[gdbserver] Split a new tracepoint.h file out of server.h.
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2013 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "linux-osdata.h"
22 #include "agent.h"
23
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <stdio.h>
28 #include <sys/ptrace.h>
29 #include "linux-ptrace.h"
30 #include "linux-procfs.h"
31 #include <signal.h>
32 #include <sys/ioctl.h>
33 #include <fcntl.h>
34 #include <string.h>
35 #include <stdlib.h>
36 #include <unistd.h>
37 #include <errno.h>
38 #include <sys/syscall.h>
39 #include <sched.h>
40 #include <ctype.h>
41 #include <pwd.h>
42 #include <sys/types.h>
43 #include <dirent.h>
44 #include "gdb_stat.h"
45 #include <sys/vfs.h>
46 #include <sys/uio.h>
47 #include "filestuff.h"
48 #include "tracepoint.h"
49 #ifndef ELFMAG0
50 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
51 then ELFMAG0 will have been defined. If it didn't get included by
52 gdb_proc_service.h then including it will likely introduce a duplicate
53 definition of elf_fpregset_t. */
54 #include <elf.h>
55 #endif
56
57 #ifndef SPUFS_MAGIC
58 #define SPUFS_MAGIC 0x23c9b64e
59 #endif
60
61 #ifdef HAVE_PERSONALITY
62 # include <sys/personality.h>
63 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
64 # define ADDR_NO_RANDOMIZE 0x0040000
65 # endif
66 #endif
67
68 #ifndef O_LARGEFILE
69 #define O_LARGEFILE 0
70 #endif
71
72 #ifndef W_STOPCODE
73 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
74 #endif
75
76 /* This is the kernel's hard limit. Not to be confused with
77 SIGRTMIN. */
78 #ifndef __SIGRTMIN
79 #define __SIGRTMIN 32
80 #endif
81
82 /* Some targets did not define these ptrace constants from the start,
83 so gdbserver defines them locally here. In the future, these may
84 be removed after they are added to asm/ptrace.h. */
85 #if !(defined(PT_TEXT_ADDR) \
86 || defined(PT_DATA_ADDR) \
87 || defined(PT_TEXT_END_ADDR))
88 #if defined(__mcoldfire__)
89 /* These are still undefined in 3.10 kernels. */
90 #define PT_TEXT_ADDR 49*4
91 #define PT_DATA_ADDR 50*4
92 #define PT_TEXT_END_ADDR 51*4
93 /* BFIN already defines these since at least 2.6.32 kernels. */
94 #elif defined(BFIN)
95 #define PT_TEXT_ADDR 220
96 #define PT_TEXT_END_ADDR 224
97 #define PT_DATA_ADDR 228
98 /* These are still undefined in 3.10 kernels. */
99 #elif defined(__TMS320C6X__)
100 #define PT_TEXT_ADDR (0x10000*4)
101 #define PT_DATA_ADDR (0x10004*4)
102 #define PT_TEXT_END_ADDR (0x10008*4)
103 #endif
104 #endif
105
106 #ifdef HAVE_LINUX_BTRACE
107 # include "linux-btrace.h"
108 #endif
109
110 #ifndef HAVE_ELF32_AUXV_T
111 /* Copied from glibc's elf.h. */
112 typedef struct
113 {
114 uint32_t a_type; /* Entry type */
115 union
116 {
117 uint32_t a_val; /* Integer value */
118 /* We use to have pointer elements added here. We cannot do that,
119 though, since it does not work when using 32-bit definitions
120 on 64-bit platforms and vice versa. */
121 } a_un;
122 } Elf32_auxv_t;
123 #endif
124
125 #ifndef HAVE_ELF64_AUXV_T
126 /* Copied from glibc's elf.h. */
127 typedef struct
128 {
129 uint64_t a_type; /* Entry type */
130 union
131 {
132 uint64_t a_val; /* Integer value */
133 /* We use to have pointer elements added here. We cannot do that,
134 though, since it does not work when using 32-bit definitions
135 on 64-bit platforms and vice versa. */
136 } a_un;
137 } Elf64_auxv_t;
138 #endif
139
140 /* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
141 representation of the thread ID.
142
143 ``all_lwps'' is keyed by the process ID - which on Linux is (presently)
144 the same as the LWP ID.
145
146 ``all_processes'' is keyed by the "overall process ID", which
147 GNU/Linux calls tgid, "thread group ID". */
148
149 struct inferior_list all_lwps;
150
151 /* A list of all unknown processes which receive stop signals. Some
152 other process will presumably claim each of these as forked
153 children momentarily. */
154
155 struct simple_pid_list
156 {
157 /* The process ID. */
158 int pid;
159
160 /* The status as reported by waitpid. */
161 int status;
162
163 /* Next in chain. */
164 struct simple_pid_list *next;
165 };
166 struct simple_pid_list *stopped_pids;
167
168 /* Trivial list manipulation functions to keep track of a list of new
169 stopped processes. */
170
171 static void
172 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
173 {
174 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
175
176 new_pid->pid = pid;
177 new_pid->status = status;
178 new_pid->next = *listp;
179 *listp = new_pid;
180 }
181
182 static int
183 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
184 {
185 struct simple_pid_list **p;
186
187 for (p = listp; *p != NULL; p = &(*p)->next)
188 if ((*p)->pid == pid)
189 {
190 struct simple_pid_list *next = (*p)->next;
191
192 *statusp = (*p)->status;
193 xfree (*p);
194 *p = next;
195 return 1;
196 }
197 return 0;
198 }
199
200 enum stopping_threads_kind
201 {
202 /* Not stopping threads presently. */
203 NOT_STOPPING_THREADS,
204
205 /* Stopping threads. */
206 STOPPING_THREADS,
207
208 /* Stopping and suspending threads. */
209 STOPPING_AND_SUSPENDING_THREADS
210 };
211
212 /* This is set while stop_all_lwps is in effect. */
213 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
214
215 /* FIXME make into a target method? */
216 int using_threads = 1;
217
218 /* True if we're presently stabilizing threads (moving them out of
219 jump pads). */
220 static int stabilizing_threads;
221
222 static void linux_resume_one_lwp (struct lwp_info *lwp,
223 int step, int signal, siginfo_t *info);
224 static void linux_resume (struct thread_resume *resume_info, size_t n);
225 static void stop_all_lwps (int suspend, struct lwp_info *except);
226 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
227 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
228 static void *add_lwp (ptid_t ptid);
229 static int linux_stopped_by_watchpoint (void);
230 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
231 static void proceed_all_lwps (void);
232 static int finish_step_over (struct lwp_info *lwp);
233 static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
234 static int kill_lwp (unsigned long lwpid, int signo);
235
236 /* True if the low target can hardware single-step. Such targets
237 don't need a BREAKPOINT_REINSERT_ADDR callback. */
238
239 static int
240 can_hardware_single_step (void)
241 {
242 return (the_low_target.breakpoint_reinsert_addr == NULL);
243 }
244
245 /* True if the low target supports memory breakpoints. If so, we'll
246 have a GET_PC implementation. */
247
248 static int
249 supports_breakpoints (void)
250 {
251 return (the_low_target.get_pc != NULL);
252 }
253
254 /* Returns true if this target can support fast tracepoints. This
255 does not mean that the in-process agent has been loaded in the
256 inferior. */
257
258 static int
259 supports_fast_tracepoints (void)
260 {
261 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
262 }
263
264 /* True if LWP is stopped in its stepping range. */
265
266 static int
267 lwp_in_step_range (struct lwp_info *lwp)
268 {
269 CORE_ADDR pc = lwp->stop_pc;
270
271 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
272 }
273
274 struct pending_signals
275 {
276 int signal;
277 siginfo_t info;
278 struct pending_signals *prev;
279 };
280
281 /* The read/write ends of the pipe registered as waitable file in the
282 event loop. */
283 static int linux_event_pipe[2] = { -1, -1 };
284
285 /* True if we're currently in async mode. */
286 #define target_is_async_p() (linux_event_pipe[0] != -1)
287
288 static void send_sigstop (struct lwp_info *lwp);
289 static void wait_for_sigstop (struct inferior_list_entry *entry);
290
291 /* Return non-zero if HEADER is a 64-bit ELF file. */
292
293 static int
294 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
295 {
296 if (header->e_ident[EI_MAG0] == ELFMAG0
297 && header->e_ident[EI_MAG1] == ELFMAG1
298 && header->e_ident[EI_MAG2] == ELFMAG2
299 && header->e_ident[EI_MAG3] == ELFMAG3)
300 {
301 *machine = header->e_machine;
302 return header->e_ident[EI_CLASS] == ELFCLASS64;
303
304 }
305 *machine = EM_NONE;
306 return -1;
307 }
308
309 /* Return non-zero if FILE is a 64-bit ELF file,
310 zero if the file is not a 64-bit ELF file,
311 and -1 if the file is not accessible or doesn't exist. */
312
313 static int
314 elf_64_file_p (const char *file, unsigned int *machine)
315 {
316 Elf64_Ehdr header;
317 int fd;
318
319 fd = open (file, O_RDONLY);
320 if (fd < 0)
321 return -1;
322
323 if (read (fd, &header, sizeof (header)) != sizeof (header))
324 {
325 close (fd);
326 return 0;
327 }
328 close (fd);
329
330 return elf_64_header_p (&header, machine);
331 }
332
333 /* Accepts an integer PID; Returns true if the executable PID is
334 running is a 64-bit ELF file.. */
335
336 int
337 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
338 {
339 char file[PATH_MAX];
340
341 sprintf (file, "/proc/%d/exe", pid);
342 return elf_64_file_p (file, machine);
343 }
344
345 static void
346 delete_lwp (struct lwp_info *lwp)
347 {
348 remove_thread (get_lwp_thread (lwp));
349 remove_inferior (&all_lwps, &lwp->head);
350 free (lwp->arch_private);
351 free (lwp);
352 }
353
354 /* Add a process to the common process list, and set its private
355 data. */
356
357 static struct process_info *
358 linux_add_process (int pid, int attached)
359 {
360 struct process_info *proc;
361
362 proc = add_process (pid, attached);
363 proc->private = xcalloc (1, sizeof (*proc->private));
364
365 /* Set the arch when the first LWP stops. */
366 proc->private->new_inferior = 1;
367
368 if (the_low_target.new_process != NULL)
369 proc->private->arch_private = the_low_target.new_process ();
370
371 return proc;
372 }
373
374 /* Handle a GNU/Linux extended wait response. If we see a clone
375 event, we need to add the new LWP to our list (and not report the
376 trap to higher layers). */
377
378 static void
379 handle_extended_wait (struct lwp_info *event_child, int wstat)
380 {
381 int event = wstat >> 16;
382 struct lwp_info *new_lwp;
383
384 if (event == PTRACE_EVENT_CLONE)
385 {
386 ptid_t ptid;
387 unsigned long new_pid;
388 int ret, status;
389
390 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_child), (PTRACE_TYPE_ARG3) 0,
391 &new_pid);
392
393 /* If we haven't already seen the new PID stop, wait for it now. */
394 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
395 {
396 /* The new child has a pending SIGSTOP. We can't affect it until it
397 hits the SIGSTOP, but we're already attached. */
398
399 ret = my_waitpid (new_pid, &status, __WALL);
400
401 if (ret == -1)
402 perror_with_name ("waiting for new child");
403 else if (ret != new_pid)
404 warning ("wait returned unexpected PID %d", ret);
405 else if (!WIFSTOPPED (status))
406 warning ("wait returned unexpected status 0x%x", status);
407 }
408
409 ptid = ptid_build (pid_of (event_child), new_pid, 0);
410 new_lwp = (struct lwp_info *) add_lwp (ptid);
411 add_thread (ptid, new_lwp);
412
413 /* Either we're going to immediately resume the new thread
414 or leave it stopped. linux_resume_one_lwp is a nop if it
415 thinks the thread is currently running, so set this first
416 before calling linux_resume_one_lwp. */
417 new_lwp->stopped = 1;
418
419 /* If we're suspending all threads, leave this one suspended
420 too. */
421 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
422 new_lwp->suspended = 1;
423
424 /* Normally we will get the pending SIGSTOP. But in some cases
425 we might get another signal delivered to the group first.
426 If we do get another signal, be sure not to lose it. */
427 if (WSTOPSIG (status) == SIGSTOP)
428 {
429 if (stopping_threads != NOT_STOPPING_THREADS)
430 new_lwp->stop_pc = get_stop_pc (new_lwp);
431 else
432 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
433 }
434 else
435 {
436 new_lwp->stop_expected = 1;
437
438 if (stopping_threads != NOT_STOPPING_THREADS)
439 {
440 new_lwp->stop_pc = get_stop_pc (new_lwp);
441 new_lwp->status_pending_p = 1;
442 new_lwp->status_pending = status;
443 }
444 else
445 /* Pass the signal on. This is what GDB does - except
446 shouldn't we really report it instead? */
447 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
448 }
449
450 /* Always resume the current thread. If we are stopping
451 threads, it will have a pending SIGSTOP; we may as well
452 collect it now. */
453 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
454 }
455 }
456
457 /* Return the PC as read from the regcache of LWP, without any
458 adjustment. */
459
460 static CORE_ADDR
461 get_pc (struct lwp_info *lwp)
462 {
463 struct thread_info *saved_inferior;
464 struct regcache *regcache;
465 CORE_ADDR pc;
466
467 if (the_low_target.get_pc == NULL)
468 return 0;
469
470 saved_inferior = current_inferior;
471 current_inferior = get_lwp_thread (lwp);
472
473 regcache = get_thread_regcache (current_inferior, 1);
474 pc = (*the_low_target.get_pc) (regcache);
475
476 if (debug_threads)
477 fprintf (stderr, "pc is 0x%lx\n", (long) pc);
478
479 current_inferior = saved_inferior;
480 return pc;
481 }
482
483 /* This function should only be called if LWP got a SIGTRAP.
484 The SIGTRAP could mean several things.
485
486 On i386, where decr_pc_after_break is non-zero:
487 If we were single-stepping this process using PTRACE_SINGLESTEP,
488 we will get only the one SIGTRAP (even if the instruction we
489 stepped over was a breakpoint). The value of $eip will be the
490 next instruction.
491 If we continue the process using PTRACE_CONT, we will get a
492 SIGTRAP when we hit a breakpoint. The value of $eip will be
493 the instruction after the breakpoint (i.e. needs to be
494 decremented). If we report the SIGTRAP to GDB, we must also
495 report the undecremented PC. If we cancel the SIGTRAP, we
496 must resume at the decremented PC.
497
498 (Presumably, not yet tested) On a non-decr_pc_after_break machine
499 with hardware or kernel single-step:
500 If we single-step over a breakpoint instruction, our PC will
501 point at the following instruction. If we continue and hit a
502 breakpoint instruction, our PC will point at the breakpoint
503 instruction. */
504
505 static CORE_ADDR
506 get_stop_pc (struct lwp_info *lwp)
507 {
508 CORE_ADDR stop_pc;
509
510 if (the_low_target.get_pc == NULL)
511 return 0;
512
513 stop_pc = get_pc (lwp);
514
515 if (WSTOPSIG (lwp->last_status) == SIGTRAP
516 && !lwp->stepping
517 && !lwp->stopped_by_watchpoint
518 && lwp->last_status >> 16 == 0)
519 stop_pc -= the_low_target.decr_pc_after_break;
520
521 if (debug_threads)
522 fprintf (stderr, "stop pc is 0x%lx\n", (long) stop_pc);
523
524 return stop_pc;
525 }
526
527 static void *
528 add_lwp (ptid_t ptid)
529 {
530 struct lwp_info *lwp;
531
532 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
533 memset (lwp, 0, sizeof (*lwp));
534
535 lwp->head.id = ptid;
536
537 if (the_low_target.new_thread != NULL)
538 lwp->arch_private = the_low_target.new_thread ();
539
540 add_inferior_to_list (&all_lwps, &lwp->head);
541
542 return lwp;
543 }
544
545 /* Start an inferior process and returns its pid.
546 ALLARGS is a vector of program-name and args. */
547
548 static int
549 linux_create_inferior (char *program, char **allargs)
550 {
551 #ifdef HAVE_PERSONALITY
552 int personality_orig = 0, personality_set = 0;
553 #endif
554 struct lwp_info *new_lwp;
555 int pid;
556 ptid_t ptid;
557
558 #ifdef HAVE_PERSONALITY
559 if (disable_randomization)
560 {
561 errno = 0;
562 personality_orig = personality (0xffffffff);
563 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
564 {
565 personality_set = 1;
566 personality (personality_orig | ADDR_NO_RANDOMIZE);
567 }
568 if (errno != 0 || (personality_set
569 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
570 warning ("Error disabling address space randomization: %s",
571 strerror (errno));
572 }
573 #endif
574
575 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
576 pid = vfork ();
577 #else
578 pid = fork ();
579 #endif
580 if (pid < 0)
581 perror_with_name ("fork");
582
583 if (pid == 0)
584 {
585 close_most_fds ();
586 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
587
588 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
589 signal (__SIGRTMIN + 1, SIG_DFL);
590 #endif
591
592 setpgid (0, 0);
593
594 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
595 stdout to stderr so that inferior i/o doesn't corrupt the connection.
596 Also, redirect stdin to /dev/null. */
597 if (remote_connection_is_stdio ())
598 {
599 close (0);
600 open ("/dev/null", O_RDONLY);
601 dup2 (2, 1);
602 if (write (2, "stdin/stdout redirected\n",
603 sizeof ("stdin/stdout redirected\n") - 1) < 0)
604 {
605 /* Errors ignored. */;
606 }
607 }
608
609 execv (program, allargs);
610 if (errno == ENOENT)
611 execvp (program, allargs);
612
613 fprintf (stderr, "Cannot exec %s: %s.\n", program,
614 strerror (errno));
615 fflush (stderr);
616 _exit (0177);
617 }
618
619 #ifdef HAVE_PERSONALITY
620 if (personality_set)
621 {
622 errno = 0;
623 personality (personality_orig);
624 if (errno != 0)
625 warning ("Error restoring address space randomization: %s",
626 strerror (errno));
627 }
628 #endif
629
630 linux_add_process (pid, 0);
631
632 ptid = ptid_build (pid, pid, 0);
633 new_lwp = add_lwp (ptid);
634 add_thread (ptid, new_lwp);
635 new_lwp->must_set_ptrace_flags = 1;
636
637 return pid;
638 }
639
640 /* Attach to an inferior process. */
641
642 static void
643 linux_attach_lwp_1 (unsigned long lwpid, int initial)
644 {
645 ptid_t ptid;
646 struct lwp_info *new_lwp;
647
648 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
649 != 0)
650 {
651 struct buffer buffer;
652
653 if (!initial)
654 {
655 /* If we fail to attach to an LWP, just warn. */
656 fprintf (stderr, "Cannot attach to lwp %ld: %s (%d)\n", lwpid,
657 strerror (errno), errno);
658 fflush (stderr);
659 return;
660 }
661
662 /* If we fail to attach to a process, report an error. */
663 buffer_init (&buffer);
664 linux_ptrace_attach_warnings (lwpid, &buffer);
665 buffer_grow_str0 (&buffer, "");
666 error ("%sCannot attach to lwp %ld: %s (%d)", buffer_finish (&buffer),
667 lwpid, strerror (errno), errno);
668 }
669
670 if (initial)
671 /* If lwp is the tgid, we handle adding existing threads later.
672 Otherwise we just add lwp without bothering about any other
673 threads. */
674 ptid = ptid_build (lwpid, lwpid, 0);
675 else
676 {
677 /* Note that extracting the pid from the current inferior is
678 safe, since we're always called in the context of the same
679 process as this new thread. */
680 int pid = pid_of (get_thread_lwp (current_inferior));
681 ptid = ptid_build (pid, lwpid, 0);
682 }
683
684 new_lwp = (struct lwp_info *) add_lwp (ptid);
685 add_thread (ptid, new_lwp);
686
687 /* We need to wait for SIGSTOP before being able to make the next
688 ptrace call on this LWP. */
689 new_lwp->must_set_ptrace_flags = 1;
690
691 if (linux_proc_pid_is_stopped (lwpid))
692 {
693 if (debug_threads)
694 fprintf (stderr,
695 "Attached to a stopped process\n");
696
697 /* The process is definitely stopped. It is in a job control
698 stop, unless the kernel predates the TASK_STOPPED /
699 TASK_TRACED distinction, in which case it might be in a
700 ptrace stop. Make sure it is in a ptrace stop; from there we
701 can kill it, signal it, et cetera.
702
703 First make sure there is a pending SIGSTOP. Since we are
704 already attached, the process can not transition from stopped
705 to running without a PTRACE_CONT; so we know this signal will
706 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
707 probably already in the queue (unless this kernel is old
708 enough to use TASK_STOPPED for ptrace stops); but since
709 SIGSTOP is not an RT signal, it can only be queued once. */
710 kill_lwp (lwpid, SIGSTOP);
711
712 /* Finally, resume the stopped process. This will deliver the
713 SIGSTOP (or a higher priority signal, just like normal
714 PTRACE_ATTACH), which we'll catch later on. */
715 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
716 }
717
718 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
719 brings it to a halt.
720
721 There are several cases to consider here:
722
723 1) gdbserver has already attached to the process and is being notified
724 of a new thread that is being created.
725 In this case we should ignore that SIGSTOP and resume the
726 process. This is handled below by setting stop_expected = 1,
727 and the fact that add_thread sets last_resume_kind ==
728 resume_continue.
729
730 2) This is the first thread (the process thread), and we're attaching
731 to it via attach_inferior.
732 In this case we want the process thread to stop.
733 This is handled by having linux_attach set last_resume_kind ==
734 resume_stop after we return.
735
736 If the pid we are attaching to is also the tgid, we attach to and
737 stop all the existing threads. Otherwise, we attach to pid and
738 ignore any other threads in the same group as this pid.
739
740 3) GDB is connecting to gdbserver and is requesting an enumeration of all
741 existing threads.
742 In this case we want the thread to stop.
743 FIXME: This case is currently not properly handled.
744 We should wait for the SIGSTOP but don't. Things work apparently
745 because enough time passes between when we ptrace (ATTACH) and when
746 gdb makes the next ptrace call on the thread.
