwp->status_pending_p)
5144 {
5145 if (debug_threads)
5146 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5147 lwpid_of (thread));
5148 return;
5149 }
5150
5151 gdb_assert (lwp->suspended >= 0);
5152
5153 if (lwp->suspended)
5154 {
5155 if (debug_threads)
5156 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5157 return;
5158 }
5159
5160 if (thread->last_resume_kind == resume_stop
5161 && lwp->pending_signals_to_report == NULL
5162 && (lwp->collecting_fast_tracepoint
5163 == fast_tpoint_collect_result::not_collecting))
5164 {
5165 /* We haven't reported this LWP as stopped yet (otherwise, the
5166 last_status.kind check above would catch it, and we wouldn't
5167 reach here. This LWP may have been momentarily paused by a
5168 stop_all_lwps call while handling for example, another LWP's
5169 step-over. In that case, the pending expected SIGSTOP signal
5170 that was queued at vCont;t handling time will have already
5171 been consumed by wait_for_sigstop, and so we need to requeue
5172 another one here. Note that if the LWP already has a SIGSTOP
5173 pending, this is a no-op. */
5174
5175 if (debug_threads)
5176 debug_printf ("Client wants LWP %ld to stop. "
5177 "Making sure it has a SIGSTOP pending\n",
5178 lwpid_of (thread));
5179
5180 send_sigstop (lwp);
5181 }
5182
5183 if (thread->last_resume_kind == resume_step)
5184 {
5185 if (debug_threads)
5186 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5187 lwpid_of (thread));
5188
5189 /* If resume_step is requested by GDB, install single-step
5190 breakpoints when the thread is about to be actually resumed if
5191 the single-step breakpoints weren't removed. */
5192 if (can_software_single_step ()
5193 && !has_single_step_breakpoints (thread))
5194 install_software_single_step_breakpoints (lwp);
5195
5196 step = maybe_hw_step (thread);
5197 }
5198 else if (lwp->bp_reinsert != 0)
5199 {
5200 if (debug_threads)
5201 debug_printf (" stepping LWP %ld, reinsert set\n",
5202 lwpid_of (thread));
5203
5204 step = maybe_hw_step (thread);
5205 }
5206 else
5207 step = 0;
5208
5209 linux_resume_one_lwp (lwp, step, 0, NULL);
5210 }
5211
5212 static void
5213 unsuspend_and_proceed_one_lwp (thread_info *thread, lwp_info *except)
5214 {
5215 struct lwp_info *lwp = get_thread_lwp (thread);
5216
5217 if (lwp == except)
5218 return;
5219
5220 lwp_suspended_decr (lwp);
5221
5222 proceed_one_lwp (thread, except);
5223 }
5224
5225 /* When we finish a step-over, set threads running again. If there's
5226 another thread that may need a step-over, now's the time to start
5227 it. Eventually, we'll move all threads past their breakpoints. */
5228
5229 static void
5230 proceed_all_lwps (void)
5231 {
5232 struct thread_info *need_step_over;
5233
5234 /* If there is a thread which would otherwise be resumed, which is
5235 stopped at a breakpoint that needs stepping over, then don't
5236 resume any threads - have it step over the breakpoint with all
5237 other threads stopped, then resume all threads again. */
5238
5239 if (supports_breakpoints ())
5240 {
5241 need_step_over = find_thread (need_step_over_p);
5242
5243 if (need_step_over != NULL)
5244 {
5245 if (debug_threads)
5246 debug_printf ("proceed_all_lwps: found "
5247 "thread %ld needing a step-over\n",
5248 lwpid_of (need_step_over));
5249
5250 start_step_over (get_thread_lwp (need_step_over));
5251 return;
5252 }
5253 }
5254
5255 if (debug_threads)
5256 debug_printf ("Proceeding, no step-over needed\n");
5257
5258 for_each_thread ([] (thread_info *thread)
5259 {
5260 proceed_one_lwp (thread, NULL);
5261 });
5262 }
5263
5264 /* Stopped LWPs that the client wanted to be running, that don't have
5265 pending statuses, are set to run again, except for EXCEPT, if not
5266 NULL. This undoes a stop_all_lwps call. */
5267
5268 static void
5269 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5270 {
5271 if (debug_threads)
5272 {
5273 debug_enter ();
5274 if (except)
5275 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5276 lwpid_of (get_lwp_thread (except)));
5277 else
5278 debug_printf ("unstopping all lwps\n");
5279 }
5280
5281 if (unsuspend)
5282 for_each_thread ([&] (thread_info *thread)
5283 {
5284 unsuspend_and_proceed_one_lwp (thread, except);
5285 });
5286 else
5287 for_each_thread ([&] (thread_info *thread)
5288 {
5289 proceed_one_lwp (thread, except);
5290 });
5291
5292 if (debug_threads)
5293 {
5294 debug_printf ("unstop_all_lwps done\n");
5295 debug_exit ();
5296 }
5297 }
5298
5299
5300 #ifdef HAVE_LINUX_REGSETS
5301
5302 #define use_linux_regsets 1
5303
5304 /* Returns true if REGSET has been disabled. */
5305
5306 static int
5307 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5308 {
5309 return (info->disabled_regsets != NULL
5310 && info->disabled_regsets[regset - info->regsets]);
5311 }
5312
5313 /* Disable REGSET. */
5314
5315 static void
5316 disable_regset (struct regsets_info *info, struct regset_info *regset)
5317 {
5318 int dr_offset;
5319
5320 dr_offset = regset - info->regsets;
5321 if (info->disabled_regsets == NULL)
5322 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5323 info->disabled_regsets[dr_offset] = 1;
5324 }
5325
5326 static int
5327 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5328 struct regcache *regcache)
5329 {
5330 struct regset_info *regset;
5331 int saw_general_regs = 0;
5332 int pid;
5333 struct iovec iov;
5334
5335 pid = lwpid_of (current_thread);
5336 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5337 {
5338 void *buf, *data;
5339 int nt_type, res;
5340
5341 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5342 continue;
5343
5344 buf = xmalloc (regset->size);
5345
5346 nt_type = regset->nt_type;
5347 if (nt_type)
5348 {
5349 iov.iov_base = buf;
5350 iov.iov_len = regset->size;
5351 data = (void *) &iov;
5352 }
5353 else
5354 data = buf;
5355
5356 #ifndef __sparc__
5357 res = ptrace (regset->get_request, pid,
5358 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5359 #else
5360 res = ptrace (regset->get_request, pid, data, nt_type);
5361 #endif
5362 if (res < 0)
5363 {
5364 if (errno == EIO)
5365 {
5366 /* If we get EIO on a regset, do not try it again for
5367 this process mode. */
5368 disable_regset (regsets_info, regset);
5369 }
5370 else if (errno == ENODATA)
5371 {
5372 /* ENODATA may be returned if the regset is currently
5373 not "active". This can happen in normal operation,
5374 so suppress the warning in this case. */
5375 }
5376 else if (errno == ESRCH)
5377 {
5378 /* At this point, ESRCH should mean the process is
5379 already gone, in which case we simply ignore attempts
5380 to read its registers. */
5381 }
5382 else
5383 {
5384 char s[256];
5385 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5386 pid);
5387 perror (s);
5388 }
5389 }
5390 else
5391 {
5392 if (regset->type == GENERAL_REGS)
5393 saw_general_regs = 1;
5394 regset->store_function (regcache, buf);
5395 }
5396 free (buf);
5397 }
5398 if (saw_general_regs)
5399 return 0;
5400 else
5401 return 1;
5402 }
5403
5404 static int
5405 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5406 struct regcache *regcache)
5407 {
5408 struct regset_info *regset;
