Fri May 6 11:56:54 1994 Stan Shebs (shebs@andros.cygnus.com)
[deliverable/binutils-gdb.git] / gdb / gdbserver / low-sparc.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1986, 1987, 1993 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <sys/wait.h>
22 #include "frame.h"
23 #include "inferior.h"
24 /***************************
25 #include "initialize.h"
26 ****************************/
27
28 #include <stdio.h>
29 #include <sys/param.h>
30 #include <sys/dir.h>
31 #include <sys/user.h>
32 #include <signal.h>
33 #include <sys/ioctl.h>
34 #include <sgtty.h>
35 #include <fcntl.h>
36
37 /***************Begin MY defs*********************/
38 int quit_flag = 0;
39 char registers[REGISTER_BYTES];
40
41 /* Index within `registers' of the first byte of the space for
42 register N. */
43
44
45 char buf2[MAX_REGISTER_RAW_SIZE];
46 /***************End MY defs*********************/
47
48 #include <sys/ptrace.h>
49 #include <machine/reg.h>
50
51 extern int sys_nerr;
52 extern char **sys_errlist;
53 extern char **environ;
54 extern int errno;
55 extern int inferior_pid;
56 void error (), quit (), perror_with_name ();
57 int query ();
58
59 /* Start an inferior process and returns its pid.
60 ALLARGS is a vector of program-name and args.
61 ENV is the environment vector to pass. */
62
63 int
64 create_inferior (program, allargs)
65 char *program;
66 char **allargs;
67 {
68 int pid;
69
70 pid = fork ();
71 if (pid < 0)
72 perror_with_name ("fork");
73
74 if (pid == 0)
75 {
76 ptrace (PTRACE_TRACEME);
77
78 execv (program, allargs);
79
80 fprintf (stderr, "Cannot exec %s: %s.\n", program,
81 errno < sys_nerr ? sys_errlist[errno] : "unknown error");
82 fflush (stderr);
83 _exit (0177);
84 }
85
86 return pid;
87 }
88
89 /* Kill the inferior process. Make us have no inferior. */
90
91 void
92 kill_inferior ()
93 {
94 if (inferior_pid == 0)
95 return;
96 ptrace (8, inferior_pid, 0, 0);
97 wait (0);
98 /*************inferior_died ();****VK**************/
99 }
100
101 /* Wait for process, returns status */
102
103 unsigned char
104 mywait (status)
105 char *status;
106 {
107 int pid;
108 union wait w;
109
110 pid = wait (&w);
111 if (pid != inferior_pid)
112 perror_with_name ("wait");
113
114 if (WIFEXITED (w))
115 {
116 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
117 *status = 'E';
118 return ((unsigned char) WEXITSTATUS (w));
119 }
120 else if (!WIFSTOPPED (w))
121 {
122 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
123 *status = 'T';
124 return ((unsigned char) WTERMSIG (w));
125 }
126
127 fetch_inferior_registers (0);
128
129 *status = 'S';
130 return ((unsigned char) WSTOPSIG (w));
131 }
132
133 /* Resume execution of the inferior process.
134 If STEP is nonzero, single-step it.
135 If SIGNAL is nonzero, give it that signal. */
136
137 void
138 myresume (step, signal)
139 int step;
140 int signal;
141 {
142 errno = 0;
143 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, inferior_pid, 1, signal);
144 if (errno)
145 perror_with_name ("ptrace");
146 }
147
148 /* Fetch one or more registers from the inferior. REGNO == -1 to get
149 them all. We actually fetch more than requested, when convenient,
150 marking them as valid so we won't fetch them again. */
151
152 void
153 fetch_inferior_registers (ignored)
154 int ignored;
155 {
156 struct regs inferior_registers;
157 struct fp_status inferior_fp_registers;
158 int i;
159
160 /* Global and Out regs are fetched directly, as well as the control
161 registers. If we're getting one of the in or local regs,
162 and the stack pointer has not yet been fetched,
163 we have to do that first, since they're found in memory relative
164 to the stack pointer. */
165
166 if (ptrace (PTRACE_GETREGS, inferior_pid,
167 (PTRACE_ARG3_TYPE) &inferior_registers, 0))
168 perror("ptrace_getregs");
169
170 registers[REGISTER_BYTE (0)] = 0;
171 memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
172 15 * REGISTER_RAW_SIZE (G0_REGNUM));
173 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
174 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
175 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
176 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
177
178 /* Floating point registers */
179
180 if (ptrace (PTRACE_GETFPREGS, inferior_pid,
181 (PTRACE_ARG3_TYPE) &inferior_fp_registers,
182 0))
183 perror("ptrace_getfpregs");
184 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
185 sizeof inferior_fp_registers.fpu_fr);
186
187 /* These regs are saved on the stack by the kernel. Only read them
188 all (16 ptrace calls!) if we really need them. */
189
190 read_inferior_memory (*(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)],
191 &registers[REGISTER_BYTE (L0_REGNUM)],
192 16*REGISTER_RAW_SIZE (L0_REGNUM));
193 }
194
195 /* Store our register values back into the inferior.