747
748 On the other hand, if we are currently trying to stop all threads, we
749 should treat the new thread as if we had sent it a SIGSTOP. This works
750 because we are guaranteed that the add_lwp call above added us to the
751 end of the list, and so the new thread has not yet reached
752 wait_for_sigstop (but will). */
753 new_lwp->stop_expected = 1;
754 }
755
756 void
757 linux_attach_lwp (unsigned long lwpid)
758 {
759 linux_attach_lwp_1 (lwpid, 0);
760 }
761
762 /* Attach to PID. If PID is the tgid, attach to it and all
763 of its threads. */
764
765 static int
766 linux_attach (unsigned long pid)
767 {
768 /* Attach to PID. We will check for other threads
769 soon. */
770 linux_attach_lwp_1 (pid, 1);
771 linux_add_process (pid, 1);
772
773 if (!non_stop)
774 {
775 struct thread_info *thread;
776
777 /* Don't ignore the initial SIGSTOP if we just attached to this
778 process. It will be collected by wait shortly. */
779 thread = find_thread_ptid (ptid_build (pid, pid, 0));
780 thread->last_resume_kind = resume_stop;
781 }
782
783 if (linux_proc_get_tgid (pid) == pid)
784 {
785 DIR *dir;
786 char pathname[128];
787
788 sprintf (pathname, "/proc/%ld/task", pid);
789
790 dir = opendir (pathname);
791
792 if (!dir)
793 {
794 fprintf (stderr, "Could not open /proc/%ld/task.\n", pid);
795 fflush (stderr);
796 }
797 else
798 {
799 /* At this point we attached to the tgid. Scan the task for
800 existing threads. */
801 unsigned long lwp;
802 int new_threads_found;
803 int iterations = 0;
804 struct dirent *dp;
805
806 while (iterations < 2)
807 {
808 new_threads_found = 0;
809 /* Add all the other threads. While we go through the
810 threads, new threads may be spawned. Cycle through
811 the list of threads until we have done two iterations without
812 finding new threads. */
813 while ((dp = readdir (dir)) != NULL)
814 {
815 /* Fetch one lwp. */
816 lwp = strtoul (dp->d_name, NULL, 10);
817
818 /* Is this a new thread? */
819 if (lwp
820 && find_thread_ptid (ptid_build (pid, lwp, 0)) == NULL)
821 {
822 linux_attach_lwp_1 (lwp, 0);
823 new_threads_found++;
824
825 if (debug_threads)
826 fprintf (stderr, "\
827 Found and attached to new lwp %ld\n", lwp);
828 }
829 }
830
831 if (!new_threads_found)
832 iterations++;
833 else
834 iterations = 0;
835
836 rewinddir (dir);
837 }
838 closedir (dir);
839 }
840 }
841
842 return 0;
843 }
844
845 struct counter
846 {
847 int pid;
848 int count;
849 };
850
851 static int
852 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
853 {
854 struct counter *counter = args;
855
856 if (ptid_get_pid (entry->id) == counter->pid)
857 {
858 if (++counter->count > 1)
859 return 1;
860 }
861
862 return 0;
863 }
864
865 static int
866 last_thread_of_process_p (struct thread_info *thread)
867 {
868 ptid_t ptid = ((struct inferior_list_entry *)thread)->id;
869 int pid = ptid_get_pid (ptid);
870 struct counter counter = { pid , 0 };
871
872 return (find_inferior (&all_threads,
873 second_thread_of_pid_p, &counter) == NULL);
874 }
875
876 /* Kill LWP. */
877
878 static void
879 linux_kill_one_lwp (struct lwp_info *lwp)
880 {
881 int pid = lwpid_of (lwp);
882
883 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
884 there is no signal context, and ptrace(PTRACE_KILL) (or
885 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
886 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
887 alternative is to kill with SIGKILL. We only need one SIGKILL
888 per process, not one for each thread. But since we still support
889 linuxthreads, and we also support debugging programs using raw
890 clone without CLONE_THREAD, we send one for each thread. For
891 years, we used PTRACE_KILL only, so we're being a bit paranoid
892 about some old kernels where PTRACE_KILL might work better
893 (dubious if there are any such, but that's why it's paranoia), so
894 we try SIGKILL first, PTRACE_KILL second, and so we're fine
895 everywhere. */
896
897 errno = 0;
898 kill (pid, SIGKILL);
899 if (debug_threads)
900 fprintf (stderr,
901 "LKL: kill (SIGKILL) %s, 0, 0 (%s)\n",
902 target_pid_to_str (ptid_of (lwp)),
903 errno ? strerror (errno) : "OK");
904
905 errno = 0;
906 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
907 if (debug_threads)
908 fprintf (stderr,
909 "LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
910 target_pid_to_str (ptid_of (lwp)),
911 errno ? strerror (errno) : "OK");
912 }
913
914 /* Callback for `find_inferior'. Kills an lwp of a given process,
915 except the leader. */
916
917 static int
918 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
919 {
920 struct thread_info *thread = (struct thread_info *) entry;
921 struct lwp_info *lwp = get_thread_lwp (thread);
922 int wstat;
923 int pid = * (int *) args;
924
925 if (ptid_get_pid (entry->id) != pid)
926 return 0;
927
928 /* We avoid killing the first thread here, because of a Linux kernel (at
929 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
930 the children get a chance to be reaped, it will remain a zombie
931 forever. */
932
933 if (lwpid_of (lwp) == pid)
934 {
935 if (debug_threads)
936 fprintf (stderr, "lkop: is last of process %s\n",
937 target_pid_to_str (entry->id));
938 return 0;
939 }
940
941 do
942 {
943 linux_kill_one_lwp (lwp);
944
945 /* Make sure it died. The loop is most likely unnecessary. */
946 pid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
947 } while (pid > 0 && WIFSTOPPED (wstat));
948
949 return 0;
950 }
951
952 static int
953 linux_kill (int pid)
954 {
955 struct process_info *process;
956 struct lwp_info *lwp;
957 int wstat;
958 int lwpid;
959
960 process = find_process_pid (pid);
961 if (process == NULL)
962 return -1;
963
964 /* If we're killing a running inferior, make sure it is stopped
965 first, as PTRACE_KILL will not work otherwise. */
966 stop_all_lwps (0, NULL);
967
968 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
969
970 /* See the comment in linux_kill_one_lwp. We did not kill the first
971 thread in the list, so do so now. */
972 lwp = find_lwp_pid (pid_to_ptid (pid));
973
974 if (lwp == NULL)
975 {
976 if (debug_threads)
977 fprintf (stderr, "lk_1: cannot find lwp %ld, for pid: %d\n",
978 lwpid_of (lwp), pid);
979 }
980 else
981 {
982 if (debug_threads)
983 fprintf (stderr, "lk_1: killing lwp %ld, for pid: %d\n",
984 lwpid_of (lwp), pid);
985
986 do
987 {
988 linux_kill_one_lwp (lwp);
989
990 /* Make sure it died. The loop is most likely unnecessary. */
991 lwpid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
992 } while (lwpid > 0 && WIFSTOPPED (wstat));
993 }
994
995 the_target->mourn (process);
996
997 /* Since we presently can only stop all lwps of all processes, we
998 need to unstop lwps of other processes. */
999 unstop_all_lwps (0, NULL);
1000 return 0;
1001 }
1002
1003 /* Get pending signal of THREAD, for detaching purposes. This is the
1004 signal the thread last stopped for, which we need to deliver to the
1005 thread when detaching, otherwise, it'd be suppressed/lost. */
1006
1007 static int
1008 get_detach_signal (struct thread_info *thread)
1009 {
1010 enum gdb_signal signo = GDB_SIGNAL_0;
1011 int status;
1012 struct lwp_info *lp = get_thread_lwp (thread);
1013
1014 if (lp->status_pending_p)
1015 status = lp->status_pending;
1016 else
1017 {
1018 /* If the thread had been suspended by gdbserver, and it stopped
1019 cleanly, then it'll have stopped with SIGSTOP. But we don't
1020 want to deliver that SIGSTOP. */
1021 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1022 || thread->last_status.value.sig == GDB_SIGNAL_0)
1023 return 0;
1024
1025 /* Otherwise, we may need to deliver the signal we
1026 intercepted. */
1027 status = lp->last_status;
1028 }
1029
1030 if (!WIFSTOPPED (status))
1031 {
1032 if (debug_threads)
1033 fprintf (stderr,
1034 "GPS: lwp %s hasn't stopped: no pending signal\n",
1035 target_pid_to_str (ptid_of (lp)));
1036 return 0;
1037 }
1038
1039 /* Extended wait statuses aren't real SIGTRAPs. */
1040 if (WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1041 {
1042 if (debug_threads)
1043 fprintf (stderr,
1044 "GPS: lwp %s had stopped with extended "
1045 "status: no pending signal\n",
1046 target_pid_to_str (ptid_of (lp)));
1047 return 0;
1048 }
1049
1050 signo = gdb_signal_from_host (WSTOPSIG (status));
1051
1052 if (program_signals_p && !program_signals[signo])
1053 {
1054 if (debug_threads)
1055 fprintf (stderr,
1056 "GPS: lwp %s had signal %s, but it is in nopass state\n",
1057 target_pid_to_str (ptid_of (lp)),
1058 gdb_signal_to_string (signo));
1059 return 0;
1060 }
1061 else if (!program_signals_p
1062 /* If we have no way to know which signals GDB does not
1063 want to have passed to the program, assume
1064 SIGTRAP/SIGINT, which is GDB's default. */
1065 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1066 {
1067 if (debug_threads)
1068 fprintf (stderr,
1069 "GPS: lwp %s had signal %s, "
1070 "but we don't know if we should pass it. Default to not.\n",
1071 target_pid_to_str (ptid_of (lp)),
1072 gdb_signal_to_string (signo));
1073 return 0;
1074 }
1075 else
1076 {
1077 if (debug_threads)
1078 fprintf (stderr,
1079 "GPS: lwp %s has pending signal %s: delivering it.\n",
1080 target_pid_to_str (ptid_of (lp)),
1081 gdb_signal_to_string (signo));
1082
1083 return WSTOPSIG (status);
1084 }
1085 }
1086
1087 static int
1088 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1089 {
1090 struct thread_info *thread = (struct thread_info *) entry;
1091 struct lwp_info *lwp = get_thread_lwp (thread);
1092 int pid = * (int *) args;
1093 int sig;
1094
1095 if (ptid_get_pid (entry->id) != pid)
1096 return 0;
1097
1098 /* If there is a pending SIGSTOP, get rid of it. */
1099 if (lwp->stop_expected)
1100 {
1101 if (debug_threads)
1102 fprintf (stderr,
1103 "Sending SIGCONT to %s\n",
1104 target_pid_to_str (ptid_of (lwp)));
1105
1106 kill_lwp (lwpid_of (lwp), SIGCONT);
1107 lwp->stop_expected = 0;
1108 }
1109
1110 /* Flush any pending changes to the process's registers. */
1111 regcache_invalidate_thread (get_lwp_thread (lwp));
1112
1113 /* Pass on any pending signal for this thread. */
1114 sig = get_detach_signal (thread);
1115
1116 /* Finally, let it resume. */
1117 if (the_low_target.prepare_to_resume != NULL)
1118 the_low_target.prepare_to_resume (lwp);
1119 if (ptrace (PTRACE_DETACH, lwpid_of (lwp), (PTRACE_TYPE_ARG3) 0,
1120 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1121 error (_("Can't detach %s: %s"),
1122 target_pid_to_str (ptid_of (lwp)),
1123 strerror (errno));
1124
1125 delete_lwp (lwp);
1126 return 0;
1127 }
1128
1129 static int
1130 linux_detach (int pid)
1131 {
1132 struct process_info *process;
1133
1134 process = find_process_pid (pid);
1135 if (process == NULL)
1136 return -1;
1137
1138 /* Stop all threads before detaching. First, ptrace requires that
1139 the thread is stopped to sucessfully detach. Second, thread_db
1140 may need to uninstall thread event breakpoints from memory, which
1141 only works with a stopped process anyway. */
1142 stop_all_lwps (0, NULL);
1143
1144 #ifdef USE_THREAD_DB
1145 thread_db_detach (process);
1146 #endif
1147
1148 /* Stabilize threads (move out of jump pads). */
1149 stabilize_threads ();
1150
1151 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1152
1153 the_target->mourn (process);
1154
1155 /* Since we presently can only stop all lwps of all processes, we
1156 need to unstop lwps of other processes. */
1157 unstop_all_lwps (0, NULL);
1158 return 0;
1159 }
1160
1161 /* Remove all LWPs that belong to process PROC from the lwp list. */
1162
1163 static int
1164 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1165 {
1166 struct lwp_info *lwp = (struct lwp_info *) entry;
1167 struct process_info *process = proc;
1168
1169 if (pid_of (lwp) == pid_of (process))
1170 delete_lwp (lwp);
1171
1172 return 0;
1173 }
1174
1175 static void
1176 linux_mourn (struct process_info *process)
1177 {
1178 struct process_info_private *priv;
1179
1180 #ifdef USE_THREAD_DB
1181 thread_db_mourn (process);
1182 #endif
1183
1184 find_inferior (&all_lwps, delete_lwp_callback, process);
1185
1186 /* Freeing all private data. */
1187 priv = process->private;
1188 free (priv->arch_private);
1189 free (priv);
1190 process->private = NULL;
1191
1192 remove_process (process);
1193 }
1194
1195 static void
1196 linux_join (int pid)
1197 {
1198 int status, ret;
1199
1200 do {
1201 ret = my_waitpid (pid, &status, 0);
1202 if (WIFEXITED (status) || WIFSIGNALED (status))
1203 break;
1204 } while (ret != -1 || errno != ECHILD);
1205 }
1206
1207 /* Return nonzero if the given thread is still alive. */
1208 static int
1209 linux_thread_alive (ptid_t ptid)
1210 {
1211 struct lwp_info *lwp = find_lwp_pid (ptid);
1212
1213 /* We assume we always know if a thread exits. If a whole process
1214 exited but we still haven't been able to report it to GDB, we'll
1215 hold on to the last lwp of the dead process. */
1216 if (lwp != NULL)
1217 return !lwp->dead;
1218 else
1219 return 0;
1220 }
1221
1222 /* Return 1 if this lwp has an interesting status pending. */
1223 static int
1224 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1225 {
1226 struct lwp_info *lwp = (struct lwp_info *) entry;
1227 ptid_t ptid = * (ptid_t *) arg;
1228 struct thread_info *thread;
1229
1230 /* Check if we're only interested in events from a specific process
1231 or its lwps. */
1232 if (!ptid_equal (minus_one_ptid, ptid)
1233 && ptid_get_pid (ptid) != ptid_get_pid (lwp->head.id))
1234 return 0;
1235
1236 thread = get_lwp_thread (lwp);
1237
1238 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1239 report any status pending the LWP may have. */
1240 if (thread->last_resume_kind == resume_stop
1241 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1242 return 0;
1243
1244 return lwp->status_pending_p;
1245 }
1246
1247 static int
1248 same_lwp (struct inferior_list_entry *entry, void *data)
1249 {
1250 ptid_t ptid = *(ptid_t *) data;
1251 int lwp;
1252
1253 if (ptid_get_lwp (ptid) != 0)
1254 lwp = ptid_get_lwp (ptid);
1255 else
1256 lwp = ptid_get_pid (ptid);
1257
1258 if (ptid_get_lwp (entry->id) == lwp)
1259 return 1;
1260
1261 return 0;
1262 }
1263
1264 struct lwp_info *
1265 find_lwp_pid (ptid_t ptid)
1266 {
1267 return (struct lwp_info*) find_inferior (&all_lwps, same_lwp, &ptid);
1268 }
1269
1270 static struct lwp_info *
1271 linux_wait_for_lwp (ptid_t ptid, int *wstatp, int options)
1272 {
1273 int ret;
1274 int to_wait_for = -1;
1275 struct lwp_info *child = NULL;
1276
1277 if (debug_threads)
1278 fprintf (stderr, "linux_wait_for_lwp: %s\n", target_pid_to_str (ptid));
1279
1280 if (ptid_equal (ptid, minus_one_ptid))
1281 to_wait_for = -1; /* any child */
1282 else
1283 to_wait_for = ptid_get_lwp (ptid); /* this lwp only */
1284
1285 options |= __WALL;
1286
1287 retry:
1288
1289 ret = my_waitpid (to_wait_for, wstatp, options);
1290 if (ret == 0 || (ret == -1 && errno == ECHILD && (options & WNOHANG)))
1291 return NULL;
1292 else if (ret == -1)
1293 perror_with_name ("waitpid");
1294
1295 if (debug_threads
1296 && (!WIFSTOPPED (*wstatp)
1297 || (WSTOPSIG (*wstatp) != 32
1298 && WSTOPSIG (*wstatp) != 33)))
1299 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
1300
1301 child = find_lwp_pid (pid_to_ptid (ret));
1302
1303 /* If we didn't find a process, one of two things presumably happened:
1304 - A process we started and then detached from has exited. Ignore it.
1305 - A process we are controlling has forked and the new child's stop
1306 was reported to us by the kernel. Save its PID. */
1307 if (child == NULL && WIFSTOPPED (*wstatp))
1308 {
1309 add_to_pid_list (&stopped_pids, ret, *wstatp);
1310 goto retry;
1311 }
1312 else if (child == NULL)
1313 goto retry;
1314
1315 child->stopped = 1;
1316
1317 child->last_status = *wstatp;
1318
1319 if (WIFSTOPPED (*wstatp))
1320 {
1321 struct process_info *proc;
1322
1323 /* Architecture-specific setup after inferior is running. This
1324 needs to happen after we have attached to the inferior and it
1325 is stopped for the first time, but before we access any
1326 inferior registers. */
1327 proc = find_process_pid (pid_of (child));
1328 if (proc->private->new_inferior)
1329 {
1330 struct thread_info *saved_inferior;
1331
1332 saved_inferior = current_inferior;
1333 current_inferior = get_lwp_thread (child);
1334
1335 the_low_target.arch_setup ();
1336
1337 current_inferior = saved_inferior;
1338
1339 proc->private->new_inferior = 0;
1340 }
1341 }
1342
1343 /* Fetch the possibly triggered data watchpoint info and store it in
1344 CHILD.
1345
1346 On some archs, like x86, that use debug registers to set
1347 watchpoints, it's possible that the way to know which watched
1348 address trapped, is to check the register that is used to select
1349 which address to watch. Problem is, between setting the
1350 watchpoint and reading back which data address trapped, the user
1351 may change the set of watchpoints, and, as a consequence, GDB
1352 changes the debug registers in the inferior. To avoid reading
1353 back a stale stopped-data-address when that happens, we cache in
1354 LP the fact that a watchpoint trapped, and the corresponding data
1355 address, as soon as we see CHILD stop with a SIGTRAP. If GDB
1356 changes the debug registers meanwhile, we have the cached data we
1357 can rely on. */
1358
1359 if (WIFSTOPPED (*wstatp) && WSTOPSIG (*wstatp) == SIGTRAP)
1360 {
1361 if (the_low_target.stopped_by_watchpoint == NULL)
1362 {
1363 child->stopped_by_watchpoint = 0;
1364 }
1365 else
1366 {
1367 struct thread_info *saved_inferior;
1368
1369 saved_inferior = current_inferior;
1370 current_inferior = get_lwp_thread (child);
1371
1372 child->stopped_by_watchpoint
1373 = the_low_target.stopped_by_watchpoint ();
1374
1375 if (child->stopped_by_watchpoint)
1376 {
1377 if (the_low_target.stopped_data_address != NULL)
1378 child->stopped_data_address
1379 = the_low_target.stopped_data_address ();
1380 else
1381 child->stopped_data_address = 0;
1382 }
1383
1384 current_inferior = saved_inferior;
1385 }
1386 }
1387
1388 /* Store the STOP_PC, with adjustment applied. This depends on the
1389 architecture being defined already (so that CHILD has a valid
1390 regcache), and on LAST_STATUS being set (to check for SIGTRAP or
1391 not). */
1392 if (WIFSTOPPED (*wstatp))
1393 child->stop_pc = get_stop_pc (child);
1394
1395 if (debug_threads
1396 && WIFSTOPPED (*wstatp)
1397 && the_low_target.get_pc != NULL)
1398 {
1399 struct thread_info *saved_inferior = current_inferior;
1400 struct regcache *regcache;
1401 CORE_ADDR pc;
1402
1403 current_inferior = get_lwp_thread (child);
1404 regcache = get_thread_regcache (current_inferior, 1);
1405 pc = (*the_low_target.get_pc) (regcache);
1406 fprintf (stderr, "linux_wait_for_lwp: pc is 0x%lx\n", (long) pc);
1407 current_inferior = saved_inferior;
1408 }
1409
1410 return child;
1411 }
1412
1413 /* This function should only be called if the LWP got a SIGTRAP.
1414
1415 Handle any tracepoint steps or hits. Return true if a tracepoint
1416 event was handled, 0 otherwise. */
1417
1418 static int
1419 handle_tracepoints (struct lwp_info *lwp)
1420 {
1421 struct thread_info *tinfo = get_lwp_thread (lwp);
1422 int tpoint_related_event = 0;
1423
1424 /* If this tracepoint hit causes a tracing stop, we'll immediately
1425 uninsert tracepoints. To do this, we temporarily pause all
1426 threads, unpatch away, and then unpause threads. We need to make
1427 sure the unpausing doesn't resume LWP too. */
1428 lwp->suspended++;
1429
1430 /* And we need to be sure that any all-threads-stopping doesn't try
1431 to move threads out of the jump pads, as it could deadlock the
1432 inferior (LWP could be in the jump pad, maybe even holding the
1433 lock.) */
1434
1435 /* Do any necessary step collect actions. */
1436 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1437
1438 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1439
1440 /* See if we just hit a tracepoint and do its main collect
1441 actions. */
1442 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1443
1444 lwp->suspended--;
1445
1446 gdb_assert (lwp->suspended == 0);
1447 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1448
1449 if (tpoint_related_event)
1450 {
1451 if (debug_threads)
1452 fprintf (stderr, "got a tracepoint event\n");
1453 return 1;
1454 }
1455
1456 return 0;
1457 }
1458
1459 /* Convenience wrapper. Returns true if LWP is presently collecting a
1460 fast tracepoint. */
1461
1462 static int
1463 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1464 struct fast_tpoint_collect_status *status)
1465 {
1466 CORE_ADDR thread_area;
1467
1468 if (the_low_target.get_thread_area == NULL)
1469 return 0;
1470
1471 /* Get the thread area address. This is used to recognize which
1472 thread is which when tracing with the in-process agent library.
1473 We don't read anything from the address, and treat it as opaque;
1474 it's the address itself that we assume is unique per-thread. */
1475 if ((*the_low_target.get_thread_area) (lwpid_of (lwp), &thread_area) == -1)
1476 return 0;
1477
1478 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1479 }
1480
1481 /* The reason we resume in the caller, is because we want to be able
1482 to pass lwp->status_pending as WSTAT, and we need to clear
1483 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1484 refuses to resume. */
1485
1486 static int
1487 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1488 {
1489 struct thread_info *saved_inferior;
1490
1491 saved_inferior = current_inferior;
1492 current_inferior = get_lwp_thread (lwp);
1493
1494 if ((wstat == NULL
1495 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1496 && supports_fast_tracepoints ()
1497 && agent_loaded_p ())
1498 {
1499 struct fast_tpoint_collect_status status;
1500 int r;
1501
1502 if (debug_threads)
1503 fprintf (stderr, "\
1504 Checking whether LWP %ld needs to move out of the jump pad.\n",
1505 lwpid_of (lwp));
1506
1507 r = linux_fast_tracepoint_collecting (lwp, &status);
1508
1509 if (wstat == NULL
1510 || (WSTOPSIG (*wstat) != SIGILL
1511 && WSTOPSIG (*wstat) != SIGFPE
1512 && WSTOPSIG (*wstat) != SIGSEGV
1513 && WSTOPSIG (*wstat) != SIGBUS))
1514 {
1515 lwp->collecting_fast_tracepoint = r;
1516
1517 if (r != 0)
1518 {
1519 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1520 {
1521 /* Haven't executed the original instruction yet.
