0d293393daede5825eb9991643c5edcb71b03577
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated));
904
905 #undef FIELD_EQ
906 }
907
908 /* Create a range type with a dynamic range from LOW_BOUND to
909 HIGH_BOUND, inclusive. See create_range_type for further details. */
910
911 struct type *
912 create_range_type (struct type *result_type, struct type *index_type,
913 const struct dynamic_prop *low_bound,
914 const struct dynamic_prop *high_bound)
915 {
916 if (result_type == NULL)
917 result_type = alloc_type_copy (index_type);
918 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
919 TYPE_TARGET_TYPE (result_type) = index_type;
920 if (TYPE_STUB (index_type))
921 TYPE_TARGET_STUB (result_type) = 1;
922 else
923 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
924
925 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
926 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
927 TYPE_RANGE_DATA (result_type)->low = *low_bound;
928 TYPE_RANGE_DATA (result_type)->high = *high_bound;
929
930 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
931 TYPE_UNSIGNED (result_type) = 1;
932
933 /* Ada allows the declaration of range types whose upper bound is
934 less than the lower bound, so checking the lower bound is not
935 enough. Make sure we do not mark a range type whose upper bound
936 is negative as unsigned. */
937 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
938 TYPE_UNSIGNED (result_type) = 0;
939
940 return result_type;
941 }
942
943 /* Create a range type using either a blank type supplied in
944 RESULT_TYPE, or creating a new type, inheriting the objfile from
945 INDEX_TYPE.
946
947 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
948 to HIGH_BOUND, inclusive.
949
950 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
951 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
952
953 struct type *
954 create_static_range_type (struct type *result_type, struct type *index_type,
955 LONGEST low_bound, LONGEST high_bound)
956 {
957 struct dynamic_prop low, high;
958
959 low.kind = PROP_CONST;
960 low.data.const_val = low_bound;
961
962 high.kind = PROP_CONST;
963 high.data.const_val = high_bound;
964
965 result_type = create_range_type (result_type, index_type, &low, &high);
966
967 return result_type;
968 }
969
970 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
971 are static, otherwise returns 0. */
972
973 static int
974 has_static_range (const struct range_bounds *bounds)
975 {
976 return (bounds->low.kind == PROP_CONST
977 && bounds->high.kind == PROP_CONST);
978 }
979
980
981 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
982 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
983 bounds will fit in LONGEST), or -1 otherwise. */
984
985 int
986 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
987 {
988 type = check_typedef (type);
989 switch (TYPE_CODE (type))
990 {
991 case TYPE_CODE_RANGE:
992 *lowp = TYPE_LOW_BOUND (type);
993 *highp = TYPE_HIGH_BOUND (type);
994 return 1;
995 case TYPE_CODE_ENUM:
996 if (TYPE_NFIELDS (type) > 0)
997 {
998 /* The enums may not be sorted by value, so search all
999 entries. */
1000 int i;
1001
1002 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1003 for (i = 0; i < TYPE_NFIELDS (type); i++)
1004 {
1005 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1006 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1007 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1008 *highp = TYPE_FIELD_ENUMVAL (type, i);
1009 }
1010
1011 /* Set unsigned indicator if warranted. */
1012 if (*lowp >= 0)
1013 {
1014 TYPE_UNSIGNED (type) = 1;
1015 }
1016 }
1017 else
1018 {
1019 *lowp = 0;
1020 *highp = -1;
1021 }
1022 return 0;
1023 case TYPE_CODE_BOOL:
1024 *lowp = 0;
1025 *highp = 1;
1026 return 0;
1027 case TYPE_CODE_INT:
1028 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1029 return -1;
1030 if (!TYPE_UNSIGNED (type))
1031 {
1032 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1033 *highp = -*lowp - 1;
1034 return 0;
1035 }
1036 /* fall through */
1037 case TYPE_CODE_CHAR:
1038 *lowp = 0;
1039 /* This round-about calculation is to avoid shifting by
1040 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1041 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1042 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1043 *highp = (*highp - 1) | *highp;
1044 return 0;
1045 default:
1046 return -1;
1047 }
1048 }
1049
1050 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1051 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1052 Save the high bound into HIGH_BOUND if not NULL.
1053
1054 Return 1 if the operation was successful. Return zero otherwise,
1055 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1056
1057 We now simply use get_discrete_bounds call to get the values
1058 of the low and high bounds.
1059 get_discrete_bounds can return three values:
1060 1, meaning that index is a range,
1061 0, meaning that index is a discrete type,
1062 or -1 for failure. */
1063
1064 int
1065 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1066 {
1067 struct type *index = TYPE_INDEX_TYPE (type);
1068 LONGEST low = 0;
1069 LONGEST high = 0;
1070 int res;
1071
1072 if (index == NULL)
1073 return 0;
1074
1075 res = get_discrete_bounds (index, &low, &high);
1076 if (res == -1)
1077 return 0;
1078
1079 /* Check if the array bounds are undefined. */
1080 if (res == 1
1081 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1082 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1083 return 0;
1084
1085 if (low_bound)
1086 *low_bound = low;
1087
1088 if (high_bound)
1089 *high_bound = high;
1090
1091 return 1;
1092 }
1093
1094 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1095 representation of a value of this type, save the corresponding
1096 position number in POS.
1097
1098 Its differs from VAL only in the case of enumeration types. In
1099 this case, the position number of the value of the first listed
1100 enumeration literal is zero; the position number of the value of
1101 each subsequent enumeration literal is one more than that of its
1102 predecessor in the list.
1103
1104 Return 1 if the operation was successful. Return zero otherwise,
1105 in which case the value of POS is unmodified.
1106 */
1107
1108 int
1109 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1110 {
1111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1112 {
1113 int i;
1114
1115 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1116 {
1117 if (val == TYPE_FIELD_ENUMVAL (type, i))
1118 {
1119 *pos = i;
1120 return 1;
1121 }
1122 }
1123 /* Invalid enumeration value. */
1124 return 0;
1125 }
1126 else
1127 {
1128 *pos = val;
1129 return 1;
1130 }
1131 }
1132
1133 /* Create an array type using either a blank type supplied in
1134 RESULT_TYPE, or creating a new type, inheriting the objfile from
1135 RANGE_TYPE.
1136
1137 Elements will be of type ELEMENT_TYPE, the indices will be of type
1138 RANGE_TYPE.
1139
1140 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1141 This byte stride property is added to the resulting array type
1142 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1143 argument can only be used to create types that are objfile-owned
1144 (see add_dyn_prop), meaning that either this function must be called
1145 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1146
1147 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1148 If BIT_STRIDE is not zero, build a packed array type whose element
1149 size is BIT_STRIDE. Otherwise, ignore this parameter.
1150
1151 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1152 sure it is TYPE_CODE_UNDEF before we bash it into an array
1153 type? */
1154
1155 struct type *
1156 create_array_type_with_stride (struct type *result_type,
1157 struct type *element_type,
1158 struct type *range_type,
1159 struct dynamic_prop *byte_stride_prop,
1160 unsigned int bit_stride)
1161 {
1162 if (byte_stride_prop != NULL
1163 && byte_stride_prop->kind == PROP_CONST)
1164 {
1165 /* The byte stride is actually not dynamic. Pretend we were
1166 called with bit_stride set instead of byte_stride_prop.
