[GDBserver] Move Z packet defines and type convertion routines to shared code.
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-x86-low.c
1 /* GNU/Linux/x86-64 specific low level interface, for the remote server
2 for GDB.
3 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <stddef.h>
21 #include <signal.h>
22 #include <limits.h>
23 #include <inttypes.h>
24 #include "server.h"
25 #include "linux-low.h"
26 #include "i387-fp.h"
27 #include "i386-low.h"
28 #include "i386-xstate.h"
29
30 #include "gdb_proc_service.h"
31 /* Don't include elf/common.h if linux/elf.h got included by
32 gdb_proc_service.h. */
33 #ifndef ELFMAG0
34 #include "elf/common.h"
35 #endif
36
37 #include "agent.h"
38 #include "tdesc.h"
39 #include "tracepoint.h"
40 #include "ax.h"
41
42 #ifdef __x86_64__
43 /* Defined in auto-generated file amd64-linux.c. */
44 void init_registers_amd64_linux (void);
45 extern const struct target_desc *tdesc_amd64_linux;
46
47 /* Defined in auto-generated file amd64-avx-linux.c. */
48 void init_registers_amd64_avx_linux (void);
49 extern const struct target_desc *tdesc_amd64_avx_linux;
50
51 /* Defined in auto-generated file amd64-avx512-linux.c. */
52 void init_registers_amd64_avx512_linux (void);
53 extern const struct target_desc *tdesc_amd64_avx512_linux;
54
55 /* Defined in auto-generated file amd64-mpx-linux.c. */
56 void init_registers_amd64_mpx_linux (void);
57 extern const struct target_desc *tdesc_amd64_mpx_linux;
58
59 /* Defined in auto-generated file x32-linux.c. */
60 void init_registers_x32_linux (void);
61 extern const struct target_desc *tdesc_x32_linux;
62
63 /* Defined in auto-generated file x32-avx-linux.c. */
64 void init_registers_x32_avx_linux (void);
65 extern const struct target_desc *tdesc_x32_avx_linux;
66
67 /* Defined in auto-generated file x32-avx512-linux.c. */
68 void init_registers_x32_avx512_linux (void);
69 extern const struct target_desc *tdesc_x32_avx512_linux;
70
71 #endif
72
73 /* Defined in auto-generated file i386-linux.c. */
74 void init_registers_i386_linux (void);
75 extern const struct target_desc *tdesc_i386_linux;
76
77 /* Defined in auto-generated file i386-mmx-linux.c. */
78 void init_registers_i386_mmx_linux (void);
79 extern const struct target_desc *tdesc_i386_mmx_linux;
80
81 /* Defined in auto-generated file i386-avx-linux.c. */
82 void init_registers_i386_avx_linux (void);
83 extern const struct target_desc *tdesc_i386_avx_linux;
84
85 /* Defined in auto-generated file i386-avx512-linux.c. */
86 void init_registers_i386_avx512_linux (void);
87 extern const struct target_desc *tdesc_i386_avx512_linux;
88
89 /* Defined in auto-generated file i386-mpx-linux.c. */
90 void init_registers_i386_mpx_linux (void);
91 extern const struct target_desc *tdesc_i386_mpx_linux;
92
93 #ifdef __x86_64__
94 static struct target_desc *tdesc_amd64_linux_no_xml;
95 #endif
96 static struct target_desc *tdesc_i386_linux_no_xml;
97
98
99 static unsigned char jump_insn[] = { 0xe9, 0, 0, 0, 0 };
100 static unsigned char small_jump_insn[] = { 0x66, 0xe9, 0, 0 };
101
102 /* Backward compatibility for gdb without XML support. */
103
104 static const char *xmltarget_i386_linux_no_xml = "@<target>\
105 <architecture>i386</architecture>\
106 <osabi>GNU/Linux</osabi>\
107 </target>";
108
109 #ifdef __x86_64__
110 static const char *xmltarget_amd64_linux_no_xml = "@<target>\
111 <architecture>i386:x86-64</architecture>\
112 <osabi>GNU/Linux</osabi>\
113 </target>";
114 #endif
115
116 #include <sys/reg.h>
117 #include <sys/procfs.h>
118 #include <sys/ptrace.h>
119 #include <sys/uio.h>
120
121 #ifndef PTRACE_GETREGSET
122 #define PTRACE_GETREGSET 0x4204
123 #endif
124
125 #ifndef PTRACE_SETREGSET
126 #define PTRACE_SETREGSET 0x4205
127 #endif
128
129
130 #ifndef PTRACE_GET_THREAD_AREA
131 #define PTRACE_GET_THREAD_AREA 25
132 #endif
133
134 /* This definition comes from prctl.h, but some kernels may not have it. */
135 #ifndef PTRACE_ARCH_PRCTL
136 #define PTRACE_ARCH_PRCTL 30
137 #endif
138
139 /* The following definitions come from prctl.h, but may be absent
140 for certain configurations. */
141 #ifndef ARCH_GET_FS
142 #define ARCH_SET_GS 0x1001
143 #define ARCH_SET_FS 0x1002
144 #define ARCH_GET_FS 0x1003
145 #define ARCH_GET_GS 0x1004
146 #endif
147
148 /* Per-process arch-specific data we want to keep. */
149
150 struct arch_process_info
151 {
152 struct i386_debug_reg_state debug_reg_state;
153 };
154
155 /* Per-thread arch-specific data we want to keep. */
156
157 struct arch_lwp_info
158 {
159 /* Non-zero if our copy differs from what's recorded in the thread. */
160 int debug_registers_changed;
161 };
162
163 #ifdef __x86_64__
164
165 /* Mapping between the general-purpose registers in `struct user'
166 format and GDB's register array layout.
167 Note that the transfer layout uses 64-bit regs. */
168 static /*const*/ int i386_regmap[] =
169 {
170 RAX * 8, RCX * 8, RDX * 8, RBX * 8,
171 RSP * 8, RBP * 8, RSI * 8, RDI * 8,
172 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
173 DS * 8, ES * 8, FS * 8, GS * 8
174 };
175
176 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
177
178 /* So code below doesn't have to care, i386 or amd64. */
179 #define ORIG_EAX ORIG_RAX
180
181 static const int x86_64_regmap[] =
182 {
183 RAX * 8, RBX * 8, RCX * 8, RDX * 8,
184 RSI * 8, RDI * 8, RBP * 8, RSP * 8,
185 R8 * 8, R9 * 8, R10 * 8, R11 * 8,
186 R12 * 8, R13 * 8, R14 * 8, R15 * 8,
187 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
188 DS * 8, ES * 8, FS * 8, GS * 8,
189 -1, -1, -1, -1, -1, -1, -1, -1,
190 -1, -1, -1, -1, -1, -1, -1, -1,
191 -1, -1, -1, -1, -1, -1, -1, -1,
192 -1,
193 -1, -1, -1, -1, -1, -1, -1, -1,
194 ORIG_RAX * 8,
195 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
196 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
197 -1, -1, -1, -1, -1, -1, -1, -1, /* xmm16 ... xmm31 (AVX512) */
198 -1, -1, -1, -1, -1, -1, -1, -1,
199 -1, -1, -1, -1, -1, -1, -1, -1, /* ymm16 ... ymm31 (AVX512) */
200 -1, -1, -1, -1, -1, -1, -1, -1,
201 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
202 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm31 (AVX512) */
203 -1, -1, -1, -1, -1, -1, -1, -1,
204 -1, -1, -1, -1, -1, -1, -1, -1,
205 -1, -1, -1, -1, -1, -1, -1, -1
206 };
207
208 #define X86_64_NUM_REGS (sizeof (x86_64_regmap) / sizeof (x86_64_regmap[0]))
209 #define X86_64_USER_REGS (GS + 1)
210
211 #else /* ! __x86_64__ */
212
213 /* Mapping between the general-purpose registers in `struct user'
214 format and GDB's register array layout. */
215 static /*const*/ int i386_regmap[] =
216 {
217 EAX * 4, ECX * 4, EDX * 4, EBX * 4,
218 UESP * 4, EBP * 4, ESI * 4, EDI * 4,
219 EIP * 4, EFL * 4, CS * 4, SS * 4,
220 DS * 4, ES * 4, FS * 4, GS * 4
221 };
222
223 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
224
225 #endif
226
227 #ifdef __x86_64__
228
229 /* Returns true if the current inferior belongs to a x86-64 process,
230 per the tdesc. */
231
232 static int
233 is_64bit_tdesc (void)
234 {
235 struct regcache *regcache = get_thread_regcache (current_inferior, 0);
236
237 return register_size (regcache->tdesc, 0) == 8;
238 }
239
240 #endif
241
242 \f
243 /* Called by libthread_db. */
244
245 ps_err_e
246 ps_get_thread_area (const struct ps_prochandle *ph,
247 lwpid_t lwpid, int idx, void **base)
248 {
249 #ifdef __x86_64__
250 int use_64bit = is_64bit_tdesc ();
251
252 if (use_64bit)
253 {
254 switch (idx)
255 {
256 case FS:
257 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_FS) == 0)
258 return PS_OK;
259 break;
260 case GS:
261 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_GS) == 0)
262 return PS_OK;
263 break;
264 default:
265 return PS_BADADDR;
266 }
267 return PS_ERR;
268 }
269 #endif
270
271 {
272 unsigned int desc[4];
273
274 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
275 (void *) (intptr_t) idx, (unsigned long) &desc) < 0)
276 return PS_ERR;
277
278 /* Ensure we properly extend the value to 64-bits for x86_64. */
279 *base = (void *) (uintptr_t) desc[1];
280 return PS_OK;
281 }
282 }
283
284 /* Get the thread area address. This is used to recognize which
285 thread is which when tracing with the in-process agent library. We
286 don't read anything from the address, and treat it as opaque; it's
287 the address itself that we assume is unique per-thread. */
288
289 static int
290 x86_get_thread_area (int lwpid, CORE_ADDR *addr)
291 {
292 #ifdef __x86_64__
293 int use_64bit = is_64bit_tdesc ();
294
295 if (use_64bit)
296 {
297 void *base;
298 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
299 {
300 *addr = (CORE_ADDR) (uintptr_t) base;
301 return 0;
302 }
303
304 return -1;
305 }
306 #endif
307
308 {
309 struct lwp_info *lwp = find_lwp_pid (pid_to_ptid (lwpid));
310 struct thread_info *thr = get_lwp_thread (lwp);
311 struct regcache *regcache = get_thread_regcache (thr, 1);
312 unsigned int desc[4];
313 ULONGEST gs = 0;
314 const int reg_thread_area = 3; /* bits to scale down register value. */
315 int idx;
316
317 collect_register_by_name (regcache, "gs", &gs);
318
319 idx = gs >> reg_thread_area;
320
321 if (ptrace (PTRACE_GET_THREAD_AREA,
322 lwpid_of (thr),
323 (void *) (long) idx, (unsigned long) &desc) < 0)
324 return -1;
325
326 *addr = desc[1];
327 return 0;
328 }
329 }
330
331
332 \f
333 static int
334 x86_cannot_store_register (int regno)
335 {
336 #ifdef __x86_64__
337 if (is_64bit_tdesc ())
338 return 0;
339 #endif
340
341 return regno >= I386_NUM_REGS;
342 }
343
344 static int
345 x86_cannot_fetch_register (int regno)
346 {
347 #ifdef __x86_64__
348 if (is_64bit_tdesc ())
349 return 0;
350 #endif
351
352 return regno >= I386_NUM_REGS;
353 }
354
355 static void
356 x86_fill_gregset (struct regcache *regcache, void *buf)
357 {
358 int i;
359
360 #ifdef __x86_64__
361 if (register_size (regcache->tdesc, 0) == 8)
362 {
363 for (i = 0; i < X86_64_NUM_REGS; i++)
364 if (x86_64_regmap[i] != -1)
365 collect_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
366 return;
367 }
368
369 /* 32-bit inferior registers need to be zero-extended.
370 Callers would read uninitialized memory otherwise. */
371 memset (buf, 0x00, X86_64_USER_REGS * 8);
372 #endif
373
374 for (i = 0; i < I386_NUM_REGS; i++)
375 collect_register (regcache, i, ((char *) buf) + i386_regmap[i]);
376
377 collect_register_by_name (regcache, "orig_eax",
378 ((char *) buf) + ORIG_EAX * 4);
379 }
380
381 static void
382 x86_store_gregset (struct regcache *regcache, const void *buf)
383 {
384 int i;
385
386 #ifdef __x86_64__
387 if (register_size (regcache->tdesc, 0) == 8)
388 {
389 for (i = 0; i < X86_64_NUM_REGS; i++)
390 if (x86_64_regmap[i] != -1)
391 supply_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
392 return;
393 }
394 #endif
395
396 for (i = 0; i < I386_NUM_REGS; i++)
397 supply_register (regcache, i, ((char *) buf) + i386_regmap[i]);
398
399 supply_register_by_name (regcache, "orig_eax",
400 ((char *) buf) + ORIG_EAX * 4);
401 }
402
403 static void
404 x86_fill_fpregset (struct regcache *regcache, void *buf)
405 {
406 #ifdef __x86_64__
407 i387_cache_to_fxsave (regcache, buf);
408 #else
409 i387_cache_to_fsave (regcache, buf);
410 #endif
411 }
412
413 static void
414 x86_store_fpregset (struct regcache *regcache, const void *buf)
415 {
416 #ifdef __x86_64__
417 i387_fxsave_to_cache (regcache, buf);
418 #else
419 i387_fsave_to_cache (regcache, buf);
420 #endif
421 }
422
423 #ifndef __x86_64__
424
425 static void
426 x86_fill_fpxregset (struct regcache *regcache, void *buf)
427 {
428 i387_cache_to_fxsave (regcache, buf);
429 }
430
431 static void
432 x86_store_fpxregset (struct regcache *regcache, const void *buf)
433 {
434 i387_fxsave_to_cache (regcache, buf);
435 }
436
437 #endif
438
439 static void
440 x86_fill_xstateregset (struct regcache *regcache, void *buf)
441 {
442 i387_cache_to_xsave (regcache, buf);
443 }
444
445 static void
446 x86_store_xstateregset (struct regcache *regcache, const void *buf)
447 {
448 i387_xsave_to_cache (regcache, buf);
449 }
450
451 /* ??? The non-biarch i386 case stores all the i387 regs twice.