1522 Set breakpoint there, and wait till it's hit,
1523 then single-step until exiting the jump pad. */
1524 lwp->exit_jump_pad_bkpt
1525 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1526 }
1527
1528 if (debug_threads)
1529 fprintf (stderr, "\
1530 Checking whether LWP %ld needs to move out of the jump pad...it does\n",
1531 lwpid_of (lwp));
1532 current_inferior = saved_inferior;
1533
1534 return 1;
1535 }
1536 }
1537 else
1538 {
1539 /* If we get a synchronous signal while collecting, *and*
1540 while executing the (relocated) original instruction,
1541 reset the PC to point at the tpoint address, before
1542 reporting to GDB. Otherwise, it's an IPA lib bug: just
1543 report the signal to GDB, and pray for the best. */
1544
1545 lwp->collecting_fast_tracepoint = 0;
1546
1547 if (r != 0
1548 && (status.adjusted_insn_addr <= lwp->stop_pc
1549 && lwp->stop_pc < status.adjusted_insn_addr_end))
1550 {
1551 siginfo_t info;
1552 struct regcache *regcache;
1553
1554 /* The si_addr on a few signals references the address
1555 of the faulting instruction. Adjust that as
1556 well. */
1557 if ((WSTOPSIG (*wstat) == SIGILL
1558 || WSTOPSIG (*wstat) == SIGFPE
1559 || WSTOPSIG (*wstat) == SIGBUS
1560 || WSTOPSIG (*wstat) == SIGSEGV)
1561 && ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp),
1562 (PTRACE_TYPE_ARG3) 0, &info) == 0
1563 /* Final check just to make sure we don't clobber
1564 the siginfo of non-kernel-sent signals. */
1565 && (uintptr_t) info.si_addr == lwp->stop_pc)
1566 {
1567 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1568 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp),
1569 (PTRACE_TYPE_ARG3) 0, &info);
1570 }
1571
1572 regcache = get_thread_regcache (get_lwp_thread (lwp), 1);
1573 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1574 lwp->stop_pc = status.tpoint_addr;
1575
1576 /* Cancel any fast tracepoint lock this thread was
1577 holding. */
1578 force_unlock_trace_buffer ();
1579 }
1580
1581 if (lwp->exit_jump_pad_bkpt != NULL)
1582 {
1583 if (debug_threads)
1584 fprintf (stderr,
1585 "Cancelling fast exit-jump-pad: removing bkpt. "
1586 "stopping all threads momentarily.\n");
1587
1588 stop_all_lwps (1, lwp);
1589 cancel_breakpoints ();
1590
1591 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1592 lwp->exit_jump_pad_bkpt = NULL;
1593
1594 unstop_all_lwps (1, lwp);
1595
1596 gdb_assert (lwp->suspended >= 0);
1597 }
1598 }
1599 }
1600
1601 if (debug_threads)
1602 fprintf (stderr, "\
1603 Checking whether LWP %ld needs to move out of the jump pad...no\n",
1604 lwpid_of (lwp));
1605
1606 current_inferior = saved_inferior;
1607 return 0;
1608 }
1609
1610 /* Enqueue one signal in the "signals to report later when out of the
1611 jump pad" list. */
1612
1613 static void
1614 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1615 {
1616 struct pending_signals *p_sig;
1617
1618 if (debug_threads)
1619 fprintf (stderr, "\
1620 Deferring signal %d for LWP %ld.\n", WSTOPSIG (*wstat), lwpid_of (lwp));
1621
1622 if (debug_threads)
1623 {
1624 struct pending_signals *sig;
1625
1626 for (sig = lwp->pending_signals_to_report;
1627 sig != NULL;
1628 sig = sig->prev)
1629 fprintf (stderr,
1630 " Already queued %d\n",
1631 sig->signal);
1632
1633 fprintf (stderr, " (no more currently queued signals)\n");
1634 }
1635
1636 /* Don't enqueue non-RT signals if they are already in the deferred
1637 queue. (SIGSTOP being the easiest signal to see ending up here
1638 twice) */
1639 if (WSTOPSIG (*wstat) < __SIGRTMIN)
1640 {
1641 struct pending_signals *sig;
1642
1643 for (sig = lwp->pending_signals_to_report;
1644 sig != NULL;
1645 sig = sig->prev)
1646 {
1647 if (sig->signal == WSTOPSIG (*wstat))
1648 {
1649 if (debug_threads)
1650 fprintf (stderr,
1651 "Not requeuing already queued non-RT signal %d"
1652 " for LWP %ld\n",
1653 sig->signal,
1654 lwpid_of (lwp));
1655 return;
1656 }
1657 }
1658 }
1659
1660 p_sig = xmalloc (sizeof (*p_sig));
1661 p_sig->prev = lwp->pending_signals_to_report;
1662 p_sig->signal = WSTOPSIG (*wstat);
1663 memset (&p_sig->info, 0, sizeof (siginfo_t));
1664 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), (PTRACE_TYPE_ARG3) 0,
1665 &p_sig->info);
1666
1667 lwp->pending_signals_to_report = p_sig;
1668 }
1669
1670 /* Dequeue one signal from the "signals to report later when out of
1671 the jump pad" list. */
1672
1673 static int
1674 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1675 {
1676 if (lwp->pending_signals_to_report != NULL)
1677 {
1678 struct pending_signals **p_sig;
1679
1680 p_sig = &lwp->pending_signals_to_report;
1681 while ((*p_sig)->prev != NULL)
1682 p_sig = &(*p_sig)->prev;
1683
1684 *wstat = W_STOPCODE ((*p_sig)->signal);
1685 if ((*p_sig)->info.si_signo != 0)
1686 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), (PTRACE_TYPE_ARG3) 0,
1687 &(*p_sig)->info);
1688 free (*p_sig);
1689 *p_sig = NULL;
1690
1691 if (debug_threads)
1692 fprintf (stderr, "Reporting deferred signal %d for LWP %ld.\n",
1693 WSTOPSIG (*wstat), lwpid_of (lwp));
1694
1695 if (debug_threads)
1696 {
1697 struct pending_signals *sig;
1698
1699 for (sig = lwp->pending_signals_to_report;
1700 sig != NULL;
1701 sig = sig->prev)
1702 fprintf (stderr,
1703 " Still queued %d\n",
1704 sig->signal);
1705
1706 fprintf (stderr, " (no more queued signals)\n");
1707 }
1708
1709 return 1;
1710 }
1711
1712 return 0;
1713 }
1714
1715 /* Arrange for a breakpoint to be hit again later. We don't keep the
1716 SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
1717 will handle the current event, eventually we will resume this LWP,
1718 and this breakpoint will trap again. */
1719
1720 static int
1721 cancel_breakpoint (struct lwp_info *lwp)
1722 {
1723 struct thread_info *saved_inferior;
1724
1725 /* There's nothing to do if we don't support breakpoints. */
1726 if (!supports_breakpoints ())
1727 return 0;
1728
1729 /* breakpoint_at reads from current inferior. */
1730 saved_inferior = current_inferior;
1731 current_inferior = get_lwp_thread (lwp);
1732
1733 if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
1734 {
1735 if (debug_threads)
1736 fprintf (stderr,
1737 "CB: Push back breakpoint for %s\n",
1738 target_pid_to_str (ptid_of (lwp)));
1739
1740 /* Back up the PC if necessary. */
1741 if (the_low_target.decr_pc_after_break)
1742 {
1743 struct regcache *regcache
1744 = get_thread_regcache (current_inferior, 1);
1745 (*the_low_target.set_pc) (regcache, lwp->stop_pc);
1746 }
1747
1748 current_inferior = saved_inferior;
1749 return 1;
1750 }
1751 else
1752 {
1753 if (debug_threads)
1754 fprintf (stderr,
1755 "CB: No breakpoint found at %s for [%s]\n",
1756 paddress (lwp->stop_pc),
1757 target_pid_to_str (ptid_of (lwp)));
1758 }
1759
1760 current_inferior = saved_inferior;
1761 return 0;
1762 }
1763
1764 /* When the event-loop is doing a step-over, this points at the thread
1765 being stepped. */
1766 ptid_t step_over_bkpt;
1767
1768 /* Wait for an event from child PID. If PID is -1, wait for any
1769 child. Store the stop status through the status pointer WSTAT.
1770 OPTIONS is passed to the waitpid call. Return 0 if no child stop
1771 event was found and OPTIONS contains WNOHANG. Return the PID of
1772 the stopped child otherwise. */
1773
1774 static int
1775 linux_wait_for_event (ptid_t ptid, int *wstat, int options)
1776 {
1777 struct lwp_info *event_child, *requested_child;
1778 ptid_t wait_ptid;
1779
1780 event_child = NULL;
1781 requested_child = NULL;
1782
1783 /* Check for a lwp with a pending status. */
1784
1785 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
1786 {
1787 event_child = (struct lwp_info *)
1788 find_inferior (&all_lwps, status_pending_p_callback, &ptid);
1789 if (debug_threads && event_child)
1790 fprintf (stderr, "Got a pending child %ld\n", lwpid_of (event_child));
1791 }
1792 else
1793 {
1794 requested_child = find_lwp_pid (ptid);
1795
1796 if (stopping_threads == NOT_STOPPING_THREADS
1797 && requested_child->status_pending_p
1798 && requested_child->collecting_fast_tracepoint)
1799 {
1800 enqueue_one_deferred_signal (requested_child,
1801 &requested_child->status_pending);
1802 requested_child->status_pending_p = 0;
1803 requested_child->status_pending = 0;
1804 linux_resume_one_lwp (requested_child, 0, 0, NULL);
1805 }
1806
1807 if (requested_child->suspended
1808 && requested_child->status_pending_p)
1809 fatal ("requesting an event out of a suspended child?");
1810
1811 if (requested_child->status_pending_p)
1812 event_child = requested_child;
1813 }
1814
1815 if (event_child != NULL)
1816 {
1817 if (debug_threads)
1818 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
1819 lwpid_of (event_child), event_child->status_pending);
1820 *wstat = event_child->status_pending;
1821 event_child->status_pending_p = 0;
1822 event_child->status_pending = 0;
1823 current_inferior = get_lwp_thread (event_child);
1824 return lwpid_of (event_child);
1825 }
1826
1827 if (ptid_is_pid (ptid))
1828 {
1829 /* A request to wait for a specific tgid. This is not possible
1830 with waitpid, so instead, we wait for any child, and leave
1831 children we're not interested in right now with a pending
1832 status to report later. */
1833 wait_ptid = minus_one_ptid;
1834 }
1835 else
1836 wait_ptid = ptid;
1837
1838 /* We only enter this loop if no process has a pending wait status. Thus
1839 any action taken in response to a wait status inside this loop is
1840 responding as soon as we detect the status, not after any pending
1841 events. */
1842 while (1)
1843 {
1844 event_child = linux_wait_for_lwp (wait_ptid, wstat, options);
1845
1846 if ((options & WNOHANG) && event_child == NULL)
1847 {
1848 if (debug_threads)
1849 fprintf (stderr, "WNOHANG set, no event found\n");
1850 return 0;
1851 }
1852
1853 if (event_child == NULL)
1854 error ("event from unknown child");
1855
1856 if (ptid_is_pid (ptid)
1857 && ptid_get_pid (ptid) != ptid_get_pid (ptid_of (event_child)))
1858 {
1859 if (! WIFSTOPPED (*wstat))
1860 mark_lwp_dead (event_child, *wstat);
1861 else
1862 {
1863 event_child->status_pending_p = 1;
1864 event_child->status_pending = *wstat;
1865 }
1866 continue;
1867 }
1868
1869 current_inferior = get_lwp_thread (event_child);
1870
1871 /* Check for thread exit. */
1872 if (! WIFSTOPPED (*wstat))
1873 {
1874 if (debug_threads)
1875 fprintf (stderr, "LWP %ld exiting\n", lwpid_of (event_child));
1876
1877 /* If the last thread is exiting, just return. */
1878 if (last_thread_of_process_p (current_inferior))
1879 {
1880 if (debug_threads)
1881 fprintf (stderr, "LWP %ld is last lwp of process\n",
1882 lwpid_of (event_child));
1883 return lwpid_of (event_child);
1884 }
1885
1886 if (!non_stop)
1887 {
1888 current_inferior = (struct thread_info *) all_threads.head;
1889 if (debug_threads)
1890 fprintf (stderr, "Current inferior is now %ld\n",
1891 lwpid_of (get_thread_lwp (current_inferior)));
1892 }
1893 else
1894 {
1895 current_inferior = NULL;
1896 if (debug_threads)
1897 fprintf (stderr, "Current inferior is now <NULL>\n");
1898 }
1899
1900 /* If we were waiting for this particular child to do something...
1901 well, it did something. */
1902 if (requested_child != NULL)
1903 {
1904 int lwpid = lwpid_of (event_child);
1905
1906 /* Cancel the step-over operation --- the thread that
1907 started it is gone. */
1908 if (finish_step_over (event_child))
1909 unstop_all_lwps (1, event_child);
1910 delete_lwp (event_child);
1911 return lwpid;
1912 }
1913
1914 delete_lwp (event_child);
1915
1916 /* Wait for a more interesting event. */
1917 continue;
1918 }
1919
1920 if (event_child->must_set_ptrace_flags)
1921 {
1922 linux_enable_event_reporting (lwpid_of (event_child));
1923 event_child->must_set_ptrace_flags = 0;
1924 }
1925
1926 if (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) == SIGTRAP
1927 && *wstat >> 16 != 0)
1928 {
1929 handle_extended_wait (event_child, *wstat);
1930 continue;
1931 }
1932
1933 if (WIFSTOPPED (*wstat)
1934 && WSTOPSIG (*wstat) == SIGSTOP
1935 && event_child->stop_expected)
1936 {
1937 int should_stop;
1938
1939 if (debug_threads)
1940 fprintf (stderr, "Expected stop.\n");
1941 event_child->stop_expected = 0;
1942
1943 should_stop = (current_inferior->last_resume_kind == resume_stop
1944 || stopping_threads != NOT_STOPPING_THREADS);
1945
1946 if (!should_stop)
1947 {
1948 linux_resume_one_lwp (event_child,
1949 event_child->stepping, 0, NULL);
1950 continue;
1951 }
1952 }
1953
1954 return lwpid_of (event_child);
1955 }
1956
1957 /* NOTREACHED */
1958 return 0;
1959 }
1960
1961 /* Count the LWP's that have had events. */
1962
1963 static int
1964 count_events_callback (struct inferior_list_entry *entry, void *data)
1965 {
1966 struct lwp_info *lp = (struct lwp_info *) entry;
1967 struct thread_info *thread = get_lwp_thread (lp);
1968 int *count = data;
1969
1970 gdb_assert (count != NULL);
1971
1972 /* Count only resumed LWPs that have a SIGTRAP event pending that
1973 should be reported to GDB. */
1974 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
1975 && thread->last_resume_kind != resume_stop
1976 && lp->status_pending_p
1977 && WIFSTOPPED (lp->status_pending)
1978 && WSTOPSIG (lp->status_pending) == SIGTRAP
1979 && !breakpoint_inserted_here (lp->stop_pc))
1980 (*count)++;
1981
1982 return 0;
1983 }
1984
1985 /* Select the LWP (if any) that is currently being single-stepped. */
1986
1987 static int
1988 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
1989 {
1990 struct lwp_info *lp = (struct lwp_info *) entry;
1991 struct thread_info *thread = get_lwp_thread (lp);
1992
1993 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
1994 && thread->last_resume_kind == resume_step
1995 && lp->status_pending_p)
1996 return 1;
1997 else
1998 return 0;
1999 }
2000
2001 /* Select the Nth LWP that has had a SIGTRAP event that should be
2002 reported to GDB. */
2003
2004 static int
2005 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2006 {
2007 struct lwp_info *lp = (struct lwp_info *) entry;
2008 struct thread_info *thread = get_lwp_thread (lp);
2009 int *selector = data;
2010
2011 gdb_assert (selector != NULL);
2012
2013 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2014 if (thread->last_resume_kind != resume_stop
2015 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2016 && lp->status_pending_p
2017 && WIFSTOPPED (lp->status_pending)
2018 && WSTOPSIG (lp->status_pending) == SIGTRAP
2019 && !breakpoint_inserted_here (lp->stop_pc))
2020 if ((*selector)-- == 0)
2021 return 1;
2022
2023 return 0;
2024 }
2025
2026 static int
2027 cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
2028 {
2029 struct lwp_info *lp = (struct lwp_info *) entry;
2030 struct thread_info *thread = get_lwp_thread (lp);
2031 struct lwp_info *event_lp = data;
2032
2033 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2034 if (lp == event_lp)
2035 return 0;
2036
2037 /* If a LWP other than the LWP that we're reporting an event for has
2038 hit a GDB breakpoint (as opposed to some random trap signal),
2039 then just arrange for it to hit it again later. We don't keep
2040 the SIGTRAP status and don't forward the SIGTRAP signal to the
2041 LWP. We will handle the current event, eventually we will resume
2042 all LWPs, and this one will get its breakpoint trap again.
2043
2044 If we do not do this, then we run the risk that the user will
2045 delete or disable the breakpoint, but the LWP will have already
2046 tripped on it. */
2047
2048 if (thread->last_resume_kind != resume_stop
2049 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2050 && lp->status_pending_p
2051 && WIFSTOPPED (lp->status_pending)
2052 && WSTOPSIG (lp->status_pending) == SIGTRAP
2053 && !lp->stepping
2054 && !lp->stopped_by_watchpoint
2055 && cancel_breakpoint (lp))
2056 /* Throw away the SIGTRAP. */
2057 lp->status_pending_p = 0;
2058
2059 return 0;
2060 }
2061
2062 static void
2063 linux_cancel_breakpoints (void)
2064 {
2065 find_inferior (&all_lwps, cancel_breakpoints_callback, NULL);
2066 }
2067
2068 /* Select one LWP out of those that have events pending. */
2069
2070 static void
2071 select_event_lwp (struct lwp_info **orig_lp)
2072 {
2073 int num_events = 0;
2074 int random_selector;
2075 struct lwp_info *event_lp;
2076
2077 /* Give preference to any LWP that is being single-stepped. */
2078 event_lp
2079 = (struct lwp_info *) find_inferior (&all_lwps,
2080 select_singlestep_lwp_callback, NULL);
2081 if (event_lp != NULL)
2082 {
2083 if (debug_threads)
2084 fprintf (stderr,
2085 "SEL: Select single-step %s\n",
2086 target_pid_to_str (ptid_of (event_lp)));
2087 }
2088 else
2089 {
2090 /* No single-stepping LWP. Select one at random, out of those
2091 which have had SIGTRAP events. */
2092
2093 /* First see how many SIGTRAP events we have. */
2094 find_inferior (&all_lwps, count_events_callback, &num_events);
2095
2096 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2097 random_selector = (int)
2098 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2099
2100 if (debug_threads && num_events > 1)
2101 fprintf (stderr,
2102 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2103 num_events, random_selector);
2104
2105 event_lp = (struct lwp_info *) find_inferior (&all_lwps,
2106 select_event_lwp_callback,
2107 &random_selector);
2108 }
2109
2110 if (event_lp != NULL)
2111 {
2112 /* Switch the event LWP. */
2113 *orig_lp = event_lp;
2114 }
2115 }
2116
2117 /* Decrement the suspend count of an LWP. */
2118
2119 static int
2120 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2121 {
2122 struct lwp_info *lwp = (struct lwp_info *) entry;
2123
2124 /* Ignore EXCEPT. */
2125 if (lwp == except)
2126 return 0;
2127
2128 lwp->suspended--;
2129
2130 gdb_assert (lwp->suspended >= 0);
2131 return 0;
2132 }
2133
2134 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2135 NULL. */
2136
2137 static void
2138 unsuspend_all_lwps (struct lwp_info *except)
2139 {
2140 find_inferior (&all_lwps, unsuspend_one_lwp, except);
2141 }
2142
2143 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2144 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2145 void *data);
2146 static int lwp_running (struct inferior_list_entry *entry, void *data);
2147 static ptid_t linux_wait_1 (ptid_t ptid,
2148 struct target_waitstatus *ourstatus,
2149 int target_options);
2150
2151 /* Stabilize threads (move out of jump pads).
2152
2153 If a thread is midway collecting a fast tracepoint, we need to
2154 finish the collection and move it out of the jump pad before
2155 reporting the signal.
2156
2157 This avoids recursion while collecting (when a signal arrives
2158 midway, and the signal handler itself collects), which would trash
2159 the trace buffer. In case the user set a breakpoint in a signal
2160 handler, this avoids the backtrace showing the jump pad, etc..
2161 Most importantly, there are certain things we can't do safely if
2162 threads are stopped in a jump pad (or in its callee's). For
2163 example:
2164
2165 - starting a new trace run. A thread still collecting the
2166 previous run, could trash the trace buffer when resumed. The trace
2167 buffer control structures would have been reset but the thread had
2168 no way to tell. The thread could even midway memcpy'ing to the
2169 buffer, which would mean that when resumed, it would clobber the
2170 trace buffer that had been set for a new run.
