[GDBserver] Use pre-generated tdesc as test
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-x86-low.c
1 /* GNU/Linux/x86-64 specific low level interface, for the remote server
2 for GDB.
3 Copyright (C) 2002-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include <signal.h>
22 #include <limits.h>
23 #include <inttypes.h>
24 #include "linux-low.h"
25 #include "i387-fp.h"
26 #include "x86-low.h"
27 #include "x86-xstate.h"
28 #include "nat/gdb_ptrace.h"
29
30 #ifdef __x86_64__
31 #include "nat/amd64-linux-siginfo.h"
32 #endif
33
34 #include "gdb_proc_service.h"
35 /* Don't include elf/common.h if linux/elf.h got included by
36 gdb_proc_service.h. */
37 #ifndef ELFMAG0
38 #include "elf/common.h"
39 #endif
40
41 #include "agent.h"
42 #include "tdesc.h"
43 #include "tracepoint.h"
44 #include "ax.h"
45 #include "nat/linux-nat.h"
46 #include "nat/x86-linux.h"
47 #include "nat/x86-linux-dregs.h"
48 #include "linux-x86-tdesc.h"
49
50 #ifdef __x86_64__
51 static struct target_desc *tdesc_amd64_linux_no_xml;
52 #endif
53 static struct target_desc *tdesc_i386_linux_no_xml;
54
55
56 static unsigned char jump_insn[] = { 0xe9, 0, 0, 0, 0 };
57 static unsigned char small_jump_insn[] = { 0x66, 0xe9, 0, 0 };
58
59 /* Backward compatibility for gdb without XML support. */
60
61 static const char *xmltarget_i386_linux_no_xml = "@<target>\
62 <architecture>i386</architecture>\
63 <osabi>GNU/Linux</osabi>\
64 </target>";
65
66 #ifdef __x86_64__
67 static const char *xmltarget_amd64_linux_no_xml = "@<target>\
68 <architecture>i386:x86-64</architecture>\
69 <osabi>GNU/Linux</osabi>\
70 </target>";
71 #endif
72
73 #include <sys/reg.h>
74 #include <sys/procfs.h>
75 #include "nat/gdb_ptrace.h"
76 #include <sys/uio.h>
77
78 #ifndef PTRACE_GET_THREAD_AREA
79 #define PTRACE_GET_THREAD_AREA 25
80 #endif
81
82 /* This definition comes from prctl.h, but some kernels may not have it. */
83 #ifndef PTRACE_ARCH_PRCTL
84 #define PTRACE_ARCH_PRCTL 30
85 #endif
86
87 /* The following definitions come from prctl.h, but may be absent
88 for certain configurations. */
89 #ifndef ARCH_GET_FS
90 #define ARCH_SET_GS 0x1001
91 #define ARCH_SET_FS 0x1002
92 #define ARCH_GET_FS 0x1003
93 #define ARCH_GET_GS 0x1004
94 #endif
95
96 /* Per-process arch-specific data we want to keep. */
97
98 struct arch_process_info
99 {
100 struct x86_debug_reg_state debug_reg_state;
101 };
102
103 #ifdef __x86_64__
104
105 /* Mapping between the general-purpose registers in `struct user'
106 format and GDB's register array layout.
107 Note that the transfer layout uses 64-bit regs. */
108 static /*const*/ int i386_regmap[] =
109 {
110 RAX * 8, RCX * 8, RDX * 8, RBX * 8,
111 RSP * 8, RBP * 8, RSI * 8, RDI * 8,
112 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
113 DS * 8, ES * 8, FS * 8, GS * 8
114 };
115
116 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
117
118 /* So code below doesn't have to care, i386 or amd64. */
119 #define ORIG_EAX ORIG_RAX
120 #define REGSIZE 8
121
122 static const int x86_64_regmap[] =
123 {
124 RAX * 8, RBX * 8, RCX * 8, RDX * 8,
125 RSI * 8, RDI * 8, RBP * 8, RSP * 8,
126 R8 * 8, R9 * 8, R10 * 8, R11 * 8,
127 R12 * 8, R13 * 8, R14 * 8, R15 * 8,
128 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
129 DS * 8, ES * 8, FS * 8, GS * 8,
130 -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1,
133 -1,
134 -1, -1, -1, -1, -1, -1, -1, -1,
135 ORIG_RAX * 8,
136 #ifdef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
137 21 * 8, 22 * 8,
138 #else
139 -1, -1,
140 #endif
141 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
142 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
143 -1, -1, -1, -1, -1, -1, -1, -1, /* xmm16 ... xmm31 (AVX512) */
144 -1, -1, -1, -1, -1, -1, -1, -1,
145 -1, -1, -1, -1, -1, -1, -1, -1, /* ymm16 ... ymm31 (AVX512) */
146 -1, -1, -1, -1, -1, -1, -1, -1,
147 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
148 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm31 (AVX512) */
149 -1, -1, -1, -1, -1, -1, -1, -1,
150 -1, -1, -1, -1, -1, -1, -1, -1,
151 -1, -1, -1, -1, -1, -1, -1, -1,
152 -1 /* pkru */
153 };
154
155 #define X86_64_NUM_REGS (sizeof (x86_64_regmap) / sizeof (x86_64_regmap[0]))
156 #define X86_64_USER_REGS (GS + 1)
157
158 #else /* ! __x86_64__ */
159
160 /* Mapping between the general-purpose registers in `struct user'
161 format and GDB's register array layout. */
162 static /*const*/ int i386_regmap[] =
163 {
164 EAX * 4, ECX * 4, EDX * 4, EBX * 4,
165 UESP * 4, EBP * 4, ESI * 4, EDI * 4,
166 EIP * 4, EFL * 4, CS * 4, SS * 4,
167 DS * 4, ES * 4, FS * 4, GS * 4
168 };
169
170 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
171
172 #define REGSIZE 4
173
174 #endif
175
176 #ifdef __x86_64__
177
178 /* Returns true if the current inferior belongs to a x86-64 process,
179 per the tdesc. */
180
181 static int
182 is_64bit_tdesc (void)
183 {
184 struct regcache *regcache = get_thread_regcache (current_thread, 0);
185
186 return register_size (regcache->tdesc, 0) == 8;
187 }
188
189 #endif
190
191 \f
192 /* Called by libthread_db. */
193
194 ps_err_e
195 ps_get_thread_area (struct ps_prochandle *ph,
196 lwpid_t lwpid, int idx, void **base)
197 {
198 #ifdef __x86_64__
199 int use_64bit = is_64bit_tdesc ();
200
201 if (use_64bit)
202 {
203 switch (idx)
204 {
205 case FS:
206 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_FS) == 0)
207 return PS_OK;
208 break;
209 case GS:
210 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_GS) == 0)
211 return PS_OK;
212 break;
213 default:
214 return PS_BADADDR;
215 }
216 return PS_ERR;
217 }
218 #endif
219
220 {
221 unsigned int desc[4];
222
223 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
224 (void *) (intptr_t) idx, (unsigned long) &desc) < 0)
225 return PS_ERR;
226
227 /* Ensure we properly extend the value to 64-bits for x86_64. */
228 *base = (void *) (uintptr_t) desc[1];
229 return PS_OK;
230 }
231 }
232
233 /* Get the thread area address. This is used to recognize which
234 thread is which when tracing with the in-process agent library. We
235 don't read anything from the address, and treat it as opaque; it's
236 the address itself that we assume is unique per-thread. */
237
238 static int
239 x86_get_thread_area (int lwpid, CORE_ADDR *addr)
240 {
241 #ifdef __x86_64__
242 int use_64bit = is_64bit_tdesc ();
243
244 if (use_64bit)
245 {
246 void *base;
247 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
248 {
249 *addr = (CORE_ADDR) (uintptr_t) base;
250 return 0;
251 }
252
253 return -1;
254 }
255 #endif
256
257 {
258 struct lwp_info *lwp = find_lwp_pid (pid_to_ptid (lwpid));
259 struct thread_info *thr = get_lwp_thread (lwp);
260 struct regcache *regcache = get_thread_regcache (thr, 1);
261 unsigned int desc[4];
262 ULONGEST gs = 0;
263 const int reg_thread_area = 3; /* bits to scale down register value. */
264 int idx;
265
266 collect_register_by_name (regcache, "gs", &gs);
267
268 idx = gs >> reg_thread_area;
269
270 if (ptrace (PTRACE_GET_THREAD_AREA,
271 lwpid_of (thr),
272 (void *) (long) idx, (unsigned long) &desc) < 0)
273 return -1;
274
275 *addr = desc[1];
276 return 0;
277 }
278 }
279
280
281 \f
282 static int
283 x86_cannot_store_register (int regno)
284 {
285 #ifdef __x86_64__
286 if (is_64bit_tdesc ())
287 return 0;
288 #endif
289
290 return regno >= I386_NUM_REGS;
291 }
292
293 static int
294 x86_cannot_fetch_register (int regno)
295 {
296 #ifdef __x86_64__
297 if (is_64bit_tdesc ())
298 return 0;
299 #endif
300
301 return regno >= I386_NUM_REGS;
302 }
303
304 static void
305 x86_fill_gregset (struct regcache *regcache, void *buf)
306 {
307 int i;
308
309 #ifdef __x86_64__
310 if (register_size (regcache->tdesc, 0) == 8)
311 {
312 for (i = 0; i < X86_64_NUM_REGS; i++)
313 if (x86_64_regmap[i] != -1)
314 collect_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
315
316 #ifndef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
317 {
318 unsigned long base;
319 int lwpid = lwpid_of (current_thread);
320
321 collect_register_by_name (regcache, "fs_base", &base);
322 ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_SET_FS);
323
324 collect_register_by_name (regcache, "gs_base", &base);
325 ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_SET_GS);
326 }
327 #endif
328
329 return;
330 }
331
332 /* 32-bit inferior registers need to be zero-extended.
333 Callers would read uninitialized memory otherwise. */
334 memset (buf, 0x00, X86_64_USER_REGS * 8);
335 #endif
336
337 for (i = 0; i < I386_NUM_REGS; i++)
338 collect_register (regcache, i, ((char *) buf) + i386_regmap[i]);
339
340 collect_register_by_name (regcache, "orig_eax",
341 ((char *) buf) + ORIG_EAX * REGSIZE);
342 }
343
344 static void
345 x86_store_gregset (struct regcache *regcache, const void *buf)
346 {
347 int i;
348
349 #ifdef __x86_64__
350 if (register_size (regcache->tdesc, 0) == 8)
351 {
352 for (i = 0; i < X86_64_NUM_REGS; i++)
353 if (x86_64_regmap[i] != -1)
354 supply_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
355
356 #ifndef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
357 {
358 unsigned long base;
359 int lwpid = lwpid_of (current_thread);
360
361 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
362 supply_register_by_name (regcache, "fs_base", &base);
363
364 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_GS) == 0)
365 supply_register_by_name (regcache, "gs_base", &base);
366 }
367 #endif
368 return;
369 }
370 #endif
371
372 for (i = 0; i < I386_NUM_REGS; i++)
373 supply_register (regcache, i, ((char *) buf) + i386_regmap[i]);
374
375 supply_register_by_name (regcache, "orig_eax",
376 ((char *) buf) + ORIG_EAX * REGSIZE);
377 }
378
379 static void
380 x86_fill_fpregset (struct regcache *regcache, void *buf)
381 {
382 #ifdef __x86_64__
383 i387_cache_to_fxsave (regcache, buf);
384 #else
385 i387_cache_to_fsave (regcache, buf);
386 #endif
387 }
388
389 static void
390 x86_store_fpregset (struct regcache *regcache, const void *buf)
391 {
392 #ifdef __x86_64__
393 i387_fxsave_to_cache (regcache, buf);
394 #else
395 i387_fsave_to_cache (regcache, buf);
396 #endif
397 }
398
399 #ifndef __x86_64__
400
401 static void
402 x86_fill_fpxregset (struct regcache *regcache, void *buf)
403 {
404 i387_cache_to_fxsave (regcache, buf);
405 }
406
407 static void
408 x86_store_fpxregset (struct regcache *regcache, const void *buf)
409 {
410 i387_fxsave_to_cache (regcache, buf);
411 }
412
413 #endif
414
415 static void
416 x86_fill_xstateregset (struct regcache *regcache, void *buf)
417 {
418 i387_cache_to_xsave (regcache, buf);
419 }
420
421 static void
422 x86_store_xstateregset (struct regcache *regcache, const void *buf)
423 {
424 i387_xsave_to_cache (regcache, buf);
425 }
426
427 /* ??? The non-biarch i386 case stores all the i387 regs twice.