1167 This will give us the same result type, while avoiding
1168 the need to handle this as a special case. */
1169 bit_stride = byte_stride_prop->data.const_val * 8;
1170 byte_stride_prop = NULL;
1171 }
1172
1173 if (result_type == NULL)
1174 result_type = alloc_type_copy (range_type);
1175
1176 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1177 TYPE_TARGET_TYPE (result_type) = element_type;
1178 if (byte_stride_prop == NULL
1179 && has_static_range (TYPE_RANGE_DATA (range_type))
1180 && (!type_not_associated (result_type)
1181 && !type_not_allocated (result_type)))
1182 {
1183 LONGEST low_bound, high_bound;
1184
1185 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1186 low_bound = high_bound = 0;
1187 element_type = check_typedef (element_type);
1188 /* Be careful when setting the array length. Ada arrays can be
1189 empty arrays with the high_bound being smaller than the low_bound.
1190 In such cases, the array length should be zero. */
1191 if (high_bound < low_bound)
1192 TYPE_LENGTH (result_type) = 0;
1193 else if (bit_stride > 0)
1194 TYPE_LENGTH (result_type) =
1195 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1196 else
1197 TYPE_LENGTH (result_type) =
1198 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1199 }
1200 else
1201 {
1202 /* This type is dynamic and its length needs to be computed
1203 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1204 undefined by setting it to zero. Although we are not expected
1205 to trust TYPE_LENGTH in this case, setting the size to zero
1206 allows us to avoid allocating objects of random sizes in case
1207 we accidently do. */
1208 TYPE_LENGTH (result_type) = 0;
1209 }
1210
1211 TYPE_NFIELDS (result_type) = 1;
1212 TYPE_FIELDS (result_type) =
1213 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1214 TYPE_INDEX_TYPE (result_type) = range_type;
1215 if (byte_stride_prop != NULL)
1216 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1217 else if (bit_stride > 0)
1218 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1219
1220 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1221 if (TYPE_LENGTH (result_type) == 0)
1222 TYPE_TARGET_STUB (result_type) = 1;
1223
1224 return result_type;
1225 }
1226
1227 /* Same as create_array_type_with_stride but with no bit_stride
1228 (BIT_STRIDE = 0), thus building an unpacked array. */
1229
1230 struct type *
1231 create_array_type (struct type *result_type,
1232 struct type *element_type,
1233 struct type *range_type)
1234 {
1235 return create_array_type_with_stride (result_type, element_type,
1236 range_type, NULL, 0);
1237 }
1238
1239 struct type *
1240 lookup_array_range_type (struct type *element_type,
1241 LONGEST low_bound, LONGEST high_bound)
1242 {
1243 struct type *index_type;
1244 struct type *range_type;
1245
1246 if (TYPE_OBJFILE_OWNED (element_type))
1247 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1248 else
1249 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1250 range_type = create_static_range_type (NULL, index_type,
1251 low_bound, high_bound);
1252
1253 return create_array_type (NULL, element_type, range_type);
1254 }
1255
1256 /* Create a string type using either a blank type supplied in
1257 RESULT_TYPE, or creating a new type. String types are similar
1258 enough to array of char types that we can use create_array_type to
1259 build the basic type and then bash it into a string type.
1260
1261 For fixed length strings, the range type contains 0 as the lower
1262 bound and the length of the string minus one as the upper bound.
1263
1264 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1265 sure it is TYPE_CODE_UNDEF before we bash it into a string
1266 type? */
1267
1268 struct type *
1269 create_string_type (struct type *result_type,
1270 struct type *string_char_type,
1271 struct type *range_type)
1272 {
1273 result_type = create_array_type (result_type,
1274 string_char_type,
1275 range_type);
1276 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1277 return result_type;
1278 }
1279
1280 struct type *
1281 lookup_string_range_type (struct type *string_char_type,
1282 LONGEST low_bound, LONGEST high_bound)
1283 {
1284 struct type *result_type;
1285
1286 result_type = lookup_array_range_type (string_char_type,
1287 low_bound, high_bound);
1288 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1289 return result_type;
1290 }
1291
1292 struct type *
1293 create_set_type (struct type *result_type, struct type *domain_type)
1294 {
1295 if (result_type == NULL)
1296 result_type = alloc_type_copy (domain_type);
1297
1298 TYPE_CODE (result_type) = TYPE_CODE_SET;
1299 TYPE_NFIELDS (result_type) = 1;
1300 TYPE_FIELDS (result_type)
1301 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1302
1303 if (!TYPE_STUB (domain_type))
1304 {
1305 LONGEST low_bound, high_bound, bit_length;
1306
1307 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1308 low_bound = high_bound = 0;
1309 bit_length = high_bound - low_bound + 1;
1310 TYPE_LENGTH (result_type)
1311 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1312 if (low_bound >= 0)
1313 TYPE_UNSIGNED (result_type) = 1;
1314 }
1315 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1316
1317 return result_type;
1318 }
1319
1320 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1321 and any array types nested inside it. */
1322
1323 void
1324 make_vector_type (struct type *array_type)
1325 {
1326 struct type *inner_array, *elt_type;
1327 int flags;
1328
1329 /* Find the innermost array type, in case the array is
1330 multi-dimensional. */
1331 inner_array = array_type;
1332 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1333 inner_array = TYPE_TARGET_TYPE (inner_array);
1334
1335 elt_type = TYPE_TARGET_TYPE (inner_array);
1336 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1337 {
1338 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1339 elt_type = make_qualified_type (elt_type, flags, NULL);
1340 TYPE_TARGET_TYPE (inner_array) = elt_type;
1341 }
1342
1343 TYPE_VECTOR (array_type) = 1;
1344 }
1345
1346 struct type *
1347 init_vector_type (struct type *elt_type, int n)
1348 {
1349 struct type *array_type;
1350
1351 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1352 make_vector_type (array_type);
1353 return array_type;
1354 }
1355
1356 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1357 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1358 confusing. "self" is a common enough replacement for "this".
1359 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1360 TYPE_CODE_METHOD. */
1361
1362 struct type *
1363 internal_type_self_type (struct type *type)
1364 {
1365 switch (TYPE_CODE (type))
1366 {
1367 case TYPE_CODE_METHODPTR:
1368 case TYPE_CODE_MEMBERPTR:
1369 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1370 return NULL;
1371 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1372 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1373 case TYPE_CODE_METHOD:
1374 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1375 return NULL;
1376 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1377 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1378 default:
1379 gdb_assert_not_reached ("bad type");
1380 }
1381 }
1382
1383 /* Set the type of the class that TYPE belongs to.
1384 In c++ this is the class of "this".
1385 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1386 TYPE_CODE_METHOD. */
1387
1388 void
1389 set_type_self_type (struct type *type, struct type *self_type)
1390 {
1391 switch (TYPE_CODE (type))
1392 {
1393 case TYPE_CODE_METHODPTR:
1394 case TYPE_CODE_MEMBERPTR:
1395 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1396 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1397 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1398 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1399 break;
1400 case TYPE_CODE_METHOD:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 INIT_FUNC_SPECIFIC (type);
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1404 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1405 break;
1406 default:
1407 gdb_assert_not_reached ("bad type");
1408 }
1409 }
1410
1411 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1412 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1413 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1414 TYPE doesn't include the offset (that's the value of the MEMBER
1415 itself), but does include the structure type into which it points
1416 (for some reason).
