Vectorize gdbserver x86 debug register accessors
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-x86-low.c
1 /* GNU/Linux/x86-64 specific low level interface, for the remote server
2 for GDB.
3 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <stddef.h>
21 #include <signal.h>
22 #include <limits.h>
23 #include <inttypes.h>
24 #include "server.h"
25 #include "linux-low.h"
26 #include "i387-fp.h"
27 #include "i386-low.h"
28 #include "i386-xstate.h"
29
30 #include "gdb_proc_service.h"
31 /* Don't include elf/common.h if linux/elf.h got included by
32 gdb_proc_service.h. */
33 #ifndef ELFMAG0
34 #include "elf/common.h"
35 #endif
36
37 #include "agent.h"
38 #include "tdesc.h"
39 #include "tracepoint.h"
40 #include "ax.h"
41
42 #ifdef __x86_64__
43 /* Defined in auto-generated file amd64-linux.c. */
44 void init_registers_amd64_linux (void);
45 extern const struct target_desc *tdesc_amd64_linux;
46
47 /* Defined in auto-generated file amd64-avx-linux.c. */
48 void init_registers_amd64_avx_linux (void);
49 extern const struct target_desc *tdesc_amd64_avx_linux;
50
51 /* Defined in auto-generated file amd64-avx512-linux.c. */
52 void init_registers_amd64_avx512_linux (void);
53 extern const struct target_desc *tdesc_amd64_avx512_linux;
54
55 /* Defined in auto-generated file amd64-mpx-linux.c. */
56 void init_registers_amd64_mpx_linux (void);
57 extern const struct target_desc *tdesc_amd64_mpx_linux;
58
59 /* Defined in auto-generated file x32-linux.c. */
60 void init_registers_x32_linux (void);
61 extern const struct target_desc *tdesc_x32_linux;
62
63 /* Defined in auto-generated file x32-avx-linux.c. */
64 void init_registers_x32_avx_linux (void);
65 extern const struct target_desc *tdesc_x32_avx_linux;
66
67 /* Defined in auto-generated file x32-avx512-linux.c. */
68 void init_registers_x32_avx512_linux (void);
69 extern const struct target_desc *tdesc_x32_avx512_linux;
70
71 #endif
72
73 /* Defined in auto-generated file i386-linux.c. */
74 void init_registers_i386_linux (void);
75 extern const struct target_desc *tdesc_i386_linux;
76
77 /* Defined in auto-generated file i386-mmx-linux.c. */
78 void init_registers_i386_mmx_linux (void);
79 extern const struct target_desc *tdesc_i386_mmx_linux;
80
81 /* Defined in auto-generated file i386-avx-linux.c. */
82 void init_registers_i386_avx_linux (void);
83 extern const struct target_desc *tdesc_i386_avx_linux;
84
85 /* Defined in auto-generated file i386-avx512-linux.c. */
86 void init_registers_i386_avx512_linux (void);
87 extern const struct target_desc *tdesc_i386_avx512_linux;
88
89 /* Defined in auto-generated file i386-mpx-linux.c. */
90 void init_registers_i386_mpx_linux (void);
91 extern const struct target_desc *tdesc_i386_mpx_linux;
92
93 #ifdef __x86_64__
94 static struct target_desc *tdesc_amd64_linux_no_xml;
95 #endif
96 static struct target_desc *tdesc_i386_linux_no_xml;
97
98
99 static unsigned char jump_insn[] = { 0xe9, 0, 0, 0, 0 };
100 static unsigned char small_jump_insn[] = { 0x66, 0xe9, 0, 0 };
101
102 /* Backward compatibility for gdb without XML support. */
103
104 static const char *xmltarget_i386_linux_no_xml = "@<target>\
105 <architecture>i386</architecture>\
106 <osabi>GNU/Linux</osabi>\
107 </target>";
108
109 #ifdef __x86_64__
110 static const char *xmltarget_amd64_linux_no_xml = "@<target>\
111 <architecture>i386:x86-64</architecture>\
112 <osabi>GNU/Linux</osabi>\
113 </target>";
114 #endif
115
116 #include <sys/reg.h>
117 #include <sys/procfs.h>
118 #include <sys/ptrace.h>
119 #include <sys/uio.h>
120
121 #ifndef PTRACE_GETREGSET
122 #define PTRACE_GETREGSET 0x4204
123 #endif
124
125 #ifndef PTRACE_SETREGSET
126 #define PTRACE_SETREGSET 0x4205
127 #endif
128
129
130 #ifndef PTRACE_GET_THREAD_AREA
131 #define PTRACE_GET_THREAD_AREA 25
132 #endif
133
134 /* This definition comes from prctl.h, but some kernels may not have it. */
135 #ifndef PTRACE_ARCH_PRCTL
136 #define PTRACE_ARCH_PRCTL 30
137 #endif
138
139 /* The following definitions come from prctl.h, but may be absent
140 for certain configurations. */
141 #ifndef ARCH_GET_FS
142 #define ARCH_SET_GS 0x1001
143 #define ARCH_SET_FS 0x1002
144 #define ARCH_GET_FS 0x1003
145 #define ARCH_GET_GS 0x1004
146 #endif
147
148 /* Per-process arch-specific data we want to keep. */
149
150 struct arch_process_info
151 {
152 struct i386_debug_reg_state debug_reg_state;
153 };
154
155 /* Per-thread arch-specific data we want to keep. */
156
157 struct arch_lwp_info
158 {
159 /* Non-zero if our copy differs from what's recorded in the thread. */
160 int debug_registers_changed;
161 };
162
163 #ifdef __x86_64__
164
165 /* Mapping between the general-purpose registers in `struct user'
166 format and GDB's register array layout.
167 Note that the transfer layout uses 64-bit regs. */
168 static /*const*/ int i386_regmap[] =
169 {
170 RAX * 8, RCX * 8, RDX * 8, RBX * 8,
171 RSP * 8, RBP * 8, RSI * 8, RDI * 8,
172 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
173 DS * 8, ES * 8, FS * 8, GS * 8
174 };
175
176 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
177
178 /* So code below doesn't have to care, i386 or amd64. */
179 #define ORIG_EAX ORIG_RAX
180
181 static const int x86_64_regmap[] =
182 {
183 RAX * 8, RBX * 8, RCX * 8, RDX * 8,
184 RSI * 8, RDI * 8, RBP * 8, RSP * 8,
185 R8 * 8, R9 * 8, R10 * 8, R11 * 8,
186 R12 * 8, R13 * 8, R14 * 8, R15 * 8,
187 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
188 DS * 8, ES * 8, FS * 8, GS * 8,
189 -1, -1, -1, -1, -1, -1, -1, -1,
190 -1, -1, -1, -1, -1, -1, -1, -1,
191 -1, -1, -1, -1, -1, -1, -1, -1,
192 -1,
193 -1, -1, -1, -1, -1, -1, -1, -1,
194 ORIG_RAX * 8,
195 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
196 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
197 -1, -1, -1, -1, -1, -1, -1, -1, /* xmm16 ... xmm31 (AVX512) */
198 -1, -1, -1, -1, -1, -1, -1, -1,
199 -1, -1, -1, -1, -1, -1, -1, -1, /* ymm16 ... ymm31 (AVX512) */
200 -1, -1, -1, -1, -1, -1, -1, -1,
201 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
202 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm31 (AVX512) */
203 -1, -1, -1, -1, -1, -1, -1, -1,
204 -1, -1, -1, -1, -1, -1, -1, -1,
205 -1, -1, -1, -1, -1, -1, -1, -1
206 };
207
208 #define X86_64_NUM_REGS (sizeof (x86_64_regmap) / sizeof (x86_64_regmap[0]))
209 #define X86_64_USER_REGS (GS + 1)
210
211 #else /* ! __x86_64__ */
212
213 /* Mapping between the general-purpose registers in `struct user'
214 format and GDB's register array layout. */
215 static /*const*/ int i386_regmap[] =
216 {
217 EAX * 4, ECX * 4, EDX * 4, EBX * 4,
218 UESP * 4, EBP * 4, ESI * 4, EDI * 4,
219 EIP * 4, EFL * 4, CS * 4, SS * 4,
220 DS * 4, ES * 4, FS * 4, GS * 4
221 };
222
223 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
224
225 #endif
226
227 #ifdef __x86_64__
228
229 /* Returns true if the current inferior belongs to a x86-64 process,
230 per the tdesc. */
231
232 static int
233 is_64bit_tdesc (void)
234 {
235 struct regcache *regcache = get_thread_regcache (current_inferior, 0);
236
237 return register_size (regcache->tdesc, 0) == 8;
238 }
239
240 #endif
241
242 \f
243 /* Called by libthread_db. */
244
245 ps_err_e
246 ps_get_thread_area (const struct ps_prochandle *ph,
247 lwpid_t lwpid, int idx, void **base)
248 {
249 #ifdef __x86_64__
250 int use_64bit = is_64bit_tdesc ();
251
252 if (use_64bit)
253 {
254 switch (idx)
255 {
256 case FS:
257 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_FS) == 0)
258 return PS_OK;
259 break;
260 case GS:
261 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_GS) == 0)
262 return PS_OK;
263 break;
264 default:
265 return PS_BADADDR;
266 }
267 return PS_ERR;
268 }
269 #endif
270
271 {
272 unsigned int desc[4];
273
274 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
275 (void *) (intptr_t) idx, (unsigned long) &desc) < 0)
276 return PS_ERR;
277
278 /* Ensure we properly extend the value to 64-bits for x86_64. */
279 *base = (void *) (uintptr_t) desc[1];
280 return PS_OK;
281 }
282 }
283
284 /* Get the thread area address. This is used to recognize which
285 thread is which when tracing with the in-process agent library. We
286 don't read anything from the address, and treat it as opaque; it's
287 the address itself that we assume is unique per-thread. */
288
289 static int
290 x86_get_thread_area (int lwpid, CORE_ADDR *addr)
291 {
292 #ifdef __x86_64__
293 int use_64bit = is_64bit_tdesc ();
294
295 if (use_64bit)
296 {
297 void *base;
298 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
299 {
300 *addr = (CORE_ADDR) (uintptr_t) base;
301 return 0;
302 }
303
304 return -1;
305 }
306 #endif
307
308 {
309 struct lwp_info *lwp = find_lwp_pid (pid_to_ptid (lwpid));
310 struct thread_info *thr = get_lwp_thread (lwp);
311 struct regcache *regcache = get_thread_regcache (thr, 1);
312 unsigned int desc[4];
313 ULONGEST gs = 0;
314 const int reg_thread_area = 3; /* bits to scale down register value. */
315 int idx;
316
317 collect_register_by_name (regcache, "gs", &gs);
318
319 idx = gs >> reg_thread_area;
320
321 if (ptrace (PTRACE_GET_THREAD_AREA,
322 lwpid_of (thr),
323 (void *) (long) idx, (unsigned long) &desc) < 0)
324 return -1;
325
326 *addr = desc[1];
327 return 0;
328 }
329 }
330
331
332 \f
333 static int
334 x86_cannot_store_register (int regno)
335 {
336 #ifdef __x86_64__
337 if (is_64bit_tdesc ())
338 return 0;
339 #endif
340
341 return regno >= I386_NUM_REGS;
342 }
343
344 static int
345 x86_cannot_fetch_register (int regno)
346 {
347 #ifdef __x86_64__
348 if (is_64bit_tdesc ())
349 return 0;
350 #endif
351
352 return regno >= I386_NUM_REGS;
353 }
354
355 static void
356 x86_fill_gregset (struct regcache *regcache, void *buf)
357 {
358 int i;
359
360 #ifdef __x86_64__
361 if (register_size (regcache->tdesc, 0) == 8)
362 {
363 for (i = 0; i < X86_64_NUM_REGS; i++)
364 if (x86_64_regmap[i] != -1)
365 collect_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
366 return;
367 }
368
369 /* 32-bit inferior registers need to be zero-extended.
370 Callers would read uninitialized memory otherwise. */
371 memset (buf, 0x00, X86_64_USER_REGS * 8);
372 #endif
373
374 for (i = 0; i < I386_NUM_REGS; i++)
375 collect_register (regcache, i, ((char *) buf) + i386_regmap[i]);
376
377 collect_register_by_name (regcache, "orig_eax",
378 ((char *) buf) + ORIG_EAX * 4);
379 }
380
381 static void
382 x86_store_gregset (struct regcache *regcache, const void *buf)
383 {
384 int i;
385
386 #ifdef __x86_64__
387 if (register_size (regcache->tdesc, 0) == 8)
388 {
389 for (i = 0; i < X86_64_NUM_REGS; i++)
390 if (x86_64_regmap[i] != -1)
391 supply_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
392 return;
393 }
394 #endif
395
396 for (i = 0; i < I386_NUM_REGS; i++)
397 supply_register (regcache, i, ((char *) buf) + i386_regmap[i]);
398
399 supply_register_by_name (regcache, "orig_eax",
400 ((char *) buf) + ORIG_EAX * 4);
401 }
402
403 static void
404 x86_fill_fpregset (struct regcache *regcache, void *buf)
405 {
406 #ifdef __x86_64__
407 i387_cache_to_fxsave (regcache, buf);
408 #else
409 i387_cache_to_fsave (regcache, buf);
410 #endif
411 }
412
413 static void
414 x86_store_fpregset (struct regcache *regcache, const void *buf)
415 {
416 #ifdef __x86_64__
417 i387_fxsave_to_cache (regcache, buf);
418 #else
419 i387_fsave_to_cache (regcache, buf);
420 #endif
421 }
422
423 #ifndef __x86_64__
424
425 static void
426 x86_fill_fpxregset (struct regcache *regcache, void *buf)
427 {
428 i387_cache_to_fxsave (regcache, buf);
429 }
430
431 static void
432 x86_store_fpxregset (struct regcache *regcache, const void *buf)
433 {
434 i387_fxsave_to_cache (regcache, buf);
435 }
436
437 #endif
438
439 static void
440 x86_fill_xstateregset (struct regcache *regcache, void *buf)
441 {
442 i387_cache_to_xsave (regcache, buf);
443 }
444
445 static void
446 x86_store_xstateregset (struct regcache *regcache, const void *buf)
447 {
448 i387_xsave_to_cache (regcache, buf);
449 }
450
451 /* ??? The non-biarch i386 case stores all the i387 regs twice.