5409 int saw_general_regs = 0;
5410 int pid;
5411 struct iovec iov;
5412
5413 pid = lwpid_of (current_thread);
5414 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5415 {
5416 void *buf, *data;
5417 int nt_type, res;
5418
5419 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5420 || regset->fill_function == NULL)
5421 continue;
5422
5423 buf = xmalloc (regset->size);
5424
5425 /* First fill the buffer with the current register set contents,
5426 in case there are any items in the kernel's regset that are
5427 not in gdbserver's regcache. */
5428
5429 nt_type = regset->nt_type;
5430 if (nt_type)
5431 {
5432 iov.iov_base = buf;
5433 iov.iov_len = regset->size;
5434 data = (void *) &iov;
5435 }
5436 else
5437 data = buf;
5438
5439 #ifndef __sparc__
5440 res = ptrace (regset->get_request, pid,
5441 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5442 #else
5443 res = ptrace (regset->get_request, pid, data, nt_type);
5444 #endif
5445
5446 if (res == 0)
5447 {
5448 /* Then overlay our cached registers on that. */
5449 regset->fill_function (regcache, buf);
5450
5451 /* Only now do we write the register set. */
5452 #ifndef __sparc__
5453 res = ptrace (regset->set_request, pid,
5454 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5455 #else
5456 res = ptrace (regset->set_request, pid, data, nt_type);
5457 #endif
5458 }
5459
5460 if (res < 0)
5461 {
5462 if (errno == EIO)
5463 {
5464 /* If we get EIO on a regset, do not try it again for
5465 this process mode. */
5466 disable_regset (regsets_info, regset);
5467 }
5468 else if (errno == ESRCH)
5469 {
5470 /* At this point, ESRCH should mean the process is
5471 already gone, in which case we simply ignore attempts
5472 to change its registers. See also the related
5473 comment in linux_resume_one_lwp. */
5474 free (buf);
5475 return 0;
5476 }
5477 else
5478 {
5479 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5480 }
5481 }
5482 else if (regset->type == GENERAL_REGS)
5483 saw_general_regs = 1;
5484 free (buf);
5485 }
5486 if (saw_general_regs)
5487 return 0;
5488 else
5489 return 1;
5490 }
5491
5492 #else /* !HAVE_LINUX_REGSETS */
5493
5494 #define use_linux_regsets 0
5495 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5496 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5497
5498 #endif
5499
5500 /* Return 1 if register REGNO is supported by one of the regset ptrace
5501 calls or 0 if it has to be transferred individually. */
5502
5503 static int
5504 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5505 {
5506 unsigned char mask = 1 << (regno % 8);
5507 size_t index = regno / 8;
5508
5509 return (use_linux_regsets
5510 && (regs_info->regset_bitmap == NULL
5511 || (regs_info->regset_bitmap[index] & mask) != 0));
5512 }
5513
5514 #ifdef HAVE_LINUX_USRREGS
5515
5516 static int
5517 register_addr (const struct usrregs_info *usrregs, int regnum)
5518 {
5519 int addr;
5520
5521 if (regnum < 0 || regnum >= usrregs->num_regs)
5522 error ("Invalid register number %d.", regnum);
5523
5524 addr = usrregs->regmap[regnum];
5525
5526 return addr;
5527 }
5528
5529 /* Fetch one register. */
5530 static void
5531 fetch_register (const struct usrregs_info *usrregs,
5532 struct regcache *regcache, int regno)
5533 {
5534 CORE_ADDR regaddr;
5535 int i, size;
5536 char *buf;
5537 int pid;
5538
5539 if (regno >= usrregs->num_regs)
5540 return;
5541 if ((*the_low_target.cannot_fetch_register) (regno))
5542 return;
5543
5544 regaddr = register_addr (usrregs, regno);
5545 if (regaddr == -1)
5546 return;
5547
5548 size = ((register_size (regcache->tdesc, regno)
5549 + sizeof (PTRACE_XFER_TYPE) - 1)
5550 & -sizeof (PTRACE_XFER_TYPE));
5551 buf = (char *) alloca (size);
5552
5553 pid = lwpid_of (current_thread);
5554 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5555 {
5556 errno = 0;
5557 *(PTRACE_XFER_TYPE *) (buf + i) =
5558 ptrace (PTRACE_PEEKUSER, pid,
5559 /* Coerce to a uintptr_t first to avoid potential gcc warning
5560 of coercing an 8 byte integer to a 4 byte pointer. */
5561 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5562 regaddr += sizeof (PTRACE_XFER_TYPE);
5563 if (errno != 0)
5564 {
5565 /* Mark register REGNO unavailable. */
5566 supply_register (regcache, regno, NULL);
5567 return;
5568 }
5569 }
5570
5571 if (the_low_target.supply_ptrace_register)
5572 the_low_target.supply_ptrace_register (regcache, regno, buf);
5573 else
5574 supply_register (regcache, regno, buf);
5575 }
5576
5577 /* Store one register. */
5578 static void
5579 store_register (const struct usrregs_info *usrregs,
5580 struct regcache *regcache, int regno)
5581 {
5582 CORE_ADDR regaddr;
5583 int i, size;
5584 char *buf;
5585 int pid;
5586
5587 if (regno >= usrregs->num_regs)
5588 return;
5589 if ((*the_low_target.cannot_store_register) (regno))
5590 return;
5591
5592 regaddr = register_addr (usrregs, regno);
5593 if (regaddr == -1)
5594 return;
5595
5596 size = ((register_size (regcache->tdesc, regno)
5597 + sizeof (PTRACE_XFER_TYPE) - 1)
5598 & -sizeof (PTRACE_XFER_TYPE));
5599 buf = (char *) alloca (size);
5600 memset (buf, 0, size);
5601
5602 if (the_low_target.collect_ptrace_register)
5603 the_low_target.collect_ptrace_register (regcache, regno, buf);
5604 else
5605 collect_register (regcache, regno, buf);
5606
5607 pid = lwpid_of (current_thread);
5608 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5609 {
5610 errno = 0;
5611 ptrace (PTRACE_POKEUSER, pid,
5612 /* Coerce to a uintptr_t first to avoid potential gcc warning
5613 about coercing an 8 byte integer to a 4 byte pointer. */
5614 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5615 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5616 if (errno != 0)
5617 {
5618 /* At this point, ESRCH should mean the process is
5619 already gone, in which case we simply ignore attempts
5620 to change its registers. See also the related
5621 comment in linux_resume_one_lwp. */
5622 if (errno == ESRCH)
5623 return;
5624
5625 if ((*the_low_target.cannot_store_register) (regno) == 0)
5626 error ("writing register %d: %s", regno, strerror (errno));
5627 }
5628 regaddr += sizeof (PTRACE_XFER_TYPE);
5629 }
5630 }
5631
5632 /* Fetch all registers, or just one, from the child process.
5633 If REGNO is -1, do this for all registers, skipping any that are
5634 assumed to have been retrieved by regsets_fetch_inferior_registers,
5635 unless ALL is non-zero.
5636 Otherwise, REGNO specifies which register (so we can save time). */
5637 static void
5638 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5639 struct regcache *regcache, int regno, int all)
5640 {
5641 struct usrregs_info *usr = regs_info->usrregs;
5642
5643 if (regno == -1)
5644 {
5645 for (regno = 0; regno < usr->num_regs; regno++)
5646 if (all || !linux_register_in_regsets (regs_info, regno))
5647 fetch_register (usr, regcache, regno);
5648 }
5649 else
5650 fetch_register (usr, regcache, regno);
5651 }
5652
5653 /* Store our register values back into the inferior.
5654 If REGNO is -1, do this for all registers, skipping any that are
5655 assumed to have been saved by regsets_store_inferior_registers,
5656 unless ALL is non-zero.