1417
1418 When "smashing" the type, we preserve the objfile that the old type
1419 pointed to, since we aren't changing where the type is actually
1420 allocated. */
1421
1422 void
1423 smash_to_memberptr_type (struct type *type, struct type *self_type,
1424 struct type *to_type)
1425 {
1426 smash_type (type);
1427 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1428 TYPE_TARGET_TYPE (type) = to_type;
1429 set_type_self_type (type, self_type);
1430 /* Assume that a data member pointer is the same size as a normal
1431 pointer. */
1432 TYPE_LENGTH (type)
1433 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1434 }
1435
1436 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1437
1438 When "smashing" the type, we preserve the objfile that the old type
1439 pointed to, since we aren't changing where the type is actually
1440 allocated. */
1441
1442 void
1443 smash_to_methodptr_type (struct type *type, struct type *to_type)
1444 {
1445 smash_type (type);
1446 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1447 TYPE_TARGET_TYPE (type) = to_type;
1448 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1449 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1450 }
1451
1452 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1453 METHOD just means `function that gets an extra "this" argument'.
1454
1455 When "smashing" the type, we preserve the objfile that the old type
1456 pointed to, since we aren't changing where the type is actually
1457 allocated. */
1458
1459 void
1460 smash_to_method_type (struct type *type, struct type *self_type,
1461 struct type *to_type, struct field *args,
1462 int nargs, int varargs)
1463 {
1464 smash_type (type);
1465 TYPE_CODE (type) = TYPE_CODE_METHOD;
1466 TYPE_TARGET_TYPE (type) = to_type;
1467 set_type_self_type (type, self_type);
1468 TYPE_FIELDS (type) = args;
1469 TYPE_NFIELDS (type) = nargs;
1470 if (varargs)
1471 TYPE_VARARGS (type) = 1;
1472 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1473 }
1474
1475 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1476 Since GCC PR debug/47510 DWARF provides associated information to detect the
1477 anonymous class linkage name from its typedef.
1478
1479 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1480 apply it itself. */
1481
1482 const char *
1483 type_name_or_error (struct type *type)
1484 {
1485 struct type *saved_type = type;
1486 const char *name;
1487 struct objfile *objfile;
1488
1489 type = check_typedef (type);
1490
1491 name = TYPE_NAME (type);
1492 if (name != NULL)
1493 return name;
1494
1495 name = TYPE_NAME (saved_type);
1496 objfile = TYPE_OBJFILE (saved_type);
1497 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1498 name ? name : "<anonymous>",
1499 objfile ? objfile_name (objfile) : "<arch>");
1500 }
1501
1502 /* Lookup a typedef or primitive type named NAME, visible in lexical
1503 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1504 suitably defined. */
1505
1506 struct type *
1507 lookup_typename (const struct language_defn *language,
1508 struct gdbarch *gdbarch, const char *name,
1509 const struct block *block, int noerr)
1510 {
1511 struct symbol *sym;
1512
1513 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1514 language->la_language, NULL).symbol;
1515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 return SYMBOL_TYPE (sym);
1517
1518 if (noerr)
1519 return NULL;
1520 error (_("No type named %s."), name);
1521 }
1522
1523 struct type *
1524 lookup_unsigned_typename (const struct language_defn *language,
1525 struct gdbarch *gdbarch, const char *name)
1526 {
1527 char *uns = (char *) alloca (strlen (name) + 10);
1528
1529 strcpy (uns, "unsigned ");
1530 strcpy (uns + 9, name);
1531 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1532 }
1533
1534 struct type *
1535 lookup_signed_typename (const struct language_defn *language,
1536 struct gdbarch *gdbarch, const char *name)
1537 {
1538 struct type *t;
1539 char *uns = (char *) alloca (strlen (name) + 8);
1540
1541 strcpy (uns, "signed ");
1542 strcpy (uns + 7, name);
1543 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1544 /* If we don't find "signed FOO" just try again with plain "FOO". */
1545 if (t != NULL)
1546 return t;
1547 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1548 }
1549
1550 /* Lookup a structure type named "struct NAME",
1551 visible in lexical block BLOCK. */
1552
1553 struct type *
1554 lookup_struct (const char *name, const struct block *block)
1555 {
1556 struct symbol *sym;
1557
1558 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1559
1560 if (sym == NULL)
1561 {
1562 error (_("No struct type named %s."), name);
1563 }
1564 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1565 {
1566 error (_("This context has class, union or enum %s, not a struct."),
1567 name);
1568 }
1569 return (SYMBOL_TYPE (sym));
1570 }
1571
1572 /* Lookup a union type named "union NAME",
1573 visible in lexical block BLOCK. */
1574
1575 struct type *
1576 lookup_union (const char *name, const struct block *block)
1577 {
1578 struct symbol *sym;
1579 struct type *t;
1580
1581 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1582
1583 if (sym == NULL)
1584 error (_("No union type named %s."), name);
1585
1586 t = SYMBOL_TYPE (sym);
1587
1588 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1589 return t;
1590
1591 /* If we get here, it's not a union. */
1592 error (_("This context has class, struct or enum %s, not a union."),
1593 name);
1594 }
1595
1596 /* Lookup an enum type named "enum NAME",
1597 visible in lexical block BLOCK. */
1598
1599 struct type *
1600 lookup_enum (const char *name, const struct block *block)
1601 {
1602 struct symbol *sym;
1603
1604 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1605 if (sym == NULL)
1606 {
1607 error (_("No enum type named %s."), name);
1608 }
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1610 {
1611 error (_("This context has class, struct or union %s, not an enum."),
1612 name);
1613 }
1614 return (SYMBOL_TYPE (sym));
1615 }
1616
1617 /* Lookup a template type named "template NAME<TYPE>",
1618 visible in lexical block BLOCK. */
1619
1620 struct type *
1621 lookup_template_type (char *name, struct type *type,
1622 const struct block *block)
1623 {
1624 struct symbol *sym;
1625 char *nam = (char *)
1626 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1627
1628 strcpy (nam, name);
1629 strcat (nam, "<");
1630 strcat (nam, TYPE_NAME (type));
1631 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1632
1633 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1634
1635 if (sym == NULL)
1636 {
1637 error (_("No template type named %s."), name);
1638 }
1639 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1640 {
1641 error (_("This context has class, union or enum %s, not a struct."),
1642 name);
1643 }
1644 return (SYMBOL_TYPE (sym));
1645 }
1646
1647 /* Given a type TYPE, lookup the type of the component of type named
1648 NAME.
1649
1650 TYPE can be either a struct or union, or a pointer or reference to
1651 a struct or union. If it is a pointer or reference, its target
1652 type is automatically used. Thus '.' and '->' are interchangable,
1653 as specified for the definitions of the expression element types
1654 STRUCTOP_STRUCT and STRUCTOP_PTR.
1655
1656 If NOERR is nonzero, return zero if NAME is not suitably defined.
1657 If NAME is the name of a baseclass type, return that type. */
1658
1659 struct type *
1660 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1661 {
1662 int i;
1663
1664 for (;;)
1665 {
1666 type = check_typedef (type);
1667 if (TYPE_CODE (type) != TYPE_CODE_PTR
1668 && TYPE_CODE (type) != TYPE_CODE_REF)
1669 break;
1670 type = TYPE_TARGET_TYPE (type);
1671 }
1672
1673 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1674 && TYPE_CODE (type) != TYPE_CODE_UNION)
1675 {
1676 std::string type_name = type_to_string (type);
1677 error (_("Type %s is not a structure or union type."),
1678 type_name.c_str ());
1679 }
1680
1681 #if 0
1682 /* FIXME: This change put in by Michael seems incorrect for the case
1683 where the structure tag name is the same as the member name.
