Move errno.h to common-defs.h
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2014 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <sys/ptrace.h>
28 #include "nat/linux-ptrace.h"
29 #include "nat/linux-procfs.h"
30 #include <signal.h>
31 #include <sys/ioctl.h>
32 #include <fcntl.h>
33 #include <unistd.h>
34 #include <sys/syscall.h>
35 #include <sched.h>
36 #include <ctype.h>
37 #include <pwd.h>
38 #include <sys/types.h>
39 #include <dirent.h>
40 #include <sys/stat.h>
41 #include <sys/vfs.h>
42 #include <sys/uio.h>
43 #include "filestuff.h"
44 #include "tracepoint.h"
45 #include "hostio.h"
46 #ifndef ELFMAG0
47 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
48 then ELFMAG0 will have been defined. If it didn't get included by
49 gdb_proc_service.h then including it will likely introduce a duplicate
50 definition of elf_fpregset_t. */
51 #include <elf.h>
52 #endif
53
54 #ifndef SPUFS_MAGIC
55 #define SPUFS_MAGIC 0x23c9b64e
56 #endif
57
58 #ifdef HAVE_PERSONALITY
59 # include <sys/personality.h>
60 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
61 # define ADDR_NO_RANDOMIZE 0x0040000
62 # endif
63 #endif
64
65 #ifndef O_LARGEFILE
66 #define O_LARGEFILE 0
67 #endif
68
69 #ifndef W_STOPCODE
70 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
71 #endif
72
73 /* This is the kernel's hard limit. Not to be confused with
74 SIGRTMIN. */
75 #ifndef __SIGRTMIN
76 #define __SIGRTMIN 32
77 #endif
78
79 /* Some targets did not define these ptrace constants from the start,
80 so gdbserver defines them locally here. In the future, these may
81 be removed after they are added to asm/ptrace.h. */
82 #if !(defined(PT_TEXT_ADDR) \
83 || defined(PT_DATA_ADDR) \
84 || defined(PT_TEXT_END_ADDR))
85 #if defined(__mcoldfire__)
86 /* These are still undefined in 3.10 kernels. */
87 #define PT_TEXT_ADDR 49*4
88 #define PT_DATA_ADDR 50*4
89 #define PT_TEXT_END_ADDR 51*4
90 /* BFIN already defines these since at least 2.6.32 kernels. */
91 #elif defined(BFIN)
92 #define PT_TEXT_ADDR 220
93 #define PT_TEXT_END_ADDR 224
94 #define PT_DATA_ADDR 228
95 /* These are still undefined in 3.10 kernels. */
96 #elif defined(__TMS320C6X__)
97 #define PT_TEXT_ADDR (0x10000*4)
98 #define PT_DATA_ADDR (0x10004*4)
99 #define PT_TEXT_END_ADDR (0x10008*4)
100 #endif
101 #endif
102
103 #ifdef HAVE_LINUX_BTRACE
104 # include "nat/linux-btrace.h"
105 #endif
106
107 #ifndef HAVE_ELF32_AUXV_T
108 /* Copied from glibc's elf.h. */
109 typedef struct
110 {
111 uint32_t a_type; /* Entry type */
112 union
113 {
114 uint32_t a_val; /* Integer value */
115 /* We use to have pointer elements added here. We cannot do that,
116 though, since it does not work when using 32-bit definitions
117 on 64-bit platforms and vice versa. */
118 } a_un;
119 } Elf32_auxv_t;
120 #endif
121
122 #ifndef HAVE_ELF64_AUXV_T
123 /* Copied from glibc's elf.h. */
124 typedef struct
125 {
126 uint64_t a_type; /* Entry type */
127 union
128 {
129 uint64_t a_val; /* Integer value */
130 /* We use to have pointer elements added here. We cannot do that,
131 though, since it does not work when using 32-bit definitions
132 on 64-bit platforms and vice versa. */
133 } a_un;
134 } Elf64_auxv_t;
135 #endif
136
137 /* A list of all unknown processes which receive stop signals. Some
138 other process will presumably claim each of these as forked
139 children momentarily. */
140
141 struct simple_pid_list
142 {
143 /* The process ID. */
144 int pid;
145
146 /* The status as reported by waitpid. */
147 int status;
148
149 /* Next in chain. */
150 struct simple_pid_list *next;
151 };
152 struct simple_pid_list *stopped_pids;
153
154 /* Trivial list manipulation functions to keep track of a list of new
155 stopped processes. */
156
157 static void
158 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
159 {
160 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
161
162 new_pid->pid = pid;
163 new_pid->status = status;
164 new_pid->next = *listp;
165 *listp = new_pid;
166 }
167
168 static int
169 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
170 {
171 struct simple_pid_list **p;
172
173 for (p = listp; *p != NULL; p = &(*p)->next)
174 if ((*p)->pid == pid)
175 {
176 struct simple_pid_list *next = (*p)->next;
177
178 *statusp = (*p)->status;
179 xfree (*p);
180 *p = next;
181 return 1;
182 }
183 return 0;
184 }
185
186 enum stopping_threads_kind
187 {
188 /* Not stopping threads presently. */
189 NOT_STOPPING_THREADS,
190
191 /* Stopping threads. */
192 STOPPING_THREADS,
193
194 /* Stopping and suspending threads. */
195 STOPPING_AND_SUSPENDING_THREADS
196 };
197
198 /* This is set while stop_all_lwps is in effect. */
199 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
200
201 /* FIXME make into a target method? */
202 int using_threads = 1;
203
204 /* True if we're presently stabilizing threads (moving them out of
205 jump pads). */
206 static int stabilizing_threads;
207
208 static void linux_resume_one_lwp (struct lwp_info *lwp,
209 int step, int signal, siginfo_t *info);
210 static void linux_resume (struct thread_resume *resume_info, size_t n);
211 static void stop_all_lwps (int suspend, struct lwp_info *except);
212 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
213 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
214 int *wstat, int options);
215 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
216 static struct lwp_info *add_lwp (ptid_t ptid);
217 static int linux_stopped_by_watchpoint (void);
218 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
219 static void proceed_all_lwps (void);
220 static int finish_step_over (struct lwp_info *lwp);
221 static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
222 static int kill_lwp (unsigned long lwpid, int signo);
223
224 /* True if the low target can hardware single-step. Such targets
225 don't need a BREAKPOINT_REINSERT_ADDR callback. */
226
227 static int
228 can_hardware_single_step (void)
229 {
230 return (the_low_target.breakpoint_reinsert_addr == NULL);
231 }
232
233 /* True if the low target supports memory breakpoints. If so, we'll
234 have a GET_PC implementation. */
235
236 static int
237 supports_breakpoints (void)
238 {
239 return (the_low_target.get_pc != NULL);
240 }
241
242 /* Returns true if this target can support fast tracepoints. This
243 does not mean that the in-process agent has been loaded in the
244 inferior. */
245
246 static int
247 supports_fast_tracepoints (void)
248 {
249 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
250 }
251
252 /* True if LWP is stopped in its stepping range. */
253
254 static int
255 lwp_in_step_range (struct lwp_info *lwp)
256 {
257 CORE_ADDR pc = lwp->stop_pc;
258
259 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
260 }
261
262 struct pending_signals
263 {
264 int signal;
265 siginfo_t info;
266 struct pending_signals *prev;
267 };
268
269 /* The read/write ends of the pipe registered as waitable file in the
270 event loop. */
271 static int linux_event_pipe[2] = { -1, -1 };
272
273 /* True if we're currently in async mode. */
274 #define target_is_async_p() (linux_event_pipe[0] != -1)
275
276 static void send_sigstop (struct lwp_info *lwp);
277 static void wait_for_sigstop (void);
278
279 /* Return non-zero if HEADER is a 64-bit ELF file. */
280
281 static int
282 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
283 {
284 if (header->e_ident[EI_MAG0] == ELFMAG0
285 && header->e_ident[EI_MAG1] == ELFMAG1
286 && header->e_ident[EI_MAG2] == ELFMAG2
287 && header->e_ident[EI_MAG3] == ELFMAG3)
288 {
289 *machine = header->e_machine;
290 return header->e_ident[EI_CLASS] == ELFCLASS64;
291
292 }
293 *machine = EM_NONE;
294 return -1;
295 }
296
297 /* Return non-zero if FILE is a 64-bit ELF file,
298 zero if the file is not a 64-bit ELF file,
299 and -1 if the file is not accessible or doesn't exist. */
300
301 static int
302 elf_64_file_p (const char *file, unsigned int *machine)
303 {
304 Elf64_Ehdr header;
305 int fd;
306
307 fd = open (file, O_RDONLY);
308 if (fd < 0)
309 return -1;
310
311 if (read (fd, &header, sizeof (header)) != sizeof (header))
312 {
313 close (fd);
314 return 0;
315 }
316 close (fd);
317
318 return elf_64_header_p (&header, machine);
319 }
320
321 /* Accepts an integer PID; Returns true if the executable PID is
322 running is a 64-bit ELF file.. */
323
324 int
325 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
326 {
327 char file[PATH_MAX];
328
329 sprintf (file, "/proc/%d/exe", pid);
330 return elf_64_file_p (file, machine);
331 }
332
333 static void
334 delete_lwp (struct lwp_info *lwp)
335 {
336 struct thread_info *thr = get_lwp_thread (lwp);
337
338 if (debug_threads)
339 debug_printf ("deleting %ld\n", lwpid_of (thr));
340
341 remove_thread (thr);
342 free (lwp->arch_private);
343 free (lwp);
344 }
345
346 /* Add a process to the common process list, and set its private
347 data. */
348
349 static struct process_info *
350 linux_add_process (int pid, int attached)
351 {
352 struct process_info *proc;
353
354 proc = add_process (pid, attached);
355 proc->private = xcalloc (1, sizeof (*proc->private));
356
357 /* Set the arch when the first LWP stops. */
358 proc->private->new_inferior = 1;
359
360 if (the_low_target.new_process != NULL)
361 proc->private->arch_private = the_low_target.new_process ();
362
363 return proc;
364 }
365
366 /* Handle a GNU/Linux extended wait response. If we see a clone
367 event, we need to add the new LWP to our list (and not report the
368 trap to higher layers). */
369
370 static void
371 handle_extended_wait (struct lwp_info *event_child, int wstat)
372 {
373 int event = wstat >> 16;
374 struct thread_info *event_thr = get_lwp_thread (event_child);
375 struct lwp_info *new_lwp;
376
377 if (event == PTRACE_EVENT_CLONE)
378 {
379 ptid_t ptid;
380 unsigned long new_pid;
381 int ret, status;
382
383 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
384 &new_pid);
385
386 /* If we haven't already seen the new PID stop, wait for it now. */
387 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
388 {
389 /* The new child has a pending SIGSTOP. We can't affect it until it
390 hits the SIGSTOP, but we're already attached. */
391
392 ret = my_waitpid (new_pid, &status, __WALL);
393
394 if (ret == -1)
395 perror_with_name ("waiting for new child");
396 else if (ret != new_pid)
397 warning ("wait returned unexpected PID %d", ret);
398 else if (!WIFSTOPPED (status))
399 warning ("wait returned unexpected status 0x%x", status);
400 }
401
402 if (debug_threads)
403 debug_printf ("HEW: Got clone event "
404 "from LWP %ld, new child is LWP %ld\n",
405 lwpid_of (event_thr), new_pid);
406
407 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
408 new_lwp = add_lwp (ptid);
409
410 /* Either we're going to immediately resume the new thread
411 or leave it stopped. linux_resume_one_lwp is a nop if it
412 thinks the thread is currently running, so set this first
413 before calling linux_resume_one_lwp. */
414 new_lwp->stopped = 1;
415
416 /* If we're suspending all threads, leave this one suspended
417 too. */
418 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
419 new_lwp->suspended = 1;
420
421 /* Normally we will get the pending SIGSTOP. But in some cases
422 we might get another signal delivered to the group first.
423 If we do get another signal, be sure not to lose it. */
424 if (WSTOPSIG (status) == SIGSTOP)
425 {
426 if (stopping_threads != NOT_STOPPING_THREADS)
427 new_lwp->stop_pc = get_stop_pc (new_lwp);
428 else
429 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
430 }
431 else
432 {
433 new_lwp->stop_expected = 1;
434
435 if (stopping_threads != NOT_STOPPING_THREADS)
436 {
437 new_lwp->stop_pc = get_stop_pc (new_lwp);
438 new_lwp->status_pending_p = 1;
439 new_lwp->status_pending = status;
440 }
441 else
442 /* Pass the signal on. This is what GDB does - except
443 shouldn't we really report it instead? */
444 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
445 }
446
447 /* Always resume the current thread. If we are stopping
448 threads, it will have a pending SIGSTOP; we may as well
449 collect it now. */
450 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
451 }
452 }
453
454 /* Return the PC as read from the regcache of LWP, without any
455 adjustment. */
456
457 static CORE_ADDR
458 get_pc (struct lwp_info *lwp)
459 {
460 struct thread_info *saved_inferior;
461 struct regcache *regcache;
462 CORE_ADDR pc;
463
464 if (the_low_target.get_pc == NULL)
465 return 0;
466
467 saved_inferior = current_inferior;
468 current_inferior = get_lwp_thread (lwp);
469
470 regcache = get_thread_regcache (current_inferior, 1);
471 pc = (*the_low_target.get_pc) (regcache);
472
473 if (debug_threads)
474 debug_printf ("pc is 0x%lx\n", (long) pc);
475
476 current_inferior = saved_inferior;
477 return pc;
478 }
479
480 /* This function should only be called if LWP got a SIGTRAP.
481 The SIGTRAP could mean several things.
482
483 On i386, where decr_pc_after_break is non-zero:
484 If we were single-stepping this process using PTRACE_SINGLESTEP,
485 we will get only the one SIGTRAP (even if the instruction we
486 stepped over was a breakpoint). The value of $eip will be the
487 next instruction.
488 If we continue the process using PTRACE_CONT, we will get a
489 SIGTRAP when we hit a breakpoint. The value of $eip will be
490 the instruction after the breakpoint (i.e. needs to be
491 decremented). If we report the SIGTRAP to GDB, we must also
492 report the undecremented PC. If we cancel the SIGTRAP, we
493 must resume at the decremented PC.
494
495 (Presumably, not yet tested) On a non-decr_pc_after_break machine
496 with hardware or kernel single-step:
497 If we single-step over a breakpoint instruction, our PC will
498 point at the following instruction. If we continue and hit a
499 breakpoint instruction, our PC will point at the breakpoint
500 instruction. */
501
502 static CORE_ADDR
503 get_stop_pc (struct lwp_info *lwp)
504 {
505 CORE_ADDR stop_pc;
506
507 if (the_low_target.get_pc == NULL)
508 return 0;
509
510 stop_pc = get_pc (lwp);
511
512 if (WSTOPSIG (lwp->last_status) == SIGTRAP
513 && !lwp->stepping
514 && !lwp->stopped_by_watchpoint
515 && lwp->last_status >> 16 == 0)
516 stop_pc -= the_low_target.decr_pc_after_break;
517
518 if (debug_threads)
519 debug_printf ("stop pc is 0x%lx\n", (long) stop_pc);
520
521 return stop_pc;
522 }
523
524 static struct lwp_info *
525 add_lwp (ptid_t ptid)
526 {
527 struct lwp_info *lwp;
528
529 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
530 memset (lwp, 0, sizeof (*lwp));
531
532 if (the_low_target.new_thread != NULL)
533 lwp->arch_private = the_low_target.new_thread ();
534
535 lwp->thread = add_thread (ptid, lwp);
536
537 return lwp;
538 }
539
540 /* Start an inferior process and returns its pid.
541 ALLARGS is a vector of program-name and args. */
542
543 static int
544 linux_create_inferior (char *program, char **allargs)
545 {
546 #ifdef HAVE_PERSONALITY
547 int personality_orig = 0, personality_set = 0;
548 #endif
549 struct lwp_info *new_lwp;
550 int pid;
551 ptid_t ptid;
552
553 #ifdef HAVE_PERSONALITY
554 if (disable_randomization)
555 {
556 errno = 0;
557 personality_orig = personality (0xffffffff);
558 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
559 {
560 personality_set = 1;
561 personality (personality_orig | ADDR_NO_RANDOMIZE);
562 }
563 if (errno != 0 || (personality_set
564 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
565 warning ("Error disabling address space randomization: %s",
566 strerror (errno));
567 }
568 #endif
569
570 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
571 pid = vfork ();
572 #else
573 pid = fork ();
574 #endif
575 if (pid < 0)
576 perror_with_name ("fork");
577
578 if (pid == 0)
579 {
580 close_most_fds ();
581 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
582
583 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
584 signal (__SIGRTMIN + 1, SIG_DFL);
585 #endif
586
587 setpgid (0, 0);
588
589 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
590 stdout to stderr so that inferior i/o doesn't corrupt the connection.
591 Also, redirect stdin to /dev/null. */
592 if (remote_connection_is_stdio ())
593 {
594 close (0);
595 open ("/dev/null", O_RDONLY);
596 dup2 (2, 1);
597 if (write (2, "stdin/stdout redirected\n",
598 sizeof ("stdin/stdout redirected\n") - 1) < 0)
599 {
600 /* Errors ignored. */;
601 }
602 }
603
604 execv (program, allargs);
605 if (errno == ENOENT)
606 execvp (program, allargs);
607
608 fprintf (stderr, "Cannot exec %s: %s.\n", program,
609 strerror (errno));
610 fflush (stderr);
611 _exit (0177);
612 }
613
614 #ifdef HAVE_PERSONALITY
615 if (personality_set)
616 {
617 errno = 0;
618 personality (personality_orig);
619 if (errno != 0)
620 warning ("Error restoring address space randomization: %s",
621 strerror (errno));
622 }
623 #endif
624
625 linux_add_process (pid, 0);
626
627 ptid = ptid_build (pid, pid, 0);
628 new_lwp = add_lwp (ptid);
629 new_lwp->must_set_ptrace_flags = 1;
630
631 return pid;
632 }
633
634 char *
635 linux_attach_fail_reason_string (ptid_t ptid, int err)
636 {
637 static char *reason_string;
638 struct buffer buffer;
639 char *warnings;
640 long lwpid = ptid_get_lwp (ptid);
641
642 xfree (reason_string);
643
644 buffer_init (&buffer);
645 linux_ptrace_attach_fail_reason (lwpid, &buffer);
646 buffer_grow_str0 (&buffer, "");
647 warnings = buffer_finish (&buffer);
648 if (warnings[0] != '\0')
649 reason_string = xstrprintf ("%s (%d), %s",
650 strerror (err), err, warnings);
651 else
652 reason_string = xstrprintf ("%s (%d)",
653 strerror (err), err);
654 xfree (warnings);
655 return reason_string;
656 }
657
658 /* Attach to an inferior process. */
659
660 int
661 linux_attach_lwp (ptid_t ptid)
662 {
663 struct lwp_info *new_lwp;
664 int lwpid = ptid_get_lwp (ptid);
665
666 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
667 != 0)
668 return errno;
669
670 new_lwp = add_lwp (ptid);
671
672 /* We need to wait for SIGSTOP before being able to make the next
673 ptrace call on this LWP. */
674 new_lwp->must_set_ptrace_flags = 1;
675
676 if (linux_proc_pid_is_stopped (lwpid))
677 {
678 if (debug_threads)
679 debug_printf ("Attached to a stopped process\n");
680
681 /* The process is definitely stopped. It is in a job control
682 stop, unless the kernel predates the TASK_STOPPED /
683 TASK_TRACED distinction, in which case it might be in a
684 ptrace stop. Make sure it is in a ptrace stop; from there we
685 can kill it, signal it, et cetera.
686
687 First make sure there is a pending SIGSTOP. Since we are
688 already attached, the process can not transition from stopped
689 to running without a PTRACE_CONT; so we know this signal will
690 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
691 probably already in the queue (unless this kernel is old
692 enough to use TASK_STOPPED for ptrace stops); but since
693 SIGSTOP is not an RT signal, it can only be queued once. */
694 kill_lwp (lwpid, SIGSTOP);
695
696 /* Finally, resume the stopped process. This will deliver the
697 SIGSTOP (or a higher priority signal, just like normal
698 PTRACE_ATTACH), which we'll catch later on. */
699 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
700 }
701
702 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
703 brings it to a halt.
704
705 There are several cases to consider here:
706
707 1) gdbserver has already attached to the process and is being notified
708 of a new thread that is being created.
709 In this case we should ignore that SIGSTOP and resume the
710 process. This is handled below by setting stop_expected = 1,
711 and the fact that add_thread sets last_resume_kind ==
712 resume_continue.
713
714 2) This is the first thread (the process thread), and we're attaching
715 to it via attach_inferior.
716 In this case we want the process thread to stop.
717 This is handled by having linux_attach set last_resume_kind ==
718 resume_stop after we return.
719
720 If the pid we are attaching to is also the tgid, we attach to and
721 stop all the existing threads. Otherwise, we attach to pid and
722 ignore any other threads in the same group as this pid.
723
724 3) GDB is connecting to gdbserver and is requesting an enumeration of all
725 existing threads.
726 In this case we want the thread to stop.
727 FIXME: This case is currently not properly handled.
728 We should wait for the SIGSTOP but don't. Things work apparently
729 because enough time passes between when we ptrace (ATTACH) and when
730 gdb makes the next ptrace call on the thread.
