Decouple target code from remote protocol.
[deliverable/binutils-gdb.git] / gdb / gdbserver / spu-low.c
1 /* Low level interface to SPUs, for the remote server for GDB.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "server.h"
22
23 #include <sys/wait.h>
24 #include <stdio.h>
25 #include <sys/ptrace.h>
26 #include <fcntl.h>
27 #include <string.h>
28 #include <stdlib.h>
29 #include <unistd.h>
30 #include <errno.h>
31 #include <sys/syscall.h>
32
33 /* Some older glibc versions do not define this. */
34 #ifndef __WNOTHREAD
35 #define __WNOTHREAD 0x20000000 /* Don't wait on children of other
36 threads in this group */
37 #endif
38
39 #define PTRACE_TYPE_RET long
40 #define PTRACE_TYPE_ARG3 long
41
42 /* Number of registers. */
43 #define SPU_NUM_REGS 130
44 #define SPU_NUM_CORE_REGS 128
45
46 /* Special registers. */
47 #define SPU_ID_REGNUM 128
48 #define SPU_PC_REGNUM 129
49
50 /* PPU side system calls. */
51 #define INSTR_SC 0x44000002
52 #define NR_spu_run 0x0116
53
54 /* Get current thread ID (Linux task ID). */
55 #define current_tid ((struct inferior_list_entry *)current_inferior)->id
56
57 /* These are used in remote-utils.c. */
58 int using_threads = 0;
59
60 /* Defined in auto-generated file reg-spu.c. */
61 void init_registers_spu (void);
62
63
64 /* Fetch PPU register REGNO. */
65 static CORE_ADDR
66 fetch_ppc_register (int regno)
67 {
68 PTRACE_TYPE_RET res;
69
70 int tid = current_tid;
71
72 #ifndef __powerpc64__
73 /* If running as a 32-bit process on a 64-bit system, we attempt
74 to get the full 64-bit register content of the target process.
75 If the PPC special ptrace call fails, we're on a 32-bit system;
76 just fall through to the regular ptrace call in that case. */
77 {
78 char buf[8];
79
80 errno = 0;
81 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
82 (PTRACE_TYPE_ARG3) (regno * 8), buf);
83 if (errno == 0)
84 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
85 (PTRACE_TYPE_ARG3) (regno * 8 + 4), buf + 4);
86 if (errno == 0)
87 return (CORE_ADDR) *(unsigned long long *)buf;
88 }
89 #endif
90
91 errno = 0;
92 res = ptrace (PT_READ_U, tid,
93 (PTRACE_TYPE_ARG3) (regno * sizeof (PTRACE_TYPE_RET)), 0);
94 if (errno != 0)
95 {
96 char mess[128];
97 sprintf (mess, "reading PPC register #%d", regno);
98 perror_with_name (mess);
99 }
100
101 return (CORE_ADDR) (unsigned long) res;
102 }
103
104 /* Fetch WORD from PPU memory at (aligned) MEMADDR in thread TID. */
105 static int
106 fetch_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET *word)
107 {
108 errno = 0;
109
110 #ifndef __powerpc64__
111 if (memaddr >> 32)
112 {
113 unsigned long long addr_8 = (unsigned long long) memaddr;
114 ptrace (PPC_PTRACE_PEEKTEXT_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
115 }
116 else
117 #endif
118 *word = ptrace (PT_READ_I, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, 0);
119
120 return errno;
121 }
122
123 /* Store WORD into PPU memory at (aligned) MEMADDR in thread TID. */
124 static int
125 store_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET word)
126 {
127 errno = 0;
128
129 #ifndef __powerpc64__
130 if (memaddr >> 32)
131 {
132 unsigned long long addr_8 = (unsigned long long) memaddr;
133 ptrace (PPC_PTRACE_POKEDATA_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
134 }
135 else
136 #endif
137 ptrace (PT_WRITE_D, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, word);
138
139 return errno;
140 }
141