452 Once in i387_.*fsave.* and once in i387_.*fxsave.*.
453 This is, presumably, to handle the case where PTRACE_[GS]ETFPXREGS
454 doesn't work. IWBN to avoid the duplication in the case where it
455 does work. Maybe the arch_setup routine could check whether it works
456 and update the supported regsets accordingly. */
457
458 static struct regset_info x86_regsets[] =
459 {
460 #ifdef HAVE_PTRACE_GETREGS
461 { PTRACE_GETREGS, PTRACE_SETREGS, 0, sizeof (elf_gregset_t),
462 GENERAL_REGS,
463 x86_fill_gregset, x86_store_gregset },
464 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_X86_XSTATE, 0,
465 EXTENDED_REGS, x86_fill_xstateregset, x86_store_xstateregset },
466 # ifndef __x86_64__
467 # ifdef HAVE_PTRACE_GETFPXREGS
468 { PTRACE_GETFPXREGS, PTRACE_SETFPXREGS, 0, sizeof (elf_fpxregset_t),
469 EXTENDED_REGS,
470 x86_fill_fpxregset, x86_store_fpxregset },
471 # endif
472 # endif
473 { PTRACE_GETFPREGS, PTRACE_SETFPREGS, 0, sizeof (elf_fpregset_t),
474 FP_REGS,
475 x86_fill_fpregset, x86_store_fpregset },
476 #endif /* HAVE_PTRACE_GETREGS */
477 { 0, 0, 0, -1, -1, NULL, NULL }
478 };
479
480 static CORE_ADDR
481 x86_get_pc (struct regcache *regcache)
482 {
483 int use_64bit = register_size (regcache->tdesc, 0) == 8;
484
485 if (use_64bit)
486 {
487 unsigned long pc;
488 collect_register_by_name (regcache, "rip", &pc);
489 return (CORE_ADDR) pc;
490 }
491 else
492 {
493 unsigned int pc;
494 collect_register_by_name (regcache, "eip", &pc);
495 return (CORE_ADDR) pc;
496 }
497 }
498
499 static void
500 x86_set_pc (struct regcache *regcache, CORE_ADDR pc)
501 {
502 int use_64bit = register_size (regcache->tdesc, 0) == 8;
503
504 if (use_64bit)
505 {
506 unsigned long newpc = pc;
507 supply_register_by_name (regcache, "rip", &newpc);
508 }
509 else
510 {
511 unsigned int newpc = pc;
512 supply_register_by_name (regcache, "eip", &newpc);
513 }
514 }
515 \f
516 static const unsigned char x86_breakpoint[] = { 0xCC };
517 #define x86_breakpoint_len 1
518
519 static int
520 x86_breakpoint_at (CORE_ADDR pc)
521 {
522 unsigned char c;
523
524 (*the_target->read_memory) (pc, &c, 1);
525 if (c == 0xCC)
526 return 1;
527
528 return 0;
529 }
530 \f
531 /* Support for debug registers. */
532
533 static unsigned long
534 x86_linux_dr_get (ptid_t ptid, int regnum)
535 {
536 int tid;
537 unsigned long value;
538
539 tid = ptid_get_lwp (ptid);
540
541 errno = 0;
542 value = ptrace (PTRACE_PEEKUSER, tid,
543 offsetof (struct user, u_debugreg[regnum]), 0);
544 if (errno != 0)
545 error ("Couldn't read debug register");
546
547 return value;
548 }
549
550 static void
551 x86_linux_dr_set (ptid_t ptid, int regnum, unsigned long value)
552 {
553 int tid;
554
555 tid = ptid_get_lwp (ptid);
556
557 errno = 0;
558 ptrace (PTRACE_POKEUSER, tid,
559 offsetof (struct user, u_debugreg[regnum]), value);
560 if (errno != 0)
561 error ("Couldn't write debug register");
562 }
563
564 static int
565 update_debug_registers_callback (struct inferior_list_entry *entry,
566 void *pid_p)
567 {
568 struct thread_info *thr = (struct thread_info *) entry;
569 struct lwp_info *lwp = get_thread_lwp (thr);
570 int pid = *(int *) pid_p;
571
572 /* Only update the threads of this process. */
573 if (pid_of (thr) == pid)
574 {
575 /* The actual update is done later just before resuming the lwp,
576 we just mark that the registers need updating. */
577 lwp->arch_private->debug_registers_changed = 1;
578
579 /* If the lwp isn't stopped, force it to momentarily pause, so
580 we can update its debug registers. */
581 if (!lwp->stopped)
582 linux_stop_lwp (lwp);
583 }
584
585 return 0;
586 }
587
588 /* Update the inferior's debug register REGNUM from STATE. */
589
590 static void
591 i386_dr_low_set_addr (int regnum, CORE_ADDR addr)
592 {
593 /* Only update the threads of this process. */
594 int pid = pid_of (current_inferior);
595
596 if (! (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR))
597 fatal ("Invalid debug register %d", regnum);
598
599 find_inferior (&all_threads, update_debug_registers_callback, &pid);
600 }
601
602 /* Return the inferior's debug register REGNUM. */
603
604 static CORE_ADDR
605 i386_dr_low_get_addr (int regnum)
606 {
607 ptid_t ptid = ptid_of (current_inferior);
608
609 /* DR6 and DR7 are retrieved with some other way. */
610 gdb_assert (DR_FIRSTADDR <= regnum && regnum <= DR_LASTADDR);
611
612 return x86_linux_dr_get (ptid, regnum);
613 }
614
615 /* Update the inferior's DR7 debug control register from STATE. */
616
617 static void
618 i386_dr_low_set_control (unsigned long control)
619 {
620 /* Only update the threads of this process. */
621 int pid = pid_of (current_inferior);
622
623 find_inferior (&all_threads, update_debug_registers_callback, &pid);
624 }
625
626 /* Return the inferior's DR7 debug control register. */
627
628 static unsigned long
629 i386_dr_low_get_control (void)
630 {
631 ptid_t ptid = ptid_of (current_inferior);
632
633 return x86_linux_dr_get (ptid, DR_CONTROL);
634 }
635
636 /* Get the value of the DR6 debug status register from the inferior
637 and record it in STATE. */
638
639 static unsigned long
640 i386_dr_low_get_status (void)
641 {
642 ptid_t ptid = ptid_of (current_inferior);
643
644 return x86_linux_dr_get (ptid, DR_STATUS);
645 }
646
647 /* Low-level function vector. */
648 struct i386_dr_low_type i386_dr_low =
649 {
650 i386_dr_low_set_control,
651 i386_dr_low_set_addr,
652 i386_dr_low_get_addr,
653 i386_dr_low_get_status,
654 i386_dr_low_get_control,
655 sizeof (void *),
656 };
657 \f
658 /* Breakpoint/Watchpoint support. */
659
660 static int
661 x86_supports_z_point_type (char z_type)
662 {
663 switch (z_type)
664 {
665 case Z_PACKET_SW_BP:
666 case Z_PACKET_HW_BP:
667 case Z_PACKET_WRITE_WP:
668 case Z_PACKET_ACCESS_WP:
669 return 1;
670 default:
671 return 0;
672 }
673 }
674
675 static int
676 x86_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
677 int size, struct raw_breakpoint *bp)
678 {
679 struct process_info *proc = current_process ();
680
681 switch (type)
682 {
683 case raw_bkpt_type_sw:
684 return insert_memory_breakpoint (bp);
685
686 case raw_bkpt_type_hw:
687 case raw_bkpt_type_write_wp:
688 case raw_bkpt_type_access_wp:
689 {
690 enum target_hw_bp_type hw_type
691 = raw_bkpt_type_to_target_hw_bp_type (type);
692 struct i386_debug_reg_state *state
693 = &proc->private->arch_private->debug_reg_state;
694
695 return i386_dr_insert_watchpoint (state, hw_type, addr, size);
696 }
697
698 default:
699 /* Unsupported. */
700 return 1;
701 }
702 }
703
704 static int
705 x86_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
706 int size, struct raw_breakpoint *bp)
707 {
708 struct process_info *proc = current_process ();
709
710 switch (type)
711 {
712 case raw_bkpt_type_sw:
713 return remove_memory_breakpoint (bp);
714
715 case raw_bkpt_type_hw:
716 case raw_bkpt_type_write_wp:
717 case raw_bkpt_type_access_wp:
718 {
719 enum target_hw_bp_type hw_type
720 = raw_bkpt_type_to_target_hw_bp_type (type);
721 struct i386_debug_reg_state *state
722 = &proc->private->arch_private->debug_reg_state;
723
724 return i386_dr_remove_watchpoint (state, hw_type, addr, size);
725 }
726 default:
727 /* Unsupported. */
728 return 1;
729 }
730 }
731
732 static int
733 x86_stopped_by_watchpoint (void)
734 {
735 struct process_info *proc = current_process ();
736 return i386_dr_stopped_by_watchpoint (&proc->private->arch_private->debug_reg_state);
737 }
738
739 static CORE_ADDR
740 x86_stopped_data_address (void)
741 {
742 struct process_info *proc = current_process ();
743 CORE_ADDR addr;
744 if (i386_dr_stopped_data_address (&proc->private->arch_private->debug_reg_state,
745 &addr))
746 return addr;
747 return 0;
748 }
749 \f
750 /* Called when a new process is created. */
751
752 static struct arch_process_info *
753 x86_linux_new_process (void)
754 {
755 struct arch_process_info *info = xcalloc (1, sizeof (*info));
756
757 i386_low_init_dregs (&info->debug_reg_state);
758
759 return info;
760 }
761
762 /* Called when a new thread is detected. */
763
764 static struct arch_lwp_info *
765 x86_linux_new_thread (void)
766 {
767 struct arch_lwp_info *info = xcalloc (1, sizeof (*info));
768
769 info->debug_registers_changed = 1;
770
771 return info;
772 }
773
774 /* Called when resuming a thread.
775 If the debug regs have changed, update the thread's copies. */
776
777 static void
778 x86_linux_prepare_to_resume (struct lwp_info *lwp)
779 {
780 ptid_t ptid = ptid_of (get_lwp_thread (lwp));
781 int clear_status = 0;
782
783 if (lwp->arch_private->debug_registers_changed)
784 {
785 int i;
786 int pid = ptid_get_pid (ptid);
787 struct process_info *proc = find_process_pid (pid);
788 struct i386_debug_reg_state *state
789 = &proc->private->arch_private->debug_reg_state;
790
791 for (i = DR_FIRSTADDR; i <= DR_LASTADDR; i++)
792 if (state->dr_ref_count[i] > 0)
793 {
794 x86_linux_dr_set (ptid, i, state->dr_mirror[i]);
795
796 /* If we're setting a watchpoint, any change the inferior
797 had done itself to the debug registers needs to be
798 discarded, otherwise, i386_dr_stopped_data_address can
799 get confused. */
800 clear_status = 1;
801 }
802
803 x86_linux_dr_set (ptid, DR_CONTROL, state->dr_control_mirror);
804
805 lwp->arch_private->debug_registers_changed = 0;
806 }
807
808 if (clear_status || lwp->stopped_by_watchpoint)
809 x86_linux_dr_set (ptid, DR_STATUS, 0);
810 }
811 \f
812 /* When GDBSERVER is built as a 64-bit application on linux, the
813 PTRACE_GETSIGINFO data is always presented in 64-bit layout. Since
814 debugging a 32-bit inferior with a 64-bit GDBSERVER should look the same
815 as debugging it with a 32-bit GDBSERVER, we do the 32-bit <-> 64-bit
816 conversion in-place ourselves. */
817
818 /* These types below (compat_*) define a siginfo type that is layout
819 compatible with the siginfo type exported by the 32-bit userspace
820 support. */
821
822 #ifdef __x86_64__
823
824 typedef int compat_int_t;
825 typedef unsigned int compat_uptr_t;
826
827 typedef int compat_time_t;
828 typedef int compat_timer_t;
829 typedef int compat_clock_t;
830
831 struct compat_timeval
832 {
833 compat_time_t tv_sec;
834 int tv_usec;
835 };
836
837 typedef union compat_sigval
838 {
839 compat_int_t sival_int;
840 compat_uptr_t sival_ptr;
841 } compat_sigval_t;
842
843 typedef struct compat_siginfo
844 {
845 int si_signo;
846 int si_errno;
847 int si_code;
848
849 union
850 {
851 int _pad[((128 / sizeof (int)) - 3)];
852
853 /* kill() */
854 struct
855 {
856 unsigned int _pid;
857 unsigned int _uid;
858 } _kill;
859
860 /* POSIX.1b timers */
861 struct
862 {
863 compat_timer_t _tid;
864 int _overrun;
865 compat_sigval_t _sigval;
866 } _timer;
867
868 /* POSIX.1b signals */
869 struct
870 {
871 unsigned int _pid;
872 unsigned int _uid;
873 compat_sigval_t _sigval;
874 } _rt;
875
876 /* SIGCHLD */
877 struct
878 {
879 unsigned int _pid;
880 unsigned int _uid;
881 int _status;
882 compat_clock_t _utime;
883 compat_clock_t _stime;
884 } _sigchld;
885
886 /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */
887 struct
888 {
889 unsigned int _addr;
890 } _sigfault;
891
892 /* SIGPOLL */
893 struct
894 {
895 int _band;
896 int _fd;
897 } _sigpoll;
898 } _sifields;
899 } compat_siginfo_t;
900
901 /* For x32, clock_t in _sigchld is 64bit aligned at 4 bytes. */
902 typedef long __attribute__ ((__aligned__ (4))) compat_x32_clock_t;
903
904 typedef struct compat_x32_siginfo
905 {
906 int si_signo;
907 int si_errno;
908 int si_code;
909
910 union
911 {
912 int _pad[((128 / sizeof (int)) - 3)];
913
914 /* kill() */
915 struct
916 {
917 unsigned int _pid;
918 unsigned int _uid;
919 } _kill;
920
921 /* POSIX.1b timers */
922 struct
923 {
924 compat_timer_t _tid;
925 int _overrun;
926 compat_sigval_t _sigval;
927 } _timer;
928
929 /* POSIX.1b signals */
930 struct
931 {
932 unsigned int _pid;
933 unsigned int _uid;
934 compat_sigval_t _sigval;
935 } _rt;
936
937 /* SIGCHLD */
938 struct
939 {
940 unsigned int _pid;
941 unsigned int _uid;
942 int _status;
943 compat_x32_clock_t _utime;
944 compat_x32_clock_t _stime;
945 } _sigchld;
946
947 /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */
948 struct
949 {
950 unsigned int _addr;
951 } _sigfault;
952
953 /* SIGPOLL */
954 struct
955 {
956 int _band;
957 int _fd;
958 } _sigpoll;
959 } _sifields;
960 } compat_x32_siginfo_t __attribute__ ((__aligned__ (8)));
961
962 #define cpt_si_pid _sifields._kill._pid
963 #define cpt_si_uid _sifields._kill._uid
964 #define cpt_si_timerid _sifields._timer._tid
965 #define cpt_si_overrun _sifields._timer._overrun
966 #define cpt_si_status _sifields._sigchld._status
967 #define cpt_si_utime _sifields._sigchld._utime
968 #define cpt_si_stime _sifields._sigchld._stime
969 #define cpt_si_ptr _sifields._rt._sigval.sival_ptr
970 #define cpt_si_addr _sifields._sigfault._addr
971 #define cpt_si_band _sifields._sigpoll._band
972 #define cpt_si_fd _sifields._sigpoll._fd
973
974 /* glibc at least up to 2.3.2 doesn't have si_timerid, si_overrun.