2171
2172 - we can't rewrite/reuse the jump pads for new tracepoints
2173 safely. Say you do tstart while a thread is stopped midway while
2174 collecting. When the thread is later resumed, it finishes the
2175 collection, and returns to the jump pad, to execute the original
2176 instruction that was under the tracepoint jump at the time the
2177 older run had been started. If the jump pad had been rewritten
2178 since for something else in the new run, the thread would now
2179 execute the wrong / random instructions. */
2180
2181 static void
2182 linux_stabilize_threads (void)
2183 {
2184 struct thread_info *save_inferior;
2185 struct lwp_info *lwp_stuck;
2186
2187 lwp_stuck
2188 = (struct lwp_info *) find_inferior (&all_lwps,
2189 stuck_in_jump_pad_callback, NULL);
2190 if (lwp_stuck != NULL)
2191 {
2192 if (debug_threads)
2193 fprintf (stderr, "can't stabilize, LWP %ld is stuck in jump pad\n",
2194 lwpid_of (lwp_stuck));
2195 return;
2196 }
2197
2198 save_inferior = current_inferior;
2199
2200 stabilizing_threads = 1;
2201
2202 /* Kick 'em all. */
2203 for_each_inferior (&all_lwps, move_out_of_jump_pad_callback);
2204
2205 /* Loop until all are stopped out of the jump pads. */
2206 while (find_inferior (&all_lwps, lwp_running, NULL) != NULL)
2207 {
2208 struct target_waitstatus ourstatus;
2209 struct lwp_info *lwp;
2210 int wstat;
2211
2212 /* Note that we go through the full wait even loop. While
2213 moving threads out of jump pad, we need to be able to step
2214 over internal breakpoints and such. */
2215 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2216
2217 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2218 {
2219 lwp = get_thread_lwp (current_inferior);
2220
2221 /* Lock it. */
2222 lwp->suspended++;
2223
2224 if (ourstatus.value.sig != GDB_SIGNAL_0
2225 || current_inferior->last_resume_kind == resume_stop)
2226 {
2227 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2228 enqueue_one_deferred_signal (lwp, &wstat);
2229 }
2230 }
2231 }
2232
2233 find_inferior (&all_lwps, unsuspend_one_lwp, NULL);
2234
2235 stabilizing_threads = 0;
2236
2237 current_inferior = save_inferior;
2238
2239 if (debug_threads)
2240 {
2241 lwp_stuck
2242 = (struct lwp_info *) find_inferior (&all_lwps,
2243 stuck_in_jump_pad_callback, NULL);
2244 if (lwp_stuck != NULL)
2245 fprintf (stderr, "couldn't stabilize, LWP %ld got stuck in jump pad\n",
2246 lwpid_of (lwp_stuck));
2247 }
2248 }
2249
2250 /* Wait for process, returns status. */
2251
2252 static ptid_t
2253 linux_wait_1 (ptid_t ptid,
2254 struct target_waitstatus *ourstatus, int target_options)
2255 {
2256 int w;
2257 struct lwp_info *event_child;
2258 int options;
2259 int pid;
2260 int step_over_finished;
2261 int bp_explains_trap;
2262 int maybe_internal_trap;
2263 int report_to_gdb;
2264 int trace_event;
2265 int in_step_range;
2266
2267 /* Translate generic target options into linux options. */
2268 options = __WALL;
2269 if (target_options & TARGET_WNOHANG)
2270 options |= WNOHANG;
2271
2272 retry:
2273 bp_explains_trap = 0;
2274 trace_event = 0;
2275 in_step_range = 0;
2276 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2277
2278 /* If we were only supposed to resume one thread, only wait for
2279 that thread - if it's still alive. If it died, however - which
2280 can happen if we're coming from the thread death case below -
2281 then we need to make sure we restart the other threads. We could
2282 pick a thread at random or restart all; restarting all is less
2283 arbitrary. */
2284 if (!non_stop
2285 && !ptid_equal (cont_thread, null_ptid)
2286 && !ptid_equal (cont_thread, minus_one_ptid))
2287 {
2288 struct thread_info *thread;
2289
2290 thread = (struct thread_info *) find_inferior_id (&all_threads,
2291 cont_thread);
2292
2293 /* No stepping, no signal - unless one is pending already, of course. */
2294 if (thread == NULL)
2295 {
2296 struct thread_resume resume_info;
2297 resume_info.thread = minus_one_ptid;
2298 resume_info.kind = resume_continue;
2299 resume_info.sig = 0;
2300 linux_resume (&resume_info, 1);
2301 }
2302 else
2303 ptid = cont_thread;
2304 }
2305
2306 if (ptid_equal (step_over_bkpt, null_ptid))
2307 pid = linux_wait_for_event (ptid, &w, options);
2308 else
2309 {
2310 if (debug_threads)
2311 fprintf (stderr, "step_over_bkpt set [%s], doing a blocking wait\n",
2312 target_pid_to_str (step_over_bkpt));
2313 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2314 }
2315
2316 if (pid == 0) /* only if TARGET_WNOHANG */
2317 return null_ptid;
2318
2319 event_child = get_thread_lwp (current_inferior);
2320
2321 /* If we are waiting for a particular child, and it exited,
2322 linux_wait_for_event will return its exit status. Similarly if
2323 the last child exited. If this is not the last child, however,
2324 do not report it as exited until there is a 'thread exited' response
2325 available in the remote protocol. Instead, just wait for another event.
2326 This should be safe, because if the thread crashed we will already
2327 have reported the termination signal to GDB; that should stop any
2328 in-progress stepping operations, etc.
2329
2330 Report the exit status of the last thread to exit. This matches
2331 LinuxThreads' behavior. */
2332
2333 if (last_thread_of_process_p (current_inferior))
2334 {
2335 if (WIFEXITED (w) || WIFSIGNALED (w))
2336 {
2337 if (WIFEXITED (w))
2338 {
2339 ourstatus->kind = TARGET_WAITKIND_EXITED;
2340 ourstatus->value.integer = WEXITSTATUS (w);
2341
2342 if (debug_threads)
2343 fprintf (stderr,
2344 "\nChild exited with retcode = %x \n",
2345 WEXITSTATUS (w));
2346 }
2347 else
2348 {
2349 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2350 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
2351
2352 if (debug_threads)
2353 fprintf (stderr,
2354 "\nChild terminated with signal = %x \n",
2355 WTERMSIG (w));
2356
2357 }
2358
2359 return ptid_of (event_child);
2360 }
2361 }
2362 else
2363 {
2364 if (!WIFSTOPPED (w))
2365 goto retry;
2366 }
2367
2368 /* If this event was not handled before, and is not a SIGTRAP, we
2369 report it. SIGILL and SIGSEGV are also treated as traps in case
2370 a breakpoint is inserted at the current PC. If this target does
2371 not support internal breakpoints at all, we also report the
2372 SIGTRAP without further processing; it's of no concern to us. */
2373 maybe_internal_trap
2374 = (supports_breakpoints ()
2375 && (WSTOPSIG (w) == SIGTRAP
2376 || ((WSTOPSIG (w) == SIGILL
2377 || WSTOPSIG (w) == SIGSEGV)
2378 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2379
2380 if (maybe_internal_trap)
2381 {
2382 /* Handle anything that requires bookkeeping before deciding to
2383 report the event or continue waiting. */
2384
2385 /* First check if we can explain the SIGTRAP with an internal
2386 breakpoint, or if we should possibly report the event to GDB.
2387 Do this before anything that may remove or insert a
2388 breakpoint. */
2389 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2390
2391 /* We have a SIGTRAP, possibly a step-over dance has just
2392 finished. If so, tweak the state machine accordingly,
2393 reinsert breakpoints and delete any reinsert (software
2394 single-step) breakpoints. */
2395 step_over_finished = finish_step_over (event_child);
2396
2397 /* Now invoke the callbacks of any internal breakpoints there. */
2398 check_breakpoints (event_child->stop_pc);
2399
2400 /* Handle tracepoint data collecting. This may overflow the
2401 trace buffer, and cause a tracing stop, removing
2402 breakpoints. */
2403 trace_event = handle_tracepoints (event_child);
2404
2405 if (bp_explains_trap)
2406 {
2407 /* If we stepped or ran into an internal breakpoint, we've
2408 already handled it. So next time we resume (from this
2409 PC), we should step over it. */
2410 if (debug_threads)
2411 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2412
2413 if (breakpoint_here (event_child->stop_pc))
2414 event_child->need_step_over = 1;
2415 }
2416 }
2417 else
2418 {
2419 /* We have some other signal, possibly a step-over dance was in
2420 progress, and it should be cancelled too. */
2421 step_over_finished = finish_step_over (event_child);
2422 }
2423
2424 /* We have all the data we need. Either report the event to GDB, or
2425 resume threads and keep waiting for more. */
2426
2427 /* If we're collecting a fast tracepoint, finish the collection and
2428 move out of the jump pad before delivering a signal. See
2429 linux_stabilize_threads. */
2430
2431 if (WIFSTOPPED (w)
2432 && WSTOPSIG (w) != SIGTRAP
2433 && supports_fast_tracepoints ()
2434 && agent_loaded_p ())
2435 {
2436 if (debug_threads)
2437 fprintf (stderr,
2438 "Got signal %d for LWP %ld. Check if we need "
2439 "to defer or adjust it.\n",
2440 WSTOPSIG (w), lwpid_of (event_child));
2441
2442 /* Allow debugging the jump pad itself. */
2443 if (current_inferior->last_resume_kind != resume_step
2444 && maybe_move_out_of_jump_pad (event_child, &w))
2445 {
2446 enqueue_one_deferred_signal (event_child, &w);
2447
2448 if (debug_threads)
2449 fprintf (stderr,
2450 "Signal %d for LWP %ld deferred (in jump pad)\n",
2451 WSTOPSIG (w), lwpid_of (event_child));
2452
2453 linux_resume_one_lwp (event_child, 0, 0, NULL);
2454 goto retry;
2455 }
2456 }
2457
2458 if (event_child->collecting_fast_tracepoint)
2459 {
2460 if (debug_threads)
2461 fprintf (stderr, "\
2462 LWP %ld was trying to move out of the jump pad (%d). \
2463 Check if we're already there.\n",
2464 lwpid_of (event_child),
2465 event_child->collecting_fast_tracepoint);
2466
2467 trace_event = 1;
2468
2469 event_child->collecting_fast_tracepoint
2470 = linux_fast_tracepoint_collecting (event_child, NULL);
2471
2472 if (event_child->collecting_fast_tracepoint != 1)
2473 {
2474 /* No longer need this breakpoint. */
2475 if (event_child->exit_jump_pad_bkpt != NULL)
2476 {
2477 if (debug_threads)
2478 fprintf (stderr,
2479 "No longer need exit-jump-pad bkpt; removing it."
2480 "stopping all threads momentarily.\n");
2481
2482 /* Other running threads could hit this breakpoint.
2483 We don't handle moribund locations like GDB does,
2484 instead we always pause all threads when removing
2485 breakpoints, so that any step-over or
2486 decr_pc_after_break adjustment is always taken
2487 care of while the breakpoint is still
2488 inserted. */
2489 stop_all_lwps (1, event_child);
2490 cancel_breakpoints ();
2491
2492 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2493 event_child->exit_jump_pad_bkpt = NULL;
2494
2495 unstop_all_lwps (1, event_child);
2496
2497 gdb_assert (event_child->suspended >= 0);
2498 }
2499 }
2500
2501 if (event_child->collecting_fast_tracepoint == 0)
2502 {
2503 if (debug_threads)
2504 fprintf (stderr,
2505 "fast tracepoint finished "
2506 "collecting successfully.\n");
2507
2508 /* We may have a deferred signal to report. */
2509 if (dequeue_one_deferred_signal (event_child, &w))
2510 {
2511 if (debug_threads)
2512 fprintf (stderr, "dequeued one signal.\n");
2513 }
2514 else
2515 {
2516 if (debug_threads)
2517 fprintf (stderr, "no deferred signals.\n");
2518
2519 if (stabilizing_threads)
2520 {
2521 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2522 ourstatus->value.sig = GDB_SIGNAL_0;
2523 return ptid_of (event_child);
2524 }
2525 }
2526 }
2527 }
2528
2529 /* Check whether GDB would be interested in this event. */
2530
2531 /* If GDB is not interested in this signal, don't stop other
2532 threads, and don't report it to GDB. Just resume the inferior
2533 right away. We do this for threading-related signals as well as
2534 any that GDB specifically requested we ignore. But never ignore
2535 SIGSTOP if we sent it ourselves, and do not ignore signals when
2536 stepping - they may require special handling to skip the signal
2537 handler. */
2538 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2539 thread library? */
2540 if (WIFSTOPPED (w)
2541 && current_inferior->last_resume_kind != resume_step
2542 && (
2543 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
2544 (current_process ()->private->thread_db != NULL
2545 && (WSTOPSIG (w) == __SIGRTMIN
2546 || WSTOPSIG (w) == __SIGRTMIN + 1))
2547 ||
2548 #endif
2549 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
2550 && !(WSTOPSIG (w) == SIGSTOP
2551 && current_inferior->last_resume_kind == resume_stop))))
2552 {
2553 siginfo_t info, *info_p;
2554
2555 if (debug_threads)
2556 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
2557 WSTOPSIG (w), lwpid_of (event_child));
2558
2559 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (event_child),
2560 (PTRACE_TYPE_ARG3) 0, &info) == 0)
2561 info_p = &info;
2562 else
2563 info_p = NULL;
2564 linux_resume_one_lwp (event_child, event_child->stepping,
2565 WSTOPSIG (w), info_p);
2566 goto retry;
2567 }
2568
2569 /* Note that all addresses are always "out of the step range" when
2570 there's no range to begin with. */
2571 in_step_range = lwp_in_step_range (event_child);
2572
2573 /* If GDB wanted this thread to single step, and the thread is out
2574 of the step range, we always want to report the SIGTRAP, and let
2575 GDB handle it. Watchpoints should always be reported. So should
2576 signals we can't explain. A SIGTRAP we can't explain could be a
2577 GDB breakpoint --- we may or not support Z0 breakpoints. If we
2578 do, we're be able to handle GDB breakpoints on top of internal
2579 breakpoints, by handling the internal breakpoint and still
2580 reporting the event to GDB. If we don't, we're out of luck, GDB
2581 won't see the breakpoint hit. */
2582 report_to_gdb = (!maybe_internal_trap
2583 || (current_inferior->last_resume_kind == resume_step
2584 && !in_step_range)
2585 || event_child->stopped_by_watchpoint
2586 || (!step_over_finished && !in_step_range
2587 && !bp_explains_trap && !trace_event)
2588 || (gdb_breakpoint_here (event_child->stop_pc)
2589 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
2590 && gdb_no_commands_at_breakpoint (event_child->stop_pc)));
2591
2592 run_breakpoint_commands (event_child->stop_pc);
2593
2594 /* We found no reason GDB would want us to stop. We either hit one
2595 of our own breakpoints, or finished an internal step GDB
2596 shouldn't know about. */
2597 if (!report_to_gdb)
2598 {
2599 if (debug_threads)
2600 {
2601 if (bp_explains_trap)
2602 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2603 if (step_over_finished)
2604 fprintf (stderr, "Step-over finished.\n");
2605 if (trace_event)
2606 fprintf (stderr, "Tracepoint event.\n");
2607 if (lwp_in_step_range (event_child))
2608 fprintf (stderr, "Range stepping pc 0x%s [0x%s, 0x%s).\n",
2609 paddress (event_child->stop_pc),
2610 paddress (event_child->step_range_start),
2611 paddress (event_child->step_range_end));
2612 }
2613
2614 /* We're not reporting this breakpoint to GDB, so apply the
2615 decr_pc_after_break adjustment to the inferior's regcache
2616 ourselves. */
2617
2618 if (the_low_target.set_pc != NULL)
2619 {
2620 struct regcache *regcache
2621 = get_thread_regcache (get_lwp_thread (event_child), 1);
2622 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2623 }
2624
2625 /* We may have finished stepping over a breakpoint. If so,
2626 we've stopped and suspended all LWPs momentarily except the
2627 stepping one. This is where we resume them all again. We're
2628 going to keep waiting, so use proceed, which handles stepping
2629 over the next breakpoint. */
2630 if (debug_threads)
2631 fprintf (stderr, "proceeding all threads.\n");
2632
2633 if (step_over_finished)
2634 unsuspend_all_lwps (event_child);
2635
2636 proceed_all_lwps ();
2637 goto retry;
2638 }
2639
2640 if (debug_threads)
2641 {
2642 if (current_inferior->last_resume_kind == resume_step)
2643 {
2644 if (event_child->step_range_start == event_child->step_range_end)
2645 fprintf (stderr, "GDB wanted to single-step, reporting event.\n");
2646 else if (!lwp_in_step_range (event_child))
2647 fprintf (stderr, "Out of step range, reporting event.\n");
2648 }
2649 if (event_child->stopped_by_watchpoint)
2650 fprintf (stderr, "Stopped by watchpoint.\n");
2651 if (gdb_breakpoint_here (event_child->stop_pc))
2652 fprintf (stderr, "Stopped by GDB breakpoint.\n");
2653 if (debug_threads)
2654 fprintf (stderr, "Hit a non-gdbserver trap event.\n");
2655 }
2656
2657 /* Alright, we're going to report a stop. */
2658
2659 if (!non_stop && !stabilizing_threads)
2660 {
2661 /* In all-stop, stop all threads. */
2662 stop_all_lwps (0, NULL);
2663
2664 /* If we're not waiting for a specific LWP, choose an event LWP
2665 from among those that have had events. Giving equal priority
2666 to all LWPs that have had events helps prevent
2667 starvation. */
2668 if (ptid_equal (ptid, minus_one_ptid))
2669 {
2670 event_child->status_pending_p = 1;
2671 event_child->status_pending = w;
2672
2673 select_event_lwp (&event_child);
2674
2675 event_child->status_pending_p = 0;
2676 w = event_child->status_pending;
2677 }
2678
2679 /* Now that we've selected our final event LWP, cancel any
2680 breakpoints in other LWPs that have hit a GDB breakpoint.