1684 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1685 foo; } bell;" Disabled by fnf. */
1686 {
1687 char *type_name;
1688
1689 type_name = TYPE_NAME (type);
1690 if (type_name != NULL && strcmp (type_name, name) == 0)
1691 return type;
1692 }
1693 #endif
1694
1695 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1696 {
1697 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1698
1699 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1700 {
1701 return TYPE_FIELD_TYPE (type, i);
1702 }
1703 else if (!t_field_name || *t_field_name == '\0')
1704 {
1705 struct type *subtype
1706 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1707
1708 if (subtype != NULL)
1709 return subtype;
1710 }
1711 }
1712
1713 /* OK, it's not in this class. Recursively check the baseclasses. */
1714 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1715 {
1716 struct type *t;
1717
1718 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1719 if (t != NULL)
1720 {
1721 return t;
1722 }
1723 }
1724
1725 if (noerr)
1726 {
1727 return NULL;
1728 }
1729
1730 std::string type_name = type_to_string (type);
1731 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1732 }
1733
1734 /* Store in *MAX the largest number representable by unsigned integer type
1735 TYPE. */
1736
1737 void
1738 get_unsigned_type_max (struct type *type, ULONGEST *max)
1739 {
1740 unsigned int n;
1741
1742 type = check_typedef (type);
1743 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1744 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1745
1746 /* Written this way to avoid overflow. */
1747 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1748 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1749 }
1750
1751 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1752 signed integer type TYPE. */
1753
1754 void
1755 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1756 {
1757 unsigned int n;
1758
1759 type = check_typedef (type);
1760 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1761 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1762
1763 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1764 *min = -((ULONGEST) 1 << (n - 1));
1765 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1766 }
1767
1768 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1769 cplus_stuff.vptr_fieldno.
1770
1771 cplus_stuff is initialized to cplus_struct_default which does not
1772 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1773 designated initializers). We cope with that here. */
1774
1775 int
1776 internal_type_vptr_fieldno (struct type *type)
1777 {
1778 type = check_typedef (type);
1779 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1780 || TYPE_CODE (type) == TYPE_CODE_UNION);
1781 if (!HAVE_CPLUS_STRUCT (type))
1782 return -1;
1783 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1784 }
1785
1786 /* Set the value of cplus_stuff.vptr_fieldno. */
1787
1788 void
1789 set_type_vptr_fieldno (struct type *type, int fieldno)
1790 {
1791 type = check_typedef (type);
1792 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1793 || TYPE_CODE (type) == TYPE_CODE_UNION);
1794 if (!HAVE_CPLUS_STRUCT (type))
1795 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1796 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1797 }
1798
1799 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1800 cplus_stuff.vptr_basetype. */
1801
1802 struct type *
1803 internal_type_vptr_basetype (struct type *type)
1804 {
1805 type = check_typedef (type);
1806 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1807 || TYPE_CODE (type) == TYPE_CODE_UNION);
1808 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1809 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1810 }
1811
1812 /* Set the value of cplus_stuff.vptr_basetype. */
1813
1814 void
1815 set_type_vptr_basetype (struct type *type, struct type *basetype)
1816 {
1817 type = check_typedef (type);
1818 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1819 || TYPE_CODE (type) == TYPE_CODE_UNION);
1820 if (!HAVE_CPLUS_STRUCT (type))
1821 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1822 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1823 }
1824
1825 /* Lookup the vptr basetype/fieldno values for TYPE.
1826 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1827 vptr_fieldno. Also, if found and basetype is from the same objfile,
1828 cache the results.
1829 If not found, return -1 and ignore BASETYPEP.
1830 Callers should be aware that in some cases (for example,
1831 the type or one of its baseclasses is a stub type and we are
1832 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1833 this function will not be able to find the
1834 virtual function table pointer, and vptr_fieldno will remain -1 and
1835 vptr_basetype will remain NULL or incomplete. */
1836
1837 int
1838 get_vptr_fieldno (struct type *type, struct type **basetypep)
1839 {
1840 type = check_typedef (type);
1841
1842 if (TYPE_VPTR_FIELDNO (type) < 0)
1843 {
1844 int i;
1845
1846 /* We must start at zero in case the first (and only) baseclass
1847 is virtual (and hence we cannot share the table pointer). */
1848 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1849 {
1850 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1851 int fieldno;
1852 struct type *basetype;
1853
1854 fieldno = get_vptr_fieldno (baseclass, &basetype);
1855 if (fieldno >= 0)
1856 {
1857 /* If the type comes from a different objfile we can't cache
1858 it, it may have a different lifetime. PR 2384 */
1859 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1860 {
1861 set_type_vptr_fieldno (type, fieldno);
1862 set_type_vptr_basetype (type, basetype);
1863 }
1864 if (basetypep)
1865 *basetypep = basetype;
1866 return fieldno;
1867 }
1868 }
1869
1870 /* Not found. */
1871 return -1;
1872 }
1873 else
1874 {
1875 if (basetypep)
1876 *basetypep = TYPE_VPTR_BASETYPE (type);
1877 return TYPE_VPTR_FIELDNO (type);
1878 }
1879 }
1880
1881 static void
1882 stub_noname_complaint (void)
1883 {
1884 complaint (_("stub type has NULL name"));
1885 }
1886
1887 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1888 attached to it, and that property has a non-constant value. */
1889
1890 static int
1891 array_type_has_dynamic_stride (struct type *type)
1892 {
1893 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1894
1895 return (prop != NULL && prop->kind != PROP_CONST);
1896 }
1897
1898 /* Worker for is_dynamic_type. */
1899
1900 static int
1901 is_dynamic_type_internal (struct type *type, int top_level)
1902 {
1903 type = check_typedef (type);
1904
1905 /* We only want to recognize references at the outermost level. */
1906 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1907 type = check_typedef (TYPE_TARGET_TYPE (type));
1908
1909 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1910 dynamic, even if the type itself is statically defined.