142 /* Fetch LEN bytes of PPU memory at MEMADDR to MYADDR. */
143 static int
144 fetch_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len)
145 {
146 int i, ret;
147
148 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
149 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
150 / sizeof (PTRACE_TYPE_RET));
151 PTRACE_TYPE_RET *buffer;
152
153 int tid = current_tid;
154
155 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
156 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
157 if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[i])) != 0)
158 return ret;
159
160 memcpy (myaddr,
161 (char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
162 len);
163
164 return 0;
165 }
166
167 /* Store LEN bytes from MYADDR to PPU memory at MEMADDR. */
168 static int
169 store_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len)
170 {
171 int i, ret;
172
173 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
174 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
175 / sizeof (PTRACE_TYPE_RET));
176 PTRACE_TYPE_RET *buffer;
177
178 int tid = current_tid;
179
180 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
181
182 if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET))
183 if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[0])) != 0)
184 return ret;
185
186 if (count > 1)
187 if ((ret = fetch_ppc_memory_1 (tid, addr + (count - 1)
188 * sizeof (PTRACE_TYPE_RET),
189 &buffer[count - 1])) != 0)
190 return ret;
191
192 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
193 myaddr, len);
194
195 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
196 if ((ret = store_ppc_memory_1 (tid, addr, buffer[i])) != 0)
197 return ret;
198
199 return 0;
200 }
201
202
203 /* If the PPU thread is currently stopped on a spu_run system call,
204 return to FD and ADDR the file handle and NPC parameter address
205 used with the system call. Return non-zero if successful. */
206 static int
207 parse_spufs_run (int *fd, CORE_ADDR *addr)
208 {
209 char buf[4];
210 CORE_ADDR pc = fetch_ppc_register (32); /* nip */
211
212 /* Fetch instruction preceding current NIP. */
213 if (fetch_ppc_memory (pc-4, buf, 4) != 0)
214 return 0;
215 /* It should be a "sc" instruction. */
216 if (*(unsigned int *)buf != INSTR_SC)
217 return 0;
218 /* System call number should be NR_spu_run. */
219 if (fetch_ppc_register (0) != NR_spu_run)
220 return 0;
221
222 /* Register 3 contains fd, register 4 the NPC param pointer. */
223 *fd = fetch_ppc_register (34); /* orig_gpr3 */
224 *addr = fetch_ppc_register (4);
225 return 1;
226 }
227
228
229 /* Copy LEN bytes at OFFSET in spufs file ANNEX into/from READBUF or WRITEBUF,
230 using the /proc file system. */
231 static int
232 spu_proc_xfer_spu (const char *annex, unsigned char *readbuf,
233 const unsigned char *writebuf,
234 CORE_ADDR offset, int len)
235 {
236 char buf[128];
237 int fd = 0;
238 int ret = -1;
239
240 if (!annex)
241 return 0;
242
243 sprintf (buf, "/proc/%ld/fd/%s", current_tid, annex);
244 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
245 if (fd <= 0)
246 return -1;
247
248 if (offset != 0
249 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
250 {
251 close (fd);
252 return 0;
253 }
254
255 if (writebuf)
256 ret = write (fd, writebuf, (size_t) len);
257 else if (readbuf)
258 ret = read (fd, readbuf, (size_t) len);
259
260 close (fd);
261 return ret;
262 }
263
264
265 /* Start an inferior process and returns its pid.