452 Once in i387_.*fsave.* and once in i387_.*fxsave.*.
453 This is, presumably, to handle the case where PTRACE_[GS]ETFPXREGS
454 doesn't work. IWBN to avoid the duplication in the case where it
455 does work. Maybe the arch_setup routine could check whether it works
456 and update the supported regsets accordingly. */
457
458 static struct regset_info x86_regsets[] =
459 {
460 #ifdef HAVE_PTRACE_GETREGS
461 { PTRACE_GETREGS, PTRACE_SETREGS, 0, sizeof (elf_gregset_t),
462 GENERAL_REGS,
463 x86_fill_gregset, x86_store_gregset },
464 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_X86_XSTATE, 0,
465 EXTENDED_REGS, x86_fill_xstateregset, x86_store_xstateregset },
466 # ifndef __x86_64__
467 # ifdef HAVE_PTRACE_GETFPXREGS
468 { PTRACE_GETFPXREGS, PTRACE_SETFPXREGS, 0, sizeof (elf_fpxregset_t),
469 EXTENDED_REGS,
470 x86_fill_fpxregset, x86_store_fpxregset },
471 # endif
472 # endif
473 { PTRACE_GETFPREGS, PTRACE_SETFPREGS, 0, sizeof (elf_fpregset_t),
474 FP_REGS,
475 x86_fill_fpregset, x86_store_fpregset },
476 #endif /* HAVE_PTRACE_GETREGS */
477 { 0, 0, 0, -1, -1, NULL, NULL }
478 };
479
480 static CORE_ADDR
481 x86_get_pc (struct regcache *regcache)
482 {
483 int use_64bit = register_size (regcache->tdesc, 0) == 8;
484
485 if (use_64bit)
486 {
487 unsigned long pc;
488 collect_register_by_name (regcache, "rip", &pc);
489 return (CORE_ADDR) pc;
490 }
491 else
492 {
493 unsigned int pc;
494 collect_register_by_name (regcache, "eip", &pc);
495 return (CORE_ADDR) pc;
496 }
497 }
498
499 static void
500 x86_set_pc (struct regcache *regcache, CORE_ADDR pc)
501 {
502 int use_64bit = register_size (regcache->tdesc, 0) == 8;
503
504 if (use_64bit)
505 {
506 unsigned long newpc = pc;
507 supply_register_by_name (regcache, "rip", &newpc);
508 }
509 else
510 {
511 unsigned int newpc = pc;
512 supply_register_by_name (regcache, "eip", &newpc);
513 }
514 }
515 \f
516 static const unsigned char x86_breakpoint[] = { 0xCC };
517 #define x86_breakpoint_len 1
518
519 static int
520 x86_breakpoint_at (CORE_ADDR pc)
521 {
522 unsigned char c;
523
524 (*the_target->read_memory) (pc, &c, 1);
525 if (c == 0xCC)
526 return 1;
527
528 return 0;
529 }
530 \f
531 /* Support for debug registers. */
532
533 static unsigned long
534 x86_linux_dr_get (ptid_t ptid, int regnum)
535 {
536 int tid;
537 unsigned long value;
538
539 tid = ptid_get_lwp (ptid);
540
541 errno = 0;
542 value = ptrace (PTRACE_PEEKUSER, tid,
543 offsetof (struct user, u_debugreg[regnum]), 0);
544 if (errno != 0)
545 error ("Couldn't read debug register");
546
547 return value;
548 }
549
550 static void
551 x86_linux_dr_set (ptid_t ptid, int regnum, unsigned long value)
552 {
553 int tid;
554
555 tid = ptid_get_lwp (ptid);
556
557 errno = 0;
558 ptrace (PTRACE_POKEUSER, tid,
559 offsetof (struct user, u_debugreg[regnum]), value);
560 if (errno != 0)
561 error ("Couldn't write debug register");
562 }
563
564 static int
565 update_debug_registers_callback (struct inferior_list_entry *entry,
566 void *pid_p)
567 {
568 struct thread_info *thr = (struct thread_info *) entry;
569 struct lwp_info *lwp = get_thread_lwp (thr);
570 int pid = *(int *) pid_p;
571
572 /* Only update the threads of this process. */
573 if (pid_of (thr) == pid)
574 {
575 /* The actual update is done later just before resuming the lwp,
576 we just mark that the registers need updating. */
577 lwp->arch_private->debug_registers_changed = 1;
578
579 /* If the lwp isn't stopped, force it to momentarily pause, so
580 we can update its debug registers. */
581 if (!lwp->stopped)
582 linux_stop_lwp (lwp);
583 }
584
585 return 0;
586 }
587
588 /* Update the inferior's debug register REGNUM from STATE. */
589
590 void
591 i386_dr_low_set_addr (const struct i386_debug_reg_state *state, int regnum)
592 {
593 /* Only update the threads of this process. */
594 int pid = pid_of (current_inferior);
595
596 if (! (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR))
597 fatal ("Invalid debug register %d", regnum);
598
599 find_inferior (&all_threads, update_debug_registers_callback, &pid);
600 }
601
602 /* Return the inferior's debug register REGNUM. */
603
604 CORE_ADDR
605 i386_dr_low_get_addr (int regnum)
606 {
607 ptid_t ptid = ptid_of (current_inferior);
608
609 /* DR6 and DR7 are retrieved with some other way. */
610 gdb_assert (DR_FIRSTADDR <= regnum && regnum <= DR_LASTADDR);
611
612 return x86_linux_dr_get (ptid, regnum);
613 }
614
615 /* Update the inferior's DR7 debug control register from STATE. */
616
617 void
618 i386_dr_low_set_control (const struct i386_debug_reg_state *state)
619 {
620 /* Only update the threads of this process. */
621 int pid = pid_of (current_inferior);
622
623 find_inferior (&all_threads, update_debug_registers_callback, &pid);
624 }
625
626 /* Return the inferior's DR7 debug control register. */
627
628 unsigned
629 i386_dr_low_get_control (void)
630 {
631 ptid_t ptid = ptid_of (current_inferior);
632
633 return x86_linux_dr_get (ptid, DR_CONTROL);
634 }
635
636 /* Get the value of the DR6 debug status register from the inferior
637 and record it in STATE. */
638
639 unsigned
640 i386_dr_low_get_status (void)
641 {
642 ptid_t ptid = ptid_of (current_inferior);
643
644 return x86_linux_dr_get (ptid, DR_STATUS);
645 }
646 \f
647 /* Breakpoint/Watchpoint support. */
648
649 static int
650 x86_insert_point (char type, CORE_ADDR addr, int len)
651 {
652 struct process_info *proc = current_process ();
653 switch (type)
654 {
655 case '0': /* software-breakpoint */
656 {
657 int ret;
658
659 ret = prepare_to_access_memory ();
660 if (ret)
661 return -1;
662 ret = set_gdb_breakpoint_at (addr);
663 done_accessing_memory ();
664 return ret;
665 }
666 case '1': /* hardware-breakpoint */
667 case '2': /* write watchpoint */
668 case '3': /* read watchpoint */
669 case '4': /* access watchpoint */
670 {
671 enum target_hw_bp_type hw_type = Z_packet_to_target_hw_bp_type (type);
672 struct i386_debug_reg_state *state
673 = &proc->private->arch_private->debug_reg_state;
674
675 return i386_low_insert_watchpoint (state, hw_type, addr, len);
676 }
677
678 default:
679 /* Unsupported. */
680 return 1;
681 }
682 }
683
684 static int
685 x86_remove_point (char type, CORE_ADDR addr, int len)
686 {
687 struct process_info *proc = current_process ();
688 switch (type)
689 {
690 case '0': /* software-breakpoint */
691 {
692 int ret;
693
694 ret = prepare_to_access_memory ();
695 if (ret)
696 return -1;
697 ret = delete_gdb_breakpoint_at (addr);
698 done_accessing_memory ();
699 return ret;
700 }
701 case '1': /* hardware-breakpoint */
702 case '2': /* write watchpoint */
703 case '3': /* read watchpoint */
704 case '4': /* access watchpoint */
705 {
706 enum target_hw_bp_type hw_type = Z_packet_to_target_hw_bp_type (type);
707 struct i386_debug_reg_state *state
708 = &proc->private->arch_private->debug_reg_state;
709
710 return i386_low_remove_watchpoint (state, hw_type, addr, len);
711 }
712 default:
713 /* Unsupported. */
714 return 1;
715 }
716 }
717
718 static int
719 x86_stopped_by_watchpoint (void)
720 {
721 struct process_info *proc = current_process ();
722 return i386_low_stopped_by_watchpoint (&proc->private->arch_private->debug_reg_state);
723 }
724
725 static CORE_ADDR
726 x86_stopped_data_address (void)
727 {
728 struct process_info *proc = current_process ();
729 CORE_ADDR addr;
730 if (i386_low_stopped_data_address (&proc->private->arch_private->debug_reg_state,
731 &addr))
732 return addr;
733 return 0;
734 }
735 \f
736 /* Called when a new process is created. */
737
738 static struct arch_process_info *
739 x86_linux_new_process (void)
740 {
741 struct arch_process_info *info = xcalloc (1, sizeof (*info));
742
743 i386_low_init_dregs (&info->debug_reg_state);
744
745 return info;
746 }
747
748 /* Called when a new thread is detected. */
749
750 static struct arch_lwp_info *
751 x86_linux_new_thread (void)
752 {
753 struct arch_lwp_info *info = xcalloc (1, sizeof (*info));
754
755 info->debug_registers_changed = 1;
756
757 return info;
758 }
759
760 /* Called when resuming a thread.
761 If the debug regs have changed, update the thread's copies. */
762
763 static void
764 x86_linux_prepare_to_resume (struct lwp_info *lwp)
765 {
766 ptid_t ptid = ptid_of (get_lwp_thread (lwp));
767 int clear_status = 0;
768
769 if (lwp->arch_private->debug_registers_changed)
770 {
771 int i;
772 int pid = ptid_get_pid (ptid);
773 struct process_info *proc = find_process_pid (pid);
774 struct i386_debug_reg_state *state
775 = &proc->private->arch_private->debug_reg_state;
776
777 for (i = DR_FIRSTADDR; i <= DR_LASTADDR; i++)
778 if (state->dr_ref_count[i] > 0)
779 {
780 x86_linux_dr_set (ptid, i, state->dr_mirror[i]);
781
782 /* If we're setting a watchpoint, any change the inferior
783 had done itself to the debug registers needs to be
784 discarded, otherwise, i386_low_stopped_data_address can
785 get confused. */
786 clear_status = 1;
787 }
788
789 x86_linux_dr_set (ptid, DR_CONTROL, state->dr_control_mirror);
790
791 lwp->arch_private->debug_registers_changed = 0;
792 }
793
794 if (clear_status || lwp->stopped_by_watchpoint)
795 x86_linux_dr_set (ptid, DR_STATUS, 0);
796 }
797 \f
798 /* When GDBSERVER is built as a 64-bit application on linux, the
799 PTRACE_GETSIGINFO data is always presented in 64-bit layout. Since
800 debugging a 32-bit inferior with a 64-bit GDBSERVER should look the same
801 as debugging it with a 32-bit GDBSERVER, we do the 32-bit <-> 64-bit
802 conversion in-place ourselves. */
803
804 /* These types below (compat_*) define a siginfo type that is layout
805 compatible with the siginfo type exported by the 32-bit userspace
806 support. */
807
808 #ifdef __x86_64__
809
810 typedef int compat_int_t;
811 typedef unsigned int compat_uptr_t;
812
813 typedef int compat_time_t;
814 typedef int compat_timer_t;
815 typedef int compat_clock_t;
816
817 struct compat_timeval
818 {
819 compat_time_t tv_sec;
820 int tv_usec;
821 };
822
823 typedef union compat_sigval
824 {
825 compat_int_t sival_int;
826 compat_uptr_t sival_ptr;
827 } compat_sigval_t;
828
829 typedef struct compat_siginfo
830 {
831 int si_signo;
832 int si_errno;
833 int si_code;
834
835 union
836 {
837 int _pad[((128 / sizeof (int)) - 3)];
838
839 /* kill() */
840 struct
841 {
842 unsigned int _pid;
843 unsigned int _uid;
844 } _kill;
845
846 /* POSIX.1b timers */
847 struct
848 {
849 compat_timer_t _tid;
850 int _overrun;
851 compat_sigval_t _sigval;
852 } _timer;
853
854 /* POSIX.1b signals */
855 struct
856 {
857 unsigned int _pid;
858 unsigned int _uid;
859 compat_sigval_t _sigval;
860 } _rt;
861
862 /* SIGCHLD */
863 struct
864 {
865 unsigned int _pid;
866 unsigned int _uid;
867 int _status;
868 compat_clock_t _utime;
869 compat_clock_t _stime;
870 } _sigchld;
871
872 /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */
873 struct
874 {
875 unsigned int _addr;
876 } _sigfault;
877
878 /* SIGPOLL */
879 struct
880 {
881 int _band;
882 int _fd;
883 } _sigpoll;
884 } _sifields;
885 } compat_siginfo_t;
886
887 /* For x32, clock_t in _sigchld is 64bit aligned at 4 bytes. */
888 typedef long __attribute__ ((__aligned__ (4))) compat_x32_clock_t;
889
890 typedef struct compat_x32_siginfo
891 {
892 int si_signo;
893 int si_errno;
894 int si_code;
895
896 union
897 {
898 int _pad[((128 / sizeof (int)) - 3)];
899
900 /* kill() */
901 struct
902 {
903 unsigned int _pid;
904 unsigned int _uid;
905 } _kill;
906
907 /* POSIX.1b timers */
908 struct
909 {
910 compat_timer_t _tid;
911 int _overrun;
912 compat_sigval_t _sigval;
913 } _timer;
914
915 /* POSIX.1b signals */
916 struct
917 {
918 unsigned int _pid;
919 unsigned int _uid;
920 compat_sigval_t _sigval;
921 } _rt;
922
923 /* SIGCHLD */
924 struct
925 {
926 unsigned int _pid;
927 unsigned int _uid;
928 int _status;
929 compat_x32_clock_t _utime;
930 compat_x32_clock_t _stime;
931 } _sigchld;
932
933 /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */
934 struct
935 {
936 unsigned int _addr;
937 } _sigfault;
938
939 /* SIGPOLL */
940 struct
941 {
942 int _band;
943 int _fd;
944 } _sigpoll;
945 } _sifields;
946 } compat_x32_siginfo_t __attribute__ ((__aligned__ (8)));
947
948 #define cpt_si_pid _sifields._kill._pid
949 #define cpt_si_uid _sifields._kill._uid
950 #define cpt_si_timerid _sifields._timer._tid
951 #define cpt_si_overrun _sifields._timer._overrun
952 #define cpt_si_status _sifields._sigchld._status
953 #define cpt_si_utime _sifields._sigchld._utime
954 #define cpt_si_stime _sifields._sigchld._stime
955 #define cpt_si_ptr _sifields._rt._sigval.sival_ptr
956 #define cpt_si_addr _sifields._sigfault._addr
957 #define cpt_si_band _sifields._sigpoll._band
958 #define cpt_si_fd _sifields._sigpoll._fd
959
960 /* glibc at least up to 2.3.2 doesn't have si_timerid, si_overrun.
