898e46d6f7eb14fa7b32f781b8bfefb54e9784df
[deliverable/binutils-gdb.git] / gdb / gdbserver / spu-low.c
1 /* Low level interface to SPUs, for the remote server for GDB.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "server.h"
23
24 #include <sys/wait.h>
25 #include <stdio.h>
26 #include <sys/ptrace.h>
27 #include <fcntl.h>
28 #include <string.h>
29 #include <stdlib.h>
30 #include <unistd.h>
31 #include <errno.h>
32 #include <sys/syscall.h>
33
34 /* Some older glibc versions do not define this. */
35 #ifndef __WNOTHREAD
36 #define __WNOTHREAD 0x20000000 /* Don't wait on children of other
37 threads in this group */
38 #endif
39
40 #define PTRACE_TYPE_RET long
41 #define PTRACE_TYPE_ARG3 long
42
43 /* Number of registers. */
44 #define SPU_NUM_REGS 130
45 #define SPU_NUM_CORE_REGS 128
46
47 /* Special registers. */
48 #define SPU_ID_REGNUM 128
49 #define SPU_PC_REGNUM 129
50
51 /* PPU side system calls. */
52 #define INSTR_SC 0x44000002
53 #define NR_spu_run 0x0116
54
55 /* Get current thread ID (Linux task ID). */
56 #define current_ptid ((struct inferior_list_entry *)current_inferior)->id
57
58 /* These are used in remote-utils.c. */
59 int using_threads = 0;
60
61 /* Defined in auto-generated file reg-spu.c. */
62 void init_registers_spu (void);
63
64
65 /* Fetch PPU register REGNO. */
66 static CORE_ADDR
67 fetch_ppc_register (int regno)
68 {
69 PTRACE_TYPE_RET res;
70
71 int tid = ptid_get_lwp (current_ptid);
72
73 #ifndef __powerpc64__
74 /* If running as a 32-bit process on a 64-bit system, we attempt
75 to get the full 64-bit register content of the target process.
76 If the PPC special ptrace call fails, we're on a 32-bit system;
77 just fall through to the regular ptrace call in that case. */
78 {
79 char buf[8];
80
81 errno = 0;
82 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
83 (PTRACE_TYPE_ARG3) (regno * 8), buf);
84 if (errno == 0)
85 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
86 (PTRACE_TYPE_ARG3) (regno * 8 + 4), buf + 4);
87 if (errno == 0)
88 return (CORE_ADDR) *(unsigned long long *)buf;
89 }
90 #endif
91
92 errno = 0;
93 res = ptrace (PT_READ_U, tid,
94 (PTRACE_TYPE_ARG3) (regno * sizeof (PTRACE_TYPE_RET)), 0);
95 if (errno != 0)
96 {
97 char mess[128];
98 sprintf (mess, "reading PPC register #%d", regno);
99 perror_with_name (mess);
100 }
101
102 return (CORE_ADDR) (unsigned long) res;
103 }
104
105 /* Fetch WORD from PPU memory at (aligned) MEMADDR in thread TID. */
106 static int
107 fetch_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET *word)
108 {
109 errno = 0;
110
111 #ifndef __powerpc64__
112 if (memaddr >> 32)
113 {
114 unsigned long long addr_8 = (unsigned long long) memaddr;
115 ptrace (PPC_PTRACE_PEEKTEXT_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
116 }
117 else
118 #endif
119 *word = ptrace (PT_READ_I, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, 0);
120
121 return errno;
122 }
123
124 /* Store WORD into PPU memory at (aligned) MEMADDR in thread TID. */
125 static int
126 store_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET word)
127 {
128 errno = 0;
129
130 #ifndef __powerpc64__
131 if (memaddr >> 32)
132 {
133 unsigned long long addr_8 = (unsigned long long) memaddr;
134 ptrace (PPC_PTRACE_POKEDATA_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
135 }
136 else
137 #endif
138 ptrace (PT_WRITE_D, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, word);
139
140 return errno;
141 }
142