975 In their place is si_timer1,si_timer2. */
976 #ifndef si_timerid
977 #define si_timerid si_timer1
978 #endif
979 #ifndef si_overrun
980 #define si_overrun si_timer2
981 #endif
982
983 static void
984 compat_siginfo_from_siginfo (compat_siginfo_t *to, siginfo_t *from)
985 {
986 memset (to, 0, sizeof (*to));
987
988 to->si_signo = from->si_signo;
989 to->si_errno = from->si_errno;
990 to->si_code = from->si_code;
991
992 if (to->si_code == SI_TIMER)
993 {
994 to->cpt_si_timerid = from->si_timerid;
995 to->cpt_si_overrun = from->si_overrun;
996 to->cpt_si_ptr = (intptr_t) from->si_ptr;
997 }
998 else if (to->si_code == SI_USER)
999 {
1000 to->cpt_si_pid = from->si_pid;
1001 to->cpt_si_uid = from->si_uid;
1002 }
1003 else if (to->si_code < 0)
1004 {
1005 to->cpt_si_pid = from->si_pid;
1006 to->cpt_si_uid = from->si_uid;
1007 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1008 }
1009 else
1010 {
1011 switch (to->si_signo)
1012 {
1013 case SIGCHLD:
1014 to->cpt_si_pid = from->si_pid;
1015 to->cpt_si_uid = from->si_uid;
1016 to->cpt_si_status = from->si_status;
1017 to->cpt_si_utime = from->si_utime;
1018 to->cpt_si_stime = from->si_stime;
1019 break;
1020 case SIGILL:
1021 case SIGFPE:
1022 case SIGSEGV:
1023 case SIGBUS:
1024 to->cpt_si_addr = (intptr_t) from->si_addr;
1025 break;
1026 case SIGPOLL:
1027 to->cpt_si_band = from->si_band;
1028 to->cpt_si_fd = from->si_fd;
1029 break;
1030 default:
1031 to->cpt_si_pid = from->si_pid;
1032 to->cpt_si_uid = from->si_uid;
1033 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1034 break;
1035 }
1036 }
1037 }
1038
1039 static void
1040 siginfo_from_compat_siginfo (siginfo_t *to, compat_siginfo_t *from)
1041 {
1042 memset (to, 0, sizeof (*to));
1043
1044 to->si_signo = from->si_signo;
1045 to->si_errno = from->si_errno;
1046 to->si_code = from->si_code;
1047
1048 if (to->si_code == SI_TIMER)
1049 {
1050 to->si_timerid = from->cpt_si_timerid;
1051 to->si_overrun = from->cpt_si_overrun;
1052 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1053 }
1054 else if (to->si_code == SI_USER)
1055 {
1056 to->si_pid = from->cpt_si_pid;
1057 to->si_uid = from->cpt_si_uid;
1058 }
1059 else if (to->si_code < 0)
1060 {
1061 to->si_pid = from->cpt_si_pid;
1062 to->si_uid = from->cpt_si_uid;
1063 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1064 }
1065 else
1066 {
1067 switch (to->si_signo)
1068 {
1069 case SIGCHLD:
1070 to->si_pid = from->cpt_si_pid;
1071 to->si_uid = from->cpt_si_uid;
1072 to->si_status = from->cpt_si_status;
1073 to->si_utime = from->cpt_si_utime;
1074 to->si_stime = from->cpt_si_stime;
1075 break;
1076 case SIGILL:
1077 case SIGFPE:
1078 case SIGSEGV:
1079 case SIGBUS:
1080 to->si_addr = (void *) (intptr_t) from->cpt_si_addr;
1081 break;
1082 case SIGPOLL:
1083 to->si_band = from->cpt_si_band;
1084 to->si_fd = from->cpt_si_fd;
1085 break;
1086 default:
1087 to->si_pid = from->cpt_si_pid;
1088 to->si_uid = from->cpt_si_uid;
1089 to->si_ptr = (void* ) (intptr_t) from->cpt_si_ptr;
1090 break;
1091 }
1092 }
1093 }
1094
1095 static void
1096 compat_x32_siginfo_from_siginfo (compat_x32_siginfo_t *to,
1097 siginfo_t *from)
1098 {
1099 memset (to, 0, sizeof (*to));
1100
1101 to->si_signo = from->si_signo;
1102 to->si_errno = from->si_errno;
1103 to->si_code = from->si_code;
1104
1105 if (to->si_code == SI_TIMER)
1106 {
1107 to->cpt_si_timerid = from->si_timerid;
1108 to->cpt_si_overrun = from->si_overrun;
1109 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1110 }
1111 else if (to->si_code == SI_USER)
1112 {
1113 to->cpt_si_pid = from->si_pid;
1114 to->cpt_si_uid = from->si_uid;
1115 }
1116 else if (to->si_code < 0)
1117 {
1118 to->cpt_si_pid = from->si_pid;
1119 to->cpt_si_uid = from->si_uid;
1120 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1121 }
1122 else
1123 {
1124 switch (to->si_signo)
1125 {
1126 case SIGCHLD:
1127 to->cpt_si_pid = from->si_pid;
1128 to->cpt_si_uid = from->si_uid;
1129 to->cpt_si_status = from->si_status;
1130 to->cpt_si_utime = from->si_utime;
1131 to->cpt_si_stime = from->si_stime;
1132 break;
1133 case SIGILL:
1134 case SIGFPE:
1135 case SIGSEGV:
1136 case SIGBUS:
1137 to->cpt_si_addr = (intptr_t) from->si_addr;
1138 break;
1139 case SIGPOLL:
1140 to->cpt_si_band = from->si_band;
1141 to->cpt_si_fd = from->si_fd;
1142 break;
1143 default:
1144 to->cpt_si_pid = from->si_pid;
1145 to->cpt_si_uid = from->si_uid;
1146 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1147 break;
1148 }
1149 }
1150 }
1151
1152 static void
1153 siginfo_from_compat_x32_siginfo (siginfo_t *to,
1154 compat_x32_siginfo_t *from)
1155 {
1156 memset (to, 0, sizeof (*to));
1157
1158 to->si_signo = from->si_signo;
1159 to->si_errno = from->si_errno;
1160 to->si_code = from->si_code;
1161
1162 if (to->si_code == SI_TIMER)
1163 {
1164 to->si_timerid = from->cpt_si_timerid;
1165 to->si_overrun = from->cpt_si_overrun;
1166 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1167 }
1168 else if (to->si_code == SI_USER)
1169 {
1170 to->si_pid = from->cpt_si_pid;
1171 to->si_uid = from->cpt_si_uid;
1172 }
1173 else if (to->si_code < 0)
1174 {
1175 to->si_pid = from->cpt_si_pid;
1176 to->si_uid = from->cpt_si_uid;
1177 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1178 }
1179 else
1180 {
1181 switch (to->si_signo)
1182 {
1183 case SIGCHLD:
1184 to->si_pid = from->cpt_si_pid;
1185 to->si_uid = from->cpt_si_uid;
1186 to->si_status = from->cpt_si_status;
1187 to->si_utime = from->cpt_si_utime;
1188 to->si_stime = from->cpt_si_stime;
1189 break;
1190 case SIGILL:
1191 case SIGFPE:
1192 case SIGSEGV:
1193 case SIGBUS:
1194 to->si_addr = (void *) (intptr_t) from->cpt_si_addr;
1195 break;
1196 case SIGPOLL:
1197 to->si_band = from->cpt_si_band;
1198 to->si_fd = from->cpt_si_fd;
1199 break;
1200 default:
1201 to->si_pid = from->cpt_si_pid;
1202 to->si_uid = from->cpt_si_uid;
1203 to->si_ptr = (void* ) (intptr_t) from->cpt_si_ptr;
1204 break;
1205 }
1206 }
1207 }
1208
1209 #endif /* __x86_64__ */
1210
1211 /* Convert a native/host siginfo object, into/from the siginfo in the
1212 layout of the inferiors' architecture. Returns true if any
1213 conversion was done; false otherwise. If DIRECTION is 1, then copy
1214 from INF to NATIVE. If DIRECTION is 0, copy from NATIVE to
1215 INF. */
1216
1217 static int
1218 x86_siginfo_fixup (siginfo_t *native, void *inf, int direction)
1219 {
1220 #ifdef __x86_64__
1221 unsigned int machine;
1222 int tid = lwpid_of (current_inferior);
1223 int is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
1224
1225 /* Is the inferior 32-bit? If so, then fixup the siginfo object. */
1226 if (!is_64bit_tdesc ())
1227 {
1228 if (sizeof (siginfo_t) != sizeof (compat_siginfo_t))
1229 fatal ("unexpected difference in siginfo");
1230
1231 if (direction == 0)
1232 compat_siginfo_from_siginfo ((struct compat_siginfo *) inf, native);
1233 else
1234 siginfo_from_compat_siginfo (native, (struct compat_siginfo *) inf);
1235
1236 return 1;
1237 }
1238 /* No fixup for native x32 GDB. */
1239 else if (!is_elf64 && sizeof (void *) == 8)
1240 {
1241 if (sizeof (siginfo_t) != sizeof (compat_x32_siginfo_t))
1242 fatal ("unexpected difference in siginfo");
1243
1244 if (direction == 0)
1245 compat_x32_siginfo_from_siginfo ((struct compat_x32_siginfo *) inf,
1246 native);
1247 else
1248 siginfo_from_compat_x32_siginfo (native,
1249 (struct compat_x32_siginfo *) inf);
1250
1251 return 1;
1252 }
1253 #endif
1254
1255 return 0;
1256 }
1257 \f
1258 static int use_xml;
1259
1260 /* Format of XSAVE extended state is:
1261 struct
1262 {
1263 fxsave_bytes[0..463]
1264 sw_usable_bytes[464..511]
1265 xstate_hdr_bytes[512..575]
1266 avx_bytes[576..831]
1267 future_state etc
1268 };
1269
1270 Same memory layout will be used for the coredump NT_X86_XSTATE
1271 representing the XSAVE extended state registers.
1272
1273 The first 8 bytes of the sw_usable_bytes[464..467] is the OS enabled
1274 extended state mask, which is the same as the extended control register
1275 0 (the XFEATURE_ENABLED_MASK register), XCR0. We can use this mask
1276 together with the mask saved in the xstate_hdr_bytes to determine what
1277 states the processor/OS supports and what state, used or initialized,
1278 the process/thread is in. */
1279 #define I386_LINUX_XSAVE_XCR0_OFFSET 464
1280
1281 /* Does the current host support the GETFPXREGS request? The header
1282 file may or may not define it, and even if it is defined, the
1283 kernel will return EIO if it's running on a pre-SSE processor. */
1284 int have_ptrace_getfpxregs =
1285 #ifdef HAVE_PTRACE_GETFPXREGS
1286 -1
1287 #else
1288 0
1289 #endif
1290 ;
1291
1292 /* Does the current host support PTRACE_GETREGSET? */
1293 static int have_ptrace_getregset = -1;
1294
1295 /* Get Linux/x86 target description from running target. */
1296
1297 static const struct target_desc *
1298 x86_linux_read_description (void)
1299 {
1300 unsigned int machine;
1301 int is_elf64;
1302 int xcr0_features;
1303 int tid;
1304 static uint64_t xcr0;
1305 struct regset_info *regset;
1306
1307 tid = lwpid_of (current_inferior);
1308
1309 is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
1310
1311 if (sizeof (void *) == 4)
1312 {
1313 if (is_elf64 > 0)
1314 error (_("Can't debug 64-bit process with 32-bit GDBserver"));
1315 #ifndef __x86_64__
1316 else if (machine == EM_X86_64)
1317 error (_("Can't debug x86-64 process with 32-bit GDBserver"));
1318 #endif
1319 }
1320
1321 #if !defined __x86_64__ && defined HAVE_PTRACE_GETFPXREGS
1322 if (machine == EM_386 && have_ptrace_getfpxregs == -1)
1323 {
1324 elf_fpxregset_t fpxregs;
1325
1326 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (long) &fpxregs) < 0)
1327 {
1328 have_ptrace_getfpxregs = 0;
1329 have_ptrace_getregset = 0;
1330 return tdesc_i386_mmx_linux;
1331 }
1332 else
1333 have_ptrace_getfpxregs = 1;
1334 }
1335 #endif
1336
1337 if (!use_xml)
1338 {
1339 x86_xcr0 = I386_XSTATE_SSE_MASK;
1340
1341 /* Don't use XML. */
1342 #ifdef __x86_64__
1343 if (machine == EM_X86_64)
1344 return tdesc_amd64_linux_no_xml;
1345 else
1346 #endif
1347 return tdesc_i386_linux_no_xml;
1348 }
1349
1350 if (have_ptrace_getregset == -1)
1351 {
1352 uint64_t xstateregs[(I386_XSTATE_SSE_SIZE / sizeof (uint64_t))];
1353 struct iovec iov;
1354
1355 iov.iov_base = xstateregs;
1356 iov.iov_len = sizeof (xstateregs);
1357
1358 /* Check if PTRACE_GETREGSET works. */
1359 if (ptrace (PTRACE_GETREGSET, tid,
1360 (unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
1361 have_ptrace_getregset = 0;
1362 else
1363 {
1364 have_ptrace_getregset = 1;
1365
1366 /* Get XCR0 from XSAVE extended state. */
1367 xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET
1368 / sizeof (uint64_t))];
1369
1370 /* Use PTRACE_GETREGSET if it is available. */
1371 for (regset = x86_regsets;
1372 regset->fill_function != NULL; regset++)
1373 if (regset->get_request == PTRACE_GETREGSET)
1374 regset->size = I386_XSTATE_SIZE (xcr0);
1375 else if (regset->type != GENERAL_REGS)
1376 regset->size = 0;
1377 }
1378 }
1379
1380 /* Check the native XCR0 only if PTRACE_GETREGSET is available. */
1381 xcr0_features = (have_ptrace_getregset
1382 && (xcr0 & I386_XSTATE_ALL_MASK));
1383
1384 if (xcr0_features)
1385 x86_xcr0 = xcr0;
1386
1387 if (machine == EM_X86_64)
1388 {
1389 #ifdef __x86_64__
1390 if (is_elf64)
1391 {
1392 if (xcr0_features)
1393 {
1394 switch (xcr0 & I386_XSTATE_ALL_MASK)
1395 {
1396 case I386_XSTATE_AVX512_MASK:
1397 return tdesc_amd64_avx512_linux;
1398
1399 case I386_XSTATE_MPX_MASK:
1400 return tdesc_amd64_mpx_linux;
1401
1402 case I386_XSTATE_AVX_MASK:
1403 return tdesc_amd64_avx_linux;
1404
1405 default:
1406 return tdesc_amd64_linux;
1407 }
1408 }
1409 else
1410 return tdesc_amd64_linux;
1411 }
1412 else
1413 {
1414 if (xcr0_features)
1415 {
1416 switch (xcr0 & I386_XSTATE_ALL_MASK)
1417 {
1418 case I386_XSTATE_AVX512_MASK:
1419 return tdesc_x32_avx512_linux;
1420
1421 case I386_XSTATE_MPX_MASK: /* No MPX on x32. */
1422 case I386_XSTATE_AVX_MASK:
1423 return tdesc_x32_avx_linux;
1424
1425 default:
1426 return tdesc_x32_linux;
1427 }
1428 }
1429 else
1430 return tdesc_x32_linux;
1431 }
1432 #endif
1433 }
1434 else
1435 {
1436 if (xcr0_features)
1437 {
1438 switch (xcr0 & I386_XSTATE_ALL_MASK)
1439 {
1440 case (I386_XSTATE_AVX512_MASK):
1441 return tdesc_i386_avx512_linux;
1442
1443 case (I386_XSTATE_MPX_MASK):
1444 return tdesc_i386_mpx_linux;
1445
1446 case (I386_XSTATE_AVX_MASK):
1447 return tdesc_i386_avx_linux;
1448
1449 default:
1450 return tdesc_i386_linux;
1451 }
1452 }
1453 else
1454 return tdesc_i386_linux;
1455 }
1456
1457 gdb_assert_not_reached ("failed to return tdesc");
1458 }
1459