961 In their place is si_timer1,si_timer2. */
962 #ifndef si_timerid
963 #define si_timerid si_timer1
964 #endif
965 #ifndef si_overrun
966 #define si_overrun si_timer2
967 #endif
968
969 static void
970 compat_siginfo_from_siginfo (compat_siginfo_t *to, siginfo_t *from)
971 {
972 memset (to, 0, sizeof (*to));
973
974 to->si_signo = from->si_signo;
975 to->si_errno = from->si_errno;
976 to->si_code = from->si_code;
977
978 if (to->si_code == SI_TIMER)
979 {
980 to->cpt_si_timerid = from->si_timerid;
981 to->cpt_si_overrun = from->si_overrun;
982 to->cpt_si_ptr = (intptr_t) from->si_ptr;
983 }
984 else if (to->si_code == SI_USER)
985 {
986 to->cpt_si_pid = from->si_pid;
987 to->cpt_si_uid = from->si_uid;
988 }
989 else if (to->si_code < 0)
990 {
991 to->cpt_si_pid = from->si_pid;
992 to->cpt_si_uid = from->si_uid;
993 to->cpt_si_ptr = (intptr_t) from->si_ptr;
994 }
995 else
996 {
997 switch (to->si_signo)
998 {
999 case SIGCHLD:
1000 to->cpt_si_pid = from->si_pid;
1001 to->cpt_si_uid = from->si_uid;
1002 to->cpt_si_status = from->si_status;
1003 to->cpt_si_utime = from->si_utime;
1004 to->cpt_si_stime = from->si_stime;
1005 break;
1006 case SIGILL:
1007 case SIGFPE:
1008 case SIGSEGV:
1009 case SIGBUS:
1010 to->cpt_si_addr = (intptr_t) from->si_addr;
1011 break;
1012 case SIGPOLL:
1013 to->cpt_si_band = from->si_band;
1014 to->cpt_si_fd = from->si_fd;
1015 break;
1016 default:
1017 to->cpt_si_pid = from->si_pid;
1018 to->cpt_si_uid = from->si_uid;
1019 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1020 break;
1021 }
1022 }
1023 }
1024
1025 static void
1026 siginfo_from_compat_siginfo (siginfo_t *to, compat_siginfo_t *from)
1027 {
1028 memset (to, 0, sizeof (*to));
1029
1030 to->si_signo = from->si_signo;
1031 to->si_errno = from->si_errno;
1032 to->si_code = from->si_code;
1033
1034 if (to->si_code == SI_TIMER)
1035 {
1036 to->si_timerid = from->cpt_si_timerid;
1037 to->si_overrun = from->cpt_si_overrun;
1038 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1039 }
1040 else if (to->si_code == SI_USER)
1041 {
1042 to->si_pid = from->cpt_si_pid;
1043 to->si_uid = from->cpt_si_uid;
1044 }
1045 else if (to->si_code < 0)
1046 {
1047 to->si_pid = from->cpt_si_pid;
1048 to->si_uid = from->cpt_si_uid;
1049 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1050 }
1051 else
1052 {
1053 switch (to->si_signo)
1054 {
1055 case SIGCHLD:
1056 to->si_pid = from->cpt_si_pid;
1057 to->si_uid = from->cpt_si_uid;
1058 to->si_status = from->cpt_si_status;
1059 to->si_utime = from->cpt_si_utime;
1060 to->si_stime = from->cpt_si_stime;
1061 break;
1062 case SIGILL:
1063 case SIGFPE:
1064 case SIGSEGV:
1065 case SIGBUS:
1066 to->si_addr = (void *) (intptr_t) from->cpt_si_addr;
1067 break;
1068 case SIGPOLL:
1069 to->si_band = from->cpt_si_band;
1070 to->si_fd = from->cpt_si_fd;
1071 break;
1072 default:
1073 to->si_pid = from->cpt_si_pid;
1074 to->si_uid = from->cpt_si_uid;
1075 to->si_ptr = (void* ) (intptr_t) from->cpt_si_ptr;
1076 break;
1077 }
1078 }
1079 }
1080
1081 static void
1082 compat_x32_siginfo_from_siginfo (compat_x32_siginfo_t *to,
1083 siginfo_t *from)
1084 {
1085 memset (to, 0, sizeof (*to));
1086
1087 to->si_signo = from->si_signo;
1088 to->si_errno = from->si_errno;
1089 to->si_code = from->si_code;
1090
1091 if (to->si_code == SI_TIMER)
1092 {
1093 to->cpt_si_timerid = from->si_timerid;
1094 to->cpt_si_overrun = from->si_overrun;
1095 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1096 }
1097 else if (to->si_code == SI_USER)
1098 {
1099 to->cpt_si_pid = from->si_pid;
1100 to->cpt_si_uid = from->si_uid;
1101 }
1102 else if (to->si_code < 0)
1103 {
1104 to->cpt_si_pid = from->si_pid;
1105 to->cpt_si_uid = from->si_uid;
1106 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1107 }
1108 else
1109 {
1110 switch (to->si_signo)
1111 {
1112 case SIGCHLD:
1113 to->cpt_si_pid = from->si_pid;
1114 to->cpt_si_uid = from->si_uid;
1115 to->cpt_si_status = from->si_status;
1116 to->cpt_si_utime = from->si_utime;
1117 to->cpt_si_stime = from->si_stime;
1118 break;
1119 case SIGILL:
1120 case SIGFPE:
1121 case SIGSEGV:
1122 case SIGBUS:
1123 to->cpt_si_addr = (intptr_t) from->si_addr;
1124 break;
1125 case SIGPOLL:
1126 to->cpt_si_band = from->si_band;
1127 to->cpt_si_fd = from->si_fd;
1128 break;
1129 default:
1130 to->cpt_si_pid = from->si_pid;
1131 to->cpt_si_uid = from->si_uid;
1132 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1133 break;
1134 }
1135 }
1136 }
1137
1138 static void
1139 siginfo_from_compat_x32_siginfo (siginfo_t *to,
1140 compat_x32_siginfo_t *from)
1141 {
1142 memset (to, 0, sizeof (*to));
1143
1144 to->si_signo = from->si_signo;
1145 to->si_errno = from->si_errno;
1146 to->si_code = from->si_code;
1147
1148 if (to->si_code == SI_TIMER)
1149 {
1150 to->si_timerid = from->cpt_si_timerid;
1151 to->si_overrun = from->cpt_si_overrun;
1152 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1153 }
1154 else if (to->si_code == SI_USER)
1155 {
1156 to->si_pid = from->cpt_si_pid;
1157 to->si_uid = from->cpt_si_uid;
1158 }
1159 else if (to->si_code < 0)
1160 {
1161 to->si_pid = from->cpt_si_pid;
1162 to->si_uid = from->cpt_si_uid;
1163 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1164 }
1165 else
1166 {
1167 switch (to->si_signo)
1168 {
1169 case SIGCHLD:
1170 to->si_pid = from->cpt_si_pid;
1171 to->si_uid = from->cpt_si_uid;
1172 to->si_status = from->cpt_si_status;
1173 to->si_utime = from->cpt_si_utime;
1174 to->si_stime = from->cpt_si_stime;
1175 break;
1176 case SIGILL:
1177 case SIGFPE:
1178 case SIGSEGV:
1179 case SIGBUS:
1180 to->si_addr = (void *) (intptr_t) from->cpt_si_addr;
1181 break;
1182 case SIGPOLL:
1183 to->si_band = from->cpt_si_band;
1184 to->si_fd = from->cpt_si_fd;
1185 break;
1186 default:
1187 to->si_pid = from->cpt_si_pid;
1188 to->si_uid = from->cpt_si_uid;
1189 to->si_ptr = (void* ) (intptr_t) from->cpt_si_ptr;
1190 break;
1191 }
1192 }
1193 }
1194
1195 #endif /* __x86_64__ */
1196
1197 /* Convert a native/host siginfo object, into/from the siginfo in the
1198 layout of the inferiors' architecture. Returns true if any
1199 conversion was done; false otherwise. If DIRECTION is 1, then copy
1200 from INF to NATIVE. If DIRECTION is 0, copy from NATIVE to
1201 INF. */
1202
1203 static int
1204 x86_siginfo_fixup (siginfo_t *native, void *inf, int direction)
1205 {
1206 #ifdef __x86_64__
1207 unsigned int machine;
1208 int tid = lwpid_of (current_inferior);
1209 int is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
1210
1211 /* Is the inferior 32-bit? If so, then fixup the siginfo object. */
1212 if (!is_64bit_tdesc ())
1213 {
1214 if (sizeof (siginfo_t) != sizeof (compat_siginfo_t))
1215 fatal ("unexpected difference in siginfo");
1216
1217 if (direction == 0)
1218 compat_siginfo_from_siginfo ((struct compat_siginfo *) inf, native);
1219 else
1220 siginfo_from_compat_siginfo (native, (struct compat_siginfo *) inf);
1221
1222 return 1;
1223 }
1224 /* No fixup for native x32 GDB. */
1225 else if (!is_elf64 && sizeof (void *) == 8)
1226 {
1227 if (sizeof (siginfo_t) != sizeof (compat_x32_siginfo_t))
1228 fatal ("unexpected difference in siginfo");
1229
1230 if (direction == 0)
1231 compat_x32_siginfo_from_siginfo ((struct compat_x32_siginfo *) inf,
1232 native);
1233 else
1234 siginfo_from_compat_x32_siginfo (native,
1235 (struct compat_x32_siginfo *) inf);
1236
1237 return 1;
1238 }
1239 #endif
1240
1241 return 0;
1242 }
1243 \f
1244 static int use_xml;
1245
1246 /* Format of XSAVE extended state is:
1247 struct
1248 {
1249 fxsave_bytes[0..463]
1250 sw_usable_bytes[464..511]
1251 xstate_hdr_bytes[512..575]
1252 avx_bytes[576..831]
1253 future_state etc
1254 };
1255
1256 Same memory layout will be used for the coredump NT_X86_XSTATE
1257 representing the XSAVE extended state registers.
1258
1259 The first 8 bytes of the sw_usable_bytes[464..467] is the OS enabled
1260 extended state mask, which is the same as the extended control register
1261 0 (the XFEATURE_ENABLED_MASK register), XCR0. We can use this mask
1262 together with the mask saved in the xstate_hdr_bytes to determine what
1263 states the processor/OS supports and what state, used or initialized,
1264 the process/thread is in. */
1265 #define I386_LINUX_XSAVE_XCR0_OFFSET 464
1266
1267 /* Does the current host support the GETFPXREGS request? The header
1268 file may or may not define it, and even if it is defined, the
1269 kernel will return EIO if it's running on a pre-SSE processor. */
1270 int have_ptrace_getfpxregs =
1271 #ifdef HAVE_PTRACE_GETFPXREGS
1272 -1
1273 #else
1274 0
1275 #endif
1276 ;
1277
1278 /* Does the current host support PTRACE_GETREGSET? */
1279 static int have_ptrace_getregset = -1;
1280
1281 /* Get Linux/x86 target description from running target. */
1282
1283 static const struct target_desc *
1284 x86_linux_read_description (void)
1285 {
1286 unsigned int machine;
1287 int is_elf64;
1288 int xcr0_features;
1289 int tid;
1290 static uint64_t xcr0;
1291 struct regset_info *regset;
1292
1293 tid = lwpid_of (current_inferior);
1294
1295 is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
1296
1297 if (sizeof (void *) == 4)
1298 {
1299 if (is_elf64 > 0)
1300 error (_("Can't debug 64-bit process with 32-bit GDBserver"));
1301 #ifndef __x86_64__
1302 else if (machine == EM_X86_64)
1303 error (_("Can't debug x86-64 process with 32-bit GDBserver"));
1304 #endif
1305 }
1306
1307 #if !defined __x86_64__ && defined HAVE_PTRACE_GETFPXREGS
1308 if (machine == EM_386 && have_ptrace_getfpxregs == -1)
1309 {
1310 elf_fpxregset_t fpxregs;
1311
1312 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (long) &fpxregs) < 0)
1313 {
1314 have_ptrace_getfpxregs = 0;
1315 have_ptrace_getregset = 0;
1316 return tdesc_i386_mmx_linux;
1317 }
1318 else
1319 have_ptrace_getfpxregs = 1;
1320 }
1321 #endif
1322
1323 if (!use_xml)
1324 {
1325 x86_xcr0 = I386_XSTATE_SSE_MASK;
1326
1327 /* Don't use XML. */
1328 #ifdef __x86_64__
1329 if (machine == EM_X86_64)
1330 return tdesc_amd64_linux_no_xml;
1331 else
1332 #endif
1333 return tdesc_i386_linux_no_xml;
1334 }
1335
1336 if (have_ptrace_getregset == -1)
1337 {
1338 uint64_t xstateregs[(I386_XSTATE_SSE_SIZE / sizeof (uint64_t))];
1339 struct iovec iov;
1340
1341 iov.iov_base = xstateregs;
1342 iov.iov_len = sizeof (xstateregs);
1343
1344 /* Check if PTRACE_GETREGSET works. */
1345 if (ptrace (PTRACE_GETREGSET, tid,
1346 (unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
1347 have_ptrace_getregset = 0;
1348 else
1349 {
1350 have_ptrace_getregset = 1;
1351
1352 /* Get XCR0 from XSAVE extended state. */
1353 xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET
1354 / sizeof (uint64_t))];
1355
1356 /* Use PTRACE_GETREGSET if it is available. */
1357 for (regset = x86_regsets;
1358 regset->fill_function != NULL; regset++)
1359 if (regset->get_request == PTRACE_GETREGSET)
1360 regset->size = I386_XSTATE_SIZE (xcr0);
1361 else if (regset->type != GENERAL_REGS)
1362 regset->size = 0;
1363 }
1364 }
1365
1366 /* Check the native XCR0 only if PTRACE_GETREGSET is available. */
1367 xcr0_features = (have_ptrace_getregset
1368 && (xcr0 & I386_XSTATE_ALL_MASK));
1369
1370 if (xcr0_features)
1371 x86_xcr0 = xcr0;
1372
1373 if (machine == EM_X86_64)
1374 {
1375 #ifdef __x86_64__
1376 if (is_elf64)
1377 {
1378 if (xcr0_features)
1379 {
1380 switch (xcr0 & I386_XSTATE_ALL_MASK)
1381 {
1382 case I386_XSTATE_AVX512_MASK:
1383 return tdesc_amd64_avx512_linux;
1384
1385 case I386_XSTATE_MPX_MASK:
1386 return tdesc_amd64_mpx_linux;
1387
1388 case I386_XSTATE_AVX_MASK:
1389 return tdesc_amd64_avx_linux;
1390
1391 default:
1392 return tdesc_amd64_linux;
1393 }
1394 }
1395 else
1396 return tdesc_amd64_linux;
1397 }
1398 else
1399 {
1400 if (xcr0_features)
1401 {
1402 switch (xcr0 & I386_XSTATE_ALL_MASK)
1403 {
1404 case I386_XSTATE_AVX512_MASK:
1405 return tdesc_x32_avx512_linux;
1406
1407 case I386_XSTATE_MPX_MASK: /* No MPX on x32. */
1408 case I386_XSTATE_AVX_MASK:
1409 return tdesc_x32_avx_linux;
1410
1411 default:
1412 return tdesc_x32_linux;
1413 }
1414 }
1415 else
1416 return tdesc_x32_linux;
1417 }
1418 #endif
1419 }
1420 else
1421 {
1422 if (xcr0_features)
1423 {
1424 switch (xcr0 & I386_XSTATE_ALL_MASK)
1425 {
1426 case (I386_XSTATE_AVX512_MASK):
1427 return tdesc_i386_avx512_linux;
1428
1429 case (I386_XSTATE_MPX_MASK):
1430 return tdesc_i386_mpx_linux;
1431
1432 case (I386_XSTATE_AVX_MASK):
1433 return tdesc_i386_avx_linux;
1434
1435 default:
1436 return tdesc_i386_linux;
1437 }
1438 }
1439 else
1440 return tdesc_i386_linux;
1441 }
1442
1443 gdb_assert_not_reached ("failed to return tdesc");
1444 }
1445