2681 See the comment in cancel_breakpoints_callback to find out
2682 why. */
2683 find_inferior (&all_lwps, cancel_breakpoints_callback, event_child);
2684
2685 /* If we were going a step-over, all other threads but the stepping one
2686 had been paused in start_step_over, with their suspend counts
2687 incremented. We don't want to do a full unstop/unpause, because we're
2688 in all-stop mode (so we want threads stopped), but we still need to
2689 unsuspend the other threads, to decrement their `suspended' count
2690 back. */
2691 if (step_over_finished)
2692 unsuspend_all_lwps (event_child);
2693
2694 /* Stabilize threads (move out of jump pads). */
2695 stabilize_threads ();
2696 }
2697 else
2698 {
2699 /* If we just finished a step-over, then all threads had been
2700 momentarily paused. In all-stop, that's fine, we want
2701 threads stopped by now anyway. In non-stop, we need to
2702 re-resume threads that GDB wanted to be running. */
2703 if (step_over_finished)
2704 unstop_all_lwps (1, event_child);
2705 }
2706
2707 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2708
2709 if (current_inferior->last_resume_kind == resume_stop
2710 && WSTOPSIG (w) == SIGSTOP)
2711 {
2712 /* A thread that has been requested to stop by GDB with vCont;t,
2713 and it stopped cleanly, so report as SIG0. The use of
2714 SIGSTOP is an implementation detail. */
2715 ourstatus->value.sig = GDB_SIGNAL_0;
2716 }
2717 else if (current_inferior->last_resume_kind == resume_stop
2718 && WSTOPSIG (w) != SIGSTOP)
2719 {
2720 /* A thread that has been requested to stop by GDB with vCont;t,
2721 but, it stopped for other reasons. */
2722 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2723 }
2724 else
2725 {
2726 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2727 }
2728
2729 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
2730
2731 if (debug_threads)
2732 fprintf (stderr, "linux_wait ret = %s, %d, %d\n",
2733 target_pid_to_str (ptid_of (event_child)),
2734 ourstatus->kind,
2735 ourstatus->value.sig);
2736
2737 return ptid_of (event_child);
2738 }
2739
2740 /* Get rid of any pending event in the pipe. */
2741 static void
2742 async_file_flush (void)
2743 {
2744 int ret;
2745 char buf;
2746
2747 do
2748 ret = read (linux_event_pipe[0], &buf, 1);
2749 while (ret >= 0 || (ret == -1 && errno == EINTR));
2750 }
2751
2752 /* Put something in the pipe, so the event loop wakes up. */
2753 static void
2754 async_file_mark (void)
2755 {
2756 int ret;
2757
2758 async_file_flush ();
2759
2760 do
2761 ret = write (linux_event_pipe[1], "+", 1);
2762 while (ret == 0 || (ret == -1 && errno == EINTR));
2763
2764 /* Ignore EAGAIN. If the pipe is full, the event loop will already
2765 be awakened anyway. */
2766 }
2767
2768 static ptid_t
2769 linux_wait (ptid_t ptid,
2770 struct target_waitstatus *ourstatus, int target_options)
2771 {
2772 ptid_t event_ptid;
2773
2774 if (debug_threads)
2775 fprintf (stderr, "linux_wait: [%s]\n", target_pid_to_str (ptid));
2776
2777 /* Flush the async file first. */
2778 if (target_is_async_p ())
2779 async_file_flush ();
2780
2781 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
2782
2783 /* If at least one stop was reported, there may be more. A single
2784 SIGCHLD can signal more than one child stop. */
2785 if (target_is_async_p ()
2786 && (target_options & TARGET_WNOHANG) != 0
2787 && !ptid_equal (event_ptid, null_ptid))
2788 async_file_mark ();
2789
2790 return event_ptid;
2791 }
2792
2793 /* Send a signal to an LWP. */
2794
2795 static int
2796 kill_lwp (unsigned long lwpid, int signo)
2797 {
2798 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2799 fails, then we are not using nptl threads and we should be using kill. */
2800
2801 #ifdef __NR_tkill
2802 {
2803 static int tkill_failed;
2804
2805 if (!tkill_failed)
2806 {
2807 int ret;
2808
2809 errno = 0;
2810 ret = syscall (__NR_tkill, lwpid, signo);
2811 if (errno != ENOSYS)
2812 return ret;
2813 tkill_failed = 1;
2814 }
2815 }
2816 #endif
2817
2818 return kill (lwpid, signo);
2819 }
2820
2821 void
2822 linux_stop_lwp (struct lwp_info *lwp)
2823 {
2824 send_sigstop (lwp);
2825 }
2826
2827 static void
2828 send_sigstop (struct lwp_info *lwp)
2829 {
2830 int pid;
2831
2832 pid = lwpid_of (lwp);
2833
2834 /* If we already have a pending stop signal for this process, don't
2835 send another. */
2836 if (lwp->stop_expected)
2837 {
2838 if (debug_threads)
2839 fprintf (stderr, "Have pending sigstop for lwp %d\n", pid);
2840
2841 return;
2842 }
2843
2844 if (debug_threads)
2845 fprintf (stderr, "Sending sigstop to lwp %d\n", pid);
2846
2847 lwp->stop_expected = 1;
2848 kill_lwp (pid, SIGSTOP);
2849 }
2850
2851 static int
2852 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
2853 {
2854 struct lwp_info *lwp = (struct lwp_info *) entry;
2855
2856 /* Ignore EXCEPT. */
2857 if (lwp == except)
2858 return 0;
2859
2860 if (lwp->stopped)
2861 return 0;
2862
2863 send_sigstop (lwp);
2864 return 0;
2865 }
2866
2867 /* Increment the suspend count of an LWP, and stop it, if not stopped
2868 yet. */
2869 static int
2870 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
2871 void *except)
2872 {
2873 struct lwp_info *lwp = (struct lwp_info *) entry;
2874
2875 /* Ignore EXCEPT. */
2876 if (lwp == except)
2877 return 0;
2878
2879 lwp->suspended++;
2880
2881 return send_sigstop_callback (entry, except);
2882 }
2883
2884 static void
2885 mark_lwp_dead (struct lwp_info *lwp, int wstat)
2886 {
2887 /* It's dead, really. */
2888 lwp->dead = 1;
2889
2890 /* Store the exit status for later. */
2891 lwp->status_pending_p = 1;
2892 lwp->status_pending = wstat;
2893
2894 /* Prevent trying to stop it. */
2895 lwp->stopped = 1;
2896
2897 /* No further stops are expected from a dead lwp. */
2898 lwp->stop_expected = 0;
2899 }
2900
2901 static void
2902 wait_for_sigstop (struct inferior_list_entry *entry)
2903 {
2904 struct lwp_info *lwp = (struct lwp_info *) entry;
2905 struct thread_info *saved_inferior;
2906 int wstat;
2907 ptid_t saved_tid;
2908 ptid_t ptid;
2909 int pid;
2910
2911 if (lwp->stopped)
2912 {
2913 if (debug_threads)
2914 fprintf (stderr, "wait_for_sigstop: LWP %ld already stopped\n",
2915 lwpid_of (lwp));
2916 return;
2917 }
2918
2919 saved_inferior = current_inferior;
2920 if (saved_inferior != NULL)
2921 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
2922 else
2923 saved_tid = null_ptid; /* avoid bogus unused warning */
2924
2925 ptid = lwp->head.id;
2926
2927 if (debug_threads)
2928 fprintf (stderr, "wait_for_sigstop: pulling one event\n");
2929
2930 pid = linux_wait_for_event (ptid, &wstat, __WALL);
2931
2932 /* If we stopped with a non-SIGSTOP signal, save it for later
2933 and record the pending SIGSTOP. If the process exited, just
2934 return. */
2935 if (WIFSTOPPED (wstat))
2936 {
2937 if (debug_threads)
2938 fprintf (stderr, "LWP %ld stopped with signal %d\n",
2939 lwpid_of (lwp), WSTOPSIG (wstat));
2940
2941 if (WSTOPSIG (wstat) != SIGSTOP)
2942 {
2943 if (debug_threads)
2944 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
2945 lwpid_of (lwp), wstat);
2946
2947 lwp->status_pending_p = 1;
2948 lwp->status_pending = wstat;
2949 }
2950 }
2951 else
2952 {
2953 if (debug_threads)
2954 fprintf (stderr, "Process %d exited while stopping LWPs\n", pid);
2955
2956 lwp = find_lwp_pid (pid_to_ptid (pid));
2957 if (lwp)
2958 {
2959 /* Leave this status pending for the next time we're able to
2960 report it. In the mean time, we'll report this lwp as
2961 dead to GDB, so GDB doesn't try to read registers and
2962 memory from it. This can only happen if this was the
2963 last thread of the process; otherwise, PID is removed
2964 from the thread tables before linux_wait_for_event
2965 returns. */
2966 mark_lwp_dead (lwp, wstat);
2967 }
2968 }
2969
2970 if (saved_inferior == NULL || linux_thread_alive (saved_tid))
2971 current_inferior = saved_inferior;
2972 else
2973 {
2974 if (debug_threads)
2975 fprintf (stderr, "Previously current thread died.\n");
2976
2977 if (non_stop)
2978 {
2979 /* We can't change the current inferior behind GDB's back,
2980 otherwise, a subsequent command may apply to the wrong
2981 process. */
2982 current_inferior = NULL;
2983 }
2984 else
2985 {
2986 /* Set a valid thread as current. */
2987 set_desired_inferior (0);
2988 }
2989 }
2990 }
2991
2992 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
2993 move it out, because we need to report the stop event to GDB. For
2994 example, if the user puts a breakpoint in the jump pad, it's
2995 because she wants to debug it. */
2996
2997 static int
2998 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
2999 {
3000 struct lwp_info *lwp = (struct lwp_info *) entry;
3001 struct thread_info *thread = get_lwp_thread (lwp);
3002
3003 gdb_assert (lwp->suspended == 0);
3004 gdb_assert (lwp->stopped);
3005
3006 /* Allow debugging the jump pad, gdb_collect, etc.. */
3007 return (supports_fast_tracepoints ()
3008 && agent_loaded_p ()
3009 && (gdb_breakpoint_here (lwp->stop_pc)
3010 || lwp->stopped_by_watchpoint
3011 || thread->last_resume_kind == resume_step)
3012 && linux_fast_tracepoint_collecting (lwp, NULL));
3013 }
3014
3015 static void
3016 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3017 {
3018 struct lwp_info *lwp = (struct lwp_info *) entry;
3019 struct thread_info *thread = get_lwp_thread (lwp);
3020 int *wstat;
3021
3022 gdb_assert (lwp->suspended == 0);
3023 gdb_assert (lwp->stopped);
3024
3025 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3026
3027 /* Allow debugging the jump pad, gdb_collect, etc. */
3028 if (!gdb_breakpoint_here (lwp->stop_pc)
3029 && !lwp->stopped_by_watchpoint
3030 && thread->last_resume_kind != resume_step
3031 && maybe_move_out_of_jump_pad (lwp, wstat))
3032 {
3033 if (debug_threads)
3034 fprintf (stderr,
3035 "LWP %ld needs stabilizing (in jump pad)\n",
3036 lwpid_of (lwp));
3037
3038 if (wstat)
3039 {
3040 lwp->status_pending_p = 0;
3041 enqueue_one_deferred_signal (lwp, wstat);
3042
3043 if (debug_threads)
3044 fprintf (stderr,
3045 "Signal %d for LWP %ld deferred "
3046 "(in jump pad)\n",
3047 WSTOPSIG (*wstat), lwpid_of (lwp));
3048 }
3049
3050 linux_resume_one_lwp (lwp, 0, 0, NULL);
3051 }
3052 else
3053 lwp->suspended++;
3054 }
3055
3056 static int
3057 lwp_running (struct inferior_list_entry *entry, void *data)
3058 {
3059 struct lwp_info *lwp = (struct lwp_info *) entry;
3060
3061 if (lwp->dead)
3062 return 0;
3063 if (lwp->stopped)
3064 return 0;
3065 return 1;
3066 }
3067
3068 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3069 If SUSPEND, then also increase the suspend count of every LWP,
3070 except EXCEPT. */
3071
3072 static void
3073 stop_all_lwps (int suspend, struct lwp_info *except)
3074 {
3075 /* Should not be called recursively. */
3076 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3077
3078 stopping_threads = (suspend
3079 ? STOPPING_AND_SUSPENDING_THREADS
3080 : STOPPING_THREADS);
3081
3082 if (suspend)
3083 find_inferior (&all_lwps, suspend_and_send_sigstop_callback, except);
3084 else
3085 find_inferior (&all_lwps, send_sigstop_callback, except);
3086 for_each_inferior (&all_lwps, wait_for_sigstop);
3087 stopping_threads = NOT_STOPPING_THREADS;
3088 }
3089
3090 /* Resume execution of the inferior process.
3091 If STEP is nonzero, single-step it.
3092 If SIGNAL is nonzero, give it that signal. */
3093
3094 static void
3095 linux_resume_one_lwp (struct lwp_info *lwp,
3096 int step, int signal, siginfo_t *info)
3097 {
3098 struct thread_info *saved_inferior;
3099 int fast_tp_collecting;
3100
3101 if (lwp->stopped == 0)
3102 return;
3103
3104 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3105
3106 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3107
3108 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3109 user used the "jump" command, or "set $pc = foo"). */
3110 if (lwp->stop_pc != get_pc (lwp))
3111 {
3112 /* Collecting 'while-stepping' actions doesn't make sense
3113 anymore. */
3114 release_while_stepping_state_list (get_lwp_thread (lwp));
3115 }
3116
3117 /* If we have pending signals or status, and a new signal, enqueue the
3118 signal. Also enqueue the signal if we are waiting to reinsert a
3119 breakpoint; it will be picked up again below. */
3120 if (signal != 0
3121 && (lwp->status_pending_p
3122 || lwp->pending_signals != NULL
3123 || lwp->bp_reinsert != 0
3124 || fast_tp_collecting))
3125 {
3126 struct pending_signals *p_sig;
3127 p_sig = xmalloc (sizeof (*p_sig));
3128 p_sig->prev = lwp->pending_signals;
3129 p_sig->signal = signal;
3130 if (info == NULL)
3131 memset (&p_sig->info, 0, sizeof (siginfo_t));
3132 else
3133 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3134 lwp->pending_signals = p_sig;
3135 }
3136
3137 if (lwp->status_pending_p)
3138 {
3139 if (debug_threads)
3140 fprintf (stderr, "Not resuming lwp %ld (%s, signal %d, stop %s);"
3141 " has pending status\n",
3142 lwpid_of (lwp), step ? "step" : "continue", signal,
3143 lwp->stop_expected ? "expected" : "not expected");
3144 return;
3145 }
3146
3147 saved_inferior = current_inferior;
3148 current_inferior = get_lwp_thread (lwp);
3149
3150 if (debug_threads)
3151 fprintf (stderr, "Resuming lwp %ld (%s, signal %d, stop %s)\n",
3152 lwpid_of (lwp), step ? "step" : "continue", signal,
3153 lwp->stop_expected ? "expected" : "not expected");
3154
3155 /* This bit needs some thinking about. If we get a signal that
3156 we must report while a single-step reinsert is still pending,
3157 we often end up resuming the thread. It might be better to
3158 (ew) allow a stack of pending events; then we could be sure that
3159 the reinsert happened right away and not lose any signals.
3160
3161 Making this stack would also shrink the window in which breakpoints are
3162 uninserted (see comment in linux_wait_for_lwp) but not enough for
3163 complete correctness, so it won't solve that problem. It may be
3164 worthwhile just to solve this one, however. */
3165 if (lwp->bp_reinsert != 0)
3166 {
3167 if (debug_threads)
3168 fprintf (stderr, " pending reinsert at 0x%s\n",
3169 paddress (lwp->bp_reinsert));
3170
3171 if (can_hardware_single_step ())
3172 {
3173 if (fast_tp_collecting == 0)
3174 {
3175 if (step == 0)
3176 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3177 if (lwp->suspended)
3178 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3179 lwp->suspended);
3180 }
3181
3182 step = 1;
3183 }
3184
3185 /* Postpone any pending signal. It was enqueued above. */
3186 signal = 0;
3187 }
3188
3189 if (fast_tp_collecting == 1)
3190 {
3191 if (debug_threads)
3192 fprintf (stderr, "\
3193 lwp %ld wants to get out of fast tracepoint jump pad (exit-jump-pad-bkpt)\n",
3194 lwpid_of (lwp));
3195
3196 /* Postpone any pending signal. It was enqueued above. */
3197 signal = 0;
3198 }
3199 else if (fast_tp_collecting == 2)
3200 {
3201 if (debug_threads)
3202 fprintf (stderr, "\
3203 lwp %ld wants to get out of fast tracepoint jump pad single-stepping\n",
3204 lwpid_of (lwp));
3205
3206 if (can_hardware_single_step ())
3207 step = 1;
3208 else
3209 fatal ("moving out of jump pad single-stepping"
3210 " not implemented on this target");
3211
3212 /* Postpone any pending signal. It was enqueued above. */
3213 signal = 0;
3214 }
3215
3216 /* If we have while-stepping actions in this thread set it stepping.
3217 If we have a signal to deliver, it may or may not be set to
3218 SIG_IGN, we don't know. Assume so, and allow collecting
3219 while-stepping into a signal handler. A possible smart thing to
3220 do would be to set an internal breakpoint at the signal return
3221 address, continue, and carry on catching this while-stepping
3222 action only when that breakpoint is hit. A future
3223 enhancement. */
3224 if (get_lwp_thread (lwp)->while_stepping != NULL
3225 && can_hardware_single_step ())
3226 {
3227 if (debug_threads)
3228 fprintf (stderr,
3229 "lwp %ld has a while-stepping action -> forcing step.\n",
3230 lwpid_of (lwp));
3231 step = 1;
3232 }
3233
3234 if (debug_threads && the_low_target.get_pc != NULL)
3235 {
3236 struct regcache *regcache = get_thread_regcache (current_inferior, 1);
3237 CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
3238 fprintf (stderr, " resuming from pc 0x%lx\n", (long) pc);
3239 }
3240
3241 /* If we have pending signals, consume one unless we are trying to
3242 reinsert a breakpoint or we're trying to finish a fast tracepoint
3243 collect. */
3244 if (lwp->pending_signals != NULL
3245 && lwp->bp_reinsert == 0
3246 && fast_tp_collecting == 0)
3247 {
3248 struct pending_signals **p_sig;
3249
3250 p_sig = &lwp->pending_signals;
3251 while ((*p_sig)->prev != NULL)
3252 p_sig = &(*p_sig)->prev;
3253
3254 signal = (*p_sig)->signal;
3255 if ((*p_sig)->info.si_signo != 0)
3256 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), (PTRACE_TYPE_ARG3) 0,
3257 &(*p_sig)->info);
3258
3259 free (*p_sig);
3260 *p_sig = NULL;
3261 }
3262
3263 if (the_low_target.prepare_to_resume != NULL)
3264 the_low_target.prepare_to_resume (lwp);
3265
3266 regcache_invalidate_thread (get_lwp_thread (lwp));
3267 errno = 0;
3268 lwp->stopped = 0;
3269 lwp->stopped_by_watchpoint = 0;
3270 lwp->stepping = step;
3271 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (lwp),
3272 (PTRACE_TYPE_ARG3) 0,
3273 /* Coerce to a uintptr_t first to avoid potential gcc warning
3274 of coercing an 8 byte integer to a 4 byte pointer. */
3275 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
3276
3277 current_inferior = saved_inferior;
3278 if (errno)
3279 {
3280 /* ESRCH from ptrace either means that the thread was already
3281 running (an error) or that it is gone (a race condition). If
3282 it's gone, we will get a notification the next time we wait,
3283 so we can ignore the error. We could differentiate these
3284 two, but it's tricky without waiting; the thread still exists
3285 as a zombie, so sending it signal 0 would succeed. So just
3286 ignore ESRCH. */
3287 if (errno == ESRCH)
3288 return;
3289
3290 perror_with_name ("ptrace");
3291 }
3292 }
3293
3294 struct thread_resume_array
3295 {
3296 struct thread_resume *resume;
3297 size_t n;
3298 };
3299
3300 /* This function is called once per thread. We look up the thread
3301 in RESUME_PTR, and mark the thread with a pointer to the appropriate
3302 resume request.
3303
3304 This algorithm is O(threads * resume elements), but resume elements
3305 is small (and will remain small at least until GDB supports thread
3306 suspension). */
3307 static int
3308 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
3309 {
3310 struct lwp_info *lwp;
3311 struct thread_info *thread;
3312 int ndx;
3313 struct thread_resume_array *r;
3314
3315 thread = (struct thread_info *) entry;
3316 lwp = get_thread_lwp (thread);
3317 r = arg;
3318
3319 for (ndx = 0; ndx < r->n; ndx++)
3320 {
3321 ptid_t ptid = r->resume[ndx].thread;
3322 if (ptid_equal (ptid, minus_one_ptid)
3323 || ptid_equal (ptid, entry->id)
3324 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
3325 of PID'. */
3326 || (ptid_get_pid (ptid) == pid_of (lwp)
3327 && (ptid_is_pid (ptid)
3328 || ptid_get_lwp (ptid) == -1)))
3329 {
3330 if (r->resume[ndx].kind == resume_stop
3331 && thread->last_resume_kind == resume_stop)
3332 {
3333 if (debug_threads)
3334 fprintf (stderr, "already %s LWP %ld at GDB's request\n",
3335 thread->last_status.kind == TARGET_WAITKIND_STOPPED
3336 ? "stopped"
3337 : "stopping",
3338 lwpid_of (lwp));
3339
3340 continue;
3341 }
3342
3343 lwp->resume = &r->resume[ndx];
3344 thread->last_resume_kind = lwp->resume->kind;
3345
3346 lwp->step_range_start = lwp->resume->step_range_start;
3347 lwp->step_range_end = lwp->resume->step_range_end;
3348
3349 /* If we had a deferred signal to report, dequeue one now.
3350 This can happen if LWP gets more than one signal while
3351 trying to get out of a jump pad. */
3352 if (lwp->stopped
3353 && !lwp->status_pending_p
3354 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
3355 {
3356 lwp->status_pending_p = 1;
3357
3358 if (debug_threads)
3359 fprintf (stderr,
3360 "Dequeueing deferred signal %d for LWP %ld, "
3361 "leaving status pending.\n",
3362 WSTOPSIG (lwp->status_pending), lwpid_of (lwp));
3363 }
3364
3365 return 0;
3366 }
3367 }
3368
3369 /* No resume action for this thread. */
3370 lwp->resume = NULL;
3371
3372 return 0;
3373 }
3374
3375
3376 /* Set *FLAG_P if this lwp has an interesting status pending. */
3377 static int
3378 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3379 {
3380 struct lwp_info *lwp = (struct lwp_info *) entry;
3381
3382 /* LWPs which will not be resumed are not interesting, because
3383 we might not wait for them next time through linux_wait. */
3384 if (lwp->resume == NULL)
3385 return 0;
3386
3387 if (lwp->status_pending_p)
3388 * (int *) flag_p = 1;
3389
3390 return 0;
3391 }
3392
3393 /* Return 1 if this lwp that GDB wants running is stopped at an
3394 internal breakpoint that we need to step over. It assumes that any
3395 required STOP_PC adjustment has already been propagated to the
3396 inferior's regcache. */
3397
3398 static int
3399 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3400 {
3401 struct lwp_info *lwp = (struct lwp_info *) entry;
3402 struct thread_info *thread;
3403 struct thread_info *saved_inferior;
3404 CORE_ADDR pc;
3405
3406 /* LWPs which will not be resumed are not interesting, because we
3407 might not wait for them next time through linux_wait. */
3408
3409 if (!lwp->stopped)
3410 {
3411 if (debug_threads)
3412 fprintf (stderr,
3413 "Need step over [LWP %ld]? Ignoring, not stopped\n",
3414 lwpid_of (lwp));
3415 return 0;
3416 }
3417
3418 thread = get_lwp_thread (lwp);
3419
3420 if (thread->last_resume_kind == resume_stop)
3421 {
3422 if (debug_threads)
3423 fprintf (stderr,
3424 "Need step over [LWP %ld]? Ignoring, should remain stopped\n",
3425 lwpid_of (lwp));
3426 return 0;
3427 }
3428
3429 gdb_assert (lwp->suspended >= 0);
3430
3431 if (lwp->suspended)
3432 {
3433 if (debug_threads)
3434 fprintf (stderr,
3435 "Need step over [LWP %ld]? Ignoring, suspended\n",
3436 lwpid_of (lwp));
3437 return 0;
3438 }
3439
3440 if (!lwp->need_step_over)
3441 {
3442 if (debug_threads)
3443 fprintf (stderr,
3444 "Need step over [LWP %ld]? No\n", lwpid_of (lwp));
3445 }
3446
3447 if (lwp->status_pending_p)
3448 {
3449 if (debug_threads)
3450 fprintf (stderr,
3451 "Need step over [LWP %ld]? Ignoring, has pending status.\n",
3452 lwpid_of (lwp));
3453 return 0;
3454 }
3455
3456 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3457 or we have. */
3458 pc = get_pc (lwp);
3459
3460 /* If the PC has changed since we stopped, then don't do anything,
3461 and let the breakpoint/tracepoint be hit. This happens if, for
3462 instance, GDB handled the decr_pc_after_break subtraction itself,
3463 GDB is OOL stepping this thread, or the user has issued a "jump"
3464 command, or poked thread's registers herself. */
3465 if (pc != lwp->stop_pc)
3466 {
3467 if (debug_threads)
3468 fprintf (stderr,
3469 "Need step over [LWP %ld]? Cancelling, PC was changed. "
3470 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3471 lwpid_of (lwp), paddress (lwp->stop_pc), paddress (pc));
3472
3473 lwp->need_step_over = 0;
3474 return 0;
3475 }
3476
3477 saved_inferior = current_inferior;
3478 current_inferior = thread;
3479
3480 /* We can only step over breakpoints we know about. */
3481 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3482 {
3483 /* Don't step over a breakpoint that GDB expects to hit
3484 though. If the condition is being evaluated on the target's side
3485 and it evaluate to false, step over this breakpoint as well. */
3486 if (gdb_breakpoint_here (pc)
3487 && gdb_condition_true_at_breakpoint (pc)
3488 && gdb_no_commands_at_breakpoint (pc))
3489 {
3490 if (debug_threads)
3491 fprintf (stderr,
3492 "Need step over [LWP %ld]? yes, but found"
3493 " GDB breakpoint at 0x%s; skipping step over\n",
3494 lwpid_of (lwp), paddress (pc));
3495
3496 current_inferior = saved_inferior;
3497 return 0;
3498 }
3499 else
3500 {
3501 if (debug_threads)
3502 fprintf (stderr,
3503 "Need step over [LWP %ld]? yes, "
3504 "found breakpoint at 0x%s\n",
3505 lwpid_of (lwp), paddress (pc));
3506
3507 /* We've found an lwp that needs stepping over --- return 1 so
3508 that find_inferior stops looking. */
3509 current_inferior = saved_inferior;
3510
3511 /* If the step over is cancelled, this is set again. */
3512 lwp->need_step_over = 0;
3513 return 1;
3514 }
3515 }
3516
3517 current_inferior = saved_inferior;
3518
3519 if (debug_threads)
3520 fprintf (stderr,
3521 "Need step over [LWP %ld]? No, no breakpoint found at 0x%s\n",
3522 lwpid_of (lwp), paddress (pc));
3523
3524 return 0;
3525 }
3526
3527 /* Start a step-over operation on LWP. When LWP stopped at a
3528 breakpoint, to make progress, we need to remove the breakpoint out
3529 of the way. If we let other threads run while we do that, they may
3530 pass by the breakpoint location and miss hitting it. To avoid
3531 that, a step-over momentarily stops all threads while LWP is
3532 single-stepped while the breakpoint is temporarily uninserted from
3533 the inferior. When the single-step finishes, we reinsert the
3534 breakpoint, and let all threads that are supposed to be running,
3535 run again.
