* gdbserver/remote-utils.c (remote_open): Set gdbserver as "owner"
[deliverable/binutils-gdb.git] / gdb / gdbserver / low-hppabsd.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright 1995, 1996, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "server.h"
22 #include <sys/wait.h>
23 #include "frame.h"
24 #include "inferior.h"
25
26 #include <stdio.h>
27 #include <sys/param.h>
28 #include <sys/dir.h>
29 #include <sys/user.h>
30 #include <signal.h>
31 #include <sys/ioctl.h>
32 #include <sgtty.h>
33 #include <fcntl.h>
34
35 /***************Begin MY defs*********************/
36 static char my_registers[REGISTER_BYTES];
37 char *registers = my_registers;
38 /***************End MY defs*********************/
39
40 #include <sys/ptrace.h>
41 #include <machine/reg.h>
42
43 extern int errno;
44
45 /* Start an inferior process and returns its pid.
46 ALLARGS is a vector of program-name and args. */
47
48 int
49 create_inferior (char *program, char **allargs)
50 {
51 int pid;
52
53 pid = fork ();
54 if (pid < 0)
55 perror_with_name ("fork");
56
57 if (pid == 0)
58 {
59 ptrace (PT_TRACE_ME, 0, 0, 0, 0);
60
61 execv (program, allargs);
62
63 fprintf (stderr, "Cannot exec %s: %s.\n", program,
64 errno < sys_nerr ? sys_errlist[errno] : "unknown error");
65 fflush (stderr);
66 _exit (0177);
67 }
68
69 return pid;
70 }
71
72 /* Kill the inferior process. Make us have no inferior. */
73
74 void
75 kill_inferior (void)
76 {
77 if (inferior_pid == 0)
78 return;
79 ptrace (8, inferior_pid, 0, 0, 0);
80 wait (0);
81 /*************inferior_died ();****VK**************/
82 }
83
84 /* Return nonzero if the given thread is still alive. */
85 int
86 mythread_alive (int pid)
87 {
88 return 1;
89 }
90
91 /* Wait for process, returns status */
92
93 unsigned char
94 mywait (char *status)
95 {
96 int pid;
97 union wait w;
98
99 enable_async_io ();
100 pid = waitpid (inferior_pid, &w, 0);
101 disable_async_io ();
102 if (pid != inferior_pid)
103 perror_with_name ("wait");
104
105 if (WIFEXITED (w))
106 {
107 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
108 *status = 'W';
109 return ((unsigned char) WEXITSTATUS (w));
110 }
111 else if (!WIFSTOPPED (w))
112 {
113 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
114 *status = 'X';
115 return ((unsigned char) WTERMSIG (w));
116 }
117
118 fetch_inferior_registers (0);
119
120 *status = 'T';
121 return ((unsigned char) WSTOPSIG (w));
122 }
123
124 /* Resume execution of the inferior process.
125 If STEP is nonzero, single-step it.
126 If SIGNAL is nonzero, give it that signal. */
127
128 void
129 myresume (int step, int signal)
130 {
131 errno = 0;
132 ptrace (step ? PT_STEP : PT_CONTINUE, inferior_pid, 1, signal, 0);
133 if (errno)
134 perror_with_name ("ptrace");
135 }
136
137
138 #if !defined (offsetof)
139 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
140 #endif
141
142 /* U_REGS_OFFSET is the offset of the registers within the u area. */
143 #if !defined (U_REGS_OFFSET)
144 #define U_REGS_OFFSET \
145 ptrace (PT_READ_U, inferior_pid, \
146 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
147 - KERNEL_U_ADDR
148 #endif
149
150 CORE_ADDR
151 register_addr (int regno, CORE_ADDR blockend)
152 {
153 CORE_ADDR addr;
154
155 if (regno < 0 || regno >= NUM_REGS)
156 error ("Invalid register number %d.", regno);
157
158 REGISTER_U_ADDR (addr, blockend, regno);
159
160 return addr;
161 }
162
163 /* Fetch one register. */
164
165 static void
166 fetch_register (int regno)
167 {
168 register unsigned int regaddr;
169 char buf[MAX_REGISTER_RAW_SIZE];
170 register int i;
171
172 /* Offset of registers within the u area. */
173 unsigned int offset;
174
175 offset = U_REGS_OFFSET;
176
177 regaddr = register_addr (regno, offset);
178 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
179 {
180 errno = 0;
181 *(int *) &registers[regno * 4 + i] = ptrace (PT_RUREGS, inferior_pid,
182 (PTRACE_ARG3_TYPE) regaddr, 0, 0);
183 regaddr += sizeof (int);
184 if (errno != 0)
185 {
186 /* Warning, not error, in case we are attached; sometimes the
187 kernel doesn't let us at the registers. */
188 char *err = strerror (errno);
189 char *msg = alloca (strlen (err) + 128);
190 sprintf (msg, "reading register %d: %s", regno, err);
191 error (msg);
192 goto error_exit;
193 }
194 }
195 error_exit:;
196 }
197
198 /* Fetch all registers, or just one, from the child process. */
199
200 void
201 fetch_inferior_registers (int regno)
202 {
203 if (regno == -1 || regno == 0)
204 for (regno = 0; regno < NUM_REGS; regno++)
205 fetch_register (regno);
206 else
207 fetch_register (regno);
208 }
209
210 /* Store our register values back into the inferior.