731
732 On the other hand, if we are currently trying to stop all threads, we
733 should treat the new thread as if we had sent it a SIGSTOP. This works
734 because we are guaranteed that the add_lwp call above added us to the
735 end of the list, and so the new thread has not yet reached
736 wait_for_sigstop (but will). */
737 new_lwp->stop_expected = 1;
738
739 return 0;
740 }
741
742 /* Attach to PID. If PID is the tgid, attach to it and all
743 of its threads. */
744
745 static int
746 linux_attach (unsigned long pid)
747 {
748 ptid_t ptid = ptid_build (pid, pid, 0);
749 int err;
750
751 /* Attach to PID. We will check for other threads
752 soon. */
753 err = linux_attach_lwp (ptid);
754 if (err != 0)
755 error ("Cannot attach to process %ld: %s",
756 pid, linux_attach_fail_reason_string (ptid, err));
757
758 linux_add_process (pid, 1);
759
760 if (!non_stop)
761 {
762 struct thread_info *thread;
763
764 /* Don't ignore the initial SIGSTOP if we just attached to this
765 process. It will be collected by wait shortly. */
766 thread = find_thread_ptid (ptid_build (pid, pid, 0));
767 thread->last_resume_kind = resume_stop;
768 }
769
770 if (linux_proc_get_tgid (pid) == pid)
771 {
772 DIR *dir;
773 char pathname[128];
774
775 sprintf (pathname, "/proc/%ld/task", pid);
776
777 dir = opendir (pathname);
778
779 if (!dir)
780 {
781 fprintf (stderr, "Could not open /proc/%ld/task.\n", pid);
782 fflush (stderr);
783 }
784 else
785 {
786 /* At this point we attached to the tgid. Scan the task for
787 existing threads. */
788 int new_threads_found;
789 int iterations = 0;
790
791 while (iterations < 2)
792 {
793 struct dirent *dp;
794
795 new_threads_found = 0;
796 /* Add all the other threads. While we go through the
797 threads, new threads may be spawned. Cycle through
798 the list of threads until we have done two iterations without
799 finding new threads. */
800 while ((dp = readdir (dir)) != NULL)
801 {
802 unsigned long lwp;
803 ptid_t ptid;
804
805 /* Fetch one lwp. */
806 lwp = strtoul (dp->d_name, NULL, 10);
807
808 ptid = ptid_build (pid, lwp, 0);
809
810 /* Is this a new thread? */
811 if (lwp != 0 && find_thread_ptid (ptid) == NULL)
812 {
813 int err;
814
815 if (debug_threads)
816 debug_printf ("Found new lwp %ld\n", lwp);
817
818 err = linux_attach_lwp (ptid);
819 if (err != 0)
820 warning ("Cannot attach to lwp %ld: %s",
821 lwp,
822 linux_attach_fail_reason_string (ptid, err));
823
824 new_threads_found++;
825 }
826 }
827
828 if (!new_threads_found)
829 iterations++;
830 else
831 iterations = 0;
832
833 rewinddir (dir);
834 }
835 closedir (dir);
836 }
837 }
838
839 return 0;
840 }
841
842 struct counter
843 {
844 int pid;
845 int count;
846 };
847
848 static int
849 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
850 {
851 struct counter *counter = args;
852
853 if (ptid_get_pid (entry->id) == counter->pid)
854 {
855 if (++counter->count > 1)
856 return 1;
857 }
858
859 return 0;
860 }
861
862 static int
863 last_thread_of_process_p (int pid)
864 {
865 struct counter counter = { pid , 0 };
866
867 return (find_inferior (&all_threads,
868 second_thread_of_pid_p, &counter) == NULL);
869 }
870
871 /* Kill LWP. */
872
873 static void
874 linux_kill_one_lwp (struct lwp_info *lwp)
875 {
876 struct thread_info *thr = get_lwp_thread (lwp);
877 int pid = lwpid_of (thr);
878
879 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
880 there is no signal context, and ptrace(PTRACE_KILL) (or
881 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
882 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
883 alternative is to kill with SIGKILL. We only need one SIGKILL
884 per process, not one for each thread. But since we still support
885 linuxthreads, and we also support debugging programs using raw
886 clone without CLONE_THREAD, we send one for each thread. For
887 years, we used PTRACE_KILL only, so we're being a bit paranoid
888 about some old kernels where PTRACE_KILL might work better
889 (dubious if there are any such, but that's why it's paranoia), so
890 we try SIGKILL first, PTRACE_KILL second, and so we're fine
891 everywhere. */
892
893 errno = 0;
894 kill_lwp (pid, SIGKILL);
895 if (debug_threads)
896 {
897 int save_errno = errno;
898
899 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
900 target_pid_to_str (ptid_of (thr)),
901 save_errno ? strerror (save_errno) : "OK");
902 }
903
904 errno = 0;
905 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
906 if (debug_threads)
907 {
908 int save_errno = errno;
909
910 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
911 target_pid_to_str (ptid_of (thr)),
912 save_errno ? strerror (save_errno) : "OK");
913 }
914 }
915
916 /* Kill LWP and wait for it to die. */
917
918 static void
919 kill_wait_lwp (struct lwp_info *lwp)
920 {
921 struct thread_info *thr = get_lwp_thread (lwp);
922 int pid = ptid_get_pid (ptid_of (thr));
923 int lwpid = ptid_get_lwp (ptid_of (thr));
924 int wstat;
925 int res;
926
927 if (debug_threads)
928 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
929
930 do
931 {
932 linux_kill_one_lwp (lwp);
933
934 /* Make sure it died. Notes:
935
936 - The loop is most likely unnecessary.
937
938 - We don't use linux_wait_for_event as that could delete lwps
939 while we're iterating over them. We're not interested in
940 any pending status at this point, only in making sure all
941 wait status on the kernel side are collected until the
942 process is reaped.
943
944 - We don't use __WALL here as the __WALL emulation relies on
945 SIGCHLD, and killing a stopped process doesn't generate
946 one, nor an exit status.
947 */
948 res = my_waitpid (lwpid, &wstat, 0);
949 if (res == -1 && errno == ECHILD)
950 res = my_waitpid (lwpid, &wstat, __WCLONE);
951 } while (res > 0 && WIFSTOPPED (wstat));
952
953 gdb_assert (res > 0);
954 }
955
956 /* Callback for `find_inferior'. Kills an lwp of a given process,
957 except the leader. */
958
959 static int
960 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
961 {
962 struct thread_info *thread = (struct thread_info *) entry;
963 struct lwp_info *lwp = get_thread_lwp (thread);
964 int pid = * (int *) args;
965
966 if (ptid_get_pid (entry->id) != pid)
967 return 0;
968
969 /* We avoid killing the first thread here, because of a Linux kernel (at
970 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
971 the children get a chance to be reaped, it will remain a zombie
972 forever. */
973
974 if (lwpid_of (thread) == pid)
975 {
976 if (debug_threads)
977 debug_printf ("lkop: is last of process %s\n",
978 target_pid_to_str (entry->id));
979 return 0;
980 }
981
982 kill_wait_lwp (lwp);
983 return 0;
984 }
985
986 static int
987 linux_kill (int pid)
988 {
989 struct process_info *process;
990 struct lwp_info *lwp;
991
992 process = find_process_pid (pid);
993 if (process == NULL)
994 return -1;
995
996 /* If we're killing a running inferior, make sure it is stopped
997 first, as PTRACE_KILL will not work otherwise. */
998 stop_all_lwps (0, NULL);
999
1000 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1001
1002 /* See the comment in linux_kill_one_lwp. We did not kill the first
1003 thread in the list, so do so now. */
1004 lwp = find_lwp_pid (pid_to_ptid (pid));
1005
1006 if (lwp == NULL)
1007 {
1008 if (debug_threads)
1009 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1010 pid);
1011 }
1012 else
1013 kill_wait_lwp (lwp);
1014
1015 the_target->mourn (process);
1016
1017 /* Since we presently can only stop all lwps of all processes, we
1018 need to unstop lwps of other processes. */
1019 unstop_all_lwps (0, NULL);
1020 return 0;
1021 }
1022
1023 /* Get pending signal of THREAD, for detaching purposes. This is the
1024 signal the thread last stopped for, which we need to deliver to the
1025 thread when detaching, otherwise, it'd be suppressed/lost. */
1026
1027 static int
1028 get_detach_signal (struct thread_info *thread)
1029 {
1030 enum gdb_signal signo = GDB_SIGNAL_0;
1031 int status;
1032 struct lwp_info *lp = get_thread_lwp (thread);
1033
1034 if (lp->status_pending_p)
1035 status = lp->status_pending;
1036 else
1037 {
1038 /* If the thread had been suspended by gdbserver, and it stopped
1039 cleanly, then it'll have stopped with SIGSTOP. But we don't
1040 want to deliver that SIGSTOP. */
1041 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1042 || thread->last_status.value.sig == GDB_SIGNAL_0)
1043 return 0;
1044
1045 /* Otherwise, we may need to deliver the signal we
1046 intercepted. */
1047 status = lp->last_status;
1048 }
1049
1050 if (!WIFSTOPPED (status))
1051 {
1052 if (debug_threads)
1053 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1054 target_pid_to_str (ptid_of (thread)));
1055 return 0;
1056 }
1057
1058 /* Extended wait statuses aren't real SIGTRAPs. */
1059 if (WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1060 {
1061 if (debug_threads)
1062 debug_printf ("GPS: lwp %s had stopped with extended "
1063 "status: no pending signal\n",
1064 target_pid_to_str (ptid_of (thread)));
1065 return 0;
1066 }
1067
1068 signo = gdb_signal_from_host (WSTOPSIG (status));
1069
1070 if (program_signals_p && !program_signals[signo])
1071 {
1072 if (debug_threads)
1073 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1074 target_pid_to_str (ptid_of (thread)),
1075 gdb_signal_to_string (signo));
1076 return 0;
1077 }
1078 else if (!program_signals_p
1079 /* If we have no way to know which signals GDB does not
1080 want to have passed to the program, assume
1081 SIGTRAP/SIGINT, which is GDB's default. */
1082 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1083 {
1084 if (debug_threads)
1085 debug_printf ("GPS: lwp %s had signal %s, "
1086 "but we don't know if we should pass it. "
1087 "Default to not.\n",
1088 target_pid_to_str (ptid_of (thread)),
1089 gdb_signal_to_string (signo));
1090 return 0;
1091 }
1092 else
1093 {
1094 if (debug_threads)
1095 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1096 target_pid_to_str (ptid_of (thread)),
1097 gdb_signal_to_string (signo));
1098
1099 return WSTOPSIG (status);
1100 }
1101 }
1102
1103 static int
1104 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1105 {
1106 struct thread_info *thread = (struct thread_info *) entry;
1107 struct lwp_info *lwp = get_thread_lwp (thread);
1108 int pid = * (int *) args;
1109 int sig;
1110
1111 if (ptid_get_pid (entry->id) != pid)
1112 return 0;
1113
1114 /* If there is a pending SIGSTOP, get rid of it. */
1115 if (lwp->stop_expected)
1116 {
1117 if (debug_threads)
1118 debug_printf ("Sending SIGCONT to %s\n",
1119 target_pid_to_str (ptid_of (thread)));
1120
1121 kill_lwp (lwpid_of (thread), SIGCONT);
1122 lwp->stop_expected = 0;
1123 }
1124
1125 /* Flush any pending changes to the process's registers. */
1126 regcache_invalidate_thread (thread);
1127
1128 /* Pass on any pending signal for this thread. */
1129 sig = get_detach_signal (thread);
1130
1131 /* Finally, let it resume. */
1132 if (the_low_target.prepare_to_resume != NULL)
1133 the_low_target.prepare_to_resume (lwp);
1134 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1135 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1136 error (_("Can't detach %s: %s"),
1137 target_pid_to_str (ptid_of (thread)),
1138 strerror (errno));
1139
1140 delete_lwp (lwp);
1141 return 0;
1142 }
1143
1144 static int
1145 linux_detach (int pid)
1146 {
1147 struct process_info *process;
1148
1149 process = find_process_pid (pid);
1150 if (process == NULL)
1151 return -1;
1152
1153 /* Stop all threads before detaching. First, ptrace requires that
1154 the thread is stopped to sucessfully detach. Second, thread_db
1155 may need to uninstall thread event breakpoints from memory, which
1156 only works with a stopped process anyway. */
1157 stop_all_lwps (0, NULL);
1158
1159 #ifdef USE_THREAD_DB
1160 thread_db_detach (process);
1161 #endif
1162
1163 /* Stabilize threads (move out of jump pads). */
1164 stabilize_threads ();
1165
1166 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1167
1168 the_target->mourn (process);
1169
1170 /* Since we presently can only stop all lwps of all processes, we
1171 need to unstop lwps of other processes. */
1172 unstop_all_lwps (0, NULL);
1173 return 0;
1174 }
1175
1176 /* Remove all LWPs that belong to process PROC from the lwp list. */
1177
1178 static int
1179 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1180 {
1181 struct thread_info *thread = (struct thread_info *) entry;
1182 struct lwp_info *lwp = get_thread_lwp (thread);
1183 struct process_info *process = proc;
1184
1185 if (pid_of (thread) == pid_of (process))
1186 delete_lwp (lwp);
1187
1188 return 0;
1189 }
1190
1191 static void
1192 linux_mourn (struct process_info *process)
1193 {
1194 struct process_info_private *priv;
1195
1196 #ifdef USE_THREAD_DB
1197 thread_db_mourn (process);
1198 #endif
1199
1200 find_inferior (&all_threads, delete_lwp_callback, process);
1201
1202 /* Freeing all private data. */
1203 priv = process->private;
1204 free (priv->arch_private);
1205 free (priv);
1206 process->private = NULL;
1207
1208 remove_process (process);
1209 }
1210
1211 static void
1212 linux_join (int pid)
1213 {
1214 int status, ret;
1215
1216 do {
1217 ret = my_waitpid (pid, &status, 0);
1218 if (WIFEXITED (status) || WIFSIGNALED (status))
1219 break;
1220 } while (ret != -1 || errno != ECHILD);
1221 }
1222
1223 /* Return nonzero if the given thread is still alive. */
1224 static int
1225 linux_thread_alive (ptid_t ptid)
1226 {
1227 struct lwp_info *lwp = find_lwp_pid (ptid);
1228
1229 /* We assume we always know if a thread exits. If a whole process
1230 exited but we still haven't been able to report it to GDB, we'll
1231 hold on to the last lwp of the dead process. */
1232 if (lwp != NULL)
1233 return !lwp->dead;
1234 else
1235 return 0;
1236 }
1237
1238 /* Return 1 if this lwp has an interesting status pending. */
1239 static int
1240 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1241 {
1242 struct thread_info *thread = (struct thread_info *) entry;
1243 struct lwp_info *lwp = get_thread_lwp (thread);
1244 ptid_t ptid = * (ptid_t *) arg;
1245
1246 /* Check if we're only interested in events from a specific process
1247 or its lwps. */
1248 if (!ptid_equal (minus_one_ptid, ptid)
1249 && ptid_get_pid (ptid) != ptid_get_pid (thread->entry.id))
1250 return 0;
1251
1252 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1253 report any status pending the LWP may have. */
1254 if (thread->last_resume_kind == resume_stop
1255 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1256 return 0;
1257
1258 return lwp->status_pending_p;
1259 }
1260
1261 static int
1262 same_lwp (struct inferior_list_entry *entry, void *data)
1263 {
1264 ptid_t ptid = *(ptid_t *) data;
1265 int lwp;
1266
1267 if (ptid_get_lwp (ptid) != 0)
1268 lwp = ptid_get_lwp (ptid);
1269 else
1270 lwp = ptid_get_pid (ptid);
1271
1272 if (ptid_get_lwp (entry->id) == lwp)
1273 return 1;
1274
1275 return 0;
1276 }
1277
1278 struct lwp_info *
1279 find_lwp_pid (ptid_t ptid)
1280 {
1281 struct inferior_list_entry *thread
1282 = find_inferior (&all_threads, same_lwp, &ptid);
1283
1284 if (thread == NULL)
1285 return NULL;
1286
1287 return get_thread_lwp ((struct thread_info *) thread);
1288 }
1289
1290 /* Return the number of known LWPs in the tgid given by PID. */
1291
1292 static int
1293 num_lwps (int pid)
1294 {
1295 struct inferior_list_entry *inf, *tmp;
1296 int count = 0;
1297
1298 ALL_INFERIORS (&all_threads, inf, tmp)
1299 {
1300 if (ptid_get_pid (inf->id) == pid)
1301 count++;
1302 }
1303
1304 return count;
1305 }
1306
1307 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1308 their exits until all other threads in the group have exited. */
1309
1310 static void
1311 check_zombie_leaders (void)
1312 {
1313 struct process_info *proc, *tmp;
1314
1315 ALL_PROCESSES (proc, tmp)
1316 {
1317 pid_t leader_pid = pid_of (proc);
1318 struct lwp_info *leader_lp;
1319
1320 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1321
1322 if (debug_threads)
1323 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1324 "num_lwps=%d, zombie=%d\n",
1325 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1326 linux_proc_pid_is_zombie (leader_pid));
1327
1328 if (leader_lp != NULL
1329 /* Check if there are other threads in the group, as we may
1330 have raced with the inferior simply exiting. */
1331 && !last_thread_of_process_p (leader_pid)
1332 && linux_proc_pid_is_zombie (leader_pid))
1333 {
1334 /* A leader zombie can mean one of two things:
1335
1336 - It exited, and there's an exit status pending
1337 available, or only the leader exited (not the whole
1338 program). In the latter case, we can't waitpid the
1339 leader's exit status until all other threads are gone.
1340
1341 - There are 3 or more threads in the group, and a thread
1342 other than the leader exec'd. On an exec, the Linux
1343 kernel destroys all other threads (except the execing
1344 one) in the thread group, and resets the execing thread's
1345 tid to the tgid. No exit notification is sent for the
1346 execing thread -- from the ptracer's perspective, it
1347 appears as though the execing thread just vanishes.
1348 Until we reap all other threads except the leader and the
1349 execing thread, the leader will be zombie, and the
1350 execing thread will be in `D (disc sleep)'. As soon as
1351 all other threads are reaped, the execing thread changes
1352 it's tid to the tgid, and the previous (zombie) leader
1353 vanishes, giving place to the "new" leader. We could try
1354 distinguishing the exit and exec cases, by waiting once
1355 more, and seeing if something comes out, but it doesn't
1356 sound useful. The previous leader _does_ go away, and
1357 we'll re-add the new one once we see the exec event
1358 (which is just the same as what would happen if the
1359 previous leader did exit voluntarily before some other
1360 thread execs). */
1361
1362 if (debug_threads)
1363 fprintf (stderr,
1364 "CZL: Thread group leader %d zombie "
1365 "(it exited, or another thread execd).\n",
1366 leader_pid);
1367
1368 delete_lwp (leader_lp);
1369 }
1370 }
1371 }
1372
1373 /* Callback for `find_inferior'. Returns the first LWP that is not
1374 stopped. ARG is a PTID filter. */
1375
1376 static int
1377 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1378 {
1379 struct thread_info *thr = (struct thread_info *) entry;
1380 struct lwp_info *lwp;
1381 ptid_t filter = *(ptid_t *) arg;
1382
1383 if (!ptid_match (ptid_of (thr), filter))
1384 return 0;
1385
1386 lwp = get_thread_lwp (thr);
1387 if (!lwp->stopped)
1388 return 1;
1389
1390 return 0;
1391 }
1392
1393 /* This function should only be called if the LWP got a SIGTRAP.
1394
1395 Handle any tracepoint steps or hits. Return true if a tracepoint
1396 event was handled, 0 otherwise. */
1397
1398 static int
1399 handle_tracepoints (struct lwp_info *lwp)
1400 {
1401 struct thread_info *tinfo = get_lwp_thread (lwp);
1402 int tpoint_related_event = 0;
1403
1404 /* If this tracepoint hit causes a tracing stop, we'll immediately
1405 uninsert tracepoints. To do this, we temporarily pause all
1406 threads, unpatch away, and then unpause threads. We need to make
1407 sure the unpausing doesn't resume LWP too. */
1408 lwp->suspended++;
1409
1410 /* And we need to be sure that any all-threads-stopping doesn't try
1411 to move threads out of the jump pads, as it could deadlock the
1412 inferior (LWP could be in the jump pad, maybe even holding the
1413 lock.) */
1414
1415 /* Do any necessary step collect actions. */
1416 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1417
1418 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1419
1420 /* See if we just hit a tracepoint and do its main collect
1421 actions. */
1422 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1423
1424 lwp->suspended--;
1425
1426 gdb_assert (lwp->suspended == 0);
1427 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1428
1429 if (tpoint_related_event)
1430 {
1431 if (debug_threads)
1432 debug_printf ("got a tracepoint event\n");
1433 return 1;
1434 }
1435
1436 return 0;
1437 }
1438
1439 /* Convenience wrapper. Returns true if LWP is presently collecting a
1440 fast tracepoint. */
1441
1442 static int
1443 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1444 struct fast_tpoint_collect_status *status)
1445 {
1446 CORE_ADDR thread_area;
1447 struct thread_info *thread = get_lwp_thread (lwp);
1448
1449 if (the_low_target.get_thread_area == NULL)
1450 return 0;
1451
1452 /* Get the thread area address. This is used to recognize which
1453 thread is which when tracing with the in-process agent library.
1454 We don't read anything from the address, and treat it as opaque;
1455 it's the address itself that we assume is unique per-thread. */
1456 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1457 return 0;
1458
1459 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1460 }
1461
1462 /* The reason we resume in the caller, is because we want to be able
1463 to pass lwp->status_pending as WSTAT, and we need to clear
1464 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1465 refuses to resume. */
1466
1467 static int
1468 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1469 {
1470 struct thread_info *saved_inferior;
1471
1472 saved_inferior = current_inferior;
1473 current_inferior = get_lwp_thread (lwp);
1474
1475 if ((wstat == NULL
1476 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1477 && supports_fast_tracepoints ()
1478 && agent_loaded_p ())
1479 {
1480 struct fast_tpoint_collect_status status;
1481 int r;
1482
1483 if (debug_threads)
1484 debug_printf ("Checking whether LWP %ld needs to move out of the "
1485 "jump pad.\n",
1486 lwpid_of (current_inferior));
1487
1488 r = linux_fast_tracepoint_collecting (lwp, &status);
1489
1490 if (wstat == NULL
1491 || (WSTOPSIG (*wstat) != SIGILL
1492 && WSTOPSIG (*wstat) != SIGFPE
1493 && WSTOPSIG (*wstat) != SIGSEGV
1494 && WSTOPSIG (*wstat) != SIGBUS))
1495 {
1496 lwp->collecting_fast_tracepoint = r;
1497
1498 if (r != 0)
1499 {
1500 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1501 {
1502 /* Haven't executed the original instruction yet.