1446 /* Callback for find_inferior. Stops iteration when a thread with a
1447 given PID is found. */
1448
1449 static int
1450 same_process_callback (struct inferior_list_entry *entry, void *data)
1451 {
1452 int pid = *(int *) data;
1453
1454 return (ptid_get_pid (entry->id) == pid);
1455 }
1456
1457 /* Callback for for_each_inferior. Calls the arch_setup routine for
1458 each process. */
1459
1460 static void
1461 x86_arch_setup_process_callback (struct inferior_list_entry *entry)
1462 {
1463 int pid = ptid_get_pid (entry->id);
1464
1465 /* Look up any thread of this processes. */
1466 current_inferior
1467 = (struct thread_info *) find_inferior (&all_threads,
1468 same_process_callback, &pid);
1469
1470 the_low_target.arch_setup ();
1471 }
1472
1473 /* Update all the target description of all processes; a new GDB
1474 connected, and it may or not support xml target descriptions. */
1475
1476 static void
1477 x86_linux_update_xmltarget (void)
1478 {
1479 struct thread_info *save_inferior = current_inferior;
1480
1481 /* Before changing the register cache's internal layout, flush the
1482 contents of the current valid caches back to the threads, and
1483 release the current regcache objects. */
1484 regcache_release ();
1485
1486 for_each_inferior (&all_processes, x86_arch_setup_process_callback);
1487
1488 current_inferior = save_inferior;
1489 }
1490
1491 /* Process qSupported query, "xmlRegisters=". Update the buffer size for
1492 PTRACE_GETREGSET. */
1493
1494 static void
1495 x86_linux_process_qsupported (const char *query)
1496 {
1497 /* Return if gdb doesn't support XML. If gdb sends "xmlRegisters="
1498 with "i386" in qSupported query, it supports x86 XML target
1499 descriptions. */
1500 use_xml = 0;
1501 if (query != NULL && strncmp (query, "xmlRegisters=", 13) == 0)
1502 {
1503 char *copy = xstrdup (query + 13);
1504 char *p;
1505
1506 for (p = strtok (copy, ","); p != NULL; p = strtok (NULL, ","))
1507 {
1508 if (strcmp (p, "i386") == 0)
1509 {
1510 use_xml = 1;
1511 break;
1512 }
1513 }
1514
1515 free (copy);
1516 }
1517
1518 x86_linux_update_xmltarget ();
1519 }
1520
1521 /* Common for x86/x86-64. */
1522
1523 static struct regsets_info x86_regsets_info =
1524 {
1525 x86_regsets, /* regsets */
1526 0, /* num_regsets */
1527 NULL, /* disabled_regsets */
1528 };
1529
1530 #ifdef __x86_64__
1531 static struct regs_info amd64_linux_regs_info =
1532 {
1533 NULL, /* regset_bitmap */
1534 NULL, /* usrregs_info */
1535 &x86_regsets_info
1536 };
1537 #endif
1538 static struct usrregs_info i386_linux_usrregs_info =
1539 {
1540 I386_NUM_REGS,
1541 i386_regmap,
1542 };
1543
1544 static struct regs_info i386_linux_regs_info =
1545 {
1546 NULL, /* regset_bitmap */
1547 &i386_linux_usrregs_info,
1548 &x86_regsets_info
1549 };
1550
1551 const struct regs_info *
1552 x86_linux_regs_info (void)
1553 {
1554 #ifdef __x86_64__
1555 if (is_64bit_tdesc ())
1556 return &amd64_linux_regs_info;
1557 else
1558 #endif
1559 return &i386_linux_regs_info;
1560 }
1561
1562 /* Initialize the target description for the architecture of the
1563 inferior. */
1564
1565 static void
1566 x86_arch_setup (void)
1567 {
1568 current_process ()->tdesc = x86_linux_read_description ();
1569 }
1570
1571 static int
1572 x86_supports_tracepoints (void)
1573 {
1574 return 1;
1575 }
1576
1577 static void
1578 append_insns (CORE_ADDR *to, size_t len, const unsigned char *buf)
1579 {
1580 write_inferior_memory (*to, buf, len);
1581 *to += len;
1582 }
1583
1584 static int
1585 push_opcode (unsigned char *buf, char *op)
1586 {
1587 unsigned char *buf_org = buf;
1588
1589 while (1)
1590 {
1591 char *endptr;
1592 unsigned long ul = strtoul (op, &endptr, 16);
1593
1594 if (endptr == op)
1595 break;
1596
1597 *buf++ = ul;
1598 op = endptr;
1599 }
1600
1601 return buf - buf_org;
1602 }
1603
1604 #ifdef __x86_64__
1605
1606 /* Build a jump pad that saves registers and calls a collection
1607 function. Writes a jump instruction to the jump pad to
1608 JJUMPAD_INSN. The caller is responsible to write it in at the
1609 tracepoint address. */
1610
1611 static int
1612 amd64_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1613 CORE_ADDR collector,
1614 CORE_ADDR lockaddr,
1615 ULONGEST orig_size,
1616 CORE_ADDR *jump_entry,
1617 CORE_ADDR *trampoline,
1618 ULONGEST *trampoline_size,
1619 unsigned char *jjump_pad_insn,
1620 ULONGEST *jjump_pad_insn_size,
1621 CORE_ADDR *adjusted_insn_addr,
1622 CORE_ADDR *adjusted_insn_addr_end,
1623 char *err)
1624 {
1625 unsigned char buf[40];
1626 int i, offset;
1627 int64_t loffset;
1628
1629 CORE_ADDR buildaddr = *jump_entry;
1630
1631 /* Build the jump pad. */
1632
1633 /* First, do tracepoint data collection. Save registers. */
1634 i = 0;
1635 /* Need to ensure stack pointer saved first. */
1636 buf[i++] = 0x54; /* push %rsp */
1637 buf[i++] = 0x55; /* push %rbp */
1638 buf[i++] = 0x57; /* push %rdi */
1639 buf[i++] = 0x56; /* push %rsi */
1640 buf[i++] = 0x52; /* push %rdx */
1641 buf[i++] = 0x51; /* push %rcx */
1642 buf[i++] = 0x53; /* push %rbx */
1643 buf[i++] = 0x50; /* push %rax */
1644 buf[i++] = 0x41; buf[i++] = 0x57; /* push %r15 */
1645 buf[i++] = 0x41; buf[i++] = 0x56; /* push %r14 */
1646 buf[i++] = 0x41; buf[i++] = 0x55; /* push %r13 */
1647 buf[i++] = 0x41; buf[i++] = 0x54; /* push %r12 */
1648 buf[i++] = 0x41; buf[i++] = 0x53; /* push %r11 */
1649 buf[i++] = 0x41; buf[i++] = 0x52; /* push %r10 */
1650 buf[i++] = 0x41; buf[i++] = 0x51; /* push %r9 */
1651 buf[i++] = 0x41; buf[i++] = 0x50; /* push %r8 */
1652 buf[i++] = 0x9c; /* pushfq */
1653 buf[i++] = 0x48; /* movl <addr>,%rdi */
1654 buf[i++] = 0xbf;
1655 *((unsigned long *)(buf + i)) = (unsigned long) tpaddr;
1656 i += sizeof (unsigned long);
1657 buf[i++] = 0x57; /* push %rdi */
1658 append_insns (&buildaddr, i, buf);
1659
1660 /* Stack space for the collecting_t object. */
1661 i = 0;
1662 i += push_opcode (&buf[i], "48 83 ec 18"); /* sub $0x18,%rsp */
1663 i += push_opcode (&buf[i], "48 b8"); /* mov <tpoint>,%rax */
1664 memcpy (buf + i, &tpoint, 8);
1665 i += 8;
1666 i += push_opcode (&buf[i], "48 89 04 24"); /* mov %rax,(%rsp) */
1667 i += push_opcode (&buf[i],
1668 "64 48 8b 04 25 00 00 00 00"); /* mov %fs:0x0,%rax */
1669 i += push_opcode (&buf[i], "48 89 44 24 08"); /* mov %rax,0x8(%rsp) */
1670 append_insns (&buildaddr, i, buf);
1671
1672 /* spin-lock. */
1673 i = 0;
1674 i += push_opcode (&buf[i], "48 be"); /* movl <lockaddr>,%rsi */
1675 memcpy (&buf[i], (void *) &lockaddr, 8);
1676 i += 8;
1677 i += push_opcode (&buf[i], "48 89 e1"); /* mov %rsp,%rcx */
1678 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1679 i += push_opcode (&buf[i], "f0 48 0f b1 0e"); /* lock cmpxchg %rcx,(%rsi) */
1680 i += push_opcode (&buf[i], "48 85 c0"); /* test %rax,%rax */
1681 i += push_opcode (&buf[i], "75 f4"); /* jne <again> */
1682 append_insns (&buildaddr, i, buf);
1683
1684 /* Set up the gdb_collect call. */
1685 /* At this point, (stack pointer + 0x18) is the base of our saved
1686 register block. */
1687
1688 i = 0;
1689 i += push_opcode (&buf[i], "48 89 e6"); /* mov %rsp,%rsi */
1690 i += push_opcode (&buf[i], "48 83 c6 18"); /* add $0x18,%rsi */
1691
1692 /* tpoint address may be 64-bit wide. */
1693 i += push_opcode (&buf[i], "48 bf"); /* movl <addr>,%rdi */
1694 memcpy (buf + i, &tpoint, 8);
1695 i += 8;
1696 append_insns (&buildaddr, i, buf);
1697
1698 /* The collector function being in the shared library, may be
1699 >31-bits away off the jump pad. */
1700 i = 0;
1701 i += push_opcode (&buf[i], "48 b8"); /* mov $collector,%rax */
1702 memcpy (buf + i, &collector, 8);
1703 i += 8;
1704 i += push_opcode (&buf[i], "ff d0"); /* callq *%rax */
1705 append_insns (&buildaddr, i, buf);
1706
1707 /* Clear the spin-lock. */
1708 i = 0;
1709 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1710 i += push_opcode (&buf[i], "48 a3"); /* mov %rax, lockaddr */
1711 memcpy (buf + i, &lockaddr, 8);
1712 i += 8;
1713 append_insns (&buildaddr, i, buf);
1714
1715 /* Remove stack that had been used for the collect_t object. */
1716 i = 0;
1717 i += push_opcode (&buf[i], "48 83 c4 18"); /* add $0x18,%rsp */
1718 append_insns (&buildaddr, i, buf);
1719
1720 /* Restore register state. */
1721 i = 0;
1722 buf[i++] = 0x48; /* add $0x8,%rsp */
1723 buf[i++] = 0x83;
1724 buf[i++] = 0xc4;
1725 buf[i++] = 0x08;
1726 buf[i++] = 0x9d; /* popfq */
1727 buf[i++] = 0x41; buf[i++] = 0x58; /* pop %r8 */
1728 buf[i++] = 0x41; buf[i++] = 0x59; /* pop %r9 */
1729 buf[i++] = 0x41; buf[i++] = 0x5a; /* pop %r10 */
1730 buf[i++] = 0x41; buf[i++] = 0x5b; /* pop %r11 */
1731 buf[i++] = 0x41; buf[i++] = 0x5c; /* pop %r12 */
1732 buf[i++] = 0x41; buf[i++] = 0x5d; /* pop %r13 */
1733 buf[i++] = 0x41; buf[i++] = 0x5e; /* pop %r14 */
1734 buf[i++] = 0x41; buf[i++] = 0x5f; /* pop %r15 */
1735 buf[i++] = 0x58; /* pop %rax */
1736 buf[i++] = 0x5b; /* pop %rbx */
1737 buf[i++] = 0x59; /* pop %rcx */
1738 buf[i++] = 0x5a; /* pop %rdx */
1739 buf[i++] = 0x5e; /* pop %rsi */
1740 buf[i++] = 0x5f; /* pop %rdi */
1741 buf[i++] = 0x5d; /* pop %rbp */
1742 buf[i++] = 0x5c; /* pop %rsp */
1743 append_insns (&buildaddr, i, buf);
1744
1745 /* Now, adjust the original instruction to execute in the jump
1746 pad. */
1747 *adjusted_insn_addr = buildaddr;
1748 relocate_instruction (&buildaddr, tpaddr);
1749 *adjusted_insn_addr_end = buildaddr;
1750
1751 /* Finally, write a jump back to the program. */
1752
1753 loffset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1754 if (loffset > INT_MAX || loffset < INT_MIN)
1755 {
1756 sprintf (err,
1757 "E.Jump back from jump pad too far from tracepoint "
1758 "(offset 0x%" PRIx64 " > int32).", loffset);
1759 return 1;
1760 }
1761
1762 offset = (int) loffset;
1763 memcpy (buf, jump_insn, sizeof (jump_insn));
1764 memcpy (buf + 1, &offset, 4);
1765 append_insns (&buildaddr, sizeof (jump_insn), buf);
1766
1767 /* The jump pad is now built. Wire in a jump to our jump pad. This
1768 is always done last (by our caller actually), so that we can
1769 install fast tracepoints with threads running. This relies on
1770 the agent's atomic write support. */
1771 loffset = *jump_entry - (tpaddr + sizeof (jump_insn));
1772 if (loffset > INT_MAX || loffset < INT_MIN)
1773 {
1774 sprintf (err,
1775 "E.Jump pad too far from tracepoint "
1776 "(offset 0x%" PRIx64 " > int32).", loffset);
1777 return 1;
1778 }
1779
1780 offset = (int) loffset;
1781
1782 memcpy (buf, jump_insn, sizeof (jump_insn));
1783 memcpy (buf + 1, &offset, 4);
1784 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1785 *jjump_pad_insn_size = sizeof (jump_insn);
1786
1787 /* Return the end address of our pad. */
1788 *jump_entry = buildaddr;
1789
1790 return 0;
1791 }
1792
1793 #endif /* __x86_64__ */
1794
1795 /* Build a jump pad that saves registers and calls a collection
1796 function. Writes a jump instruction to the jump pad to
1797 JJUMPAD_INSN. The caller is responsible to write it in at the
1798 tracepoint address. */
1799
1800 static int
1801 i386_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1802 CORE_ADDR collector,
1803 CORE_ADDR lockaddr,
1804 ULONGEST orig_size,
1805 CORE_ADDR *jump_entry,
1806 CORE_ADDR *trampoline,
1807 ULONGEST *trampoline_size,
1808 unsigned char *jjump_pad_insn,
1809 ULONGEST *jjump_pad_insn_size,
1810 CORE_ADDR *adjusted_insn_addr,
1811 CORE_ADDR *adjusted_insn_addr_end,
1812 char *err)
1813 {
1814 unsigned char buf[0x100];
1815 int i, offset;
1816 CORE_ADDR buildaddr = *jump_entry;
1817
1818 /* Build the jump pad. */
1819
1820 /* First, do tracepoint data collection. Save registers. */
1821 i = 0;
1822 buf[i++] = 0x60; /* pushad */
1823 buf[i++] = 0x68; /* push tpaddr aka $pc */
1824 *((int *)(buf + i)) = (int) tpaddr;
1825 i += 4;
1826 buf[i++] = 0x9c; /* pushf */
1827 buf[i++] = 0x1e; /* push %ds */
1828 buf[i++] = 0x06; /* push %es */
1829 buf[i++] = 0x0f; /* push %fs */
1830 buf[i++] = 0xa0;
1831 buf[i++] = 0x0f; /* push %gs */
1832 buf[i++] = 0xa8;
1833 buf[i++] = 0x16; /* push %ss */
1834 buf[i++] = 0x0e; /* push %cs */
1835 append_insns (&buildaddr, i, buf);
1836
1837 /* Stack space for the collecting_t object. */
1838 i = 0;
1839 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1840
1841 /* Build the object. */
1842 i += push_opcode (&buf[i], "b8"); /* mov <tpoint>,%eax */
1843 memcpy (buf + i, &tpoint, 4);
1844 i += 4;
1845 i += push_opcode (&buf[i], "89 04 24"); /* mov %eax,(%esp) */
1846
1847 i += push_opcode (&buf[i], "65 a1 00 00 00 00"); /* mov %gs:0x0,%eax */
1848 i += push_opcode (&buf[i], "89 44 24 04"); /* mov %eax,0x4(%esp) */
1849 append_insns (&buildaddr, i, buf);
1850
1851 /* spin-lock. Note this is using cmpxchg, which leaves i386 behind.