5657 Otherwise, REGNO specifies which register (so we can save time). */
5658 static void
5659 usr_store_inferior_registers (const struct regs_info *regs_info,
5660 struct regcache *regcache, int regno, int all)
5661 {
5662 struct usrregs_info *usr = regs_info->usrregs;
5663
5664 if (regno == -1)
5665 {
5666 for (regno = 0; regno < usr->num_regs; regno++)
5667 if (all || !linux_register_in_regsets (regs_info, regno))
5668 store_register (usr, regcache, regno);
5669 }
5670 else
5671 store_register (usr, regcache, regno);
5672 }
5673
5674 #else /* !HAVE_LINUX_USRREGS */
5675
5676 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5677 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5678
5679 #endif
5680
5681
5682 static void
5683 linux_fetch_registers (struct regcache *regcache, int regno)
5684 {
5685 int use_regsets;
5686 int all = 0;
5687 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5688
5689 if (regno == -1)
5690 {
5691 if (the_low_target.fetch_register != NULL
5692 && regs_info->usrregs != NULL)
5693 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5694 (*the_low_target.fetch_register) (regcache, regno);
5695
5696 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5697 if (regs_info->usrregs != NULL)
5698 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5699 }
5700 else
5701 {
5702 if (the_low_target.fetch_register != NULL
5703 && (*the_low_target.fetch_register) (regcache, regno))
5704 return;
5705
5706 use_regsets = linux_register_in_regsets (regs_info, regno);
5707 if (use_regsets)
5708 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5709 regcache);
5710 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5711 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5712 }
5713 }
5714
5715 static void
5716 linux_store_registers (struct regcache *regcache, int regno)
5717 {
5718 int use_regsets;
5719 int all = 0;
5720 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5721
5722 if (regno == -1)
5723 {
5724 all = regsets_store_inferior_registers (regs_info->regsets_info,
5725 regcache);
5726 if (regs_info->usrregs != NULL)
5727 usr_store_inferior_registers (regs_info, regcache, regno, all);
5728 }
5729 else
5730 {
5731 use_regsets = linux_register_in_regsets (regs_info, regno);
5732 if (use_regsets)
5733 all = regsets_store_inferior_registers (regs_info->regsets_info,
5734 regcache);
5735 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5736 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5737 }
5738 }
5739
5740
5741 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5742 to debugger memory starting at MYADDR. */
5743
5744 static int
5745 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5746 {
5747 int pid = lwpid_of (current_thread);
5748 PTRACE_XFER_TYPE *buffer;
5749 CORE_ADDR addr;
5750 int count;
5751 char filename[64];
5752 int i;
5753 int ret;
5754 int fd;
5755
5756 /* Try using /proc. Don't bother for one word. */
5757 if (len >= 3 * sizeof (long))
5758 {
5759 int bytes;
5760
5761 /* We could keep this file open and cache it - possibly one per
5762 thread. That requires some juggling, but is even faster. */
5763 sprintf (filename, "/proc/%d/mem", pid);
5764 fd = open (filename, O_RDONLY | O_LARGEFILE);
5765 if (fd == -1)
5766 goto no_proc;
5767
5768 /* If pread64 is available, use it. It's faster if the kernel
5769 supports it (only one syscall), and it's 64-bit safe even on
5770 32-bit platforms (for instance, SPARC debugging a SPARC64
5771 application). */
5772 #ifdef HAVE_PREAD64
5773 bytes = pread64 (fd, myaddr, len, memaddr);
5774 #else
5775 bytes = -1;
5776 if (lseek (fd, memaddr, SEEK_SET) != -1)
5777 bytes = read (fd, myaddr, len);
5778 #endif
5779
5780 close (fd);
5781 if (bytes == len)
5782 return 0;
5783
5784 /* Some data was read, we'll try to get the rest with ptrace. */
5785 if (bytes > 0)
5786 {
5787 memaddr += bytes;
5788 myaddr += bytes;
5789 len -= bytes;
5790 }
5791 }
5792
5793 no_proc:
5794 /* Round starting address down to longword boundary. */
5795 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5796 /* Round ending address up; get number of longwords that makes. */
5797 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5798 / sizeof (PTRACE_XFER_TYPE));
5799 /* Allocate buffer of that many longwords. */
5800 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5801
5802 /* Read all the longwords */
5803 errno = 0;
5804 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5805 {
5806 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5807 about coercing an 8 byte integer to a 4 byte pointer. */
5808 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5809 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5810 (PTRACE_TYPE_ARG4) 0);
5811 if (errno)
5812 break;
5813 }
5814 ret = errno;
5815
5816 /* Copy appropriate bytes out of the buffer. */
5817 if (i > 0)
5818 {
5819 i *= sizeof (PTRACE_XFER_TYPE);
5820 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5821 memcpy (myaddr,
5822 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5823 i < len ? i : len);
5824 }
5825
5826 return ret;
5827 }
5828
5829 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5830 memory at MEMADDR. On failure (cannot write to the inferior)
5831 returns the value of errno. Always succeeds if LEN is zero. */
5832
5833 static int
5834 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5835 {
5836 int i;
5837 /* Round starting address down to longword boundary. */
5838 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5839 /* Round ending address up; get number of longwords that makes. */
5840 int count
5841 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5842 / sizeof (PTRACE_XFER_TYPE);
5843
5844 /* Allocate buffer of that many longwords. */
5845 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5846
5847 int pid = lwpid_of (current_thread);
5848
5849 if (len == 0)
5850 {
5851 /* Zero length write always succeeds. */
5852 return 0;
5853 }
5854
5855 if (debug_threads)
5856 {
5857 /* Dump up to four bytes. */
5858 char str[4 * 2 + 1];
5859 char *p = str;
5860 int dump = len < 4 ? len : 4;
5861
5862 for (i = 0; i < dump; i++)
5863 {
5864 sprintf (p, "%02x", myaddr[i]);
5865 p += 2;
5866 }
5867 *p = '\0';
5868
5869 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5870 str, (long) memaddr, pid);
5871 }
5872
5873 /* Fill start and end extra bytes of buffer with existing memory data. */
5874
5875 errno = 0;
5876 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5877 about coercing an 8 byte integer to a 4 byte pointer. */
5878 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5879 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5880 (PTRACE_TYPE_ARG4) 0);
5881 if (errno)
5882 return errno;
5883
5884 if (count > 1)
5885 {
5886 errno = 0;
5887 buffer[count - 1]
5888 = ptrace (PTRACE_PEEKTEXT, pid,
5889 /* Coerce to a uintptr_t first to avoid potential gcc warning
5890 about coercing an 8 byte integer to a 4 byte pointer. */
5891 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5892 * sizeof (PTRACE_XFER_TYPE)),
5893 (PTRACE_TYPE_ARG4) 0);
5894 if (errno)
5895 return errno;
5896 }
5897
5898 /* Copy data to be written over corresponding part of buffer. */
5899
5900 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5901 myaddr, len);
5902
5903 /* Write the entire buffer. */
5904
5905 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5906 {
5907 errno = 0;
5908 ptrace (PTRACE_POKETEXT, pid,
5909 /* Coerce to a uintptr_t first to avoid potential gcc warning
5910 about coercing an 8 byte integer to a 4 byte pointer. */
5911 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5912 (PTRACE_TYPE_ARG4) buffer[i]);
5913 if (errno)
5914 return errno;
5915 }
5916
5917 return 0;
5918 }
5919
5920 static void
5921 linux_look_up_symbols (void)
5922 {
5923 #ifdef USE_THREAD_DB
5924 struct process_info *proc = current_process ();
5925
5926 if (proc->priv->thread_db != NULL)
5927 return;
5928
5929 thread_db_init ();
5930 #endif
5931 }
5932
5933 static void
5934 linux_request_interrupt (void)
5935 {
5936 /* Send a SIGINT to the process group. This acts just like the user
5937 typed a ^C on the controlling terminal. */
5938 kill (-signal_pid, SIGINT);
5939 }
5940
5941 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5942 to debugger memory starting at MYADDR. */
5943
5944 static int
5945 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5946 {
5947 char filename[PATH_MAX];
5948 int fd, n;
5949 int pid = lwpid_of (current_thread);
5950
5951 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5952
5953 fd = open (filename, O_RDONLY);
5954 if (fd < 0)
5955 return -1;
5956
5957 if (offset != (CORE_ADDR) 0
5958 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5959 n = -1;
5960 else
5961 n = read (fd, myaddr, len);
5962
5963 close (fd);
5964
5965 return n;
5966 }
5967
5968 /* These breakpoint and watchpoint related wrapper functions simply
5969 pass on the function call if the target has registered a
5970 corresponding function. */
5971
5972 static int
5973 linux_supports_z_point_type (char z_type)
5974 {
5975 return (the_low_target.supports_z_point_type != NULL
5976 && the_low_target.supports_z_point_type (z_type));
5977 }
5978
5979 static int
5980 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5981 int size, struct raw_breakpoint *bp)
5982 {
5983 if (type == raw_bkpt_type_sw)
5984 return insert_memory_breakpoint (bp);
5985 else if (the_low_target.insert_point != NULL)
5986 return the_low_target.insert_point (type, addr, size, bp);
5987 else
5988 /* Unsupported (see target.h). */
5989 return 1;
5990 }
5991
5992 static int
5993 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5994 int size, struct raw_breakpoint *bp)
5995 {
5996 if (type == raw_bkpt_type_sw)
5997 return remove_memory_breakpoint (bp);
5998 else if (the_low_target.remove_point != NULL)
5999 return the_low_target.remove_point (type, addr, size, bp);
6000 else
6001 /* Unsupported (see target.h). */
6002 return 1;
6003 }
6004
6005 /* Implement the to_stopped_by_sw_breakpoint target_ops
6006 method. */
6007
6008 static int
6009 linux_stopped_by_sw_breakpoint (void)
6010 {
6011 struct lwp_info *lwp = get_thread_lwp (current_thread);
6012
6013 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6014 }
6015
6016 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6017 method. */
6018
6019 static int
6020 linux_supports_stopped_by_sw_breakpoint (void)
6021 {
6022 return USE_SIGTRAP_SIGINFO;
6023 }
6024
6025 /* Implement the to_stopped_by_hw_breakpoint target_ops
6026 method. */
6027
6028 static int
6029 linux_stopped_by_hw_breakpoint (void)
6030 {
6031 struct lwp_info *lwp = get_thread_lwp (current_thread);
6032
6033 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6034 }
6035
6036 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6037 method. */
6038
6039 static int
6040 linux_supports_stopped_by_hw_breakpoint (void)
6041 {
6042 return USE_SIGTRAP_SIGINFO;
6043 }
6044
6045 /* Implement the supports_hardware_single_step target_ops method. */
6046
6047 static int
6048 linux_supports_hardware_single_step (void)
6049 {
6050 return can_hardware_single_step ();
6051 }
6052
6053 static int
6054 linux_supports_software_single_step (void)
6055 {
6056 return can_software_single_step ();
6057 }
6058
6059 static int
6060 linux_stopped_by_watchpoint (void)
6061 {
6062 struct lwp_info *lwp = get_thread_lwp (current_thread);
6063
6064 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6065 }
6066
6067 static CORE_ADDR
6068 linux_stopped_data_address (void)
6069 {
6070 struct lwp_info *lwp = get_thread_lwp (current_thread);
6071
6072 return lwp->stopped_data_address;
6073 }
6074
6075 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6076 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6077 && defined(PT_TEXT_END_ADDR)
6078
6079 /* This is only used for targets that define PT_TEXT_ADDR,
6080 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6081 the target has different ways of acquiring this information, like
6082 loadmaps. */
6083
6084 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6085 to tell gdb about. */
6086
6087 static int
6088 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6089 {
6090 unsigned long text, text_end, data;
6091 int pid = lwpid_of (current_thread);
6092
6093 errno = 0;
6094
6095 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6096 (PTRACE_TYPE_ARG4) 0);
6097 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6098 (PTRACE_TYPE_ARG4) 0);
6099 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6100 (PTRACE_TYPE_ARG4) 0);
6101
6102 if (errno == 0)
6103 {
6104 /* Both text and data offsets produced at compile-time (and so
6105 used by gdb) are relative to the beginning of the program,
6106 with the data segment immediately following the text segment.