1911 From a user's point of view, this may appear counter-intuitive;
1912 but it makes sense in this context, because the point is to determine
1913 whether any part of the type needs to be resolved before it can
1914 be exploited. */
1915 if (TYPE_DATA_LOCATION (type) != NULL
1916 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1917 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1918 return 1;
1919
1920 if (TYPE_ASSOCIATED_PROP (type))
1921 return 1;
1922
1923 if (TYPE_ALLOCATED_PROP (type))
1924 return 1;
1925
1926 switch (TYPE_CODE (type))
1927 {
1928 case TYPE_CODE_RANGE:
1929 {
1930 /* A range type is obviously dynamic if it has at least one
1931 dynamic bound. But also consider the range type to be
1932 dynamic when its subtype is dynamic, even if the bounds
1933 of the range type are static. It allows us to assume that
1934 the subtype of a static range type is also static. */
1935 return (!has_static_range (TYPE_RANGE_DATA (type))
1936 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1937 }
1938
1939 case TYPE_CODE_ARRAY:
1940 {
1941 gdb_assert (TYPE_NFIELDS (type) == 1);
1942
1943 /* The array is dynamic if either the bounds are dynamic... */
1944 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1945 return 1;
1946 /* ... or the elements it contains have a dynamic contents... */
1947 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1948 return 1;
1949 /* ... or if it has a dynamic stride... */
1950 if (array_type_has_dynamic_stride (type))
1951 return 1;
1952 return 0;
1953 }
1954
1955 case TYPE_CODE_STRUCT:
1956 case TYPE_CODE_UNION:
1957 {
1958 int i;
1959
1960 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1961 if (!field_is_static (&TYPE_FIELD (type, i))
1962 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1963 return 1;
1964 }
1965 break;
1966 }
1967
1968 return 0;
1969 }
1970
1971 /* See gdbtypes.h. */
1972
1973 int
1974 is_dynamic_type (struct type *type)
1975 {
1976 return is_dynamic_type_internal (type, 1);
1977 }
1978
1979 static struct type *resolve_dynamic_type_internal
1980 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1981
1982 /* Given a dynamic range type (dyn_range_type) and a stack of
1983 struct property_addr_info elements, return a static version
1984 of that type. */
1985
1986 static struct type *
1987 resolve_dynamic_range (struct type *dyn_range_type,
1988 struct property_addr_info *addr_stack)
1989 {
1990 CORE_ADDR value;
1991 struct type *static_range_type, *static_target_type;
1992 const struct dynamic_prop *prop;
1993 struct dynamic_prop low_bound, high_bound;
1994
1995 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1996
1997 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1998 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1999 {
2000 low_bound.kind = PROP_CONST;
2001 low_bound.data.const_val = value;
2002 }
2003 else
2004 {
2005 low_bound.kind = PROP_UNDEFINED;
2006 low_bound.data.const_val = 0;
2007 }
2008
2009 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2010 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2011 {
2012 high_bound.kind = PROP_CONST;
2013 high_bound.data.const_val = value;
2014
2015 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2016 high_bound.data.const_val
2017 = low_bound.data.const_val + high_bound.data.const_val - 1;
2018 }
2019 else
2020 {
2021 high_bound.kind = PROP_UNDEFINED;
2022 high_bound.data.const_val = 0;
2023 }
2024
2025 static_target_type
2026 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2027 addr_stack, 0);
2028 static_range_type = create_range_type (copy_type (dyn_range_type),
2029 static_target_type,
2030 &low_bound, &high_bound);
2031 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2032 return static_range_type;
2033 }
2034
2035 /* Resolves dynamic bound values of an array type TYPE to static ones.
2036 ADDR_STACK is a stack of struct property_addr_info to be used
2037 if needed during the dynamic resolution. */
2038
2039 static struct type *
2040 resolve_dynamic_array (struct type *type,
2041 struct property_addr_info *addr_stack)
2042 {
2043 CORE_ADDR value;
2044 struct type *elt_type;
2045 struct type *range_type;
2046 struct type *ary_dim;
2047 struct dynamic_prop *prop;
2048 unsigned int bit_stride = 0;
2049
2050 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2051
2052 type = copy_type (type);
2053
2054 elt_type = type;
2055 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2056 range_type = resolve_dynamic_range (range_type, addr_stack);
2057
2058 /* Resolve allocated/associated here before creating a new array type, which
2059 will update the length of the array accordingly. */
2060 prop = TYPE_ALLOCATED_PROP (type);
2061 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2062 {
2063 TYPE_DYN_PROP_ADDR (prop) = value;
2064 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2065 }
2066 prop = TYPE_ASSOCIATED_PROP (type);
2067 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2068 {
2069 TYPE_DYN_PROP_ADDR (prop) = value;
2070 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2071 }
2072
2073 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2074
2075 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2076 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2077 else
2078 elt_type = TYPE_TARGET_TYPE (type);
2079
2080 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2081 if (prop != NULL)
2082 {
2083 int prop_eval_ok
2084 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2085
2086 if (prop_eval_ok)
2087 {
2088 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2089 bit_stride = (unsigned int) (value * 8);
2090 }
2091 else
2092 {
2093 /* Could be a bug in our code, but it could also happen
2094 if the DWARF info is not correct. Issue a warning,
2095 and assume no byte/bit stride (leave bit_stride = 0). */
2096 warning (_("cannot determine array stride for type %s"),
2097 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2098 }
2099 }
2100 else
2101 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2102
2103 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2104 bit_stride);
2105 }
2106
2107 /* Resolve dynamic bounds of members of the union TYPE to static
2108 bounds. ADDR_STACK is a stack of struct property_addr_info
2109 to be used if needed during the dynamic resolution. */
2110
2111 static struct type *
2112 resolve_dynamic_union (struct type *type,
2113 struct property_addr_info *addr_stack)
2114 {
2115 struct type *resolved_type;
2116 int i;
2117 unsigned int max_len = 0;
2118
2119 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2120
2121 resolved_type = copy_type (type);
2122 TYPE_FIELDS (resolved_type)
2123 = (struct field *) TYPE_ALLOC (resolved_type,
2124 TYPE_NFIELDS (resolved_type)
2125 * sizeof (struct field));
2126 memcpy (TYPE_FIELDS (resolved_type),
2127 TYPE_FIELDS (type),
2128 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2129 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2130 {
2131 struct type *t;
2132
2133 if (field_is_static (&TYPE_FIELD (type, i)))
2134 continue;
2135
2136 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2137 addr_stack, 0);
2138 TYPE_FIELD_TYPE (resolved_type, i) = t;
2139 if (TYPE_LENGTH (t) > max_len)
2140 max_len = TYPE_LENGTH (t);
2141 }
2142
2143 TYPE_LENGTH (resolved_type) = max_len;
2144 return resolved_type;
2145 }
2146
2147 /* Resolve dynamic bounds of members of the struct TYPE to static
2148 bounds. ADDR_STACK is a stack of struct property_addr_info to
2149 be used if needed during the dynamic resolution. */
2150
2151 static struct type *
2152 resolve_dynamic_struct (struct type *type,
2153 struct property_addr_info *addr_stack)
2154 {
2155 struct type *resolved_type;
2156 int i;
2157 unsigned resolved_type_bit_length = 0;
2158
2159 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2160 gdb_assert (TYPE_NFIELDS (type) > 0);
2161
2162 resolved_type = copy_type (type);
2163 TYPE_FIELDS (resolved_type)
2164 = (struct field *) TYPE_ALLOC (resolved_type,
2165 TYPE_NFIELDS (resolved_type)
2166 * sizeof (struct field));
2167 memcpy (TYPE_FIELDS (resolved_type),
2168 TYPE_FIELDS (type),
2169 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2170 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2171 {
2172 unsigned new_bit_length;
2173 struct property_addr_info pinfo;
2174
2175 if (field_is_static (&TYPE_FIELD (type, i)))
2176 continue;
2177
2178 /* As we know this field is not a static field, the field's
2179 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2180 this is the case, but only trigger a simple error rather
2181 than an internal error if that fails. While failing
2182 that verification indicates a bug in our code, the error
2183 is not severe enough to suggest to the user he stops
2184 his debugging session because of it. */
2185 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2186 error (_("Cannot determine struct field location"
2187 " (invalid location kind)"));
2188
2189 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2190 pinfo.valaddr = addr_stack->valaddr;
2191 pinfo.addr
2192 = (addr_stack->addr
2193 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2194 pinfo.next = addr_stack;
2195
2196 TYPE_FIELD_TYPE (resolved_type, i)
2197 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2198 &pinfo, 0);
2199 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2200 == FIELD_LOC_KIND_BITPOS);
2201
2202 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2203 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2204 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2205 else
2206 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2207 * TARGET_CHAR_BIT);
2208
2209 /* Normally, we would use the position and size of the last field
2210 to determine the size of the enclosing structure. But GCC seems
2211 to be encoding the position of some fields incorrectly when
2212 the struct contains a dynamic field that is not placed last.