1852 If we cared for it, this could be using xchg alternatively. */
1853
1854 i = 0;
1855 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1856 i += push_opcode (&buf[i], "f0 0f b1 25"); /* lock cmpxchg
1857 %esp,<lockaddr> */
1858 memcpy (&buf[i], (void *) &lockaddr, 4);
1859 i += 4;
1860 i += push_opcode (&buf[i], "85 c0"); /* test %eax,%eax */
1861 i += push_opcode (&buf[i], "75 f2"); /* jne <again> */
1862 append_insns (&buildaddr, i, buf);
1863
1864
1865 /* Set up arguments to the gdb_collect call. */
1866 i = 0;
1867 i += push_opcode (&buf[i], "89 e0"); /* mov %esp,%eax */
1868 i += push_opcode (&buf[i], "83 c0 08"); /* add $0x08,%eax */
1869 i += push_opcode (&buf[i], "89 44 24 fc"); /* mov %eax,-0x4(%esp) */
1870 append_insns (&buildaddr, i, buf);
1871
1872 i = 0;
1873 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1874 append_insns (&buildaddr, i, buf);
1875
1876 i = 0;
1877 i += push_opcode (&buf[i], "c7 04 24"); /* movl <addr>,(%esp) */
1878 memcpy (&buf[i], (void *) &tpoint, 4);
1879 i += 4;
1880 append_insns (&buildaddr, i, buf);
1881
1882 buf[0] = 0xe8; /* call <reladdr> */
1883 offset = collector - (buildaddr + sizeof (jump_insn));
1884 memcpy (buf + 1, &offset, 4);
1885 append_insns (&buildaddr, 5, buf);
1886 /* Clean up after the call. */
1887 buf[0] = 0x83; /* add $0x8,%esp */
1888 buf[1] = 0xc4;
1889 buf[2] = 0x08;
1890 append_insns (&buildaddr, 3, buf);
1891
1892
1893 /* Clear the spin-lock. This would need the LOCK prefix on older
1894 broken archs. */
1895 i = 0;
1896 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1897 i += push_opcode (&buf[i], "a3"); /* mov %eax, lockaddr */
1898 memcpy (buf + i, &lockaddr, 4);
1899 i += 4;
1900 append_insns (&buildaddr, i, buf);
1901
1902
1903 /* Remove stack that had been used for the collect_t object. */
1904 i = 0;
1905 i += push_opcode (&buf[i], "83 c4 08"); /* add $0x08,%esp */
1906 append_insns (&buildaddr, i, buf);
1907
1908 i = 0;
1909 buf[i++] = 0x83; /* add $0x4,%esp (no pop of %cs, assume unchanged) */
1910 buf[i++] = 0xc4;
1911 buf[i++] = 0x04;
1912 buf[i++] = 0x17; /* pop %ss */
1913 buf[i++] = 0x0f; /* pop %gs */
1914 buf[i++] = 0xa9;
1915 buf[i++] = 0x0f; /* pop %fs */
1916 buf[i++] = 0xa1;
1917 buf[i++] = 0x07; /* pop %es */
1918 buf[i++] = 0x1f; /* pop %ds */
1919 buf[i++] = 0x9d; /* popf */
1920 buf[i++] = 0x83; /* add $0x4,%esp (pop of tpaddr aka $pc) */
1921 buf[i++] = 0xc4;
1922 buf[i++] = 0x04;
1923 buf[i++] = 0x61; /* popad */
1924 append_insns (&buildaddr, i, buf);
1925
1926 /* Now, adjust the original instruction to execute in the jump
1927 pad. */
1928 *adjusted_insn_addr = buildaddr;
1929 relocate_instruction (&buildaddr, tpaddr);
1930 *adjusted_insn_addr_end = buildaddr;
1931
1932 /* Write the jump back to the program. */
1933 offset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1934 memcpy (buf, jump_insn, sizeof (jump_insn));
1935 memcpy (buf + 1, &offset, 4);
1936 append_insns (&buildaddr, sizeof (jump_insn), buf);
1937
1938 /* The jump pad is now built. Wire in a jump to our jump pad. This
1939 is always done last (by our caller actually), so that we can
1940 install fast tracepoints with threads running. This relies on
1941 the agent's atomic write support. */
1942 if (orig_size == 4)
1943 {
1944 /* Create a trampoline. */
1945 *trampoline_size = sizeof (jump_insn);
1946 if (!claim_trampoline_space (*trampoline_size, trampoline))
1947 {
1948 /* No trampoline space available. */
1949 strcpy (err,
1950 "E.Cannot allocate trampoline space needed for fast "
1951 "tracepoints on 4-byte instructions.");
1952 return 1;
1953 }
1954
1955 offset = *jump_entry - (*trampoline + sizeof (jump_insn));
1956 memcpy (buf, jump_insn, sizeof (jump_insn));
1957 memcpy (buf + 1, &offset, 4);
1958 write_inferior_memory (*trampoline, buf, sizeof (jump_insn));
1959
1960 /* Use a 16-bit relative jump instruction to jump to the trampoline. */
1961 offset = (*trampoline - (tpaddr + sizeof (small_jump_insn))) & 0xffff;
1962 memcpy (buf, small_jump_insn, sizeof (small_jump_insn));
1963 memcpy (buf + 2, &offset, 2);
1964 memcpy (jjump_pad_insn, buf, sizeof (small_jump_insn));
1965 *jjump_pad_insn_size = sizeof (small_jump_insn);
1966 }
1967 else
1968 {
1969 /* Else use a 32-bit relative jump instruction. */
1970 offset = *jump_entry - (tpaddr + sizeof (jump_insn));
1971 memcpy (buf, jump_insn, sizeof (jump_insn));
1972 memcpy (buf + 1, &offset, 4);
1973 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1974 *jjump_pad_insn_size = sizeof (jump_insn);
1975 }
1976
1977 /* Return the end address of our pad. */
1978 *jump_entry = buildaddr;
1979
1980 return 0;
1981 }
1982
1983 static int
1984 x86_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1985 CORE_ADDR collector,
1986 CORE_ADDR lockaddr,
1987 ULONGEST orig_size,
1988 CORE_ADDR *jump_entry,
1989 CORE_ADDR *trampoline,
1990 ULONGEST *trampoline_size,
1991 unsigned char *jjump_pad_insn,
1992 ULONGEST *jjump_pad_insn_size,
1993 CORE_ADDR *adjusted_insn_addr,
1994 CORE_ADDR *adjusted_insn_addr_end,
1995 char *err)
1996 {
1997 #ifdef __x86_64__
1998 if (is_64bit_tdesc ())
1999 return amd64_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
2000 collector, lockaddr,
2001 orig_size, jump_entry,
2002 trampoline, trampoline_size,
2003 jjump_pad_insn,
2004 jjump_pad_insn_size,
2005 adjusted_insn_addr,
2006 adjusted_insn_addr_end,
2007 err);
2008 #endif
2009
2010 return i386_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
2011 collector, lockaddr,
2012 orig_size, jump_entry,
2013 trampoline, trampoline_size,
2014 jjump_pad_insn,
2015 jjump_pad_insn_size,
2016 adjusted_insn_addr,
2017 adjusted_insn_addr_end,
2018 err);
2019 }
2020
2021 /* Return the minimum instruction length for fast tracepoints on x86/x86-64
2022 architectures. */
2023
2024 static int
2025 x86_get_min_fast_tracepoint_insn_len (void)
2026 {
2027 static int warned_about_fast_tracepoints = 0;
2028
2029 #ifdef __x86_64__
2030 /* On x86-64, 5-byte jump instructions with a 4-byte offset are always
2031 used for fast tracepoints. */
2032 if (is_64bit_tdesc ())
2033 return 5;
2034 #endif
2035
2036 if (agent_loaded_p ())
2037 {
2038 char errbuf[IPA_BUFSIZ];
2039
2040 errbuf[0] = '\0';
2041
2042 /* On x86, if trampolines are available, then 4-byte jump instructions
2043 with a 2-byte offset may be used, otherwise 5-byte jump instructions
2044 with a 4-byte offset are used instead. */
2045 if (have_fast_tracepoint_trampoline_buffer (errbuf))
2046 return 4;
2047 else
2048 {
2049 /* GDB has no channel to explain to user why a shorter fast
2050 tracepoint is not possible, but at least make GDBserver
2051 mention that something has gone awry. */
2052 if (!warned_about_fast_tracepoints)
2053 {
2054 warning ("4-byte fast tracepoints not available; %s\n", errbuf);
2055 warned_about_fast_tracepoints = 1;
2056 }
2057 return 5;
2058 }
2059 }
2060 else
2061 {
2062 /* Indicate that the minimum length is currently unknown since the IPA
2063 has not loaded yet. */
2064 return 0;
2065 }
2066 }
2067
2068 static void
2069 add_insns (unsigned char *start, int len)
2070 {
2071 CORE_ADDR buildaddr = current_insn_ptr;
2072
2073 if (debug_threads)
2074 debug_printf ("Adding %d bytes of insn at %s\n",
2075 len, paddress (buildaddr));
2076
2077 append_insns (&buildaddr, len, start);
2078 current_insn_ptr = buildaddr;
2079 }
2080
2081 /* Our general strategy for emitting code is to avoid specifying raw
2082 bytes whenever possible, and instead copy a block of inline asm
2083 that is embedded in the function. This is a little messy, because
2084 we need to keep the compiler from discarding what looks like dead
2085 code, plus suppress various warnings. */
2086
2087 #define EMIT_ASM(NAME, INSNS) \
2088 do \
2089 { \
2090 extern unsigned char start_ ## NAME, end_ ## NAME; \
2091 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
2092 __asm__ ("jmp end_" #NAME "\n" \
2093 "\t" "start_" #NAME ":" \
2094 "\t" INSNS "\n" \
2095 "\t" "end_" #NAME ":"); \
2096 } while (0)
2097
2098 #ifdef __x86_64__
2099
2100 #define EMIT_ASM32(NAME,INSNS) \
2101 do \
2102 { \
2103 extern unsigned char start_ ## NAME, end_ ## NAME; \
2104 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
2105 __asm__ (".code32\n" \
2106 "\t" "jmp end_" #NAME "\n" \
2107 "\t" "start_" #NAME ":\n" \
2108 "\t" INSNS "\n" \
2109 "\t" "end_" #NAME ":\n" \
2110 ".code64\n"); \
2111 } while (0)
2112
2113 #else
2114
2115 #define EMIT_ASM32(NAME,INSNS) EMIT_ASM(NAME,INSNS)
2116
2117 #endif
2118
2119 #ifdef __x86_64__
2120
2121 static void
2122 amd64_emit_prologue (void)
2123 {
2124 EMIT_ASM (amd64_prologue,
2125 "pushq %rbp\n\t"
2126 "movq %rsp,%rbp\n\t"
2127 "sub $0x20,%rsp\n\t"
2128 "movq %rdi,-8(%rbp)\n\t"
2129 "movq %rsi,-16(%rbp)");
2130 }
2131
2132
2133 static void
2134 amd64_emit_epilogue (void)
2135 {
2136 EMIT_ASM (amd64_epilogue,
2137 "movq -16(%rbp),%rdi\n\t"
2138 "movq %rax,(%rdi)\n\t"
2139 "xor %rax,%rax\n\t"
2140 "leave\n\t"
2141 "ret");
2142 }
2143
2144 static void
2145 amd64_emit_add (void)
2146 {
2147 EMIT_ASM (amd64_add,
2148 "add (%rsp),%rax\n\t"
2149 "lea 0x8(%rsp),%rsp");
2150 }
2151
2152 static void
2153 amd64_emit_sub (void)
2154 {
2155 EMIT_ASM (amd64_sub,
2156 "sub %rax,(%rsp)\n\t"
2157 "pop %rax");
2158 }
2159
2160 static void
2161 amd64_emit_mul (void)
2162 {
2163 emit_error = 1;
2164 }
2165
2166 static void
2167 amd64_emit_lsh (void)
2168 {
2169 emit_error = 1;
2170 }
2171
2172 static void
2173 amd64_emit_rsh_signed (void)
2174 {
2175 emit_error = 1;
2176 }
2177
2178 static void
2179 amd64_emit_rsh_unsigned (void)
2180 {
2181 emit_error = 1;
2182 }
2183
2184 static void
2185 amd64_emit_ext (int arg)
2186 {
2187 switch (arg)
2188 {
2189 case 8:
2190 EMIT_ASM (amd64_ext_8,
2191 "cbtw\n\t"
2192 "cwtl\n\t"
2193 "cltq");
2194 break;
2195 case 16:
2196 EMIT_ASM (amd64_ext_16,
2197 "cwtl\n\t"
2198 "cltq");
2199 break;
2200 case 32:
2201 EMIT_ASM (amd64_ext_32,
2202 "cltq");
2203 break;
2204 default:
2205 emit_error = 1;
2206 }
2207 }
2208
2209 static void
2210 amd64_emit_log_not (void)
2211 {
2212 EMIT_ASM (amd64_log_not,
2213 "test %rax,%rax\n\t"
2214 "sete %cl\n\t"
2215 "movzbq %cl,%rax");
2216 }
2217
2218 static void
2219 amd64_emit_bit_and (void)
2220 {
2221 EMIT_ASM (amd64_and,
2222 "and (%rsp),%rax\n\t"
2223 "lea 0x8(%rsp),%rsp");
2224 }
2225
2226 static void
2227 amd64_emit_bit_or (void)
2228 {
2229 EMIT_ASM (amd64_or,
2230 "or (%rsp),%rax\n\t"
2231 "lea 0x8(%rsp),%rsp");
2232 }
2233
2234 static void
2235 amd64_emit_bit_xor (void)
2236 {
2237 EMIT_ASM (amd64_xor,
2238 "xor (%rsp),%rax\n\t"
2239 "lea 0x8(%rsp),%rsp");
2240 }
2241
2242 static void
2243 amd64_emit_bit_not (void)
2244 {
2245 EMIT_ASM (amd64_bit_not,
2246 "xorq $0xffffffffffffffff,%rax");
2247 }
2248
2249 static void
2250 amd64_emit_equal (void)
2251 {
2252 EMIT_ASM (amd64_equal,
2253 "cmp %rax,(%rsp)\n\t"
2254 "je .Lamd64_equal_true\n\t"
2255 "xor %rax,%rax\n\t"
2256 "jmp .Lamd64_equal_end\n\t"
2257 ".Lamd64_equal_true:\n\t"
2258 "mov $0x1,%rax\n\t"
2259 ".Lamd64_equal_end:\n\t"
2260 "lea 0x8(%rsp),%rsp");
2261 }
2262
2263 static void
2264 amd64_emit_less_signed (void)
2265 {
2266 EMIT_ASM (amd64_less_signed,
2267 "cmp %rax,(%rsp)\n\t"
2268 "jl .Lamd64_less_signed_true\n\t"
2269 "xor %rax,%rax\n\t"
2270 "jmp .Lamd64_less_signed_end\n\t"
2271 ".Lamd64_less_signed_true:\n\t"
2272 "mov $1,%rax\n\t"
2273 ".Lamd64_less_signed_end:\n\t"
2274 "lea 0x8(%rsp),%rsp");
2275 }
2276
2277 static void
2278 amd64_emit_less_unsigned (void)
2279 {
2280 EMIT_ASM (amd64_less_unsigned,
2281 "cmp %rax,(%rsp)\n\t"
2282 "jb .Lamd64_less_unsigned_true\n\t"
2283 "xor %rax,%rax\n\t"
2284 "jmp .Lamd64_less_unsigned_end\n\t"
2285 ".Lamd64_less_unsigned_true:\n\t"
2286 "mov $1,%rax\n\t"
2287 ".Lamd64_less_unsigned_end:\n\t"
2288 "lea 0x8(%rsp),%rsp");
2289 }
2290
2291 static void
2292 amd64_emit_ref (int size)
2293 {
2294 switch (size)
2295 {
2296 case 1:
2297 EMIT_ASM (amd64_ref1,
2298 "movb (%rax),%al");
2299 break;
2300 case 2:
2301 EMIT_ASM (amd64_ref2,
2302 "movw (%rax),%ax");
2303 break;
2304 case 4:
2305 EMIT_ASM (amd64_ref4,
2306 "movl (%rax),%eax");
2307 break;
2308 case 8:
2309 EMIT_ASM (amd64_ref8,
2310 "movq (%rax),%rax");
2311 break;
2312 }
2313 }
2314
2315 static void
2316 amd64_emit_if_goto (int *offset_p, int *size_p)
2317 {
2318 EMIT_ASM (amd64_if_goto,
2319 "mov %rax,%rcx\n\t"
2320 "pop %rax\n\t"
2321 "cmp $0,%rcx\n\t"
2322 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
2323 if (offset_p)
2324 *offset_p = 10;
2325 if (size_p)
2326 *size_p = 4;
2327 }
2328
2329 static void
2330 amd64_emit_goto (int *offset_p, int *size_p)
2331 {
2332 EMIT_ASM (amd64_goto,
2333 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
2334 if (offset_p)
2335 *offset_p = 1;
2336 if (size_p)
2337 *size_p = 4;
2338 }
2339
2340 static void
2341 amd64_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2342 {
2343 int diff = (to - (from + size));
2344 unsigned char buf[sizeof (int)];
2345
2346 if (size != 4)
2347 {
2348 emit_error = 1;
2349 return;
2350 }
2351
2352 memcpy (buf, &diff, sizeof (int));
2353 write_inferior_memory (from, buf, sizeof (int));
2354 }
2355
2356 static void
2357 amd64_emit_const (LONGEST num)
2358 {
2359 unsigned char buf[16];
2360 int i;
2361 CORE_ADDR buildaddr = current_insn_ptr;
2362
2363 i = 0;
2364 buf[i++] = 0x48; buf[i++] = 0xb8; /* mov $<n>,%rax */
2365 memcpy (&buf[i], &num, sizeof (num));
2366 i += 8;
2367 append_insns (&buildaddr, i, buf);
2368 current_insn_ptr = buildaddr;
2369 }
2370
2371 static void
2372 amd64_emit_call (CORE_ADDR fn)
2373 {
2374 unsigned char buf[16];
2375 int i;
2376 CORE_ADDR buildaddr;
2377 LONGEST offset64;
2378
2379 /* The destination function being in the shared library, may be
2380 >31-bits away off the compiled code pad. */
2381
2382 buildaddr = current_insn_ptr;
2383
2384 offset64 = fn - (buildaddr + 1 /* call op */ + 4 /* 32-bit offset */);
2385
2386 i = 0;
2387
2388 if (offset64 > INT_MAX || offset64 < INT_MIN)
2389 {
2390 /* Offset is too large for a call. Use callq, but that requires
2391 a register, so avoid it if possible. Use r10, since it is
2392 call-clobbered, we don't have to push/pop it. */
2393 buf[i++] = 0x48; /* mov $fn,%r10 */
2394 buf[i++] = 0xba;
2395 memcpy (buf + i, &fn, 8);
2396 i += 8;
2397 buf[i++] = 0xff; /* callq *%r10 */
2398 buf[i++] = 0xd2;
2399 }
2400 else
2401 {
2402 int offset32 = offset64; /* we know we can't overflow here. */
2403 memcpy (buf + i, &offset32, 4);
2404 i += 4;
2405 }
2406
2407 append_insns (&buildaddr, i, buf);
2408 current_insn_ptr = buildaddr;
2409 }
2410
2411 static void
2412 amd64_emit_reg (int reg)
2413 {
2414 unsigned char buf[16];
2415 int i;
2416 CORE_ADDR buildaddr;
2417
2418 /* Assume raw_regs is still in %rdi. */
2419 buildaddr = current_insn_ptr;
2420 i = 0;
2421 buf[i++] = 0xbe; /* mov $<n>,%esi */
2422 memcpy (&buf[i], &reg, sizeof (reg));
2423 i += 4;
2424 append_insns (&buildaddr, i, buf);
2425 current_insn_ptr = buildaddr;
2426 amd64_emit_call (get_raw_reg_func_addr ());
2427 }
2428
2429 static void
2430 amd64_emit_pop (void)
2431 {
2432 EMIT_ASM (amd64_pop,
2433 "pop %rax");
2434 }
2435
2436 static void
2437 amd64_emit_stack_flush (void)
2438 {
2439 EMIT_ASM (amd64_stack_flush,
2440 "push %rax");
2441 }
2442
2443 static void
2444 amd64_emit_zero_ext (int arg)
2445 {
2446 switch (arg)
2447 {
2448 case 8:
2449 EMIT_ASM (amd64_zero_ext_8,
2450 "and $0xff,%rax");
2451 break;
2452 case 16:
2453 EMIT_ASM (amd64_zero_ext_16,
2454 "and $0xffff,%rax");
2455 break;
2456 case 32:
2457 EMIT_ASM (amd64_zero_ext_32,
2458 "mov $0xffffffff,%rcx\n\t"
2459 "and %rcx,%rax");
2460 break;
2461 default:
2462 emit_error = 1;
2463 }
2464 }
2465
2466 static void
2467 amd64_emit_swap (void)
2468 {
2469 EMIT_ASM (amd64_swap,
2470 "mov %rax,%rcx\n\t"
2471 "pop %rax\n\t"
2472 "push %rcx");
2473 }
2474
2475 static void
2476 amd64_emit_stack_adjust (int n)
2477 {
2478 unsigned char buf[16];
2479 int i;
2480 CORE_ADDR buildaddr = current_insn_ptr;
2481
2482 i = 0;
2483 buf[i++] = 0x48; /* lea $<n>(%rsp),%rsp */
2484 buf[i++] = 0x8d;
2485 buf[i++] = 0x64;
2486 buf[i++] = 0x24;
2487 /* This only handles adjustments up to 16, but we don't expect any more. */
2488 buf[i++] = n * 8;
2489 append_insns (&buildaddr, i, buf);
2490 current_insn_ptr = buildaddr;
2491 }
2492
2493 /* FN's prototype is `LONGEST(*fn)(int)'. */
2494
2495 static void
2496 amd64_emit_int_call_1 (CORE_ADDR fn, int arg1)
2497 {
2498 unsigned char buf[16];
2499 int i;
2500 CORE_ADDR buildaddr;
2501
2502 buildaddr = current_insn_ptr;
2503 i = 0;
2504 buf[i++] = 0xbf; /* movl $<n>,%edi */
2505 memcpy (&buf[i], &arg1, sizeof (arg1));
2506 i += 4;
2507 append_insns (&buildaddr, i, buf);
2508 current_insn_ptr = buildaddr;
2509 amd64_emit_call (fn);
2510 }
2511
2512 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
2513
2514 static void
2515 amd64_emit_void_call_2 (CORE_ADDR fn, int arg1)
2516 {
2517 unsigned char buf[16];
2518 int i;
2519 CORE_ADDR buildaddr;
2520
2521 buildaddr = current_insn_ptr;
2522 i = 0;
2523 buf[i++] = 0xbf; /* movl $<n>,%edi */
2524 memcpy (&buf[i], &arg1, sizeof (arg1));
2525 i += 4;
2526 append_insns (&buildaddr, i, buf);
2527 current_insn_ptr = buildaddr;
2528 EMIT_ASM (amd64_void_call_2_a,
2529 /* Save away a copy of the stack top. */
2530 "push %rax\n\t"
2531 /* Also pass top as the second argument. */
2532 "mov %rax,%rsi");
2533 amd64_emit_call (fn);
2534 EMIT_ASM (amd64_void_call_2_b,
2535 /* Restore the stack top, %rax may have been trashed. */
2536 "pop %rax");
2537 }
2538
2539 void
2540 amd64_emit_eq_goto (int *offset_p, int *size_p)
2541 {
2542 EMIT_ASM (amd64_eq,
2543 "cmp %rax,(%rsp)\n\t"
2544 "jne .Lamd64_eq_fallthru\n\t"
2545 "lea 0x8(%rsp),%rsp\n\t"
2546 "pop %rax\n\t"
2547 /* jmp, but don't trust the assembler to choose the right jump */
2548 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2549 ".Lamd64_eq_fallthru:\n\t"
2550 "lea 0x8(%rsp),%rsp\n\t"
2551 "pop %rax");
2552
2553 if (offset_p)
2554 *offset_p = 13;
2555 if (size_p)
2556 *size_p = 4;
2557 }
2558
2559 void
2560 amd64_emit_ne_goto (int *offset_p, int *size_p)
2561 {
2562 EMIT_ASM (amd64_ne,
2563 "cmp %rax,(%rsp)\n\t"
2564 "je .Lamd64_ne_fallthru\n\t"
2565 "lea 0x8(%rsp),%rsp\n\t"
2566 "pop %rax\n\t"
2567 /* jmp, but don't trust the assembler to choose the right jump */
2568 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2569 ".Lamd64_ne_fallthru:\n\t"
2570 "lea 0x8(%rsp),%rsp\n\t"
2571 "pop %rax");
2572
2573 if (offset_p)
2574 *offset_p = 13;
2575 if (size_p)
2576 *size_p = 4;
2577 }
2578
2579 void
2580 amd64_emit_lt_goto (int *offset_p, int *size_p)
2581 {
2582 EMIT_ASM (amd64_lt,
2583 "cmp %rax,(%rsp)\n\t"
2584 "jnl .Lamd64_lt_fallthru\n\t"
2585 "lea 0x8(%rsp),%rsp\n\t"
2586 "pop %rax\n\t"
2587 /* jmp, but don't trust the assembler to choose the right jump */
2588 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2589 ".Lamd64_lt_fallthru:\n\t"
2590 "lea 0x8(%rsp),%rsp\n\t"
2591 "pop %rax");
2592
2593 if (offset_p)
2594 *offset_p = 13;
2595 if (size_p)
2596 *size_p = 4;
2597 }
2598
2599 void
2600 amd64_emit_le_goto (int *offset_p, int *size_p)
2601 {
2602 EMIT_ASM (amd64_le,
2603 "cmp %rax,(%rsp)\n\t"
2604 "jnle .Lamd64_le_fallthru\n\t"
2605 "lea 0x8(%rsp),%rsp\n\t"
2606 "pop %rax\n\t"
2607 /* jmp, but don't trust the assembler to choose the right jump */
2608 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2609 ".Lamd64_le_fallthru:\n\t"
2610 "lea 0x8(%rsp),%rsp\n\t"
2611 "pop %rax");
2612
2613 if (offset_p)
2614 *offset_p = 13;
2615 if (size_p)
2616 *size_p = 4;
2617 }
2618
2619 void
2620 amd64_emit_gt_goto (int *offset_p, int *size_p)
2621 {
2622 EMIT_ASM (amd64_gt,
2623 "cmp %rax,(%rsp)\n\t"
2624 "jng .Lamd64_gt_fallthru\n\t"
2625 "lea 0x8(%rsp),%rsp\n\t"
2626 "pop %rax\n\t"
2627 /* jmp, but don't trust the assembler to choose the right jump */
2628 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2629 ".Lamd64_gt_fallthru:\n\t"