428 Once in i387_.*fsave.* and once in i387_.*fxsave.*.
429 This is, presumably, to handle the case where PTRACE_[GS]ETFPXREGS
430 doesn't work. IWBN to avoid the duplication in the case where it
431 does work. Maybe the arch_setup routine could check whether it works
432 and update the supported regsets accordingly. */
433
434 static struct regset_info x86_regsets[] =
435 {
436 #ifdef HAVE_PTRACE_GETREGS
437 { PTRACE_GETREGS, PTRACE_SETREGS, 0, sizeof (elf_gregset_t),
438 GENERAL_REGS,
439 x86_fill_gregset, x86_store_gregset },
440 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_X86_XSTATE, 0,
441 EXTENDED_REGS, x86_fill_xstateregset, x86_store_xstateregset },
442 # ifndef __x86_64__
443 # ifdef HAVE_PTRACE_GETFPXREGS
444 { PTRACE_GETFPXREGS, PTRACE_SETFPXREGS, 0, sizeof (elf_fpxregset_t),
445 EXTENDED_REGS,
446 x86_fill_fpxregset, x86_store_fpxregset },
447 # endif
448 # endif
449 { PTRACE_GETFPREGS, PTRACE_SETFPREGS, 0, sizeof (elf_fpregset_t),
450 FP_REGS,
451 x86_fill_fpregset, x86_store_fpregset },
452 #endif /* HAVE_PTRACE_GETREGS */
453 NULL_REGSET
454 };
455
456 static CORE_ADDR
457 x86_get_pc (struct regcache *regcache)
458 {
459 int use_64bit = register_size (regcache->tdesc, 0) == 8;
460
461 if (use_64bit)
462 {
463 uint64_t pc;
464
465 collect_register_by_name (regcache, "rip", &pc);
466 return (CORE_ADDR) pc;
467 }
468 else
469 {
470 uint32_t pc;
471
472 collect_register_by_name (regcache, "eip", &pc);
473 return (CORE_ADDR) pc;
474 }
475 }
476
477 static void
478 x86_set_pc (struct regcache *regcache, CORE_ADDR pc)
479 {
480 int use_64bit = register_size (regcache->tdesc, 0) == 8;
481
482 if (use_64bit)
483 {
484 uint64_t newpc = pc;
485
486 supply_register_by_name (regcache, "rip", &newpc);
487 }
488 else
489 {
490 uint32_t newpc = pc;
491
492 supply_register_by_name (regcache, "eip", &newpc);
493 }
494 }
495 \f
496 static const gdb_byte x86_breakpoint[] = { 0xCC };
497 #define x86_breakpoint_len 1
498
499 static int
500 x86_breakpoint_at (CORE_ADDR pc)
501 {
502 unsigned char c;
503
504 (*the_target->read_memory) (pc, &c, 1);
505 if (c == 0xCC)
506 return 1;
507
508 return 0;
509 }
510 \f
511 /* Low-level function vector. */
512 struct x86_dr_low_type x86_dr_low =
513 {
514 x86_linux_dr_set_control,
515 x86_linux_dr_set_addr,
516 x86_linux_dr_get_addr,
517 x86_linux_dr_get_status,
518 x86_linux_dr_get_control,
519 sizeof (void *),
520 };
521 \f
522 /* Breakpoint/Watchpoint support. */
523
524 static int
525 x86_supports_z_point_type (char z_type)
526 {
527 switch (z_type)
528 {
529 case Z_PACKET_SW_BP:
530 case Z_PACKET_HW_BP:
531 case Z_PACKET_WRITE_WP:
532 case Z_PACKET_ACCESS_WP:
533 return 1;
534 default:
535 return 0;
536 }
537 }
538
539 static int
540 x86_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
541 int size, struct raw_breakpoint *bp)
542 {
543 struct process_info *proc = current_process ();
544
545 switch (type)
546 {
547 case raw_bkpt_type_hw:
548 case raw_bkpt_type_write_wp:
549 case raw_bkpt_type_access_wp:
550 {
551 enum target_hw_bp_type hw_type
552 = raw_bkpt_type_to_target_hw_bp_type (type);
553 struct x86_debug_reg_state *state
554 = &proc->priv->arch_private->debug_reg_state;
555
556 return x86_dr_insert_watchpoint (state, hw_type, addr, size);
557 }
558
559 default:
560 /* Unsupported. */
561 return 1;
562 }
563 }
564
565 static int
566 x86_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
567 int size, struct raw_breakpoint *bp)
568 {
569 struct process_info *proc = current_process ();
570
571 switch (type)
572 {
573 case raw_bkpt_type_hw:
574 case raw_bkpt_type_write_wp:
575 case raw_bkpt_type_access_wp:
576 {
577 enum target_hw_bp_type hw_type
578 = raw_bkpt_type_to_target_hw_bp_type (type);
579 struct x86_debug_reg_state *state
580 = &proc->priv->arch_private->debug_reg_state;
581
582 return x86_dr_remove_watchpoint (state, hw_type, addr, size);
583 }
584 default:
585 /* Unsupported. */
586 return 1;
587 }
588 }
589
590 static int
591 x86_stopped_by_watchpoint (void)
592 {
593 struct process_info *proc = current_process ();
594 return x86_dr_stopped_by_watchpoint (&proc->priv->arch_private->debug_reg_state);
595 }
596
597 static CORE_ADDR
598 x86_stopped_data_address (void)
599 {
600 struct process_info *proc = current_process ();
601 CORE_ADDR addr;
602 if (x86_dr_stopped_data_address (&proc->priv->arch_private->debug_reg_state,
603 &addr))
604 return addr;
605 return 0;
606 }
607 \f
608 /* Called when a new process is created. */
609
610 static struct arch_process_info *
611 x86_linux_new_process (void)
612 {
613 struct arch_process_info *info = XCNEW (struct arch_process_info);
614
615 x86_low_init_dregs (&info->debug_reg_state);
616
617 return info;
618 }
619
620 /* Target routine for linux_new_fork. */
621
622 static void
623 x86_linux_new_fork (struct process_info *parent, struct process_info *child)
624 {
625 /* These are allocated by linux_add_process. */
626 gdb_assert (parent->priv != NULL
627 && parent->priv->arch_private != NULL);
628 gdb_assert (child->priv != NULL
629 && child->priv->arch_private != NULL);
630
631 /* Linux kernel before 2.6.33 commit
632 72f674d203cd230426437cdcf7dd6f681dad8b0d
633 will inherit hardware debug registers from parent
634 on fork/vfork/clone. Newer Linux kernels create such tasks with
635 zeroed debug registers.
636
637 GDB core assumes the child inherits the watchpoints/hw
638 breakpoints of the parent, and will remove them all from the
639 forked off process. Copy the debug registers mirrors into the
640 new process so that all breakpoints and watchpoints can be
641 removed together. The debug registers mirror will become zeroed
642 in the end before detaching the forked off process, thus making
643 this compatible with older Linux kernels too. */
644
645 *child->priv->arch_private = *parent->priv->arch_private;
646 }
647
648 /* See nat/x86-dregs.h. */
649
650 struct x86_debug_reg_state *
651 x86_debug_reg_state (pid_t pid)
652 {
653 struct process_info *proc = find_process_pid (pid);
654
655 return &proc->priv->arch_private->debug_reg_state;
656 }
657 \f
658 /* When GDBSERVER is built as a 64-bit application on linux, the
659 PTRACE_GETSIGINFO data is always presented in 64-bit layout. Since
660 debugging a 32-bit inferior with a 64-bit GDBSERVER should look the same
661 as debugging it with a 32-bit GDBSERVER, we do the 32-bit <-> 64-bit
662 conversion in-place ourselves. */
663
664 /* Convert a ptrace/host siginfo object, into/from the siginfo in the
665 layout of the inferiors' architecture. Returns true if any
666 conversion was done; false otherwise. If DIRECTION is 1, then copy
667 from INF to PTRACE. If DIRECTION is 0, copy from PTRACE to
668 INF. */
669
670 static int
671 x86_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
672 {
673 #ifdef __x86_64__
674 unsigned int machine;
675 int tid = lwpid_of (current_thread);
676 int is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
677
678 /* Is the inferior 32-bit? If so, then fixup the siginfo object. */
679 if (!is_64bit_tdesc ())
680 return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
681 FIXUP_32);
682 /* No fixup for native x32 GDB. */
683 else if (!is_elf64 && sizeof (void *) == 8)
684 return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
685 FIXUP_X32);
686 #endif
687
688 return 0;
689 }
690 \f
691 static int use_xml;
692
693 /* Format of XSAVE extended state is:
694 struct
695 {
696 fxsave_bytes[0..463]
697 sw_usable_bytes[464..511]
698 xstate_hdr_bytes[512..575]
699 avx_bytes[576..831]
700 future_state etc
701 };
702
703 Same memory layout will be used for the coredump NT_X86_XSTATE
704 representing the XSAVE extended state registers.
705
706 The first 8 bytes of the sw_usable_bytes[464..467] is the OS enabled
707 extended state mask, which is the same as the extended control register
708 0 (the XFEATURE_ENABLED_MASK register), XCR0. We can use this mask
709 together with the mask saved in the xstate_hdr_bytes to determine what
710 states the processor/OS supports and what state, used or initialized,
711 the process/thread is in. */
712 #define I386_LINUX_XSAVE_XCR0_OFFSET 464
713
714 /* Does the current host support the GETFPXREGS request? The header
715 file may or may not define it, and even if it is defined, the
716 kernel will return EIO if it's running on a pre-SSE processor. */
717 int have_ptrace_getfpxregs =
718 #ifdef HAVE_PTRACE_GETFPXREGS
719 -1
720 #else
721 0
722 #endif
723 ;
724
725 /* Get Linux/x86 target description from running target. */
726
727 static const struct target_desc *
728 x86_linux_read_description (void)
729 {
730 unsigned int machine;
731 int is_elf64;
732 int xcr0_features;
733 int tid;
734 static uint64_t xcr0;
735 struct regset_info *regset;
736
737 tid = lwpid_of (current_thread);
738
739 is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
740
741 if (sizeof (void *) == 4)
742 {
743 if (is_elf64 > 0)
744 error (_("Can't debug 64-bit process with 32-bit GDBserver"));
745 #ifndef __x86_64__
746 else if (machine == EM_X86_64)
747 error (_("Can't debug x86-64 process with 32-bit GDBserver"));
748 #endif
749 }
750
751 #if !defined __x86_64__ && defined HAVE_PTRACE_GETFPXREGS
752 if (machine == EM_386 && have_ptrace_getfpxregs == -1)
753 {
754 elf_fpxregset_t fpxregs;
755
756 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (long) &fpxregs) < 0)
757 {
758 have_ptrace_getfpxregs = 0;
759 have_ptrace_getregset = 0;
760 return i386_linux_read_description (X86_XSTATE_X87);
761 }
762 else
763 have_ptrace_getfpxregs = 1;
764 }
765 #endif
766
767 if (!use_xml)