2213 So we compute the struct size based on the field that has
2214 the highest position + size - probably the best we can do. */
2215 if (new_bit_length > resolved_type_bit_length)
2216 resolved_type_bit_length = new_bit_length;
2217 }
2218
2219 /* The length of a type won't change for fortran, but it does for C and Ada.
2220 For fortran the size of dynamic fields might change over time but not the
2221 type length of the structure. If we adapt it, we run into problems
2222 when calculating the element offset for arrays of structs. */
2223 if (current_language->la_language != language_fortran)
2224 TYPE_LENGTH (resolved_type)
2225 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2226
2227 /* The Ada language uses this field as a cache for static fixed types: reset
2228 it as RESOLVED_TYPE must have its own static fixed type. */
2229 TYPE_TARGET_TYPE (resolved_type) = NULL;
2230
2231 return resolved_type;
2232 }
2233
2234 /* Worker for resolved_dynamic_type. */
2235
2236 static struct type *
2237 resolve_dynamic_type_internal (struct type *type,
2238 struct property_addr_info *addr_stack,
2239 int top_level)
2240 {
2241 struct type *real_type = check_typedef (type);
2242 struct type *resolved_type = type;
2243 struct dynamic_prop *prop;
2244 CORE_ADDR value;
2245
2246 if (!is_dynamic_type_internal (real_type, top_level))
2247 return type;
2248
2249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2250 {
2251 resolved_type = copy_type (type);
2252 TYPE_TARGET_TYPE (resolved_type)
2253 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2254 top_level);
2255 }
2256 else
2257 {
2258 /* Before trying to resolve TYPE, make sure it is not a stub. */
2259 type = real_type;
2260
2261 switch (TYPE_CODE (type))
2262 {
2263 case TYPE_CODE_REF:
2264 {
2265 struct property_addr_info pinfo;
2266
2267 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2268 pinfo.valaddr = NULL;
2269 if (addr_stack->valaddr != NULL)
2270 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2271 else
2272 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2273 pinfo.next = addr_stack;
2274
2275 resolved_type = copy_type (type);
2276 TYPE_TARGET_TYPE (resolved_type)
2277 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2278 &pinfo, top_level);
2279 break;
2280 }
2281
2282 case TYPE_CODE_ARRAY:
2283 resolved_type = resolve_dynamic_array (type, addr_stack);
2284 break;
2285
2286 case TYPE_CODE_RANGE:
2287 resolved_type = resolve_dynamic_range (type, addr_stack);
2288 break;
2289
2290 case TYPE_CODE_UNION:
2291 resolved_type = resolve_dynamic_union (type, addr_stack);
2292 break;
2293
2294 case TYPE_CODE_STRUCT:
2295 resolved_type = resolve_dynamic_struct (type, addr_stack);
2296 break;
2297 }
2298 }
2299
2300 /* Resolve data_location attribute. */
2301 prop = TYPE_DATA_LOCATION (resolved_type);
2302 if (prop != NULL
2303 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2304 {
2305 TYPE_DYN_PROP_ADDR (prop) = value;
2306 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2307 }
2308
2309 return resolved_type;
2310 }
2311
2312 /* See gdbtypes.h */
2313
2314 struct type *
2315 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2316 CORE_ADDR addr)
2317 {
2318 struct property_addr_info pinfo
2319 = {check_typedef (type), valaddr, addr, NULL};
2320
2321 return resolve_dynamic_type_internal (type, &pinfo, 1);
2322 }
2323
2324 /* See gdbtypes.h */
2325
2326 struct dynamic_prop *
2327 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2328 {
2329 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2330
2331 while (node != NULL)
2332 {
2333 if (node->prop_kind == prop_kind)
2334 return &node->prop;
2335 node = node->next;
2336 }
2337 return NULL;
2338 }
2339
2340 /* See gdbtypes.h */
2341
2342 void
2343 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2344 struct type *type)
2345 {
2346 struct dynamic_prop_list *temp;
2347
2348 gdb_assert (TYPE_OBJFILE_OWNED (type));
2349
2350 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2351 struct dynamic_prop_list);
2352 temp->prop_kind = prop_kind;
2353 temp->prop = prop;
2354 temp->next = TYPE_DYN_PROP_LIST (type);
2355
2356 TYPE_DYN_PROP_LIST (type) = temp;
2357 }
2358
2359 /* Remove dynamic property from TYPE in case it exists. */
2360
2361 void
2362 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2363 struct type *type)
2364 {
2365 struct dynamic_prop_list *prev_node, *curr_node;
2366
2367 curr_node = TYPE_DYN_PROP_LIST (type);
2368 prev_node = NULL;
2369
2370 while (NULL != curr_node)
2371 {
2372 if (curr_node->prop_kind == prop_kind)
2373 {
2374 /* Update the linked list but don't free anything.
2375 The property was allocated on objstack and it is not known
2376 if we are on top of it. Nevertheless, everything is released
2377 when the complete objstack is freed. */
2378 if (NULL == prev_node)
2379 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2380 else
2381 prev_node->next = curr_node->next;
2382
2383 return;
2384 }
2385
2386 prev_node = curr_node;
2387 curr_node = curr_node->next;
2388 }
2389 }
2390
2391 /* Find the real type of TYPE. This function returns the real type,
2392 after removing all layers of typedefs, and completing opaque or stub
2393 types. Completion changes the TYPE argument, but stripping of
2394 typedefs does not.
2395
2396 Instance flags (e.g. const/volatile) are preserved as typedefs are
2397 stripped. If necessary a new qualified form of the underlying type
2398 is created.
2399
2400 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2401 not been computed and we're either in the middle of reading symbols, or
2402 there was no name for the typedef in the debug info.
2403
2404 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2405 QUITs in the symbol reading code can also throw.
2406 Thus this function can throw an exception.
2407
2408 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2409 the target type.
2410
2411 If this is a stubbed struct (i.e. declared as struct foo *), see if
2412 we can find a full definition in some other file. If so, copy this
2413 definition, so we can use it in future. There used to be a comment
2414 (but not any code) that if we don't find a full definition, we'd
2415 set a flag so we don't spend time in the future checking the same
2416 type. That would be a mistake, though--we might load in more
2417 symbols which contain a full definition for the type. */
2418
2419 struct type *
2420 check_typedef (struct type *type)
2421 {
2422 struct type *orig_type = type;
2423 /* While we're removing typedefs, we don't want to lose qualifiers.