1503 Set breakpoint there, and wait till it's hit,
1504 then single-step until exiting the jump pad. */
1505 lwp->exit_jump_pad_bkpt
1506 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1507 }
1508
1509 if (debug_threads)
1510 debug_printf ("Checking whether LWP %ld needs to move out of "
1511 "the jump pad...it does\n",
1512 lwpid_of (current_inferior));
1513 current_inferior = saved_inferior;
1514
1515 return 1;
1516 }
1517 }
1518 else
1519 {
1520 /* If we get a synchronous signal while collecting, *and*
1521 while executing the (relocated) original instruction,
1522 reset the PC to point at the tpoint address, before
1523 reporting to GDB. Otherwise, it's an IPA lib bug: just
1524 report the signal to GDB, and pray for the best. */
1525
1526 lwp->collecting_fast_tracepoint = 0;
1527
1528 if (r != 0
1529 && (status.adjusted_insn_addr <= lwp->stop_pc
1530 && lwp->stop_pc < status.adjusted_insn_addr_end))
1531 {
1532 siginfo_t info;
1533 struct regcache *regcache;
1534
1535 /* The si_addr on a few signals references the address
1536 of the faulting instruction. Adjust that as
1537 well. */
1538 if ((WSTOPSIG (*wstat) == SIGILL
1539 || WSTOPSIG (*wstat) == SIGFPE
1540 || WSTOPSIG (*wstat) == SIGBUS
1541 || WSTOPSIG (*wstat) == SIGSEGV)
1542 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_inferior),
1543 (PTRACE_TYPE_ARG3) 0, &info) == 0
1544 /* Final check just to make sure we don't clobber
1545 the siginfo of non-kernel-sent signals. */
1546 && (uintptr_t) info.si_addr == lwp->stop_pc)
1547 {
1548 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1549 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_inferior),
1550 (PTRACE_TYPE_ARG3) 0, &info);
1551 }
1552
1553 regcache = get_thread_regcache (current_inferior, 1);
1554 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1555 lwp->stop_pc = status.tpoint_addr;
1556
1557 /* Cancel any fast tracepoint lock this thread was
1558 holding. */
1559 force_unlock_trace_buffer ();
1560 }
1561
1562 if (lwp->exit_jump_pad_bkpt != NULL)
1563 {
1564 if (debug_threads)
1565 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
1566 "stopping all threads momentarily.\n");
1567
1568 stop_all_lwps (1, lwp);
1569 cancel_breakpoints ();
1570
1571 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1572 lwp->exit_jump_pad_bkpt = NULL;
1573
1574 unstop_all_lwps (1, lwp);
1575
1576 gdb_assert (lwp->suspended >= 0);
1577 }
1578 }
1579 }
1580
1581 if (debug_threads)
1582 debug_printf ("Checking whether LWP %ld needs to move out of the "
1583 "jump pad...no\n",
1584 lwpid_of (current_inferior));
1585
1586 current_inferior = saved_inferior;
1587 return 0;
1588 }
1589
1590 /* Enqueue one signal in the "signals to report later when out of the
1591 jump pad" list. */
1592
1593 static void
1594 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1595 {
1596 struct pending_signals *p_sig;
1597 struct thread_info *thread = get_lwp_thread (lwp);
1598
1599 if (debug_threads)
1600 debug_printf ("Deferring signal %d for LWP %ld.\n",
1601 WSTOPSIG (*wstat), lwpid_of (thread));
1602
1603 if (debug_threads)
1604 {
1605 struct pending_signals *sig;
1606
1607 for (sig = lwp->pending_signals_to_report;
1608 sig != NULL;
1609 sig = sig->prev)
1610 debug_printf (" Already queued %d\n",
1611 sig->signal);
1612
1613 debug_printf (" (no more currently queued signals)\n");
1614 }
1615
1616 /* Don't enqueue non-RT signals if they are already in the deferred
1617 queue. (SIGSTOP being the easiest signal to see ending up here
1618 twice) */
1619 if (WSTOPSIG (*wstat) < __SIGRTMIN)
1620 {
1621 struct pending_signals *sig;
1622
1623 for (sig = lwp->pending_signals_to_report;
1624 sig != NULL;
1625 sig = sig->prev)
1626 {
1627 if (sig->signal == WSTOPSIG (*wstat))
1628 {
1629 if (debug_threads)
1630 debug_printf ("Not requeuing already queued non-RT signal %d"
1631 " for LWP %ld\n",
1632 sig->signal,
1633 lwpid_of (thread));
1634 return;
1635 }
1636 }
1637 }
1638
1639 p_sig = xmalloc (sizeof (*p_sig));
1640 p_sig->prev = lwp->pending_signals_to_report;
1641 p_sig->signal = WSTOPSIG (*wstat);
1642 memset (&p_sig->info, 0, sizeof (siginfo_t));
1643 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1644 &p_sig->info);
1645
1646 lwp->pending_signals_to_report = p_sig;
1647 }
1648
1649 /* Dequeue one signal from the "signals to report later when out of
1650 the jump pad" list. */
1651
1652 static int
1653 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1654 {
1655 struct thread_info *thread = get_lwp_thread (lwp);
1656
1657 if (lwp->pending_signals_to_report != NULL)
1658 {
1659 struct pending_signals **p_sig;
1660
1661 p_sig = &lwp->pending_signals_to_report;
1662 while ((*p_sig)->prev != NULL)
1663 p_sig = &(*p_sig)->prev;
1664
1665 *wstat = W_STOPCODE ((*p_sig)->signal);
1666 if ((*p_sig)->info.si_signo != 0)
1667 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1668 &(*p_sig)->info);
1669 free (*p_sig);
1670 *p_sig = NULL;
1671
1672 if (debug_threads)
1673 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
1674 WSTOPSIG (*wstat), lwpid_of (thread));
1675
1676 if (debug_threads)
1677 {
1678 struct pending_signals *sig;
1679
1680 for (sig = lwp->pending_signals_to_report;
1681 sig != NULL;
1682 sig = sig->prev)
1683 debug_printf (" Still queued %d\n",
1684 sig->signal);
1685
1686 debug_printf (" (no more queued signals)\n");
1687 }
1688
1689 return 1;
1690 }
1691
1692 return 0;
1693 }
1694
1695 /* Arrange for a breakpoint to be hit again later. We don't keep the
1696 SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
1697 will handle the current event, eventually we will resume this LWP,
1698 and this breakpoint will trap again. */
1699
1700 static int
1701 cancel_breakpoint (struct lwp_info *lwp)
1702 {
1703 struct thread_info *saved_inferior;
1704
1705 /* There's nothing to do if we don't support breakpoints. */
1706 if (!supports_breakpoints ())
1707 return 0;
1708
1709 /* breakpoint_at reads from current inferior. */
1710 saved_inferior = current_inferior;
1711 current_inferior = get_lwp_thread (lwp);
1712
1713 if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
1714 {
1715 if (debug_threads)
1716 debug_printf ("CB: Push back breakpoint for %s\n",
1717 target_pid_to_str (ptid_of (current_inferior)));
1718
1719 /* Back up the PC if necessary. */
1720 if (the_low_target.decr_pc_after_break)
1721 {
1722 struct regcache *regcache
1723 = get_thread_regcache (current_inferior, 1);
1724 (*the_low_target.set_pc) (regcache, lwp->stop_pc);
1725 }
1726
1727 current_inferior = saved_inferior;
1728 return 1;
1729 }
1730 else
1731 {
1732 if (debug_threads)
1733 debug_printf ("CB: No breakpoint found at %s for [%s]\n",
1734 paddress (lwp->stop_pc),
1735 target_pid_to_str (ptid_of (current_inferior)));
1736 }
1737
1738 current_inferior = saved_inferior;
1739 return 0;
1740 }
1741
1742 /* Do low-level handling of the event, and check if we should go on
1743 and pass it to caller code. Return the affected lwp if we are, or
1744 NULL otherwise. */
1745
1746 static struct lwp_info *
1747 linux_low_filter_event (ptid_t filter_ptid, int lwpid, int wstat)
1748 {
1749 struct lwp_info *child;
1750 struct thread_info *thread;
1751
1752 child = find_lwp_pid (pid_to_ptid (lwpid));
1753
1754 /* If we didn't find a process, one of two things presumably happened:
1755 - A process we started and then detached from has exited. Ignore it.
1756 - A process we are controlling has forked and the new child's stop
1757 was reported to us by the kernel. Save its PID. */
1758 if (child == NULL && WIFSTOPPED (wstat))
1759 {
1760 add_to_pid_list (&stopped_pids, lwpid, wstat);
1761 return NULL;
1762 }
1763 else if (child == NULL)
1764 return NULL;
1765
1766 thread = get_lwp_thread (child);
1767
1768 child->stopped = 1;
1769
1770 child->last_status = wstat;
1771
1772 if (WIFSTOPPED (wstat))
1773 {
1774 struct process_info *proc;
1775
1776 /* Architecture-specific setup after inferior is running. This
1777 needs to happen after we have attached to the inferior and it
1778 is stopped for the first time, but before we access any
1779 inferior registers. */
1780 proc = find_process_pid (pid_of (thread));
1781 if (proc->private->new_inferior)
1782 {
1783 struct thread_info *saved_inferior;
1784
1785 saved_inferior = current_inferior;
1786 current_inferior = thread;
1787
1788 the_low_target.arch_setup ();
1789
1790 current_inferior = saved_inferior;
1791
1792 proc->private->new_inferior = 0;
1793 }
1794 }
1795
1796 /* Store the STOP_PC, with adjustment applied. This depends on the
1797 architecture being defined already (so that CHILD has a valid
1798 regcache), and on LAST_STATUS being set (to check for SIGTRAP or
1799 not). */
1800 if (WIFSTOPPED (wstat))
1801 {
1802 if (debug_threads
1803 && the_low_target.get_pc != NULL)
1804 {
1805 struct thread_info *saved_inferior;
1806 struct regcache *regcache;
1807 CORE_ADDR pc;
1808
1809 saved_inferior = current_inferior;
1810 current_inferior = thread;
1811 regcache = get_thread_regcache (current_inferior, 1);
1812 pc = (*the_low_target.get_pc) (regcache);
1813 debug_printf ("linux_low_filter_event: pc is 0x%lx\n", (long) pc);
1814 current_inferior = saved_inferior;
1815 }
1816
1817 child->stop_pc = get_stop_pc (child);
1818 }
1819
1820 /* Fetch the possibly triggered data watchpoint info and store it in
1821 CHILD.
1822
1823 On some archs, like x86, that use debug registers to set
1824 watchpoints, it's possible that the way to know which watched
1825 address trapped, is to check the register that is used to select
1826 which address to watch. Problem is, between setting the
1827 watchpoint and reading back which data address trapped, the user
1828 may change the set of watchpoints, and, as a consequence, GDB
1829 changes the debug registers in the inferior. To avoid reading
1830 back a stale stopped-data-address when that happens, we cache in
1831 LP the fact that a watchpoint trapped, and the corresponding data
1832 address, as soon as we see CHILD stop with a SIGTRAP. If GDB
1833 changes the debug registers meanwhile, we have the cached data we
1834 can rely on. */
1835
1836 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP)
1837 {
1838 if (the_low_target.stopped_by_watchpoint == NULL)
1839 {
1840 child->stopped_by_watchpoint = 0;
1841 }
1842 else
1843 {
1844 struct thread_info *saved_inferior;
1845
1846 saved_inferior = current_inferior;
1847 current_inferior = thread;
1848
1849 child->stopped_by_watchpoint
1850 = the_low_target.stopped_by_watchpoint ();
1851
1852 if (child->stopped_by_watchpoint)
1853 {
1854 if (the_low_target.stopped_data_address != NULL)
1855 child->stopped_data_address
1856 = the_low_target.stopped_data_address ();
1857 else
1858 child->stopped_data_address = 0;
1859 }
1860
1861 current_inferior = saved_inferior;
1862 }
1863 }
1864
1865 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
1866 {
1867 linux_enable_event_reporting (lwpid);
1868 child->must_set_ptrace_flags = 0;
1869 }
1870
1871 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
1872 && wstat >> 16 != 0)
1873 {
1874 handle_extended_wait (child, wstat);
1875 return NULL;
1876 }
1877
1878 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
1879 && child->stop_expected)
1880 {
1881 if (debug_threads)
1882 debug_printf ("Expected stop.\n");
1883 child->stop_expected = 0;
1884
1885 if (thread->last_resume_kind == resume_stop)
1886 {
1887 /* We want to report the stop to the core. Treat the
1888 SIGSTOP as a normal event. */
1889 }
1890 else if (stopping_threads != NOT_STOPPING_THREADS)
1891 {
1892 /* Stopping threads. We don't want this SIGSTOP to end up
1893 pending in the FILTER_PTID handling below. */
1894 return NULL;
1895 }
1896 else
1897 {
1898 /* Filter out the event. */
1899 linux_resume_one_lwp (child, child->stepping, 0, NULL);
1900 return NULL;
1901 }
1902 }
1903
1904 /* Check if the thread has exited. */
1905 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat))
1906 && num_lwps (pid_of (thread)) > 1)
1907 {
1908 if (debug_threads)
1909 debug_printf ("LLW: %d exited.\n", lwpid);
1910
1911 /* If there is at least one more LWP, then the exit signal
1912 was not the end of the debugged application and should be
1913 ignored. */
1914 delete_lwp (child);
1915 return NULL;
1916 }
1917
1918 if (!ptid_match (ptid_of (thread), filter_ptid))
1919 {
1920 if (debug_threads)
1921 debug_printf ("LWP %d got an event %06x, leaving pending.\n",
1922 lwpid, wstat);
1923
1924 if (WIFSTOPPED (wstat))
1925 {
1926 child->status_pending_p = 1;
1927 child->status_pending = wstat;
1928
1929 if (WSTOPSIG (wstat) != SIGSTOP)
1930 {
1931 /* Cancel breakpoint hits. The breakpoint may be
1932 removed before we fetch events from this process to
1933 report to the core. It is best not to assume the
1934 moribund breakpoints heuristic always handles these
1935 cases --- it could be too many events go through to
1936 the core before this one is handled. All-stop always
1937 cancels breakpoint hits in all threads. */
1938 if (non_stop
1939 && WSTOPSIG (wstat) == SIGTRAP
1940 && cancel_breakpoint (child))
1941 {
1942 /* Throw away the SIGTRAP. */
1943 child->status_pending_p = 0;
1944
1945 if (debug_threads)
1946 debug_printf ("LLW: LWP %d hit a breakpoint while"
1947 " waiting for another process;"
1948 " cancelled it\n", lwpid);
1949 }
1950 }
1951 }
1952 else if (WIFEXITED (wstat) || WIFSIGNALED (wstat))
1953 {
1954 if (debug_threads)
1955 debug_printf ("LLWE: process %d exited while fetching "
1956 "event from another LWP\n", lwpid);
1957
1958 /* This was the last lwp in the process. Since events are
1959 serialized to GDB core, and we can't report this one
1960 right now, but GDB core and the other target layers will
1961 want to be notified about the exit code/signal, leave the
1962 status pending for the next time we're able to report
1963 it. */
1964 mark_lwp_dead (child, wstat);
1965 }
1966
1967 return NULL;
1968 }
1969
1970 return child;
1971 }
1972
1973 /* When the event-loop is doing a step-over, this points at the thread
1974 being stepped. */
1975 ptid_t step_over_bkpt;
1976
1977 /* Wait for an event from child(ren) WAIT_PTID, and return any that
1978 match FILTER_PTID (leaving others pending). The PTIDs can be:
1979 minus_one_ptid, to specify any child; a pid PTID, specifying all
1980 lwps of a thread group; or a PTID representing a single lwp. Store
1981 the stop status through the status pointer WSTAT. OPTIONS is
1982 passed to the waitpid call. Return 0 if no event was found and
1983 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
1984 was found. Return the PID of the stopped child otherwise. */
1985
1986 static int
1987 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
1988 int *wstatp, int options)
1989 {
1990 struct thread_info *event_thread;
1991 struct lwp_info *event_child, *requested_child;
1992 sigset_t block_mask, prev_mask;
1993
1994 retry:
1995 /* N.B. event_thread points to the thread_info struct that contains
1996 event_child. Keep them in sync. */
1997 event_thread = NULL;
1998 event_child = NULL;
1999 requested_child = NULL;
2000
2001 /* Check for a lwp with a pending status. */
2002
2003 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2004 {
2005 event_thread = (struct thread_info *)
2006 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2007 if (event_thread != NULL)
2008 event_child = get_thread_lwp (event_thread);
2009 if (debug_threads && event_thread)
2010 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2011 }
2012 else if (!ptid_equal (filter_ptid, null_ptid))
2013 {
2014 requested_child = find_lwp_pid (filter_ptid);
2015
2016 if (stopping_threads == NOT_STOPPING_THREADS
2017 && requested_child->status_pending_p
2018 && requested_child->collecting_fast_tracepoint)
2019 {
2020 enqueue_one_deferred_signal (requested_child,
2021 &requested_child->status_pending);
2022 requested_child->status_pending_p = 0;
2023 requested_child->status_pending = 0;
2024 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2025 }
2026
2027 if (requested_child->suspended
2028 && requested_child->status_pending_p)
2029 fatal ("requesting an event out of a suspended child?");
2030
2031 if (requested_child->status_pending_p)
2032 {
2033 event_child = requested_child;
2034 event_thread = get_lwp_thread (event_child);
2035 }
2036 }
2037
2038 if (event_child != NULL)
2039 {
2040 if (debug_threads)
2041 debug_printf ("Got an event from pending child %ld (%04x)\n",
2042 lwpid_of (event_thread), event_child->status_pending);
2043 *wstatp = event_child->status_pending;
2044 event_child->status_pending_p = 0;
2045 event_child->status_pending = 0;
2046 current_inferior = event_thread;
2047 return lwpid_of (event_thread);
2048 }
2049
2050 /* But if we don't find a pending event, we'll have to wait.
2051
2052 We only enter this loop if no process has a pending wait status.
2053 Thus any action taken in response to a wait status inside this
2054 loop is responding as soon as we detect the status, not after any
2055 pending events. */
2056
2057 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2058 all signals while here. */
2059 sigfillset (&block_mask);
2060 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2061
2062 while (event_child == NULL)
2063 {
2064 pid_t ret = 0;
2065
2066 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2067 quirks:
2068
2069 - If the thread group leader exits while other threads in the
2070 thread group still exist, waitpid(TGID, ...) hangs. That
2071 waitpid won't return an exit status until the other threads
2072 in the group are reaped.
2073
2074 - When a non-leader thread execs, that thread just vanishes
2075 without reporting an exit (so we'd hang if we waited for it
2076 explicitly in that case). The exec event is reported to
2077 the TGID pid (although we don't currently enable exec
2078 events). */
2079 errno = 0;
2080 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2081
2082 if (debug_threads)
2083 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2084 ret, errno ? strerror (errno) : "ERRNO-OK");
2085
2086 if (ret > 0)
2087 {
2088 if (debug_threads)
2089 {
2090 debug_printf ("LLW: waitpid %ld received %s\n",
2091 (long) ret, status_to_str (*wstatp));
2092 }
2093
2094 event_child = linux_low_filter_event (filter_ptid,
2095 ret, *wstatp);
2096 if (event_child != NULL)
2097 {
2098 /* We got an event to report to the core. */
2099 event_thread = get_lwp_thread (event_child);
2100 break;
2101 }
2102
2103 /* Retry until nothing comes out of waitpid. A single
2104 SIGCHLD can indicate more than one child stopped. */
2105 continue;
2106 }
2107
2108 /* Check for zombie thread group leaders. Those can't be reaped
2109 until all other threads in the thread group are. */
2110 check_zombie_leaders ();
2111
2112 /* If there are no resumed children left in the set of LWPs we
2113 want to wait for, bail. We can't just block in
2114 waitpid/sigsuspend, because lwps might have been left stopped
2115 in trace-stop state, and we'd be stuck forever waiting for
2116 their status to change (which would only happen if we resumed
2117 them). Even if WNOHANG is set, this return code is preferred
2118 over 0 (below), as it is more detailed. */
2119 if ((find_inferior (&all_threads,
2120 not_stopped_callback,
2121 &wait_ptid) == NULL))
2122 {
2123 if (debug_threads)
2124 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2125 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2126 return -1;
2127 }
2128
2129 /* No interesting event to report to the caller. */
2130 if ((options & WNOHANG))
2131 {
2132 if (debug_threads)
2133 debug_printf ("WNOHANG set, no event found\n");
2134
2135 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2136 return 0;
2137 }
2138
2139 /* Block until we get an event reported with SIGCHLD. */
2140 if (debug_threads)
2141 debug_printf ("sigsuspend'ing\n");
2142
2143 sigsuspend (&prev_mask);
2144 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2145 goto retry;
2146 }
2147
2148 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2149
2150 current_inferior = event_thread;
2151
2152 /* Check for thread exit. */
2153 if (! WIFSTOPPED (*wstatp))
2154 {
2155 gdb_assert (last_thread_of_process_p (pid_of (event_thread)));
2156
2157 if (debug_threads)
2158 debug_printf ("LWP %d is the last lwp of process. "
2159 "Process %ld exiting.\n",
2160 pid_of (event_thread), lwpid_of (event_thread));
2161 return lwpid_of (event_thread);
2162 }
2163
2164 return lwpid_of (event_thread);
2165 }
2166
2167 /* Wait for an event from child(ren) PTID. PTIDs can be:
2168 minus_one_ptid, to specify any child; a pid PTID, specifying all
2169 lwps of a thread group; or a PTID representing a single lwp. Store
2170 the stop status through the status pointer WSTAT. OPTIONS is
2171 passed to the waitpid call. Return 0 if no event was found and
2172 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2173 was found. Return the PID of the stopped child otherwise. */
2174
2175 static int
2176 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2177 {
2178 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2179 }
2180
2181 /* Count the LWP's that have had events. */
2182
2183 static int
2184 count_events_callback (struct inferior_list_entry *entry, void *data)
2185 {
2186 struct thread_info *thread = (struct thread_info *) entry;
2187 struct lwp_info *lp = get_thread_lwp (thread);
2188 int *count = data;
2189
2190 gdb_assert (count != NULL);
2191
2192 /* Count only resumed LWPs that have a SIGTRAP event pending that
2193 should be reported to GDB. */
2194 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2195 && thread->last_resume_kind != resume_stop
2196 && lp->status_pending_p
2197 && WIFSTOPPED (lp->status_pending)
2198 && WSTOPSIG (lp->status_pending) == SIGTRAP
2199 && !breakpoint_inserted_here (lp->stop_pc))
2200 (*count)++;
2201
2202 return 0;
2203 }
2204
2205 /* Select the LWP (if any) that is currently being single-stepped. */
2206
2207 static int
2208 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2209 {
2210 struct thread_info *thread = (struct thread_info *) entry;
2211 struct lwp_info *lp = get_thread_lwp (thread);
2212
2213 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2214 && thread->last_resume_kind == resume_step
2215 && lp->status_pending_p)
2216 return 1;
2217 else
2218 return 0;
2219 }
2220
2221 /* Select the Nth LWP that has had a SIGTRAP event that should be
2222 reported to GDB. */
2223
2224 static int
2225 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2226 {
2227 struct thread_info *thread = (struct thread_info *) entry;
2228 struct lwp_info *lp = get_thread_lwp (thread);
2229 int *selector = data;
2230
2231 gdb_assert (selector != NULL);
2232
2233 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2234 if (thread->last_resume_kind != resume_stop
2235 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2236 && lp->status_pending_p
2237 && WIFSTOPPED (lp->status_pending)
2238 && WSTOPSIG (lp->status_pending) == SIGTRAP
2239 && !breakpoint_inserted_here (lp->stop_pc))
2240 if ((*selector)-- == 0)
2241 return 1;
2242
2243 return 0;
2244 }
2245
2246 static int
2247 cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
2248 {
2249 struct thread_info *thread = (struct thread_info *) entry;
2250 struct lwp_info *lp = get_thread_lwp (thread);
2251 struct lwp_info *event_lp = data;
2252
2253 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2254 if (lp == event_lp)
2255 return 0;
2256
2257 /* If a LWP other than the LWP that we're reporting an event for has
2258 hit a GDB breakpoint (as opposed to some random trap signal),
2259 then just arrange for it to hit it again later. We don't keep
2260 the SIGTRAP status and don't forward the SIGTRAP signal to the
2261 LWP. We will handle the current event, eventually we will resume
2262 all LWPs, and this one will get its breakpoint trap again.