266 ALLARGS is a vector of program-name and args. */
267 static int
268 spu_create_inferior (char *program, char **allargs)
269 {
270 int pid;
271
272 pid = fork ();
273 if (pid < 0)
274 perror_with_name ("fork");
275
276 if (pid == 0)
277 {
278 ptrace (PTRACE_TRACEME, 0, 0, 0);
279
280 setpgid (0, 0);
281
282 execv (program, allargs);
283 if (errno == ENOENT)
284 execvp (program, allargs);
285
286 fprintf (stderr, "Cannot exec %s: %s.\n", program,
287 strerror (errno));
288 fflush (stderr);
289 _exit (0177);
290 }
291
292 add_thread (pid, NULL, pid);
293 return pid;
294 }
295
296 /* Attach to an inferior process. */
297 int
298 spu_attach (unsigned long pid)
299 {
300 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
301 {
302 fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
303 strerror (errno), errno);
304 fflush (stderr);
305 _exit (0177);
306 }
307
308 add_thread (pid, NULL, pid);
309 return 0;
310 }
311
312 /* Kill the inferior process. */
313 static void
314 spu_kill (void)
315 {
316 ptrace (PTRACE_KILL, current_tid, 0, 0);
317 }
318
319 /* Detach from inferior process. */
320 static int
321 spu_detach (void)
322 {
323 ptrace (PTRACE_DETACH, current_tid, 0, 0);
324 return 0;
325 }
326
327 static void
328 spu_join (void)
329 {
330 int status, ret;
331
332 do {
333 ret = waitpid (current_tid, &status, 0);
334 if (WIFEXITED (status) || WIFSIGNALED (status))
335 break;
336 } while (ret != -1 || errno != ECHILD);
337 }
338
339 /* Return nonzero if the given thread is still alive. */
340 static int
341 spu_thread_alive (unsigned long tid)
342 {
343 return tid == current_tid;
344 }
345
346 /* Resume process. */
347 static void
348 spu_resume (struct thread_resume *resume_info, size_t n)
349 {
350 size_t i;
351
352 for (i = 0; i < n; i++)
353 if (resume_info[i].thread == -1
354 || resume_info[i].thread == current_tid)
355 break;
356
357 if (i == n)
358 return;
359
360 /* We don't support hardware single-stepping right now, assume
361 GDB knows to use software single-stepping. */
362 if (resume_info[i].step)
363 fprintf (stderr, "Hardware single-step not supported.\n");
364
365 regcache_invalidate ();
366
367 errno = 0;
368 ptrace (PTRACE_CONT, current_tid, 0, resume_info[i].sig);
369 if (errno)
370 perror_with_name ("ptrace");
371 }
372
373 /* Wait for process, returns status. */
374 static unsigned long
375 spu_wait (struct target_waitstatus *ourstatus)
376 {
377 int tid = current_tid;
378 int w;
379 int ret;
380
381 while (1)
382 {
383 ret = waitpid (tid, &w, WNOHANG | __WALL | __WNOTHREAD);
384
385 if (ret == -1)
386 {
387 if (errno != ECHILD)
388 perror_with_name ("waitpid");
389 }
390 else if (ret > 0)
391 break;
392
393 usleep (1000);
394 }
395
396 /* On the first wait, continue running the inferior until we are
397 blocked inside an spu_run system call. */
398 if (!server_waiting)
399 {
400 int fd;
401 CORE_ADDR addr;
402
403 while (!parse_spufs_run (&fd, &addr))
404 {
405 ptrace (PT_SYSCALL, tid, (PTRACE_TYPE_ARG3) 0, 0);
406 waitpid (tid, NULL, __WALL | __WNOTHREAD);
407 }
408 }
409
410 ret = current_tid;
411
412 if (WIFEXITED (w))
413 {
414 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
415 ourstatus->kind = TARGET_WAITKIND_EXITED;
416 ourstatus->value.integer = WEXITSTATUS (w);
417 clear_inferiors ();
418 return ret;
419 }
420 else if (!WIFSTOPPED (w))
421 {
422 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
423 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
424 ourstatus->value.sig = target_signal_from_host (WTERMSIG (w));
425 clear_inferiors ();
426 return ret;
427 }
428
429 /* After attach, we may have received a SIGSTOP. Do not return this
430 as signal to GDB, or else it will try to continue with SIGSTOP ... */
431 if (!server_waiting)
432 {
433 ourstatus->kind = TARGET_WAITKIND_STOPPED;
434 ourstatus->value.sig = TARGET_SIGNAL_0;
435 return ret;
436 }
437
438 ourstatus->kind = TARGET_WAITKIND_STOPPED;
439 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
440 return ret;
441 }
442
443 /* Fetch inferior registers. */
444 static void
445 spu_fetch_registers (int regno)
446 {
447 int fd;
448 CORE_ADDR addr;
449