143 /* Fetch LEN bytes of PPU memory at MEMADDR to MYADDR. */
144 static int
145 fetch_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len)
146 {
147 int i, ret;
148
149 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
150 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
151 / sizeof (PTRACE_TYPE_RET));
152 PTRACE_TYPE_RET *buffer;
153
154 int tid = ptid_get_lwp (current_ptid);
155
156 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
157 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
158 if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[i])) != 0)
159 return ret;
160
161 memcpy (myaddr,
162 (char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
163 len);
164
165 return 0;
166 }
167
168 /* Store LEN bytes from MYADDR to PPU memory at MEMADDR. */
169 static int
170 store_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len)
171 {
172 int i, ret;
173
174 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
175 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
176 / sizeof (PTRACE_TYPE_RET));
177 PTRACE_TYPE_RET *buffer;
178
179 int tid = ptid_get_lwp (current_ptid);
180
181 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
182
183 if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET))
184 if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[0])) != 0)
185 return ret;
186
187 if (count > 1)
188 if ((ret = fetch_ppc_memory_1 (tid, addr + (count - 1)
189 * sizeof (PTRACE_TYPE_RET),
190 &buffer[count - 1])) != 0)
191 return ret;
192
193 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
194 myaddr, len);
195
196 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
197 if ((ret = store_ppc_memory_1 (tid, addr, buffer[i])) != 0)
198 return ret;
199
200 return 0;
201 }
202
203
204 /* If the PPU thread is currently stopped on a spu_run system call,
205 return to FD and ADDR the file handle and NPC parameter address
206 used with the system call. Return non-zero if successful. */
207 static int
208 parse_spufs_run (int *fd, CORE_ADDR *addr)
209 {
210 char buf[4];
211 CORE_ADDR pc = fetch_ppc_register (32); /* nip */
212
213 /* Fetch instruction preceding current NIP. */
214 if (fetch_ppc_memory (pc-4, buf, 4) != 0)
215 return 0;
216 /* It should be a "sc" instruction. */
217 if (*(unsigned int *)buf != INSTR_SC)
218 return 0;
219 /* System call number should be NR_spu_run. */
220 if (fetch_ppc_register (0) != NR_spu_run)
221 return 0;
222
223 /* Register 3 contains fd, register 4 the NPC param pointer. */
224 *fd = fetch_ppc_register (34); /* orig_gpr3 */
225 *addr = fetch_ppc_register (4);
226 return 1;
227 }
228
229
230 /* Copy LEN bytes at OFFSET in spufs file ANNEX into/from READBUF or WRITEBUF,
231 using the /proc file system. */
232 static int
233 spu_proc_xfer_spu (const char *annex, unsigned char *readbuf,
234 const unsigned char *writebuf,
235 CORE_ADDR offset, int len)
236 {
237 char buf[128];
238 int fd = 0;
239 int ret = -1;
240
241 if (!annex)
242 return 0;
243
244 sprintf (buf, "/proc/%ld/fd/%s", ptid_get_lwp (current_ptid), annex);
245 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
246 if (fd <= 0)
247 return -1;
248
249 if (offset != 0
250 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
251 {
252 close (fd);
253 return 0;
254 }
255
256 if (writebuf)
257 ret = write (fd, writebuf, (size_t) len);
258 else if (readbuf)
259 ret = read (fd, readbuf, (size_t) len);
260
261 close (fd);
262 return ret;
263 }
264
265
266 /* Start an inferior process and returns its pid.