2263
2264 If we do not do this, then we run the risk that the user will
2265 delete or disable the breakpoint, but the LWP will have already
2266 tripped on it. */
2267
2268 if (thread->last_resume_kind != resume_stop
2269 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2270 && lp->status_pending_p
2271 && WIFSTOPPED (lp->status_pending)
2272 && WSTOPSIG (lp->status_pending) == SIGTRAP
2273 && !lp->stepping
2274 && !lp->stopped_by_watchpoint
2275 && cancel_breakpoint (lp))
2276 /* Throw away the SIGTRAP. */
2277 lp->status_pending_p = 0;
2278
2279 return 0;
2280 }
2281
2282 static void
2283 linux_cancel_breakpoints (void)
2284 {
2285 find_inferior (&all_threads, cancel_breakpoints_callback, NULL);
2286 }
2287
2288 /* Select one LWP out of those that have events pending. */
2289
2290 static void
2291 select_event_lwp (struct lwp_info **orig_lp)
2292 {
2293 int num_events = 0;
2294 int random_selector;
2295 struct thread_info *event_thread;
2296
2297 /* Give preference to any LWP that is being single-stepped. */
2298 event_thread
2299 = (struct thread_info *) find_inferior (&all_threads,
2300 select_singlestep_lwp_callback,
2301 NULL);
2302 if (event_thread != NULL)
2303 {
2304 if (debug_threads)
2305 debug_printf ("SEL: Select single-step %s\n",
2306 target_pid_to_str (ptid_of (event_thread)));
2307 }
2308 else
2309 {
2310 /* No single-stepping LWP. Select one at random, out of those
2311 which have had SIGTRAP events. */
2312
2313 /* First see how many SIGTRAP events we have. */
2314 find_inferior (&all_threads, count_events_callback, &num_events);
2315
2316 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2317 random_selector = (int)
2318 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2319
2320 if (debug_threads && num_events > 1)
2321 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2322 num_events, random_selector);
2323
2324 event_thread
2325 = (struct thread_info *) find_inferior (&all_threads,
2326 select_event_lwp_callback,
2327 &random_selector);
2328 }
2329
2330 if (event_thread != NULL)
2331 {
2332 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2333
2334 /* Switch the event LWP. */
2335 *orig_lp = event_lp;
2336 }
2337 }
2338
2339 /* Decrement the suspend count of an LWP. */
2340
2341 static int
2342 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2343 {
2344 struct thread_info *thread = (struct thread_info *) entry;
2345 struct lwp_info *lwp = get_thread_lwp (thread);
2346
2347 /* Ignore EXCEPT. */
2348 if (lwp == except)
2349 return 0;
2350
2351 lwp->suspended--;
2352
2353 gdb_assert (lwp->suspended >= 0);
2354 return 0;
2355 }
2356
2357 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2358 NULL. */
2359
2360 static void
2361 unsuspend_all_lwps (struct lwp_info *except)
2362 {
2363 find_inferior (&all_threads, unsuspend_one_lwp, except);
2364 }
2365
2366 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2367 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2368 void *data);
2369 static int lwp_running (struct inferior_list_entry *entry, void *data);
2370 static ptid_t linux_wait_1 (ptid_t ptid,
2371 struct target_waitstatus *ourstatus,
2372 int target_options);
2373
2374 /* Stabilize threads (move out of jump pads).
2375
2376 If a thread is midway collecting a fast tracepoint, we need to
2377 finish the collection and move it out of the jump pad before
2378 reporting the signal.
2379
2380 This avoids recursion while collecting (when a signal arrives
2381 midway, and the signal handler itself collects), which would trash
2382 the trace buffer. In case the user set a breakpoint in a signal
2383 handler, this avoids the backtrace showing the jump pad, etc..
2384 Most importantly, there are certain things we can't do safely if
2385 threads are stopped in a jump pad (or in its callee's). For
2386 example:
2387
2388 - starting a new trace run. A thread still collecting the
2389 previous run, could trash the trace buffer when resumed. The trace
2390 buffer control structures would have been reset but the thread had
2391 no way to tell. The thread could even midway memcpy'ing to the
2392 buffer, which would mean that when resumed, it would clobber the
2393 trace buffer that had been set for a new run.
2394
2395 - we can't rewrite/reuse the jump pads for new tracepoints
2396 safely. Say you do tstart while a thread is stopped midway while
2397 collecting. When the thread is later resumed, it finishes the
2398 collection, and returns to the jump pad, to execute the original
2399 instruction that was under the tracepoint jump at the time the
2400 older run had been started. If the jump pad had been rewritten
2401 since for something else in the new run, the thread would now
2402 execute the wrong / random instructions. */
2403
2404 static void
2405 linux_stabilize_threads (void)
2406 {
2407 struct thread_info *save_inferior;
2408 struct thread_info *thread_stuck;
2409
2410 thread_stuck
2411 = (struct thread_info *) find_inferior (&all_threads,
2412 stuck_in_jump_pad_callback,
2413 NULL);
2414 if (thread_stuck != NULL)
2415 {
2416 if (debug_threads)
2417 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2418 lwpid_of (thread_stuck));
2419 return;
2420 }
2421
2422 save_inferior = current_inferior;
2423
2424 stabilizing_threads = 1;
2425
2426 /* Kick 'em all. */
2427 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2428
2429 /* Loop until all are stopped out of the jump pads. */
2430 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2431 {
2432 struct target_waitstatus ourstatus;
2433 struct lwp_info *lwp;
2434 int wstat;
2435
2436 /* Note that we go through the full wait even loop. While
2437 moving threads out of jump pad, we need to be able to step
2438 over internal breakpoints and such. */
2439 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2440
2441 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2442 {
2443 lwp = get_thread_lwp (current_inferior);
2444
2445 /* Lock it. */
2446 lwp->suspended++;
2447
2448 if (ourstatus.value.sig != GDB_SIGNAL_0
2449 || current_inferior->last_resume_kind == resume_stop)
2450 {
2451 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2452 enqueue_one_deferred_signal (lwp, &wstat);
2453 }
2454 }
2455 }
2456
2457 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2458
2459 stabilizing_threads = 0;
2460
2461 current_inferior = save_inferior;
2462
2463 if (debug_threads)
2464 {
2465 thread_stuck
2466 = (struct thread_info *) find_inferior (&all_threads,
2467 stuck_in_jump_pad_callback,
2468 NULL);
2469 if (thread_stuck != NULL)
2470 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2471 lwpid_of (thread_stuck));
2472 }
2473 }
2474
2475 /* Wait for process, returns status. */
2476
2477 static ptid_t
2478 linux_wait_1 (ptid_t ptid,
2479 struct target_waitstatus *ourstatus, int target_options)
2480 {
2481 int w;
2482 struct lwp_info *event_child;
2483 int options;
2484 int pid;
2485 int step_over_finished;
2486 int bp_explains_trap;
2487 int maybe_internal_trap;
2488 int report_to_gdb;
2489 int trace_event;
2490 int in_step_range;
2491
2492 if (debug_threads)
2493 {
2494 debug_enter ();
2495 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2496 }
2497
2498 /* Translate generic target options into linux options. */
2499 options = __WALL;
2500 if (target_options & TARGET_WNOHANG)
2501 options |= WNOHANG;
2502
2503 retry:
2504 bp_explains_trap = 0;
2505 trace_event = 0;
2506 in_step_range = 0;
2507 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2508
2509 /* If we were only supposed to resume one thread, only wait for
2510 that thread - if it's still alive. If it died, however - which
2511 can happen if we're coming from the thread death case below -
2512 then we need to make sure we restart the other threads. We could
2513 pick a thread at random or restart all; restarting all is less
2514 arbitrary. */
2515 if (!non_stop
2516 && !ptid_equal (cont_thread, null_ptid)
2517 && !ptid_equal (cont_thread, minus_one_ptid))
2518 {
2519 struct thread_info *thread;
2520
2521 thread = (struct thread_info *) find_inferior_id (&all_threads,
2522 cont_thread);
2523
2524 /* No stepping, no signal - unless one is pending already, of course. */
2525 if (thread == NULL)
2526 {
2527 struct thread_resume resume_info;
2528 resume_info.thread = minus_one_ptid;
2529 resume_info.kind = resume_continue;
2530 resume_info.sig = 0;
2531 linux_resume (&resume_info, 1);
2532 }
2533 else
2534 ptid = cont_thread;
2535 }
2536
2537 if (ptid_equal (step_over_bkpt, null_ptid))
2538 pid = linux_wait_for_event (ptid, &w, options);
2539 else
2540 {
2541 if (debug_threads)
2542 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
2543 target_pid_to_str (step_over_bkpt));
2544 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2545 }
2546
2547 if (pid == 0)
2548 {
2549 gdb_assert (target_options & TARGET_WNOHANG);
2550
2551 if (debug_threads)
2552 {
2553 debug_printf ("linux_wait_1 ret = null_ptid, "
2554 "TARGET_WAITKIND_IGNORE\n");
2555 debug_exit ();
2556 }
2557
2558 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2559 return null_ptid;
2560 }
2561 else if (pid == -1)
2562 {
2563 if (debug_threads)
2564 {
2565 debug_printf ("linux_wait_1 ret = null_ptid, "
2566 "TARGET_WAITKIND_NO_RESUMED\n");
2567 debug_exit ();
2568 }
2569
2570 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
2571 return null_ptid;
2572 }
2573
2574 event_child = get_thread_lwp (current_inferior);
2575
2576 /* linux_wait_for_event only returns an exit status for the last
2577 child of a process. Report it. */
2578 if (WIFEXITED (w) || WIFSIGNALED (w))
2579 {
2580 if (WIFEXITED (w))
2581 {
2582 ourstatus->kind = TARGET_WAITKIND_EXITED;
2583 ourstatus->value.integer = WEXITSTATUS (w);
2584
2585 if (debug_threads)
2586 {
2587 debug_printf ("linux_wait_1 ret = %s, exited with "
2588 "retcode %d\n",
2589 target_pid_to_str (ptid_of (current_inferior)),
2590 WEXITSTATUS (w));
2591 debug_exit ();
2592 }
2593 }
2594 else
2595 {
2596 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2597 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
2598
2599 if (debug_threads)
2600 {
2601 debug_printf ("linux_wait_1 ret = %s, terminated with "
2602 "signal %d\n",
2603 target_pid_to_str (ptid_of (current_inferior)),
2604 WTERMSIG (w));
2605 debug_exit ();
2606 }
2607 }
2608
2609 return ptid_of (current_inferior);
2610 }
2611
2612 /* If this event was not handled before, and is not a SIGTRAP, we
2613 report it. SIGILL and SIGSEGV are also treated as traps in case
2614 a breakpoint is inserted at the current PC. If this target does
2615 not support internal breakpoints at all, we also report the
2616 SIGTRAP without further processing; it's of no concern to us. */
2617 maybe_internal_trap
2618 = (supports_breakpoints ()
2619 && (WSTOPSIG (w) == SIGTRAP
2620 || ((WSTOPSIG (w) == SIGILL
2621 || WSTOPSIG (w) == SIGSEGV)
2622 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2623
2624 if (maybe_internal_trap)
2625 {
2626 /* Handle anything that requires bookkeeping before deciding to
2627 report the event or continue waiting. */
2628
2629 /* First check if we can explain the SIGTRAP with an internal
2630 breakpoint, or if we should possibly report the event to GDB.
2631 Do this before anything that may remove or insert a
2632 breakpoint. */
2633 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2634
2635 /* We have a SIGTRAP, possibly a step-over dance has just
2636 finished. If so, tweak the state machine accordingly,
2637 reinsert breakpoints and delete any reinsert (software
2638 single-step) breakpoints. */
2639 step_over_finished = finish_step_over (event_child);
2640
2641 /* Now invoke the callbacks of any internal breakpoints there. */
2642 check_breakpoints (event_child->stop_pc);
2643
2644 /* Handle tracepoint data collecting. This may overflow the
2645 trace buffer, and cause a tracing stop, removing
2646 breakpoints. */
2647 trace_event = handle_tracepoints (event_child);
2648
2649 if (bp_explains_trap)
2650 {
2651 /* If we stepped or ran into an internal breakpoint, we've
2652 already handled it. So next time we resume (from this
2653 PC), we should step over it. */
2654 if (debug_threads)
2655 debug_printf ("Hit a gdbserver breakpoint.\n");
2656
2657 if (breakpoint_here (event_child->stop_pc))
2658 event_child->need_step_over = 1;
2659 }
2660 }
2661 else
2662 {
2663 /* We have some other signal, possibly a step-over dance was in
2664 progress, and it should be cancelled too. */
2665 step_over_finished = finish_step_over (event_child);
2666 }
2667
2668 /* We have all the data we need. Either report the event to GDB, or
2669 resume threads and keep waiting for more. */
2670
2671 /* If we're collecting a fast tracepoint, finish the collection and
2672 move out of the jump pad before delivering a signal. See
2673 linux_stabilize_threads. */
2674
2675 if (WIFSTOPPED (w)
2676 && WSTOPSIG (w) != SIGTRAP
2677 && supports_fast_tracepoints ()
2678 && agent_loaded_p ())
2679 {
2680 if (debug_threads)
2681 debug_printf ("Got signal %d for LWP %ld. Check if we need "
2682 "to defer or adjust it.\n",
2683 WSTOPSIG (w), lwpid_of (current_inferior));
2684
2685 /* Allow debugging the jump pad itself. */
2686 if (current_inferior->last_resume_kind != resume_step
2687 && maybe_move_out_of_jump_pad (event_child, &w))
2688 {
2689 enqueue_one_deferred_signal (event_child, &w);
2690
2691 if (debug_threads)
2692 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
2693 WSTOPSIG (w), lwpid_of (current_inferior));
2694
2695 linux_resume_one_lwp (event_child, 0, 0, NULL);
2696 goto retry;
2697 }
2698 }
2699
2700 if (event_child->collecting_fast_tracepoint)
2701 {
2702 if (debug_threads)
2703 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
2704 "Check if we're already there.\n",
2705 lwpid_of (current_inferior),
2706 event_child->collecting_fast_tracepoint);
2707
2708 trace_event = 1;
2709
2710 event_child->collecting_fast_tracepoint
2711 = linux_fast_tracepoint_collecting (event_child, NULL);
2712
2713 if (event_child->collecting_fast_tracepoint != 1)
2714 {
2715 /* No longer need this breakpoint. */
2716 if (event_child->exit_jump_pad_bkpt != NULL)
2717 {
2718 if (debug_threads)
2719 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
2720 "stopping all threads momentarily.\n");
2721
2722 /* Other running threads could hit this breakpoint.
2723 We don't handle moribund locations like GDB does,
2724 instead we always pause all threads when removing
2725 breakpoints, so that any step-over or
2726 decr_pc_after_break adjustment is always taken
2727 care of while the breakpoint is still
2728 inserted. */
2729 stop_all_lwps (1, event_child);
2730 cancel_breakpoints ();
2731
2732 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2733 event_child->exit_jump_pad_bkpt = NULL;
2734
2735 unstop_all_lwps (1, event_child);
2736
2737 gdb_assert (event_child->suspended >= 0);
2738 }
2739 }
2740
2741 if (event_child->collecting_fast_tracepoint == 0)
2742 {
2743 if (debug_threads)
2744 debug_printf ("fast tracepoint finished "
2745 "collecting successfully.\n");
2746
2747 /* We may have a deferred signal to report. */
2748 if (dequeue_one_deferred_signal (event_child, &w))
2749 {
2750 if (debug_threads)
2751 debug_printf ("dequeued one signal.\n");
2752 }
2753 else
2754 {
2755 if (debug_threads)
2756 debug_printf ("no deferred signals.\n");
2757
2758 if (stabilizing_threads)
2759 {
2760 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2761 ourstatus->value.sig = GDB_SIGNAL_0;
2762
2763 if (debug_threads)
2764 {
2765 debug_printf ("linux_wait_1 ret = %s, stopped "
2766 "while stabilizing threads\n",
2767 target_pid_to_str (ptid_of (current_inferior)));
2768 debug_exit ();
2769 }
2770
2771 return ptid_of (current_inferior);
2772 }
2773 }
2774 }
2775 }
2776
2777 /* Check whether GDB would be interested in this event. */
2778
2779 /* If GDB is not interested in this signal, don't stop other
2780 threads, and don't report it to GDB. Just resume the inferior
2781 right away. We do this for threading-related signals as well as
2782 any that GDB specifically requested we ignore. But never ignore
2783 SIGSTOP if we sent it ourselves, and do not ignore signals when
2784 stepping - they may require special handling to skip the signal
2785 handler. */
2786 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2787 thread library? */
2788 if (WIFSTOPPED (w)
2789 && current_inferior->last_resume_kind != resume_step
2790 && (
2791 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
2792 (current_process ()->private->thread_db != NULL
2793 && (WSTOPSIG (w) == __SIGRTMIN
2794 || WSTOPSIG (w) == __SIGRTMIN + 1))
2795 ||
2796 #endif
2797 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
2798 && !(WSTOPSIG (w) == SIGSTOP
2799 && current_inferior->last_resume_kind == resume_stop))))
2800 {
2801 siginfo_t info, *info_p;
2802
2803 if (debug_threads)
2804 debug_printf ("Ignored signal %d for LWP %ld.\n",
2805 WSTOPSIG (w), lwpid_of (current_inferior));
2806
2807 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_inferior),
2808 (PTRACE_TYPE_ARG3) 0, &info) == 0)
2809 info_p = &info;
2810 else
2811 info_p = NULL;
2812 linux_resume_one_lwp (event_child, event_child->stepping,
2813 WSTOPSIG (w), info_p);
2814 goto retry;
2815 }
2816
2817 /* Note that all addresses are always "out of the step range" when
2818 there's no range to begin with. */
2819 in_step_range = lwp_in_step_range (event_child);
2820
2821 /* If GDB wanted this thread to single step, and the thread is out
2822 of the step range, we always want to report the SIGTRAP, and let
2823 GDB handle it. Watchpoints should always be reported. So should
2824 signals we can't explain. A SIGTRAP we can't explain could be a
2825 GDB breakpoint --- we may or not support Z0 breakpoints. If we
2826 do, we're be able to handle GDB breakpoints on top of internal
2827 breakpoints, by handling the internal breakpoint and still
2828 reporting the event to GDB. If we don't, we're out of luck, GDB
2829 won't see the breakpoint hit. */
2830 report_to_gdb = (!maybe_internal_trap
2831 || (current_inferior->last_resume_kind == resume_step
2832 && !in_step_range)
2833 || event_child->stopped_by_watchpoint
2834 || (!step_over_finished && !in_step_range
2835 && !bp_explains_trap && !trace_event)
2836 || (gdb_breakpoint_here (event_child->stop_pc)
2837 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
2838 && gdb_no_commands_at_breakpoint (event_child->stop_pc)));
2839
2840 run_breakpoint_commands (event_child->stop_pc);
2841
2842 /* We found no reason GDB would want us to stop. We either hit one
2843 of our own breakpoints, or finished an internal step GDB
2844 shouldn't know about. */
2845 if (!report_to_gdb)
2846 {
2847 if (debug_threads)
2848 {
2849 if (bp_explains_trap)
2850 debug_printf ("Hit a gdbserver breakpoint.\n");
2851 if (step_over_finished)
2852 debug_printf ("Step-over finished.\n");
2853 if (trace_event)
2854 debug_printf ("Tracepoint event.\n");
2855 if (lwp_in_step_range (event_child))
2856 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
2857 paddress (event_child->stop_pc),
2858 paddress (event_child->step_range_start),
2859 paddress (event_child->step_range_end));
2860 }
2861
2862 /* We're not reporting this breakpoint to GDB, so apply the
2863 decr_pc_after_break adjustment to the inferior's regcache
2864 ourselves. */
2865
2866 if (the_low_target.set_pc != NULL)
2867 {
2868 struct regcache *regcache
2869 = get_thread_regcache (current_inferior, 1);
2870 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2871 }
2872
2873 /* We may have finished stepping over a breakpoint. If so,
2874 we've stopped and suspended all LWPs momentarily except the
2875 stepping one. This is where we resume them all again. We're
2876 going to keep waiting, so use proceed, which handles stepping
2877 over the next breakpoint. */
2878 if (debug_threads)
2879 debug_printf ("proceeding all threads.\n");
2880
2881 if (step_over_finished)
2882 unsuspend_all_lwps (event_child);
2883
2884 proceed_all_lwps ();
2885 goto retry;
2886 }
2887
2888 if (debug_threads)
2889 {
2890 if (current_inferior->last_resume_kind == resume_step)
2891 {
2892 if (event_child->step_range_start == event_child->step_range_end)
2893 debug_printf ("GDB wanted to single-step, reporting event.\n");
2894 else if (!lwp_in_step_range (event_child))
2895 debug_printf ("Out of step range, reporting event.\n");
2896 }
2897 if (event_child->stopped_by_watchpoint)
2898 debug_printf ("Stopped by watchpoint.\n");
2899 if (gdb_breakpoint_here (event_child->stop_pc))
2900 debug_printf ("Stopped by GDB breakpoint.\n");
2901 if (debug_threads)
2902 debug_printf ("Hit a non-gdbserver trap event.\n");
2903 }
2904
2905 /* Alright, we're going to report a stop. */
2906
2907 if (!non_stop && !stabilizing_threads)
2908 {
2909 /* In all-stop, stop all threads. */
2910 stop_all_lwps (0, NULL);
2911
2912 /* If we're not waiting for a specific LWP, choose an event LWP
2913 from among those that have had events. Giving equal priority
2914 to all LWPs that have had events helps prevent
2915 starvation. */
2916 if (ptid_equal (ptid, minus_one_ptid))
2917 {
2918 event_child->status_pending_p = 1;
2919 event_child->status_pending = w;
2920
2921 select_event_lwp (&event_child);
2922
2923 /* current_inferior and event_child must stay in sync. */
2924 current_inferior = get_lwp_thread (event_child);
2925
2926 event_child->status_pending_p = 0;
2927 w = event_child->status_pending;
2928 }
2929
2930 /* Now that we've selected our final event LWP, cancel any
2931 breakpoints in other LWPs that have hit a GDB breakpoint.