450 /* ??? Some callers use 0 to mean all registers. */
451 if (regno == 0)
452 regno = -1;
453
454 /* We must be stopped on a spu_run system call. */
455 if (!parse_spufs_run (&fd, &addr))
456 return;
457
458 /* The ID register holds the spufs file handle. */
459 if (regno == -1 || regno == SPU_ID_REGNUM)
460 supply_register (SPU_ID_REGNUM, (char *)&fd);
461
462 /* The NPC register is found at ADDR. */
463 if (regno == -1 || regno == SPU_PC_REGNUM)
464 {
465 char buf[4];
466 if (fetch_ppc_memory (addr, buf, 4) == 0)
467 supply_register (SPU_PC_REGNUM, buf);
468 }
469
470 /* The GPRs are found in the "regs" spufs file. */
471 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS))
472 {
473 unsigned char buf[16*SPU_NUM_CORE_REGS];
474 char annex[32];
475 int i;
476
477 sprintf (annex, "%d/regs", fd);
478 if (spu_proc_xfer_spu (annex, buf, NULL, 0, sizeof buf) == sizeof buf)
479 for (i = 0; i < SPU_NUM_CORE_REGS; i++)
480 supply_register (i, buf + i*16);
481 }
482 }
483
484 /* Store inferior registers. */
485 static void
486 spu_store_registers (int regno)
487 {
488 int fd;
489 CORE_ADDR addr;
490
491 /* ??? Some callers use 0 to mean all registers. */
492 if (regno == 0)
493 regno = -1;
494
495 /* We must be stopped on a spu_run system call. */
496 if (!parse_spufs_run (&fd, &addr))
497 return;
498
499 /* The NPC register is found at ADDR. */
500 if (regno == -1 || regno == SPU_PC_REGNUM)
501 {
502 char buf[4];
503 collect_register (SPU_PC_REGNUM, buf);
504 store_ppc_memory (addr, buf, 4);
505 }
506
507 /* The GPRs are found in the "regs" spufs file. */
508 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS))
509 {
510 unsigned char buf[16*SPU_NUM_CORE_REGS];
511 char annex[32];
512 int i;
513
514 for (i = 0; i < SPU_NUM_CORE_REGS; i++)
515 collect_register (i, buf + i*16);
516
517 sprintf (annex, "%d/regs", fd);
518 spu_proc_xfer_spu (annex, NULL, buf, 0, sizeof buf);
519 }
520 }
521
522 /* Copy LEN bytes from inferior's memory starting at MEMADDR
523 to debugger memory starting at MYADDR. */
524 static int
525 spu_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
526 {
527 int fd, ret;
528 CORE_ADDR addr;
529 char annex[32];
530
531 /* We must be stopped on a spu_run system call. */
532 if (!parse_spufs_run (&fd, &addr))
533 return 0;
534
535 /* Use the "mem" spufs file to access SPU local store. */
536 sprintf (annex, "%d/mem", fd);
537 ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr, len);
538 return ret == len ? 0 : EIO;
539 }
540
541 /* Copy LEN bytes of data from debugger memory at MYADDR
542 to inferior's memory at MEMADDR.
543 On failure (cannot write the inferior)
544 returns the value of errno. */
545 static int
546 spu_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
547 {
548 int fd, ret;
549 CORE_ADDR addr;
550 char annex[32];
551
552 /* We must be stopped on a spu_run system call. */
553 if (!parse_spufs_run (&fd, &addr))
554 return 0;
555
556 /* Use the "mem" spufs file to access SPU local store. */
557 sprintf (annex, "%d/mem", fd);
558 ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr, len);
559 return ret == len ? 0 : EIO;
560 }
561
562 /* Look up special symbols -- unneded here. */
563 static void
564 spu_look_up_symbols (void)
565 {
566 }
567
568 /* Send signal to inferior. */
569 static void
570 spu_request_interrupt (void)
571 {
572 syscall (SYS_tkill, current_tid, SIGINT);
573 }
574
575 static struct target_ops spu_target_ops = {
576 spu_create_inferior,
577 spu_attach,
578 spu_kill,
579 spu_detach,
580 spu_join,
581 spu_thread_alive,
582 spu_resume,
583 spu_wait,
584 spu_fetch_registers,
585 spu_store_registers,
586 spu_read_memory,
587 spu_write_memory,
588 spu_look_up_symbols,
589 spu_request_interrupt,
590 NULL,
591 NULL,
592 NULL,
593 NULL,
594 NULL,
595 NULL,
596 NULL,
597 spu_proc_xfer_spu,
598 hostio_last_error_from_errno,
599 };
600
601 void
602 initialize_low (void)
603 {
604 static const unsigned char breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
605
606 set_target_ops (&spu_target_ops);
607 set_breakpoint_data (breakpoint, sizeof breakpoint);
608 init_registers_spu ();
609 }
This page took 0.042295 seconds and 5 git commands to generate.