267 ALLARGS is a vector of program-name and args. */
268 static int
269 spu_create_inferior (char *program, char **allargs)
270 {
271 int pid;
272 ptid_t ptid;
273
274 pid = fork ();
275 if (pid < 0)
276 perror_with_name ("fork");
277
278 if (pid == 0)
279 {
280 ptrace (PTRACE_TRACEME, 0, 0, 0);
281
282 setpgid (0, 0);
283
284 execv (program, allargs);
285 if (errno == ENOENT)
286 execvp (program, allargs);
287
288 fprintf (stderr, "Cannot exec %s: %s.\n", program,
289 strerror (errno));
290 fflush (stderr);
291 _exit (0177);
292 }
293
294 add_process (pid, 0);
295
296 ptid = ptid_build (pid, pid, 0);
297 add_thread (ptid, NULL);
298 return pid;
299 }
300
301 /* Attach to an inferior process. */
302 int
303 spu_attach (unsigned long pid)
304 {
305 ptid_t ptid;
306
307 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
308 {
309 fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
310 strerror (errno), errno);
311 fflush (stderr);
312 _exit (0177);
313 }
314
315 add_process (pid, 1);
316 ptid = ptid_build (pid, pid, 0);
317 add_thread (ptid, NULL);
318 return 0;
319 }
320
321 /* Kill the inferior process. */
322 static int
323 spu_kill (int pid)
324 {
325 int status, ret;
326 struct process_info *process = find_process_pid (pid);
327 if (process == NULL)
328 return -1;
329
330 ptrace (PTRACE_KILL, pid, 0, 0);
331
332 do {
333 ret = waitpid (pid, &status, 0);
334 if (WIFEXITED (status) || WIFSIGNALED (status))
335 break;
336 } while (ret != -1 || errno != ECHILD);
337
338 clear_inferiors ();
339 remove_process (process);
340 return 0;
341 }
342
343 /* Detach from inferior process. */
344 static int
345 spu_detach (int pid)
346 {
347 struct process_info *process = find_process_pid (pid);
348 if (process == NULL)
349 return -1;
350
351 ptrace (PTRACE_DETACH, pid, 0, 0);
352
353 clear_inferiors ();
354 remove_process (process);
355 return 0;
356 }
357
358 static void
359 spu_mourn (struct process_info *process)
360 {
361 remove_process (process);
362 }
363
364 static void
365 spu_join (int pid)
366 {
367 int status, ret;
368
369 do {
370 ret = waitpid (pid, &status, 0);
371 if (WIFEXITED (status) || WIFSIGNALED (status))
372 break;
373 } while (ret != -1 || errno != ECHILD);
374 }
375
376 /* Return nonzero if the given thread is still alive. */
377 static int
378 spu_thread_alive (ptid_t ptid)
379 {
380 return ptid_equal (ptid, current_ptid);
381 }
382
383 /* Resume process. */
384 static void
385 spu_resume (struct thread_resume *resume_info, size_t n)
386 {
387 size_t i;
388
389 for (i = 0; i < n; i++)
390 if (ptid_equal (resume_info[i].thread, minus_one_ptid)
391 || ptid_equal (resume_info[i].thread, current_ptid))
392 break;
393
394 if (i == n)
395 return;
396
397 /* We don't support hardware single-stepping right now, assume
398 GDB knows to use software single-stepping. */
399 if (resume_info[i].kind == resume_step)
400 fprintf (stderr, "Hardware single-step not supported.\n");
401
402 regcache_invalidate ();
403
404 errno = 0;
405 ptrace (PTRACE_CONT, ptid_get_lwp (current_ptid), 0, resume_info[i].sig);
406 if (errno)
407 perror_with_name ("ptrace");
408 }
409
410 /* Wait for process, returns status. */
411 static ptid_t
412 spu_wait (ptid_t ptid, struct target_waitstatus *ourstatus, int options)
413 {
414 int pid = ptid_get_pid (ptid);
415 int w;
416 int ret;
417
418 while (1)
419 {
420 ret = waitpid (pid, &w, WNOHANG | __WALL | __WNOTHREAD);
421
422 if (ret == -1)
423 {
424 if (errno != ECHILD)
425 perror_with_name ("waitpid");
426 }
427 else if (ret > 0)
428 break;
429