2932 See the comment in cancel_breakpoints_callback to find out
2933 why. */
2934 find_inferior (&all_threads, cancel_breakpoints_callback, event_child);
2935
2936 /* If we were going a step-over, all other threads but the stepping one
2937 had been paused in start_step_over, with their suspend counts
2938 incremented. We don't want to do a full unstop/unpause, because we're
2939 in all-stop mode (so we want threads stopped), but we still need to
2940 unsuspend the other threads, to decrement their `suspended' count
2941 back. */
2942 if (step_over_finished)
2943 unsuspend_all_lwps (event_child);
2944
2945 /* Stabilize threads (move out of jump pads). */
2946 stabilize_threads ();
2947 }
2948 else
2949 {
2950 /* If we just finished a step-over, then all threads had been
2951 momentarily paused. In all-stop, that's fine, we want
2952 threads stopped by now anyway. In non-stop, we need to
2953 re-resume threads that GDB wanted to be running. */
2954 if (step_over_finished)
2955 unstop_all_lwps (1, event_child);
2956 }
2957
2958 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2959
2960 if (current_inferior->last_resume_kind == resume_stop
2961 && WSTOPSIG (w) == SIGSTOP)
2962 {
2963 /* A thread that has been requested to stop by GDB with vCont;t,
2964 and it stopped cleanly, so report as SIG0. The use of
2965 SIGSTOP is an implementation detail. */
2966 ourstatus->value.sig = GDB_SIGNAL_0;
2967 }
2968 else if (current_inferior->last_resume_kind == resume_stop
2969 && WSTOPSIG (w) != SIGSTOP)
2970 {
2971 /* A thread that has been requested to stop by GDB with vCont;t,
2972 but, it stopped for other reasons. */
2973 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2974 }
2975 else
2976 {
2977 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2978 }
2979
2980 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
2981
2982 if (debug_threads)
2983 {
2984 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
2985 target_pid_to_str (ptid_of (current_inferior)),
2986 ourstatus->kind, ourstatus->value.sig);
2987 debug_exit ();
2988 }
2989
2990 return ptid_of (current_inferior);
2991 }
2992
2993 /* Get rid of any pending event in the pipe. */
2994 static void
2995 async_file_flush (void)
2996 {
2997 int ret;
2998 char buf;
2999
3000 do
3001 ret = read (linux_event_pipe[0], &buf, 1);
3002 while (ret >= 0 || (ret == -1 && errno == EINTR));
3003 }
3004
3005 /* Put something in the pipe, so the event loop wakes up. */
3006 static void
3007 async_file_mark (void)
3008 {
3009 int ret;
3010
3011 async_file_flush ();
3012
3013 do
3014 ret = write (linux_event_pipe[1], "+", 1);
3015 while (ret == 0 || (ret == -1 && errno == EINTR));
3016
3017 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3018 be awakened anyway. */
3019 }
3020
3021 static ptid_t
3022 linux_wait (ptid_t ptid,
3023 struct target_waitstatus *ourstatus, int target_options)
3024 {
3025 ptid_t event_ptid;
3026
3027 /* Flush the async file first. */
3028 if (target_is_async_p ())
3029 async_file_flush ();
3030
3031 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3032
3033 /* If at least one stop was reported, there may be more. A single
3034 SIGCHLD can signal more than one child stop. */
3035 if (target_is_async_p ()
3036 && (target_options & TARGET_WNOHANG) != 0
3037 && !ptid_equal (event_ptid, null_ptid))
3038 async_file_mark ();
3039
3040 return event_ptid;
3041 }
3042
3043 /* Send a signal to an LWP. */
3044
3045 static int
3046 kill_lwp (unsigned long lwpid, int signo)
3047 {
3048 /* Use tkill, if possible, in case we are using nptl threads. If tkill
3049 fails, then we are not using nptl threads and we should be using kill. */
3050
3051 #ifdef __NR_tkill
3052 {
3053 static int tkill_failed;
3054
3055 if (!tkill_failed)
3056 {
3057 int ret;
3058
3059 errno = 0;
3060 ret = syscall (__NR_tkill, lwpid, signo);
3061 if (errno != ENOSYS)
3062 return ret;
3063 tkill_failed = 1;
3064 }
3065 }
3066 #endif
3067
3068 return kill (lwpid, signo);
3069 }
3070
3071 void
3072 linux_stop_lwp (struct lwp_info *lwp)
3073 {
3074 send_sigstop (lwp);
3075 }
3076
3077 static void
3078 send_sigstop (struct lwp_info *lwp)
3079 {
3080 int pid;
3081
3082 pid = lwpid_of (get_lwp_thread (lwp));
3083
3084 /* If we already have a pending stop signal for this process, don't
3085 send another. */
3086 if (lwp->stop_expected)
3087 {
3088 if (debug_threads)
3089 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3090
3091 return;
3092 }
3093
3094 if (debug_threads)
3095 debug_printf ("Sending sigstop to lwp %d\n", pid);
3096
3097 lwp->stop_expected = 1;
3098 kill_lwp (pid, SIGSTOP);
3099 }
3100
3101 static int
3102 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3103 {
3104 struct thread_info *thread = (struct thread_info *) entry;
3105 struct lwp_info *lwp = get_thread_lwp (thread);
3106
3107 /* Ignore EXCEPT. */
3108 if (lwp == except)
3109 return 0;
3110
3111 if (lwp->stopped)
3112 return 0;
3113
3114 send_sigstop (lwp);
3115 return 0;
3116 }
3117
3118 /* Increment the suspend count of an LWP, and stop it, if not stopped
3119 yet. */
3120 static int
3121 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3122 void *except)
3123 {
3124 struct thread_info *thread = (struct thread_info *) entry;
3125 struct lwp_info *lwp = get_thread_lwp (thread);
3126
3127 /* Ignore EXCEPT. */
3128 if (lwp == except)
3129 return 0;
3130
3131 lwp->suspended++;
3132
3133 return send_sigstop_callback (entry, except);
3134 }
3135
3136 static void
3137 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3138 {
3139 /* It's dead, really. */
3140 lwp->dead = 1;
3141
3142 /* Store the exit status for later. */
3143 lwp->status_pending_p = 1;
3144 lwp->status_pending = wstat;
3145
3146 /* Prevent trying to stop it. */
3147 lwp->stopped = 1;
3148
3149 /* No further stops are expected from a dead lwp. */
3150 lwp->stop_expected = 0;
3151 }
3152
3153 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3154
3155 static void
3156 wait_for_sigstop (void)
3157 {
3158 struct thread_info *saved_inferior;
3159 ptid_t saved_tid;
3160 int wstat;
3161 int ret;
3162
3163 saved_inferior = current_inferior;
3164 if (saved_inferior != NULL)
3165 saved_tid = saved_inferior->entry.id;
3166 else
3167 saved_tid = null_ptid; /* avoid bogus unused warning */
3168
3169 if (debug_threads)
3170 debug_printf ("wait_for_sigstop: pulling events\n");
3171
3172 /* Passing NULL_PTID as filter indicates we want all events to be
3173 left pending. Eventually this returns when there are no
3174 unwaited-for children left. */
3175 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3176 &wstat, __WALL);
3177 gdb_assert (ret == -1);
3178
3179 if (saved_inferior == NULL || linux_thread_alive (saved_tid))
3180 current_inferior = saved_inferior;
3181 else
3182 {
3183 if (debug_threads)
3184 debug_printf ("Previously current thread died.\n");
3185
3186 if (non_stop)
3187 {
3188 /* We can't change the current inferior behind GDB's back,
3189 otherwise, a subsequent command may apply to the wrong
3190 process. */
3191 current_inferior = NULL;
3192 }
3193 else
3194 {
3195 /* Set a valid thread as current. */
3196 set_desired_inferior (0);
3197 }
3198 }
3199 }
3200
3201 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3202 move it out, because we need to report the stop event to GDB. For
3203 example, if the user puts a breakpoint in the jump pad, it's
3204 because she wants to debug it. */
3205
3206 static int
3207 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3208 {
3209 struct thread_info *thread = (struct thread_info *) entry;
3210 struct lwp_info *lwp = get_thread_lwp (thread);
3211
3212 gdb_assert (lwp->suspended == 0);
3213 gdb_assert (lwp->stopped);
3214
3215 /* Allow debugging the jump pad, gdb_collect, etc.. */
3216 return (supports_fast_tracepoints ()
3217 && agent_loaded_p ()
3218 && (gdb_breakpoint_here (lwp->stop_pc)
3219 || lwp->stopped_by_watchpoint
3220 || thread->last_resume_kind == resume_step)
3221 && linux_fast_tracepoint_collecting (lwp, NULL));
3222 }
3223
3224 static void
3225 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3226 {
3227 struct thread_info *thread = (struct thread_info *) entry;
3228 struct lwp_info *lwp = get_thread_lwp (thread);
3229 int *wstat;
3230
3231 gdb_assert (lwp->suspended == 0);
3232 gdb_assert (lwp->stopped);
3233
3234 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3235
3236 /* Allow debugging the jump pad, gdb_collect, etc. */
3237 if (!gdb_breakpoint_here (lwp->stop_pc)
3238 && !lwp->stopped_by_watchpoint
3239 && thread->last_resume_kind != resume_step
3240 && maybe_move_out_of_jump_pad (lwp, wstat))
3241 {
3242 if (debug_threads)
3243 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3244 lwpid_of (thread));
3245
3246 if (wstat)
3247 {
3248 lwp->status_pending_p = 0;
3249 enqueue_one_deferred_signal (lwp, wstat);
3250
3251 if (debug_threads)
3252 debug_printf ("Signal %d for LWP %ld deferred "
3253 "(in jump pad)\n",
3254 WSTOPSIG (*wstat), lwpid_of (thread));
3255 }
3256
3257 linux_resume_one_lwp (lwp, 0, 0, NULL);
3258 }
3259 else
3260 lwp->suspended++;
3261 }
3262
3263 static int
3264 lwp_running (struct inferior_list_entry *entry, void *data)
3265 {
3266 struct thread_info *thread = (struct thread_info *) entry;
3267 struct lwp_info *lwp = get_thread_lwp (thread);
3268
3269 if (lwp->dead)
3270 return 0;
3271 if (lwp->stopped)
3272 return 0;
3273 return 1;
3274 }
3275
3276 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3277 If SUSPEND, then also increase the suspend count of every LWP,
3278 except EXCEPT. */
3279
3280 static void
3281 stop_all_lwps (int suspend, struct lwp_info *except)
3282 {
3283 /* Should not be called recursively. */
3284 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3285
3286 if (debug_threads)
3287 {
3288 debug_enter ();
3289 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3290 suspend ? "stop-and-suspend" : "stop",
3291 except != NULL
3292 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3293 : "none");
3294 }
3295
3296 stopping_threads = (suspend
3297 ? STOPPING_AND_SUSPENDING_THREADS
3298 : STOPPING_THREADS);
3299
3300 if (suspend)
3301 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3302 else
3303 find_inferior (&all_threads, send_sigstop_callback, except);
3304 wait_for_sigstop ();
3305 stopping_threads = NOT_STOPPING_THREADS;
3306
3307 if (debug_threads)
3308 {
3309 debug_printf ("stop_all_lwps done, setting stopping_threads "
3310 "back to !stopping\n");
3311 debug_exit ();
3312 }
3313 }
3314
3315 /* Resume execution of the inferior process.
3316 If STEP is nonzero, single-step it.
3317 If SIGNAL is nonzero, give it that signal. */
3318
3319 static void
3320 linux_resume_one_lwp (struct lwp_info *lwp,
3321 int step, int signal, siginfo_t *info)
3322 {
3323 struct thread_info *thread = get_lwp_thread (lwp);
3324 struct thread_info *saved_inferior;
3325 int fast_tp_collecting;
3326
3327 if (lwp->stopped == 0)
3328 return;
3329
3330 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3331
3332 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3333
3334 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3335 user used the "jump" command, or "set $pc = foo"). */
3336 if (lwp->stop_pc != get_pc (lwp))
3337 {
3338 /* Collecting 'while-stepping' actions doesn't make sense
3339 anymore. */
3340 release_while_stepping_state_list (thread);
3341 }
3342
3343 /* If we have pending signals or status, and a new signal, enqueue the
3344 signal. Also enqueue the signal if we are waiting to reinsert a
3345 breakpoint; it will be picked up again below. */
3346 if (signal != 0
3347 && (lwp->status_pending_p
3348 || lwp->pending_signals != NULL
3349 || lwp->bp_reinsert != 0
3350 || fast_tp_collecting))
3351 {
3352 struct pending_signals *p_sig;
3353 p_sig = xmalloc (sizeof (*p_sig));
3354 p_sig->prev = lwp->pending_signals;
3355 p_sig->signal = signal;
3356 if (info == NULL)
3357 memset (&p_sig->info, 0, sizeof (siginfo_t));
3358 else
3359 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3360 lwp->pending_signals = p_sig;
3361 }
3362
3363 if (lwp->status_pending_p)
3364 {
3365 if (debug_threads)
3366 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
3367 " has pending status\n",
3368 lwpid_of (thread), step ? "step" : "continue", signal,
3369 lwp->stop_expected ? "expected" : "not expected");
3370 return;
3371 }
3372
3373 saved_inferior = current_inferior;
3374 current_inferior = thread;
3375
3376 if (debug_threads)
3377 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
3378 lwpid_of (thread), step ? "step" : "continue", signal,
3379 lwp->stop_expected ? "expected" : "not expected");
3380
3381 /* This bit needs some thinking about. If we get a signal that
3382 we must report while a single-step reinsert is still pending,
3383 we often end up resuming the thread. It might be better to
3384 (ew) allow a stack of pending events; then we could be sure that
3385 the reinsert happened right away and not lose any signals.
3386
3387 Making this stack would also shrink the window in which breakpoints are
3388 uninserted (see comment in linux_wait_for_lwp) but not enough for
3389 complete correctness, so it won't solve that problem. It may be
3390 worthwhile just to solve this one, however. */
3391 if (lwp->bp_reinsert != 0)
3392 {
3393 if (debug_threads)
3394 debug_printf (" pending reinsert at 0x%s\n",
3395 paddress (lwp->bp_reinsert));
3396
3397 if (can_hardware_single_step ())
3398 {
3399 if (fast_tp_collecting == 0)
3400 {
3401 if (step == 0)
3402 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3403 if (lwp->suspended)
3404 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3405 lwp->suspended);
3406 }
3407
3408 step = 1;
3409 }
3410
3411 /* Postpone any pending signal. It was enqueued above. */
3412 signal = 0;
3413 }
3414
3415 if (fast_tp_collecting == 1)
3416 {
3417 if (debug_threads)
3418 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3419 " (exit-jump-pad-bkpt)\n",
3420 lwpid_of (thread));
3421
3422 /* Postpone any pending signal. It was enqueued above. */
3423 signal = 0;
3424 }
3425 else if (fast_tp_collecting == 2)
3426 {
3427 if (debug_threads)
3428 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3429 " single-stepping\n",
3430 lwpid_of (thread));
3431
3432 if (can_hardware_single_step ())
3433 step = 1;
3434 else
3435 fatal ("moving out of jump pad single-stepping"
3436 " not implemented on this target");
3437
3438 /* Postpone any pending signal. It was enqueued above. */
3439 signal = 0;
3440 }
3441
3442 /* If we have while-stepping actions in this thread set it stepping.
3443 If we have a signal to deliver, it may or may not be set to
3444 SIG_IGN, we don't know. Assume so, and allow collecting
3445 while-stepping into a signal handler. A possible smart thing to
3446 do would be to set an internal breakpoint at the signal return
3447 address, continue, and carry on catching this while-stepping
3448 action only when that breakpoint is hit. A future
3449 enhancement. */
3450 if (thread->while_stepping != NULL
3451 && can_hardware_single_step ())
3452 {
3453 if (debug_threads)
3454 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
3455 lwpid_of (thread));
3456 step = 1;
3457 }
3458
3459 if (debug_threads && the_low_target.get_pc != NULL)
3460 {
3461 struct regcache *regcache = get_thread_regcache (current_inferior, 1);
3462 CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
3463 debug_printf (" resuming from pc 0x%lx\n", (long) pc);
3464 }
3465
3466 /* If we have pending signals, consume one unless we are trying to
3467 reinsert a breakpoint or we're trying to finish a fast tracepoint
3468 collect. */
3469 if (lwp->pending_signals != NULL
3470 && lwp->bp_reinsert == 0
3471 && fast_tp_collecting == 0)
3472 {
3473 struct pending_signals **p_sig;
3474
3475 p_sig = &lwp->pending_signals;
3476 while ((*p_sig)->prev != NULL)
3477 p_sig = &(*p_sig)->prev;
3478
3479 signal = (*p_sig)->signal;
3480 if ((*p_sig)->info.si_signo != 0)
3481 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
3482 &(*p_sig)->info);
3483
3484 free (*p_sig);
3485 *p_sig = NULL;
3486 }
3487
3488 if (the_low_target.prepare_to_resume != NULL)
3489 the_low_target.prepare_to_resume (lwp);
3490
3491 regcache_invalidate_thread (thread);
3492 errno = 0;
3493 lwp->stopped = 0;
3494 lwp->stopped_by_watchpoint = 0;
3495 lwp->stepping = step;
3496 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
3497 (PTRACE_TYPE_ARG3) 0,
3498 /* Coerce to a uintptr_t first to avoid potential gcc warning
3499 of coercing an 8 byte integer to a 4 byte pointer. */
3500 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
3501
3502 current_inferior = saved_inferior;
3503 if (errno)
3504 {
3505 /* ESRCH from ptrace either means that the thread was already
3506 running (an error) or that it is gone (a race condition). If
3507 it's gone, we will get a notification the next time we wait,
3508 so we can ignore the error. We could differentiate these
3509 two, but it's tricky without waiting; the thread still exists
3510 as a zombie, so sending it signal 0 would succeed. So just
3511 ignore ESRCH. */
3512 if (errno == ESRCH)
3513 return;
3514
3515 perror_with_name ("ptrace");
3516 }
3517 }
3518
3519 struct thread_resume_array
3520 {
3521 struct thread_resume *resume;
3522 size_t n;
3523 };
3524
3525 /* This function is called once per thread via find_inferior.
3526 ARG is a pointer to a thread_resume_array struct.
3527 We look up the thread specified by ENTRY in ARG, and mark the thread
3528 with a pointer to the appropriate resume request.
3529
3530 This algorithm is O(threads * resume elements), but resume elements
3531 is small (and will remain small at least until GDB supports thread
3532 suspension). */
3533
3534 static int
3535 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
3536 {
3537 struct thread_info *thread = (struct thread_info *) entry;
3538 struct lwp_info *lwp = get_thread_lwp (thread);
3539 int ndx;
3540 struct thread_resume_array *r;
3541
3542 r = arg;
3543
3544 for (ndx = 0; ndx < r->n; ndx++)
3545 {
3546 ptid_t ptid = r->resume[ndx].thread;
3547 if (ptid_equal (ptid, minus_one_ptid)
3548 || ptid_equal (ptid, entry->id)
3549 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
3550 of PID'. */
3551 || (ptid_get_pid (ptid) == pid_of (thread)
3552 && (ptid_is_pid (ptid)
3553 || ptid_get_lwp (ptid) == -1)))
3554 {
3555 if (r->resume[ndx].kind == resume_stop
3556 && thread->last_resume_kind == resume_stop)
3557 {
3558 if (debug_threads)
3559 debug_printf ("already %s LWP %ld at GDB's request\n",
3560 (thread->last_status.kind
3561 == TARGET_WAITKIND_STOPPED)
3562 ? "stopped"
3563 : "stopping",
3564 lwpid_of (thread));
3565
3566 continue;
3567 }
3568
3569 lwp->resume = &r->resume[ndx];
3570 thread->last_resume_kind = lwp->resume->kind;
3571
3572 lwp->step_range_start = lwp->resume->step_range_start;
3573 lwp->step_range_end = lwp->resume->step_range_end;
3574
3575 /* If we had a deferred signal to report, dequeue one now.
3576 This can happen if LWP gets more than one signal while
3577 trying to get out of a jump pad. */
3578 if (lwp->stopped
3579 && !lwp->status_pending_p
3580 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
3581 {
3582 lwp->status_pending_p = 1;
3583
3584 if (debug_threads)
3585 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
3586 "leaving status pending.\n",
3587 WSTOPSIG (lwp->status_pending),
3588 lwpid_of (thread));
3589 }
3590
3591 return 0;
3592 }
3593 }
3594
3595 /* No resume action for this thread. */
3596 lwp->resume = NULL;
3597
3598 return 0;
3599 }
3600
3601 /* find_inferior callback for linux_resume.
3602 Set *FLAG_P if this lwp has an interesting status pending. */
3603
3604 static int
3605 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3606 {
3607 struct thread_info *thread = (struct thread_info *) entry;
3608 struct lwp_info *lwp = get_thread_lwp (thread);
3609
3610 /* LWPs which will not be resumed are not interesting, because
3611 we might not wait for them next time through linux_wait. */
3612 if (lwp->resume == NULL)
3613 return 0;
3614
3615 if (lwp->status_pending_p)
3616 * (int *) flag_p = 1;
3617
3618 return 0;
3619 }
3620
3621 /* Return 1 if this lwp that GDB wants running is stopped at an
3622 internal breakpoint that we need to step over. It assumes that any
3623 required STOP_PC adjustment has already been propagated to the
3624 inferior's regcache. */
3625
3626 static int
3627 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3628 {
3629 struct thread_info *thread = (struct thread_info *) entry;
3630 struct lwp_info *lwp = get_thread_lwp (thread);
3631 struct thread_info *saved_inferior;
3632 CORE_ADDR pc;
3633
3634 /* LWPs which will not be resumed are not interesting, because we
3635 might not wait for them next time through linux_wait. */
3636
3637 if (!lwp->stopped)
3638 {
3639 if (debug_threads)
3640 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
3641 lwpid_of (thread));
3642 return 0;
3643 }
3644
3645 if (thread->last_resume_kind == resume_stop)
3646 {
3647 if (debug_threads)
3648 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
3649 " stopped\n",
3650 lwpid_of (thread));
3651 return 0;
3652 }
3653
3654 gdb_assert (lwp->suspended >= 0);
3655
3656 if (lwp->suspended)
3657 {
3658 if (debug_threads)
3659 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
3660 lwpid_of (thread));
3661 return 0;
3662 }
3663
3664 if (!lwp->need_step_over)
3665 {
3666 if (debug_threads)
3667 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
3668 }
3669
3670 if (lwp->status_pending_p)
3671 {
3672 if (debug_threads)
3673 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
3674 " status.\n",
3675 lwpid_of (thread));
3676 return 0;
3677 }
3678
3679 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3680 or we have. */
3681 pc = get_pc (lwp);
3682
3683 /* If the PC has changed since we stopped, then don't do anything,
3684 and let the breakpoint/tracepoint be hit. This happens if, for
3685 instance, GDB handled the decr_pc_after_break subtraction itself,
3686 GDB is OOL stepping this thread, or the user has issued a "jump"
3687 command, or poked thread's registers herself. */
3688 if (pc != lwp->stop_pc)
3689 {
3690 if (debug_threads)
3691 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
3692 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3693 lwpid_of (thread),
3694 paddress (lwp->stop_pc), paddress (pc));
3695
3696 lwp->need_step_over = 0;
3697 return 0;
3698 }
3699
3700 saved_inferior = current_inferior;
3701 current_inferior = thread;
3702
3703 /* We can only step over breakpoints we know about. */
3704 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3705 {
3706 /* Don't step over a breakpoint that GDB expects to hit
3707 though. If the condition is being evaluated on the target's side
3708 and it evaluate to false, step over this breakpoint as well. */
3709 if (gdb_breakpoint_here (pc)
3710 && gdb_condition_true_at_breakpoint (pc)
3711 && gdb_no_commands_at_breakpoint (pc))
3712 {
3713 if (debug_threads)
3714 debug_printf ("Need step over [LWP %ld]? yes, but found"
3715 " GDB breakpoint at 0x%s; skipping step over\n",
3716 lwpid_of (thread), paddress (pc));
3717
3718 current_inferior = saved_inferior;
3719 return 0;
3720 }
3721 else
3722 {
3723 if (debug_threads)
3724 debug_printf ("Need step over [LWP %ld]? yes, "
3725 "found breakpoint at 0x%s\n",
3726 lwpid_of (thread), paddress (pc));
3727
3728 /* We've found an lwp that needs stepping over --- return 1 so
3729 that find_inferior stops looking. */
3730 current_inferior = saved_inferior;
3731
3732 /* If the step over is cancelled, this is set again. */
3733 lwp->need_step_over = 0;
3734 return 1;
3735 }
3736 }
3737
3738 current_inferior = saved_inferior;
3739
3740 if (debug_threads)
3741 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
3742 " at 0x%s\n",
3743 lwpid_of (thread), paddress (pc));
3744
3745 return 0;
3746 }
3747
3748 /* Start a step-over operation on LWP. When LWP stopped at a
3749 breakpoint, to make progress, we need to remove the breakpoint out
3750 of the way. If we let other threads run while we do that, they may
3751 pass by the breakpoint location and miss hitting it. To avoid
3752 that, a step-over momentarily stops all threads while LWP is
3753 single-stepped while the breakpoint is temporarily uninserted from
3754 the inferior. When the single-step finishes, we reinsert the
3755 breakpoint, and let all threads that are supposed to be running,
3756 run again.