768 {
769 x86_xcr0 = X86_XSTATE_SSE_MASK;
770
771 /* Don't use XML. */
772 #ifdef __x86_64__
773 if (machine == EM_X86_64)
774 return tdesc_amd64_linux_no_xml;
775 else
776 #endif
777 return tdesc_i386_linux_no_xml;
778 }
779
780 if (have_ptrace_getregset == -1)
781 {
782 uint64_t xstateregs[(X86_XSTATE_SSE_SIZE / sizeof (uint64_t))];
783 struct iovec iov;
784
785 iov.iov_base = xstateregs;
786 iov.iov_len = sizeof (xstateregs);
787
788 /* Check if PTRACE_GETREGSET works. */
789 if (ptrace (PTRACE_GETREGSET, tid,
790 (unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
791 have_ptrace_getregset = 0;
792 else
793 {
794 have_ptrace_getregset = 1;
795
796 /* Get XCR0 from XSAVE extended state. */
797 xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET
798 / sizeof (uint64_t))];
799
800 /* Use PTRACE_GETREGSET if it is available. */
801 for (regset = x86_regsets;
802 regset->fill_function != NULL; regset++)
803 if (regset->get_request == PTRACE_GETREGSET)
804 regset->size = X86_XSTATE_SIZE (xcr0);
805 else if (regset->type != GENERAL_REGS)
806 regset->size = 0;
807 }
808 }
809
810 /* Check the native XCR0 only if PTRACE_GETREGSET is available. */
811 xcr0_features = (have_ptrace_getregset
812 && (xcr0 & X86_XSTATE_ALL_MASK));
813
814 if (xcr0_features)
815 x86_xcr0 = xcr0;
816
817 if (machine == EM_X86_64)
818 {
819 #ifdef __x86_64__
820 if (is_elf64)
821 {
822 if (xcr0_features)
823 {
824 switch (xcr0 & X86_XSTATE_ALL_MASK)
825 {
826 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
827 return tdesc_amd64_avx_mpx_avx512_pku_linux;
828
829 case X86_XSTATE_AVX_AVX512_MASK:
830 return tdesc_amd64_avx_avx512_linux;
831
832 case X86_XSTATE_AVX_MPX_MASK:
833 return tdesc_amd64_avx_mpx_linux;
834
835 case X86_XSTATE_MPX_MASK:
836 return tdesc_amd64_mpx_linux;
837
838 case X86_XSTATE_AVX_MASK:
839 return tdesc_amd64_avx_linux;
840
841 default:
842 return tdesc_amd64_linux;
843 }
844 }
845 else
846 return tdesc_amd64_linux;
847 }
848 else
849 {
850 if (xcr0_features)
851 {
852 switch (xcr0 & X86_XSTATE_ALL_MASK)
853 {
854 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
855 /* No x32 MPX and PKU, fall back to avx_avx512. */
856 return tdesc_x32_avx_avx512_linux;
857
858 case X86_XSTATE_AVX_AVX512_MASK:
859 return tdesc_x32_avx_avx512_linux;
860
861 case X86_XSTATE_MPX_MASK: /* No MPX on x32. */
862 case X86_XSTATE_AVX_MASK:
863 return tdesc_x32_avx_linux;
864
865 default:
866 return tdesc_x32_linux;
867 }
868 }
869 else
870 return tdesc_x32_linux;
871 }
872 #endif
873 }
874 else
875 {
876 const target_desc *tdesc = NULL;
877
878 if (xcr0_features)
879 tdesc = i386_linux_read_description (xcr0 & X86_XSTATE_ALL_MASK);
880
881 if (tdesc == NULL)
882 tdesc = i386_linux_read_description (X86_XSTATE_SSE);
883
884 return tdesc;
885 }
886
887 gdb_assert_not_reached ("failed to return tdesc");
888 }
889
890 /* Callback for find_inferior. Stops iteration when a thread with a
891 given PID is found. */
892
893 static int
894 same_process_callback (struct inferior_list_entry *entry, void *data)
895 {
896 int pid = *(int *) data;
897
898 return (ptid_get_pid (entry->id) == pid);
899 }
900
901 /* Callback for for_each_inferior. Calls the arch_setup routine for
902 each process. */
903
904 static void
905 x86_arch_setup_process_callback (struct inferior_list_entry *entry)
906 {
907 int pid = ptid_get_pid (entry->id);
908
909 /* Look up any thread of this processes. */
910 current_thread
911 = (struct thread_info *) find_inferior (&all_threads,
912 same_process_callback, &pid);
913
914 the_low_target.arch_setup ();
915 }
916
917 /* Update all the target description of all processes; a new GDB
918 connected, and it may or not support xml target descriptions. */
919
920 static void
921 x86_linux_update_xmltarget (void)
922 {
923 struct thread_info *saved_thread = current_thread;
924
925 /* Before changing the register cache's internal layout, flush the
926 contents of the current valid caches back to the threads, and
927 release the current regcache objects. */
928 regcache_release ();
929
930 for_each_inferior (&all_processes, x86_arch_setup_process_callback);
931
932 current_thread = saved_thread;
933 }
934
935 /* Process qSupported query, "xmlRegisters=". Update the buffer size for
936 PTRACE_GETREGSET. */
937
938 static void
939 x86_linux_process_qsupported (char **features, int count)
940 {
941 int i;
942
943 /* Return if gdb doesn't support XML. If gdb sends "xmlRegisters="
944 with "i386" in qSupported query, it supports x86 XML target
945 descriptions. */
946 use_xml = 0;
947 for (i = 0; i < count; i++)
948 {
949 const char *feature = features[i];
950
951 if (startswith (feature, "xmlRegisters="))
952 {
953 char *copy = xstrdup (feature + 13);
954 char *p;
955
956 for (p = strtok (copy, ","); p != NULL; p = strtok (NULL, ","))
957 {
958 if (strcmp (p, "i386") == 0)
959 {
960 use_xml = 1;
961 break;
962 }
963 }
964
965 free (copy);
966 }
967 }
968 x86_linux_update_xmltarget ();
969 }
970
971 /* Common for x86/x86-64. */
972
973 static struct regsets_info x86_regsets_info =
974 {
975 x86_regsets, /* regsets */
976 0, /* num_regsets */
977 NULL, /* disabled_regsets */
978 };
979
980 #ifdef __x86_64__
981 static struct regs_info amd64_linux_regs_info =
982 {
983 NULL, /* regset_bitmap */
984 NULL, /* usrregs_info */
985 &x86_regsets_info
986 };
987 #endif
988 static struct usrregs_info i386_linux_usrregs_info =
989 {
990 I386_NUM_REGS,
991 i386_regmap,
992 };
993
994 static struct regs_info i386_linux_regs_info =
995 {
996 NULL, /* regset_bitmap */
997 &i386_linux_usrregs_info,
998 &x86_regsets_info
999 };
1000
1001 const struct regs_info *
1002 x86_linux_regs_info (void)
1003 {
1004 #ifdef __x86_64__
1005 if (is_64bit_tdesc ())
1006 return &amd64_linux_regs_info;
1007 else
1008 #endif
1009 return &i386_linux_regs_info;
1010 }
1011
1012 /* Initialize the target description for the architecture of the
1013 inferior. */
1014
1015 static void
1016 x86_arch_setup (void)
1017 {
1018 current_process ()->tdesc = x86_linux_read_description ();
1019 }
1020
1021 /* Fill *SYSNO and *SYSRET with the syscall nr trapped and the syscall return
1022 code. This should only be called if LWP got a SYSCALL_SIGTRAP. */
1023
1024 static void
1025 x86_get_syscall_trapinfo (struct regcache *regcache, int *sysno)
1026 {
1027 int use_64bit = register_size (regcache->tdesc, 0) == 8;
1028
1029 if (use_64bit)
1030 {
1031 long l_sysno;
1032
1033 collect_register_by_name (regcache, "orig_rax", &l_sysno);
1034 *sysno = (int) l_sysno;
1035 }
1036 else
1037 collect_register_by_name (regcache, "orig_eax", sysno);
1038 }
1039
1040 static int
1041 x86_supports_tracepoints (void)
1042 {
1043 return 1;
1044 }
1045
1046 static void
1047 append_insns (CORE_ADDR *to, size_t len, const unsigned char *buf)
1048 {
1049 write_inferior_memory (*to, buf, len);
1050 *to += len;
1051 }
1052
1053 static int
1054 push_opcode (unsigned char *buf, const char *op)
1055 {
1056 unsigned char *buf_org = buf;
1057
1058 while (1)
1059 {
1060 char *endptr;
1061 unsigned long ul = strtoul (op, &endptr, 16);
1062
1063 if (endptr == op)
1064 break;
1065
1066 *buf++ = ul;
1067 op = endptr;
1068 }
1069
1070 return buf - buf_org;
1071 }
1072
1073 #ifdef __x86_64__
1074
1075 /* Build a jump pad that saves registers and calls a collection
1076 function. Writes a jump instruction to the jump pad to
1077 JJUMPAD_INSN. The caller is responsible to write it in at the
1078 tracepoint address. */
1079
1080 static int
1081 amd64_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1082 CORE_ADDR collector,
1083 CORE_ADDR lockaddr,
1084 ULONGEST orig_size,
1085 CORE_ADDR *jump_entry,
1086 CORE_ADDR *trampoline,
1087 ULONGEST *trampoline_size,
1088 unsigned char *jjump_pad_insn,
1089 ULONGEST *jjump_pad_insn_size,
1090 CORE_ADDR *adjusted_insn_addr,
1091 CORE_ADDR *adjusted_insn_addr_end,
1092 char *err)
1093 {
1094 unsigned char buf[40];
1095 int i, offset;
1096 int64_t loffset;
1097
1098 CORE_ADDR buildaddr = *jump_entry;
1099
1100 /* Build the jump pad. */
1101
1102 /* First, do tracepoint data collection. Save registers. */
1103 i = 0;
1104 /* Need to ensure stack pointer saved first. */
1105 buf[i++] = 0x54; /* push %rsp */
1106 buf[i++] = 0x55; /* push %rbp */
1107 buf[i++] = 0x57; /* push %rdi */
1108 buf[i++] = 0x56; /* push %rsi */
1109 buf[i++] = 0x52; /* push %rdx */
1110 buf[i++] = 0x51; /* push %rcx */
1111 buf[i++] = 0x53; /* push %rbx */
1112 buf[i++] = 0x50; /* push %rax */
1113 buf[i++] = 0x41; buf[i++] = 0x57; /* push %r15 */
1114 buf[i++] = 0x41; buf[i++] = 0x56; /* push %r14 */
1115 buf[i++] = 0x41; buf[i++] = 0x55; /* push %r13 */
1116 buf[i++] = 0x41; buf[i++] = 0x54; /* push %r12 */
1117 buf[i++] = 0x41; buf[i++] = 0x53; /* push %r11 */
1118 buf[i++] = 0x41; buf[i++] = 0x52; /* push %r10 */
1119 buf[i++] = 0x41; buf[i++] = 0x51; /* push %r9 */
1120 buf[i++] = 0x41; buf[i++] = 0x50; /* push %r8 */
1121 buf[i++] = 0x9c; /* pushfq */
1122 buf[i++] = 0x48; /* movabs <addr>,%rdi */
1123 buf[i++] = 0xbf;
1124 memcpy (buf + i, &tpaddr, 8);
1125 i += 8;
1126 buf[i++] = 0x57; /* push %rdi */
1127 append_insns (&buildaddr, i, buf);
1128
1129 /* Stack space for the collecting_t object. */
1130 i = 0;
1131 i += push_opcode (&buf[i], "48 83 ec 18"); /* sub $0x18,%rsp */
1132 i += push_opcode (&buf[i], "48 b8"); /* mov <tpoint>,%rax */
1133 memcpy (buf + i, &tpoint, 8);
1134 i += 8;
1135 i += push_opcode (&buf[i], "48 89 04 24"); /* mov %rax,(%rsp) */
1136 i += push_opcode (&buf[i],
1137 "64 48 8b 04 25 00 00 00 00"); /* mov %fs:0x0,%rax */