6107 However, the actual runtime layout in memory may put the data
6108 somewhere else, so when we send gdb a data base-address, we
6109 use the real data base address and subtract the compile-time
6110 data base-address from it (which is just the length of the
6111 text segment). BSS immediately follows data in both
6112 cases. */
6113 *text_p = text;
6114 *data_p = data - (text_end - text);
6115
6116 return 1;
6117 }
6118 return 0;
6119 }
6120 #endif
6121
6122 static int
6123 linux_qxfer_osdata (const char *annex,
6124 unsigned char *readbuf, unsigned const char *writebuf,
6125 CORE_ADDR offset, int len)
6126 {
6127 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6128 }
6129
6130 /* Convert a native/host siginfo object, into/from the siginfo in the
6131 layout of the inferiors' architecture. */
6132
6133 static void
6134 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6135 {
6136 int done = 0;
6137
6138 if (the_low_target.siginfo_fixup != NULL)
6139 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6140
6141 /* If there was no callback, or the callback didn't do anything,
6142 then just do a straight memcpy. */
6143 if (!done)
6144 {
6145 if (direction == 1)
6146 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6147 else
6148 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6149 }
6150 }
6151
6152 static int
6153 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6154 unsigned const char *writebuf, CORE_ADDR offset, int len)
6155 {
6156 int pid;
6157 siginfo_t siginfo;
6158 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6159
6160 if (current_thread == NULL)
6161 return -1;
6162
6163 pid = lwpid_of (current_thread);
6164
6165 if (debug_threads)
6166 debug_printf ("%s siginfo for lwp %d.\n",
6167 readbuf != NULL ? "Reading" : "Writing",
6168 pid);
6169
6170 if (offset >= sizeof (siginfo))
6171 return -1;
6172
6173 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6174 return -1;
6175
6176 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6177 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6178 inferior with a 64-bit GDBSERVER should look the same as debugging it
6179 with a 32-bit GDBSERVER, we need to convert it. */
6180 siginfo_fixup (&siginfo, inf_siginfo, 0);
6181
6182 if (offset + len > sizeof (siginfo))
6183 len = sizeof (siginfo) - offset;
6184
6185 if (readbuf != NULL)
6186 memcpy (readbuf, inf_siginfo + offset, len);
6187 else
6188 {
6189 memcpy (inf_siginfo + offset, writebuf, len);
6190
6191 /* Convert back to ptrace layout before flushing it out. */
6192 siginfo_fixup (&siginfo, inf_siginfo, 1);
6193
6194 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6195 return -1;
6196 }
6197
6198 return len;
6199 }
6200
6201 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6202 so we notice when children change state; as the handler for the
6203 sigsuspend in my_waitpid. */
6204
6205 static void
6206 sigchld_handler (int signo)
6207 {
6208 int old_errno = errno;
6209
6210 if (debug_threads)
6211 {
6212 do
6213 {
6214 /* fprintf is not async-signal-safe, so call write
6215 directly. */
6216 if (write (2, "sigchld_handler\n",
6217 sizeof ("sigchld_handler\n") - 1) < 0)
6218 break; /* just ignore */
6219 } while (0);
6220 }
6221
6222 if (target_is_async_p ())
6223 async_file_mark (); /* trigger a linux_wait */
6224
6225 errno = old_errno;
6226 }
6227
6228 static int
6229 linux_supports_non_stop (void)
6230 {
6231 return 1;
6232 }
6233
6234 static int
6235 linux_async (int enable)
6236 {
6237 int previous = target_is_async_p ();
6238
6239 if (debug_threads)
6240 debug_printf ("linux_async (%d), previous=%d\n",
6241 enable, previous);
6242
6243 if (previous != enable)
6244 {
6245 sigset_t mask;
6246 sigemptyset (&mask);
6247 sigaddset (&mask, SIGCHLD);
6248
6249 sigprocmask (SIG_BLOCK, &mask, NULL);
6250
6251 if (enable)
6252 {
6253 if (pipe (linux_event_pipe) == -1)
6254 {
6255 linux_event_pipe[0] = -1;
6256 linux_event_pipe[1] = -1;
6257 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6258
6259 warning ("creating event pipe failed.");
6260 return previous;
6261 }
6262
6263 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6264 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6265
6266 /* Register the event loop handler. */
6267 add_file_handler (linux_event_pipe[0],
6268 handle_target_event, NULL);
6269
6270 /* Always trigger a linux_wait. */
6271 async_file_mark ();
6272 }
6273 else
6274 {
6275 delete_file_handler (linux_event_pipe[0]);
6276
6277 close (linux_event_pipe[0]);
6278 close (linux_event_pipe[1]);
6279 linux_event_pipe[0] = -1;
6280 linux_event_pipe[1] = -1;
6281 }
6282
6283 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6284 }
6285
6286 return previous;
6287 }
6288
6289 static int
6290 linux_start_non_stop (int nonstop)
6291 {
6292 /* Register or unregister from event-loop accordingly. */
6293 linux_async (nonstop);
6294
6295 if (target_is_async_p () != (nonstop != 0))
6296 return -1;
6297
6298 return 0;
6299 }
6300
6301 static int
6302 linux_supports_multi_process (void)
6303 {
6304 return 1;
6305 }
6306
6307 /* Check if fork events are supported. */
6308
6309 static int
6310 linux_supports_fork_events (void)
6311 {
6312 return linux_supports_tracefork ();
6313 }
6314
6315 /* Check if vfork events are supported. */
6316
6317 static int
6318 linux_supports_vfork_events (void)
6319 {
6320 return linux_supports_tracefork ();
6321 }
6322
6323 /* Check if exec events are supported. */
6324
6325 static int
6326 linux_supports_exec_events (void)
6327 {
6328 return linux_supports_traceexec ();
6329 }
6330
6331 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6332 ptrace flags for all inferiors. This is in case the new GDB connection
6333 doesn't support the same set of events that the previous one did. */
6334
6335 static void
6336 linux_handle_new_gdb_connection (void)
6337 {
6338 /* Request that all the lwps reset their ptrace options. */
6339 for_each_thread ([] (thread_info *thread)
6340 {
6341 struct lwp_info *lwp = get_thread_lwp (thread);
6342
6343 if (!lwp->stopped)
6344 {
6345 /* Stop the lwp so we can modify its ptrace options. */
6346 lwp->must_set_ptrace_flags = 1;
6347 linux_stop_lwp (lwp);
6348 }
6349 else
6350 {
6351 /* Already stopped; go ahead and set the ptrace options. */
6352 struct process_info *proc = find_process_pid (pid_of (thread));
6353 int options = linux_low_ptrace_options (proc->attached);
6354
6355 linux_enable_event_reporting (lwpid_of (thread), options);
6356 lwp->must_set_ptrace_flags = 0;
6357 }
6358 });
6359 }
6360
6361 static int
6362 linux_supports_disable_randomization (void)
6363 {
6364 #ifdef HAVE_PERSONALITY
6365 return 1;
6366 #else
6367 return 0;
6368 #endif
6369 }
6370
6371 static int
6372 linux_supports_agent (void)
6373 {
6374 return 1;
6375 }
6376
6377 static int
6378 linux_supports_range_stepping (void)
6379 {
6380 if (can_software_single_step ())
6381 return 1;
6382 if (*the_low_target.supports_range_stepping == NULL)
6383 return 0;
6384
6385 return (*the_low_target.supports_range_stepping) ();
6386 }
6387
6388 /* Enumerate spufs IDs for process PID. */
6389 static int
6390 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6391 {
6392 int pos = 0;
6393 int written = 0;
6394 char path[128];
6395 DIR *dir;
6396 struct dirent *entry;
6397
6398 sprintf (path, "/proc/%ld/fd", pid);
6399 dir = opendir (path);
6400 if (!dir)
6401 return -1;
6402
6403 rewinddir (dir);
6404 while ((entry = readdir (dir)) != NULL)
6405 {
6406 struct stat st;
6407 struct statfs stfs;
6408 int fd;
6409
6410 fd = atoi (entry->d_name);
6411 if (!fd)
6412 continue;
6413
6414 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6415 if (stat (path, &st) != 0)
6416 continue;
6417 if (!S_ISDIR (st.st_mode))