3757
3758 On targets that don't support hardware single-step, we don't
3759 currently support full software single-stepping. Instead, we only
3760 support stepping over the thread event breakpoint, by asking the
3761 low target where to place a reinsert breakpoint. Since this
3762 routine assumes the breakpoint being stepped over is a thread event
3763 breakpoint, it usually assumes the return address of the current
3764 function is a good enough place to set the reinsert breakpoint. */
3765
3766 static int
3767 start_step_over (struct lwp_info *lwp)
3768 {
3769 struct thread_info *thread = get_lwp_thread (lwp);
3770 struct thread_info *saved_inferior;
3771 CORE_ADDR pc;
3772 int step;
3773
3774 if (debug_threads)
3775 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
3776 lwpid_of (thread));
3777
3778 stop_all_lwps (1, lwp);
3779 gdb_assert (lwp->suspended == 0);
3780
3781 if (debug_threads)
3782 debug_printf ("Done stopping all threads for step-over.\n");
3783
3784 /* Note, we should always reach here with an already adjusted PC,
3785 either by GDB (if we're resuming due to GDB's request), or by our
3786 caller, if we just finished handling an internal breakpoint GDB
3787 shouldn't care about. */
3788 pc = get_pc (lwp);
3789
3790 saved_inferior = current_inferior;
3791 current_inferior = thread;
3792
3793 lwp->bp_reinsert = pc;
3794 uninsert_breakpoints_at (pc);
3795 uninsert_fast_tracepoint_jumps_at (pc);
3796
3797 if (can_hardware_single_step ())
3798 {
3799 step = 1;
3800 }
3801 else
3802 {
3803 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
3804 set_reinsert_breakpoint (raddr);
3805 step = 0;
3806 }
3807
3808 current_inferior = saved_inferior;
3809
3810 linux_resume_one_lwp (lwp, step, 0, NULL);
3811
3812 /* Require next event from this LWP. */
3813 step_over_bkpt = thread->entry.id;
3814 return 1;
3815 }
3816
3817 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
3818 start_step_over, if still there, and delete any reinsert
3819 breakpoints we've set, on non hardware single-step targets. */
3820
3821 static int
3822 finish_step_over (struct lwp_info *lwp)
3823 {
3824 if (lwp->bp_reinsert != 0)
3825 {
3826 if (debug_threads)
3827 debug_printf ("Finished step over.\n");
3828
3829 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
3830 may be no breakpoint to reinsert there by now. */
3831 reinsert_breakpoints_at (lwp->bp_reinsert);
3832 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
3833
3834 lwp->bp_reinsert = 0;
3835
3836 /* Delete any software-single-step reinsert breakpoints. No
3837 longer needed. We don't have to worry about other threads
3838 hitting this trap, and later not being able to explain it,
3839 because we were stepping over a breakpoint, and we hold all
3840 threads but LWP stopped while doing that. */
3841 if (!can_hardware_single_step ())
3842 delete_reinsert_breakpoints ();
3843
3844 step_over_bkpt = null_ptid;
3845 return 1;
3846 }
3847 else
3848 return 0;
3849 }
3850
3851 /* This function is called once per thread. We check the thread's resume
3852 request, which will tell us whether to resume, step, or leave the thread
3853 stopped; and what signal, if any, it should be sent.
3854
3855 For threads which we aren't explicitly told otherwise, we preserve
3856 the stepping flag; this is used for stepping over gdbserver-placed
3857 breakpoints.
3858
3859 If pending_flags was set in any thread, we queue any needed
3860 signals, since we won't actually resume. We already have a pending
3861 event to report, so we don't need to preserve any step requests;
3862 they should be re-issued if necessary. */
3863
3864 static int
3865 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
3866 {
3867 struct thread_info *thread = (struct thread_info *) entry;
3868 struct lwp_info *lwp = get_thread_lwp (thread);
3869 int step;
3870 int leave_all_stopped = * (int *) arg;
3871 int leave_pending;
3872
3873 if (lwp->resume == NULL)
3874 return 0;
3875
3876 if (lwp->resume->kind == resume_stop)
3877 {
3878 if (debug_threads)
3879 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
3880
3881 if (!lwp->stopped)
3882 {
3883 if (debug_threads)
3884 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
3885
3886 /* Stop the thread, and wait for the event asynchronously,
3887 through the event loop. */
3888 send_sigstop (lwp);
3889 }
3890 else
3891 {
3892 if (debug_threads)
3893 debug_printf ("already stopped LWP %ld\n",
3894 lwpid_of (thread));
3895
3896 /* The LWP may have been stopped in an internal event that
3897 was not meant to be notified back to GDB (e.g., gdbserver
3898 breakpoint), so we should be reporting a stop event in
3899 this case too. */
3900
3901 /* If the thread already has a pending SIGSTOP, this is a
3902 no-op. Otherwise, something later will presumably resume
3903 the thread and this will cause it to cancel any pending
3904 operation, due to last_resume_kind == resume_stop. If
3905 the thread already has a pending status to report, we
3906 will still report it the next time we wait - see
3907 status_pending_p_callback. */
3908
3909 /* If we already have a pending signal to report, then
3910 there's no need to queue a SIGSTOP, as this means we're
3911 midway through moving the LWP out of the jumppad, and we
3912 will report the pending signal as soon as that is
3913 finished. */
3914 if (lwp->pending_signals_to_report == NULL)
3915 send_sigstop (lwp);
3916 }
3917
3918 /* For stop requests, we're done. */
3919 lwp->resume = NULL;
3920 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3921 return 0;
3922 }
3923
3924 /* If this thread which is about to be resumed has a pending status,
3925 then don't resume any threads - we can just report the pending
3926 status. Make sure to queue any signals that would otherwise be
3927 sent. In all-stop mode, we do this decision based on if *any*
3928 thread has a pending status. If there's a thread that needs the
3929 step-over-breakpoint dance, then don't resume any other thread
3930 but that particular one. */
3931 leave_pending = (lwp->status_pending_p || leave_all_stopped);
3932
3933 if (!leave_pending)
3934 {
3935 if (debug_threads)
3936 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
3937
3938 step = (lwp->resume->kind == resume_step);
3939 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
3940 }
3941 else
3942 {
3943 if (debug_threads)
3944 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
3945
3946 /* If we have a new signal, enqueue the signal. */
3947 if (lwp->resume->sig != 0)
3948 {
3949 struct pending_signals *p_sig;
3950 p_sig = xmalloc (sizeof (*p_sig));
3951 p_sig->prev = lwp->pending_signals;
3952 p_sig->signal = lwp->resume->sig;
3953 memset (&p_sig->info, 0, sizeof (siginfo_t));
3954
3955 /* If this is the same signal we were previously stopped by,
3956 make sure to queue its siginfo. We can ignore the return
3957 value of ptrace; if it fails, we'll skip
3958 PTRACE_SETSIGINFO. */
3959 if (WIFSTOPPED (lwp->last_status)
3960 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
3961 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
3962 &p_sig->info);
3963
3964 lwp->pending_signals = p_sig;
3965 }
3966 }
3967
3968 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3969 lwp->resume = NULL;
3970 return 0;
3971 }
3972
3973 static void
3974 linux_resume (struct thread_resume *resume_info, size_t n)
3975 {
3976 struct thread_resume_array array = { resume_info, n };
3977 struct thread_info *need_step_over = NULL;
3978 int any_pending;
3979 int leave_all_stopped;
3980
3981 if (debug_threads)
3982 {
3983 debug_enter ();
3984 debug_printf ("linux_resume:\n");
3985 }
3986
3987 find_inferior (&all_threads, linux_set_resume_request, &array);
3988
3989 /* If there is a thread which would otherwise be resumed, which has
3990 a pending status, then don't resume any threads - we can just
3991 report the pending status. Make sure to queue any signals that
3992 would otherwise be sent. In non-stop mode, we'll apply this
3993 logic to each thread individually. We consume all pending events
3994 before considering to start a step-over (in all-stop). */
3995 any_pending = 0;
3996 if (!non_stop)
3997 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
3998
3999 /* If there is a thread which would otherwise be resumed, which is
4000 stopped at a breakpoint that needs stepping over, then don't
4001 resume any threads - have it step over the breakpoint with all
4002 other threads stopped, then resume all threads again. Make sure
4003 to queue any signals that would otherwise be delivered or
4004 queued. */
4005 if (!any_pending && supports_breakpoints ())
4006 need_step_over
4007 = (struct thread_info *) find_inferior (&all_threads,
4008 need_step_over_p, NULL);
4009
4010 leave_all_stopped = (need_step_over != NULL || any_pending);
4011
4012 if (debug_threads)
4013 {
4014 if (need_step_over != NULL)
4015 debug_printf ("Not resuming all, need step over\n");
4016 else if (any_pending)
4017 debug_printf ("Not resuming, all-stop and found "
4018 "an LWP with pending status\n");
4019 else
4020 debug_printf ("Resuming, no pending status or step over needed\n");
4021 }
4022
4023 /* Even if we're leaving threads stopped, queue all signals we'd
4024 otherwise deliver. */
4025 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4026
4027 if (need_step_over)
4028 start_step_over (get_thread_lwp (need_step_over));
4029
4030 if (debug_threads)
4031 {
4032 debug_printf ("linux_resume done\n");
4033 debug_exit ();
4034 }
4035 }
4036
4037 /* This function is called once per thread. We check the thread's
4038 last resume request, which will tell us whether to resume, step, or
4039 leave the thread stopped. Any signal the client requested to be
4040 delivered has already been enqueued at this point.
4041
4042 If any thread that GDB wants running is stopped at an internal
4043 breakpoint that needs stepping over, we start a step-over operation
4044 on that particular thread, and leave all others stopped. */
4045
4046 static int
4047 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4048 {
4049 struct thread_info *thread = (struct thread_info *) entry;
4050 struct lwp_info *lwp = get_thread_lwp (thread);
4051 int step;
4052
4053 if (lwp == except)
4054 return 0;
4055
4056 if (debug_threads)
4057 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4058
4059 if (!lwp->stopped)
4060 {
4061 if (debug_threads)
4062 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4063 return 0;
4064 }
4065
4066 if (thread->last_resume_kind == resume_stop
4067 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4068 {
4069 if (debug_threads)
4070 debug_printf (" client wants LWP to remain %ld stopped\n",
4071 lwpid_of (thread));
4072 return 0;
4073 }
4074
4075 if (lwp->status_pending_p)
4076 {
4077 if (debug_threads)
4078 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4079 lwpid_of (thread));
4080 return 0;
4081 }
4082
4083 gdb_assert (lwp->suspended >= 0);
4084
4085 if (lwp->suspended)
4086 {
4087 if (debug_threads)
4088 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4089 return 0;
4090 }
4091
4092 if (thread->last_resume_kind == resume_stop
4093 && lwp->pending_signals_to_report == NULL
4094 && lwp->collecting_fast_tracepoint == 0)
4095 {
4096 /* We haven't reported this LWP as stopped yet (otherwise, the
4097 last_status.kind check above would catch it, and we wouldn't
4098 reach here. This LWP may have been momentarily paused by a
4099 stop_all_lwps call while handling for example, another LWP's
4100 step-over. In that case, the pending expected SIGSTOP signal
4101 that was queued at vCont;t handling time will have already
4102 been consumed by wait_for_sigstop, and so we need to requeue
4103 another one here. Note that if the LWP already has a SIGSTOP
4104 pending, this is a no-op. */
4105
4106 if (debug_threads)
4107 debug_printf ("Client wants LWP %ld to stop. "
4108 "Making sure it has a SIGSTOP pending\n",
4109 lwpid_of (thread));
4110
4111 send_sigstop (lwp);
4112 }
4113
4114 step = thread->last_resume_kind == resume_step;
4115 linux_resume_one_lwp (lwp, step, 0, NULL);
4116 return 0;
4117 }
4118
4119 static int
4120 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4121 {
4122 struct thread_info *thread = (struct thread_info *) entry;
4123 struct lwp_info *lwp = get_thread_lwp (thread);
4124
4125 if (lwp == except)
4126 return 0;
4127
4128 lwp->suspended--;
4129 gdb_assert (lwp->suspended >= 0);
4130
4131 return proceed_one_lwp (entry, except);
4132 }
4133
4134 /* When we finish a step-over, set threads running again. If there's
4135 another thread that may need a step-over, now's the time to start
4136 it. Eventually, we'll move all threads past their breakpoints. */
4137
4138 static void
4139 proceed_all_lwps (void)
4140 {
4141 struct thread_info *need_step_over;
4142
4143 /* If there is a thread which would otherwise be resumed, which is
4144 stopped at a breakpoint that needs stepping over, then don't
4145 resume any threads - have it step over the breakpoint with all
4146 other threads stopped, then resume all threads again. */
4147
4148 if (supports_breakpoints ())
4149 {
4150 need_step_over
4151 = (struct thread_info *) find_inferior (&all_threads,
4152 need_step_over_p, NULL);
4153
4154 if (need_step_over != NULL)
4155 {
4156 if (debug_threads)
4157 debug_printf ("proceed_all_lwps: found "
4158 "thread %ld needing a step-over\n",
4159 lwpid_of (need_step_over));
4160
4161 start_step_over (get_thread_lwp (need_step_over));
4162 return;
4163 }
4164 }
4165
4166 if (debug_threads)
4167 debug_printf ("Proceeding, no step-over needed\n");
4168
4169 find_inferior (&all_threads, proceed_one_lwp, NULL);
4170 }
4171
4172 /* Stopped LWPs that the client wanted to be running, that don't have
4173 pending statuses, are set to run again, except for EXCEPT, if not
4174 NULL. This undoes a stop_all_lwps call. */
4175
4176 static void
4177 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4178 {
4179 if (debug_threads)
4180 {
4181 debug_enter ();
4182 if (except)
4183 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4184 lwpid_of (get_lwp_thread (except)));
4185 else
4186 debug_printf ("unstopping all lwps\n");
4187 }
4188
4189 if (unsuspend)
4190 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4191 else
4192 find_inferior (&all_threads, proceed_one_lwp, except);
4193
4194 if (debug_threads)
4195 {
4196 debug_printf ("unstop_all_lwps done\n");
4197 debug_exit ();
4198 }
4199 }
4200
4201
4202 #ifdef HAVE_LINUX_REGSETS
4203
4204 #define use_linux_regsets 1
4205
4206 /* Returns true if REGSET has been disabled. */
4207
4208 static int
4209 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4210 {
4211 return (info->disabled_regsets != NULL
4212 && info->disabled_regsets[regset - info->regsets]);
4213 }
4214
4215 /* Disable REGSET. */
4216
4217 static void
4218 disable_regset (struct regsets_info *info, struct regset_info *regset)
4219 {
4220 int dr_offset;
4221
4222 dr_offset = regset - info->regsets;
4223 if (info->disabled_regsets == NULL)
4224 info->disabled_regsets = xcalloc (1, info->num_regsets);
4225 info->disabled_regsets[dr_offset] = 1;
4226 }
4227
4228 static int
4229 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
4230 struct regcache *regcache)
4231 {
4232 struct regset_info *regset;
4233 int saw_general_regs = 0;
4234 int pid;
4235 struct iovec iov;
4236
4237 regset = regsets_info->regsets;
4238
4239 pid = lwpid_of (current_inferior);
4240 while (regset->size >= 0)
4241 {
4242 void *buf, *data;
4243 int nt_type, res;
4244
4245 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4246 {
4247 regset ++;
4248 continue;
4249 }
4250
4251 buf = xmalloc (regset->size);
4252
4253 nt_type = regset->nt_type;
4254 if (nt_type)
4255 {
4256 iov.iov_base = buf;
4257 iov.iov_len = regset->size;
4258 data = (void *) &iov;
4259 }
4260 else
4261 data = buf;
4262
4263 #ifndef __sparc__
4264 res = ptrace (regset->get_request, pid,
4265 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4266 #else
4267 res = ptrace (regset->get_request, pid, data, nt_type);
4268 #endif
4269 if (res < 0)
4270 {
4271 if (errno == EIO)
4272 {
4273 /* If we get EIO on a regset, do not try it again for
4274 this process mode. */
4275 disable_regset (regsets_info, regset);
4276 free (buf);
4277 continue;
4278 }
4279 else
4280 {
4281 char s[256];
4282 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4283 pid);
4284 perror (s);
4285 }
4286 }
4287 else if (regset->type == GENERAL_REGS)
4288 saw_general_regs = 1;
4289 regset->store_function (regcache, buf);
4290 regset ++;
4291 free (buf);
4292 }
4293 if (saw_general_regs)
4294 return 0;
4295 else
4296 return 1;
4297 }
4298
4299 static int
4300 regsets_store_inferior_registers (struct regsets_info *regsets_info,
4301 struct regcache *regcache)
4302 {
4303 struct regset_info *regset;
4304 int saw_general_regs = 0;
4305 int pid;
4306 struct iovec iov;
4307
4308 regset = regsets_info->regsets;
4309
4310 pid = lwpid_of (current_inferior);
4311 while (regset->size >= 0)
4312 {
4313 void *buf, *data;
4314 int nt_type, res;
4315
4316 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4317 {
4318 regset ++;
4319 continue;
4320 }
4321
4322 buf = xmalloc (regset->size);
4323
4324 /* First fill the buffer with the current register set contents,
4325 in case there are any items in the kernel's regset that are
4326 not in gdbserver's regcache. */
4327
4328 nt_type = regset->nt_type;
4329 if (nt_type)
4330 {
4331 iov.iov_base = buf;
4332 iov.iov_len = regset->size;
4333 data = (void *) &iov;
4334 }
4335 else
4336 data = buf;
4337
4338 #ifndef __sparc__
4339 res = ptrace (regset->get_request, pid,
4340 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4341 #else
4342 res = ptrace (regset->get_request, pid, data, nt_type);
4343 #endif
4344
4345 if (res == 0)
4346 {
4347 /* Then overlay our cached registers on that. */
4348 regset->fill_function (regcache, buf);
4349
4350 /* Only now do we write the register set. */
4351 #ifndef __sparc__
4352 res = ptrace (regset->set_request, pid,
4353 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4354 #else
4355 res = ptrace (regset->set_request, pid, data, nt_type);
4356 #endif
4357 }
4358
4359 if (res < 0)
4360 {
4361 if (errno == EIO)
4362 {
4363 /* If we get EIO on a regset, do not try it again for
4364 this process mode. */
4365 disable_regset (regsets_info, regset);
4366 free (buf);
4367 continue;
4368 }
4369 else if (errno == ESRCH)
4370 {
4371 /* At this point, ESRCH should mean the process is
4372 already gone, in which case we simply ignore attempts
4373 to change its registers. See also the related
4374 comment in linux_resume_one_lwp. */
4375 free (buf);
4376 return 0;
4377 }
4378 else
4379 {
4380 perror ("Warning: ptrace(regsets_store_inferior_registers)");
4381 }
4382 }
4383 else if (regset->type == GENERAL_REGS)
4384 saw_general_regs = 1;
4385 regset ++;
4386 free (buf);
4387 }
4388 if (saw_general_regs)
4389 return 0;
4390 else
4391 return 1;
4392 }
4393
4394 #else /* !HAVE_LINUX_REGSETS */
4395
4396 #define use_linux_regsets 0
4397 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
4398 #define regsets_store_inferior_registers(regsets_info, regcache) 1
4399
4400 #endif
4401
4402 /* Return 1 if register REGNO is supported by one of the regset ptrace
4403 calls or 0 if it has to be transferred individually. */
4404
4405 static int
4406 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
4407 {
4408 unsigned char mask = 1 << (regno % 8);
4409 size_t index = regno / 8;
4410
4411 return (use_linux_regsets
4412 && (regs_info->regset_bitmap == NULL
4413 || (regs_info->regset_bitmap[index] & mask) != 0));
4414 }
4415
4416 #ifdef HAVE_LINUX_USRREGS
4417
4418 int
4419 register_addr (const struct usrregs_info *usrregs, int regnum)
4420 {
4421 int addr;
4422
4423 if (regnum < 0 || regnum >= usrregs->num_regs)
4424 error ("Invalid register number %d.", regnum);
4425
4426 addr = usrregs->regmap[regnum];
4427
4428 return addr;
4429 }
4430
4431 /* Fetch one register. */
4432 static void
4433 fetch_register (const struct usrregs_info *usrregs,
4434 struct regcache *regcache, int regno)
4435 {
4436 CORE_ADDR regaddr;
4437 int i, size;
4438 char *buf;
4439 int pid;
4440
4441 if (regno >= usrregs->num_regs)
4442 return;
4443 if ((*the_low_target.cannot_fetch_register) (regno))
4444 return;
4445
4446 regaddr = register_addr (usrregs, regno);
4447 if (regaddr == -1)
4448 return;
4449
4450 size = ((register_size (regcache->tdesc, regno)
4451 + sizeof (PTRACE_XFER_TYPE) - 1)
4452 & -sizeof (PTRACE_XFER_TYPE));
4453 buf = alloca (size);
4454
4455 pid = lwpid_of (current_inferior);
4456 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4457 {
4458 errno = 0;
4459 *(PTRACE_XFER_TYPE *) (buf + i) =
4460 ptrace (PTRACE_PEEKUSER, pid,
4461 /* Coerce to a uintptr_t first to avoid potential gcc warning
4462 of coercing an 8 byte integer to a 4 byte pointer. */
4463 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
4464 regaddr += sizeof (PTRACE_XFER_TYPE);
4465 if (errno != 0)
4466 error ("reading register %d: %s", regno, strerror (errno));
4467 }
4468
4469 if (the_low_target.supply_ptrace_register)
4470 the_low_target.supply_ptrace_register (regcache, regno, buf);
4471 else
4472 supply_register (regcache, regno, buf);
4473 }
4474
4475 /* Store one register. */
4476 static void
4477 store_register (const struct usrregs_info *usrregs,
4478 struct regcache *regcache, int regno)
4479 {
4480 CORE_ADDR regaddr;
4481 int i, size;
4482 char *buf;
4483 int pid;
4484
4485 if (regno >= usrregs->num_regs)
4486 return;
4487 if ((*the_low_target.cannot_store_register) (regno))
4488 return;
4489
4490 regaddr = register_addr (usrregs, regno);
4491 if (regaddr == -1)
4492 return;
4493
4494 size = ((register_size (regcache->tdesc, regno)
4495 + sizeof (PTRACE_XFER_TYPE) - 1)
4496 & -sizeof (PTRACE_XFER_TYPE));
4497 buf = alloca (size);
4498 memset (buf, 0, size);
4499
4500 if (the_low_target.collect_ptrace_register)
4501 the_low_target.collect_ptrace_register (regcache, regno, buf);
4502 else
4503 collect_register (regcache, regno, buf);
4504
4505 pid = lwpid_of (current_inferior);
4506 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4507 {
4508 errno = 0;
4509 ptrace (PTRACE_POKEUSER, pid,
4510 /* Coerce to a uintptr_t first to avoid potential gcc warning
4511 about coercing an 8 byte integer to a 4 byte pointer. */
4512 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
4513 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
4514 if (errno != 0)
4515 {
4516 /* At this point, ESRCH should mean the process is
4517 already gone, in which case we simply ignore attempts
4518 to change its registers. See also the related
4519 comment in linux_resume_one_lwp. */
4520 if (errno == ESRCH)
4521 return;
4522
4523 if ((*the_low_target.cannot_store_register) (regno) == 0)
4524 error ("writing register %d: %s", regno, strerror (errno));
4525 }
4526 regaddr += sizeof (PTRACE_XFER_TYPE);
4527 }
4528 }
4529
4530 /* Fetch all registers, or just one, from the child process.
