Fix debugging programs statically linked against the thread library.
[deliverable/binutils-gdb.git] / gdb / gdbserver / low-sparc.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1986, 1987, 1993 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include <sys/wait.h>
23 #include "frame.h"
24 #include "inferior.h"
25 /***************************
26 #include "initialize.h"
27 ****************************/
28
29 #include <stdio.h>
30 #include <sys/param.h>
31 #include <sys/dir.h>
32 #include <sys/user.h>
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <sgtty.h>
36 #include <fcntl.h>
37
38 /***************Begin MY defs*********************/
39 static char my_registers[REGISTER_BYTES];
40 char *registers = my_registers;
41 /***************End MY defs*********************/
42
43 #include <sys/ptrace.h>
44 #include <sys/reg.h>
45
46 extern int sys_nerr;
47 extern char **sys_errlist;
48 extern int errno;
49 extern int inferior_pid;
50 void perror_with_name ();
51
52 /* Start an inferior process and returns its pid.
53 ALLARGS is a vector of program-name and args. */
54
55 int
56 create_inferior (char *program, char **allargs)
57 {
58 int pid;
59
60 pid = fork ();
61 if (pid < 0)
62 perror_with_name ("fork");
63
64 if (pid == 0)
65 {
66 ptrace (PTRACE_TRACEME);
67
68 execv (program, allargs);
69
70 fprintf (stderr, "Cannot exec %s: %s.\n", program,
71 errno < sys_nerr ? sys_errlist[errno] : "unknown error");
72 fflush (stderr);
73 _exit (0177);
74 }
75
76 return pid;
77 }
78
79 /* Kill the inferior process. Make us have no inferior. */
80
81 void
82 kill_inferior (void)
83 {
84 if (inferior_pid == 0)
85 return;
86 ptrace (8, inferior_pid, 0, 0);
87 wait (0);
88 /*************inferior_died ();****VK**************/
89 }
90
91 /* Return nonzero if the given thread is still alive. */
92 int
93 mythread_alive (int pid)
94 {
95 return 1;
96 }
97
98 /* Wait for process, returns status */
99
100 unsigned char
101 mywait (char *status)
102 {
103 int pid;
104 union wait w;
105
106 pid = wait (&w);
107 if (pid != inferior_pid)
108 perror_with_name ("wait");
109
110 if (WIFEXITED (w))
111 {
112 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
113 *status = 'W';
114 return ((unsigned char) WEXITSTATUS (w));
115 }
116 else if (!WIFSTOPPED (w))
117 {
118 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
119 *status = 'X';
120 return ((unsigned char) WTERMSIG (w));
121 }
122
123 fetch_inferior_registers (0);
124
125 *status = 'T';
126 return ((unsigned char) WSTOPSIG (w));
127 }
128
129 /* Resume execution of the inferior process.
130 If STEP is nonzero, single-step it.
131 If SIGNAL is nonzero, give it that signal. */
132
133 void
134 myresume (int step, int signal)
135 {
136 errno = 0;
137 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, inferior_pid, 1, signal);
138 if (errno)
139 perror_with_name ("ptrace");
140 }
141
142 /* Fetch one or more registers from the inferior. REGNO == -1 to get
143 them all. We actually fetch more than requested, when convenient,
144 marking them as valid so we won't fetch them again. */
145
146 void
147 fetch_inferior_registers (int ignored)
148 {
149 struct regs inferior_registers;
150 struct fp_status inferior_fp_registers;
151 int i;
152
153 /* Global and Out regs are fetched directly, as well as the control
154 registers. If we're getting one of the in or local regs,
155 and the stack pointer has not yet been fetched,
156 we have to do that first, since they're found in memory relative
157 to the stack pointer. */
158
159 if (ptrace (PTRACE_GETREGS, inferior_pid,
160 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
161 perror ("ptrace_getregs");
162
163 registers[REGISTER_BYTE (0)] = 0;
164 memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
165 15 * REGISTER_RAW_SIZE (G0_REGNUM));
166 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
167 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
168 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
169 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
170
171 /* Floating point registers */
172
173 if (ptrace (PTRACE_GETFPREGS, inferior_pid,
174 (PTRACE_ARG3_TYPE) & inferior_fp_registers,
175 0))
176 perror ("ptrace_getfpregs");
177 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
178 sizeof inferior_fp_registers.fpu_fr);
179
180 /* These regs are saved on the stack by the kernel. Only read them
181 all (16 ptrace calls!) if we really need them. */
182
183 read_inferior_memory (*(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)],
184 &registers[REGISTER_BYTE (L0_REGNUM)],
185 16 * REGISTER_RAW_SIZE (L0_REGNUM));
186 }
187
188 /* Store our register values back into the inferior.