1138 i += push_opcode (&buf[i], "48 89 44 24 08"); /* mov %rax,0x8(%rsp) */
1139 append_insns (&buildaddr, i, buf);
1140
1141 /* spin-lock. */
1142 i = 0;
1143 i += push_opcode (&buf[i], "48 be"); /* movl <lockaddr>,%rsi */
1144 memcpy (&buf[i], (void *) &lockaddr, 8);
1145 i += 8;
1146 i += push_opcode (&buf[i], "48 89 e1"); /* mov %rsp,%rcx */
1147 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1148 i += push_opcode (&buf[i], "f0 48 0f b1 0e"); /* lock cmpxchg %rcx,(%rsi) */
1149 i += push_opcode (&buf[i], "48 85 c0"); /* test %rax,%rax */
1150 i += push_opcode (&buf[i], "75 f4"); /* jne <again> */
1151 append_insns (&buildaddr, i, buf);
1152
1153 /* Set up the gdb_collect call. */
1154 /* At this point, (stack pointer + 0x18) is the base of our saved
1155 register block. */
1156
1157 i = 0;
1158 i += push_opcode (&buf[i], "48 89 e6"); /* mov %rsp,%rsi */
1159 i += push_opcode (&buf[i], "48 83 c6 18"); /* add $0x18,%rsi */
1160
1161 /* tpoint address may be 64-bit wide. */
1162 i += push_opcode (&buf[i], "48 bf"); /* movl <addr>,%rdi */
1163 memcpy (buf + i, &tpoint, 8);
1164 i += 8;
1165 append_insns (&buildaddr, i, buf);
1166
1167 /* The collector function being in the shared library, may be
1168 >31-bits away off the jump pad. */
1169 i = 0;
1170 i += push_opcode (&buf[i], "48 b8"); /* mov $collector,%rax */
1171 memcpy (buf + i, &collector, 8);
1172 i += 8;
1173 i += push_opcode (&buf[i], "ff d0"); /* callq *%rax */
1174 append_insns (&buildaddr, i, buf);
1175
1176 /* Clear the spin-lock. */
1177 i = 0;
1178 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1179 i += push_opcode (&buf[i], "48 a3"); /* mov %rax, lockaddr */
1180 memcpy (buf + i, &lockaddr, 8);
1181 i += 8;
1182 append_insns (&buildaddr, i, buf);
1183
1184 /* Remove stack that had been used for the collect_t object. */
1185 i = 0;
1186 i += push_opcode (&buf[i], "48 83 c4 18"); /* add $0x18,%rsp */
1187 append_insns (&buildaddr, i, buf);
1188
1189 /* Restore register state. */
1190 i = 0;
1191 buf[i++] = 0x48; /* add $0x8,%rsp */
1192 buf[i++] = 0x83;
1193 buf[i++] = 0xc4;
1194 buf[i++] = 0x08;
1195 buf[i++] = 0x9d; /* popfq */
1196 buf[i++] = 0x41; buf[i++] = 0x58; /* pop %r8 */
1197 buf[i++] = 0x41; buf[i++] = 0x59; /* pop %r9 */
1198 buf[i++] = 0x41; buf[i++] = 0x5a; /* pop %r10 */
1199 buf[i++] = 0x41; buf[i++] = 0x5b; /* pop %r11 */
1200 buf[i++] = 0x41; buf[i++] = 0x5c; /* pop %r12 */
1201 buf[i++] = 0x41; buf[i++] = 0x5d; /* pop %r13 */
1202 buf[i++] = 0x41; buf[i++] = 0x5e; /* pop %r14 */
1203 buf[i++] = 0x41; buf[i++] = 0x5f; /* pop %r15 */
1204 buf[i++] = 0x58; /* pop %rax */
1205 buf[i++] = 0x5b; /* pop %rbx */
1206 buf[i++] = 0x59; /* pop %rcx */
1207 buf[i++] = 0x5a; /* pop %rdx */
1208 buf[i++] = 0x5e; /* pop %rsi */
1209 buf[i++] = 0x5f; /* pop %rdi */
1210 buf[i++] = 0x5d; /* pop %rbp */
1211 buf[i++] = 0x5c; /* pop %rsp */
1212 append_insns (&buildaddr, i, buf);
1213
1214 /* Now, adjust the original instruction to execute in the jump
1215 pad. */
1216 *adjusted_insn_addr = buildaddr;
1217 relocate_instruction (&buildaddr, tpaddr);
1218 *adjusted_insn_addr_end = buildaddr;
1219
1220 /* Finally, write a jump back to the program. */
1221
1222 loffset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1223 if (loffset > INT_MAX || loffset < INT_MIN)
1224 {
1225 sprintf (err,
1226 "E.Jump back from jump pad too far from tracepoint "
1227 "(offset 0x%" PRIx64 " > int32).", loffset);
1228 return 1;
1229 }
1230
1231 offset = (int) loffset;
1232 memcpy (buf, jump_insn, sizeof (jump_insn));
1233 memcpy (buf + 1, &offset, 4);
1234 append_insns (&buildaddr, sizeof (jump_insn), buf);
1235
1236 /* The jump pad is now built. Wire in a jump to our jump pad. This
1237 is always done last (by our caller actually), so that we can
1238 install fast tracepoints with threads running. This relies on
1239 the agent's atomic write support. */
1240 loffset = *jump_entry - (tpaddr + sizeof (jump_insn));
1241 if (loffset > INT_MAX || loffset < INT_MIN)
1242 {
1243 sprintf (err,
1244 "E.Jump pad too far from tracepoint "
1245 "(offset 0x%" PRIx64 " > int32).", loffset);
1246 return 1;
1247 }
1248
1249 offset = (int) loffset;
1250
1251 memcpy (buf, jump_insn, sizeof (jump_insn));
1252 memcpy (buf + 1, &offset, 4);
1253 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1254 *jjump_pad_insn_size = sizeof (jump_insn);
1255
1256 /* Return the end address of our pad. */
1257 *jump_entry = buildaddr;
1258
1259 return 0;
1260 }
1261
1262 #endif /* __x86_64__ */
1263
1264 /* Build a jump pad that saves registers and calls a collection
1265 function. Writes a jump instruction to the jump pad to
1266 JJUMPAD_INSN. The caller is responsible to write it in at the
1267 tracepoint address. */
1268
1269 static int
1270 i386_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1271 CORE_ADDR collector,
1272 CORE_ADDR lockaddr,
1273 ULONGEST orig_size,
1274 CORE_ADDR *jump_entry,
1275 CORE_ADDR *trampoline,
1276 ULONGEST *trampoline_size,
1277 unsigned char *jjump_pad_insn,
1278 ULONGEST *jjump_pad_insn_size,
1279 CORE_ADDR *adjusted_insn_addr,
1280 CORE_ADDR *adjusted_insn_addr_end,
1281 char *err)
1282 {
1283 unsigned char buf[0x100];
1284 int i, offset;
1285 CORE_ADDR buildaddr = *jump_entry;
1286
1287 /* Build the jump pad. */
1288
1289 /* First, do tracepoint data collection. Save registers. */
1290 i = 0;
1291 buf[i++] = 0x60; /* pushad */
1292 buf[i++] = 0x68; /* push tpaddr aka $pc */
1293 *((int *)(buf + i)) = (int) tpaddr;
1294 i += 4;
1295 buf[i++] = 0x9c; /* pushf */
1296 buf[i++] = 0x1e; /* push %ds */
1297 buf[i++] = 0x06; /* push %es */
1298 buf[i++] = 0x0f; /* push %fs */
1299 buf[i++] = 0xa0;
1300 buf[i++] = 0x0f; /* push %gs */
1301 buf[i++] = 0xa8;
1302 buf[i++] = 0x16; /* push %ss */
1303 buf[i++] = 0x0e; /* push %cs */
1304 append_insns (&buildaddr, i, buf);
1305
1306 /* Stack space for the collecting_t object. */
1307 i = 0;
1308 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1309
1310 /* Build the object. */
1311 i += push_opcode (&buf[i], "b8"); /* mov <tpoint>,%eax */
1312 memcpy (buf + i, &tpoint, 4);
1313 i += 4;
1314 i += push_opcode (&buf[i], "89 04 24"); /* mov %eax,(%esp) */
1315
1316 i += push_opcode (&buf[i], "65 a1 00 00 00 00"); /* mov %gs:0x0,%eax */
1317 i += push_opcode (&buf[i], "89 44 24 04"); /* mov %eax,0x4(%esp) */
1318 append_insns (&buildaddr, i, buf);
1319
1320 /* spin-lock. Note this is using cmpxchg, which leaves i386 behind.
1321 If we cared for it, this could be using xchg alternatively. */
1322
1323 i = 0;
1324 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1325 i += push_opcode (&buf[i], "f0 0f b1 25"); /* lock cmpxchg
1326 %esp,<lockaddr> */
1327 memcpy (&buf[i], (void *) &lockaddr, 4);
1328 i += 4;
1329 i += push_opcode (&buf[i], "85 c0"); /* test %eax,%eax */
1330 i += push_opcode (&buf[i], "75 f2"); /* jne <again> */
1331 append_insns (&buildaddr, i, buf);
1332
1333
1334 /* Set up arguments to the gdb_collect call. */
1335 i = 0;
1336 i += push_opcode (&buf[i], "89 e0"); /* mov %esp,%eax */
1337 i += push_opcode (&buf[i], "83 c0 08"); /* add $0x08,%eax */
1338 i += push_opcode (&buf[i], "89 44 24 fc"); /* mov %eax,-0x4(%esp) */
1339 append_insns (&buildaddr, i, buf);
1340
1341 i = 0;
1342 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1343 append_insns (&buildaddr, i, buf);
1344
1345 i = 0;
1346 i += push_opcode (&buf[i], "c7 04 24"); /* movl <addr>,(%esp) */
1347 memcpy (&buf[i], (void *) &tpoint, 4);
1348 i += 4;
1349 append_insns (&buildaddr, i, buf);
1350
1351 buf[0] = 0xe8; /* call <reladdr> */
1352 offset = collector - (buildaddr + sizeof (jump_insn));
1353 memcpy (buf + 1, &offset, 4);
1354 append_insns (&buildaddr, 5, buf);
1355 /* Clean up after the call. */
1356 buf[0] = 0x83; /* add $0x8,%esp */
1357 buf[1] = 0xc4;
1358 buf[2] = 0x08;
1359 append_insns (&buildaddr, 3, buf);
1360
1361
1362 /* Clear the spin-lock. This would need the LOCK prefix on older
1363 broken archs. */
1364 i = 0;
1365 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1366 i += push_opcode (&buf[i], "a3"); /* mov %eax, lockaddr */
1367 memcpy (buf + i, &lockaddr, 4);
1368 i += 4;
1369 append_insns (&buildaddr, i, buf);
1370
1371
1372 /* Remove stack that had been used for the collect_t object. */
1373 i = 0;
1374 i += push_opcode (&buf[i], "83 c4 08"); /* add $0x08,%esp */
1375 append_insns (&buildaddr, i, buf);
1376
1377 i = 0;
1378 buf[i++] = 0x83; /* add $0x4,%esp (no pop of %cs, assume unchanged) */
1379 buf[i++] = 0xc4;
1380 buf[i++] = 0x04;
1381 buf[i++] = 0x17; /* pop %ss */
1382 buf[i++] = 0x0f; /* pop %gs */
1383 buf[i++] = 0xa9;
1384 buf[i++] = 0x0f; /* pop %fs */
1385 buf[i++] = 0xa1;
1386 buf[i++] = 0x07; /* pop %es */
1387 buf[i++] = 0x1f; /* pop %ds */
1388 buf[i++] = 0x9d; /* popf */
1389 buf[i++] = 0x83; /* add $0x4,%esp (pop of tpaddr aka $pc) */
1390 buf[i++] = 0xc4;
1391 buf[i++] = 0x04;
1392 buf[i++] = 0x61; /* popad */
1393 append_insns (&buildaddr, i, buf);
1394
1395 /* Now, adjust the original instruction to execute in the jump
1396 pad. */
1397 *adjusted_insn_addr = buildaddr;
1398 relocate_instruction (&buildaddr, tpaddr);
1399 *adjusted_insn_addr_end = buildaddr;
1400
1401 /* Write the jump back to the program. */
1402 offset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1403 memcpy (buf, jump_insn, sizeof (jump_insn));
1404 memcpy (buf + 1, &offset, 4);
1405 append_insns (&buildaddr, sizeof (jump_insn), buf);
1406
1407 /* The jump pad is now built. Wire in a jump to our jump pad. This
1408 is always done last (by our caller actually), so that we can