3536
3537 On targets that don't support hardware single-step, we don't
3538 currently support full software single-stepping. Instead, we only
3539 support stepping over the thread event breakpoint, by asking the
3540 low target where to place a reinsert breakpoint. Since this
3541 routine assumes the breakpoint being stepped over is a thread event
3542 breakpoint, it usually assumes the return address of the current
3543 function is a good enough place to set the reinsert breakpoint. */
3544
3545 static int
3546 start_step_over (struct lwp_info *lwp)
3547 {
3548 struct thread_info *saved_inferior;
3549 CORE_ADDR pc;
3550 int step;
3551
3552 if (debug_threads)
3553 fprintf (stderr,
3554 "Starting step-over on LWP %ld. Stopping all threads\n",
3555 lwpid_of (lwp));
3556
3557 stop_all_lwps (1, lwp);
3558 gdb_assert (lwp->suspended == 0);
3559
3560 if (debug_threads)
3561 fprintf (stderr, "Done stopping all threads for step-over.\n");
3562
3563 /* Note, we should always reach here with an already adjusted PC,
3564 either by GDB (if we're resuming due to GDB's request), or by our
3565 caller, if we just finished handling an internal breakpoint GDB
3566 shouldn't care about. */
3567 pc = get_pc (lwp);
3568
3569 saved_inferior = current_inferior;
3570 current_inferior = get_lwp_thread (lwp);
3571
3572 lwp->bp_reinsert = pc;
3573 uninsert_breakpoints_at (pc);
3574 uninsert_fast_tracepoint_jumps_at (pc);
3575
3576 if (can_hardware_single_step ())
3577 {
3578 step = 1;
3579 }
3580 else
3581 {
3582 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
3583 set_reinsert_breakpoint (raddr);
3584 step = 0;
3585 }
3586
3587 current_inferior = saved_inferior;
3588
3589 linux_resume_one_lwp (lwp, step, 0, NULL);
3590
3591 /* Require next event from this LWP. */
3592 step_over_bkpt = lwp->head.id;
3593 return 1;
3594 }
3595
3596 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
3597 start_step_over, if still there, and delete any reinsert
3598 breakpoints we've set, on non hardware single-step targets. */
3599
3600 static int
3601 finish_step_over (struct lwp_info *lwp)
3602 {
3603 if (lwp->bp_reinsert != 0)
3604 {
3605 if (debug_threads)
3606 fprintf (stderr, "Finished step over.\n");
3607
3608 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
3609 may be no breakpoint to reinsert there by now. */
3610 reinsert_breakpoints_at (lwp->bp_reinsert);
3611 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
3612
3613 lwp->bp_reinsert = 0;
3614
3615 /* Delete any software-single-step reinsert breakpoints. No
3616 longer needed. We don't have to worry about other threads
3617 hitting this trap, and later not being able to explain it,
3618 because we were stepping over a breakpoint, and we hold all
3619 threads but LWP stopped while doing that. */
3620 if (!can_hardware_single_step ())
3621 delete_reinsert_breakpoints ();
3622
3623 step_over_bkpt = null_ptid;
3624 return 1;
3625 }
3626 else
3627 return 0;
3628 }
3629
3630 /* This function is called once per thread. We check the thread's resume
3631 request, which will tell us whether to resume, step, or leave the thread
3632 stopped; and what signal, if any, it should be sent.
3633
3634 For threads which we aren't explicitly told otherwise, we preserve
3635 the stepping flag; this is used for stepping over gdbserver-placed
3636 breakpoints.
3637
3638 If pending_flags was set in any thread, we queue any needed
3639 signals, since we won't actually resume. We already have a pending
3640 event to report, so we don't need to preserve any step requests;
3641 they should be re-issued if necessary. */
3642
3643 static int
3644 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
3645 {
3646 struct lwp_info *lwp;
3647 struct thread_info *thread;
3648 int step;
3649 int leave_all_stopped = * (int *) arg;
3650 int leave_pending;
3651
3652 thread = (struct thread_info *) entry;
3653 lwp = get_thread_lwp (thread);
3654
3655 if (lwp->resume == NULL)
3656 return 0;
3657
3658 if (lwp->resume->kind == resume_stop)
3659 {
3660 if (debug_threads)
3661 fprintf (stderr, "resume_stop request for LWP %ld\n", lwpid_of (lwp));
3662
3663 if (!lwp->stopped)
3664 {
3665 if (debug_threads)
3666 fprintf (stderr, "stopping LWP %ld\n", lwpid_of (lwp));
3667
3668 /* Stop the thread, and wait for the event asynchronously,
3669 through the event loop. */
3670 send_sigstop (lwp);
3671 }
3672 else
3673 {
3674 if (debug_threads)
3675 fprintf (stderr, "already stopped LWP %ld\n",
3676 lwpid_of (lwp));
3677
3678 /* The LWP may have been stopped in an internal event that
3679 was not meant to be notified back to GDB (e.g., gdbserver
3680 breakpoint), so we should be reporting a stop event in
3681 this case too. */
3682
3683 /* If the thread already has a pending SIGSTOP, this is a
3684 no-op. Otherwise, something later will presumably resume
3685 the thread and this will cause it to cancel any pending
3686 operation, due to last_resume_kind == resume_stop. If
3687 the thread already has a pending status to report, we
3688 will still report it the next time we wait - see
3689 status_pending_p_callback. */
3690
3691 /* If we already have a pending signal to report, then
3692 there's no need to queue a SIGSTOP, as this means we're
3693 midway through moving the LWP out of the jumppad, and we
3694 will report the pending signal as soon as that is
3695 finished. */
3696 if (lwp->pending_signals_to_report == NULL)
3697 send_sigstop (lwp);
3698 }
3699
3700 /* For stop requests, we're done. */
3701 lwp->resume = NULL;
3702 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3703 return 0;
3704 }
3705
3706 /* If this thread which is about to be resumed has a pending status,
3707 then don't resume any threads - we can just report the pending
3708 status. Make sure to queue any signals that would otherwise be
3709 sent. In all-stop mode, we do this decision based on if *any*
3710 thread has a pending status. If there's a thread that needs the
3711 step-over-breakpoint dance, then don't resume any other thread
3712 but that particular one. */
3713 leave_pending = (lwp->status_pending_p || leave_all_stopped);
3714
3715 if (!leave_pending)
3716 {
3717 if (debug_threads)
3718 fprintf (stderr, "resuming LWP %ld\n", lwpid_of (lwp));
3719
3720 step = (lwp->resume->kind == resume_step);
3721 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
3722 }
3723 else
3724 {
3725 if (debug_threads)
3726 fprintf (stderr, "leaving LWP %ld stopped\n", lwpid_of (lwp));
3727
3728 /* If we have a new signal, enqueue the signal. */
3729 if (lwp->resume->sig != 0)
3730 {
3731 struct pending_signals *p_sig;
3732 p_sig = xmalloc (sizeof (*p_sig));
3733 p_sig->prev = lwp->pending_signals;
3734 p_sig->signal = lwp->resume->sig;
3735 memset (&p_sig->info, 0, sizeof (siginfo_t));
3736
3737 /* If this is the same signal we were previously stopped by,
3738 make sure to queue its siginfo. We can ignore the return
3739 value of ptrace; if it fails, we'll skip
3740 PTRACE_SETSIGINFO. */
3741 if (WIFSTOPPED (lwp->last_status)
3742 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
3743 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), (PTRACE_TYPE_ARG3) 0,
3744 &p_sig->info);
3745
3746 lwp->pending_signals = p_sig;
3747 }
3748 }
3749
3750 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3751 lwp->resume = NULL;
3752 return 0;
3753 }
3754
3755 static void
3756 linux_resume (struct thread_resume *resume_info, size_t n)
3757 {
3758 struct thread_resume_array array = { resume_info, n };
3759 struct lwp_info *need_step_over = NULL;
3760 int any_pending;
3761 int leave_all_stopped;
3762
3763 find_inferior (&all_threads, linux_set_resume_request, &array);
3764
3765 /* If there is a thread which would otherwise be resumed, which has
3766 a pending status, then don't resume any threads - we can just
3767 report the pending status. Make sure to queue any signals that
3768 would otherwise be sent. In non-stop mode, we'll apply this
3769 logic to each thread individually. We consume all pending events
3770 before considering to start a step-over (in all-stop). */
3771 any_pending = 0;
3772 if (!non_stop)
3773 find_inferior (&all_lwps, resume_status_pending_p, &any_pending);
3774
3775 /* If there is a thread which would otherwise be resumed, which is
3776 stopped at a breakpoint that needs stepping over, then don't
3777 resume any threads - have it step over the breakpoint with all
3778 other threads stopped, then resume all threads again. Make sure
3779 to queue any signals that would otherwise be delivered or
3780 queued. */
3781 if (!any_pending && supports_breakpoints ())
3782 need_step_over
3783 = (struct lwp_info *) find_inferior (&all_lwps,
3784 need_step_over_p, NULL);
3785
3786 leave_all_stopped = (need_step_over != NULL || any_pending);
3787
3788 if (debug_threads)
3789 {
3790 if (need_step_over != NULL)
3791 fprintf (stderr, "Not resuming all, need step over\n");
3792 else if (any_pending)
3793 fprintf (stderr,
3794 "Not resuming, all-stop and found "
3795 "an LWP with pending status\n");
3796 else
3797 fprintf (stderr, "Resuming, no pending status or step over needed\n");
3798 }
3799
3800 /* Even if we're leaving threads stopped, queue all signals we'd
3801 otherwise deliver. */
3802 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
3803
3804 if (need_step_over)
3805 start_step_over (need_step_over);
3806 }
3807
3808 /* This function is called once per thread. We check the thread's
3809 last resume request, which will tell us whether to resume, step, or
3810 leave the thread stopped. Any signal the client requested to be
3811 delivered has already been enqueued at this point.
3812
3813 If any thread that GDB wants running is stopped at an internal
3814 breakpoint that needs stepping over, we start a step-over operation
3815 on that particular thread, and leave all others stopped. */
3816
3817 static int
3818 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3819 {
3820 struct lwp_info *lwp = (struct lwp_info *) entry;
3821 struct thread_info *thread;
3822 int step;
3823
3824 if (lwp == except)
3825 return 0;
3826
3827 if (debug_threads)
3828 fprintf (stderr,
3829 "proceed_one_lwp: lwp %ld\n", lwpid_of (lwp));
3830
3831 if (!lwp->stopped)
3832 {
3833 if (debug_threads)
3834 fprintf (stderr, " LWP %ld already running\n", lwpid_of (lwp));
3835 return 0;
3836 }
3837
3838 thread = get_lwp_thread (lwp);
3839
3840 if (thread->last_resume_kind == resume_stop
3841 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
3842 {
3843 if (debug_threads)
3844 fprintf (stderr, " client wants LWP to remain %ld stopped\n",
3845 lwpid_of (lwp));
3846 return 0;
3847 }
3848
3849 if (lwp->status_pending_p)
3850 {
3851 if (debug_threads)
3852 fprintf (stderr, " LWP %ld has pending status, leaving stopped\n",
3853 lwpid_of (lwp));
3854 return 0;
3855 }
3856
3857 gdb_assert (lwp->suspended >= 0);
3858
3859 if (lwp->suspended)
3860 {
3861 if (debug_threads)
3862 fprintf (stderr, " LWP %ld is suspended\n", lwpid_of (lwp));
3863 return 0;
3864 }
3865
3866 if (thread->last_resume_kind == resume_stop
3867 && lwp->pending_signals_to_report == NULL
3868 && lwp->collecting_fast_tracepoint == 0)
3869 {
3870 /* We haven't reported this LWP as stopped yet (otherwise, the
3871 last_status.kind check above would catch it, and we wouldn't
3872 reach here. This LWP may have been momentarily paused by a
3873 stop_all_lwps call while handling for example, another LWP's
3874 step-over. In that case, the pending expected SIGSTOP signal
3875 that was queued at vCont;t handling time will have already
3876 been consumed by wait_for_sigstop, and so we need to requeue
3877 another one here. Note that if the LWP already has a SIGSTOP
3878 pending, this is a no-op. */
3879
3880 if (debug_threads)
3881 fprintf (stderr,
3882 "Client wants LWP %ld to stop. "
3883 "Making sure it has a SIGSTOP pending\n",
3884 lwpid_of (lwp));
3885
3886 send_sigstop (lwp);
3887 }
3888
3889 step = thread->last_resume_kind == resume_step;
3890 linux_resume_one_lwp (lwp, step, 0, NULL);
3891 return 0;
3892 }
3893
3894 static int
3895 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3896 {
3897 struct lwp_info *lwp = (struct lwp_info *) entry;
3898
3899 if (lwp == except)
3900 return 0;
3901
3902 lwp->suspended--;
3903 gdb_assert (lwp->suspended >= 0);
3904
3905 return proceed_one_lwp (entry, except);
3906 }
3907
3908 /* When we finish a step-over, set threads running again. If there's
3909 another thread that may need a step-over, now's the time to start
3910 it. Eventually, we'll move all threads past their breakpoints. */
3911
3912 static void
3913 proceed_all_lwps (void)
3914 {
3915 struct lwp_info *need_step_over;
3916
3917 /* If there is a thread which would otherwise be resumed, which is
3918 stopped at a breakpoint that needs stepping over, then don't
3919 resume any threads - have it step over the breakpoint with all
3920 other threads stopped, then resume all threads again. */
3921
3922 if (supports_breakpoints ())
3923 {
3924 need_step_over
3925 = (struct lwp_info *) find_inferior (&all_lwps,
3926 need_step_over_p, NULL);
3927
3928 if (need_step_over != NULL)
3929 {
3930 if (debug_threads)
3931 fprintf (stderr, "proceed_all_lwps: found "
3932 "thread %ld needing a step-over\n",
3933 lwpid_of (need_step_over));
3934
3935 start_step_over (need_step_over);
3936 return;
3937 }
3938 }
3939
3940 if (debug_threads)
3941 fprintf (stderr, "Proceeding, no step-over needed\n");
3942
3943 find_inferior (&all_lwps, proceed_one_lwp, NULL);
3944 }
3945
3946 /* Stopped LWPs that the client wanted to be running, that don't have
3947 pending statuses, are set to run again, except for EXCEPT, if not
3948 NULL. This undoes a stop_all_lwps call. */
3949
3950 static void
3951 unstop_all_lwps (int unsuspend, struct lwp_info *except)
3952 {
3953 if (debug_threads)
3954 {
3955 if (except)
3956 fprintf (stderr,
3957 "unstopping all lwps, except=(LWP %ld)\n", lwpid_of (except));
3958 else
3959 fprintf (stderr,
3960 "unstopping all lwps\n");
3961 }
3962
3963 if (unsuspend)
3964 find_inferior (&all_lwps, unsuspend_and_proceed_one_lwp, except);
3965 else
3966 find_inferior (&all_lwps, proceed_one_lwp, except);
3967 }
3968
3969
3970 #ifdef HAVE_LINUX_REGSETS
3971
3972 #define use_linux_regsets 1
3973
3974 /* Returns true if REGSET has been disabled. */
3975
3976 static int
3977 regset_disabled (struct regsets_info *info, struct regset_info *regset)
3978 {
3979 return (info->disabled_regsets != NULL
3980 && info->disabled_regsets[regset - info->regsets]);
3981 }
3982
3983 /* Disable REGSET. */
3984
3985 static void
3986 disable_regset (struct regsets_info *info, struct regset_info *regset)
3987 {
3988 int dr_offset;
3989
3990 dr_offset = regset - info->regsets;
3991 if (info->disabled_regsets == NULL)
3992 info->disabled_regsets = xcalloc (1, info->num_regsets);
3993 info->disabled_regsets[dr_offset] = 1;
3994 }
3995
3996 static int
3997 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
3998 struct regcache *regcache)
3999 {
4000 struct regset_info *regset;
4001 int saw_general_regs = 0;
4002 int pid;
4003 struct iovec iov;
4004
4005 regset = regsets_info->regsets;
4006
4007 pid = lwpid_of (get_thread_lwp (current_inferior));
4008 while (regset->size >= 0)
4009 {
4010 void *buf, *data;
4011 int nt_type, res;
4012
4013 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4014 {
4015 regset ++;
4016 continue;
4017 }
4018
4019 buf = xmalloc (regset->size);
4020
4021 nt_type = regset->nt_type;
4022 if (nt_type)
4023 {
4024 iov.iov_base = buf;
4025 iov.iov_len = regset->size;
4026 data = (void *) &iov;
4027 }
4028 else
4029 data = buf;
4030
4031 #ifndef __sparc__
4032 res = ptrace (regset->get_request, pid,
4033 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4034 #else
4035 res = ptrace (regset->get_request, pid, data, nt_type);
4036 #endif
4037 if (res < 0)
4038 {
4039 if (errno == EIO)
4040 {
4041 /* If we get EIO on a regset, do not try it again for
4042 this process mode. */
4043 disable_regset (regsets_info, regset);
4044 free (buf);
4045 continue;
4046 }
4047 else
4048 {
4049 char s[256];
4050 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4051 pid);
4052 perror (s);
4053 }
4054 }
4055 else if (regset->type == GENERAL_REGS)
4056 saw_general_regs = 1;
4057 regset->store_function (regcache, buf);
4058 regset ++;
4059 free (buf);
4060 }
4061 if (saw_general_regs)
4062 return 0;
4063 else
4064 return 1;
4065 }
4066
4067 static int
4068 regsets_store_inferior_registers (struct regsets_info *regsets_info,
4069 struct regcache *regcache)
4070 {
4071 struct regset_info *regset;
4072 int saw_general_regs = 0;
4073 int pid;
4074 struct iovec iov;
4075
4076 regset = regsets_info->regsets;
4077
4078 pid = lwpid_of (get_thread_lwp (current_inferior));
4079 while (regset->size >= 0)
4080 {
4081 void *buf, *data;
4082 int nt_type, res;
4083
4084 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4085 {
4086 regset ++;
4087 continue;
4088 }
4089
4090 buf = xmalloc (regset->size);
4091
4092 /* First fill the buffer with the current register set contents,
4093 in case there are any items in the kernel's regset that are
4094 not in gdbserver's regcache. */
4095
4096 nt_type = regset->nt_type;
4097 if (nt_type)
4098 {
4099 iov.iov_base = buf;
4100 iov.iov_len = regset->size;
4101 data = (void *) &iov;
4102 }
4103 else
4104 data = buf;
4105
4106 #ifndef __sparc__
4107 res = ptrace (regset->get_request, pid,
4108 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4109 #else
4110 res = ptrace (regset->get_request, pid, data, nt_type);
4111 #endif
4112
4113 if (res == 0)
4114 {
4115 /* Then overlay our cached registers on that. */
4116 regset->fill_function (regcache, buf);
4117
4118 /* Only now do we write the register set. */
4119 #ifndef __sparc__
4120 res = ptrace (regset->set_request, pid,
4121 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4122 #else
4123 res = ptrace (regset->set_request, pid, data, nt_type);
4124 #endif
4125 }
4126
4127 if (res < 0)
4128 {
4129 if (errno == EIO)
4130 {
4131 /* If we get EIO on a regset, do not try it again for
4132 this process mode. */
4133 disable_regset (regsets_info, regset);
4134 free (buf);
4135 continue;
4136 }
4137 else if (errno == ESRCH)
4138 {
4139 /* At this point, ESRCH should mean the process is
4140 already gone, in which case we simply ignore attempts
4141 to change its registers. See also the related
4142 comment in linux_resume_one_lwp. */
4143 free (buf);
4144 return 0;
4145 }
4146 else
4147 {
4148 perror ("Warning: ptrace(regsets_store_inferior_registers)");
4149 }
4150 }
4151 else if (regset->type == GENERAL_REGS)
4152 saw_general_regs = 1;
4153 regset ++;
4154 free (buf);
4155 }
4156 if (saw_general_regs)
4157 return 0;
4158 else
4159 return 1;
4160 }
4161
4162 #else /* !HAVE_LINUX_REGSETS */
4163
4164 #define use_linux_regsets 0
4165 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
4166 #define regsets_store_inferior_registers(regsets_info, regcache) 1
4167
4168 #endif
4169
4170 /* Return 1 if register REGNO is supported by one of the regset ptrace
4171 calls or 0 if it has to be transferred individually. */
4172
4173 static int
4174 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
4175 {
4176 unsigned char mask = 1 << (regno % 8);
4177 size_t index = regno / 8;
4178
4179 return (use_linux_regsets
4180 && (regs_info->regset_bitmap == NULL
4181 || (regs_info->regset_bitmap[index] & mask) != 0));
4182 }
4183
4184 #ifdef HAVE_LINUX_USRREGS
4185
4186 int
4187 register_addr (const struct usrregs_info *usrregs, int regnum)
4188 {
4189 int addr;
4190
4191 if (regnum < 0 || regnum >= usrregs->num_regs)
4192 error ("Invalid register number %d.", regnum);
4193
4194 addr = usrregs->regmap[regnum];
4195
4196 return addr;
4197 }
4198
4199 /* Fetch one register. */
4200 static void
4201 fetch_register (const struct usrregs_info *usrregs,
4202 struct regcache *regcache, int regno)
4203 {
4204 CORE_ADDR regaddr;
4205 int i, size;
4206 char *buf;
4207 int pid;
4208
4209 if (regno >= usrregs->num_regs)
4210 return;
4211 if ((*the_low_target.cannot_fetch_register) (regno))
4212 return;
4213
4214 regaddr = register_addr (usrregs, regno);
4215 if (regaddr == -1)
4216 return;
4217
4218 size = ((register_size (regcache->tdesc, regno)
4219 + sizeof (PTRACE_XFER_TYPE) - 1)
4220 & -sizeof (PTRACE_XFER_TYPE));
4221 buf = alloca (size);
4222
4223 pid = lwpid_of (get_thread_lwp (current_inferior));
4224 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4225 {
4226 errno = 0;
4227 *(PTRACE_XFER_TYPE *) (buf + i) =
4228 ptrace (PTRACE_PEEKUSER, pid,
4229 /* Coerce to a uintptr_t first to avoid potential gcc warning
4230 of coercing an 8 byte integer to a 4 byte pointer. */
4231 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
4232 regaddr += sizeof (PTRACE_XFER_TYPE);
4233 if (errno != 0)
4234 error ("reading register %d: %s", regno, strerror (errno));
4235 }
4236
4237 if (the_low_target.supply_ptrace_register)
4238 the_low_target.supply_ptrace_register (regcache, regno, buf);
4239 else
4240 supply_register (regcache, regno, buf);
4241 }
4242
4243 /* Store one register. */
4244 static void
4245 store_register (const struct usrregs_info *usrregs,
4246 struct regcache *regcache, int regno)
4247 {
4248 CORE_ADDR regaddr;
4249 int i, size;
4250 char *buf;
4251 int pid;
4252
4253 if (regno >= usrregs->num_regs)
4254 return;
4255 if ((*the_low_target.cannot_store_register) (regno))
4256 return;
4257
4258 regaddr = register_addr (usrregs, regno);
4259 if (regaddr == -1)
4260 return;
4261
4262 size = ((register_size (regcache->tdesc, regno)
4263 + sizeof (PTRACE_XFER_TYPE) - 1)
4264 & -sizeof (PTRACE_XFER_TYPE));
4265 buf = alloca (size);
4266 memset (buf, 0, size);
4267
4268 if (the_low_target.collect_ptrace_register)
4269 the_low_target.collect_ptrace_register (regcache, regno, buf);
4270 else
4271 collect_register (regcache, regno, buf);
4272
4273 pid = lwpid_of (get_thread_lwp (current_inferior));
4274 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4275 {
4276 errno = 0;
4277 ptrace (PTRACE_POKEUSER, pid,
4278 /* Coerce to a uintptr_t first to avoid potential gcc warning
4279 about coercing an 8 byte integer to a 4 byte pointer. */
4280 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
4281 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
4282 if (errno != 0)
4283 {
4284 /* At this point, ESRCH should mean the process is
4285 already gone, in which case we simply ignore attempts
4286 to change its registers. See also the related
4287 comment in linux_resume_one_lwp. */
4288 if (errno == ESRCH)
4289 return;
4290
4291 if ((*the_low_target.cannot_store_register) (regno) == 0)
4292 error ("writing register %d: %s", regno, strerror (errno));
4293 }
4294 regaddr += sizeof (PTRACE_XFER_TYPE);
4295 }
4296 }
4297
4298 /* Fetch all registers, or just one, from the child process.