1460 /* Callback for find_inferior. Stops iteration when a thread with a
1461 given PID is found. */
1462
1463 static int
1464 same_process_callback (struct inferior_list_entry *entry, void *data)
1465 {
1466 int pid = *(int *) data;
1467
1468 return (ptid_get_pid (entry->id) == pid);
1469 }
1470
1471 /* Callback for for_each_inferior. Calls the arch_setup routine for
1472 each process. */
1473
1474 static void
1475 x86_arch_setup_process_callback (struct inferior_list_entry *entry)
1476 {
1477 int pid = ptid_get_pid (entry->id);
1478
1479 /* Look up any thread of this processes. */
1480 current_inferior
1481 = (struct thread_info *) find_inferior (&all_threads,
1482 same_process_callback, &pid);
1483
1484 the_low_target.arch_setup ();
1485 }
1486
1487 /* Update all the target description of all processes; a new GDB
1488 connected, and it may or not support xml target descriptions. */
1489
1490 static void
1491 x86_linux_update_xmltarget (void)
1492 {
1493 struct thread_info *save_inferior = current_inferior;
1494
1495 /* Before changing the register cache's internal layout, flush the
1496 contents of the current valid caches back to the threads, and
1497 release the current regcache objects. */
1498 regcache_release ();
1499
1500 for_each_inferior (&all_processes, x86_arch_setup_process_callback);
1501
1502 current_inferior = save_inferior;
1503 }
1504
1505 /* Process qSupported query, "xmlRegisters=". Update the buffer size for
1506 PTRACE_GETREGSET. */
1507
1508 static void
1509 x86_linux_process_qsupported (const char *query)
1510 {
1511 /* Return if gdb doesn't support XML. If gdb sends "xmlRegisters="
1512 with "i386" in qSupported query, it supports x86 XML target
1513 descriptions. */
1514 use_xml = 0;
1515 if (query != NULL && strncmp (query, "xmlRegisters=", 13) == 0)
1516 {
1517 char *copy = xstrdup (query + 13);
1518 char *p;
1519
1520 for (p = strtok (copy, ","); p != NULL; p = strtok (NULL, ","))
1521 {
1522 if (strcmp (p, "i386") == 0)
1523 {
1524 use_xml = 1;
1525 break;
1526 }
1527 }
1528
1529 free (copy);
1530 }
1531
1532 x86_linux_update_xmltarget ();
1533 }
1534
1535 /* Common for x86/x86-64. */
1536
1537 static struct regsets_info x86_regsets_info =
1538 {
1539 x86_regsets, /* regsets */
1540 0, /* num_regsets */
1541 NULL, /* disabled_regsets */
1542 };
1543
1544 #ifdef __x86_64__
1545 static struct regs_info amd64_linux_regs_info =
1546 {
1547 NULL, /* regset_bitmap */
1548 NULL, /* usrregs_info */
1549 &x86_regsets_info
1550 };
1551 #endif
1552 static struct usrregs_info i386_linux_usrregs_info =
1553 {
1554 I386_NUM_REGS,
1555 i386_regmap,
1556 };
1557
1558 static struct regs_info i386_linux_regs_info =
1559 {
1560 NULL, /* regset_bitmap */
1561 &i386_linux_usrregs_info,
1562 &x86_regsets_info
1563 };
1564
1565 const struct regs_info *
1566 x86_linux_regs_info (void)
1567 {
1568 #ifdef __x86_64__
1569 if (is_64bit_tdesc ())
1570 return &amd64_linux_regs_info;
1571 else
1572 #endif
1573 return &i386_linux_regs_info;
1574 }
1575
1576 /* Initialize the target description for the architecture of the
1577 inferior. */
1578
1579 static void
1580 x86_arch_setup (void)
1581 {
1582 current_process ()->tdesc = x86_linux_read_description ();
1583 }
1584
1585 static int
1586 x86_supports_tracepoints (void)
1587 {
1588 return 1;
1589 }
1590
1591 static void
1592 append_insns (CORE_ADDR *to, size_t len, const unsigned char *buf)
1593 {
1594 write_inferior_memory (*to, buf, len);
1595 *to += len;
1596 }
1597
1598 static int
1599 push_opcode (unsigned char *buf, char *op)
1600 {
1601 unsigned char *buf_org = buf;
1602
1603 while (1)
1604 {
1605 char *endptr;
1606 unsigned long ul = strtoul (op, &endptr, 16);
1607
1608 if (endptr == op)
1609 break;
1610
1611 *buf++ = ul;
1612 op = endptr;
1613 }
1614
1615 return buf - buf_org;
1616 }
1617
1618 #ifdef __x86_64__
1619
1620 /* Build a jump pad that saves registers and calls a collection
1621 function. Writes a jump instruction to the jump pad to
1622 JJUMPAD_INSN. The caller is responsible to write it in at the
1623 tracepoint address. */
1624
1625 static int
1626 amd64_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1627 CORE_ADDR collector,
1628 CORE_ADDR lockaddr,
1629 ULONGEST orig_size,
1630 CORE_ADDR *jump_entry,
1631 CORE_ADDR *trampoline,
1632 ULONGEST *trampoline_size,
1633 unsigned char *jjump_pad_insn,
1634 ULONGEST *jjump_pad_insn_size,
1635 CORE_ADDR *adjusted_insn_addr,
1636 CORE_ADDR *adjusted_insn_addr_end,
1637 char *err)
1638 {
1639 unsigned char buf[40];
1640 int i, offset;
1641 int64_t loffset;
1642
1643 CORE_ADDR buildaddr = *jump_entry;
1644
1645 /* Build the jump pad. */
1646
1647 /* First, do tracepoint data collection. Save registers. */
1648 i = 0;
1649 /* Need to ensure stack pointer saved first. */
1650 buf[i++] = 0x54; /* push %rsp */
1651 buf[i++] = 0x55; /* push %rbp */
1652 buf[i++] = 0x57; /* push %rdi */
1653 buf[i++] = 0x56; /* push %rsi */
1654 buf[i++] = 0x52; /* push %rdx */
1655 buf[i++] = 0x51; /* push %rcx */
1656 buf[i++] = 0x53; /* push %rbx */
1657 buf[i++] = 0x50; /* push %rax */
1658 buf[i++] = 0x41; buf[i++] = 0x57; /* push %r15 */
1659 buf[i++] = 0x41; buf[i++] = 0x56; /* push %r14 */
1660 buf[i++] = 0x41; buf[i++] = 0x55; /* push %r13 */
1661 buf[i++] = 0x41; buf[i++] = 0x54; /* push %r12 */
1662 buf[i++] = 0x41; buf[i++] = 0x53; /* push %r11 */
1663 buf[i++] = 0x41; buf[i++] = 0x52; /* push %r10 */
1664 buf[i++] = 0x41; buf[i++] = 0x51; /* push %r9 */
1665 buf[i++] = 0x41; buf[i++] = 0x50; /* push %r8 */
1666 buf[i++] = 0x9c; /* pushfq */
1667 buf[i++] = 0x48; /* movl <addr>,%rdi */
1668 buf[i++] = 0xbf;
1669 *((unsigned long *)(buf + i)) = (unsigned long) tpaddr;
1670 i += sizeof (unsigned long);
1671 buf[i++] = 0x57; /* push %rdi */
1672 append_insns (&buildaddr, i, buf);
1673
1674 /* Stack space for the collecting_t object. */
1675 i = 0;
1676 i += push_opcode (&buf[i], "48 83 ec 18"); /* sub $0x18,%rsp */
1677 i += push_opcode (&buf[i], "48 b8"); /* mov <tpoint>,%rax */
1678 memcpy (buf + i, &tpoint, 8);
1679 i += 8;
1680 i += push_opcode (&buf[i], "48 89 04 24"); /* mov %rax,(%rsp) */
1681 i += push_opcode (&buf[i],
1682 "64 48 8b 04 25 00 00 00 00"); /* mov %fs:0x0,%rax */
1683 i += push_opcode (&buf[i], "48 89 44 24 08"); /* mov %rax,0x8(%rsp) */
1684 append_insns (&buildaddr, i, buf);
1685
1686 /* spin-lock. */
1687 i = 0;
1688 i += push_opcode (&buf[i], "48 be"); /* movl <lockaddr>,%rsi */
1689 memcpy (&buf[i], (void *) &lockaddr, 8);
1690 i += 8;
1691 i += push_opcode (&buf[i], "48 89 e1"); /* mov %rsp,%rcx */
1692 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1693 i += push_opcode (&buf[i], "f0 48 0f b1 0e"); /* lock cmpxchg %rcx,(%rsi) */
1694 i += push_opcode (&buf[i], "48 85 c0"); /* test %rax,%rax */
1695 i += push_opcode (&buf[i], "75 f4"); /* jne <again> */
1696 append_insns (&buildaddr, i, buf);
1697
1698 /* Set up the gdb_collect call. */
1699 /* At this point, (stack pointer + 0x18) is the base of our saved
1700 register block. */
1701
1702 i = 0;
1703 i += push_opcode (&buf[i], "48 89 e6"); /* mov %rsp,%rsi */
1704 i += push_opcode (&buf[i], "48 83 c6 18"); /* add $0x18,%rsi */
1705
1706 /* tpoint address may be 64-bit wide. */
1707 i += push_opcode (&buf[i], "48 bf"); /* movl <addr>,%rdi */
1708 memcpy (buf + i, &tpoint, 8);
1709 i += 8;
1710 append_insns (&buildaddr, i, buf);
1711
1712 /* The collector function being in the shared library, may be
1713 >31-bits away off the jump pad. */
1714 i = 0;
1715 i += push_opcode (&buf[i], "48 b8"); /* mov $collector,%rax */
1716 memcpy (buf + i, &collector, 8);
1717 i += 8;
1718 i += push_opcode (&buf[i], "ff d0"); /* callq *%rax */
1719 append_insns (&buildaddr, i, buf);
1720
1721 /* Clear the spin-lock. */
1722 i = 0;
1723 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1724 i += push_opcode (&buf[i], "48 a3"); /* mov %rax, lockaddr */
1725 memcpy (buf + i, &lockaddr, 8);
1726 i += 8;
1727 append_insns (&buildaddr, i, buf);
1728
1729 /* Remove stack that had been used for the collect_t object. */
1730 i = 0;
1731 i += push_opcode (&buf[i], "48 83 c4 18"); /* add $0x18,%rsp */
1732 append_insns (&buildaddr, i, buf);
1733
1734 /* Restore register state. */
1735 i = 0;
1736 buf[i++] = 0x48; /* add $0x8,%rsp */
1737 buf[i++] = 0x83;
1738 buf[i++] = 0xc4;
1739 buf[i++] = 0x08;
1740 buf[i++] = 0x9d; /* popfq */
1741 buf[i++] = 0x41; buf[i++] = 0x58; /* pop %r8 */
1742 buf[i++] = 0x41; buf[i++] = 0x59; /* pop %r9 */
1743 buf[i++] = 0x41; buf[i++] = 0x5a; /* pop %r10 */
1744 buf[i++] = 0x41; buf[i++] = 0x5b; /* pop %r11 */
1745 buf[i++] = 0x41; buf[i++] = 0x5c; /* pop %r12 */
1746 buf[i++] = 0x41; buf[i++] = 0x5d; /* pop %r13 */
1747 buf[i++] = 0x41; buf[i++] = 0x5e; /* pop %r14 */
1748 buf[i++] = 0x41; buf[i++] = 0x5f; /* pop %r15 */
1749 buf[i++] = 0x58; /* pop %rax */
1750 buf[i++] = 0x5b; /* pop %rbx */
1751 buf[i++] = 0x59; /* pop %rcx */
1752 buf[i++] = 0x5a; /* pop %rdx */
1753 buf[i++] = 0x5e; /* pop %rsi */
1754 buf[i++] = 0x5f; /* pop %rdi */
1755 buf[i++] = 0x5d; /* pop %rbp */
1756 buf[i++] = 0x5c; /* pop %rsp */
1757 append_insns (&buildaddr, i, buf);
1758
1759 /* Now, adjust the original instruction to execute in the jump
1760 pad. */
1761 *adjusted_insn_addr = buildaddr;
1762 relocate_instruction (&buildaddr, tpaddr);
1763 *adjusted_insn_addr_end = buildaddr;
1764
1765 /* Finally, write a jump back to the program. */
1766
1767 loffset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1768 if (loffset > INT_MAX || loffset < INT_MIN)
1769 {
1770 sprintf (err,
1771 "E.Jump back from jump pad too far from tracepoint "
1772 "(offset 0x%" PRIx64 " > int32).", loffset);
1773 return 1;
1774 }
1775
1776 offset = (int) loffset;
1777 memcpy (buf, jump_insn, sizeof (jump_insn));
1778 memcpy (buf + 1, &offset, 4);
1779 append_insns (&buildaddr, sizeof (jump_insn), buf);
1780
1781 /* The jump pad is now built. Wire in a jump to our jump pad. This
1782 is always done last (by our caller actually), so that we can
1783 install fast tracepoints with threads running. This relies on
1784 the agent's atomic write support. */
1785 loffset = *jump_entry - (tpaddr + sizeof (jump_insn));
1786 if (loffset > INT_MAX || loffset < INT_MIN)
1787 {
1788 sprintf (err,
1789 "E.Jump pad too far from tracepoint "
1790 "(offset 0x%" PRIx64 " > int32).", loffset);
1791 return 1;
1792 }
1793
1794 offset = (int) loffset;
1795
1796 memcpy (buf, jump_insn, sizeof (jump_insn));
1797 memcpy (buf + 1, &offset, 4);
1798 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1799 *jjump_pad_insn_size = sizeof (jump_insn);
1800
1801 /* Return the end address of our pad. */
1802 *jump_entry = buildaddr;
1803
1804 return 0;
1805 }
1806
1807 #endif /* __x86_64__ */
1808
1809 /* Build a jump pad that saves registers and calls a collection
1810 function. Writes a jump instruction to the jump pad to
1811 JJUMPAD_INSN. The caller is responsible to write it in at the
1812 tracepoint address. */
1813
1814 static int
1815 i386_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1816 CORE_ADDR collector,
1817 CORE_ADDR lockaddr,
1818 ULONGEST orig_size,
1819 CORE_ADDR *jump_entry,
1820 CORE_ADDR *trampoline,
1821 ULONGEST *trampoline_size,
1822 unsigned char *jjump_pad_insn,
1823 ULONGEST *jjump_pad_insn_size,
1824 CORE_ADDR *adjusted_insn_addr,
1825 CORE_ADDR *adjusted_insn_addr_end,
1826 char *err)
1827 {
1828 unsigned char buf[0x100];
1829 int i, offset;
1830 CORE_ADDR buildaddr = *jump_entry;
1831
1832 /* Build the jump pad. */
1833
1834 /* First, do tracepoint data collection. Save registers. */
1835 i = 0;
1836 buf[i++] = 0x60; /* pushad */
1837 buf[i++] = 0x68; /* push tpaddr aka $pc */
1838 *((int *)(buf + i)) = (int) tpaddr;
1839 i += 4;
1840 buf[i++] = 0x9c; /* pushf */
1841 buf[i++] = 0x1e; /* push %ds */
1842 buf[i++] = 0x06; /* push %es */
1843 buf[i++] = 0x0f; /* push %fs */
1844 buf[i++] = 0xa0;
1845 buf[i++] = 0x0f; /* push %gs */
1846 buf[i++] = 0xa8;
1847 buf[i++] = 0x16; /* push %ss */
1848 buf[i++] = 0x0e; /* push %cs */
1849 append_insns (&buildaddr, i, buf);
1850
1851 /* Stack space for the collecting_t object. */
1852 i = 0;
1853 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1854
1855 /* Build the object. */
1856 i += push_opcode (&buf[i], "b8"); /* mov <tpoint>,%eax */
1857 memcpy (buf + i, &tpoint, 4);
1858 i += 4;
1859 i += push_opcode (&buf[i], "89 04 24"); /* mov %eax,(%esp) */
1860
1861 i += push_opcode (&buf[i], "65 a1 00 00 00 00"); /* mov %gs:0x0,%eax */
1862 i += push_opcode (&buf[i], "89 44 24 04"); /* mov %eax,0x4(%esp) */
1863 append_insns (&buildaddr, i, buf);
1864
1865 /* spin-lock. Note this is using cmpxchg, which leaves i386 behind.