430 usleep (1000);
431 }
432
433 /* On the first wait, continue running the inferior until we are
434 blocked inside an spu_run system call. */
435 if (!server_waiting)
436 {
437 int fd;
438 CORE_ADDR addr;
439
440 while (!parse_spufs_run (&fd, &addr))
441 {
442 ptrace (PT_SYSCALL, pid, (PTRACE_TYPE_ARG3) 0, 0);
443 waitpid (pid, NULL, __WALL | __WNOTHREAD);
444 }
445 }
446
447 if (WIFEXITED (w))
448 {
449 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
450 ourstatus->kind = TARGET_WAITKIND_EXITED;
451 ourstatus->value.integer = WEXITSTATUS (w);
452 clear_inferiors ();
453 return pid_to_ptid (ret);
454 }
455 else if (!WIFSTOPPED (w))
456 {
457 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
458 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
459 ourstatus->value.sig = target_signal_from_host (WTERMSIG (w));
460 clear_inferiors ();
461 return pid_to_ptid (ret);
462 }
463
464 /* After attach, we may have received a SIGSTOP. Do not return this
465 as signal to GDB, or else it will try to continue with SIGSTOP ... */
466 if (!server_waiting)
467 {
468 ourstatus->kind = TARGET_WAITKIND_STOPPED;
469 ourstatus->value.sig = TARGET_SIGNAL_0;
470 return ptid_build (ret, ret, 0);
471 }
472
473 ourstatus->kind = TARGET_WAITKIND_STOPPED;
474 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
475 return ptid_build (ret, ret, 0);
476 }
477
478 /* Fetch inferior registers. */
479 static void
480 spu_fetch_registers (struct regcache *regcache, int regno)
481 {
482 int fd;
483 CORE_ADDR addr;
484
485 /* We must be stopped on a spu_run system call. */
486 if (!parse_spufs_run (&fd, &addr))
487 return;
488
489 /* The ID register holds the spufs file handle. */
490 if (regno == -1 || regno == SPU_ID_REGNUM)
491 supply_register (regcache, SPU_ID_REGNUM, (char *)&fd);
492
493 /* The NPC register is found at ADDR. */
494 if (regno == -1 || regno == SPU_PC_REGNUM)
495 {
496 char buf[4];
497 if (fetch_ppc_memory (addr, buf, 4) == 0)
498 supply_register (regcache, SPU_PC_REGNUM, buf);
499 }
500
501 /* The GPRs are found in the "regs" spufs file. */
502 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS))
503 {
504 unsigned char buf[16*SPU_NUM_CORE_REGS];
505 char annex[32];
506 int i;
507
508 sprintf (annex, "%d/regs", fd);
509 if (spu_proc_xfer_spu (annex, buf, NULL, 0, sizeof buf) == sizeof buf)
510 for (i = 0; i < SPU_NUM_CORE_REGS; i++)
511 supply_register (regcache, i, buf + i*16);
512 }
513 }
514
515 /* Store inferior registers. */
516 static void
517 spu_store_registers (struct regcache *regcache, int regno)
518 {
519 int fd;
520 CORE_ADDR addr;
521
522 /* ??? Some callers use 0 to mean all registers. */
523 if (regno == 0)
524 regno = -1;
525
526 /* We must be stopped on a spu_run system call. */
527 if (!parse_spufs_run (&fd, &addr))
528 return;
529
530 /* The NPC register is found at ADDR. */
531 if (regno == -1 || regno == SPU_PC_REGNUM)
532 {
533 char buf[4];
534 collect_register (regcache, SPU_PC_REGNUM, buf);
535 store_ppc_memory (addr, buf, 4);
536 }
537
538 /* The GPRs are found in the "regs" spufs file. */
539 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS))
540 {
541 unsigned char buf[16*SPU_NUM_CORE_REGS];
542 char annex[32];
543 int i;
544
545 for (i = 0; i < SPU_NUM_CORE_REGS; i++)
546 collect_register (regcache, i, buf + i*16);
547
548 sprintf (annex, "%d/regs", fd);
549 spu_proc_xfer_spu (annex, NULL, buf, 0, sizeof buf);
550 }
551 }
552
553 /* Copy LEN bytes from inferior's memory starting at MEMADDR
554 to debugger memory starting at MYADDR. */
555 static int