2630 "lea 0x8(%rsp),%rsp\n\t"
2631 "pop %rax");
2632
2633 if (offset_p)
2634 *offset_p = 13;
2635 if (size_p)
2636 *size_p = 4;
2637 }
2638
2639 void
2640 amd64_emit_ge_goto (int *offset_p, int *size_p)
2641 {
2642 EMIT_ASM (amd64_ge,
2643 "cmp %rax,(%rsp)\n\t"
2644 "jnge .Lamd64_ge_fallthru\n\t"
2645 ".Lamd64_ge_jump:\n\t"
2646 "lea 0x8(%rsp),%rsp\n\t"
2647 "pop %rax\n\t"
2648 /* jmp, but don't trust the assembler to choose the right jump */
2649 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2650 ".Lamd64_ge_fallthru:\n\t"
2651 "lea 0x8(%rsp),%rsp\n\t"
2652 "pop %rax");
2653
2654 if (offset_p)
2655 *offset_p = 13;
2656 if (size_p)
2657 *size_p = 4;
2658 }
2659
2660 struct emit_ops amd64_emit_ops =
2661 {
2662 amd64_emit_prologue,
2663 amd64_emit_epilogue,
2664 amd64_emit_add,
2665 amd64_emit_sub,
2666 amd64_emit_mul,
2667 amd64_emit_lsh,
2668 amd64_emit_rsh_signed,
2669 amd64_emit_rsh_unsigned,
2670 amd64_emit_ext,
2671 amd64_emit_log_not,
2672 amd64_emit_bit_and,
2673 amd64_emit_bit_or,
2674 amd64_emit_bit_xor,
2675 amd64_emit_bit_not,
2676 amd64_emit_equal,
2677 amd64_emit_less_signed,
2678 amd64_emit_less_unsigned,
2679 amd64_emit_ref,
2680 amd64_emit_if_goto,
2681 amd64_emit_goto,
2682 amd64_write_goto_address,
2683 amd64_emit_const,
2684 amd64_emit_call,
2685 amd64_emit_reg,
2686 amd64_emit_pop,
2687 amd64_emit_stack_flush,
2688 amd64_emit_zero_ext,
2689 amd64_emit_swap,
2690 amd64_emit_stack_adjust,
2691 amd64_emit_int_call_1,
2692 amd64_emit_void_call_2,
2693 amd64_emit_eq_goto,
2694 amd64_emit_ne_goto,
2695 amd64_emit_lt_goto,
2696 amd64_emit_le_goto,
2697 amd64_emit_gt_goto,
2698 amd64_emit_ge_goto
2699 };
2700
2701 #endif /* __x86_64__ */
2702
2703 static void
2704 i386_emit_prologue (void)
2705 {
2706 EMIT_ASM32 (i386_prologue,
2707 "push %ebp\n\t"
2708 "mov %esp,%ebp\n\t"
2709 "push %ebx");
2710 /* At this point, the raw regs base address is at 8(%ebp), and the
2711 value pointer is at 12(%ebp). */
2712 }
2713
2714 static void
2715 i386_emit_epilogue (void)
2716 {
2717 EMIT_ASM32 (i386_epilogue,
2718 "mov 12(%ebp),%ecx\n\t"
2719 "mov %eax,(%ecx)\n\t"
2720 "mov %ebx,0x4(%ecx)\n\t"
2721 "xor %eax,%eax\n\t"
2722 "pop %ebx\n\t"
2723 "pop %ebp\n\t"
2724 "ret");
2725 }
2726
2727 static void
2728 i386_emit_add (void)
2729 {
2730 EMIT_ASM32 (i386_add,
2731 "add (%esp),%eax\n\t"
2732 "adc 0x4(%esp),%ebx\n\t"
2733 "lea 0x8(%esp),%esp");
2734 }
2735
2736 static void
2737 i386_emit_sub (void)
2738 {
2739 EMIT_ASM32 (i386_sub,
2740 "subl %eax,(%esp)\n\t"
2741 "sbbl %ebx,4(%esp)\n\t"
2742 "pop %eax\n\t"
2743 "pop %ebx\n\t");
2744 }
2745
2746 static void
2747 i386_emit_mul (void)
2748 {
2749 emit_error = 1;
2750 }
2751
2752 static void
2753 i386_emit_lsh (void)
2754 {
2755 emit_error = 1;
2756 }
2757
2758 static void
2759 i386_emit_rsh_signed (void)
2760 {
2761 emit_error = 1;
2762 }
2763
2764 static void
2765 i386_emit_rsh_unsigned (void)
2766 {
2767 emit_error = 1;
2768 }
2769
2770 static void
2771 i386_emit_ext (int arg)
2772 {
2773 switch (arg)
2774 {
2775 case 8:
2776 EMIT_ASM32 (i386_ext_8,
2777 "cbtw\n\t"
2778 "cwtl\n\t"
2779 "movl %eax,%ebx\n\t"
2780 "sarl $31,%ebx");
2781 break;
2782 case 16:
2783 EMIT_ASM32 (i386_ext_16,
2784 "cwtl\n\t"
2785 "movl %eax,%ebx\n\t"
2786 "sarl $31,%ebx");
2787 break;
2788 case 32:
2789 EMIT_ASM32 (i386_ext_32,
2790 "movl %eax,%ebx\n\t"
2791 "sarl $31,%ebx");
2792 break;
2793 default:
2794 emit_error = 1;
2795 }
2796 }
2797
2798 static void
2799 i386_emit_log_not (void)
2800 {
2801 EMIT_ASM32 (i386_log_not,
2802 "or %ebx,%eax\n\t"
2803 "test %eax,%eax\n\t"
2804 "sete %cl\n\t"
2805 "xor %ebx,%ebx\n\t"
2806 "movzbl %cl,%eax");
2807 }
2808
2809 static void
2810 i386_emit_bit_and (void)
2811 {
2812 EMIT_ASM32 (i386_and,
2813 "and (%esp),%eax\n\t"
2814 "and 0x4(%esp),%ebx\n\t"
2815 "lea 0x8(%esp),%esp");
2816 }
2817
2818 static void
2819 i386_emit_bit_or (void)
2820 {
2821 EMIT_ASM32 (i386_or,
2822 "or (%esp),%eax\n\t"
2823 "or 0x4(%esp),%ebx\n\t"
2824 "lea 0x8(%esp),%esp");
2825 }
2826
2827 static void
2828 i386_emit_bit_xor (void)
2829 {
2830 EMIT_ASM32 (i386_xor,
2831 "xor (%esp),%eax\n\t"
2832 "xor 0x4(%esp),%ebx\n\t"
2833 "lea 0x8(%esp),%esp");
2834 }
2835
2836 static void
2837 i386_emit_bit_not (void)
2838 {
2839 EMIT_ASM32 (i386_bit_not,
2840 "xor $0xffffffff,%eax\n\t"
2841 "xor $0xffffffff,%ebx\n\t");
2842 }
2843
2844 static void
2845 i386_emit_equal (void)
2846 {
2847 EMIT_ASM32 (i386_equal,
2848 "cmpl %ebx,4(%esp)\n\t"
2849 "jne .Li386_equal_false\n\t"
2850 "cmpl %eax,(%esp)\n\t"
2851 "je .Li386_equal_true\n\t"
2852 ".Li386_equal_false:\n\t"
2853 "xor %eax,%eax\n\t"
2854 "jmp .Li386_equal_end\n\t"
2855 ".Li386_equal_true:\n\t"
2856 "mov $1,%eax\n\t"
2857 ".Li386_equal_end:\n\t"
2858 "xor %ebx,%ebx\n\t"
2859 "lea 0x8(%esp),%esp");
2860 }
2861
2862 static void
2863 i386_emit_less_signed (void)
2864 {
2865 EMIT_ASM32 (i386_less_signed,
2866 "cmpl %ebx,4(%esp)\n\t"
2867 "jl .Li386_less_signed_true\n\t"
2868 "jne .Li386_less_signed_false\n\t"
2869 "cmpl %eax,(%esp)\n\t"
2870 "jl .Li386_less_signed_true\n\t"
2871 ".Li386_less_signed_false:\n\t"
2872 "xor %eax,%eax\n\t"
2873 "jmp .Li386_less_signed_end\n\t"
2874 ".Li386_less_signed_true:\n\t"
2875 "mov $1,%eax\n\t"
2876 ".Li386_less_signed_end:\n\t"
2877 "xor %ebx,%ebx\n\t"
2878 "lea 0x8(%esp),%esp");
2879 }
2880
2881 static void
2882 i386_emit_less_unsigned (void)
2883 {
2884 EMIT_ASM32 (i386_less_unsigned,
2885 "cmpl %ebx,4(%esp)\n\t"
2886 "jb .Li386_less_unsigned_true\n\t"
2887 "jne .Li386_less_unsigned_false\n\t"
2888 "cmpl %eax,(%esp)\n\t"
2889 "jb .Li386_less_unsigned_true\n\t"
2890 ".Li386_less_unsigned_false:\n\t"
2891 "xor %eax,%eax\n\t"
2892 "jmp .Li386_less_unsigned_end\n\t"
2893 ".Li386_less_unsigned_true:\n\t"
2894 "mov $1,%eax\n\t"
2895 ".Li386_less_unsigned_end:\n\t"
2896 "xor %ebx,%ebx\n\t"
2897 "lea 0x8(%esp),%esp");
2898 }
2899
2900 static void
2901 i386_emit_ref (int size)
2902 {
2903 switch (size)
2904 {
2905 case 1:
2906 EMIT_ASM32 (i386_ref1,
2907 "movb (%eax),%al");
2908 break;
2909 case 2:
2910 EMIT_ASM32 (i386_ref2,
2911 "movw (%eax),%ax");
2912 break;
2913 case 4:
2914 EMIT_ASM32 (i386_ref4,
2915 "movl (%eax),%eax");
2916 break;
2917 case 8:
2918 EMIT_ASM32 (i386_ref8,
2919 "movl 4(%eax),%ebx\n\t"
2920 "movl (%eax),%eax");
2921 break;
2922 }
2923 }
2924
2925 static void
2926 i386_emit_if_goto (int *offset_p, int *size_p)
2927 {
2928 EMIT_ASM32 (i386_if_goto,
2929 "mov %eax,%ecx\n\t"
2930 "or %ebx,%ecx\n\t"
2931 "pop %eax\n\t"
2932 "pop %ebx\n\t"
2933 "cmpl $0,%ecx\n\t"
2934 /* Don't trust the assembler to choose the right jump */
2935 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
2936
2937 if (offset_p)
2938 *offset_p = 11; /* be sure that this matches the sequence above */
2939 if (size_p)
2940 *size_p = 4;
2941 }
2942
2943 static void
2944 i386_emit_goto (int *offset_p, int *size_p)
2945 {
2946 EMIT_ASM32 (i386_goto,
2947 /* Don't trust the assembler to choose the right jump */
2948 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
2949 if (offset_p)
2950 *offset_p = 1;
2951 if (size_p)
2952 *size_p = 4;
2953 }
2954
2955 static void
2956 i386_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2957 {
2958 int diff = (to - (from + size));
2959 unsigned char buf[sizeof (int)];
2960
2961 /* We're only doing 4-byte sizes at the moment. */
2962 if (size != 4)
2963 {
2964 emit_error = 1;
2965 return;
2966 }
2967
2968 memcpy (buf, &diff, sizeof (int));
2969 write_inferior_memory (from, buf, sizeof (int));
2970 }
2971
2972 static void
2973 i386_emit_const (LONGEST num)
2974 {
2975 unsigned char buf[16];
2976 int i, hi, lo;
2977 CORE_ADDR buildaddr = current_insn_ptr;
2978
2979 i = 0;
2980 buf[i++] = 0xb8; /* mov $<n>,%eax */
2981 lo = num & 0xffffffff;
2982 memcpy (&buf[i], &lo, sizeof (lo));
2983 i += 4;
2984 hi = ((num >> 32) & 0xffffffff);
2985 if (hi)
2986 {
2987 buf[i++] = 0xbb; /* mov $<n>,%ebx */
2988 memcpy (&buf[i], &hi, sizeof (hi));
2989 i += 4;
2990 }
2991 else
2992 {
2993 buf[i++] = 0x31; buf[i++] = 0xdb; /* xor %ebx,%ebx */
2994 }
2995 append_insns (&buildaddr, i, buf);
2996 current_insn_ptr = buildaddr;
2997 }
2998
2999 static void
3000 i386_emit_call (CORE_ADDR fn)
3001 {
3002 unsigned char buf[16];
3003 int i, offset;
3004 CORE_ADDR buildaddr;
3005
3006 buildaddr = current_insn_ptr;
3007 i = 0;
3008 buf[i++] = 0xe8; /* call <reladdr> */
3009 offset = ((int) fn) - (buildaddr + 5);
3010 memcpy (buf + 1, &offset, 4);
3011 append_insns (&buildaddr, 5, buf);
3012 current_insn_ptr = buildaddr;
3013 }
3014
3015 static void
3016 i386_emit_reg (int reg)
3017 {
3018 unsigned char buf[16];
3019 int i;
3020 CORE_ADDR buildaddr;
3021
3022 EMIT_ASM32 (i386_reg_a,
3023 "sub $0x8,%esp");
3024 buildaddr = current_insn_ptr;
3025 i = 0;
3026 buf[i++] = 0xb8; /* mov $<n>,%eax */
3027 memcpy (&buf[i], &reg, sizeof (reg));
3028 i += 4;
3029 append_insns (&buildaddr, i, buf);
3030 current_insn_ptr = buildaddr;
3031 EMIT_ASM32 (i386_reg_b,
3032 "mov %eax,4(%esp)\n\t"
3033 "mov 8(%ebp),%eax\n\t"
3034 "mov %eax,(%esp)");
3035 i386_emit_call (get_raw_reg_func_addr ());
3036 EMIT_ASM32 (i386_reg_c,
3037 "xor %ebx,%ebx\n\t"
3038 "lea 0x8(%esp),%esp");
3039 }
3040
3041 static void
3042 i386_emit_pop (void)
3043 {
3044 EMIT_ASM32 (i386_pop,
3045 "pop %eax\n\t"
3046 "pop %ebx");
3047 }
3048
3049 static void
3050 i386_emit_stack_flush (void)
3051 {
3052 EMIT_ASM32 (i386_stack_flush,
3053 "push %ebx\n\t"
3054 "push %eax");
3055 }
3056
3057 static void
3058 i386_emit_zero_ext (int arg)
3059 {
3060 switch (arg)
3061 {
3062 case 8:
3063 EMIT_ASM32 (i386_zero_ext_8,
3064 "and $0xff,%eax\n\t"
3065 "xor %ebx,%ebx");
3066 break;
3067 case 16:
3068 EMIT_ASM32 (i386_zero_ext_16,
3069 "and $0xffff,%eax\n\t"
3070 "xor %ebx,%ebx");
3071 break;
3072 case 32:
3073 EMIT_ASM32 (i386_zero_ext_32,
3074 "xor %ebx,%ebx");
3075 break;
3076 default:
3077 emit_error = 1;
3078 }
3079 }
3080
3081 static void
3082 i386_emit_swap (void)