1866 If we cared for it, this could be using xchg alternatively. */
1867
1868 i = 0;
1869 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1870 i += push_opcode (&buf[i], "f0 0f b1 25"); /* lock cmpxchg
1871 %esp,<lockaddr> */
1872 memcpy (&buf[i], (void *) &lockaddr, 4);
1873 i += 4;
1874 i += push_opcode (&buf[i], "85 c0"); /* test %eax,%eax */
1875 i += push_opcode (&buf[i], "75 f2"); /* jne <again> */
1876 append_insns (&buildaddr, i, buf);
1877
1878
1879 /* Set up arguments to the gdb_collect call. */
1880 i = 0;
1881 i += push_opcode (&buf[i], "89 e0"); /* mov %esp,%eax */
1882 i += push_opcode (&buf[i], "83 c0 08"); /* add $0x08,%eax */
1883 i += push_opcode (&buf[i], "89 44 24 fc"); /* mov %eax,-0x4(%esp) */
1884 append_insns (&buildaddr, i, buf);
1885
1886 i = 0;
1887 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1888 append_insns (&buildaddr, i, buf);
1889
1890 i = 0;
1891 i += push_opcode (&buf[i], "c7 04 24"); /* movl <addr>,(%esp) */
1892 memcpy (&buf[i], (void *) &tpoint, 4);
1893 i += 4;
1894 append_insns (&buildaddr, i, buf);
1895
1896 buf[0] = 0xe8; /* call <reladdr> */
1897 offset = collector - (buildaddr + sizeof (jump_insn));
1898 memcpy (buf + 1, &offset, 4);
1899 append_insns (&buildaddr, 5, buf);
1900 /* Clean up after the call. */
1901 buf[0] = 0x83; /* add $0x8,%esp */
1902 buf[1] = 0xc4;
1903 buf[2] = 0x08;
1904 append_insns (&buildaddr, 3, buf);
1905
1906
1907 /* Clear the spin-lock. This would need the LOCK prefix on older
1908 broken archs. */
1909 i = 0;
1910 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1911 i += push_opcode (&buf[i], "a3"); /* mov %eax, lockaddr */
1912 memcpy (buf + i, &lockaddr, 4);
1913 i += 4;
1914 append_insns (&buildaddr, i, buf);
1915
1916
1917 /* Remove stack that had been used for the collect_t object. */
1918 i = 0;
1919 i += push_opcode (&buf[i], "83 c4 08"); /* add $0x08,%esp */
1920 append_insns (&buildaddr, i, buf);
1921
1922 i = 0;
1923 buf[i++] = 0x83; /* add $0x4,%esp (no pop of %cs, assume unchanged) */
1924 buf[i++] = 0xc4;
1925 buf[i++] = 0x04;
1926 buf[i++] = 0x17; /* pop %ss */
1927 buf[i++] = 0x0f; /* pop %gs */
1928 buf[i++] = 0xa9;
1929 buf[i++] = 0x0f; /* pop %fs */
1930 buf[i++] = 0xa1;
1931 buf[i++] = 0x07; /* pop %es */
1932 buf[i++] = 0x1f; /* pop %ds */
1933 buf[i++] = 0x9d; /* popf */
1934 buf[i++] = 0x83; /* add $0x4,%esp (pop of tpaddr aka $pc) */
1935 buf[i++] = 0xc4;
1936 buf[i++] = 0x04;
1937 buf[i++] = 0x61; /* popad */
1938 append_insns (&buildaddr, i, buf);
1939
1940 /* Now, adjust the original instruction to execute in the jump
1941 pad. */
1942 *adjusted_insn_addr = buildaddr;
1943 relocate_instruction (&buildaddr, tpaddr);
1944 *adjusted_insn_addr_end = buildaddr;
1945
1946 /* Write the jump back to the program. */
1947 offset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1948 memcpy (buf, jump_insn, sizeof (jump_insn));
1949 memcpy (buf + 1, &offset, 4);
1950 append_insns (&buildaddr, sizeof (jump_insn), buf);
1951
1952 /* The jump pad is now built. Wire in a jump to our jump pad. This
1953 is always done last (by our caller actually), so that we can
1954 install fast tracepoints with threads running. This relies on
1955 the agent's atomic write support. */
1956 if (orig_size == 4)
1957 {
1958 /* Create a trampoline. */
1959 *trampoline_size = sizeof (jump_insn);
1960 if (!claim_trampoline_space (*trampoline_size, trampoline))
1961 {
1962 /* No trampoline space available. */
1963 strcpy (err,
1964 "E.Cannot allocate trampoline space needed for fast "
1965 "tracepoints on 4-byte instructions.");
1966 return 1;
1967 }
1968
1969 offset = *jump_entry - (*trampoline + sizeof (jump_insn));
1970 memcpy (buf, jump_insn, sizeof (jump_insn));
1971 memcpy (buf + 1, &offset, 4);
1972 write_inferior_memory (*trampoline, buf, sizeof (jump_insn));
1973
1974 /* Use a 16-bit relative jump instruction to jump to the trampoline. */
1975 offset = (*trampoline - (tpaddr + sizeof (small_jump_insn))) & 0xffff;
1976 memcpy (buf, small_jump_insn, sizeof (small_jump_insn));
1977 memcpy (buf + 2, &offset, 2);
1978 memcpy (jjump_pad_insn, buf, sizeof (small_jump_insn));
1979 *jjump_pad_insn_size = sizeof (small_jump_insn);
1980 }
1981 else
1982 {
1983 /* Else use a 32-bit relative jump instruction. */
1984 offset = *jump_entry - (tpaddr + sizeof (jump_insn));
1985 memcpy (buf, jump_insn, sizeof (jump_insn));
1986 memcpy (buf + 1, &offset, 4);
1987 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1988 *jjump_pad_insn_size = sizeof (jump_insn);
1989 }
1990
1991 /* Return the end address of our pad. */
1992 *jump_entry = buildaddr;
1993
1994 return 0;
1995 }
1996
1997 static int
1998 x86_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1999 CORE_ADDR collector,
2000 CORE_ADDR lockaddr,
2001 ULONGEST orig_size,
2002 CORE_ADDR *jump_entry,
2003 CORE_ADDR *trampoline,
2004 ULONGEST *trampoline_size,
2005 unsigned char *jjump_pad_insn,
2006 ULONGEST *jjump_pad_insn_size,
2007 CORE_ADDR *adjusted_insn_addr,
2008 CORE_ADDR *adjusted_insn_addr_end,
2009 char *err)
2010 {
2011 #ifdef __x86_64__
2012 if (is_64bit_tdesc ())
2013 return amd64_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
2014 collector, lockaddr,
2015 orig_size, jump_entry,
2016 trampoline, trampoline_size,
2017 jjump_pad_insn,
2018 jjump_pad_insn_size,
2019 adjusted_insn_addr,
2020 adjusted_insn_addr_end,
2021 err);
2022 #endif
2023
2024 return i386_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
2025 collector, lockaddr,
2026 orig_size, jump_entry,
2027 trampoline, trampoline_size,
2028 jjump_pad_insn,
2029 jjump_pad_insn_size,
2030 adjusted_insn_addr,
2031 adjusted_insn_addr_end,
2032 err);
2033 }
2034
2035 /* Return the minimum instruction length for fast tracepoints on x86/x86-64
2036 architectures. */
2037
2038 static int
2039 x86_get_min_fast_tracepoint_insn_len (void)
2040 {
2041 static int warned_about_fast_tracepoints = 0;
2042
2043 #ifdef __x86_64__
2044 /* On x86-64, 5-byte jump instructions with a 4-byte offset are always
2045 used for fast tracepoints. */
2046 if (is_64bit_tdesc ())
2047 return 5;
2048 #endif
2049
2050 if (agent_loaded_p ())
2051 {
2052 char errbuf[IPA_BUFSIZ];
2053
2054 errbuf[0] = '\0';
2055
2056 /* On x86, if trampolines are available, then 4-byte jump instructions
2057 with a 2-byte offset may be used, otherwise 5-byte jump instructions
2058 with a 4-byte offset are used instead. */
2059 if (have_fast_tracepoint_trampoline_buffer (errbuf))
2060 return 4;
2061 else
2062 {
2063 /* GDB has no channel to explain to user why a shorter fast
2064 tracepoint is not possible, but at least make GDBserver
2065 mention that something has gone awry. */
2066 if (!warned_about_fast_tracepoints)
2067 {
2068 warning ("4-byte fast tracepoints not available; %s\n", errbuf);
2069 warned_about_fast_tracepoints = 1;
2070 }
2071 return 5;
2072 }
2073 }
2074 else
2075 {
2076 /* Indicate that the minimum length is currently unknown since the IPA
2077 has not loaded yet. */
2078 return 0;
2079 }
2080 }
2081
2082 static void
2083 add_insns (unsigned char *start, int len)
2084 {
2085 CORE_ADDR buildaddr = current_insn_ptr;
2086
2087 if (debug_threads)
2088 debug_printf ("Adding %d bytes of insn at %s\n",
2089 len, paddress (buildaddr));
2090
2091 append_insns (&buildaddr, len, start);
2092 current_insn_ptr = buildaddr;
2093 }
2094
2095 /* Our general strategy for emitting code is to avoid specifying raw
2096 bytes whenever possible, and instead copy a block of inline asm
2097 that is embedded in the function. This is a little messy, because
2098 we need to keep the compiler from discarding what looks like dead
2099 code, plus suppress various warnings. */
2100
2101 #define EMIT_ASM(NAME, INSNS) \
2102 do \
2103 { \
2104 extern unsigned char start_ ## NAME, end_ ## NAME; \
2105 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
2106 __asm__ ("jmp end_" #NAME "\n" \
2107 "\t" "start_" #NAME ":" \
2108 "\t" INSNS "\n" \
2109 "\t" "end_" #NAME ":"); \
2110 } while (0)
2111
2112 #ifdef __x86_64__
2113
2114 #define EMIT_ASM32(NAME,INSNS) \
2115 do \
2116 { \
2117 extern unsigned char start_ ## NAME, end_ ## NAME; \
2118 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
2119 __asm__ (".code32\n" \
2120 "\t" "jmp end_" #NAME "\n" \
2121 "\t" "start_" #NAME ":\n" \
2122 "\t" INSNS "\n" \
2123 "\t" "end_" #NAME ":\n" \
2124 ".code64\n"); \
2125 } while (0)
2126
2127 #else
2128
2129 #define EMIT_ASM32(NAME,INSNS) EMIT_ASM(NAME,INSNS)
2130
2131 #endif
2132
2133 #ifdef __x86_64__
2134
2135 static void
2136 amd64_emit_prologue (void)
2137 {
2138 EMIT_ASM (amd64_prologue,
2139 "pushq %rbp\n\t"
2140 "movq %rsp,%rbp\n\t"
2141 "sub $0x20,%rsp\n\t"
2142 "movq %rdi,-8(%rbp)\n\t"
2143 "movq %rsi,-16(%rbp)");
2144 }
2145
2146
2147 static void
2148 amd64_emit_epilogue (void)
2149 {
2150 EMIT_ASM (amd64_epilogue,
2151 "movq -16(%rbp),%rdi\n\t"
2152 "movq %rax,(%rdi)\n\t"
2153 "xor %rax,%rax\n\t"
2154 "leave\n\t"
2155 "ret");
2156 }
2157
2158 static void
2159 amd64_emit_add (void)
2160 {
2161 EMIT_ASM (amd64_add,
2162 "add (%rsp),%rax\n\t"
2163 "lea 0x8(%rsp),%rsp");
2164 }
2165
2166 static void
2167 amd64_emit_sub (void)
2168 {
2169 EMIT_ASM (amd64_sub,
2170 "sub %rax,(%rsp)\n\t"
2171 "pop %rax");
2172 }
2173
2174 static void
2175 amd64_emit_mul (void)
2176 {
2177 emit_error = 1;
2178 }
2179
2180 static void
2181 amd64_emit_lsh (void)
2182 {
2183 emit_error = 1;
2184 }
2185
2186 static void
2187 amd64_emit_rsh_signed (void)
2188 {
2189 emit_error = 1;
2190 }
2191
2192 static void
2193 amd64_emit_rsh_unsigned (void)
2194 {
2195 emit_error = 1;
2196 }
2197
2198 static void
2199 amd64_emit_ext (int arg)
2200 {
2201 switch (arg)
2202 {
2203 case 8:
2204 EMIT_ASM (amd64_ext_8,
2205 "cbtw\n\t"
2206 "cwtl\n\t"
2207 "cltq");
2208 break;
2209 case 16:
2210 EMIT_ASM (amd64_ext_16,
2211 "cwtl\n\t"
2212 "cltq");
2213 break;
2214 case 32:
2215 EMIT_ASM (amd64_ext_32,
2216 "cltq");
2217 break;
2218 default:
2219 emit_error = 1;
2220 }
2221 }
2222
2223 static void
2224 amd64_emit_log_not (void)
2225 {
2226 EMIT_ASM (amd64_log_not,
2227 "test %rax,%rax\n\t"
2228 "sete %cl\n\t"
2229 "movzbq %cl,%rax");
2230 }
2231
2232 static void
2233 amd64_emit_bit_and (void)
2234 {
2235 EMIT_ASM (amd64_and,
2236 "and (%rsp),%rax\n\t"
2237 "lea 0x8(%rsp),%rsp");
2238 }
2239
2240 static void
2241 amd64_emit_bit_or (void)
2242 {
2243 EMIT_ASM (amd64_or,
2244 "or (%rsp),%rax\n\t"
2245 "lea 0x8(%rsp),%rsp");
2246 }
2247
2248 static void
2249 amd64_emit_bit_xor (void)
2250 {
2251 EMIT_ASM (amd64_xor,
2252 "xor (%rsp),%rax\n\t"
2253 "lea 0x8(%rsp),%rsp");
2254 }
2255
2256 static void
2257 amd64_emit_bit_not (void)
2258 {
2259 EMIT_ASM (amd64_bit_not,
2260 "xorq $0xffffffffffffffff,%rax");
2261 }
2262
2263 static void
2264 amd64_emit_equal (void)
2265 {
2266 EMIT_ASM (amd64_equal,
2267 "cmp %rax,(%rsp)\n\t"
2268 "je .Lamd64_equal_true\n\t"
2269 "xor %rax,%rax\n\t"
2270 "jmp .Lamd64_equal_end\n\t"
2271 ".Lamd64_equal_true:\n\t"
2272 "mov $0x1,%rax\n\t"
2273 ".Lamd64_equal_end:\n\t"
2274 "lea 0x8(%rsp),%rsp");
2275 }
2276
2277 static void
2278 amd64_emit_less_signed (void)
2279 {
2280 EMIT_ASM (amd64_less_signed,
2281 "cmp %rax,(%rsp)\n\t"
2282 "jl .Lamd64_less_signed_true\n\t"
2283 "xor %rax,%rax\n\t"
2284 "jmp .Lamd64_less_signed_end\n\t"
2285 ".Lamd64_less_signed_true:\n\t"
2286 "mov $1,%rax\n\t"
2287 ".Lamd64_less_signed_end:\n\t"
2288 "lea 0x8(%rsp),%rsp");
2289 }
2290
2291 static void
2292 amd64_emit_less_unsigned (void)
2293 {
2294 EMIT_ASM (amd64_less_unsigned,
2295 "cmp %rax,(%rsp)\n\t"
2296 "jb .Lamd64_less_unsigned_true\n\t"
2297 "xor %rax,%rax\n\t"
2298 "jmp .Lamd64_less_unsigned_end\n\t"
2299 ".Lamd64_less_unsigned_true:\n\t"
2300 "mov $1,%rax\n\t"
2301 ".Lamd64_less_unsigned_end:\n\t"
2302 "lea 0x8(%rsp),%rsp");
2303 }
2304
2305 static void
2306 amd64_emit_ref (int size)
2307 {
2308 switch (size)
2309 {
2310 case 1:
2311 EMIT_ASM (amd64_ref1,
2312 "movb (%rax),%al");
2313 break;
2314 case 2:
2315 EMIT_ASM (amd64_ref2,
2316 "movw (%rax),%ax");
2317 break;
2318 case 4:
2319 EMIT_ASM (amd64_ref4,
2320 "movl (%rax),%eax");
2321 break;
2322 case 8:
2323 EMIT_ASM (amd64_ref8,
2324 "movq (%rax),%rax");
2325 break;
2326 }
2327 }
2328
2329 static void
2330 amd64_emit_if_goto (int *offset_p, int *size_p)
2331 {
2332 EMIT_ASM (amd64_if_goto,
2333 "mov %rax,%rcx\n\t"
2334 "pop %rax\n\t"
2335 "cmp $0,%rcx\n\t"
2336 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
2337 if (offset_p)
2338 *offset_p = 10;
2339 if (size_p)
2340 *size_p = 4;
2341 }
2342
2343 static void
2344 amd64_emit_goto (int *offset_p, int *size_p)
2345 {
2346 EMIT_ASM (amd64_goto,
2347 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
2348 if (offset_p)
2349 *offset_p = 1;
2350 if (size_p)
2351 *size_p = 4;
2352 }
2353
2354 static void
2355 amd64_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2356 {
2357 int diff = (to - (from + size));
2358 unsigned char buf[sizeof (int)];
2359
2360 if (size != 4)
2361 {
2362 emit_error = 1;
2363 return;
2364 }
2365
2366 memcpy (buf, &diff, sizeof (int));
2367 write_inferior_memory (from, buf, sizeof (int));
2368 }
2369
2370 static void
2371 amd64_emit_const (LONGEST num)
2372 {
2373 unsigned char buf[16];
2374 int i;
2375 CORE_ADDR buildaddr = current_insn_ptr;
2376
2377 i = 0;
2378 buf[i++] = 0x48; buf[i++] = 0xb8; /* mov $<n>,%rax */
2379 memcpy (&buf[i], &num, sizeof (num));
2380 i += 8;
2381 append_insns (&buildaddr, i, buf);
2382 current_insn_ptr = buildaddr;
2383 }
2384
2385 static void
2386 amd64_emit_call (CORE_ADDR fn)
2387 {
2388 unsigned char buf[16];
2389 int i;
2390 CORE_ADDR buildaddr;
2391 LONGEST offset64;
2392
2393 /* The destination function being in the shared library, may be
2394 >31-bits away off the compiled code pad. */
2395
2396 buildaddr = current_insn_ptr;
2397
2398 offset64 = fn - (buildaddr + 1 /* call op */ + 4 /* 32-bit offset */);
2399
2400 i = 0;
2401
2402 if (offset64 > INT_MAX || offset64 < INT_MIN)
2403 {
2404 /* Offset is too large for a call. Use callq, but that requires
2405 a register, so avoid it if possible. Use r10, since it is
2406 call-clobbered, we don't have to push/pop it. */
2407 buf[i++] = 0x48; /* mov $fn,%r10 */
2408 buf[i++] = 0xba;
2409 memcpy (buf + i, &fn, 8);
2410 i += 8;
2411 buf[i++] = 0xff; /* callq *%r10 */
2412 buf[i++] = 0xd2;
2413 }
2414 else
2415 {
2416 int offset32 = offset64; /* we know we can't overflow here. */
2417 memcpy (buf + i, &offset32, 4);
2418 i += 4;
2419 }
2420
2421 append_insns (&buildaddr, i, buf);
2422 current_insn_ptr = buildaddr;
2423 }
2424
2425 static void
2426 amd64_emit_reg (int reg)
2427 {
2428 unsigned char buf[16];
2429 int i;
2430 CORE_ADDR buildaddr;
2431
2432 /* Assume raw_regs is still in %rdi. */
2433 buildaddr = current_insn_ptr;
2434 i = 0;
2435 buf[i++] = 0xbe; /* mov $<n>,%esi */
2436 memcpy (&buf[i], &reg, sizeof (reg));
2437 i += 4;
2438 append_insns (&buildaddr, i, buf);
2439 current_insn_ptr = buildaddr;
2440 amd64_emit_call (get_raw_reg_func_addr ());
2441 }
2442
2443 static void
2444 amd64_emit_pop (void)
2445 {
2446 EMIT_ASM (amd64_pop,
2447 "pop %rax");
2448 }
2449
2450 static void
2451 amd64_emit_stack_flush (void)
2452 {
2453 EMIT_ASM (amd64_stack_flush,
2454 "push %rax");
2455 }
2456
2457 static void
2458 amd64_emit_zero_ext (int arg)
2459 {
2460 switch (arg)
2461 {
2462 case 8:
2463 EMIT_ASM (amd64_zero_ext_8,
2464 "and $0xff,%rax");
2465 break;
2466 case 16:
2467 EMIT_ASM (amd64_zero_ext_16,
2468 "and $0xffff,%rax");
2469 break;
2470 case 32:
2471 EMIT_ASM (amd64_zero_ext_32,
2472 "mov $0xffffffff,%rcx\n\t"
2473 "and %rcx,%rax");
2474 break;
2475 default:
2476 emit_error = 1;
2477 }
2478 }
2479
2480 static void
2481 amd64_emit_swap (void)
2482 {
2483 EMIT_ASM (amd64_swap,
2484 "mov %rax,%rcx\n\t"
2485 "pop %rax\n\t"
2486 "push %rcx");
2487 }
2488
2489 static void
2490 amd64_emit_stack_adjust (int n)
2491 {
2492 unsigned char buf[16];
2493 int i;
2494 CORE_ADDR buildaddr = current_insn_ptr;
2495
2496 i = 0;
2497 buf[i++] = 0x48; /* lea $<n>(%rsp),%rsp */
2498 buf[i++] = 0x8d;
2499 buf[i++] = 0x64;
2500 buf[i++] = 0x24;
2501 /* This only handles adjustments up to 16, but we don't expect any more. */
2502 buf[i++] = n * 8;
2503 append_insns (&buildaddr, i, buf);
2504 current_insn_ptr = buildaddr;
2505 }
2506
2507 /* FN's prototype is `LONGEST(*fn)(int)'. */
2508
2509 static void
2510 amd64_emit_int_call_1 (CORE_ADDR fn, int arg1)
2511 {
2512 unsigned char buf[16];
2513 int i;
2514 CORE_ADDR buildaddr;
2515
2516 buildaddr = current_insn_ptr;
2517 i = 0;
2518 buf[i++] = 0xbf; /* movl $<n>,%edi */
2519 memcpy (&buf[i], &arg1, sizeof (arg1));
2520 i += 4;
2521 append_insns (&buildaddr, i, buf);
2522 current_insn_ptr = buildaddr;
2523 amd64_emit_call (fn);
2524 }
2525
2526 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
2527
2528 static void
2529 amd64_emit_void_call_2 (CORE_ADDR fn, int arg1)
2530 {
2531 unsigned char buf[16];
2532 int i;
2533 CORE_ADDR buildaddr;
2534
2535 buildaddr = current_insn_ptr;
2536 i = 0;
2537 buf[i++] = 0xbf; /* movl $<n>,%edi */
2538 memcpy (&buf[i], &arg1, sizeof (arg1));
2539 i += 4;
2540 append_insns (&buildaddr, i, buf);
2541 current_insn_ptr = buildaddr;
2542 EMIT_ASM (amd64_void_call_2_a,
2543 /* Save away a copy of the stack top. */
2544 "push %rax\n\t"
2545 /* Also pass top as the second argument. */
2546 "mov %rax,%rsi");
2547 amd64_emit_call (fn);
2548 EMIT_ASM (amd64_void_call_2_b,
2549 /* Restore the stack top, %rax may have been trashed. */
2550 "pop %rax");
2551 }
2552
2553 void
2554 amd64_emit_eq_goto (int *offset_p, int *size_p)
2555 {
2556 EMIT_ASM (amd64_eq,
2557 "cmp %rax,(%rsp)\n\t"
2558 "jne .Lamd64_eq_fallthru\n\t"
2559 "lea 0x8(%rsp),%rsp\n\t"
2560 "pop %rax\n\t"
2561 /* jmp, but don't trust the assembler to choose the right jump */
2562 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2563 ".Lamd64_eq_fallthru:\n\t"
2564 "lea 0x8(%rsp),%rsp\n\t"
2565 "pop %rax");
2566
2567 if (offset_p)
2568 *offset_p = 13;
2569 if (size_p)
2570 *size_p = 4;
2571 }
2572
2573 void
2574 amd64_emit_ne_goto (int *offset_p, int *size_p)
2575 {
2576 EMIT_ASM (amd64_ne,
2577 "cmp %rax,(%rsp)\n\t"
2578 "je .Lamd64_ne_fallthru\n\t"
2579 "lea 0x8(%rsp),%rsp\n\t"
2580 "pop %rax\n\t"
2581 /* jmp, but don't trust the assembler to choose the right jump */
2582 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2583 ".Lamd64_ne_fallthru:\n\t"
2584 "lea 0x8(%rsp),%rsp\n\t"
2585 "pop %rax");
2586
2587 if (offset_p)
2588 *offset_p = 13;
2589 if (size_p)
2590 *size_p = 4;
2591 }
2592
2593 void
2594 amd64_emit_lt_goto (int *offset_p, int *size_p)
2595 {
2596 EMIT_ASM (amd64_lt,
2597 "cmp %rax,(%rsp)\n\t"
2598 "jnl .Lamd64_lt_fallthru\n\t"
2599 "lea 0x8(%rsp),%rsp\n\t"
2600 "pop %rax\n\t"
2601 /* jmp, but don't trust the assembler to choose the right jump */
2602 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2603 ".Lamd64_lt_fallthru:\n\t"
2604 "lea 0x8(%rsp),%rsp\n\t"
2605 "pop %rax");
2606
2607 if (offset_p)
2608 *offset_p = 13;
2609 if (size_p)
2610 *size_p = 4;
2611 }
2612
2613 void
2614 amd64_emit_le_goto (int *offset_p, int *size_p)
2615 {
2616 EMIT_ASM (amd64_le,
2617 "cmp %rax,(%rsp)\n\t"
2618 "jnle .Lamd64_le_fallthru\n\t"
2619 "lea 0x8(%rsp),%rsp\n\t"
2620 "pop %rax\n\t"
2621 /* jmp, but don't trust the assembler to choose the right jump */
2622 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2623 ".Lamd64_le_fallthru:\n\t"
2624 "lea 0x8(%rsp),%rsp\n\t"
2625 "pop %rax");
2626
2627 if (offset_p)
2628 *offset_p = 13;
2629 if (size_p)
2630 *size_p = 4;
2631 }
2632
2633 void
2634 amd64_emit_gt_goto (int *offset_p, int *size_p)
2635 {
2636 EMIT_ASM (amd64_gt,
2637 "cmp %rax,(%rsp)\n\t"
2638 "jng .Lamd64_gt_fallthru\n\t"
2639 "lea 0x8(%rsp),%rsp\n\t"
2640 "pop %rax\n\t"
2641 /* jmp, but don't trust the assembler to choose the right jump */
2642 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2643 ".Lamd64_gt_fallthru:\n\t"