1409 install fast tracepoints with threads running. This relies on
1410 the agent's atomic write support. */
1411 if (orig_size == 4)
1412 {
1413 /* Create a trampoline. */
1414 *trampoline_size = sizeof (jump_insn);
1415 if (!claim_trampoline_space (*trampoline_size, trampoline))
1416 {
1417 /* No trampoline space available. */
1418 strcpy (err,
1419 "E.Cannot allocate trampoline space needed for fast "
1420 "tracepoints on 4-byte instructions.");
1421 return 1;
1422 }
1423
1424 offset = *jump_entry - (*trampoline + sizeof (jump_insn));
1425 memcpy (buf, jump_insn, sizeof (jump_insn));
1426 memcpy (buf + 1, &offset, 4);
1427 write_inferior_memory (*trampoline, buf, sizeof (jump_insn));
1428
1429 /* Use a 16-bit relative jump instruction to jump to the trampoline. */
1430 offset = (*trampoline - (tpaddr + sizeof (small_jump_insn))) & 0xffff;
1431 memcpy (buf, small_jump_insn, sizeof (small_jump_insn));
1432 memcpy (buf + 2, &offset, 2);
1433 memcpy (jjump_pad_insn, buf, sizeof (small_jump_insn));
1434 *jjump_pad_insn_size = sizeof (small_jump_insn);
1435 }
1436 else
1437 {
1438 /* Else use a 32-bit relative jump instruction. */
1439 offset = *jump_entry - (tpaddr + sizeof (jump_insn));
1440 memcpy (buf, jump_insn, sizeof (jump_insn));
1441 memcpy (buf + 1, &offset, 4);
1442 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1443 *jjump_pad_insn_size = sizeof (jump_insn);
1444 }
1445
1446 /* Return the end address of our pad. */
1447 *jump_entry = buildaddr;
1448
1449 return 0;
1450 }
1451
1452 static int
1453 x86_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1454 CORE_ADDR collector,
1455 CORE_ADDR lockaddr,
1456 ULONGEST orig_size,
1457 CORE_ADDR *jump_entry,
1458 CORE_ADDR *trampoline,
1459 ULONGEST *trampoline_size,
1460 unsigned char *jjump_pad_insn,
1461 ULONGEST *jjump_pad_insn_size,
1462 CORE_ADDR *adjusted_insn_addr,
1463 CORE_ADDR *adjusted_insn_addr_end,
1464 char *err)
1465 {
1466 #ifdef __x86_64__
1467 if (is_64bit_tdesc ())
1468 return amd64_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
1469 collector, lockaddr,
1470 orig_size, jump_entry,
1471 trampoline, trampoline_size,
1472 jjump_pad_insn,
1473 jjump_pad_insn_size,
1474 adjusted_insn_addr,
1475 adjusted_insn_addr_end,
1476 err);
1477 #endif
1478
1479 return i386_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
1480 collector, lockaddr,
1481 orig_size, jump_entry,
1482 trampoline, trampoline_size,
1483 jjump_pad_insn,
1484 jjump_pad_insn_size,
1485 adjusted_insn_addr,
1486 adjusted_insn_addr_end,
1487 err);
1488 }
1489
1490 /* Return the minimum instruction length for fast tracepoints on x86/x86-64
1491 architectures. */
1492
1493 static int
1494 x86_get_min_fast_tracepoint_insn_len (void)
1495 {
1496 static int warned_about_fast_tracepoints = 0;
1497
1498 #ifdef __x86_64__
1499 /* On x86-64, 5-byte jump instructions with a 4-byte offset are always
1500 used for fast tracepoints. */
1501 if (is_64bit_tdesc ())
1502 return 5;
1503 #endif
1504
1505 if (agent_loaded_p ())
1506 {
1507 char errbuf[IPA_BUFSIZ];
1508
1509 errbuf[0] = '\0';
1510
1511 /* On x86, if trampolines are available, then 4-byte jump instructions
1512 with a 2-byte offset may be used, otherwise 5-byte jump instructions
1513 with a 4-byte offset are used instead. */
1514 if (have_fast_tracepoint_trampoline_buffer (errbuf))
1515 return 4;
1516 else
1517 {
1518 /* GDB has no channel to explain to user why a shorter fast
1519 tracepoint is not possible, but at least make GDBserver
1520 mention that something has gone awry. */
1521 if (!warned_about_fast_tracepoints)
1522 {
1523 warning ("4-byte fast tracepoints not available; %s\n", errbuf);
1524 warned_about_fast_tracepoints = 1;
1525 }
1526 return 5;
1527 }
1528 }
1529 else
1530 {
1531 /* Indicate that the minimum length is currently unknown since the IPA
1532 has not loaded yet. */
1533 return 0;
1534 }
1535 }
1536
1537 static void
1538 add_insns (unsigned char *start, int len)
1539 {
1540 CORE_ADDR buildaddr = current_insn_ptr;
1541
1542 if (debug_threads)
1543 debug_printf ("Adding %d bytes of insn at %s\n",
1544 len, paddress (buildaddr));
1545
1546 append_insns (&buildaddr, len, start);
1547 current_insn_ptr = buildaddr;
1548 }
1549
1550 /* Our general strategy for emitting code is to avoid specifying raw
1551 bytes whenever possible, and instead copy a block of inline asm
1552 that is embedded in the function. This is a little messy, because
1553 we need to keep the compiler from discarding what looks like dead
1554 code, plus suppress various warnings. */
1555
1556 #define EMIT_ASM(NAME, INSNS) \
1557 do \
1558 { \
1559 extern unsigned char start_ ## NAME, end_ ## NAME; \
1560 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
1561 __asm__ ("jmp end_" #NAME "\n" \
1562 "\t" "start_" #NAME ":" \
1563 "\t" INSNS "\n" \
1564 "\t" "end_" #NAME ":"); \
1565 } while (0)
1566
1567 #ifdef __x86_64__
1568
1569 #define EMIT_ASM32(NAME,INSNS) \
1570 do \
1571 { \
1572 extern unsigned char start_ ## NAME, end_ ## NAME; \
1573 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
1574 __asm__ (".code32\n" \
1575 "\t" "jmp end_" #NAME "\n" \
1576 "\t" "start_" #NAME ":\n" \
1577 "\t" INSNS "\n" \
1578 "\t" "end_" #NAME ":\n" \
1579 ".code64\n"); \
1580 } while (0)
1581
1582 #else
1583
1584 #define EMIT_ASM32(NAME,INSNS) EMIT_ASM(NAME,INSNS)
1585
1586 #endif
1587
1588 #ifdef __x86_64__
1589
1590 static void
1591 amd64_emit_prologue (void)
1592 {
1593 EMIT_ASM (amd64_prologue,
1594 "pushq %rbp\n\t"
1595 "movq %rsp,%rbp\n\t"
1596 "sub $0x20,%rsp\n\t"
1597 "movq %rdi,-8(%rbp)\n\t"
1598 "movq %rsi,-16(%rbp)");
1599 }
1600
1601
1602 static void
1603 amd64_emit_epilogue (void)
1604 {
1605 EMIT_ASM (amd64_epilogue,
1606 "movq -16(%rbp),%rdi\n\t"
1607 "movq %rax,(%rdi)\n\t"
1608 "xor %rax,%rax\n\t"
1609 "leave\n\t"
1610 "ret");
1611 }
1612
1613 static void
1614 amd64_emit_add (void)
1615 {
1616 EMIT_ASM (amd64_add,
1617 "add (%rsp),%rax\n\t"
1618 "lea 0x8(%rsp),%rsp");
1619 }
1620
1621 static void
1622 amd64_emit_sub (void)
1623 {
1624 EMIT_ASM (amd64_sub,
1625 "sub %rax,(%rsp)\n\t"
1626 "pop %rax");
1627 }
1628
1629 static void
1630 amd64_emit_mul (void)
1631 {
1632 emit_error = 1;
1633 }
1634
1635 static void
1636 amd64_emit_lsh (void)
1637 {
1638 emit_error = 1;
1639 }
1640
1641 static void
1642 amd64_emit_rsh_signed (void)
1643 {
1644 emit_error = 1;
1645 }
1646
1647 static void
1648 amd64_emit_rsh_unsigned (void)
1649 {
1650 emit_error = 1;
1651 }
1652
1653 static void
1654 amd64_emit_ext (int arg)
1655 {
1656 switch (arg)
1657 {
1658 case 8:
1659 EMIT_ASM (amd64_ext_8,
1660 "cbtw\n\t"
1661 "cwtl\n\t"
1662 "cltq");
1663 break;
1664 case 16:
1665 EMIT_ASM (amd64_ext_16,
1666 "cwtl\n\t"
1667 "cltq");
1668 break;
1669 case 32:
1670 EMIT_ASM (amd64_ext_32,
1671 "cltq");
1672 break;
1673 default:
1674 emit_error = 1;
1675 }
1676 }
1677
1678 static void
1679 amd64_emit_log_not (void)
1680 {
1681 EMIT_ASM (amd64_log_not,
1682 "test %rax,%rax\n\t"
1683 "sete %cl\n\t"
1684 "movzbq %cl,%rax");
1685 }
1686
1687 static void
1688 amd64_emit_bit_and (void)
1689 {
1690 EMIT_ASM (amd64_and,
1691 "and (%rsp),%rax\n\t"
1692 "lea 0x8(%rsp),%rsp");
1693 }
1694
1695 static void
1696 amd64_emit_bit_or (void)
1697 {
1698 EMIT_ASM (amd64_or,
1699 "or (%rsp),%rax\n\t"
1700 "lea 0x8(%rsp),%rsp");
1701 }
1702
1703 static void
1704 amd64_emit_bit_xor (void)
1705 {
1706 EMIT_ASM (amd64_xor,
1707 "xor (%rsp),%rax\n\t"
1708 "lea 0x8(%rsp),%rsp");
1709 }
1710
1711 static void
1712 amd64_emit_bit_not (void)
1713 {
1714 EMIT_ASM (amd64_bit_not,
1715 "xorq $0xffffffffffffffff,%rax");
1716 }
1717
1718 static void
1719 amd64_emit_equal (void)
1720 {
1721 EMIT_ASM (amd64_equal,
1722 "cmp %rax,(%rsp)\n\t"
1723 "je .Lamd64_equal_true\n\t"
1724 "xor %rax,%rax\n\t"
1725 "jmp .Lamd64_equal_end\n\t"
1726 ".Lamd64_equal_true:\n\t"
1727 "mov $0x1,%rax\n\t"
1728 ".Lamd64_equal_end:\n\t"
1729 "lea 0x8(%rsp),%rsp");
1730 }
1731
1732 static void
1733 amd64_emit_less_signed (void)
1734 {
1735 EMIT_ASM (amd64_less_signed,
1736 "cmp %rax,(%rsp)\n\t"
1737 "jl .Lamd64_less_signed_true\n\t"
1738 "xor %rax,%rax\n\t"
1739 "jmp .Lamd64_less_signed_end\n\t"
1740 ".Lamd64_less_signed_true:\n\t"
1741 "mov $1,%rax\n\t"
1742 ".Lamd64_less_signed_end:\n\t"
1743 "lea 0x8(%rsp),%rsp");
1744 }
1745
1746 static void
1747 amd64_emit_less_unsigned (void)
1748 {
1749 EMIT_ASM (amd64_less_unsigned,
1750 "cmp %rax,(%rsp)\n\t"
1751 "jb .Lamd64_less_unsigned_true\n\t"
1752 "xor %rax,%rax\n\t"
1753 "jmp .Lamd64_less_unsigned_end\n\t"
1754 ".Lamd64_less_unsigned_true:\n\t"
1755 "mov $1,%rax\n\t"
1756 ".Lamd64_less_unsigned_end:\n\t"
1757 "lea 0x8(%rsp),%rsp");
1758 }
1759
1760 static void
1761 amd64_emit_ref (int size)
1762 {
1763 switch (size)
1764 {
1765 case 1:
1766 EMIT_ASM (amd64_ref1,
1767 "movb (%rax),%al");
1768 break;
1769 case 2:
1770 EMIT_ASM (amd64_ref2,
1771 "movw (%rax),%ax");
1772 break;
1773 case 4:
1774 EMIT_ASM (amd64_ref4,
1775 "movl (%rax),%eax");
1776 break;
1777 case 8:
1778 EMIT_ASM (amd64_ref8,
1779 "movq (%rax),%rax");
1780 break;
1781 }
1782 }
1783
1784 static void
1785 amd64_emit_if_goto (int *offset_p, int *size_p)
1786 {
1787 EMIT_ASM (amd64_if_goto,
1788 "mov %rax,%rcx\n\t"
1789 "pop %rax\n\t"
1790 "cmp $0,%rcx\n\t"
1791 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
1792 if (offset_p)
1793 *offset_p = 10;
1794 if (size_p)
1795 *size_p = 4;
1796 }
1797
1798 static void
1799 amd64_emit_goto (int *offset_p, int *size_p)
1800 {
1801 EMIT_ASM (amd64_goto,
1802 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
1803 if (offset_p)
1804 *offset_p = 1;