556 spu_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
557 {
558 int fd, ret;
559 CORE_ADDR addr;
560 char annex[32], lslr_annex[32], buf[32];
561 CORE_ADDR lslr;
562
563 /* We must be stopped on a spu_run system call. */
564 if (!parse_spufs_run (&fd, &addr))
565 return 0;
566
567 /* Use the "mem" spufs file to access SPU local store. */
568 sprintf (annex, "%d/mem", fd);
569 ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr, len);
570 if (ret > 0)
571 return ret == len ? 0 : EIO;
572
573 /* SPU local store access wraps the address around at the
574 local store limit. We emulate this here. To avoid needing
575 an extra access to retrieve the LSLR, we only do that after
576 trying the original address first, and getting end-of-file. */
577 sprintf (lslr_annex, "%d/lslr", fd);
578 memset (buf, 0, sizeof buf);
579 if (spu_proc_xfer_spu (lslr_annex, (unsigned char *)buf, NULL,
580 0, sizeof buf) <= 0)
581 return ret;
582
583 lslr = strtoul (buf, NULL, 16);
584 ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr & lslr, len);
585
586 return ret == len ? 0 : EIO;
587 }
588
589 /* Copy LEN bytes of data from debugger memory at MYADDR
590 to inferior's memory at MEMADDR.
591 On failure (cannot write the inferior)
592 returns the value of errno. */
593 static int
594 spu_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
595 {
596 int fd, ret;
597 CORE_ADDR addr;
598 char annex[32], lslr_annex[32], buf[32];
599 CORE_ADDR lslr;
600
601 /* We must be stopped on a spu_run system call. */
602 if (!parse_spufs_run (&fd, &addr))
603 return 0;
604
605 /* Use the "mem" spufs file to access SPU local store. */
606 sprintf (annex, "%d/mem", fd);
607 ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr, len);
608 if (ret > 0)
609 return ret == len ? 0 : EIO;
610
611 /* SPU local store access wraps the address around at the
612 local store limit. We emulate this here. To avoid needing
613 an extra access to retrieve the LSLR, we only do that after
614 trying the original address first, and getting end-of-file. */
615 sprintf (lslr_annex, "%d/lslr", fd);
616 memset (buf, 0, sizeof buf);
617 if (spu_proc_xfer_spu (lslr_annex, (unsigned char *)buf, NULL,
618 0, sizeof buf) <= 0)
619 return ret;
620
621 lslr = strtoul (buf, NULL, 16);
622 ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr & lslr, len);
623
624 return ret == len ? 0 : EIO;
625 }
626
627 /* Look up special symbols -- unneded here. */
628 static void
629 spu_look_up_symbols (void)
630 {
631 }
632
633 /* Send signal to inferior. */
634 static void
635 spu_request_interrupt (void)
636 {
637 syscall (SYS_tkill, ptid_get_lwp (current_ptid), SIGINT);
638 }
639
640 static struct target_ops spu_target_ops = {
641 spu_create_inferior,
642 spu_attach,
643 spu_kill,
644 spu_detach,
645 spu_mourn,
646 spu_join,
647 spu_thread_alive,
648 spu_resume,
649 spu_wait,
650 spu_fetch_registers,
651 spu_store_registers,
652 NULL, /* prepare_to_access_memory */
653 NULL, /* done_accessing_memory */
654 spu_read_memory,
655 spu_write_memory,
656 spu_look_up_symbols,
657 spu_request_interrupt,
658 NULL,
659 NULL,
660 NULL,
661 NULL,
662 NULL,
663 NULL,
664 NULL,
665 spu_proc_xfer_spu,
666 hostio_last_error_from_errno,
667 };
668
669 void
670 initialize_low (void)
671 {
672 static const unsigned char breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
673
674 set_target_ops (&spu_target_ops);
675 set_breakpoint_data (breakpoint, sizeof breakpoint);
676 init_registers_spu ();
677 }
This page took 0.048009 seconds and 4 git commands to generate.