2424 E.g., const/volatile. */
2425 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2426
2427 gdb_assert (type);
2428
2429 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2430 {
2431 if (!TYPE_TARGET_TYPE (type))
2432 {
2433 const char *name;
2434 struct symbol *sym;
2435
2436 /* It is dangerous to call lookup_symbol if we are currently
2437 reading a symtab. Infinite recursion is one danger. */
2438 if (currently_reading_symtab)
2439 return make_qualified_type (type, instance_flags, NULL);
2440
2441 name = TYPE_NAME (type);
2442 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2443 VAR_DOMAIN as appropriate? */
2444 if (name == NULL)
2445 {
2446 stub_noname_complaint ();
2447 return make_qualified_type (type, instance_flags, NULL);
2448 }
2449 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2450 if (sym)
2451 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2452 else /* TYPE_CODE_UNDEF */
2453 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2454 }
2455 type = TYPE_TARGET_TYPE (type);
2456
2457 /* Preserve the instance flags as we traverse down the typedef chain.
2458
2459 Handling address spaces/classes is nasty, what do we do if there's a
2460 conflict?
2461 E.g., what if an outer typedef marks the type as class_1 and an inner
2462 typedef marks the type as class_2?
2463 This is the wrong place to do such error checking. We leave it to
2464 the code that created the typedef in the first place to flag the
2465 error. We just pick the outer address space (akin to letting the
2466 outer cast in a chain of casting win), instead of assuming
2467 "it can't happen". */
2468 {
2469 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2470 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2471 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2472 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2473
2474 /* Treat code vs data spaces and address classes separately. */
2475 if ((instance_flags & ALL_SPACES) != 0)
2476 new_instance_flags &= ~ALL_SPACES;
2477 if ((instance_flags & ALL_CLASSES) != 0)
2478 new_instance_flags &= ~ALL_CLASSES;
2479
2480 instance_flags |= new_instance_flags;
2481 }
2482 }
2483
2484 /* If this is a struct/class/union with no fields, then check
2485 whether a full definition exists somewhere else. This is for
2486 systems where a type definition with no fields is issued for such
2487 types, instead of identifying them as stub types in the first
2488 place. */
2489
2490 if (TYPE_IS_OPAQUE (type)
2491 && opaque_type_resolution
2492 && !currently_reading_symtab)
2493 {
2494 const char *name = TYPE_NAME (type);
2495 struct type *newtype;
2496
2497 if (name == NULL)
2498 {
2499 stub_noname_complaint ();
2500 return make_qualified_type (type, instance_flags, NULL);
2501 }
2502 newtype = lookup_transparent_type (name);
2503
2504 if (newtype)
2505 {
2506 /* If the resolved type and the stub are in the same
2507 objfile, then replace the stub type with the real deal.
2508 But if they're in separate objfiles, leave the stub
2509 alone; we'll just look up the transparent type every time
2510 we call check_typedef. We can't create pointers between
2511 types allocated to different objfiles, since they may
2512 have different lifetimes. Trying to copy NEWTYPE over to
2513 TYPE's objfile is pointless, too, since you'll have to
2514 move over any other types NEWTYPE refers to, which could
2515 be an unbounded amount of stuff. */
2516 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2517 type = make_qualified_type (newtype,
2518 TYPE_INSTANCE_FLAGS (type),
2519 type);
2520 else
2521 type = newtype;
2522 }
2523 }
2524 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2525 types. */
2526 else if (TYPE_STUB (type) && !currently_reading_symtab)
2527 {
2528 const char *name = TYPE_NAME (type);
2529 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2530 as appropriate? */
2531 struct symbol *sym;
2532
2533 if (name == NULL)
2534 {
2535 stub_noname_complaint ();
2536 return make_qualified_type (type, instance_flags, NULL);
2537 }
2538 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2539 if (sym)
2540 {
2541 /* Same as above for opaque types, we can replace the stub
2542 with the complete type only if they are in the same
2543 objfile. */
2544 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2545 type = make_qualified_type (SYMBOL_TYPE (sym),
2546 TYPE_INSTANCE_FLAGS (type),
2547 type);
2548 else
2549 type = SYMBOL_TYPE (sym);
2550 }
2551 }
2552
2553 if (TYPE_TARGET_STUB (type))
2554 {
2555 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2556
2557 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2558 {
2559 /* Nothing we can do. */
2560 }
2561 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2562 {
2563 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2564 TYPE_TARGET_STUB (type) = 0;
2565 }
2566 }
2567
2568 type = make_qualified_type (type, instance_flags, NULL);
2569
2570 /* Cache TYPE_LENGTH for future use. */
2571 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2572
2573 return type;
2574 }
2575
2576 /* Parse a type expression in the string [P..P+LENGTH). If an error
2577 occurs, silently return a void type. */
2578
2579 static struct type *
2580 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2581 {
2582 struct ui_file *saved_gdb_stderr;
2583 struct type *type = NULL; /* Initialize to keep gcc happy. */
2584
2585 /* Suppress error messages. */
2586 saved_gdb_stderr = gdb_stderr;
2587 gdb_stderr = &null_stream;
2588
2589 /* Call parse_and_eval_type() without fear of longjmp()s. */
2590 TRY
2591 {
2592 type = parse_and_eval_type (p, length);
2593 }
2594 CATCH (except, RETURN_MASK_ERROR)
2595 {
2596 type = builtin_type (gdbarch)->builtin_void;
2597 }
2598 END_CATCH
2599
2600 /* Stop suppressing error messages. */
2601 gdb_stderr = saved_gdb_stderr;
2602
2603 return type;
2604 }
2605
2606 /* Ugly hack to convert method stubs into method types.
2607
2608 He ain't kiddin'. This demangles the name of the method into a
2609 string including argument types, parses out each argument type,
2610 generates a string casting a zero to that type, evaluates the
2611 string, and stuffs the resulting type into an argtype vector!!!
2612 Then it knows the type of the whole function (including argument
2613 types for overloading), which info used to be in the stab's but was
2614 removed to hack back the space required for them. */
2615
2616 static void
2617 check_stub_method (struct type *type, int method_id, int signature_id)
2618 {
2619 struct gdbarch *gdbarch = get_type_arch (type);
2620 struct fn_field *f;
2621 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2622 char *demangled_name = gdb_demangle (mangled_name,
2623 DMGL_PARAMS | DMGL_ANSI);
2624 char *argtypetext, *p;
2625 int depth = 0, argcount = 1;
2626 struct field *argtypes;
2627 struct type *mtype;
2628
2629 /* Make sure we got back a function string that we can use. */
2630 if (demangled_name)
2631 p = strchr (demangled_name, '(');
2632 else
2633 p = NULL;
2634
2635 if (demangled_name == NULL || p == NULL)
2636 error (_("Internal: Cannot demangle mangled name `%s'."),
2637 mangled_name);
2638
2639 /* Now, read in the parameters that define this type. */
2640 p += 1;
2641 argtypetext = p;
2642 while (*p)
2643 {
2644 if (*p == '(' || *p == '<')
2645 {
2646 depth += 1;
2647 }
2648 else if (*p == ')' || *p == '>')
2649 {
2650 depth -= 1;
2651 }
2652 else if (*p == ',' && depth == 0)
2653 {
2654 argcount += 1;
2655 }
2656
2657 p += 1;
2658 }
2659
2660 /* If we read one argument and it was ``void'', don't count it. */
2661 if (startswith (argtypetext, "(void)"))
2662 argcount -= 1;
2663
2664 /* We need one extra slot, for the THIS pointer. */
2665
2666 argtypes = (struct field *)
2667 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2668 p = argtypetext;
2669
2670 /* Add THIS pointer for non-static methods. */
2671 f = TYPE_FN_FIELDLIST1 (type, method_id);
2672 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2673 argcount = 0;
2674 else
2675 {
2676 argtypes[0].type = lookup_pointer_type (type);
2677 argcount = 1;
2678 }
2679
2680 if (*p != ')') /* () means no args, skip while. */
2681 {
2682 depth = 0;
2683 while (*p)
2684 {
2685 if (depth <= 0 && (*p == ',' || *p == ')'))
2686 {
2687 /* Avoid parsing of ellipsis, they will be handled below.