189 If REGNO is -1, do this for all registers.
190 Otherwise, REGNO specifies which register (so we can save time). */
191
192 void
193 store_inferior_registers (int ignored)
194 {
195 struct regs inferior_registers;
196 struct fp_status inferior_fp_registers;
197 CORE_ADDR sp = *(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)];
198
199 write_inferior_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
200 16 * REGISTER_RAW_SIZE (L0_REGNUM));
201
202 memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
203 15 * REGISTER_RAW_SIZE (G1_REGNUM));
204
205 inferior_registers.r_ps =
206 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
207 inferior_registers.r_pc =
208 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
209 inferior_registers.r_npc =
210 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)];
211 inferior_registers.r_y =
212 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)];
213
214 if (ptrace (PTRACE_SETREGS, inferior_pid,
215 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
216 perror ("ptrace_setregs");
217
218 memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
219 sizeof inferior_fp_registers.fpu_fr);
220
221 if (ptrace (PTRACE_SETFPREGS, inferior_pid,
222 (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0))
223 perror ("ptrace_setfpregs");
224 }
225
226 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
227 in the NEW_SUN_PTRACE case.
228 It ought to be straightforward. But it appears that writing did
229 not write the data that I specified. I cannot understand where
230 it got the data that it actually did write. */
231
232 /* Copy LEN bytes from inferior's memory starting at MEMADDR
233 to debugger memory starting at MYADDR. */
234
235 read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
236 {
237 register int i;
238 /* Round starting address down to longword boundary. */
239 register CORE_ADDR addr = memaddr & -sizeof (int);
240 /* Round ending address up; get number of longwords that makes. */
241 register int count
242 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
243 /* Allocate buffer of that many longwords. */
244 register int *buffer = (int *) alloca (count * sizeof (int));
245
246 /* Read all the longwords */
247 for (i = 0; i < count; i++, addr += sizeof (int))
248 {
249 buffer[i] = ptrace (1, inferior_pid, addr, 0);
250 }
251
252 /* Copy appropriate bytes out of the buffer. */
253 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
254 }
255
256 /* Copy LEN bytes of data from debugger memory at MYADDR
257 to inferior's memory at MEMADDR.
258 On failure (cannot write the inferior)
259 returns the value of errno. */
260
261 int
262 write_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
263 {
264 register int i;
265 /* Round starting address down to longword boundary. */
266 register CORE_ADDR addr = memaddr & -sizeof (int);
267 /* Round ending address up; get number of longwords that makes. */
268 register int count
269 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
270 /* Allocate buffer of that many longwords. */
271 register int *buffer = (int *) alloca (count * sizeof (int));
272 extern int errno;
273
274 /* Fill start and end extra bytes of buffer with existing memory data. */
275
276 buffer[0] = ptrace (1, inferior_pid, addr, 0);
277
278 if (count > 1)
279 {
280 buffer[count - 1]
281 = ptrace (1, inferior_pid,
282 addr + (count - 1) * sizeof (int), 0);
283 }
284
285 /* Copy data to be written over corresponding part of buffer */
286
287 bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
288
289 /* Write the entire buffer. */
290
291 for (i = 0; i < count; i++, addr += sizeof (int))
292 {
293 errno = 0;
294 ptrace (4, inferior_pid, addr, buffer[i]);
295 if (errno)
296 return errno;
297 }
298
299 return 0;
300 }
301 \f
302 void
303 initialize_low (void)
304 {
305 }
This page took 0.036194 seconds and 4 git commands to generate.