211 If REGNO is -1, do this for all registers.
212 Otherwise, REGNO specifies which register (so we can save time). */
213
214 void
215 store_inferior_registers (int regno)
216 {
217 register unsigned int regaddr;
218 char buf[80];
219 extern char registers[];
220 register int i;
221 unsigned int offset = U_REGS_OFFSET;
222 int scratch;
223
224 if (regno >= 0)
225 {
226 if (CANNOT_STORE_REGISTER (regno))
227 return;
228 regaddr = register_addr (regno, offset);
229 errno = 0;
230 if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
231 {
232 scratch = *(int *) &registers[REGISTER_BYTE (regno)] | 0x3;
233 ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
234 scratch, 0);
235 if (errno != 0)
236 {
237 /* Error, even if attached. Failing to write these two
238 registers is pretty serious. */
239 sprintf (buf, "writing register number %d", regno);
240 perror_with_name (buf);
241 }
242 }
243 else
244 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
245 {
246 errno = 0;
247 ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
248 *(int *) &registers[REGISTER_BYTE (regno) + i], 0);
249 if (errno != 0)
250 {
251 /* Warning, not error, in case we are attached; sometimes the
252 kernel doesn't let us at the registers. */
253 char *err = strerror (errno);
254 char *msg = alloca (strlen (err) + 128);
255 sprintf (msg, "writing register %d: %s",
256 regno, err);
257 error (msg);
258 return;
259 }
260 regaddr += sizeof (int);
261 }
262 }
263 else
264 for (regno = 0; regno < NUM_REGS; regno++)
265 store_inferior_registers (regno);
266 }
267
268 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
269 in the NEW_SUN_PTRACE case.
270 It ought to be straightforward. But it appears that writing did
271 not write the data that I specified. I cannot understand where
272 it got the data that it actually did write. */
273
274 /* Copy LEN bytes from inferior's memory starting at MEMADDR
275 to debugger memory starting at MYADDR. */
276
277 void
278 read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
279 {
280 register int i;
281 /* Round starting address down to longword boundary. */
282 register CORE_ADDR addr = memaddr & -sizeof (int);
283 /* Round ending address up; get number of longwords that makes. */
284 register int count
285 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
286 /* Allocate buffer of that many longwords. */
287 register int *buffer = (int *) alloca (count * sizeof (int));
288
289 /* Read all the longwords */
290 for (i = 0; i < count; i++, addr += sizeof (int))
291 {
292 buffer[i] = ptrace (1, inferior_pid, addr, 0, 0);
293 }
294
295 /* Copy appropriate bytes out of the buffer. */
296 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
297 }
298
299 /* Copy LEN bytes of data from debugger memory at MYADDR
300 to inferior's memory at MEMADDR.
301 On failure (cannot write the inferior)
302 returns the value of errno. */
303
304 int
305 write_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
306 {
307 register int i;
308 /* Round starting address down to longword boundary. */
309 register CORE_ADDR addr = memaddr & -sizeof (int);
310 /* Round ending address up; get number of longwords that makes. */
311 register int count
312 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
313 /* Allocate buffer of that many longwords. */
314 register int *buffer = (int *) alloca (count * sizeof (int));
315 extern int errno;
316
317 /* Fill start and end extra bytes of buffer with existing memory data. */
318
319 buffer[0] = ptrace (1, inferior_pid, addr, 0, 0);
320
321 if (count > 1)
322 {
323 buffer[count - 1]
324 = ptrace (1, inferior_pid,
325 addr + (count - 1) * sizeof (int), 0, 0);
326 }
327
328 /* Copy data to be written over corresponding part of buffer */
329
330 memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
331
332 /* Write the entire buffer. */
333
334 for (i = 0; i < count; i++, addr += sizeof (int))
335 {
336 errno = 0;
337 ptrace (4, inferior_pid, addr, buffer[i], 0);
338 if (errno)
339 return errno;
340 }
341
342 return 0;
343 }
344 \f
345 void
346 initialize_low (void)
347 {
348 }
This page took 0.042473 seconds and 4 git commands to generate.