6418 continue;
6419
6420 if (statfs (path, &stfs) != 0)
6421 continue;
6422 if (stfs.f_type != SPUFS_MAGIC)
6423 continue;
6424
6425 if (pos >= offset && pos + 4 <= offset + len)
6426 {
6427 *(unsigned int *)(buf + pos - offset) = fd;
6428 written += 4;
6429 }
6430 pos += 4;
6431 }
6432
6433 closedir (dir);
6434 return written;
6435 }
6436
6437 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6438 object type, using the /proc file system. */
6439 static int
6440 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6441 unsigned const char *writebuf,
6442 CORE_ADDR offset, int len)
6443 {
6444 long pid = lwpid_of (current_thread);
6445 char buf[128];
6446 int fd = 0;
6447 int ret = 0;
6448
6449 if (!writebuf && !readbuf)
6450 return -1;
6451
6452 if (!*annex)
6453 {
6454 if (!readbuf)
6455 return -1;
6456 else
6457 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6458 }
6459
6460 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6461 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6462 if (fd <= 0)
6463 return -1;
6464
6465 if (offset != 0
6466 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6467 {
6468 close (fd);
6469 return 0;
6470 }
6471
6472 if (writebuf)
6473 ret = write (fd, writebuf, (size_t) len);
6474 else
6475 ret = read (fd, readbuf, (size_t) len);
6476
6477 close (fd);
6478 return ret;
6479 }
6480
6481 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6482 struct target_loadseg
6483 {
6484 /* Core address to which the segment is mapped. */
6485 Elf32_Addr addr;
6486 /* VMA recorded in the program header. */
6487 Elf32_Addr p_vaddr;
6488 /* Size of this segment in memory. */
6489 Elf32_Word p_memsz;
6490 };
6491
6492 # if defined PT_GETDSBT
6493 struct target_loadmap
6494 {
6495 /* Protocol version number, must be zero. */
6496 Elf32_Word version;
6497 /* Pointer to the DSBT table, its size, and the DSBT index. */
6498 unsigned *dsbt_table;
6499 unsigned dsbt_size, dsbt_index;
6500 /* Number of segments in this map. */
6501 Elf32_Word nsegs;
6502 /* The actual memory map. */
6503 struct target_loadseg segs[/*nsegs*/];
6504 };
6505 # define LINUX_LOADMAP PT_GETDSBT
6506 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6507 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6508 # else
6509 struct target_loadmap
6510 {
6511 /* Protocol version number, must be zero. */
6512 Elf32_Half version;
6513 /* Number of segments in this map. */
6514 Elf32_Half nsegs;
6515 /* The actual memory map. */
6516 struct target_loadseg segs[/*nsegs*/];
6517 };
6518 # define LINUX_LOADMAP PTRACE_GETFDPIC
6519 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6520 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6521 # endif
6522
6523 static int
6524 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6525 unsigned char *myaddr, unsigned int len)
6526 {
6527 int pid = lwpid_of (current_thread);
6528 int addr = -1;
6529 struct target_loadmap *data = NULL;
6530 unsigned int actual_length, copy_length;
6531
6532 if (strcmp (annex, "exec") == 0)
6533 addr = (int) LINUX_LOADMAP_EXEC;
6534 else if (strcmp (annex, "interp") == 0)
6535 addr = (int) LINUX_LOADMAP_INTERP;
6536 else
6537 return -1;
6538
6539 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6540 return -1;
6541
6542 if (data == NULL)
6543 return -1;
6544
6545 actual_length = sizeof (struct target_loadmap)
6546 + sizeof (struct target_loadseg) * data->nsegs;
6547
6548 if (offset < 0 || offset > actual_length)
6549 return -1;
6550
6551 copy_length = actual_length - offset < len ? actual_length - offset : len;
6552 memcpy (myaddr, (char *) data + offset, copy_length);
6553 return copy_length;
6554 }
6555 #else
6556 # define linux_read_loadmap NULL
6557 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6558
6559 static void
6560 linux_process_qsupported (char **features, int count)
6561 {
6562 if (the_low_target.process_qsupported != NULL)
6563 the_low_target.process_qsupported (features, count);
6564 }
6565
6566 static int
6567 linux_supports_catch_syscall (void)
6568 {
6569 return (the_low_target.get_syscall_trapinfo != NULL
6570 && linux_supports_tracesysgood ());
6571 }
6572
6573 static int
6574 linux_get_ipa_tdesc_idx (void)
6575 {
6576 if (the_low_target.get_ipa_tdesc_idx == NULL)
6577 return 0;
6578
6579 return (*the_low_target.get_ipa_tdesc_idx) ();
6580 }
6581
6582 static int
6583 linux_supports_tracepoints (void)
6584 {
6585 if (*the_low_target.supports_tracepoints == NULL)
6586 return 0;
6587
6588 return (*the_low_target.supports_tracepoints) ();
6589 }
6590
6591 static CORE_ADDR
6592 linux_read_pc (struct regcache *regcache)
6593 {
6594 if (the_low_target.get_pc == NULL)
6595 return 0;
6596
6597 return (*the_low_target.get_pc) (regcache);
6598 }
6599
6600 static void
6601 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6602 {
6603 gdb_assert (the_low_target.set_pc != NULL);
6604
6605 (*the_low_target.set_pc) (regcache, pc);
6606 }
6607
6608 static int
6609 linux_thread_stopped (struct thread_info *thread)
6610 {
6611 return get_thread_lwp (thread)->stopped;
6612 }
6613
6614 /* This exposes stop-all-threads functionality to other modules. */
6615
6616 static void
6617 linux_pause_all (int freeze)
6618 {
6619 stop_all_lwps (freeze, NULL);
6620 }
6621
6622 /* This exposes unstop-all-threads functionality to other gdbserver
6623 modules. */
6624
6625 static void
6626 linux_unpause_all (int unfreeze)
6627 {
6628 unstop_all_lwps (unfreeze, NULL);
6629 }
6630
6631 static int
6632 linux_prepare_to_access_memory (void)
6633 {
6634 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6635 running LWP. */
6636 if (non_stop)
6637 linux_pause_all (1);
6638 return 0;
6639 }
6640
6641 static void
6642 linux_done_accessing_memory (void)
6643 {
6644 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6645 running LWP. */
6646 if (non_stop)
6647 linux_unpause_all (1);
6648 }
6649
6650 static int
6651 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6652 CORE_ADDR collector,
6653 CORE_ADDR lockaddr,
6654 ULONGEST orig_size,
6655 CORE_ADDR *jump_entry,
6656 CORE_ADDR *trampoline,
6657 ULONGEST *trampoline_size,
6658 unsigned char *jjump_pad_insn,
6659 ULONGEST *jjump_pad_insn_size,
6660 CORE_ADDR *adjusted_insn_addr,
6661 CORE_ADDR *adjusted_insn_addr_end,
6662 char *err)
6663 {
6664 return (*the_low_target.install_fast_tracepoint_jump_pad)
6665 (tpoint, tpaddr, collector, lockaddr, orig_size,
6666 jump_entry, trampoline, trampoline_size,
6667 jjump_pad_insn, jjump_pad_insn_size,
6668 adjusted_insn_addr, adjusted_insn_addr_end,
6669 err);
6670 }
6671
6672 static struct emit_ops *
6673 linux_emit_ops (void)
6674 {
6675 if (the_low_target.emit_ops != NULL)
6676 return (*the_low_target.emit_ops) ();
6677 else
6678 return NULL;
6679 }
6680
6681 static int
6682 linux_get_min_fast_tracepoint_insn_len (void)
6683 {
6684 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6685 }
6686
6687 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6688
6689 static int
6690 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6691 CORE_ADDR *phdr_memaddr, int *num_phdr)
6692 {
6693 char filename[PATH_MAX];
6694 int fd;
6695 const int auxv_size = is_elf64
6696 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6697 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6698
6699 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6700
6701 fd = open (filename, O_RDONLY);
6702 if (fd < 0)
6703 return 1;
6704
6705 *phdr_memaddr = 0;
6706 *num_phdr = 0;
6707 while (read (fd, buf, auxv_size) == auxv_size
6708 && (*phdr_memaddr == 0 || *num_phdr == 0))
6709 {
6710 if (is_elf64)
6711 {
6712 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6713
6714 switch (aux->a_type)
6715 {
6716 case AT_PHDR:
6717 *phdr_memaddr = aux->a_un.a_val;
6718 break;