2644 "lea 0x8(%rsp),%rsp\n\t"
2645 "pop %rax");
2646
2647 if (offset_p)
2648 *offset_p = 13;
2649 if (size_p)
2650 *size_p = 4;
2651 }
2652
2653 void
2654 amd64_emit_ge_goto (int *offset_p, int *size_p)
2655 {
2656 EMIT_ASM (amd64_ge,
2657 "cmp %rax,(%rsp)\n\t"
2658 "jnge .Lamd64_ge_fallthru\n\t"
2659 ".Lamd64_ge_jump:\n\t"
2660 "lea 0x8(%rsp),%rsp\n\t"
2661 "pop %rax\n\t"
2662 /* jmp, but don't trust the assembler to choose the right jump */
2663 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2664 ".Lamd64_ge_fallthru:\n\t"
2665 "lea 0x8(%rsp),%rsp\n\t"
2666 "pop %rax");
2667
2668 if (offset_p)
2669 *offset_p = 13;
2670 if (size_p)
2671 *size_p = 4;
2672 }
2673
2674 struct emit_ops amd64_emit_ops =
2675 {
2676 amd64_emit_prologue,
2677 amd64_emit_epilogue,
2678 amd64_emit_add,
2679 amd64_emit_sub,
2680 amd64_emit_mul,
2681 amd64_emit_lsh,
2682 amd64_emit_rsh_signed,
2683 amd64_emit_rsh_unsigned,
2684 amd64_emit_ext,
2685 amd64_emit_log_not,
2686 amd64_emit_bit_and,
2687 amd64_emit_bit_or,
2688 amd64_emit_bit_xor,
2689 amd64_emit_bit_not,
2690 amd64_emit_equal,
2691 amd64_emit_less_signed,
2692 amd64_emit_less_unsigned,
2693 amd64_emit_ref,
2694 amd64_emit_if_goto,
2695 amd64_emit_goto,
2696 amd64_write_goto_address,
2697 amd64_emit_const,
2698 amd64_emit_call,
2699 amd64_emit_reg,
2700 amd64_emit_pop,
2701 amd64_emit_stack_flush,
2702 amd64_emit_zero_ext,
2703 amd64_emit_swap,
2704 amd64_emit_stack_adjust,
2705 amd64_emit_int_call_1,
2706 amd64_emit_void_call_2,
2707 amd64_emit_eq_goto,
2708 amd64_emit_ne_goto,
2709 amd64_emit_lt_goto,
2710 amd64_emit_le_goto,
2711 amd64_emit_gt_goto,
2712 amd64_emit_ge_goto
2713 };
2714
2715 #endif /* __x86_64__ */
2716
2717 static void
2718 i386_emit_prologue (void)
2719 {
2720 EMIT_ASM32 (i386_prologue,
2721 "push %ebp\n\t"
2722 "mov %esp,%ebp\n\t"
2723 "push %ebx");
2724 /* At this point, the raw regs base address is at 8(%ebp), and the
2725 value pointer is at 12(%ebp). */
2726 }
2727
2728 static void
2729 i386_emit_epilogue (void)
2730 {
2731 EMIT_ASM32 (i386_epilogue,
2732 "mov 12(%ebp),%ecx\n\t"
2733 "mov %eax,(%ecx)\n\t"
2734 "mov %ebx,0x4(%ecx)\n\t"
2735 "xor %eax,%eax\n\t"
2736 "pop %ebx\n\t"
2737 "pop %ebp\n\t"
2738 "ret");
2739 }
2740
2741 static void
2742 i386_emit_add (void)
2743 {
2744 EMIT_ASM32 (i386_add,
2745 "add (%esp),%eax\n\t"
2746 "adc 0x4(%esp),%ebx\n\t"
2747 "lea 0x8(%esp),%esp");
2748 }
2749
2750 static void
2751 i386_emit_sub (void)
2752 {
2753 EMIT_ASM32 (i386_sub,
2754 "subl %eax,(%esp)\n\t"
2755 "sbbl %ebx,4(%esp)\n\t"
2756 "pop %eax\n\t"
2757 "pop %ebx\n\t");
2758 }
2759
2760 static void
2761 i386_emit_mul (void)
2762 {
2763 emit_error = 1;
2764 }
2765
2766 static void
2767 i386_emit_lsh (void)
2768 {
2769 emit_error = 1;
2770 }
2771
2772 static void
2773 i386_emit_rsh_signed (void)
2774 {
2775 emit_error = 1;
2776 }
2777
2778 static void
2779 i386_emit_rsh_unsigned (void)
2780 {
2781 emit_error = 1;
2782 }
2783
2784 static void
2785 i386_emit_ext (int arg)
2786 {
2787 switch (arg)
2788 {
2789 case 8:
2790 EMIT_ASM32 (i386_ext_8,
2791 "cbtw\n\t"
2792 "cwtl\n\t"
2793 "movl %eax,%ebx\n\t"
2794 "sarl $31,%ebx");
2795 break;
2796 case 16:
2797 EMIT_ASM32 (i386_ext_16,
2798 "cwtl\n\t"
2799 "movl %eax,%ebx\n\t"
2800 "sarl $31,%ebx");
2801 break;
2802 case 32:
2803 EMIT_ASM32 (i386_ext_32,
2804 "movl %eax,%ebx\n\t"
2805 "sarl $31,%ebx");
2806 break;
2807 default:
2808 emit_error = 1;
2809 }
2810 }
2811
2812 static void
2813 i386_emit_log_not (void)
2814 {
2815 EMIT_ASM32 (i386_log_not,
2816 "or %ebx,%eax\n\t"
2817 "test %eax,%eax\n\t"
2818 "sete %cl\n\t"
2819 "xor %ebx,%ebx\n\t"
2820 "movzbl %cl,%eax");
2821 }
2822
2823 static void
2824 i386_emit_bit_and (void)
2825 {
2826 EMIT_ASM32 (i386_and,
2827 "and (%esp),%eax\n\t"
2828 "and 0x4(%esp),%ebx\n\t"
2829 "lea 0x8(%esp),%esp");
2830 }
2831
2832 static void
2833 i386_emit_bit_or (void)
2834 {
2835 EMIT_ASM32 (i386_or,
2836 "or (%esp),%eax\n\t"
2837 "or 0x4(%esp),%ebx\n\t"
2838 "lea 0x8(%esp),%esp");
2839 }
2840
2841 static void
2842 i386_emit_bit_xor (void)
2843 {
2844 EMIT_ASM32 (i386_xor,
2845 "xor (%esp),%eax\n\t"
2846 "xor 0x4(%esp),%ebx\n\t"
2847 "lea 0x8(%esp),%esp");
2848 }
2849
2850 static void
2851 i386_emit_bit_not (void)
2852 {
2853 EMIT_ASM32 (i386_bit_not,
2854 "xor $0xffffffff,%eax\n\t"
2855 "xor $0xffffffff,%ebx\n\t");
2856 }
2857
2858 static void
2859 i386_emit_equal (void)
2860 {
2861 EMIT_ASM32 (i386_equal,
2862 "cmpl %ebx,4(%esp)\n\t"
2863 "jne .Li386_equal_false\n\t"
2864 "cmpl %eax,(%esp)\n\t"
2865 "je .Li386_equal_true\n\t"
2866 ".Li386_equal_false:\n\t"
2867 "xor %eax,%eax\n\t"
2868 "jmp .Li386_equal_end\n\t"
2869 ".Li386_equal_true:\n\t"
2870 "mov $1,%eax\n\t"
2871 ".Li386_equal_end:\n\t"
2872 "xor %ebx,%ebx\n\t"
2873 "lea 0x8(%esp),%esp");
2874 }
2875
2876 static void
2877 i386_emit_less_signed (void)
2878 {
2879 EMIT_ASM32 (i386_less_signed,
2880 "cmpl %ebx,4(%esp)\n\t"
2881 "jl .Li386_less_signed_true\n\t"
2882 "jne .Li386_less_signed_false\n\t"
2883 "cmpl %eax,(%esp)\n\t"
2884 "jl .Li386_less_signed_true\n\t"
2885 ".Li386_less_signed_false:\n\t"
2886 "xor %eax,%eax\n\t"
2887 "jmp .Li386_less_signed_end\n\t"
2888 ".Li386_less_signed_true:\n\t"
2889 "mov $1,%eax\n\t"
2890 ".Li386_less_signed_end:\n\t"
2891 "xor %ebx,%ebx\n\t"
2892 "lea 0x8(%esp),%esp");
2893 }
2894
2895 static void
2896 i386_emit_less_unsigned (void)
2897 {
2898 EMIT_ASM32 (i386_less_unsigned,
2899 "cmpl %ebx,4(%esp)\n\t"
2900 "jb .Li386_less_unsigned_true\n\t"
2901 "jne .Li386_less_unsigned_false\n\t"
2902 "cmpl %eax,(%esp)\n\t"
2903 "jb .Li386_less_unsigned_true\n\t"
2904 ".Li386_less_unsigned_false:\n\t"
2905 "xor %eax,%eax\n\t"
2906 "jmp .Li386_less_unsigned_end\n\t"
2907 ".Li386_less_unsigned_true:\n\t"
2908 "mov $1,%eax\n\t"
2909 ".Li386_less_unsigned_end:\n\t"
2910 "xor %ebx,%ebx\n\t"
2911 "lea 0x8(%esp),%esp");
2912 }
2913
2914 static void
2915 i386_emit_ref (int size)
2916 {
2917 switch (size)
2918 {
2919 case 1:
2920 EMIT_ASM32 (i386_ref1,
2921 "movb (%eax),%al");
2922 break;
2923 case 2:
2924 EMIT_ASM32 (i386_ref2,
2925 "movw (%eax),%ax");
2926 break;
2927 case 4:
2928 EMIT_ASM32 (i386_ref4,
2929 "movl (%eax),%eax");
2930 break;
2931 case 8:
2932 EMIT_ASM32 (i386_ref8,
2933 "movl 4(%eax),%ebx\n\t"
2934 "movl (%eax),%eax");
2935 break;
2936 }
2937 }
2938
2939 static void
2940 i386_emit_if_goto (int *offset_p, int *size_p)
2941 {
2942 EMIT_ASM32 (i386_if_goto,
2943 "mov %eax,%ecx\n\t"
2944 "or %ebx,%ecx\n\t"
2945 "pop %eax\n\t"
2946 "pop %ebx\n\t"
2947 "cmpl $0,%ecx\n\t"
2948 /* Don't trust the assembler to choose the right jump */
2949 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
2950
2951 if (offset_p)
2952 *offset_p = 11; /* be sure that this matches the sequence above */
2953 if (size_p)
2954 *size_p = 4;
2955 }
2956
2957 static void
2958 i386_emit_goto (int *offset_p, int *size_p)
2959 {
2960 EMIT_ASM32 (i386_goto,
2961 /* Don't trust the assembler to choose the right jump */
2962 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
2963 if (offset_p)
2964 *offset_p = 1;
2965 if (size_p)
2966 *size_p = 4;
2967 }
2968
2969 static void
2970 i386_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2971 {
2972 int diff = (to - (from + size));
2973 unsigned char buf[sizeof (int)];
2974
2975 /* We're only doing 4-byte sizes at the moment. */
2976 if (size != 4)
2977 {
2978 emit_error = 1;
2979 return;
2980 }
2981
2982 memcpy (buf, &diff, sizeof (int));
2983 write_inferior_memory (from, buf, sizeof (int));
2984 }
2985
2986 static void
2987 i386_emit_const (LONGEST num)
2988 {
2989 unsigned char buf[16];
2990 int i, hi, lo;
2991 CORE_ADDR buildaddr = current_insn_ptr;
2992
2993 i = 0;
2994 buf[i++] = 0xb8; /* mov $<n>,%eax */
2995 lo = num & 0xffffffff;
2996 memcpy (&buf[i], &lo, sizeof (lo));
2997 i += 4;
2998 hi = ((num >> 32) & 0xffffffff);
2999 if (hi)
3000 {
3001 buf[i++] = 0xbb; /* mov $<n>,%ebx */
3002 memcpy (&buf[i], &hi, sizeof (hi));
3003 i += 4;
3004 }
3005 else
3006 {
3007 buf[i++] = 0x31; buf[i++] = 0xdb; /* xor %ebx,%ebx */
3008 }
3009 append_insns (&buildaddr, i, buf);
3010 current_insn_ptr = buildaddr;
3011 }
3012
3013 static void
3014 i386_emit_call (CORE_ADDR fn)
3015 {
3016 unsigned char buf[16];
3017 int i, offset;
3018 CORE_ADDR buildaddr;
3019
3020 buildaddr = current_insn_ptr;
3021 i = 0;
3022 buf[i++] = 0xe8; /* call <reladdr> */
3023 offset = ((int) fn) - (buildaddr + 5);
3024 memcpy (buf + 1, &offset, 4);
3025 append_insns (&buildaddr, 5, buf);
3026 current_insn_ptr = buildaddr;
3027 }
3028
3029 static void
3030 i386_emit_reg (int reg)
3031 {
3032 unsigned char buf[16];
3033 int i;
3034 CORE_ADDR buildaddr;
3035
3036 EMIT_ASM32 (i386_reg_a,
3037 "sub $0x8,%esp");
3038 buildaddr = current_insn_ptr;
3039 i = 0;
3040 buf[i++] = 0xb8; /* mov $<n>,%eax */
3041 memcpy (&buf[i], &reg, sizeof (reg));
3042 i += 4;
3043 append_insns (&buildaddr, i, buf);
3044 current_insn_ptr = buildaddr;
3045 EMIT_ASM32 (i386_reg_b,
3046 "mov %eax,4(%esp)\n\t"
3047 "mov 8(%ebp),%eax\n\t"
3048 "mov %eax,(%esp)");
3049 i386_emit_call (get_raw_reg_func_addr ());
3050 EMIT_ASM32 (i386_reg_c,
3051 "xor %ebx,%ebx\n\t"
3052 "lea 0x8(%esp),%esp");
3053 }
3054
3055 static void
3056 i386_emit_pop (void)
3057 {
3058 EMIT_ASM32 (i386_pop,
3059 "pop %eax\n\t"
3060 "pop %ebx");
3061 }
3062
3063 static void
3064 i386_emit_stack_flush (void)
3065 {
3066 EMIT_ASM32 (i386_stack_flush,
3067 "push %ebx\n\t"
3068 "push %eax");
3069 }
3070
3071 static void
3072 i386_emit_zero_ext (int arg)
3073 {
3074 switch (arg)
3075 {
3076 case 8:
3077 EMIT_ASM32 (i386_zero_ext_8,
3078 "and $0xff,%eax\n\t"
3079 "xor %ebx,%ebx");
3080 break;
3081 case 16:
3082 EMIT_ASM32 (i386_zero_ext_16,
3083 "and $0xffff,%eax\n\t"
3084 "xor %ebx,%ebx");
3085 break;
3086 case 32:
3087 EMIT_ASM32 (i386_zero_ext_32,
3088 "xor %ebx,%ebx");
3089 break;
3090 default:
3091 emit_error = 1;
3092 }
3093 }
3094
3095 static void
3096 i386_emit_swap (void)
3097 {