3083 {
3084 EMIT_ASM32 (i386_swap,
3085 "mov %eax,%ecx\n\t"
3086 "mov %ebx,%edx\n\t"
3087 "pop %eax\n\t"
3088 "pop %ebx\n\t"
3089 "push %edx\n\t"
3090 "push %ecx");
3091 }
3092
3093 static void
3094 i386_emit_stack_adjust (int n)
3095 {
3096 unsigned char buf[16];
3097 int i;
3098 CORE_ADDR buildaddr = current_insn_ptr;
3099
3100 i = 0;
3101 buf[i++] = 0x8d; /* lea $<n>(%esp),%esp */
3102 buf[i++] = 0x64;
3103 buf[i++] = 0x24;
3104 buf[i++] = n * 8;
3105 append_insns (&buildaddr, i, buf);
3106 current_insn_ptr = buildaddr;
3107 }
3108
3109 /* FN's prototype is `LONGEST(*fn)(int)'. */
3110
3111 static void
3112 i386_emit_int_call_1 (CORE_ADDR fn, int arg1)
3113 {
3114 unsigned char buf[16];
3115 int i;
3116 CORE_ADDR buildaddr;
3117
3118 EMIT_ASM32 (i386_int_call_1_a,
3119 /* Reserve a bit of stack space. */
3120 "sub $0x8,%esp");
3121 /* Put the one argument on the stack. */
3122 buildaddr = current_insn_ptr;
3123 i = 0;
3124 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
3125 buf[i++] = 0x04;
3126 buf[i++] = 0x24;
3127 memcpy (&buf[i], &arg1, sizeof (arg1));
3128 i += 4;
3129 append_insns (&buildaddr, i, buf);
3130 current_insn_ptr = buildaddr;
3131 i386_emit_call (fn);
3132 EMIT_ASM32 (i386_int_call_1_c,
3133 "mov %edx,%ebx\n\t"
3134 "lea 0x8(%esp),%esp");
3135 }
3136
3137 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
3138
3139 static void
3140 i386_emit_void_call_2 (CORE_ADDR fn, int arg1)
3141 {
3142 unsigned char buf[16];
3143 int i;
3144 CORE_ADDR buildaddr;
3145
3146 EMIT_ASM32 (i386_void_call_2_a,
3147 /* Preserve %eax only; we don't have to worry about %ebx. */
3148 "push %eax\n\t"
3149 /* Reserve a bit of stack space for arguments. */
3150 "sub $0x10,%esp\n\t"
3151 /* Copy "top" to the second argument position. (Note that
3152 we can't assume function won't scribble on its
3153 arguments, so don't try to restore from this.) */
3154 "mov %eax,4(%esp)\n\t"
3155 "mov %ebx,8(%esp)");
3156 /* Put the first argument on the stack. */
3157 buildaddr = current_insn_ptr;
3158 i = 0;
3159 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
3160 buf[i++] = 0x04;
3161 buf[i++] = 0x24;
3162 memcpy (&buf[i], &arg1, sizeof (arg1));
3163 i += 4;
3164 append_insns (&buildaddr, i, buf);
3165 current_insn_ptr = buildaddr;
3166 i386_emit_call (fn);
3167 EMIT_ASM32 (i386_void_call_2_b,
3168 "lea 0x10(%esp),%esp\n\t"
3169 /* Restore original stack top. */
3170 "pop %eax");
3171 }
3172
3173
3174 void
3175 i386_emit_eq_goto (int *offset_p, int *size_p)
3176 {
3177 EMIT_ASM32 (eq,
3178 /* Check low half first, more likely to be decider */
3179 "cmpl %eax,(%esp)\n\t"
3180 "jne .Leq_fallthru\n\t"
3181 "cmpl %ebx,4(%esp)\n\t"
3182 "jne .Leq_fallthru\n\t"
3183 "lea 0x8(%esp),%esp\n\t"
3184 "pop %eax\n\t"
3185 "pop %ebx\n\t"
3186 /* jmp, but don't trust the assembler to choose the right jump */
3187 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3188 ".Leq_fallthru:\n\t"
3189 "lea 0x8(%esp),%esp\n\t"
3190 "pop %eax\n\t"
3191 "pop %ebx");
3192
3193 if (offset_p)
3194 *offset_p = 18;
3195 if (size_p)
3196 *size_p = 4;
3197 }
3198
3199 void
3200 i386_emit_ne_goto (int *offset_p, int *size_p)
3201 {
3202 EMIT_ASM32 (ne,
3203 /* Check low half first, more likely to be decider */
3204 "cmpl %eax,(%esp)\n\t"
3205 "jne .Lne_jump\n\t"
3206 "cmpl %ebx,4(%esp)\n\t"
3207 "je .Lne_fallthru\n\t"
3208 ".Lne_jump:\n\t"
3209 "lea 0x8(%esp),%esp\n\t"
3210 "pop %eax\n\t"
3211 "pop %ebx\n\t"
3212 /* jmp, but don't trust the assembler to choose the right jump */
3213 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3214 ".Lne_fallthru:\n\t"
3215 "lea 0x8(%esp),%esp\n\t"
3216 "pop %eax\n\t"
3217 "pop %ebx");
3218
3219 if (offset_p)
3220 *offset_p = 18;
3221 if (size_p)
3222 *size_p = 4;
3223 }
3224
3225 void
3226 i386_emit_lt_goto (int *offset_p, int *size_p)
3227 {
3228 EMIT_ASM32 (lt,
3229 "cmpl %ebx,4(%esp)\n\t"
3230 "jl .Llt_jump\n\t"
3231 "jne .Llt_fallthru\n\t"
3232 "cmpl %eax,(%esp)\n\t"
3233 "jnl .Llt_fallthru\n\t"
3234 ".Llt_jump:\n\t"
3235 "lea 0x8(%esp),%esp\n\t"
3236 "pop %eax\n\t"
3237 "pop %ebx\n\t"
3238 /* jmp, but don't trust the assembler to choose the right jump */
3239 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3240 ".Llt_fallthru:\n\t"
3241 "lea 0x8(%esp),%esp\n\t"
3242 "pop %eax\n\t"
3243 "pop %ebx");
3244
3245 if (offset_p)
3246 *offset_p = 20;
3247 if (size_p)
3248 *size_p = 4;
3249 }
3250
3251 void
3252 i386_emit_le_goto (int *offset_p, int *size_p)
3253 {
3254 EMIT_ASM32 (le,
3255 "cmpl %ebx,4(%esp)\n\t"
3256 "jle .Lle_jump\n\t"
3257 "jne .Lle_fallthru\n\t"
3258 "cmpl %eax,(%esp)\n\t"
3259 "jnle .Lle_fallthru\n\t"
3260 ".Lle_jump:\n\t"
3261 "lea 0x8(%esp),%esp\n\t"
3262 "pop %eax\n\t"
3263 "pop %ebx\n\t"
3264 /* jmp, but don't trust the assembler to choose the right jump */
3265 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3266 ".Lle_fallthru:\n\t"
3267 "lea 0x8(%esp),%esp\n\t"
3268 "pop %eax\n\t"
3269 "pop %ebx");
3270
3271 if (offset_p)
3272 *offset_p = 20;
3273 if (size_p)
3274 *size_p = 4;
3275 }
3276
3277 void
3278 i386_emit_gt_goto (int *offset_p, int *size_p)
3279 {
3280 EMIT_ASM32 (gt,
3281 "cmpl %ebx,4(%esp)\n\t"
3282 "jg .Lgt_jump\n\t"
3283 "jne .Lgt_fallthru\n\t"
3284 "cmpl %eax,(%esp)\n\t"
3285 "jng .Lgt_fallthru\n\t"
3286 ".Lgt_jump:\n\t"
3287 "lea 0x8(%esp),%esp\n\t"
3288 "pop %eax\n\t"
3289 "pop %ebx\n\t"
3290 /* jmp, but don't trust the assembler to choose the right jump */
3291 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3292 ".Lgt_fallthru:\n\t"
3293 "lea 0x8(%esp),%esp\n\t"
3294 "pop %eax\n\t"
3295 "pop %ebx");
3296
3297 if (offset_p)
3298 *offset_p = 20;
3299 if (size_p)
3300 *size_p = 4;
3301 }
3302
3303 void
3304 i386_emit_ge_goto (int *offset_p, int *size_p)
3305 {
3306 EMIT_ASM32 (ge,
3307 "cmpl %ebx,4(%esp)\n\t"
3308 "jge .Lge_jump\n\t"
3309 "jne .Lge_fallthru\n\t"
3310 "cmpl %eax,(%esp)\n\t"
3311 "jnge .Lge_fallthru\n\t"
3312 ".Lge_jump:\n\t"
3313 "lea 0x8(%esp),%esp\n\t"
3314 "pop %eax\n\t"
3315 "pop %ebx\n\t"
3316 /* jmp, but don't trust the assembler to choose the right jump */
3317 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3318 ".Lge_fallthru:\n\t"
3319 "lea 0x8(%esp),%esp\n\t"
3320 "pop %eax\n\t"
3321 "pop %ebx");
3322
3323 if (offset_p)
3324 *offset_p = 20;
3325 if (size_p)
3326 *size_p = 4;
3327 }
3328
3329 struct emit_ops i386_emit_ops =
3330 {
3331 i386_emit_prologue,
3332 i386_emit_epilogue,
3333 i386_emit_add,
3334 i386_emit_sub,
3335 i386_emit_mul,
3336 i386_emit_lsh,
3337 i386_emit_rsh_signed,
3338 i386_emit_rsh_unsigned,
3339 i386_emit_ext,
3340 i386_emit_log_not,
3341 i386_emit_bit_and,
3342 i386_emit_bit_or,
3343 i386_emit_bit_xor,
3344 i386_emit_bit_not,
3345 i386_emit_equal,
3346 i386_emit_less_signed,
3347 i386_emit_less_unsigned,
3348 i386_emit_ref,
3349 i386_emit_if_goto,
3350 i386_emit_goto,
3351 i386_write_goto_address,
3352 i386_emit_const,
3353 i386_emit_call,
3354 i386_emit_reg,
3355 i386_emit_pop,
3356 i386_emit_stack_flush,
3357 i386_emit_zero_ext,
3358 i386_emit_swap,
3359 i386_emit_stack_adjust,
3360 i386_emit_int_call_1,
3361 i386_emit_void_call_2,
3362 i386_emit_eq_goto,
3363 i386_emit_ne_goto,
3364 i386_emit_lt_goto,
3365 i386_emit_le_goto,
3366 i386_emit_gt_goto,
3367 i386_emit_ge_goto
3368 };
3369
3370
3371 static struct emit_ops *
3372 x86_emit_ops (void)
3373 {
3374 #ifdef __x86_64__
3375 if (is_64bit_tdesc ())
3376 return &amd64_emit_ops;
3377 else
3378 #endif
3379 return &i386_emit_ops;
3380 }
3381
3382 static int
3383 x86_supports_range_stepping (void)
3384 {
3385 return 1;
3386 }
3387
3388 /* This is initialized assuming an amd64 target.
3389 x86_arch_setup will correct it for i386 or amd64 targets. */
3390
3391 struct linux_target_ops the_low_target =
3392 {
3393 x86_arch_setup,
3394 x86_linux_regs_info,
3395 x86_cannot_fetch_register,
3396 x86_cannot_store_register,
3397 NULL, /* fetch_register */
3398 x86_get_pc,
3399 x86_set_pc,
3400 x86_breakpoint,
3401 x86_breakpoint_len,
3402 NULL,
3403 1,
3404 x86_breakpoint_at,
3405 x86_insert_point,
3406 x86_remove_point,
3407 x86_stopped_by_watchpoint,
3408 x86_stopped_data_address,
3409 /* collect_ptrace_register/supply_ptrace_register are not needed in the
3410 native i386 case (no registers smaller than an xfer unit), and are not
3411 used in the biarch case (HAVE_LINUX_USRREGS is not defined). */
3412 NULL,
3413 NULL,
3414 /* need to fix up i386 siginfo if host is amd64 */
3415 x86_siginfo_fixup,
3416 x86_linux_new_process,
3417 x86_linux_new_thread,
3418 x86_linux_prepare_to_resume,
3419 x86_linux_process_qsupported,
3420 x86_supports_tracepoints,
3421 x86_get_thread_area,
3422 x86_install_fast_tracepoint_jump_pad,
3423 x86_emit_ops,
3424 x86_get_min_fast_tracepoint_insn_len,
3425 x86_supports_range_stepping,
3426 };
3427
3428 void
3429 initialize_low_arch (void)
3430 {
3431 /* Initialize the Linux target descriptions. */
3432 #ifdef __x86_64__
3433 init_registers_amd64_linux ();
3434 init_registers_amd64_avx_linux ();
3435 init_registers_amd64_avx512_linux ();
3436 init_registers_amd64_mpx_linux ();
3437
3438 init_registers_x32_linux ();
3439 init_registers_x32_avx_linux ();
3440 init_registers_x32_avx512_linux ();
3441
3442 tdesc_amd64_linux_no_xml = xmalloc (sizeof (struct target_desc));
3443 copy_target_description (tdesc_amd64_linux_no_xml, tdesc_amd64_linux);
3444 tdesc_amd64_linux_no_xml->xmltarget = xmltarget_amd64_linux_no_xml;
3445 #endif
3446 init_registers_i386_linux ();
3447 init_registers_i386_mmx_linux ();
3448 init_registers_i386_avx_linux ();
3449 init_registers_i386_avx512_linux ();
3450 init_registers_i386_mpx_linux ();
3451
3452 tdesc_i386_linux_no_xml = xmalloc (sizeof (struct target_desc));
3453 copy_target_description (tdesc_i386_linux_no_xml, tdesc_i386_linux);
3454 tdesc_i386_linux_no_xml->xmltarget = xmltarget_i386_linux_no_xml;
3455
3456 initialize_regsets_info (&x86_regsets_info);
3457 }
This page took 0.096699 seconds and 5 git commands to generate.