196 If REGNO is -1, do this for all registers.
197 Otherwise, REGNO specifies which register (so we can save time). */
198
199 void
200 store_inferior_registers (ignored)
201 int ignored;
202 {
203 struct regs inferior_registers;
204 struct fp_status inferior_fp_registers;
205 CORE_ADDR sp = *(CORE_ADDR *)&registers[REGISTER_BYTE (SP_REGNUM)];
206
207 write_inferior_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
208 16*REGISTER_RAW_SIZE (L0_REGNUM));
209
210 memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
211 15 * REGISTER_RAW_SIZE (G1_REGNUM));
212
213 inferior_registers.r_ps =
214 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)];
215 inferior_registers.r_pc =
216 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)];
217 inferior_registers.r_npc =
218 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)];
219 inferior_registers.r_y =
220 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)];
221
222 if (ptrace (PTRACE_SETREGS, inferior_pid,
223 (PTRACE_ARG3_TYPE) &inferior_registers, 0))
224 perror("ptrace_setregs");
225
226 memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
227 sizeof inferior_fp_registers.fpu_fr);
228
229 if (ptrace (PTRACE_SETFPREGS, inferior_pid,
230 (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0))
231 perror("ptrace_setfpregs");
232 }
233
234 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
235 in the NEW_SUN_PTRACE case.
236 It ought to be straightforward. But it appears that writing did
237 not write the data that I specified. I cannot understand where
238 it got the data that it actually did write. */
239
240 /* Copy LEN bytes from inferior's memory starting at MEMADDR
241 to debugger memory starting at MYADDR. */
242
243 read_inferior_memory (memaddr, myaddr, len)
244 CORE_ADDR memaddr;
245 char *myaddr;
246 int len;
247 {
248 register int i;
249 /* Round starting address down to longword boundary. */
250 register CORE_ADDR addr = memaddr & -sizeof (int);
251 /* Round ending address up; get number of longwords that makes. */
252 register int count
253 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
254 /* Allocate buffer of that many longwords. */
255 register int *buffer = (int *) alloca (count * sizeof (int));
256
257 /* Read all the longwords */
258 for (i = 0; i < count; i++, addr += sizeof (int))
259 {
260 buffer[i] = ptrace (1, inferior_pid, addr, 0);
261 }
262
263 /* Copy appropriate bytes out of the buffer. */
264 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
265 }
266
267 /* Copy LEN bytes of data from debugger memory at MYADDR
268 to inferior's memory at MEMADDR.
269 On failure (cannot write the inferior)
270 returns the value of errno. */
271
272 int
273 write_inferior_memory (memaddr, myaddr, len)
274 CORE_ADDR memaddr;
275 char *myaddr;
276 int len;
277 {
278 register int i;
279 /* Round starting address down to longword boundary. */
280 register CORE_ADDR addr = memaddr & -sizeof (int);
281 /* Round ending address up; get number of longwords that makes. */
282 register int count
283 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
284 /* Allocate buffer of that many longwords. */
285 register int *buffer = (int *) alloca (count * sizeof (int));
286 extern int errno;
287
288 /* Fill start and end extra bytes of buffer with existing memory data. */
289
290 buffer[0] = ptrace (1, inferior_pid, addr, 0);
291
292 if (count > 1)
293 {
294 buffer[count - 1]
295 = ptrace (1, inferior_pid,
296 addr + (count - 1) * sizeof (int), 0);
297 }
298
299 /* Copy data to be written over corresponding part of buffer */
300
301 bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
302
303 /* Write the entire buffer. */
304
305 for (i = 0; i < count; i++, addr += sizeof (int))
306 {
307 errno = 0;
308 ptrace (4, inferior_pid, addr, buffer[i]);
309 if (errno)
310 return errno;
311 }
312
313 return 0;
314 }
315 \f
316 void
317 initialize ()
318 {
319 inferior_pid = 0;
320 }
321
322 int
323 have_inferior_p ()
324 {
325 return inferior_pid != 0;
326 }
This page took 0.045224 seconds and 4 git commands to generate.