1805 if (size_p)
1806 *size_p = 4;
1807 }
1808
1809 static void
1810 amd64_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
1811 {
1812 int diff = (to - (from + size));
1813 unsigned char buf[sizeof (int)];
1814
1815 if (size != 4)
1816 {
1817 emit_error = 1;
1818 return;
1819 }
1820
1821 memcpy (buf, &diff, sizeof (int));
1822 write_inferior_memory (from, buf, sizeof (int));
1823 }
1824
1825 static void
1826 amd64_emit_const (LONGEST num)
1827 {
1828 unsigned char buf[16];
1829 int i;
1830 CORE_ADDR buildaddr = current_insn_ptr;
1831
1832 i = 0;
1833 buf[i++] = 0x48; buf[i++] = 0xb8; /* mov $<n>,%rax */
1834 memcpy (&buf[i], &num, sizeof (num));
1835 i += 8;
1836 append_insns (&buildaddr, i, buf);
1837 current_insn_ptr = buildaddr;
1838 }
1839
1840 static void
1841 amd64_emit_call (CORE_ADDR fn)
1842 {
1843 unsigned char buf[16];
1844 int i;
1845 CORE_ADDR buildaddr;
1846 LONGEST offset64;
1847
1848 /* The destination function being in the shared library, may be
1849 >31-bits away off the compiled code pad. */
1850
1851 buildaddr = current_insn_ptr;
1852
1853 offset64 = fn - (buildaddr + 1 /* call op */ + 4 /* 32-bit offset */);
1854
1855 i = 0;
1856
1857 if (offset64 > INT_MAX || offset64 < INT_MIN)
1858 {
1859 /* Offset is too large for a call. Use callq, but that requires
1860 a register, so avoid it if possible. Use r10, since it is
1861 call-clobbered, we don't have to push/pop it. */
1862 buf[i++] = 0x48; /* mov $fn,%r10 */
1863 buf[i++] = 0xba;
1864 memcpy (buf + i, &fn, 8);
1865 i += 8;
1866 buf[i++] = 0xff; /* callq *%r10 */
1867 buf[i++] = 0xd2;
1868 }
1869 else
1870 {
1871 int offset32 = offset64; /* we know we can't overflow here. */
1872
1873 buf[i++] = 0xe8; /* call <reladdr> */
1874 memcpy (buf + i, &offset32, 4);
1875 i += 4;
1876 }
1877
1878 append_insns (&buildaddr, i, buf);
1879 current_insn_ptr = buildaddr;
1880 }
1881
1882 static void
1883 amd64_emit_reg (int reg)
1884 {
1885 unsigned char buf[16];
1886 int i;
1887 CORE_ADDR buildaddr;
1888
1889 /* Assume raw_regs is still in %rdi. */
1890 buildaddr = current_insn_ptr;
1891 i = 0;
1892 buf[i++] = 0xbe; /* mov $<n>,%esi */
1893 memcpy (&buf[i], &reg, sizeof (reg));
1894 i += 4;
1895 append_insns (&buildaddr, i, buf);
1896 current_insn_ptr = buildaddr;
1897 amd64_emit_call (get_raw_reg_func_addr ());
1898 }
1899
1900 static void
1901 amd64_emit_pop (void)
1902 {
1903 EMIT_ASM (amd64_pop,
1904 "pop %rax");
1905 }
1906
1907 static void
1908 amd64_emit_stack_flush (void)
1909 {
1910 EMIT_ASM (amd64_stack_flush,
1911 "push %rax");
1912 }
1913
1914 static void
1915 amd64_emit_zero_ext (int arg)
1916 {
1917 switch (arg)
1918 {
1919 case 8:
1920 EMIT_ASM (amd64_zero_ext_8,
1921 "and $0xff,%rax");
1922 break;
1923 case 16:
1924 EMIT_ASM (amd64_zero_ext_16,
1925 "and $0xffff,%rax");
1926 break;
1927 case 32:
1928 EMIT_ASM (amd64_zero_ext_32,
1929 "mov $0xffffffff,%rcx\n\t"
1930 "and %rcx,%rax");
1931 break;
1932 default:
1933 emit_error = 1;
1934 }
1935 }
1936
1937 static void
1938 amd64_emit_swap (void)
1939 {
1940 EMIT_ASM (amd64_swap,
1941 "mov %rax,%rcx\n\t"
1942 "pop %rax\n\t"
1943 "push %rcx");
1944 }
1945
1946 static void
1947 amd64_emit_stack_adjust (int n)
1948 {
1949 unsigned char buf[16];
1950 int i;
1951 CORE_ADDR buildaddr = current_insn_ptr;
1952
1953 i = 0;
1954 buf[i++] = 0x48; /* lea $<n>(%rsp),%rsp */
1955 buf[i++] = 0x8d;
1956 buf[i++] = 0x64;
1957 buf[i++] = 0x24;
1958 /* This only handles adjustments up to 16, but we don't expect any more. */
1959 buf[i++] = n * 8;
1960 append_insns (&buildaddr, i, buf);
1961 current_insn_ptr = buildaddr;
1962 }
1963
1964 /* FN's prototype is `LONGEST(*fn)(int)'. */
1965
1966 static void
1967 amd64_emit_int_call_1 (CORE_ADDR fn, int arg1)
1968 {
1969 unsigned char buf[16];
1970 int i;
1971 CORE_ADDR buildaddr;
1972
1973 buildaddr = current_insn_ptr;
1974 i = 0;
1975 buf[i++] = 0xbf; /* movl $<n>,%edi */
1976 memcpy (&buf[i], &arg1, sizeof (arg1));
1977 i += 4;
1978 append_insns (&buildaddr, i, buf);
1979 current_insn_ptr = buildaddr;
1980 amd64_emit_call (fn);
1981 }
1982
1983 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
1984
1985 static void
1986 amd64_emit_void_call_2 (CORE_ADDR fn, int arg1)
1987 {
1988 unsigned char buf[16];
1989 int i;
1990 CORE_ADDR buildaddr;
1991
1992 buildaddr = current_insn_ptr;
1993 i = 0;
1994 buf[i++] = 0xbf; /* movl $<n>,%edi */
1995 memcpy (&buf[i], &arg1, sizeof (arg1));
1996 i += 4;
1997 append_insns (&buildaddr, i, buf);
1998 current_insn_ptr = buildaddr;
1999 EMIT_ASM (amd64_void_call_2_a,
2000 /* Save away a copy of the stack top. */
2001 "push %rax\n\t"
2002 /* Also pass top as the second argument. */
2003 "mov %rax,%rsi");
2004 amd64_emit_call (fn);
2005 EMIT_ASM (amd64_void_call_2_b,
2006 /* Restore the stack top, %rax may have been trashed. */
2007 "pop %rax");
2008 }
2009
2010 void
2011 amd64_emit_eq_goto (int *offset_p, int *size_p)
2012 {
2013 EMIT_ASM (amd64_eq,
2014 "cmp %rax,(%rsp)\n\t"
2015 "jne .Lamd64_eq_fallthru\n\t"
2016 "lea 0x8(%rsp),%rsp\n\t"
2017 "pop %rax\n\t"
2018 /* jmp, but don't trust the assembler to choose the right jump */
2019 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2020 ".Lamd64_eq_fallthru:\n\t"
2021 "lea 0x8(%rsp),%rsp\n\t"
2022 "pop %rax");
2023
2024 if (offset_p)
2025 *offset_p = 13;
2026 if (size_p)
2027 *size_p = 4;
2028 }
2029
2030 void
2031 amd64_emit_ne_goto (int *offset_p, int *size_p)
2032 {
2033 EMIT_ASM (amd64_ne,
2034 "cmp %rax,(%rsp)\n\t"
2035 "je .Lamd64_ne_fallthru\n\t"
2036 "lea 0x8(%rsp),%rsp\n\t"
2037 "pop %rax\n\t"
2038 /* jmp, but don't trust the assembler to choose the right jump */
2039 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2040 ".Lamd64_ne_fallthru:\n\t"
2041 "lea 0x8(%rsp),%rsp\n\t"
2042 "pop %rax");
2043
2044 if (offset_p)
2045 *offset_p = 13;
2046 if (size_p)
2047 *size_p = 4;
2048 }
2049
2050 void
2051 amd64_emit_lt_goto (int *offset_p, int *size_p)
2052 {
2053 EMIT_ASM (amd64_lt,
2054 "cmp %rax,(%rsp)\n\t"
2055 "jnl .Lamd64_lt_fallthru\n\t"
2056 "lea 0x8(%rsp),%rsp\n\t"
2057 "pop %rax\n\t"
2058 /* jmp, but don't trust the assembler to choose the right jump */
2059 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2060 ".Lamd64_lt_fallthru:\n\t"
2061 "lea 0x8(%rsp),%rsp\n\t"
2062 "pop %rax");
2063
2064 if (offset_p)
2065 *offset_p = 13;
2066 if (size_p)
2067 *size_p = 4;
2068 }
2069
2070 void
2071 amd64_emit_le_goto (int *offset_p, int *size_p)
2072 {
2073 EMIT_ASM (amd64_le,
2074 "cmp %rax,(%rsp)\n\t"
2075 "jnle .Lamd64_le_fallthru\n\t"
2076 "lea 0x8(%rsp),%rsp\n\t"
2077 "pop %rax\n\t"
2078 /* jmp, but don't trust the assembler to choose the right jump */
2079 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2080 ".Lamd64_le_fallthru:\n\t"
2081 "lea 0x8(%rsp),%rsp\n\t"
2082 "pop %rax");
2083
2084 if (offset_p)
2085 *offset_p = 13;
2086 if (size_p)
2087 *size_p = 4;
2088 }
2089
2090 void
2091 amd64_emit_gt_goto (int *offset_p, int *size_p)
2092 {
2093 EMIT_ASM (amd64_gt,
2094 "cmp %rax,(%rsp)\n\t"
2095 "jng .Lamd64_gt_fallthru\n\t"
2096 "lea 0x8(%rsp),%rsp\n\t"
2097 "pop %rax\n\t"
2098 /* jmp, but don't trust the assembler to choose the right jump */
2099 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2100 ".Lamd64_gt_fallthru:\n\t"
2101 "lea 0x8(%rsp),%rsp\n\t"
2102 "pop %rax");
2103
2104 if (offset_p)
2105 *offset_p = 13;
2106 if (size_p)
2107 *size_p = 4;
2108 }
2109
2110 void
2111 amd64_emit_ge_goto (int *offset_p, int *size_p)
2112 {
2113 EMIT_ASM (amd64_ge,
2114 "cmp %rax,(%rsp)\n\t"
2115 "jnge .Lamd64_ge_fallthru\n\t"
2116 ".Lamd64_ge_jump:\n\t"
2117 "lea 0x8(%rsp),%rsp\n\t"
2118 "pop %rax\n\t"
2119 /* jmp, but don't trust the assembler to choose the right jump */
2120 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2121 ".Lamd64_ge_fallthru:\n\t"
2122 "lea 0x8(%rsp),%rsp\n\t"
2123 "pop %rax");
2124
2125 if (offset_p)
2126 *offset_p = 13;
2127 if (size_p)
2128 *size_p = 4;
2129 }
2130
2131 struct emit_ops amd64_emit_ops =
2132 {
2133 amd64_emit_prologue,
2134 amd64_emit_epilogue,
2135 amd64_emit_add,
2136 amd64_emit_sub,
2137 amd64_emit_mul,
2138 amd64_emit_lsh,
2139 amd64_emit_rsh_signed,
2140 amd64_emit_rsh_unsigned,
2141 amd64_emit_ext,
2142 amd64_emit_log_not,
2143 amd64_emit_bit_and,
2144 amd64_emit_bit_or,
2145 amd64_emit_bit_xor,
2146 amd64_emit_bit_not,
2147 amd64_emit_equal,
2148 amd64_emit_less_signed,
2149 amd64_emit_less_unsigned,
2150 amd64_emit_ref,
2151 amd64_emit_if_goto,
2152 amd64_emit_goto,
2153 amd64_write_goto_address,
2154 amd64_emit_const,
2155 amd64_emit_call,
2156 amd64_emit_reg,
2157 amd64_emit_pop,
2158 amd64_emit_stack_flush,
2159 amd64_emit_zero_ext,
2160 amd64_emit_swap,
2161 amd64_emit_stack_adjust,
2162 amd64_emit_int_call_1,
2163 amd64_emit_void_call_2,
2164 amd64_emit_eq_goto,
2165 amd64_emit_ne_goto,
2166 amd64_emit_lt_goto,
2167 amd64_emit_le_goto,
2168 amd64_emit_gt_goto,
2169 amd64_emit_ge_goto
2170 };
2171
2172 #endif /* __x86_64__ */
2173
2174 static void
2175 i386_emit_prologue (void)
2176 {
2177 EMIT_ASM32 (i386_prologue,
2178 "push %ebp\n\t"
2179 "mov %esp,%ebp\n\t"
2180 "push %ebx");
2181 /* At this point, the raw regs base address is at 8(%ebp), and the
2182 value pointer is at 12(%ebp). */
2183 }
2184
2185 static void
2186 i386_emit_epilogue (void)
2187 {
2188 EMIT_ASM32 (i386_epilogue,
2189 "mov 12(%ebp),%ecx\n\t"
2190 "mov %eax,(%ecx)\n\t"
2191 "mov %ebx,0x4(%ecx)\n\t"
2192 "xor %eax,%eax\n\t"
2193 "pop %ebx\n\t"
2194 "pop %ebp\n\t"
2195 "ret");
2196 }
2197
2198 static void
2199 i386_emit_add (void)
2200 {
2201 EMIT_ASM32 (i386_add,
2202 "add (%esp),%eax\n\t"