6719 case AT_PHNUM:
6720 *num_phdr = aux->a_un.a_val;
6721 break;
6722 }
6723 }
6724 else
6725 {
6726 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6727
6728 switch (aux->a_type)
6729 {
6730 case AT_PHDR:
6731 *phdr_memaddr = aux->a_un.a_val;
6732 break;
6733 case AT_PHNUM:
6734 *num_phdr = aux->a_un.a_val;
6735 break;
6736 }
6737 }
6738 }
6739
6740 close (fd);
6741
6742 if (*phdr_memaddr == 0 || *num_phdr == 0)
6743 {
6744 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6745 "phdr_memaddr = %ld, phdr_num = %d",
6746 (long) *phdr_memaddr, *num_phdr);
6747 return 2;
6748 }
6749
6750 return 0;
6751 }
6752
6753 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6754
6755 static CORE_ADDR
6756 get_dynamic (const int pid, const int is_elf64)
6757 {
6758 CORE_ADDR phdr_memaddr, relocation;
6759 int num_phdr, i;
6760 unsigned char *phdr_buf;
6761 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6762
6763 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6764 return 0;
6765
6766 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6767 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6768
6769 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6770 return 0;
6771
6772 /* Compute relocation: it is expected to be 0 for "regular" executables,
6773 non-zero for PIE ones. */
6774 relocation = -1;
6775 for (i = 0; relocation == -1 && i < num_phdr; i++)
6776 if (is_elf64)
6777 {
6778 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6779
6780 if (p->p_type == PT_PHDR)
6781 relocation = phdr_memaddr - p->p_vaddr;
6782 }
6783 else
6784 {
6785 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6786
6787 if (p->p_type == PT_PHDR)
6788 relocation = phdr_memaddr - p->p_vaddr;
6789 }
6790
6791 if (relocation == -1)
6792 {
6793 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6794 any real world executables, including PIE executables, have always
6795 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6796 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6797 or present DT_DEBUG anyway (fpc binaries are statically linked).
6798
6799 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6800
6801 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6802
6803 return 0;
6804 }
6805
6806 for (i = 0; i < num_phdr; i++)
6807 {
6808 if (is_elf64)
6809 {
6810 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6811
6812 if (p->p_type == PT_DYNAMIC)
6813 return p->p_vaddr + relocation;
6814 }
6815 else
6816 {
6817 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6818
6819 if (p->p_type == PT_DYNAMIC)
6820 return p->p_vaddr + relocation;
6821 }
6822 }
6823
6824 return 0;
6825 }
6826
6827 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6828 can be 0 if the inferior does not yet have the library list initialized.
6829 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6830 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6831
6832 static CORE_ADDR
6833 get_r_debug (const int pid, const int is_elf64)
6834 {
6835 CORE_ADDR dynamic_memaddr;
6836 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6837 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6838 CORE_ADDR map = -1;
6839
6840 dynamic_memaddr = get_dynamic (pid, is_elf64);
6841 if (dynamic_memaddr == 0)
6842 return map;
6843
6844 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6845 {
6846 if (is_elf64)
6847 {
6848 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6849 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6850 union
6851 {
6852 Elf64_Xword map;
6853 unsigned char buf[sizeof (Elf64_Xword)];
6854 }
6855 rld_map;
6856 #endif
6857 #ifdef DT_MIPS_RLD_MAP
6858 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6859 {
6860 if (linux_read_memory (dyn->d_un.d_val,
6861 rld_map.buf, sizeof (rld_map.buf)) == 0)
6862 return rld_map.map;
6863 else
6864 break;
6865 }
6866 #endif /* DT_MIPS_RLD_MAP */
6867 #ifdef DT_MIPS_RLD_MAP_REL
6868 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6869 {
6870 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6871 rld_map.buf, sizeof (rld_map.buf)) == 0)
6872 return rld_map.map;
6873 else
6874 break;
6875 }
6876 #endif /* DT_MIPS_RLD_MAP_REL */
6877
6878 if (dyn->d_tag == DT_DEBUG && map == -1)
6879 map = dyn->d_un.d_val;
6880
6881 if (dyn->d_tag == DT_NULL)
6882 break;
6883 }
6884 else
6885 {
6886 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6887 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6888 union
6889 {
6890 Elf32_Word map;
6891 unsigned char buf[sizeof (Elf32_Word)];
6892 }
6893 rld_map;
6894 #endif
6895 #ifdef DT_MIPS_RLD_MAP
6896 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6897 {
6898 if (linux_read_memory (dyn->d_un.d_val,
6899 rld_map.buf, sizeof (rld_map.buf)) == 0)
6900 return rld_map.map;
6901 else
6902 break;
6903 }
6904 #endif /* DT_MIPS_RLD_MAP */
6905 #ifdef DT_MIPS_RLD_MAP_REL
6906 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6907 {
6908 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6909 rld_map.buf, sizeof (rld_map.buf)) == 0)
6910 return rld_map.map;
6911 else
6912 break;
6913 }
6914 #endif /* DT_MIPS_RLD_MAP_REL */
6915
6916 if (dyn->d_tag == DT_DEBUG && map == -1)
6917 map = dyn->d_un.d_val;
6918
6919 if (dyn->d_tag == DT_NULL)
6920 break;
6921 }
6922
6923 dynamic_memaddr += dyn_size;
6924 }
6925
6926 return map;
6927 }
6928
6929 /* Read one pointer from MEMADDR in the inferior. */
6930
6931 static int
6932 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6933 {
6934 int ret;
6935
6936 /* Go through a union so this works on either big or little endian
6937 hosts, when the inferior's pointer size is smaller than the size
6938 of CORE_ADDR. It is assumed the inferior's endianness is the
6939 same of the superior's. */
6940 union
6941 {
6942 CORE_ADDR core_addr;
6943 unsigned int ui;
6944 unsigned char uc;
6945 } addr;
6946
6947 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6948 if (ret == 0)
6949 {
6950 if (ptr_size == sizeof (CORE_ADDR))
6951 *ptr = addr.core_addr;
6952 else if (ptr_size == sizeof (unsigned int))
6953 *ptr = addr.ui;
6954 else
6955 gdb_assert_not_reached ("unhandled pointer size");
6956 }
6957 return ret;
6958 }
6959
6960 struct link_map_offsets
6961 {
6962 /* Offset and size of r_debug.r_version. */
6963 int r_version_offset;
6964
6965 /* Offset and size of r_debug.r_map. */
6966 int r_map_offset;
6967
6968 /* Offset to l_addr field in struct link_map. */
6969 int l_addr_offset;
6970
6971 /* Offset to l_name field in struct link_map. */
6972 int l_name_offset;
6973
6974 /* Offset to l_ld field in struct link_map. */
6975 int l_ld_offset;
6976
6977 /* Offset to l_next field in struct link_map. */
6978 int l_next_offset;
6979
6980 /* Offset to l_prev field in struct link_map. */
6981 int l_prev_offset;
6982 };
6983
6984 /* Construct qXfer:libraries-svr4:read reply. */
6985
6986 static int
6987 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6988 unsigned const char *writebuf,
6989 CORE_ADDR offset, int len)
6990 {
6991 char *document;
6992 unsigned document_len;
6993 struct process_info_private *const priv = current_process ()->priv;
6994 char filename[PATH_MAX];
6995 int pid, is_elf64;
6996
6997 static const struct link_map_offsets lmo_32bit_offsets =
6998 {
6999 0, /* r_version offset. */
7000 4, /* r_debug.r_map offset. */
7001 0, /* l_addr offset in link_map. */
7002 4, /* l_name offset in link_map. */
7003 8, /* l_ld offset in link_map. */
7004 12, /* l_next offset in link_map. */
7005 16 /* l_prev offset in link_map. */
7006 };
7007
7008 static const struct link_map_offsets lmo_64bit_offsets =
7009 {
7010 0, /* r_version offset. */
7011 8, /* r_debug.r_map offset. */
7012 0, /* l_addr offset in link_map. */
7013 8, /* l_name offset in link_map. */
7014 16, /* l_ld offset in link_map. */