4531 If REGNO is -1, do this for all registers, skipping any that are
4532 assumed to have been retrieved by regsets_fetch_inferior_registers,
4533 unless ALL is non-zero.
4534 Otherwise, REGNO specifies which register (so we can save time). */
4535 static void
4536 usr_fetch_inferior_registers (const struct regs_info *regs_info,
4537 struct regcache *regcache, int regno, int all)
4538 {
4539 struct usrregs_info *usr = regs_info->usrregs;
4540
4541 if (regno == -1)
4542 {
4543 for (regno = 0; regno < usr->num_regs; regno++)
4544 if (all || !linux_register_in_regsets (regs_info, regno))
4545 fetch_register (usr, regcache, regno);
4546 }
4547 else
4548 fetch_register (usr, regcache, regno);
4549 }
4550
4551 /* Store our register values back into the inferior.
4552 If REGNO is -1, do this for all registers, skipping any that are
4553 assumed to have been saved by regsets_store_inferior_registers,
4554 unless ALL is non-zero.
4555 Otherwise, REGNO specifies which register (so we can save time). */
4556 static void
4557 usr_store_inferior_registers (const struct regs_info *regs_info,
4558 struct regcache *regcache, int regno, int all)
4559 {
4560 struct usrregs_info *usr = regs_info->usrregs;
4561
4562 if (regno == -1)
4563 {
4564 for (regno = 0; regno < usr->num_regs; regno++)
4565 if (all || !linux_register_in_regsets (regs_info, regno))
4566 store_register (usr, regcache, regno);
4567 }
4568 else
4569 store_register (usr, regcache, regno);
4570 }
4571
4572 #else /* !HAVE_LINUX_USRREGS */
4573
4574 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4575 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4576
4577 #endif
4578
4579
4580 void
4581 linux_fetch_registers (struct regcache *regcache, int regno)
4582 {
4583 int use_regsets;
4584 int all = 0;
4585 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4586
4587 if (regno == -1)
4588 {
4589 if (the_low_target.fetch_register != NULL
4590 && regs_info->usrregs != NULL)
4591 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
4592 (*the_low_target.fetch_register) (regcache, regno);
4593
4594 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
4595 if (regs_info->usrregs != NULL)
4596 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
4597 }
4598 else
4599 {
4600 if (the_low_target.fetch_register != NULL
4601 && (*the_low_target.fetch_register) (regcache, regno))
4602 return;
4603
4604 use_regsets = linux_register_in_regsets (regs_info, regno);
4605 if (use_regsets)
4606 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
4607 regcache);
4608 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4609 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
4610 }
4611 }
4612
4613 void
4614 linux_store_registers (struct regcache *regcache, int regno)
4615 {
4616 int use_regsets;
4617 int all = 0;
4618 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4619
4620 if (regno == -1)
4621 {
4622 all = regsets_store_inferior_registers (regs_info->regsets_info,
4623 regcache);
4624 if (regs_info->usrregs != NULL)
4625 usr_store_inferior_registers (regs_info, regcache, regno, all);
4626 }
4627 else
4628 {
4629 use_regsets = linux_register_in_regsets (regs_info, regno);
4630 if (use_regsets)
4631 all = regsets_store_inferior_registers (regs_info->regsets_info,
4632 regcache);
4633 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4634 usr_store_inferior_registers (regs_info, regcache, regno, 1);
4635 }
4636 }
4637
4638
4639 /* Copy LEN bytes from inferior's memory starting at MEMADDR
4640 to debugger memory starting at MYADDR. */
4641
4642 static int
4643 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
4644 {
4645 int pid = lwpid_of (current_inferior);
4646 register PTRACE_XFER_TYPE *buffer;
4647 register CORE_ADDR addr;
4648 register int count;
4649 char filename[64];
4650 register int i;
4651 int ret;
4652 int fd;
4653
4654 /* Try using /proc. Don't bother for one word. */
4655 if (len >= 3 * sizeof (long))
4656 {
4657 int bytes;
4658
4659 /* We could keep this file open and cache it - possibly one per
4660 thread. That requires some juggling, but is even faster. */
4661 sprintf (filename, "/proc/%d/mem", pid);
4662 fd = open (filename, O_RDONLY | O_LARGEFILE);
4663 if (fd == -1)
4664 goto no_proc;
4665
4666 /* If pread64 is available, use it. It's faster if the kernel
4667 supports it (only one syscall), and it's 64-bit safe even on
4668 32-bit platforms (for instance, SPARC debugging a SPARC64
4669 application). */
4670 #ifdef HAVE_PREAD64
4671 bytes = pread64 (fd, myaddr, len, memaddr);
4672 #else
4673 bytes = -1;
4674 if (lseek (fd, memaddr, SEEK_SET) != -1)
4675 bytes = read (fd, myaddr, len);
4676 #endif
4677
4678 close (fd);
4679 if (bytes == len)
4680 return 0;
4681
4682 /* Some data was read, we'll try to get the rest with ptrace. */
4683 if (bytes > 0)
4684 {
4685 memaddr += bytes;
4686 myaddr += bytes;
4687 len -= bytes;
4688 }
4689 }
4690
4691 no_proc:
4692 /* Round starting address down to longword boundary. */
4693 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4694 /* Round ending address up; get number of longwords that makes. */
4695 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4696 / sizeof (PTRACE_XFER_TYPE));
4697 /* Allocate buffer of that many longwords. */
4698 buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4699
4700 /* Read all the longwords */
4701 errno = 0;
4702 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4703 {
4704 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4705 about coercing an 8 byte integer to a 4 byte pointer. */
4706 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
4707 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4708 (PTRACE_TYPE_ARG4) 0);
4709 if (errno)
4710 break;
4711 }
4712 ret = errno;
4713
4714 /* Copy appropriate bytes out of the buffer. */
4715 if (i > 0)
4716 {
4717 i *= sizeof (PTRACE_XFER_TYPE);
4718 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
4719 memcpy (myaddr,
4720 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4721 i < len ? i : len);
4722 }
4723
4724 return ret;
4725 }
4726
4727 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
4728 memory at MEMADDR. On failure (cannot write to the inferior)
4729 returns the value of errno. Always succeeds if LEN is zero. */
4730
4731 static int
4732 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
4733 {
4734 register int i;
4735 /* Round starting address down to longword boundary. */
4736 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4737 /* Round ending address up; get number of longwords that makes. */
4738 register int count
4739 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4740 / sizeof (PTRACE_XFER_TYPE);
4741
4742 /* Allocate buffer of that many longwords. */
4743 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
4744 alloca (count * sizeof (PTRACE_XFER_TYPE));
4745
4746 int pid = lwpid_of (current_inferior);
4747
4748 if (len == 0)
4749 {
4750 /* Zero length write always succeeds. */
4751 return 0;
4752 }
4753
4754 if (debug_threads)
4755 {
4756 /* Dump up to four bytes. */
4757 unsigned int val = * (unsigned int *) myaddr;
4758 if (len == 1)
4759 val = val & 0xff;
4760 else if (len == 2)
4761 val = val & 0xffff;
4762 else if (len == 3)
4763 val = val & 0xffffff;
4764 debug_printf ("Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
4765 val, (long)memaddr);
4766 }
4767
4768 /* Fill start and end extra bytes of buffer with existing memory data. */
4769
4770 errno = 0;
4771 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4772 about coercing an 8 byte integer to a 4 byte pointer. */
4773 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
4774 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4775 (PTRACE_TYPE_ARG4) 0);
4776 if (errno)
4777 return errno;
4778
4779 if (count > 1)
4780 {
4781 errno = 0;
4782 buffer[count - 1]
4783 = ptrace (PTRACE_PEEKTEXT, pid,
4784 /* Coerce to a uintptr_t first to avoid potential gcc warning
4785 about coercing an 8 byte integer to a 4 byte pointer. */
4786 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
4787 * sizeof (PTRACE_XFER_TYPE)),
4788 (PTRACE_TYPE_ARG4) 0);
4789 if (errno)
4790 return errno;
4791 }
4792
4793 /* Copy data to be written over corresponding part of buffer. */
4794
4795 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4796 myaddr, len);
4797
4798 /* Write the entire buffer. */
4799
4800 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4801 {
4802 errno = 0;
4803 ptrace (PTRACE_POKETEXT, pid,
4804 /* Coerce to a uintptr_t first to avoid potential gcc warning
4805 about coercing an 8 byte integer to a 4 byte pointer. */
4806 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4807 (PTRACE_TYPE_ARG4) buffer[i]);
4808 if (errno)
4809 return errno;
4810 }
4811
4812 return 0;
4813 }
4814
4815 static void
4816 linux_look_up_symbols (void)
4817 {
4818 #ifdef USE_THREAD_DB
4819 struct process_info *proc = current_process ();
4820
4821 if (proc->private->thread_db != NULL)
4822 return;
4823
4824 /* If the kernel supports tracing clones, then we don't need to
4825 use the magic thread event breakpoint to learn about
4826 threads. */
4827 thread_db_init (!linux_supports_traceclone ());
4828 #endif
4829 }
4830
4831 static void
4832 linux_request_interrupt (void)
4833 {
4834 extern unsigned long signal_pid;
4835
4836 if (!ptid_equal (cont_thread, null_ptid)
4837 && !ptid_equal (cont_thread, minus_one_ptid))
4838 {
4839 int lwpid;
4840
4841 lwpid = lwpid_of (current_inferior);
4842 kill_lwp (lwpid, SIGINT);
4843 }
4844 else
4845 kill_lwp (signal_pid, SIGINT);
4846 }
4847
4848 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
4849 to debugger memory starting at MYADDR. */
4850
4851 static int
4852 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
4853 {
4854 char filename[PATH_MAX];
4855 int fd, n;
4856 int pid = lwpid_of (current_inferior);
4857
4858 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4859
4860 fd = open (filename, O_RDONLY);
4861 if (fd < 0)
4862 return -1;
4863
4864 if (offset != (CORE_ADDR) 0
4865 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4866 n = -1;
4867 else
4868 n = read (fd, myaddr, len);
4869
4870 close (fd);
4871
4872 return n;
4873 }
4874
4875 /* These breakpoint and watchpoint related wrapper functions simply
4876 pass on the function call if the target has registered a
4877 corresponding function. */
4878
4879 static int
4880 linux_supports_z_point_type (char z_type)
4881 {
4882 return (the_low_target.supports_z_point_type != NULL
4883 && the_low_target.supports_z_point_type (z_type));
4884 }
4885
4886 static int
4887 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
4888 int size, struct raw_breakpoint *bp)
4889 {
4890 if (the_low_target.insert_point != NULL)
4891 return the_low_target.insert_point (type, addr, size, bp);
4892 else
4893 /* Unsupported (see target.h). */
4894 return 1;
4895 }
4896
4897 static int
4898 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
4899 int size, struct raw_breakpoint *bp)
4900 {
4901 if (the_low_target.remove_point != NULL)
4902 return the_low_target.remove_point (type, addr, size, bp);
4903 else
4904 /* Unsupported (see target.h). */
4905 return 1;
4906 }
4907
4908 static int
4909 linux_stopped_by_watchpoint (void)
4910 {
4911 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4912
4913 return lwp->stopped_by_watchpoint;
4914 }
4915
4916 static CORE_ADDR
4917 linux_stopped_data_address (void)
4918 {
4919 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4920
4921 return lwp->stopped_data_address;
4922 }
4923
4924 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
4925 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
4926 && defined(PT_TEXT_END_ADDR)
4927
4928 /* This is only used for targets that define PT_TEXT_ADDR,
4929 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
4930 the target has different ways of acquiring this information, like
4931 loadmaps. */
4932
4933 /* Under uClinux, programs are loaded at non-zero offsets, which we need
4934 to tell gdb about. */
4935
4936 static int
4937 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
4938 {
4939 unsigned long text, text_end, data;
4940 int pid = lwpid_of (get_thread_lwp (current_inferior));
4941
4942 errno = 0;
4943
4944 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
4945 (PTRACE_TYPE_ARG4) 0);
4946 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
4947 (PTRACE_TYPE_ARG4) 0);
4948 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
4949 (PTRACE_TYPE_ARG4) 0);
4950
4951 if (errno == 0)
4952 {
4953 /* Both text and data offsets produced at compile-time (and so
4954 used by gdb) are relative to the beginning of the program,
4955 with the data segment immediately following the text segment.
4956 However, the actual runtime layout in memory may put the data
4957 somewhere else, so when we send gdb a data base-address, we
4958 use the real data base address and subtract the compile-time
4959 data base-address from it (which is just the length of the
4960 text segment). BSS immediately follows data in both
4961 cases. */
4962 *text_p = text;
4963 *data_p = data - (text_end - text);
4964
4965 return 1;
4966 }
4967 return 0;
4968 }
4969 #endif
4970
4971 static int
4972 linux_qxfer_osdata (const char *annex,
4973 unsigned char *readbuf, unsigned const char *writebuf,
4974 CORE_ADDR offset, int len)
4975 {
4976 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4977 }
4978
4979 /* Convert a native/host siginfo object, into/from the siginfo in the
4980 layout of the inferiors' architecture. */
4981
4982 static void
4983 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
4984 {
4985 int done = 0;
4986
4987 if (the_low_target.siginfo_fixup != NULL)
4988 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
4989
4990 /* If there was no callback, or the callback didn't do anything,
4991 then just do a straight memcpy. */
4992 if (!done)
4993 {
4994 if (direction == 1)
4995 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
4996 else
4997 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
4998 }
4999 }
5000
5001 static int
5002 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5003 unsigned const char *writebuf, CORE_ADDR offset, int len)
5004 {
5005 int pid;
5006 siginfo_t siginfo;
5007 char inf_siginfo[sizeof (siginfo_t)];
5008
5009 if (current_inferior == NULL)
5010 return -1;
5011
5012 pid = lwpid_of (current_inferior);
5013
5014 if (debug_threads)
5015 debug_printf ("%s siginfo for lwp %d.\n",
5016 readbuf != NULL ? "Reading" : "Writing",
5017 pid);
5018
5019 if (offset >= sizeof (siginfo))
5020 return -1;
5021
5022 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5023 return -1;
5024
5025 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5026 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5027 inferior with a 64-bit GDBSERVER should look the same as debugging it
5028 with a 32-bit GDBSERVER, we need to convert it. */
5029 siginfo_fixup (&siginfo, inf_siginfo, 0);
5030
5031 if (offset + len > sizeof (siginfo))
5032 len = sizeof (siginfo) - offset;
5033
5034 if (readbuf != NULL)
5035 memcpy (readbuf, inf_siginfo + offset, len);
5036 else
5037 {
5038 memcpy (inf_siginfo + offset, writebuf, len);
5039
5040 /* Convert back to ptrace layout before flushing it out. */
5041 siginfo_fixup (&siginfo, inf_siginfo, 1);
5042
5043 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5044 return -1;
5045 }
5046
5047 return len;
5048 }
5049
5050 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5051 so we notice when children change state; as the handler for the
5052 sigsuspend in my_waitpid. */
5053
5054 static void
5055 sigchld_handler (int signo)
5056 {
5057 int old_errno = errno;
5058
5059 if (debug_threads)
5060 {
5061 do
5062 {
5063 /* fprintf is not async-signal-safe, so call write
5064 directly. */
5065 if (write (2, "sigchld_handler\n",
5066 sizeof ("sigchld_handler\n") - 1) < 0)
5067 break; /* just ignore */
5068 } while (0);
5069 }
5070
5071 if (target_is_async_p ())
5072 async_file_mark (); /* trigger a linux_wait */
5073
5074 errno = old_errno;
5075 }
5076
5077 static int
5078 linux_supports_non_stop (void)
5079 {
5080 return 1;
5081 }
5082
5083 static int
5084 linux_async (int enable)
5085 {
5086 int previous = target_is_async_p ();
5087
5088 if (debug_threads)
5089 debug_printf ("linux_async (%d), previous=%d\n",
5090 enable, previous);
5091
5092 if (previous != enable)
5093 {
5094 sigset_t mask;
5095 sigemptyset (&mask);
5096 sigaddset (&mask, SIGCHLD);
5097
5098 sigprocmask (SIG_BLOCK, &mask, NULL);
5099
5100 if (enable)
5101 {
5102 if (pipe (linux_event_pipe) == -1)
5103 fatal ("creating event pipe failed.");
5104
5105 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5106 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5107
5108 /* Register the event loop handler. */
5109 add_file_handler (linux_event_pipe[0],
5110 handle_target_event, NULL);
5111
5112 /* Always trigger a linux_wait. */
5113 async_file_mark ();
5114 }
5115 else
5116 {
5117 delete_file_handler (linux_event_pipe[0]);
5118
5119 close (linux_event_pipe[0]);
5120 close (linux_event_pipe[1]);
5121 linux_event_pipe[0] = -1;
5122 linux_event_pipe[1] = -1;
5123 }
5124
5125 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5126 }
5127
5128 return previous;
5129 }
5130
5131 static int
5132 linux_start_non_stop (int nonstop)
5133 {
5134 /* Register or unregister from event-loop accordingly. */
5135 linux_async (nonstop);
5136 return 0;
5137 }
5138
5139 static int
5140 linux_supports_multi_process (void)
5141 {
5142 return 1;
5143 }
5144
5145 static int
5146 linux_supports_disable_randomization (void)
5147 {
5148 #ifdef HAVE_PERSONALITY
5149 return 1;
5150 #else
5151 return 0;
5152 #endif
5153 }
5154
5155 static int
5156 linux_supports_agent (void)
5157 {
5158 return 1;
5159 }
5160
5161 static int
5162 linux_supports_range_stepping (void)
5163 {
5164 if (*the_low_target.supports_range_stepping == NULL)
5165 return 0;
5166
5167 return (*the_low_target.supports_range_stepping) ();
5168 }
5169
5170 /* Enumerate spufs IDs for process PID. */
5171 static int
5172 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
5173 {
5174 int pos = 0;
5175 int written = 0;
5176 char path[128];
5177 DIR *dir;
5178 struct dirent *entry;
5179
5180 sprintf (path, "/proc/%ld/fd", pid);
5181 dir = opendir (path);
5182 if (!dir)
5183 return -1;
5184
5185 rewinddir (dir);
5186 while ((entry = readdir (dir)) != NULL)
5187 {
5188 struct stat st;
5189 struct statfs stfs;
5190 int fd;
5191
5192 fd = atoi (entry->d_name);
5193 if (!fd)
5194 continue;
5195
5196 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
5197 if (stat (path, &st) != 0)
5198 continue;
5199 if (!S_ISDIR (st.st_mode))
5200 continue;
5201
5202 if (statfs (path, &stfs) != 0)
5203 continue;
5204 if (stfs.f_type != SPUFS_MAGIC)
5205 continue;
5206
5207 if (pos >= offset && pos + 4 <= offset + len)
5208 {
5209 *(unsigned int *)(buf + pos - offset) = fd;
5210 written += 4;
5211 }
5212 pos += 4;
5213 }
5214
5215 closedir (dir);
5216 return written;
5217 }
5218
5219 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
5220 object type, using the /proc file system. */
5221 static int
5222 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
5223 unsigned const char *writebuf,
5224 CORE_ADDR offset, int len)
5225 {
5226 long pid = lwpid_of (current_inferior);
5227 char buf[128];
5228 int fd = 0;
5229 int ret = 0;
5230
5231 if (!writebuf && !readbuf)
5232 return -1;
5233
5234 if (!*annex)
5235 {
5236 if (!readbuf)
5237 return -1;
5238 else
5239 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5240 }
5241
5242 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
5243 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5244 if (fd <= 0)
5245 return -1;
5246
5247 if (offset != 0
5248 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5249 {
5250 close (fd);
5251 return 0;
5252 }
5253
5254 if (writebuf)
5255 ret = write (fd, writebuf, (size_t) len);
5256 else
5257 ret = read (fd, readbuf, (size_t) len);
5258
5259 close (fd);
5260 return ret;
5261 }
5262
5263 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
5264 struct target_loadseg
5265 {
5266 /* Core address to which the segment is mapped. */
5267 Elf32_Addr addr;
5268 /* VMA recorded in the program header. */
5269 Elf32_Addr p_vaddr;
5270 /* Size of this segment in memory. */
5271 Elf32_Word p_memsz;
5272 };
5273
5274 # if defined PT_GETDSBT
5275 struct target_loadmap
5276 {
5277 /* Protocol version number, must be zero. */
5278 Elf32_Word version;
5279 /* Pointer to the DSBT table, its size, and the DSBT index. */
5280 unsigned *dsbt_table;
5281 unsigned dsbt_size, dsbt_index;
5282 /* Number of segments in this map. */
5283 Elf32_Word nsegs;
5284 /* The actual memory map. */
5285 struct target_loadseg segs[/*nsegs*/];
5286 };
5287 # define LINUX_LOADMAP PT_GETDSBT
5288 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
5289 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
5290 # else
5291 struct target_loadmap
5292 {
5293 /* Protocol version number, must be zero. */
5294 Elf32_Half version;
5295 /* Number of segments in this map. */
5296 Elf32_Half nsegs;
5297 /* The actual memory map. */
5298 struct target_loadseg segs[/*nsegs*/];
5299 };
5300 # define LINUX_LOADMAP PTRACE_GETFDPIC
5301 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
5302 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
5303 # endif
5304
5305 static int
5306 linux_read_loadmap (const char *annex, CORE_ADDR offset,
5307 unsigned char *myaddr, unsigned int len)
5308 {
5309 int pid = lwpid_of (current_inferior);
5310 int addr = -1;
5311 struct target_loadmap *data = NULL;
5312 unsigned int actual_length, copy_length;
5313
5314 if (strcmp (annex, "exec") == 0)
5315 addr = (int) LINUX_LOADMAP_EXEC;
5316 else if (strcmp (annex, "interp") == 0)
5317 addr = (int) LINUX_LOADMAP_INTERP;
5318 else
5319 return -1;
5320
5321 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
5322 return -1;
5323
5324 if (data == NULL)
5325 return -1;
5326
5327 actual_length = sizeof (struct target_loadmap)
5328 + sizeof (struct target_loadseg) * data->nsegs;
5329
5330 if (offset < 0 || offset > actual_length)
5331 return -1;
5332
5333 copy_length = actual_length - offset < len ? actual_length - offset : len;
5334 memcpy (myaddr, (char *) data + offset, copy_length);
5335 return copy_length;
5336 }
5337 #else
5338 # define linux_read_loadmap NULL
5339 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
5340
5341 static void
5342 linux_process_qsupported (const char *query)
5343 {
5344 if (the_low_target.process_qsupported != NULL)
5345 the_low_target.process_qsupported (query);
5346 }
5347
5348 static int
5349 linux_supports_tracepoints (void)
5350 {
5351 if (*the_low_target.supports_tracepoints == NULL)
5352 return 0;
5353
5354 return (*the_low_target.supports_tracepoints) ();
5355 }
5356
5357 static CORE_ADDR
5358 linux_read_pc (struct regcache *regcache)
5359 {
5360 if (the_low_target.get_pc == NULL)
5361 return 0;
5362
5363 return (*the_low_target.get_pc) (regcache);
5364 }
5365
5366 static void
5367 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
5368 {
5369 gdb_assert (the_low_target.set_pc != NULL);
5370
5371 (*the_low_target.set_pc) (regcache, pc);
5372 }
5373
5374 static int
5375 linux_thread_stopped (struct thread_info *thread)
5376 {
5377 return get_thread_lwp (thread)->stopped;
5378 }
5379
5380 /* This exposes stop-all-threads functionality to other modules. */
5381
5382 static void
5383 linux_pause_all (int freeze)
5384 {
5385 stop_all_lwps (freeze, NULL);
5386 }
5387
5388 /* This exposes unstop-all-threads functionality to other gdbserver
5389 modules. */
5390
5391 static void
5392 linux_unpause_all (int unfreeze)
5393 {
5394 unstop_all_lwps (unfreeze, NULL);
5395 }
5396
5397 static int
5398 linux_prepare_to_access_memory (void)
5399 {
5400 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5401 running LWP. */
5402 if (non_stop)
5403 linux_pause_all (1);
5404 return 0;
5405 }
5406
5407 static void
5408 linux_done_accessing_memory (void)
5409 {
5410 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5411 running LWP. */
5412 if (non_stop)
5413 linux_unpause_all (1);
5414 }
5415
5416 static int
5417 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
5418 CORE_ADDR collector,
5419 CORE_ADDR lockaddr,
5420 ULONGEST orig_size,
5421 CORE_ADDR *jump_entry,
5422 CORE_ADDR *trampoline,
5423 ULONGEST *trampoline_size,
5424 unsigned char *jjump_pad_insn,
5425 ULONGEST *jjump_pad_insn_size,
5426 CORE_ADDR *adjusted_insn_addr,
5427 CORE_ADDR *adjusted_insn_addr_end,
5428 char *err)
5429 {
5430 return (*the_low_target.install_fast_tracepoint_jump_pad)
5431 (tpoint, tpaddr, collector, lockaddr, orig_size,
5432 jump_entry, trampoline, trampoline_size,
5433 jjump_pad_insn, jjump_pad_insn_size,
5434 adjusted_insn_addr, adjusted_insn_addr_end,
5435 err);
5436 }
5437
5438 static struct emit_ops *
5439 linux_emit_ops (void)
5440 {
5441 if (the_low_target.emit_ops != NULL)
5442 return (*the_low_target.emit_ops) ();
5443 else
5444 return NULL;
5445 }
5446
5447 static int
5448 linux_get_min_fast_tracepoint_insn_len (void)
5449 {
5450 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
5451 }
5452
5453 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
5454
5455 static int
5456 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
5457 CORE_ADDR *phdr_memaddr, int *num_phdr)
5458 {
5459 char filename[PATH_MAX];
5460 int fd;
5461 const int auxv_size = is_elf64
5462 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
5463 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
5464
5465 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5466
5467 fd = open (filename, O_RDONLY);
5468 if (fd < 0)
5469 return 1;
5470
5471 *phdr_memaddr = 0;
5472 *num_phdr = 0;
5473 while (read (fd, buf, auxv_size) == auxv_size
5474 && (*phdr_memaddr == 0 || *num_phdr == 0))
5475 {
5476 if (is_elf64)
5477 {
5478 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
5479
5480 switch (aux->a_type)
5481 {
5482 case AT_PHDR:
5483 *phdr_memaddr = aux->a_un.a_val;
5484 break;
5485 case AT_PHNUM:
5486 *num_phdr = aux->a_un.a_val;
5487 break;
5488 }
5489 }
5490 else
5491 {
5492 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
5493
5494 switch (aux->a_type)
5495 {
5496 case AT_PHDR:
5497 *phdr_memaddr = aux->a_un.a_val;
5498 break;
5499 case AT_PHNUM:
5500 *num_phdr = aux->a_un.a_val;
5501 break;
5502 }
5503 }
5504 }
5505
5506 close (fd);
5507
5508 if (*phdr_memaddr == 0 || *num_phdr == 0)
5509 {
5510 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
5511 "phdr_memaddr = %ld, phdr_num = %d",
5512 (long) *phdr_memaddr, *num_phdr);
5513 return 2;
5514 }
5515
5516 return 0;
5517 }
5518
5519 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
5520
5521 static CORE_ADDR
5522 get_dynamic (const int pid, const int is_elf64)
5523 {
5524 CORE_ADDR phdr_memaddr, relocation;
5525 int num_phdr, i;
5526 unsigned char *phdr_buf;
5527 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
5528
5529 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
5530 return 0;
5531
5532 gdb_assert (num_phdr < 100); /* Basic sanity check. */
5533 phdr_buf = alloca (num_phdr * phdr_size);
5534
5535 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
5536 return 0;
5537
5538 /* Compute relocation: it is expected to be 0 for "regular" executables,
5539 non-zero for PIE ones. */
5540 relocation = -1;
5541 for (i = 0; relocation == -1 && i < num_phdr; i++)
5542 if (is_elf64)
5543 {
5544 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5545
5546 if (p->p_type == PT_PHDR)
5547 relocation = phdr_memaddr - p->p_vaddr;
5548 }
5549 else
5550 {
5551 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5552
5553 if (p->p_type == PT_PHDR)
5554 relocation = phdr_memaddr - p->p_vaddr;
5555 }
5556
5557 if (relocation == -1)
5558 {
5559 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
5560 any real world executables, including PIE executables, have always
5561 PT_PHDR present. PT_PHDR is not present in some shared libraries or
5562 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
5563 or present DT_DEBUG anyway (fpc binaries are statically linked).