4299 If REGNO is -1, do this for all registers, skipping any that are
4300 assumed to have been retrieved by regsets_fetch_inferior_registers,
4301 unless ALL is non-zero.
4302 Otherwise, REGNO specifies which register (so we can save time). */
4303 static void
4304 usr_fetch_inferior_registers (const struct regs_info *regs_info,
4305 struct regcache *regcache, int regno, int all)
4306 {
4307 struct usrregs_info *usr = regs_info->usrregs;
4308
4309 if (regno == -1)
4310 {
4311 for (regno = 0; regno < usr->num_regs; regno++)
4312 if (all || !linux_register_in_regsets (regs_info, regno))
4313 fetch_register (usr, regcache, regno);
4314 }
4315 else
4316 fetch_register (usr, regcache, regno);
4317 }
4318
4319 /* Store our register values back into the inferior.
4320 If REGNO is -1, do this for all registers, skipping any that are
4321 assumed to have been saved by regsets_store_inferior_registers,
4322 unless ALL is non-zero.
4323 Otherwise, REGNO specifies which register (so we can save time). */
4324 static void
4325 usr_store_inferior_registers (const struct regs_info *regs_info,
4326 struct regcache *regcache, int regno, int all)
4327 {
4328 struct usrregs_info *usr = regs_info->usrregs;
4329
4330 if (regno == -1)
4331 {
4332 for (regno = 0; regno < usr->num_regs; regno++)
4333 if (all || !linux_register_in_regsets (regs_info, regno))
4334 store_register (usr, regcache, regno);
4335 }
4336 else
4337 store_register (usr, regcache, regno);
4338 }
4339
4340 #else /* !HAVE_LINUX_USRREGS */
4341
4342 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4343 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4344
4345 #endif
4346
4347
4348 void
4349 linux_fetch_registers (struct regcache *regcache, int regno)
4350 {
4351 int use_regsets;
4352 int all = 0;
4353 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4354
4355 if (regno == -1)
4356 {
4357 if (the_low_target.fetch_register != NULL
4358 && regs_info->usrregs != NULL)
4359 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
4360 (*the_low_target.fetch_register) (regcache, regno);
4361
4362 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
4363 if (regs_info->usrregs != NULL)
4364 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
4365 }
4366 else
4367 {
4368 if (the_low_target.fetch_register != NULL
4369 && (*the_low_target.fetch_register) (regcache, regno))
4370 return;
4371
4372 use_regsets = linux_register_in_regsets (regs_info, regno);
4373 if (use_regsets)
4374 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
4375 regcache);
4376 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4377 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
4378 }
4379 }
4380
4381 void
4382 linux_store_registers (struct regcache *regcache, int regno)
4383 {
4384 int use_regsets;
4385 int all = 0;
4386 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4387
4388 if (regno == -1)
4389 {
4390 all = regsets_store_inferior_registers (regs_info->regsets_info,
4391 regcache);
4392 if (regs_info->usrregs != NULL)
4393 usr_store_inferior_registers (regs_info, regcache, regno, all);
4394 }
4395 else
4396 {
4397 use_regsets = linux_register_in_regsets (regs_info, regno);
4398 if (use_regsets)
4399 all = regsets_store_inferior_registers (regs_info->regsets_info,
4400 regcache);
4401 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4402 usr_store_inferior_registers (regs_info, regcache, regno, 1);
4403 }
4404 }
4405
4406
4407 /* Copy LEN bytes from inferior's memory starting at MEMADDR
4408 to debugger memory starting at MYADDR. */
4409
4410 static int
4411 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
4412 {
4413 int pid = lwpid_of (get_thread_lwp (current_inferior));
4414 register PTRACE_XFER_TYPE *buffer;
4415 register CORE_ADDR addr;
4416 register int count;
4417 char filename[64];
4418 register int i;
4419 int ret;
4420 int fd;
4421
4422 /* Try using /proc. Don't bother for one word. */
4423 if (len >= 3 * sizeof (long))
4424 {
4425 int bytes;
4426
4427 /* We could keep this file open and cache it - possibly one per
4428 thread. That requires some juggling, but is even faster. */
4429 sprintf (filename, "/proc/%d/mem", pid);
4430 fd = open (filename, O_RDONLY | O_LARGEFILE);
4431 if (fd == -1)
4432 goto no_proc;
4433
4434 /* If pread64 is available, use it. It's faster if the kernel
4435 supports it (only one syscall), and it's 64-bit safe even on
4436 32-bit platforms (for instance, SPARC debugging a SPARC64
4437 application). */
4438 #ifdef HAVE_PREAD64
4439 bytes = pread64 (fd, myaddr, len, memaddr);
4440 #else
4441 bytes = -1;
4442 if (lseek (fd, memaddr, SEEK_SET) != -1)
4443 bytes = read (fd, myaddr, len);
4444 #endif
4445
4446 close (fd);
4447 if (bytes == len)
4448 return 0;
4449
4450 /* Some data was read, we'll try to get the rest with ptrace. */
4451 if (bytes > 0)
4452 {
4453 memaddr += bytes;
4454 myaddr += bytes;
4455 len -= bytes;
4456 }
4457 }
4458
4459 no_proc:
4460 /* Round starting address down to longword boundary. */
4461 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4462 /* Round ending address up; get number of longwords that makes. */
4463 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4464 / sizeof (PTRACE_XFER_TYPE));
4465 /* Allocate buffer of that many longwords. */
4466 buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4467
4468 /* Read all the longwords */
4469 errno = 0;
4470 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4471 {
4472 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4473 about coercing an 8 byte integer to a 4 byte pointer. */
4474 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
4475 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4476 (PTRACE_TYPE_ARG4) 0);
4477 if (errno)
4478 break;
4479 }
4480 ret = errno;
4481
4482 /* Copy appropriate bytes out of the buffer. */
4483 if (i > 0)
4484 {
4485 i *= sizeof (PTRACE_XFER_TYPE);
4486 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
4487 memcpy (myaddr,
4488 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4489 i < len ? i : len);
4490 }
4491
4492 return ret;
4493 }
4494
4495 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
4496 memory at MEMADDR. On failure (cannot write to the inferior)
4497 returns the value of errno. Always succeeds if LEN is zero. */
4498
4499 static int
4500 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
4501 {
4502 register int i;
4503 /* Round starting address down to longword boundary. */
4504 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4505 /* Round ending address up; get number of longwords that makes. */
4506 register int count
4507 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4508 / sizeof (PTRACE_XFER_TYPE);
4509
4510 /* Allocate buffer of that many longwords. */
4511 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
4512 alloca (count * sizeof (PTRACE_XFER_TYPE));
4513
4514 int pid = lwpid_of (get_thread_lwp (current_inferior));
4515
4516 if (len == 0)
4517 {
4518 /* Zero length write always succeeds. */
4519 return 0;
4520 }
4521
4522 if (debug_threads)
4523 {
4524 /* Dump up to four bytes. */
4525 unsigned int val = * (unsigned int *) myaddr;
4526 if (len == 1)
4527 val = val & 0xff;
4528 else if (len == 2)
4529 val = val & 0xffff;
4530 else if (len == 3)
4531 val = val & 0xffffff;
4532 fprintf (stderr, "Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
4533 val, (long)memaddr);
4534 }
4535
4536 /* Fill start and end extra bytes of buffer with existing memory data. */
4537
4538 errno = 0;
4539 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4540 about coercing an 8 byte integer to a 4 byte pointer. */
4541 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
4542 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4543 (PTRACE_TYPE_ARG4) 0);
4544 if (errno)
4545 return errno;
4546
4547 if (count > 1)
4548 {
4549 errno = 0;
4550 buffer[count - 1]
4551 = ptrace (PTRACE_PEEKTEXT, pid,
4552 /* Coerce to a uintptr_t first to avoid potential gcc warning
4553 about coercing an 8 byte integer to a 4 byte pointer. */
4554 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
4555 * sizeof (PTRACE_XFER_TYPE)),
4556 (PTRACE_TYPE_ARG4) 0);
4557 if (errno)
4558 return errno;
4559 }
4560
4561 /* Copy data to be written over corresponding part of buffer. */
4562
4563 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4564 myaddr, len);
4565
4566 /* Write the entire buffer. */
4567
4568 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4569 {
4570 errno = 0;
4571 ptrace (PTRACE_POKETEXT, pid,
4572 /* Coerce to a uintptr_t first to avoid potential gcc warning
4573 about coercing an 8 byte integer to a 4 byte pointer. */
4574 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4575 (PTRACE_TYPE_ARG4) buffer[i]);
4576 if (errno)
4577 return errno;
4578 }
4579
4580 return 0;
4581 }
4582
4583 static void
4584 linux_look_up_symbols (void)
4585 {
4586 #ifdef USE_THREAD_DB
4587 struct process_info *proc = current_process ();
4588
4589 if (proc->private->thread_db != NULL)
4590 return;
4591
4592 /* If the kernel supports tracing clones, then we don't need to
4593 use the magic thread event breakpoint to learn about
4594 threads. */
4595 thread_db_init (!linux_supports_traceclone ());
4596 #endif
4597 }
4598
4599 static void
4600 linux_request_interrupt (void)
4601 {
4602 extern unsigned long signal_pid;
4603
4604 if (!ptid_equal (cont_thread, null_ptid)
4605 && !ptid_equal (cont_thread, minus_one_ptid))
4606 {
4607 struct lwp_info *lwp;
4608 int lwpid;
4609
4610 lwp = get_thread_lwp (current_inferior);
4611 lwpid = lwpid_of (lwp);
4612 kill_lwp (lwpid, SIGINT);
4613 }
4614 else
4615 kill_lwp (signal_pid, SIGINT);
4616 }
4617
4618 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
4619 to debugger memory starting at MYADDR. */
4620
4621 static int
4622 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
4623 {
4624 char filename[PATH_MAX];
4625 int fd, n;
4626 int pid = lwpid_of (get_thread_lwp (current_inferior));
4627
4628 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4629
4630 fd = open (filename, O_RDONLY);
4631 if (fd < 0)
4632 return -1;
4633
4634 if (offset != (CORE_ADDR) 0
4635 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4636 n = -1;
4637 else
4638 n = read (fd, myaddr, len);
4639
4640 close (fd);
4641
4642 return n;
4643 }
4644
4645 /* These breakpoint and watchpoint related wrapper functions simply
4646 pass on the function call if the target has registered a
4647 corresponding function. */
4648
4649 static int
4650 linux_insert_point (char type, CORE_ADDR addr, int len)
4651 {
4652 if (the_low_target.insert_point != NULL)
4653 return the_low_target.insert_point (type, addr, len);
4654 else
4655 /* Unsupported (see target.h). */
4656 return 1;
4657 }
4658
4659 static int
4660 linux_remove_point (char type, CORE_ADDR addr, int len)
4661 {
4662 if (the_low_target.remove_point != NULL)
4663 return the_low_target.remove_point (type, addr, len);
4664 else
4665 /* Unsupported (see target.h). */
4666 return 1;
4667 }
4668
4669 static int
4670 linux_stopped_by_watchpoint (void)
4671 {
4672 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4673
4674 return lwp->stopped_by_watchpoint;
4675 }
4676
4677 static CORE_ADDR
4678 linux_stopped_data_address (void)
4679 {
4680 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4681
4682 return lwp->stopped_data_address;
4683 }
4684
4685 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
4686 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
4687 && defined(PT_TEXT_END_ADDR)
4688
4689 /* This is only used for targets that define PT_TEXT_ADDR,
4690 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
4691 the target has different ways of acquiring this information, like
4692 loadmaps. */
4693
4694 /* Under uClinux, programs are loaded at non-zero offsets, which we need
4695 to tell gdb about. */
4696
4697 static int
4698 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
4699 {
4700 unsigned long text, text_end, data;
4701 int pid = lwpid_of (get_thread_lwp (current_inferior));
4702
4703 errno = 0;
4704
4705 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
4706 (PTRACE_TYPE_ARG4) 0);
4707 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
4708 (PTRACE_TYPE_ARG4) 0);
4709 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
4710 (PTRACE_TYPE_ARG4) 0);
4711
4712 if (errno == 0)
4713 {
4714 /* Both text and data offsets produced at compile-time (and so
4715 used by gdb) are relative to the beginning of the program,
4716 with the data segment immediately following the text segment.
4717 However, the actual runtime layout in memory may put the data
4718 somewhere else, so when we send gdb a data base-address, we
4719 use the real data base address and subtract the compile-time
4720 data base-address from it (which is just the length of the
4721 text segment). BSS immediately follows data in both
4722 cases. */
4723 *text_p = text;
4724 *data_p = data - (text_end - text);
4725
4726 return 1;
4727 }
4728 return 0;
4729 }
4730 #endif
4731
4732 static int
4733 linux_qxfer_osdata (const char *annex,
4734 unsigned char *readbuf, unsigned const char *writebuf,
4735 CORE_ADDR offset, int len)
4736 {
4737 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4738 }
4739
4740 /* Convert a native/host siginfo object, into/from the siginfo in the
4741 layout of the inferiors' architecture. */
4742
4743 static void
4744 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
4745 {
4746 int done = 0;
4747
4748 if (the_low_target.siginfo_fixup != NULL)
4749 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
4750
4751 /* If there was no callback, or the callback didn't do anything,
4752 then just do a straight memcpy. */
4753 if (!done)
4754 {
4755 if (direction == 1)
4756 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
4757 else
4758 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
4759 }
4760 }
4761
4762 static int
4763 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
4764 unsigned const char *writebuf, CORE_ADDR offset, int len)
4765 {
4766 int pid;
4767 siginfo_t siginfo;
4768 char inf_siginfo[sizeof (siginfo_t)];
4769
4770 if (current_inferior == NULL)
4771 return -1;
4772
4773 pid = lwpid_of (get_thread_lwp (current_inferior));
4774
4775 if (debug_threads)
4776 fprintf (stderr, "%s siginfo for lwp %d.\n",
4777 readbuf != NULL ? "Reading" : "Writing",
4778 pid);
4779
4780 if (offset >= sizeof (siginfo))
4781 return -1;
4782
4783 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
4784 return -1;
4785
4786 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
4787 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4788 inferior with a 64-bit GDBSERVER should look the same as debugging it
4789 with a 32-bit GDBSERVER, we need to convert it. */
4790 siginfo_fixup (&siginfo, inf_siginfo, 0);
4791
4792 if (offset + len > sizeof (siginfo))
4793 len = sizeof (siginfo) - offset;
4794
4795 if (readbuf != NULL)
4796 memcpy (readbuf, inf_siginfo + offset, len);
4797 else
4798 {
4799 memcpy (inf_siginfo + offset, writebuf, len);
4800
4801 /* Convert back to ptrace layout before flushing it out. */
4802 siginfo_fixup (&siginfo, inf_siginfo, 1);
4803
4804 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
4805 return -1;
4806 }
4807
4808 return len;
4809 }
4810
4811 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4812 so we notice when children change state; as the handler for the
4813 sigsuspend in my_waitpid. */
4814
4815 static void
4816 sigchld_handler (int signo)
4817 {
4818 int old_errno = errno;
4819
4820 if (debug_threads)
4821 {
4822 do
4823 {
4824 /* fprintf is not async-signal-safe, so call write
4825 directly. */
4826 if (write (2, "sigchld_handler\n",
4827 sizeof ("sigchld_handler\n") - 1) < 0)
4828 break; /* just ignore */
4829 } while (0);
4830 }
4831
4832 if (target_is_async_p ())
4833 async_file_mark (); /* trigger a linux_wait */
4834
4835 errno = old_errno;
4836 }
4837
4838 static int
4839 linux_supports_non_stop (void)
4840 {
4841 return 1;
4842 }
4843
4844 static int
4845 linux_async (int enable)
4846 {
4847 int previous = (linux_event_pipe[0] != -1);
4848
4849 if (debug_threads)
4850 fprintf (stderr, "linux_async (%d), previous=%d\n",
4851 enable, previous);
4852
4853 if (previous != enable)
4854 {
4855 sigset_t mask;
4856 sigemptyset (&mask);
4857 sigaddset (&mask, SIGCHLD);
4858
4859 sigprocmask (SIG_BLOCK, &mask, NULL);
4860
4861 if (enable)
4862 {
4863 if (pipe (linux_event_pipe) == -1)
4864 fatal ("creating event pipe failed.");
4865
4866 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
4867 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
4868
4869 /* Register the event loop handler. */
4870 add_file_handler (linux_event_pipe[0],
4871 handle_target_event, NULL);
4872
4873 /* Always trigger a linux_wait. */
4874 async_file_mark ();
4875 }
4876 else
4877 {
4878 delete_file_handler (linux_event_pipe[0]);
4879
4880 close (linux_event_pipe[0]);
4881 close (linux_event_pipe[1]);
4882 linux_event_pipe[0] = -1;
4883 linux_event_pipe[1] = -1;
4884 }
4885
4886 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4887 }
4888
4889 return previous;
4890 }
4891
4892 static int
4893 linux_start_non_stop (int nonstop)
4894 {
4895 /* Register or unregister from event-loop accordingly. */
4896 linux_async (nonstop);
4897 return 0;
4898 }
4899
4900 static int
4901 linux_supports_multi_process (void)
4902 {
4903 return 1;
4904 }
4905
4906 static int
4907 linux_supports_disable_randomization (void)
4908 {
4909 #ifdef HAVE_PERSONALITY
4910 return 1;
4911 #else
4912 return 0;
4913 #endif
4914 }
4915
4916 static int
4917 linux_supports_agent (void)
4918 {
4919 return 1;
4920 }
4921
4922 static int
4923 linux_supports_range_stepping (void)
4924 {
4925 if (*the_low_target.supports_range_stepping == NULL)
4926 return 0;
4927
4928 return (*the_low_target.supports_range_stepping) ();
4929 }
4930
4931 /* Enumerate spufs IDs for process PID. */
4932 static int
4933 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
4934 {
4935 int pos = 0;
4936 int written = 0;
4937 char path[128];
4938 DIR *dir;
4939 struct dirent *entry;
4940
4941 sprintf (path, "/proc/%ld/fd", pid);
4942 dir = opendir (path);
4943 if (!dir)
4944 return -1;
4945
4946 rewinddir (dir);
4947 while ((entry = readdir (dir)) != NULL)
4948 {
4949 struct stat st;
4950 struct statfs stfs;
4951 int fd;
4952
4953 fd = atoi (entry->d_name);
4954 if (!fd)
4955 continue;
4956
4957 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
4958 if (stat (path, &st) != 0)
4959 continue;
4960 if (!S_ISDIR (st.st_mode))
4961 continue;
4962
4963 if (statfs (path, &stfs) != 0)
4964 continue;
4965 if (stfs.f_type != SPUFS_MAGIC)
4966 continue;
4967
4968 if (pos >= offset && pos + 4 <= offset + len)
4969 {
4970 *(unsigned int *)(buf + pos - offset) = fd;
4971 written += 4;
4972 }
4973 pos += 4;
4974 }
4975
4976 closedir (dir);
4977 return written;
4978 }
4979
4980 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
4981 object type, using the /proc file system. */
4982 static int
4983 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
4984 unsigned const char *writebuf,
4985 CORE_ADDR offset, int len)
4986 {
4987 long pid = lwpid_of (get_thread_lwp (current_inferior));
4988 char buf[128];
4989 int fd = 0;
4990 int ret = 0;
4991
4992 if (!writebuf && !readbuf)
4993 return -1;
4994
4995 if (!*annex)
4996 {
4997 if (!readbuf)
4998 return -1;
4999 else
5000 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5001 }
5002
5003 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
5004 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5005 if (fd <= 0)
5006 return -1;
5007
5008 if (offset != 0
5009 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5010 {
5011 close (fd);
5012 return 0;
5013 }
5014
5015 if (writebuf)
5016 ret = write (fd, writebuf, (size_t) len);
5017 else
5018 ret = read (fd, readbuf, (size_t) len);
5019
5020 close (fd);
5021 return ret;
5022 }
5023
5024 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
5025 struct target_loadseg
5026 {
5027 /* Core address to which the segment is mapped. */
5028 Elf32_Addr addr;
5029 /* VMA recorded in the program header. */
5030 Elf32_Addr p_vaddr;
5031 /* Size of this segment in memory. */
5032 Elf32_Word p_memsz;
5033 };
5034
5035 # if defined PT_GETDSBT
5036 struct target_loadmap
5037 {
5038 /* Protocol version number, must be zero. */
5039 Elf32_Word version;
5040 /* Pointer to the DSBT table, its size, and the DSBT index. */
5041 unsigned *dsbt_table;
5042 unsigned dsbt_size, dsbt_index;
5043 /* Number of segments in this map. */
5044 Elf32_Word nsegs;
5045 /* The actual memory map. */
5046 struct target_loadseg segs[/*nsegs*/];
5047 };
5048 # define LINUX_LOADMAP PT_GETDSBT
5049 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
5050 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
5051 # else
5052 struct target_loadmap
5053 {
5054 /* Protocol version number, must be zero. */
5055 Elf32_Half version;
5056 /* Number of segments in this map. */
5057 Elf32_Half nsegs;
5058 /* The actual memory map. */
5059 struct target_loadseg segs[/*nsegs*/];
5060 };
5061 # define LINUX_LOADMAP PTRACE_GETFDPIC
5062 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
5063 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
5064 # endif
5065
5066 static int
5067 linux_read_loadmap (const char *annex, CORE_ADDR offset,
5068 unsigned char *myaddr, unsigned int len)
5069 {
5070 int pid = lwpid_of (get_thread_lwp (current_inferior));
5071 int addr = -1;
5072 struct target_loadmap *data = NULL;
5073 unsigned int actual_length, copy_length;
5074
5075 if (strcmp (annex, "exec") == 0)
5076 addr = (int) LINUX_LOADMAP_EXEC;
5077 else if (strcmp (annex, "interp") == 0)
5078 addr = (int) LINUX_LOADMAP_INTERP;
5079 else
5080 return -1;
5081
5082 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
5083 return -1;
5084
5085 if (data == NULL)
5086 return -1;
5087
5088 actual_length = sizeof (struct target_loadmap)
5089 + sizeof (struct target_loadseg) * data->nsegs;
5090
5091 if (offset < 0 || offset > actual_length)
5092 return -1;
5093
5094 copy_length = actual_length - offset < len ? actual_length - offset : len;
5095 memcpy (myaddr, (char *) data + offset, copy_length);
5096 return copy_length;
5097 }
5098 #else
5099 # define linux_read_loadmap NULL
5100 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
5101
5102 static void
5103 linux_process_qsupported (const char *query)
5104 {
5105 if (the_low_target.process_qsupported != NULL)
5106 the_low_target.process_qsupported (query);
5107 }
5108
5109 static int
5110 linux_supports_tracepoints (void)
5111 {
5112 if (*the_low_target.supports_tracepoints == NULL)
5113 return 0;
5114
5115 return (*the_low_target.supports_tracepoints) ();
5116 }
5117
5118 static CORE_ADDR
5119 linux_read_pc (struct regcache *regcache)
5120 {
5121 if (the_low_target.get_pc == NULL)
5122 return 0;
5123
5124 return (*the_low_target.get_pc) (regcache);
5125 }
5126
5127 static void
5128 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
5129 {
5130 gdb_assert (the_low_target.set_pc != NULL);
5131
5132 (*the_low_target.set_pc) (regcache, pc);
5133 }
5134
5135 static int
5136 linux_thread_stopped (struct thread_info *thread)
5137 {
5138 return get_thread_lwp (thread)->stopped;
5139 }
5140
5141 /* This exposes stop-all-threads functionality to other modules. */
5142
5143 static void
5144 linux_pause_all (int freeze)
5145 {
5146 stop_all_lwps (freeze, NULL);
5147 }
5148
5149 /* This exposes unstop-all-threads functionality to other gdbserver
5150 modules. */
5151
5152 static void
5153 linux_unpause_all (int unfreeze)
5154 {
5155 unstop_all_lwps (unfreeze, NULL);
5156 }
5157
5158 static int
5159 linux_prepare_to_access_memory (void)
5160 {
5161 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5162 running LWP. */
5163 if (non_stop)
5164 linux_pause_all (1);
5165 return 0;
5166 }
5167
5168 static void
5169 linux_done_accessing_memory (void)
5170 {
5171 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5172 running LWP. */
5173 if (non_stop)
5174 linux_unpause_all (1);
5175 }
5176
5177 static int
5178 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
5179 CORE_ADDR collector,
5180 CORE_ADDR lockaddr,
5181 ULONGEST orig_size,
5182 CORE_ADDR *jump_entry,
5183 CORE_ADDR *trampoline,
5184 ULONGEST *trampoline_size,
5185 unsigned char *jjump_pad_insn,
5186 ULONGEST *jjump_pad_insn_size,
5187 CORE_ADDR *adjusted_insn_addr,
5188 CORE_ADDR *adjusted_insn_addr_end,
5189 char *err)
5190 {
5191 return (*the_low_target.install_fast_tracepoint_jump_pad)
5192 (tpoint, tpaddr, collector, lockaddr, orig_size,
5193 jump_entry, trampoline, trampoline_size,
5194 jjump_pad_insn, jjump_pad_insn_size,
5195 adjusted_insn_addr, adjusted_insn_addr_end,
5196 err);
5197 }
5198
5199 static struct emit_ops *
5200 linux_emit_ops (void)
5201 {
5202 if (the_low_target.emit_ops != NULL)
5203 return (*the_low_target.emit_ops) ();
5204 else
5205 return NULL;
5206 }
5207
5208 static int
5209 linux_get_min_fast_tracepoint_insn_len (void)
5210 {
5211 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
5212 }
5213
5214 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
5215
5216 static int
5217 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
5218 CORE_ADDR *phdr_memaddr, int *num_phdr)
5219 {
5220 char filename[PATH_MAX];
5221 int fd;
5222 const int auxv_size = is_elf64
5223 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
5224 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
5225
5226 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5227
5228 fd = open (filename, O_RDONLY);
5229 if (fd < 0)
5230 return 1;
5231
5232 *phdr_memaddr = 0;
5233 *num_phdr = 0;
5234 while (read (fd, buf, auxv_size) == auxv_size
5235 && (*phdr_memaddr == 0 || *num_phdr == 0))
5236 {
5237 if (is_elf64)
5238 {
5239 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
5240
5241 switch (aux->a_type)
5242 {
5243 case AT_PHDR:
5244 *phdr_memaddr = aux->a_un.a_val;
5245 break;
5246 case AT_PHNUM:
5247 *num_phdr = aux->a_un.a_val;
5248 break;
5249 }
5250 }
5251 else
5252 {
5253 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
5254
5255 switch (aux->a_type)
5256 {
5257 case AT_PHDR:
5258 *phdr_memaddr = aux->a_un.a_val;
5259 break;
5260 case AT_PHNUM:
5261 *num_phdr = aux->a_un.a_val;
5262 break;
5263 }
5264 }
5265 }
5266
5267 close (fd);
5268
5269 if (*phdr_memaddr == 0 || *num_phdr == 0)
5270 {
5271 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
5272 "phdr_memaddr = %ld, phdr_num = %d",
5273 (long) *phdr_memaddr, *num_phdr);
5274 return 2;
5275 }
5276
5277 return 0;
5278 }
5279
5280 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
5281
5282 static CORE_ADDR
5283 get_dynamic (const int pid, const int is_elf64)
5284 {
5285 CORE_ADDR phdr_memaddr, relocation;
5286 int num_phdr, i;
5287 unsigned char *phdr_buf;
5288 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
5289
5290 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
5291 return 0;
5292
5293 gdb_assert (num_phdr < 100); /* Basic sanity check. */
5294 phdr_buf = alloca (num_phdr * phdr_size);
5295
5296 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
5297 return 0;
5298
5299 /* Compute relocation: it is expected to be 0 for "regular" executables,
5300 non-zero for PIE ones. */
5301 relocation = -1;
5302 for (i = 0; relocation == -1 && i < num_phdr; i++)
5303 if (is_elf64)
5304 {
5305 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5306
5307 if (p->p_type == PT_PHDR)
5308 relocation = phdr_memaddr - p->p_vaddr;
5309 }
5310 else
5311 {
5312 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5313
5314 if (p->p_type == PT_PHDR)
5315 relocation = phdr_memaddr - p->p_vaddr;
5316 }
5317
5318 if (relocation == -1)
5319 {
5320 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
5321 any real world executables, including PIE executables, have always
5322 PT_PHDR present. PT_PHDR is not present in some shared libraries or
5323 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
5324 or present DT_DEBUG anyway (fpc binaries are statically linked).