7015 24, /* l_next offset in link_map. */
7016 32 /* l_prev offset in link_map. */
7017 };
7018 const struct link_map_offsets *lmo;
7019 unsigned int machine;
7020 int ptr_size;
7021 CORE_ADDR lm_addr = 0, lm_prev = 0;
7022 int allocated = 1024;
7023 char *p;
7024 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7025 int header_done = 0;
7026
7027 if (writebuf != NULL)
7028 return -2;
7029 if (readbuf == NULL)
7030 return -1;
7031
7032 pid = lwpid_of (current_thread);
7033 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7034 is_elf64 = elf_64_file_p (filename, &machine);
7035 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7036 ptr_size = is_elf64 ? 8 : 4;
7037
7038 while (annex[0] != '\0')
7039 {
7040 const char *sep;
7041 CORE_ADDR *addrp;
7042 int len;
7043
7044 sep = strchr (annex, '=');
7045 if (sep == NULL)
7046 break;
7047
7048 len = sep - annex;
7049 if (len == 5 && startswith (annex, "start"))
7050 addrp = &lm_addr;
7051 else if (len == 4 && startswith (annex, "prev"))
7052 addrp = &lm_prev;
7053 else
7054 {
7055 annex = strchr (sep, ';');
7056 if (annex == NULL)
7057 break;
7058 annex++;
7059 continue;
7060 }
7061
7062 annex = decode_address_to_semicolon (addrp, sep + 1);
7063 }
7064
7065 if (lm_addr == 0)
7066 {
7067 int r_version = 0;
7068
7069 if (priv->r_debug == 0)
7070 priv->r_debug = get_r_debug (pid, is_elf64);
7071
7072 /* We failed to find DT_DEBUG. Such situation will not change
7073 for this inferior - do not retry it. Report it to GDB as
7074 E01, see for the reasons at the GDB solib-svr4.c side. */
7075 if (priv->r_debug == (CORE_ADDR) -1)
7076 return -1;
7077
7078 if (priv->r_debug != 0)
7079 {
7080 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7081 (unsigned char *) &r_version,
7082 sizeof (r_version)) != 0
7083 || r_version != 1)
7084 {
7085 warning ("unexpected r_debug version %d", r_version);
7086 }
7087 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7088 &lm_addr, ptr_size) != 0)
7089 {
7090 warning ("unable to read r_map from 0x%lx",
7091 (long) priv->r_debug + lmo->r_map_offset);
7092 }
7093 }
7094 }
7095
7096 document = (char *) xmalloc (allocated);
7097 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7098 p = document + strlen (document);
7099
7100 while (lm_addr
7101 && read_one_ptr (lm_addr + lmo->l_name_offset,
7102 &l_name, ptr_size) == 0
7103 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7104 &l_addr, ptr_size) == 0
7105 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7106 &l_ld, ptr_size) == 0
7107 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7108 &l_prev, ptr_size) == 0
7109 && read_one_ptr (lm_addr + lmo->l_next_offset,
7110 &l_next, ptr_size) == 0)
7111 {
7112 unsigned char libname[PATH_MAX];
7113
7114 if (lm_prev != l_prev)
7115 {
7116 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7117 (long) lm_prev, (long) l_prev);
7118 break;
7119 }
7120
7121 /* Ignore the first entry even if it has valid name as the first entry
7122 corresponds to the main executable. The first entry should not be
7123 skipped if the dynamic loader was loaded late by a static executable
7124 (see solib-svr4.c parameter ignore_first). But in such case the main
7125 executable does not have PT_DYNAMIC present and this function already
7126 exited above due to failed get_r_debug. */
7127 if (lm_prev == 0)
7128 {
7129 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7130 p = p + strlen (p);
7131 }
7132 else
7133 {
7134 /* Not checking for error because reading may stop before
7135 we've got PATH_MAX worth of characters. */
7136 libname[0] = '\0';
7137 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7138 libname[sizeof (libname) - 1] = '\0';
7139 if (libname[0] != '\0')
7140 {
7141 /* 6x the size for xml_escape_text below. */
7142 size_t len = 6 * strlen ((char *) libname);
7143
7144 if (!header_done)
7145 {
7146 /* Terminate `<library-list-svr4'. */
7147 *p++ = '>';
7148 header_done = 1;
7149 }
7150
7151 while (allocated < p - document + len + 200)
7152 {
7153 /* Expand to guarantee sufficient storage. */
7154 uintptr_t document_len = p - document;
7155
7156 document = (char *) xrealloc (document, 2 * allocated);
7157 allocated *= 2;
7158 p = document + document_len;
7159 }
7160
7161 std::string name = xml_escape_text ((char *) libname);
7162 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7163 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7164 name.c_str (), (unsigned long) lm_addr,
7165 (unsigned long) l_addr, (unsigned long) l_ld);
7166 }
7167 }
7168
7169 lm_prev = lm_addr;
7170 lm_addr = l_next;
7171 }
7172
7173 if (!header_done)
7174 {
7175 /* Empty list; terminate `<library-list-svr4'. */
7176 strcpy (p, "/>");
7177 }
7178 else
7179 strcpy (p, "</library-list-svr4>");
7180
7181 document_len = strlen (document);
7182 if (offset < document_len)
7183 document_len -= offset;
7184 else
7185 document_len = 0;
7186 if (len > document_len)
7187 len = document_len;
7188
7189 memcpy (readbuf, document + offset, len);
7190 xfree (document);
7191
7192 return len;
7193 }
7194
7195 #ifdef HAVE_LINUX_BTRACE
7196
7197 /* See to_disable_btrace target method. */
7198
7199 static int
7200 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7201 {
7202 enum btrace_error err;
7203
7204 err = linux_disable_btrace (tinfo);
7205 return (err == BTRACE_ERR_NONE ? 0 : -1);
7206 }
7207
7208 /* Encode an Intel Processor Trace configuration. */
7209
7210 static void
7211 linux_low_encode_pt_config (struct buffer *buffer,
7212 const struct btrace_data_pt_config *config)
7213 {
7214 buffer_grow_str (buffer, "<pt-config>\n");
7215
7216 switch (config->cpu.vendor)
7217 {
7218 case CV_INTEL:
7219 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7220 "model=\"%u\" stepping=\"%u\"/>\n",
7221 config->cpu.family, config->cpu.model,
7222 config->cpu.stepping);
7223 break;
7224
7225 default:
7226 break;
7227 }
7228
7229 buffer_grow_str (buffer, "</pt-config>\n");
7230 }
7231
7232 /* Encode a raw buffer. */
7233
7234 static void
7235 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7236 unsigned int size)
7237 {
7238 if (size == 0)
7239 return;
7240
7241 /* We use hex encoding - see common/rsp-low.h. */
7242 buffer_grow_str (buffer, "<raw>\n");
7243
7244 while (size-- > 0)
7245 {
7246 char elem[2];
7247
7248 elem[0] = tohex ((*data >> 4) & 0xf);
7249 elem[1] = tohex (*data++ & 0xf);
7250
7251 buffer_grow (buffer, elem, 2);
7252 }
7253
7254 buffer_grow_str (buffer, "</raw>\n");
7255 }
7256
7257 /* See to_read_btrace target method. */
7258
7259 static int
7260 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7261 enum btrace_read_type type)
7262 {
7263 struct btrace_data btrace;
7264 struct btrace_block *block;
7265 enum btrace_error err;
7266 int i;
7267
7268 btrace_data_init (&btrace);
7269
7270 err = linux_read_btrace (&btrace, tinfo, type);
7271 if (err != BTRACE_ERR_NONE)
7272 {
7273 if (err == BTRACE_ERR_OVERFLOW)
7274 buffer_grow_str0 (buffer, "E.Overflow.");
7275 else
7276 buffer_grow_str0 (buffer, "E.Generic Error.");
7277
7278 goto err;
7279 }
7280
7281 switch (btrace.format)
7282 {
7283 case BTRACE_FORMAT_NONE:
7284 buffer_grow_str0 (buffer, "E.No Trace.");
7285 goto err;
7286
7287 case BTRACE_FORMAT_BTS:
7288 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7289 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7290
7291 for (i = 0;
7292 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7293 i++)
7294 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7295 paddress (block->begin), paddress (block->end));
7296
7297 buffer_grow_str0 (buffer, "</btrace>\n");
7298 break;
7299
7300 case BTRACE_FORMAT_PT:
7301 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7302 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7303 buffer_grow_str (buffer, "<pt>\n");