2203 "adc 0x4(%esp),%ebx\n\t"
2204 "lea 0x8(%esp),%esp");
2205 }
2206
2207 static void
2208 i386_emit_sub (void)
2209 {
2210 EMIT_ASM32 (i386_sub,
2211 "subl %eax,(%esp)\n\t"
2212 "sbbl %ebx,4(%esp)\n\t"
2213 "pop %eax\n\t"
2214 "pop %ebx\n\t");
2215 }
2216
2217 static void
2218 i386_emit_mul (void)
2219 {
2220 emit_error = 1;
2221 }
2222
2223 static void
2224 i386_emit_lsh (void)
2225 {
2226 emit_error = 1;
2227 }
2228
2229 static void
2230 i386_emit_rsh_signed (void)
2231 {
2232 emit_error = 1;
2233 }
2234
2235 static void
2236 i386_emit_rsh_unsigned (void)
2237 {
2238 emit_error = 1;
2239 }
2240
2241 static void
2242 i386_emit_ext (int arg)
2243 {
2244 switch (arg)
2245 {
2246 case 8:
2247 EMIT_ASM32 (i386_ext_8,
2248 "cbtw\n\t"
2249 "cwtl\n\t"
2250 "movl %eax,%ebx\n\t"
2251 "sarl $31,%ebx");
2252 break;
2253 case 16:
2254 EMIT_ASM32 (i386_ext_16,
2255 "cwtl\n\t"
2256 "movl %eax,%ebx\n\t"
2257 "sarl $31,%ebx");
2258 break;
2259 case 32:
2260 EMIT_ASM32 (i386_ext_32,
2261 "movl %eax,%ebx\n\t"
2262 "sarl $31,%ebx");
2263 break;
2264 default:
2265 emit_error = 1;
2266 }
2267 }
2268
2269 static void
2270 i386_emit_log_not (void)
2271 {
2272 EMIT_ASM32 (i386_log_not,
2273 "or %ebx,%eax\n\t"
2274 "test %eax,%eax\n\t"
2275 "sete %cl\n\t"
2276 "xor %ebx,%ebx\n\t"
2277 "movzbl %cl,%eax");
2278 }
2279
2280 static void
2281 i386_emit_bit_and (void)
2282 {
2283 EMIT_ASM32 (i386_and,
2284 "and (%esp),%eax\n\t"
2285 "and 0x4(%esp),%ebx\n\t"
2286 "lea 0x8(%esp),%esp");
2287 }
2288
2289 static void
2290 i386_emit_bit_or (void)
2291 {
2292 EMIT_ASM32 (i386_or,
2293 "or (%esp),%eax\n\t"
2294 "or 0x4(%esp),%ebx\n\t"
2295 "lea 0x8(%esp),%esp");
2296 }
2297
2298 static void
2299 i386_emit_bit_xor (void)
2300 {
2301 EMIT_ASM32 (i386_xor,
2302 "xor (%esp),%eax\n\t"
2303 "xor 0x4(%esp),%ebx\n\t"
2304 "lea 0x8(%esp),%esp");
2305 }
2306
2307 static void
2308 i386_emit_bit_not (void)
2309 {
2310 EMIT_ASM32 (i386_bit_not,
2311 "xor $0xffffffff,%eax\n\t"
2312 "xor $0xffffffff,%ebx\n\t");
2313 }
2314
2315 static void
2316 i386_emit_equal (void)
2317 {
2318 EMIT_ASM32 (i386_equal,
2319 "cmpl %ebx,4(%esp)\n\t"
2320 "jne .Li386_equal_false\n\t"
2321 "cmpl %eax,(%esp)\n\t"
2322 "je .Li386_equal_true\n\t"
2323 ".Li386_equal_false:\n\t"
2324 "xor %eax,%eax\n\t"
2325 "jmp .Li386_equal_end\n\t"
2326 ".Li386_equal_true:\n\t"
2327 "mov $1,%eax\n\t"
2328 ".Li386_equal_end:\n\t"
2329 "xor %ebx,%ebx\n\t"
2330 "lea 0x8(%esp),%esp");
2331 }
2332
2333 static void
2334 i386_emit_less_signed (void)
2335 {
2336 EMIT_ASM32 (i386_less_signed,
2337 "cmpl %ebx,4(%esp)\n\t"
2338 "jl .Li386_less_signed_true\n\t"
2339 "jne .Li386_less_signed_false\n\t"
2340 "cmpl %eax,(%esp)\n\t"
2341 "jl .Li386_less_signed_true\n\t"
2342 ".Li386_less_signed_false:\n\t"
2343 "xor %eax,%eax\n\t"
2344 "jmp .Li386_less_signed_end\n\t"
2345 ".Li386_less_signed_true:\n\t"
2346 "mov $1,%eax\n\t"
2347 ".Li386_less_signed_end:\n\t"
2348 "xor %ebx,%ebx\n\t"
2349 "lea 0x8(%esp),%esp");
2350 }
2351
2352 static void
2353 i386_emit_less_unsigned (void)
2354 {
2355 EMIT_ASM32 (i386_less_unsigned,
2356 "cmpl %ebx,4(%esp)\n\t"
2357 "jb .Li386_less_unsigned_true\n\t"
2358 "jne .Li386_less_unsigned_false\n\t"
2359 "cmpl %eax,(%esp)\n\t"
2360 "jb .Li386_less_unsigned_true\n\t"
2361 ".Li386_less_unsigned_false:\n\t"
2362 "xor %eax,%eax\n\t"
2363 "jmp .Li386_less_unsigned_end\n\t"
2364 ".Li386_less_unsigned_true:\n\t"
2365 "mov $1,%eax\n\t"
2366 ".Li386_less_unsigned_end:\n\t"
2367 "xor %ebx,%ebx\n\t"
2368 "lea 0x8(%esp),%esp");
2369 }
2370
2371 static void
2372 i386_emit_ref (int size)
2373 {
2374 switch (size)
2375 {
2376 case 1:
2377 EMIT_ASM32 (i386_ref1,
2378 "movb (%eax),%al");
2379 break;
2380 case 2:
2381 EMIT_ASM32 (i386_ref2,
2382 "movw (%eax),%ax");
2383 break;
2384 case 4:
2385 EMIT_ASM32 (i386_ref4,
2386 "movl (%eax),%eax");
2387 break;
2388 case 8:
2389 EMIT_ASM32 (i386_ref8,
2390 "movl 4(%eax),%ebx\n\t"
2391 "movl (%eax),%eax");
2392 break;
2393 }
2394 }
2395
2396 static void
2397 i386_emit_if_goto (int *offset_p, int *size_p)
2398 {
2399 EMIT_ASM32 (i386_if_goto,
2400 "mov %eax,%ecx\n\t"
2401 "or %ebx,%ecx\n\t"
2402 "pop %eax\n\t"
2403 "pop %ebx\n\t"
2404 "cmpl $0,%ecx\n\t"
2405 /* Don't trust the assembler to choose the right jump */
2406 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
2407
2408 if (offset_p)
2409 *offset_p = 11; /* be sure that this matches the sequence above */
2410 if (size_p)
2411 *size_p = 4;
2412 }
2413
2414 static void
2415 i386_emit_goto (int *offset_p, int *size_p)
2416 {
2417 EMIT_ASM32 (i386_goto,
2418 /* Don't trust the assembler to choose the right jump */
2419 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
2420 if (offset_p)
2421 *offset_p = 1;
2422 if (size_p)
2423 *size_p = 4;
2424 }
2425
2426 static void
2427 i386_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2428 {
2429 int diff = (to - (from + size));
2430 unsigned char buf[sizeof (int)];
2431
2432 /* We're only doing 4-byte sizes at the moment. */
2433 if (size != 4)
2434 {
2435 emit_error = 1;
2436 return;
2437 }
2438
2439 memcpy (buf, &diff, sizeof (int));
2440 write_inferior_memory (from, buf, sizeof (int));
2441 }
2442
2443 static void
2444 i386_emit_const (LONGEST num)
2445 {
2446 unsigned char buf[16];
2447 int i, hi, lo;
2448 CORE_ADDR buildaddr = current_insn_ptr;
2449
2450 i = 0;
2451 buf[i++] = 0xb8; /* mov $<n>,%eax */
2452 lo = num & 0xffffffff;
2453 memcpy (&buf[i], &lo, sizeof (lo));
2454 i += 4;
2455 hi = ((num >> 32) & 0xffffffff);
2456 if (hi)
2457 {
2458 buf[i++] = 0xbb; /* mov $<n>,%ebx */
2459 memcpy (&buf[i], &hi, sizeof (hi));
2460 i += 4;
2461 }
2462 else
2463 {
2464 buf[i++] = 0x31; buf[i++] = 0xdb; /* xor %ebx,%ebx */
2465 }
2466 append_insns (&buildaddr, i, buf);
2467 current_insn_ptr = buildaddr;
2468 }
2469
2470 static void
2471 i386_emit_call (CORE_ADDR fn)
2472 {
2473 unsigned char buf[16];
2474 int i, offset;
2475 CORE_ADDR buildaddr;
2476
2477 buildaddr = current_insn_ptr;
2478 i = 0;
2479 buf[i++] = 0xe8; /* call <reladdr> */
2480 offset = ((int) fn) - (buildaddr + 5);
2481 memcpy (buf + 1, &offset, 4);
2482 append_insns (&buildaddr, 5, buf);
2483 current_insn_ptr = buildaddr;
2484 }
2485
2486 static void
2487 i386_emit_reg (int reg)
2488 {
2489 unsigned char buf[16];
2490 int i;
2491 CORE_ADDR buildaddr;
2492
2493 EMIT_ASM32 (i386_reg_a,
2494 "sub $0x8,%esp");
2495 buildaddr = current_insn_ptr;
2496 i = 0;
2497 buf[i++] = 0xb8; /* mov $<n>,%eax */
2498 memcpy (&buf[i], &reg, sizeof (reg));
2499 i += 4;
2500 append_insns (&buildaddr, i, buf);
2501 current_insn_ptr = buildaddr;
2502 EMIT_ASM32 (i386_reg_b,
2503 "mov %eax,4(%esp)\n\t"
2504 "mov 8(%ebp),%eax\n\t"
2505 "mov %eax,(%esp)");
2506 i386_emit_call (get_raw_reg_func_addr ());
2507 EMIT_ASM32 (i386_reg_c,
2508 "xor %ebx,%ebx\n\t"
2509 "lea 0x8(%esp),%esp");
2510 }
2511
2512 static void
2513 i386_emit_pop (void)
2514 {
2515 EMIT_ASM32 (i386_pop,
2516 "pop %eax\n\t"
2517 "pop %ebx");
2518 }
2519
2520 static void
2521 i386_emit_stack_flush (void)
2522 {
2523 EMIT_ASM32 (i386_stack_flush,
2524 "push %ebx\n\t"
2525 "push %eax");
2526 }
2527
2528 static void
2529 i386_emit_zero_ext (int arg)
2530 {
2531 switch (arg)
2532 {
2533 case 8:
2534 EMIT_ASM32 (i386_zero_ext_8,
2535 "and $0xff,%eax\n\t"
2536 "xor %ebx,%ebx");
2537 break;
2538 case 16:
2539 EMIT_ASM32 (i386_zero_ext_16,
2540 "and $0xffff,%eax\n\t"
2541 "xor %ebx,%ebx");
2542 break;
2543 case 32:
2544 EMIT_ASM32 (i386_zero_ext_32,
2545 "xor %ebx,%ebx");
2546 break;
2547 default:
2548 emit_error = 1;
2549 }
2550 }
2551
2552 static void
2553 i386_emit_swap (void)
2554 {
2555 EMIT_ASM32 (i386_swap,
2556 "mov %eax,%ecx\n\t"
2557 "mov %ebx,%edx\n\t"
2558 "pop %eax\n\t"
2559 "pop %ebx\n\t"
2560 "push %edx\n\t"
2561 "push %ecx");
2562 }
2563
2564 static void
2565 i386_emit_stack_adjust (int n)
2566 {
2567 unsigned char buf[16];
2568 int i;
2569 CORE_ADDR buildaddr = current_insn_ptr;
2570
2571 i = 0;
2572 buf[i++] = 0x8d; /* lea $<n>(%esp),%esp */
2573 buf[i++] = 0x64;
2574 buf[i++] = 0x24;
2575 buf[i++] = n * 8;
2576 append_insns (&buildaddr, i, buf);
2577 current_insn_ptr = buildaddr;
2578 }
2579
2580 /* FN's prototype is `LONGEST(*fn)(int)'. */
2581
2582 static void
2583 i386_emit_int_call_1 (CORE_ADDR fn, int arg1)
2584 {
2585 unsigned char buf[16];
2586 int i;
2587 CORE_ADDR buildaddr;
2588
2589 EMIT_ASM32 (i386_int_call_1_a,
2590 /* Reserve a bit of stack space. */
2591 "sub $0x8,%esp");
2592 /* Put the one argument on the stack. */
2593 buildaddr = current_insn_ptr;
2594 i = 0;
2595 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
2596 buf[i++] = 0x04;
2597 buf[i++] = 0x24;
2598 memcpy (&buf[i], &arg1, sizeof (arg1));
2599 i += 4;
2600 append_insns (&buildaddr, i, buf);
2601 current_insn_ptr = buildaddr;
2602 i386_emit_call (fn);
2603 EMIT_ASM32 (i386_int_call_1_c,
2604 "mov %edx,%ebx\n\t"
2605 "lea 0x8(%esp),%esp");
2606 }
2607
2608 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
2609
2610 static void
2611 i386_emit_void_call_2 (CORE_ADDR fn, int arg1)
2612 {
2613 unsigned char buf[16];
2614 int i;
2615 CORE_ADDR buildaddr;
2616
2617 EMIT_ASM32 (i386_void_call_2_a,
2618 /* Preserve %eax only; we don't have to worry about %ebx. */
2619 "push %eax\n\t"
2620 /* Reserve a bit of stack space for arguments. */
2621 "sub $0x10,%esp\n\t"
2622 /* Copy "top" to the second argument position. (Note that
2623 we can't assume function won't scribble on its
2624 arguments, so don't try to restore from this.) */
2625 "mov %eax,4(%esp)\n\t"
2626 "mov %ebx,8(%esp)");
2627 /* Put the first argument on the stack. */