3098 EMIT_ASM32 (i386_swap,
3099 "mov %eax,%ecx\n\t"
3100 "mov %ebx,%edx\n\t"
3101 "pop %eax\n\t"
3102 "pop %ebx\n\t"
3103 "push %edx\n\t"
3104 "push %ecx");
3105 }
3106
3107 static void
3108 i386_emit_stack_adjust (int n)
3109 {
3110 unsigned char buf[16];
3111 int i;
3112 CORE_ADDR buildaddr = current_insn_ptr;
3113
3114 i = 0;
3115 buf[i++] = 0x8d; /* lea $<n>(%esp),%esp */
3116 buf[i++] = 0x64;
3117 buf[i++] = 0x24;
3118 buf[i++] = n * 8;
3119 append_insns (&buildaddr, i, buf);
3120 current_insn_ptr = buildaddr;
3121 }
3122
3123 /* FN's prototype is `LONGEST(*fn)(int)'. */
3124
3125 static void
3126 i386_emit_int_call_1 (CORE_ADDR fn, int arg1)
3127 {
3128 unsigned char buf[16];
3129 int i;
3130 CORE_ADDR buildaddr;
3131
3132 EMIT_ASM32 (i386_int_call_1_a,
3133 /* Reserve a bit of stack space. */
3134 "sub $0x8,%esp");
3135 /* Put the one argument on the stack. */
3136 buildaddr = current_insn_ptr;
3137 i = 0;
3138 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
3139 buf[i++] = 0x04;
3140 buf[i++] = 0x24;
3141 memcpy (&buf[i], &arg1, sizeof (arg1));
3142 i += 4;
3143 append_insns (&buildaddr, i, buf);
3144 current_insn_ptr = buildaddr;
3145 i386_emit_call (fn);
3146 EMIT_ASM32 (i386_int_call_1_c,
3147 "mov %edx,%ebx\n\t"
3148 "lea 0x8(%esp),%esp");
3149 }
3150
3151 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
3152
3153 static void
3154 i386_emit_void_call_2 (CORE_ADDR fn, int arg1)
3155 {
3156 unsigned char buf[16];
3157 int i;
3158 CORE_ADDR buildaddr;
3159
3160 EMIT_ASM32 (i386_void_call_2_a,
3161 /* Preserve %eax only; we don't have to worry about %ebx. */
3162 "push %eax\n\t"
3163 /* Reserve a bit of stack space for arguments. */
3164 "sub $0x10,%esp\n\t"
3165 /* Copy "top" to the second argument position. (Note that
3166 we can't assume function won't scribble on its
3167 arguments, so don't try to restore from this.) */
3168 "mov %eax,4(%esp)\n\t"
3169 "mov %ebx,8(%esp)");
3170 /* Put the first argument on the stack. */
3171 buildaddr = current_insn_ptr;
3172 i = 0;
3173 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
3174 buf[i++] = 0x04;
3175 buf[i++] = 0x24;
3176 memcpy (&buf[i], &arg1, sizeof (arg1));
3177 i += 4;
3178 append_insns (&buildaddr, i, buf);
3179 current_insn_ptr = buildaddr;
3180 i386_emit_call (fn);
3181 EMIT_ASM32 (i386_void_call_2_b,
3182 "lea 0x10(%esp),%esp\n\t"
3183 /* Restore original stack top. */
3184 "pop %eax");
3185 }
3186
3187
3188 void
3189 i386_emit_eq_goto (int *offset_p, int *size_p)
3190 {
3191 EMIT_ASM32 (eq,
3192 /* Check low half first, more likely to be decider */
3193 "cmpl %eax,(%esp)\n\t"
3194 "jne .Leq_fallthru\n\t"
3195 "cmpl %ebx,4(%esp)\n\t"
3196 "jne .Leq_fallthru\n\t"
3197 "lea 0x8(%esp),%esp\n\t"
3198 "pop %eax\n\t"
3199 "pop %ebx\n\t"
3200 /* jmp, but don't trust the assembler to choose the right jump */
3201 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3202 ".Leq_fallthru:\n\t"
3203 "lea 0x8(%esp),%esp\n\t"
3204 "pop %eax\n\t"
3205 "pop %ebx");
3206
3207 if (offset_p)
3208 *offset_p = 18;
3209 if (size_p)
3210 *size_p = 4;
3211 }
3212
3213 void
3214 i386_emit_ne_goto (int *offset_p, int *size_p)
3215 {
3216 EMIT_ASM32 (ne,
3217 /* Check low half first, more likely to be decider */
3218 "cmpl %eax,(%esp)\n\t"
3219 "jne .Lne_jump\n\t"
3220 "cmpl %ebx,4(%esp)\n\t"
3221 "je .Lne_fallthru\n\t"
3222 ".Lne_jump:\n\t"
3223 "lea 0x8(%esp),%esp\n\t"
3224 "pop %eax\n\t"
3225 "pop %ebx\n\t"
3226 /* jmp, but don't trust the assembler to choose the right jump */
3227 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3228 ".Lne_fallthru:\n\t"
3229 "lea 0x8(%esp),%esp\n\t"
3230 "pop %eax\n\t"
3231 "pop %ebx");
3232
3233 if (offset_p)
3234 *offset_p = 18;
3235 if (size_p)
3236 *size_p = 4;
3237 }
3238
3239 void
3240 i386_emit_lt_goto (int *offset_p, int *size_p)
3241 {
3242 EMIT_ASM32 (lt,
3243 "cmpl %ebx,4(%esp)\n\t"
3244 "jl .Llt_jump\n\t"
3245 "jne .Llt_fallthru\n\t"
3246 "cmpl %eax,(%esp)\n\t"
3247 "jnl .Llt_fallthru\n\t"
3248 ".Llt_jump:\n\t"
3249 "lea 0x8(%esp),%esp\n\t"
3250 "pop %eax\n\t"
3251 "pop %ebx\n\t"
3252 /* jmp, but don't trust the assembler to choose the right jump */
3253 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3254 ".Llt_fallthru:\n\t"
3255 "lea 0x8(%esp),%esp\n\t"
3256 "pop %eax\n\t"
3257 "pop %ebx");
3258
3259 if (offset_p)
3260 *offset_p = 20;
3261 if (size_p)
3262 *size_p = 4;
3263 }
3264
3265 void
3266 i386_emit_le_goto (int *offset_p, int *size_p)
3267 {
3268 EMIT_ASM32 (le,
3269 "cmpl %ebx,4(%esp)\n\t"
3270 "jle .Lle_jump\n\t"
3271 "jne .Lle_fallthru\n\t"
3272 "cmpl %eax,(%esp)\n\t"
3273 "jnle .Lle_fallthru\n\t"
3274 ".Lle_jump:\n\t"
3275 "lea 0x8(%esp),%esp\n\t"
3276 "pop %eax\n\t"
3277 "pop %ebx\n\t"
3278 /* jmp, but don't trust the assembler to choose the right jump */
3279 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3280 ".Lle_fallthru:\n\t"
3281 "lea 0x8(%esp),%esp\n\t"
3282 "pop %eax\n\t"
3283 "pop %ebx");
3284
3285 if (offset_p)
3286 *offset_p = 20;
3287 if (size_p)
3288 *size_p = 4;
3289 }
3290
3291 void
3292 i386_emit_gt_goto (int *offset_p, int *size_p)
3293 {
3294 EMIT_ASM32 (gt,
3295 "cmpl %ebx,4(%esp)\n\t"
3296 "jg .Lgt_jump\n\t"
3297 "jne .Lgt_fallthru\n\t"
3298 "cmpl %eax,(%esp)\n\t"
3299 "jng .Lgt_fallthru\n\t"
3300 ".Lgt_jump:\n\t"
3301 "lea 0x8(%esp),%esp\n\t"
3302 "pop %eax\n\t"
3303 "pop %ebx\n\t"
3304 /* jmp, but don't trust the assembler to choose the right jump */
3305 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3306 ".Lgt_fallthru:\n\t"
3307 "lea 0x8(%esp),%esp\n\t"
3308 "pop %eax\n\t"
3309 "pop %ebx");
3310
3311 if (offset_p)
3312 *offset_p = 20;
3313 if (size_p)
3314 *size_p = 4;
3315 }
3316
3317 void
3318 i386_emit_ge_goto (int *offset_p, int *size_p)
3319 {
3320 EMIT_ASM32 (ge,
3321 "cmpl %ebx,4(%esp)\n\t"
3322 "jge .Lge_jump\n\t"
3323 "jne .Lge_fallthru\n\t"
3324 "cmpl %eax,(%esp)\n\t"
3325 "jnge .Lge_fallthru\n\t"
3326 ".Lge_jump:\n\t"
3327 "lea 0x8(%esp),%esp\n\t"
3328 "pop %eax\n\t"
3329 "pop %ebx\n\t"
3330 /* jmp, but don't trust the assembler to choose the right jump */
3331 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3332 ".Lge_fallthru:\n\t"
3333 "lea 0x8(%esp),%esp\n\t"
3334 "pop %eax\n\t"
3335 "pop %ebx");
3336
3337 if (offset_p)
3338 *offset_p = 20;
3339 if (size_p)
3340 *size_p = 4;
3341 }
3342
3343 struct emit_ops i386_emit_ops =
3344 {
3345 i386_emit_prologue,
3346 i386_emit_epilogue,
3347 i386_emit_add,
3348 i386_emit_sub,
3349 i386_emit_mul,
3350 i386_emit_lsh,
3351 i386_emit_rsh_signed,
3352 i386_emit_rsh_unsigned,
3353 i386_emit_ext,
3354 i386_emit_log_not,
3355 i386_emit_bit_and,
3356 i386_emit_bit_or,
3357 i386_emit_bit_xor,
3358 i386_emit_bit_not,
3359 i386_emit_equal,
3360 i386_emit_less_signed,
3361 i386_emit_less_unsigned,
3362 i386_emit_ref,
3363 i386_emit_if_goto,
3364 i386_emit_goto,
3365 i386_write_goto_address,
3366 i386_emit_const,
3367 i386_emit_call,
3368 i386_emit_reg,
3369 i386_emit_pop,
3370 i386_emit_stack_flush,
3371 i386_emit_zero_ext,
3372 i386_emit_swap,
3373 i386_emit_stack_adjust,
3374 i386_emit_int_call_1,
3375 i386_emit_void_call_2,
3376 i386_emit_eq_goto,
3377 i386_emit_ne_goto,
3378 i386_emit_lt_goto,
3379 i386_emit_le_goto,
3380 i386_emit_gt_goto,
3381 i386_emit_ge_goto
3382 };
3383
3384
3385 static struct emit_ops *
3386 x86_emit_ops (void)
3387 {
3388 #ifdef __x86_64__
3389 if (is_64bit_tdesc ())
3390 return &amd64_emit_ops;
3391 else
3392 #endif
3393 return &i386_emit_ops;
3394 }
3395
3396 static int
3397 x86_supports_range_stepping (void)
3398 {
3399 return 1;
3400 }
3401
3402 /* This is initialized assuming an amd64 target.
3403 x86_arch_setup will correct it for i386 or amd64 targets. */
3404
3405 struct linux_target_ops the_low_target =
3406 {
3407 x86_arch_setup,
3408 x86_linux_regs_info,
3409 x86_cannot_fetch_register,
3410 x86_cannot_store_register,
3411 NULL, /* fetch_register */
3412 x86_get_pc,
3413 x86_set_pc,
3414 x86_breakpoint,
3415 x86_breakpoint_len,
3416 NULL,
3417 1,
3418 x86_breakpoint_at,
3419 x86_supports_z_point_type,
3420 x86_insert_point,
3421 x86_remove_point,
3422 x86_stopped_by_watchpoint,
3423 x86_stopped_data_address,
3424 /* collect_ptrace_register/supply_ptrace_register are not needed in the
3425 native i386 case (no registers smaller than an xfer unit), and are not
3426 used in the biarch case (HAVE_LINUX_USRREGS is not defined). */
3427 NULL,
3428 NULL,
3429 /* need to fix up i386 siginfo if host is amd64 */
3430 x86_siginfo_fixup,
3431 x86_linux_new_process,
3432 x86_linux_new_thread,
3433 x86_linux_prepare_to_resume,
3434 x86_linux_process_qsupported,
3435 x86_supports_tracepoints,
3436 x86_get_thread_area,
3437 x86_install_fast_tracepoint_jump_pad,
3438 x86_emit_ops,
3439 x86_get_min_fast_tracepoint_insn_len,
3440 x86_supports_range_stepping,
3441 };
3442
3443 void
3444 initialize_low_arch (void)
3445 {
3446 /* Initialize the Linux target descriptions. */
3447 #ifdef __x86_64__
3448 init_registers_amd64_linux ();
3449 init_registers_amd64_avx_linux ();
3450 init_registers_amd64_avx512_linux ();
3451 init_registers_amd64_mpx_linux ();
3452
3453 init_registers_x32_linux ();
3454 init_registers_x32_avx_linux ();
3455 init_registers_x32_avx512_linux ();
3456
3457 tdesc_amd64_linux_no_xml = xmalloc (sizeof (struct target_desc));
3458 copy_target_description (tdesc_amd64_linux_no_xml, tdesc_amd64_linux);
3459 tdesc_amd64_linux_no_xml->xmltarget = xmltarget_amd64_linux_no_xml;
3460 #endif
3461 init_registers_i386_linux ();
3462 init_registers_i386_mmx_linux ();
3463 init_registers_i386_avx_linux ();
3464 init_registers_i386_avx512_linux ();
3465 init_registers_i386_mpx_linux ();
3466
3467 tdesc_i386_linux_no_xml = xmalloc (sizeof (struct target_desc));
3468 copy_target_description (tdesc_i386_linux_no_xml, tdesc_i386_linux);
3469 tdesc_i386_linux_no_xml->xmltarget = xmltarget_i386_linux_no_xml;
3470
3471 initialize_regsets_info (&x86_regsets_info);
3472 }
This page took 0.101834 seconds and 5 git commands to generate.