7304
7305 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7306
7307 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7308 btrace.variant.pt.size);
7309
7310 buffer_grow_str (buffer, "</pt>\n");
7311 buffer_grow_str0 (buffer, "</btrace>\n");
7312 break;
7313
7314 default:
7315 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7316 goto err;
7317 }
7318
7319 btrace_data_fini (&btrace);
7320 return 0;
7321
7322 err:
7323 btrace_data_fini (&btrace);
7324 return -1;
7325 }
7326
7327 /* See to_btrace_conf target method. */
7328
7329 static int
7330 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7331 struct buffer *buffer)
7332 {
7333 const struct btrace_config *conf;
7334
7335 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7336 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7337
7338 conf = linux_btrace_conf (tinfo);
7339 if (conf != NULL)
7340 {
7341 switch (conf->format)
7342 {
7343 case BTRACE_FORMAT_NONE:
7344 break;
7345
7346 case BTRACE_FORMAT_BTS:
7347 buffer_xml_printf (buffer, "<bts");
7348 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7349 buffer_xml_printf (buffer, " />\n");
7350 break;
7351
7352 case BTRACE_FORMAT_PT:
7353 buffer_xml_printf (buffer, "<pt");
7354 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7355 buffer_xml_printf (buffer, "/>\n");
7356 break;
7357 }
7358 }
7359
7360 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7361 return 0;
7362 }
7363 #endif /* HAVE_LINUX_BTRACE */
7364
7365 /* See nat/linux-nat.h. */
7366
7367 ptid_t
7368 current_lwp_ptid (void)
7369 {
7370 return ptid_of (current_thread);
7371 }
7372
7373 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7374
7375 static int
7376 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7377 {
7378 if (the_low_target.breakpoint_kind_from_pc != NULL)
7379 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7380 else
7381 return default_breakpoint_kind_from_pc (pcptr);
7382 }
7383
7384 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7385
7386 static const gdb_byte *
7387 linux_sw_breakpoint_from_kind (int kind, int *size)
7388 {
7389 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7390
7391 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7392 }
7393
7394 /* Implementation of the target_ops method
7395 "breakpoint_kind_from_current_state". */
7396
7397 static int
7398 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7399 {
7400 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7401 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7402 else
7403 return linux_breakpoint_kind_from_pc (pcptr);
7404 }
7405
7406 /* Default implementation of linux_target_ops method "set_pc" for
7407 32-bit pc register which is literally named "pc". */
7408
7409 void
7410 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7411 {
7412 uint32_t newpc = pc;
7413
7414 supply_register_by_name (regcache, "pc", &newpc);
7415 }
7416
7417 /* Default implementation of linux_target_ops method "get_pc" for
7418 32-bit pc register which is literally named "pc". */
7419
7420 CORE_ADDR
7421 linux_get_pc_32bit (struct regcache *regcache)
7422 {
7423 uint32_t pc;
7424
7425 collect_register_by_name (regcache, "pc", &pc);
7426 if (debug_threads)
7427 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7428 return pc;
7429 }
7430
7431 /* Default implementation of linux_target_ops method "set_pc" for
7432 64-bit pc register which is literally named "pc". */
7433
7434 void
7435 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7436 {
7437 uint64_t newpc = pc;
7438
7439 supply_register_by_name (regcache, "pc", &newpc);
7440 }
7441
7442 /* Default implementation of linux_target_ops method "get_pc" for
7443 64-bit pc register which is literally named "pc". */
7444
7445 CORE_ADDR
7446 linux_get_pc_64bit (struct regcache *regcache)
7447 {
7448 uint64_t pc;
7449
7450 collect_register_by_name (regcache, "pc", &pc);
7451 if (debug_threads)
7452 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7453 return pc;
7454 }
7455
7456
7457 static struct target_ops linux_target_ops = {
7458 linux_create_inferior,
7459 linux_post_create_inferior,
7460 linux_attach,
7461 linux_kill,
7462 linux_detach,
7463 linux_mourn,
7464 linux_join,
7465 linux_thread_alive,
7466 linux_resume,
7467 linux_wait,
7468 linux_fetch_registers,
7469 linux_store_registers,
7470 linux_prepare_to_access_memory,
7471 linux_done_accessing_memory,
7472 linux_read_memory,
7473 linux_write_memory,
7474 linux_look_up_symbols,
7475 linux_request_interrupt,
7476 linux_read_auxv,
7477 linux_supports_z_point_type,
7478 linux_insert_point,
7479 linux_remove_point,
7480 linux_stopped_by_sw_breakpoint,
7481 linux_supports_stopped_by_sw_breakpoint,
7482 linux_stopped_by_hw_breakpoint,
7483 linux_supports_stopped_by_hw_breakpoint,
7484 linux_supports_hardware_single_step,
7485 linux_stopped_by_watchpoint,
7486 linux_stopped_data_address,
7487 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7488 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7489 && defined(PT_TEXT_END_ADDR)
7490 linux_read_offsets,
7491 #else
7492 NULL,
7493 #endif
7494 #ifdef USE_THREAD_DB
7495 thread_db_get_tls_address,
7496 #else
7497 NULL,
7498 #endif
7499 linux_qxfer_spu,
7500 hostio_last_error_from_errno,
7501 linux_qxfer_osdata,
7502 linux_xfer_siginfo,
7503 linux_supports_non_stop,
7504 linux_async,
7505 linux_start_non_stop,
7506 linux_supports_multi_process,
7507 linux_supports_fork_events,
7508 linux_supports_vfork_events,
7509 linux_supports_exec_events,
7510 linux_handle_new_gdb_connection,
7511 #ifdef USE_THREAD_DB
7512 thread_db_handle_monitor_command,
7513 #else
7514 NULL,
7515 #endif
7516 linux_common_core_of_thread,
7517 linux_read_loadmap,
7518 linux_process_qsupported,
7519 linux_supports_tracepoints,
7520 linux_read_pc,
7521 linux_write_pc,
7522 linux_thread_stopped,
7523 NULL,
7524 linux_pause_all,
7525 linux_unpause_all,
7526 linux_stabilize_threads,
7527 linux_install_fast_tracepoint_jump_pad,
7528 linux_emit_ops,
7529 linux_supports_disable_randomization,
7530 linux_get_min_fast_tracepoint_insn_len,
7531 linux_qxfer_libraries_svr4,
7532 linux_supports_agent,
7533 #ifdef HAVE_LINUX_BTRACE
7534 linux_supports_btrace,
7535 linux_enable_btrace,
7536 linux_low_disable_btrace,
7537 linux_low_read_btrace,
7538 linux_low_btrace_conf,
7539 #else
7540 NULL,
7541 NULL,
7542 NULL,
7543 NULL,
7544 NULL,
7545 #endif
7546 linux_supports_range_stepping,
7547 linux_proc_pid_to_exec_file,
7548 linux_mntns_open_cloexec,
7549 linux_mntns_unlink,
7550 linux_mntns_readlink,
7551 linux_breakpoint_kind_from_pc,
7552 linux_sw_breakpoint_from_kind,
7553 linux_proc_tid_get_name,
7554 linux_breakpoint_kind_from_current_state,
7555 linux_supports_software_single_step,
7556 linux_supports_catch_syscall,
7557 linux_get_ipa_tdesc_idx,
7558 #if USE_THREAD_DB
7559 thread_db_thread_handle,
7560 #else
7561 NULL,
7562 #endif
7563 };
7564
7565 #ifdef HAVE_LINUX_REGSETS
7566 void
7567 initialize_regsets_info (struct regsets_info *info)
7568 {
7569 for (info->num_regsets = 0;
7570 info->regsets[info->num_regsets].size >= 0;
7571 info->num_regsets++)
7572 ;
7573 }
7574 #endif
7575
7576 void
7577 initialize_low (void)
7578 {
7579 struct sigaction sigchld_action;
7580
7581 memset (&sigchld_action, 0, sizeof (sigchld_action));
7582 set_target_ops (&linux_target_ops);
7583
7584 linux_ptrace_init_warnings ();
7585
7586 sigchld_action.sa_handler = sigchld_handler;
7587 sigemptyset (&sigchld_action.sa_mask);
7588 sigchld_action.sa_flags = SA_RESTART;
7589 sigaction (SIGCHLD, &sigchld_action, NULL);
7590
7591 initialize_low_arch ();
7592
7593 linux_check_ptrace_features ();
7594 }
This page took 0.186563 seconds and 5 git commands to generate.