5325
5326 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
5327
5328 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
5329
5330 return 0;
5331 }
5332
5333 for (i = 0; i < num_phdr; i++)
5334 {
5335 if (is_elf64)
5336 {
5337 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5338
5339 if (p->p_type == PT_DYNAMIC)
5340 return p->p_vaddr + relocation;
5341 }
5342 else
5343 {
5344 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5345
5346 if (p->p_type == PT_DYNAMIC)
5347 return p->p_vaddr + relocation;
5348 }
5349 }
5350
5351 return 0;
5352 }
5353
5354 /* Return &_r_debug in the inferior, or -1 if not present. Return value
5355 can be 0 if the inferior does not yet have the library list initialized.
5356 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
5357 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
5358
5359 static CORE_ADDR
5360 get_r_debug (const int pid, const int is_elf64)
5361 {
5362 CORE_ADDR dynamic_memaddr;
5363 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
5364 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
5365 CORE_ADDR map = -1;
5366
5367 dynamic_memaddr = get_dynamic (pid, is_elf64);
5368 if (dynamic_memaddr == 0)
5369 return map;
5370
5371 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
5372 {
5373 if (is_elf64)
5374 {
5375 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
5376 #ifdef DT_MIPS_RLD_MAP
5377 union
5378 {
5379 Elf64_Xword map;
5380 unsigned char buf[sizeof (Elf64_Xword)];
5381 }
5382 rld_map;
5383
5384 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5385 {
5386 if (linux_read_memory (dyn->d_un.d_val,
5387 rld_map.buf, sizeof (rld_map.buf)) == 0)
5388 return rld_map.map;
5389 else
5390 break;
5391 }
5392 #endif /* DT_MIPS_RLD_MAP */
5393
5394 if (dyn->d_tag == DT_DEBUG && map == -1)
5395 map = dyn->d_un.d_val;
5396
5397 if (dyn->d_tag == DT_NULL)
5398 break;
5399 }
5400 else
5401 {
5402 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
5403 #ifdef DT_MIPS_RLD_MAP
5404 union
5405 {
5406 Elf32_Word map;
5407 unsigned char buf[sizeof (Elf32_Word)];
5408 }
5409 rld_map;
5410
5411 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5412 {
5413 if (linux_read_memory (dyn->d_un.d_val,
5414 rld_map.buf, sizeof (rld_map.buf)) == 0)
5415 return rld_map.map;
5416 else
5417 break;
5418 }
5419 #endif /* DT_MIPS_RLD_MAP */
5420
5421 if (dyn->d_tag == DT_DEBUG && map == -1)
5422 map = dyn->d_un.d_val;
5423
5424 if (dyn->d_tag == DT_NULL)
5425 break;
5426 }
5427
5428 dynamic_memaddr += dyn_size;
5429 }
5430
5431 return map;
5432 }
5433
5434 /* Read one pointer from MEMADDR in the inferior. */
5435
5436 static int
5437 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
5438 {
5439 int ret;
5440
5441 /* Go through a union so this works on either big or little endian
5442 hosts, when the inferior's pointer size is smaller than the size
5443 of CORE_ADDR. It is assumed the inferior's endianness is the
5444 same of the superior's. */
5445 union
5446 {
5447 CORE_ADDR core_addr;
5448 unsigned int ui;
5449 unsigned char uc;
5450 } addr;
5451
5452 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
5453 if (ret == 0)
5454 {
5455 if (ptr_size == sizeof (CORE_ADDR))
5456 *ptr = addr.core_addr;
5457 else if (ptr_size == sizeof (unsigned int))
5458 *ptr = addr.ui;
5459 else
5460 gdb_assert_not_reached ("unhandled pointer size");
5461 }
5462 return ret;
5463 }
5464
5465 struct link_map_offsets
5466 {
5467 /* Offset and size of r_debug.r_version. */
5468 int r_version_offset;
5469
5470 /* Offset and size of r_debug.r_map. */
5471 int r_map_offset;
5472
5473 /* Offset to l_addr field in struct link_map. */
5474 int l_addr_offset;
5475
5476 /* Offset to l_name field in struct link_map. */
5477 int l_name_offset;
5478
5479 /* Offset to l_ld field in struct link_map. */
5480 int l_ld_offset;
5481
5482 /* Offset to l_next field in struct link_map. */
5483 int l_next_offset;
5484
5485 /* Offset to l_prev field in struct link_map. */
5486 int l_prev_offset;
5487 };
5488
5489 /* Construct qXfer:libraries-svr4:read reply. */
5490
5491 static int
5492 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
5493 unsigned const char *writebuf,
5494 CORE_ADDR offset, int len)
5495 {
5496 char *document;
5497 unsigned document_len;
5498 struct process_info_private *const priv = current_process ()->private;
5499 char filename[PATH_MAX];
5500 int pid, is_elf64;
5501
5502 static const struct link_map_offsets lmo_32bit_offsets =
5503 {
5504 0, /* r_version offset. */
5505 4, /* r_debug.r_map offset. */
5506 0, /* l_addr offset in link_map. */
5507 4, /* l_name offset in link_map. */
5508 8, /* l_ld offset in link_map. */
5509 12, /* l_next offset in link_map. */
5510 16 /* l_prev offset in link_map. */
5511 };
5512
5513 static const struct link_map_offsets lmo_64bit_offsets =
5514 {
5515 0, /* r_version offset. */
5516 8, /* r_debug.r_map offset. */
5517 0, /* l_addr offset in link_map. */
5518 8, /* l_name offset in link_map. */
5519 16, /* l_ld offset in link_map. */
5520 24, /* l_next offset in link_map. */
5521 32 /* l_prev offset in link_map. */
5522 };
5523 const struct link_map_offsets *lmo;
5524 unsigned int machine;
5525 int ptr_size;
5526 CORE_ADDR lm_addr = 0, lm_prev = 0;
5527 int allocated = 1024;
5528 char *p;
5529 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
5530 int header_done = 0;
5531
5532 if (writebuf != NULL)
5533 return -2;
5534 if (readbuf == NULL)
5535 return -1;
5536
5537 pid = lwpid_of (get_thread_lwp (current_inferior));
5538 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
5539 is_elf64 = elf_64_file_p (filename, &machine);
5540 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
5541 ptr_size = is_elf64 ? 8 : 4;
5542
5543 while (annex[0] != '\0')
5544 {
5545 const char *sep;
5546 CORE_ADDR *addrp;
5547 int len;
5548
5549 sep = strchr (annex, '=');
5550 if (sep == NULL)
5551 break;
5552
5553 len = sep - annex;
5554 if (len == 5 && strncmp (annex, "start", 5) == 0)
5555 addrp = &lm_addr;
5556 else if (len == 4 && strncmp (annex, "prev", 4) == 0)
5557 addrp = &lm_prev;
5558 else
5559 {
5560 annex = strchr (sep, ';');
5561 if (annex == NULL)
5562 break;
5563 annex++;
5564 continue;
5565 }
5566
5567 annex = decode_address_to_semicolon (addrp, sep + 1);
5568 }
5569
5570 if (lm_addr == 0)
5571 {
5572 int r_version = 0;
5573
5574 if (priv->r_debug == 0)
5575 priv->r_debug = get_r_debug (pid, is_elf64);
5576
5577 /* We failed to find DT_DEBUG. Such situation will not change
5578 for this inferior - do not retry it. Report it to GDB as
5579 E01, see for the reasons at the GDB solib-svr4.c side. */
5580 if (priv->r_debug == (CORE_ADDR) -1)
5581 return -1;
5582
5583 if (priv->r_debug != 0)
5584 {
5585 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
5586 (unsigned char *) &r_version,
5587 sizeof (r_version)) != 0
5588 || r_version != 1)
5589 {
5590 warning ("unexpected r_debug version %d", r_version);
5591 }
5592 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
5593 &lm_addr, ptr_size) != 0)
5594 {
5595 warning ("unable to read r_map from 0x%lx",
5596 (long) priv->r_debug + lmo->r_map_offset);
5597 }
5598 }
5599 }
5600
5601 document = xmalloc (allocated);
5602 strcpy (document, "<library-list-svr4 version=\"1.0\"");
5603 p = document + strlen (document);
5604
5605 while (lm_addr
5606 && read_one_ptr (lm_addr + lmo->l_name_offset,
5607 &l_name, ptr_size) == 0
5608 && read_one_ptr (lm_addr + lmo->l_addr_offset,
5609 &l_addr, ptr_size) == 0
5610 && read_one_ptr (lm_addr + lmo->l_ld_offset,
5611 &l_ld, ptr_size) == 0
5612 && read_one_ptr (lm_addr + lmo->l_prev_offset,
5613 &l_prev, ptr_size) == 0
5614 && read_one_ptr (lm_addr + lmo->l_next_offset,
5615 &l_next, ptr_size) == 0)
5616 {
5617 unsigned char libname[PATH_MAX];
5618
5619 if (lm_prev != l_prev)
5620 {
5621 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
5622 (long) lm_prev, (long) l_prev);
5623 break;
5624 }
5625
5626 /* Ignore the first entry even if it has valid name as the first entry
5627 corresponds to the main executable. The first entry should not be
5628 skipped if the dynamic loader was loaded late by a static executable
5629 (see solib-svr4.c parameter ignore_first). But in such case the main
5630 executable does not have PT_DYNAMIC present and this function already
5631 exited above due to failed get_r_debug. */
5632 if (lm_prev == 0)
5633 {
5634 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
5635 p = p + strlen (p);
5636 }
5637 else
5638 {
5639 /* Not checking for error because reading may stop before
5640 we've got PATH_MAX worth of characters. */
5641 libname[0] = '\0';
5642 linux_read_memory (l_name, libname, sizeof (libname) - 1);
5643 libname[sizeof (libname) - 1] = '\0';
5644 if (libname[0] != '\0')
5645 {
5646 /* 6x the size for xml_escape_text below. */
5647 size_t len = 6 * strlen ((char *) libname);
5648 char *name;
5649
5650 if (!header_done)
5651 {
5652 /* Terminate `<library-list-svr4'. */
5653 *p++ = '>';
5654 header_done = 1;
5655 }
5656
5657 while (allocated < p - document + len + 200)
5658 {
5659 /* Expand to guarantee sufficient storage. */
5660 uintptr_t document_len = p - document;
5661
5662 document = xrealloc (document, 2 * allocated);
5663 allocated *= 2;
5664 p = document + document_len;
5665 }
5666
5667 name = xml_escape_text ((char *) libname);
5668 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
5669 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
5670 name, (unsigned long) lm_addr,
5671 (unsigned long) l_addr, (unsigned long) l_ld);
5672 free (name);
5673 }
5674 }
5675
5676 lm_prev = lm_addr;
5677 lm_addr = l_next;
5678 }
5679
5680 if (!header_done)
5681 {
5682 /* Empty list; terminate `<library-list-svr4'. */
5683 strcpy (p, "/>");
5684 }
5685 else
5686 strcpy (p, "</library-list-svr4>");
5687
5688 document_len = strlen (document);
5689 if (offset < document_len)
5690 document_len -= offset;
5691 else
5692 document_len = 0;
5693 if (len > document_len)
5694 len = document_len;
5695
5696 memcpy (readbuf, document + offset, len);
5697 xfree (document);
5698
5699 return len;
5700 }
5701
5702 #ifdef HAVE_LINUX_BTRACE
5703
5704 /* Enable branch tracing. */
5705
5706 static struct btrace_target_info *
5707 linux_low_enable_btrace (ptid_t ptid)
5708 {
5709 struct btrace_target_info *tinfo;
5710
5711 tinfo = linux_enable_btrace (ptid);
5712
5713 if (tinfo != NULL)
5714 {
5715 struct thread_info *thread = find_thread_ptid (ptid);
5716 struct regcache *regcache = get_thread_regcache (thread, 0);
5717
5718 tinfo->ptr_bits = register_size (regcache->tdesc, 0) * 8;
5719 }
5720
5721 return tinfo;
5722 }
5723
5724 /* Read branch trace data as btrace xml document. */
5725
5726 static void
5727 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
5728 int type)
5729 {
5730 VEC (btrace_block_s) *btrace;
5731 struct btrace_block *block;
5732 int i;
5733
5734 btrace = linux_read_btrace (tinfo, type);
5735
5736 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
5737 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
5738
5739 for (i = 0; VEC_iterate (btrace_block_s, btrace, i, block); i++)
5740 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
5741 paddress (block->begin), paddress (block->end));
5742
5743 buffer_grow_str (buffer, "</btrace>\n");
5744
5745 VEC_free (btrace_block_s, btrace);
5746 }
5747 #endif /* HAVE_LINUX_BTRACE */
5748
5749 static struct target_ops linux_target_ops = {
5750 linux_create_inferior,
5751 linux_attach,
5752 linux_kill,
5753 linux_detach,
5754 linux_mourn,
5755 linux_join,
5756 linux_thread_alive,
5757 linux_resume,
5758 linux_wait,
5759 linux_fetch_registers,
5760 linux_store_registers,
5761 linux_prepare_to_access_memory,
5762 linux_done_accessing_memory,
5763 linux_read_memory,
5764 linux_write_memory,
5765 linux_look_up_symbols,
5766 linux_request_interrupt,
5767 linux_read_auxv,
5768 linux_insert_point,
5769 linux_remove_point,
5770 linux_stopped_by_watchpoint,
5771 linux_stopped_data_address,
5772 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5773 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5774 && defined(PT_TEXT_END_ADDR)
5775 linux_read_offsets,
5776 #else
5777 NULL,
5778 #endif
5779 #ifdef USE_THREAD_DB
5780 thread_db_get_tls_address,
5781 #else
5782 NULL,
5783 #endif
5784 linux_qxfer_spu,
5785 hostio_last_error_from_errno,
5786 linux_qxfer_osdata,
5787 linux_xfer_siginfo,
5788 linux_supports_non_stop,
5789 linux_async,
5790 linux_start_non_stop,
5791 linux_supports_multi_process,
5792 #ifdef USE_THREAD_DB
5793 thread_db_handle_monitor_command,
5794 #else
5795 NULL,
5796 #endif
5797 linux_common_core_of_thread,
5798 linux_read_loadmap,
5799 linux_process_qsupported,
5800 linux_supports_tracepoints,
5801 linux_read_pc,
5802 linux_write_pc,
5803 linux_thread_stopped,
5804 NULL,
5805 linux_pause_all,
5806 linux_unpause_all,
5807 linux_cancel_breakpoints,
5808 linux_stabilize_threads,
5809 linux_install_fast_tracepoint_jump_pad,
5810 linux_emit_ops,
5811 linux_supports_disable_randomization,
5812 linux_get_min_fast_tracepoint_insn_len,
5813 linux_qxfer_libraries_svr4,
5814 linux_supports_agent,
5815 #ifdef HAVE_LINUX_BTRACE
5816 linux_supports_btrace,
5817 linux_low_enable_btrace,
5818 linux_disable_btrace,
5819 linux_low_read_btrace,
5820 #else
5821 NULL,
5822 NULL,
5823 NULL,
5824 NULL,
5825 #endif
5826 linux_supports_range_stepping,
5827 };
5828
5829 static void
5830 linux_init_signals ()
5831 {
5832 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
5833 to find what the cancel signal actually is. */
5834 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
5835 signal (__SIGRTMIN+1, SIG_IGN);
5836 #endif
5837 }
5838
5839 #ifdef HAVE_LINUX_REGSETS
5840 void
5841 initialize_regsets_info (struct regsets_info *info)
5842 {
5843 for (info->num_regsets = 0;
5844 info->regsets[info->num_regsets].size >= 0;
5845 info->num_regsets++)
5846 ;
5847 }
5848 #endif
5849
5850 void
5851 initialize_low (void)
5852 {
5853 struct sigaction sigchld_action;
5854 memset (&sigchld_action, 0, sizeof (sigchld_action));
5855 set_target_ops (&linux_target_ops);
5856 set_breakpoint_data (the_low_target.breakpoint,
5857 the_low_target.breakpoint_len);
5858 linux_init_signals ();
5859 linux_ptrace_init_warnings ();
5860
5861 sigchld_action.sa_handler = sigchld_handler;
5862 sigemptyset (&sigchld_action.sa_mask);
5863 sigchld_action.sa_flags = SA_RESTART;
5864 sigaction (SIGCHLD, &sigchld_action, NULL);
5865
5866 initialize_low_arch ();
5867 }
This page took 0.154607 seconds and 5 git commands to generate.