5564
5565 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
5566
5567 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
5568
5569 return 0;
5570 }
5571
5572 for (i = 0; i < num_phdr; i++)
5573 {
5574 if (is_elf64)
5575 {
5576 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5577
5578 if (p->p_type == PT_DYNAMIC)
5579 return p->p_vaddr + relocation;
5580 }
5581 else
5582 {
5583 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5584
5585 if (p->p_type == PT_DYNAMIC)
5586 return p->p_vaddr + relocation;
5587 }
5588 }
5589
5590 return 0;
5591 }
5592
5593 /* Return &_r_debug in the inferior, or -1 if not present. Return value
5594 can be 0 if the inferior does not yet have the library list initialized.
5595 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
5596 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
5597
5598 static CORE_ADDR
5599 get_r_debug (const int pid, const int is_elf64)
5600 {
5601 CORE_ADDR dynamic_memaddr;
5602 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
5603 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
5604 CORE_ADDR map = -1;
5605
5606 dynamic_memaddr = get_dynamic (pid, is_elf64);
5607 if (dynamic_memaddr == 0)
5608 return map;
5609
5610 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
5611 {
5612 if (is_elf64)
5613 {
5614 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
5615 #ifdef DT_MIPS_RLD_MAP
5616 union
5617 {
5618 Elf64_Xword map;
5619 unsigned char buf[sizeof (Elf64_Xword)];
5620 }
5621 rld_map;
5622
5623 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5624 {
5625 if (linux_read_memory (dyn->d_un.d_val,
5626 rld_map.buf, sizeof (rld_map.buf)) == 0)
5627 return rld_map.map;
5628 else
5629 break;
5630 }
5631 #endif /* DT_MIPS_RLD_MAP */
5632
5633 if (dyn->d_tag == DT_DEBUG && map == -1)
5634 map = dyn->d_un.d_val;
5635
5636 if (dyn->d_tag == DT_NULL)
5637 break;
5638 }
5639 else
5640 {
5641 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
5642 #ifdef DT_MIPS_RLD_MAP
5643 union
5644 {
5645 Elf32_Word map;
5646 unsigned char buf[sizeof (Elf32_Word)];
5647 }
5648 rld_map;
5649
5650 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5651 {
5652 if (linux_read_memory (dyn->d_un.d_val,
5653 rld_map.buf, sizeof (rld_map.buf)) == 0)
5654 return rld_map.map;
5655 else
5656 break;
5657 }
5658 #endif /* DT_MIPS_RLD_MAP */
5659
5660 if (dyn->d_tag == DT_DEBUG && map == -1)
5661 map = dyn->d_un.d_val;
5662
5663 if (dyn->d_tag == DT_NULL)
5664 break;
5665 }
5666
5667 dynamic_memaddr += dyn_size;
5668 }
5669
5670 return map;
5671 }
5672
5673 /* Read one pointer from MEMADDR in the inferior. */
5674
5675 static int
5676 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
5677 {
5678 int ret;
5679
5680 /* Go through a union so this works on either big or little endian
5681 hosts, when the inferior's pointer size is smaller than the size
5682 of CORE_ADDR. It is assumed the inferior's endianness is the
5683 same of the superior's. */
5684 union
5685 {
5686 CORE_ADDR core_addr;
5687 unsigned int ui;
5688 unsigned char uc;
5689 } addr;
5690
5691 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
5692 if (ret == 0)
5693 {
5694 if (ptr_size == sizeof (CORE_ADDR))
5695 *ptr = addr.core_addr;
5696 else if (ptr_size == sizeof (unsigned int))
5697 *ptr = addr.ui;
5698 else
5699 gdb_assert_not_reached ("unhandled pointer size");
5700 }
5701 return ret;
5702 }
5703
5704 struct link_map_offsets
5705 {
5706 /* Offset and size of r_debug.r_version. */
5707 int r_version_offset;
5708
5709 /* Offset and size of r_debug.r_map. */
5710 int r_map_offset;
5711
5712 /* Offset to l_addr field in struct link_map. */
5713 int l_addr_offset;
5714
5715 /* Offset to l_name field in struct link_map. */
5716 int l_name_offset;
5717
5718 /* Offset to l_ld field in struct link_map. */
5719 int l_ld_offset;
5720
5721 /* Offset to l_next field in struct link_map. */
5722 int l_next_offset;
5723
5724 /* Offset to l_prev field in struct link_map. */
5725 int l_prev_offset;
5726 };
5727
5728 /* Construct qXfer:libraries-svr4:read reply. */
5729
5730 static int
5731 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
5732 unsigned const char *writebuf,
5733 CORE_ADDR offset, int len)
5734 {
5735 char *document;
5736 unsigned document_len;
5737 struct process_info_private *const priv = current_process ()->private;
5738 char filename[PATH_MAX];
5739 int pid, is_elf64;
5740
5741 static const struct link_map_offsets lmo_32bit_offsets =
5742 {
5743 0, /* r_version offset. */
5744 4, /* r_debug.r_map offset. */
5745 0, /* l_addr offset in link_map. */
5746 4, /* l_name offset in link_map. */
5747 8, /* l_ld offset in link_map. */
5748 12, /* l_next offset in link_map. */
5749 16 /* l_prev offset in link_map. */
5750 };
5751
5752 static const struct link_map_offsets lmo_64bit_offsets =
5753 {
5754 0, /* r_version offset. */
5755 8, /* r_debug.r_map offset. */
5756 0, /* l_addr offset in link_map. */
5757 8, /* l_name offset in link_map. */
5758 16, /* l_ld offset in link_map. */
5759 24, /* l_next offset in link_map. */
5760 32 /* l_prev offset in link_map. */
5761 };
5762 const struct link_map_offsets *lmo;
5763 unsigned int machine;
5764 int ptr_size;
5765 CORE_ADDR lm_addr = 0, lm_prev = 0;
5766 int allocated = 1024;
5767 char *p;
5768 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
5769 int header_done = 0;
5770
5771 if (writebuf != NULL)
5772 return -2;
5773 if (readbuf == NULL)
5774 return -1;
5775
5776 pid = lwpid_of (current_inferior);
5777 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
5778 is_elf64 = elf_64_file_p (filename, &machine);
5779 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
5780 ptr_size = is_elf64 ? 8 : 4;
5781
5782 while (annex[0] != '\0')
5783 {
5784 const char *sep;
5785 CORE_ADDR *addrp;
5786 int len;
5787
5788 sep = strchr (annex, '=');
5789 if (sep == NULL)
5790 break;
5791
5792 len = sep - annex;
5793 if (len == 5 && strncmp (annex, "start", 5) == 0)
5794 addrp = &lm_addr;
5795 else if (len == 4 && strncmp (annex, "prev", 4) == 0)
5796 addrp = &lm_prev;
5797 else
5798 {
5799 annex = strchr (sep, ';');
5800 if (annex == NULL)
5801 break;
5802 annex++;
5803 continue;
5804 }
5805
5806 annex = decode_address_to_semicolon (addrp, sep + 1);
5807 }
5808
5809 if (lm_addr == 0)
5810 {
5811 int r_version = 0;
5812
5813 if (priv->r_debug == 0)
5814 priv->r_debug = get_r_debug (pid, is_elf64);
5815
5816 /* We failed to find DT_DEBUG. Such situation will not change
5817 for this inferior - do not retry it. Report it to GDB as
5818 E01, see for the reasons at the GDB solib-svr4.c side. */
5819 if (priv->r_debug == (CORE_ADDR) -1)
5820 return -1;
5821
5822 if (priv->r_debug != 0)
5823 {
5824 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
5825 (unsigned char *) &r_version,
5826 sizeof (r_version)) != 0
5827 || r_version != 1)
5828 {
5829 warning ("unexpected r_debug version %d", r_version);
5830 }
5831 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
5832 &lm_addr, ptr_size) != 0)
5833 {
5834 warning ("unable to read r_map from 0x%lx",
5835 (long) priv->r_debug + lmo->r_map_offset);
5836 }
5837 }
5838 }
5839
5840 document = xmalloc (allocated);
5841 strcpy (document, "<library-list-svr4 version=\"1.0\"");
5842 p = document + strlen (document);
5843
5844 while (lm_addr
5845 && read_one_ptr (lm_addr + lmo->l_name_offset,
5846 &l_name, ptr_size) == 0
5847 && read_one_ptr (lm_addr + lmo->l_addr_offset,
5848 &l_addr, ptr_size) == 0
5849 && read_one_ptr (lm_addr + lmo->l_ld_offset,
5850 &l_ld, ptr_size) == 0
5851 && read_one_ptr (lm_addr + lmo->l_prev_offset,
5852 &l_prev, ptr_size) == 0
5853 && read_one_ptr (lm_addr + lmo->l_next_offset,
5854 &l_next, ptr_size) == 0)
5855 {
5856 unsigned char libname[PATH_MAX];
5857
5858 if (lm_prev != l_prev)
5859 {
5860 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
5861 (long) lm_prev, (long) l_prev);
5862 break;
5863 }
5864
5865 /* Ignore the first entry even if it has valid name as the first entry
5866 corresponds to the main executable. The first entry should not be
5867 skipped if the dynamic loader was loaded late by a static executable
5868 (see solib-svr4.c parameter ignore_first). But in such case the main
5869 executable does not have PT_DYNAMIC present and this function already
5870 exited above due to failed get_r_debug. */
5871 if (lm_prev == 0)
5872 {
5873 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
5874 p = p + strlen (p);
5875 }
5876 else
5877 {
5878 /* Not checking for error because reading may stop before
5879 we've got PATH_MAX worth of characters. */
5880 libname[0] = '\0';
5881 linux_read_memory (l_name, libname, sizeof (libname) - 1);
5882 libname[sizeof (libname) - 1] = '\0';
5883 if (libname[0] != '\0')
5884 {
5885 /* 6x the size for xml_escape_text below. */
5886 size_t len = 6 * strlen ((char *) libname);
5887 char *name;
5888
5889 if (!header_done)
5890 {
5891 /* Terminate `<library-list-svr4'. */
5892 *p++ = '>';
5893 header_done = 1;
5894 }
5895
5896 while (allocated < p - document + len + 200)
5897 {
5898 /* Expand to guarantee sufficient storage. */
5899 uintptr_t document_len = p - document;
5900
5901 document = xrealloc (document, 2 * allocated);
5902 allocated *= 2;
5903 p = document + document_len;
5904 }
5905
5906 name = xml_escape_text ((char *) libname);
5907 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
5908 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
5909 name, (unsigned long) lm_addr,
5910 (unsigned long) l_addr, (unsigned long) l_ld);
5911 free (name);
5912 }
5913 }
5914
5915 lm_prev = lm_addr;
5916 lm_addr = l_next;
5917 }
5918
5919 if (!header_done)
5920 {
5921 /* Empty list; terminate `<library-list-svr4'. */
5922 strcpy (p, "/>");
5923 }
5924 else
5925 strcpy (p, "</library-list-svr4>");
5926
5927 document_len = strlen (document);
5928 if (offset < document_len)
5929 document_len -= offset;
5930 else
5931 document_len = 0;
5932 if (len > document_len)
5933 len = document_len;
5934
5935 memcpy (readbuf, document + offset, len);
5936 xfree (document);
5937
5938 return len;
5939 }
5940
5941 #ifdef HAVE_LINUX_BTRACE
5942
5943 /* See to_enable_btrace target method. */
5944
5945 static struct btrace_target_info *
5946 linux_low_enable_btrace (ptid_t ptid)
5947 {
5948 struct btrace_target_info *tinfo;
5949
5950 tinfo = linux_enable_btrace (ptid);
5951
5952 if (tinfo != NULL)
5953 {
5954 struct thread_info *thread = find_thread_ptid (ptid);
5955 struct regcache *regcache = get_thread_regcache (thread, 0);
5956
5957 tinfo->ptr_bits = register_size (regcache->tdesc, 0) * 8;
5958 }
5959
5960 return tinfo;
5961 }
5962
5963 /* See to_disable_btrace target method. */
5964
5965 static int
5966 linux_low_disable_btrace (struct btrace_target_info *tinfo)
5967 {
5968 enum btrace_error err;
5969
5970 err = linux_disable_btrace (tinfo);
5971 return (err == BTRACE_ERR_NONE ? 0 : -1);
5972 }
5973
5974 /* See to_read_btrace target method. */
5975
5976 static int
5977 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
5978 int type)
5979 {
5980 VEC (btrace_block_s) *btrace;
5981 struct btrace_block *block;
5982 enum btrace_error err;
5983 int i;
5984
5985 btrace = NULL;
5986 err = linux_read_btrace (&btrace, tinfo, type);
5987 if (err != BTRACE_ERR_NONE)
5988 {
5989 if (err == BTRACE_ERR_OVERFLOW)
5990 buffer_grow_str0 (buffer, "E.Overflow.");
5991 else
5992 buffer_grow_str0 (buffer, "E.Generic Error.");
5993
5994 return -1;
5995 }
5996
5997 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
5998 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
5999
6000 for (i = 0; VEC_iterate (btrace_block_s, btrace, i, block); i++)
6001 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6002 paddress (block->begin), paddress (block->end));
6003
6004 buffer_grow_str0 (buffer, "</btrace>\n");
6005
6006 VEC_free (btrace_block_s, btrace);
6007
6008 return 0;
6009 }
6010 #endif /* HAVE_LINUX_BTRACE */
6011
6012 static struct target_ops linux_target_ops = {
6013 linux_create_inferior,
6014 linux_attach,
6015 linux_kill,
6016 linux_detach,
6017 linux_mourn,
6018 linux_join,
6019 linux_thread_alive,
6020 linux_resume,
6021 linux_wait,
6022 linux_fetch_registers,
6023 linux_store_registers,
6024 linux_prepare_to_access_memory,
6025 linux_done_accessing_memory,
6026 linux_read_memory,
6027 linux_write_memory,
6028 linux_look_up_symbols,
6029 linux_request_interrupt,
6030 linux_read_auxv,
6031 linux_supports_z_point_type,
6032 linux_insert_point,
6033 linux_remove_point,
6034 linux_stopped_by_watchpoint,
6035 linux_stopped_data_address,
6036 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6037 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6038 && defined(PT_TEXT_END_ADDR)
6039 linux_read_offsets,
6040 #else
6041 NULL,
6042 #endif
6043 #ifdef USE_THREAD_DB
6044 thread_db_get_tls_address,
6045 #else
6046 NULL,
6047 #endif
6048 linux_qxfer_spu,
6049 hostio_last_error_from_errno,
6050 linux_qxfer_osdata,
6051 linux_xfer_siginfo,
6052 linux_supports_non_stop,
6053 linux_async,
6054 linux_start_non_stop,
6055 linux_supports_multi_process,
6056 #ifdef USE_THREAD_DB
6057 thread_db_handle_monitor_command,
6058 #else
6059 NULL,
6060 #endif
6061 linux_common_core_of_thread,
6062 linux_read_loadmap,
6063 linux_process_qsupported,
6064 linux_supports_tracepoints,
6065 linux_read_pc,
6066 linux_write_pc,
6067 linux_thread_stopped,
6068 NULL,
6069 linux_pause_all,
6070 linux_unpause_all,
6071 linux_cancel_breakpoints,
6072 linux_stabilize_threads,
6073 linux_install_fast_tracepoint_jump_pad,
6074 linux_emit_ops,
6075 linux_supports_disable_randomization,
6076 linux_get_min_fast_tracepoint_insn_len,
6077 linux_qxfer_libraries_svr4,
6078 linux_supports_agent,
6079 #ifdef HAVE_LINUX_BTRACE
6080 linux_supports_btrace,
6081 linux_low_enable_btrace,
6082 linux_low_disable_btrace,
6083 linux_low_read_btrace,
6084 #else
6085 NULL,
6086 NULL,
6087 NULL,
6088 NULL,
6089 #endif
6090 linux_supports_range_stepping,
6091 };
6092
6093 static void
6094 linux_init_signals ()
6095 {
6096 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
6097 to find what the cancel signal actually is. */
6098 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
6099 signal (__SIGRTMIN+1, SIG_IGN);
6100 #endif
6101 }
6102
6103 #ifdef HAVE_LINUX_REGSETS
6104 void
6105 initialize_regsets_info (struct regsets_info *info)
6106 {
6107 for (info->num_regsets = 0;
6108 info->regsets[info->num_regsets].size >= 0;
6109 info->num_regsets++)
6110 ;
6111 }
6112 #endif
6113
6114 void
6115 initialize_low (void)
6116 {
6117 struct sigaction sigchld_action;
6118 memset (&sigchld_action, 0, sizeof (sigchld_action));
6119 set_target_ops (&linux_target_ops);
6120 set_breakpoint_data (the_low_target.breakpoint,
6121 the_low_target.breakpoint_len);
6122 linux_init_signals ();
6123 linux_ptrace_init_warnings ();
6124
6125 sigchld_action.sa_handler = sigchld_handler;
6126 sigemptyset (&sigchld_action.sa_mask);
6127 sigchld_action.sa_flags = SA_RESTART;
6128 sigaction (SIGCHLD, &sigchld_action, NULL);
6129
6130 initialize_low_arch ();
6131 }
This page took 0.149491 seconds and 5 git commands to generate.