2628 buildaddr = current_insn_ptr;
2629 i = 0;
2630 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
2631 buf[i++] = 0x04;
2632 buf[i++] = 0x24;
2633 memcpy (&buf[i], &arg1, sizeof (arg1));
2634 i += 4;
2635 append_insns (&buildaddr, i, buf);
2636 current_insn_ptr = buildaddr;
2637 i386_emit_call (fn);
2638 EMIT_ASM32 (i386_void_call_2_b,
2639 "lea 0x10(%esp),%esp\n\t"
2640 /* Restore original stack top. */
2641 "pop %eax");
2642 }
2643
2644
2645 void
2646 i386_emit_eq_goto (int *offset_p, int *size_p)
2647 {
2648 EMIT_ASM32 (eq,
2649 /* Check low half first, more likely to be decider */
2650 "cmpl %eax,(%esp)\n\t"
2651 "jne .Leq_fallthru\n\t"
2652 "cmpl %ebx,4(%esp)\n\t"
2653 "jne .Leq_fallthru\n\t"
2654 "lea 0x8(%esp),%esp\n\t"
2655 "pop %eax\n\t"
2656 "pop %ebx\n\t"
2657 /* jmp, but don't trust the assembler to choose the right jump */
2658 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2659 ".Leq_fallthru:\n\t"
2660 "lea 0x8(%esp),%esp\n\t"
2661 "pop %eax\n\t"
2662 "pop %ebx");
2663
2664 if (offset_p)
2665 *offset_p = 18;
2666 if (size_p)
2667 *size_p = 4;
2668 }
2669
2670 void
2671 i386_emit_ne_goto (int *offset_p, int *size_p)
2672 {
2673 EMIT_ASM32 (ne,
2674 /* Check low half first, more likely to be decider */
2675 "cmpl %eax,(%esp)\n\t"
2676 "jne .Lne_jump\n\t"
2677 "cmpl %ebx,4(%esp)\n\t"
2678 "je .Lne_fallthru\n\t"
2679 ".Lne_jump:\n\t"
2680 "lea 0x8(%esp),%esp\n\t"
2681 "pop %eax\n\t"
2682 "pop %ebx\n\t"
2683 /* jmp, but don't trust the assembler to choose the right jump */
2684 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2685 ".Lne_fallthru:\n\t"
2686 "lea 0x8(%esp),%esp\n\t"
2687 "pop %eax\n\t"
2688 "pop %ebx");
2689
2690 if (offset_p)
2691 *offset_p = 18;
2692 if (size_p)
2693 *size_p = 4;
2694 }
2695
2696 void
2697 i386_emit_lt_goto (int *offset_p, int *size_p)
2698 {
2699 EMIT_ASM32 (lt,
2700 "cmpl %ebx,4(%esp)\n\t"
2701 "jl .Llt_jump\n\t"
2702 "jne .Llt_fallthru\n\t"
2703 "cmpl %eax,(%esp)\n\t"
2704 "jnl .Llt_fallthru\n\t"
2705 ".Llt_jump:\n\t"
2706 "lea 0x8(%esp),%esp\n\t"
2707 "pop %eax\n\t"
2708 "pop %ebx\n\t"
2709 /* jmp, but don't trust the assembler to choose the right jump */
2710 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2711 ".Llt_fallthru:\n\t"
2712 "lea 0x8(%esp),%esp\n\t"
2713 "pop %eax\n\t"
2714 "pop %ebx");
2715
2716 if (offset_p)
2717 *offset_p = 20;
2718 if (size_p)
2719 *size_p = 4;
2720 }
2721
2722 void
2723 i386_emit_le_goto (int *offset_p, int *size_p)
2724 {
2725 EMIT_ASM32 (le,
2726 "cmpl %ebx,4(%esp)\n\t"
2727 "jle .Lle_jump\n\t"
2728 "jne .Lle_fallthru\n\t"
2729 "cmpl %eax,(%esp)\n\t"
2730 "jnle .Lle_fallthru\n\t"
2731 ".Lle_jump:\n\t"
2732 "lea 0x8(%esp),%esp\n\t"
2733 "pop %eax\n\t"
2734 "pop %ebx\n\t"
2735 /* jmp, but don't trust the assembler to choose the right jump */
2736 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2737 ".Lle_fallthru:\n\t"
2738 "lea 0x8(%esp),%esp\n\t"
2739 "pop %eax\n\t"
2740 "pop %ebx");
2741
2742 if (offset_p)
2743 *offset_p = 20;
2744 if (size_p)
2745 *size_p = 4;
2746 }
2747
2748 void
2749 i386_emit_gt_goto (int *offset_p, int *size_p)
2750 {
2751 EMIT_ASM32 (gt,
2752 "cmpl %ebx,4(%esp)\n\t"
2753 "jg .Lgt_jump\n\t"
2754 "jne .Lgt_fallthru\n\t"
2755 "cmpl %eax,(%esp)\n\t"
2756 "jng .Lgt_fallthru\n\t"
2757 ".Lgt_jump:\n\t"
2758 "lea 0x8(%esp),%esp\n\t"
2759 "pop %eax\n\t"
2760 "pop %ebx\n\t"
2761 /* jmp, but don't trust the assembler to choose the right jump */
2762 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2763 ".Lgt_fallthru:\n\t"
2764 "lea 0x8(%esp),%esp\n\t"
2765 "pop %eax\n\t"
2766 "pop %ebx");
2767
2768 if (offset_p)
2769 *offset_p = 20;
2770 if (size_p)
2771 *size_p = 4;
2772 }
2773
2774 void
2775 i386_emit_ge_goto (int *offset_p, int *size_p)
2776 {
2777 EMIT_ASM32 (ge,
2778 "cmpl %ebx,4(%esp)\n\t"
2779 "jge .Lge_jump\n\t"
2780 "jne .Lge_fallthru\n\t"
2781 "cmpl %eax,(%esp)\n\t"
2782 "jnge .Lge_fallthru\n\t"
2783 ".Lge_jump:\n\t"
2784 "lea 0x8(%esp),%esp\n\t"
2785 "pop %eax\n\t"
2786 "pop %ebx\n\t"
2787 /* jmp, but don't trust the assembler to choose the right jump */
2788 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2789 ".Lge_fallthru:\n\t"
2790 "lea 0x8(%esp),%esp\n\t"
2791 "pop %eax\n\t"
2792 "pop %ebx");
2793
2794 if (offset_p)
2795 *offset_p = 20;
2796 if (size_p)
2797 *size_p = 4;
2798 }
2799
2800 struct emit_ops i386_emit_ops =
2801 {
2802 i386_emit_prologue,
2803 i386_emit_epilogue,
2804 i386_emit_add,
2805 i386_emit_sub,
2806 i386_emit_mul,
2807 i386_emit_lsh,
2808 i386_emit_rsh_signed,
2809 i386_emit_rsh_unsigned,
2810 i386_emit_ext,
2811 i386_emit_log_not,
2812 i386_emit_bit_and,
2813 i386_emit_bit_or,
2814 i386_emit_bit_xor,
2815 i386_emit_bit_not,
2816 i386_emit_equal,
2817 i386_emit_less_signed,
2818 i386_emit_less_unsigned,
2819 i386_emit_ref,
2820 i386_emit_if_goto,
2821 i386_emit_goto,
2822 i386_write_goto_address,
2823 i386_emit_const,
2824 i386_emit_call,
2825 i386_emit_reg,
2826 i386_emit_pop,
2827 i386_emit_stack_flush,
2828 i386_emit_zero_ext,
2829 i386_emit_swap,
2830 i386_emit_stack_adjust,
2831 i386_emit_int_call_1,
2832 i386_emit_void_call_2,
2833 i386_emit_eq_goto,
2834 i386_emit_ne_goto,
2835 i386_emit_lt_goto,
2836 i386_emit_le_goto,
2837 i386_emit_gt_goto,
2838 i386_emit_ge_goto
2839 };
2840
2841
2842 static struct emit_ops *
2843 x86_emit_ops (void)
2844 {
2845 #ifdef __x86_64__
2846 if (is_64bit_tdesc ())
2847 return &amd64_emit_ops;
2848 else
2849 #endif
2850 return &i386_emit_ops;
2851 }
2852
2853 /* Implementation of linux_target_ops method "sw_breakpoint_from_kind". */
2854
2855 static const gdb_byte *
2856 x86_sw_breakpoint_from_kind (int kind, int *size)
2857 {
2858 *size = x86_breakpoint_len;
2859 return x86_breakpoint;
2860 }
2861
2862 static int
2863 x86_supports_range_stepping (void)
2864 {
2865 return 1;
2866 }
2867
2868 /* Implementation of linux_target_ops method "supports_hardware_single_step".
2869 */
2870
2871 static int
2872 x86_supports_hardware_single_step (void)
2873 {
2874 return 1;
2875 }
2876
2877 static int
2878 x86_get_ipa_tdesc_idx (void)
2879 {
2880 struct regcache *regcache = get_thread_regcache (current_thread, 0);
2881 const struct target_desc *tdesc = regcache->tdesc;
2882
2883 #ifdef __x86_64__
2884 if (tdesc == tdesc_amd64_linux || tdesc == tdesc_amd64_linux_no_xml
2885 || tdesc == tdesc_x32_linux)
2886 return X86_TDESC_SSE;
2887 if (tdesc == tdesc_amd64_avx_linux || tdesc == tdesc_x32_avx_linux)
2888 return X86_TDESC_AVX;
2889 if (tdesc == tdesc_amd64_mpx_linux)
2890 return X86_TDESC_MPX;
2891 if (tdesc == tdesc_amd64_avx_mpx_linux)
2892 return X86_TDESC_AVX_MPX;
2893 if (tdesc == tdesc_amd64_avx_mpx_avx512_pku_linux || tdesc == tdesc_x32_avx_avx512_linux)
2894 return X86_TDESC_AVX_MPX_AVX512_PKU;
2895 if (tdesc == tdesc_amd64_avx_avx512_linux)
2896 return X86_TDESC_AVX_AVX512;
2897 #endif
2898
2899 if (tdesc == tdesc_i386_linux_no_xml)
2900 return X86_TDESC_SSE;
2901
2902 return i386_get_ipa_tdesc_idx (tdesc);
2903 }
2904
2905 /* This is initialized assuming an amd64 target.
2906 x86_arch_setup will correct it for i386 or amd64 targets. */
2907
2908 struct linux_target_ops the_low_target =
2909 {
2910 x86_arch_setup,
2911 x86_linux_regs_info,
2912 x86_cannot_fetch_register,
2913 x86_cannot_store_register,
2914 NULL, /* fetch_register */
2915 x86_get_pc,
2916 x86_set_pc,
2917 NULL, /* breakpoint_kind_from_pc */
2918 x86_sw_breakpoint_from_kind,
2919 NULL,
2920 1,
2921 x86_breakpoint_at,
2922 x86_supports_z_point_type,
2923 x86_insert_point,
2924 x86_remove_point,
2925 x86_stopped_by_watchpoint,
2926 x86_stopped_data_address,
2927 /* collect_ptrace_register/supply_ptrace_register are not needed in the
2928 native i386 case (no registers smaller than an xfer unit), and are not
2929 used in the biarch case (HAVE_LINUX_USRREGS is not defined). */
2930 NULL,
2931 NULL,
2932 /* need to fix up i386 siginfo if host is amd64 */
2933 x86_siginfo_fixup,
2934 x86_linux_new_process,
2935 x86_linux_new_thread,
2936 x86_linux_new_fork,
2937 x86_linux_prepare_to_resume,
2938 x86_linux_process_qsupported,
2939 x86_supports_tracepoints,
2940 x86_get_thread_area,
2941 x86_install_fast_tracepoint_jump_pad,
2942 x86_emit_ops,
2943 x86_get_min_fast_tracepoint_insn_len,
2944 x86_supports_range_stepping,
2945 NULL, /* breakpoint_kind_from_current_state */
2946 x86_supports_hardware_single_step,
2947 x86_get_syscall_trapinfo,
2948 x86_get_ipa_tdesc_idx,
2949 };
2950
2951 void
2952 initialize_low_arch (void)
2953 {
2954 /* Initialize the Linux target descriptions. */
2955 #ifdef __x86_64__
2956 init_registers_amd64_linux ();
2957 init_registers_amd64_avx_linux ();
2958 init_registers_amd64_mpx_linux ();
2959 init_registers_amd64_avx_mpx_linux ();
2960 init_registers_amd64_avx_avx512_linux ();
2961 init_registers_amd64_avx_mpx_avx512_pku_linux ();
2962
2963 init_registers_x32_linux ();
2964 init_registers_x32_avx_linux ();
2965 init_registers_x32_avx_avx512_linux ();
2966
2967 tdesc_amd64_linux_no_xml = XNEW (struct target_desc);
2968 copy_target_description (tdesc_amd64_linux_no_xml, tdesc_amd64_linux);
2969 tdesc_amd64_linux_no_xml->xmltarget = xmltarget_amd64_linux_no_xml;
2970 #endif
2971
2972 #if GDB_SELF_TEST
2973 initialize_low_tdesc ();
2974 #endif
2975
2976 tdesc_i386_linux_no_xml = XNEW (struct target_desc);
2977 copy_target_description (tdesc_i386_linux_no_xml,
2978 i386_linux_read_description (X86_XSTATE_SSE_MASK));
2979 tdesc_i386_linux_no_xml->xmltarget = xmltarget_i386_linux_no_xml;
2980
2981 initialize_regsets_info (&x86_regsets_info);
2982 }
This page took 0.092635 seconds and 5 git commands to generate.