2688 Also avoid ``void'' as above. */
2689 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2690 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2691 {
2692 argtypes[argcount].type =
2693 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2694 argcount += 1;
2695 }
2696 argtypetext = p + 1;
2697 }
2698
2699 if (*p == '(' || *p == '<')
2700 {
2701 depth += 1;
2702 }
2703 else if (*p == ')' || *p == '>')
2704 {
2705 depth -= 1;
2706 }
2707
2708 p += 1;
2709 }
2710 }
2711
2712 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2713
2714 /* Now update the old "stub" type into a real type. */
2715 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2716 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2717 We want a method (TYPE_CODE_METHOD). */
2718 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2719 argtypes, argcount, p[-2] == '.');
2720 TYPE_STUB (mtype) = 0;
2721 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2722
2723 xfree (demangled_name);
2724 }
2725
2726 /* This is the external interface to check_stub_method, above. This
2727 function unstubs all of the signatures for TYPE's METHOD_ID method
2728 name. After calling this function TYPE_FN_FIELD_STUB will be
2729 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2730 correct.
2731
2732 This function unfortunately can not die until stabs do. */
2733
2734 void
2735 check_stub_method_group (struct type *type, int method_id)
2736 {
2737 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2738 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2739
2740 for (int j = 0; j < len; j++)
2741 {
2742 if (TYPE_FN_FIELD_STUB (f, j))
2743 check_stub_method (type, method_id, j);
2744 }
2745 }
2746
2747 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2748 const struct cplus_struct_type cplus_struct_default = { };
2749
2750 void
2751 allocate_cplus_struct_type (struct type *type)
2752 {
2753 if (HAVE_CPLUS_STRUCT (type))
2754 /* Structure was already allocated. Nothing more to do. */
2755 return;
2756
2757 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2758 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2759 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2760 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2761 set_type_vptr_fieldno (type, -1);
2762 }
2763
2764 const struct gnat_aux_type gnat_aux_default =
2765 { NULL };
2766
2767 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2768 and allocate the associated gnat-specific data. The gnat-specific
2769 data is also initialized to gnat_aux_default. */
2770
2771 void
2772 allocate_gnat_aux_type (struct type *type)
2773 {
2774 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2775 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2776 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2777 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2778 }
2779
2780 /* Helper function to initialize a newly allocated type. Set type code
2781 to CODE and initialize the type-specific fields accordingly. */
2782
2783 static void
2784 set_type_code (struct type *type, enum type_code code)
2785 {
2786 TYPE_CODE (type) = code;
2787
2788 switch (code)
2789 {
2790 case TYPE_CODE_STRUCT:
2791 case TYPE_CODE_UNION:
2792 case TYPE_CODE_NAMESPACE:
2793 INIT_CPLUS_SPECIFIC (type);
2794 break;
2795 case TYPE_CODE_FLT:
2796 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2797 break;
2798 case TYPE_CODE_FUNC:
2799 INIT_FUNC_SPECIFIC (type);
2800 break;
2801 }
2802 }
2803
2804 /* Helper function to verify floating-point format and size.
2805 BIT is the type size in bits; if BIT equals -1, the size is
2806 determined by the floatformat. Returns size to be used. */
2807
2808 static int
2809 verify_floatformat (int bit, const struct floatformat *floatformat)
2810 {
2811 gdb_assert (floatformat != NULL);
2812
2813 if (bit == -1)
2814 bit = floatformat->totalsize;
2815
2816 gdb_assert (bit >= 0);
2817 gdb_assert (bit >= floatformat->totalsize);
2818
2819 return bit;
2820 }
2821
2822 /* Return the floating-point format for a floating-point variable of
2823 type TYPE. */
2824
2825 const struct floatformat *
2826 floatformat_from_type (const struct type *type)
2827 {
2828 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2829 gdb_assert (TYPE_FLOATFORMAT (type));
2830 return TYPE_FLOATFORMAT (type);
2831 }
2832
2833 /* Helper function to initialize the standard scalar types.
2834
2835 If NAME is non-NULL, then it is used to initialize the type name.
2836 Note that NAME is not copied; it is required to have a lifetime at
2837 least as long as OBJFILE. */
2838
2839 struct type *
2840 init_type (struct objfile *objfile, enum type_code code, int bit,
2841 const char *name)
2842 {
2843 struct type *type;
2844
2845 type = alloc_type (objfile);
2846 set_type_code (type, code);
2847 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2848 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2849 TYPE_NAME (type) = name;
2850
2851 return type;
2852 }
2853
2854 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2855 to use with variables that have no debug info. NAME is the type
2856 name. */
2857
2858 static struct type *
2859 init_nodebug_var_type (struct objfile *objfile, const char *name)
2860 {
2861 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2862 }
2863
2864 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2865 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2866 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2867
2868 struct type *
2869 init_integer_type (struct objfile *objfile,
2870 int bit, int unsigned_p, const char *name)
2871 {
2872 struct type *t;
2873
2874 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2875 if (unsigned_p)
2876 TYPE_UNSIGNED (t) = 1;
2877
2878 return t;
2879 }
2880
2881 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2882 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2883 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2884
2885 struct type *
2886 init_character_type (struct objfile *objfile,
2887 int bit, int unsigned_p, const char *name)
2888 {
2889 struct type *t;
2890
2891 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2892 if (unsigned_p)
2893 TYPE_UNSIGNED (t) = 1;
2894
2895 return t;
2896 }
2897
2898 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2899 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2900 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2901
2902 struct type *
2903 init_boolean_type (struct objfile *objfile,
2904 int bit, int unsigned_p, const char *name)
2905 {
2906 struct type *t;
2907
2908 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2909 if (unsigned_p)
2910 TYPE_UNSIGNED (t) = 1;
2911
2912 return t;
2913 }
2914
2915 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2916 BIT is the type size in bits; if BIT equals -1, the size is
2917 determined by the floatformat. NAME is the type name. Set the
2918 TYPE_FLOATFORMAT from FLOATFORMATS. */
2919
2920 struct type *
2921 init_float_type (struct objfile *objfile,
2922 int bit, const char *name,
2923 const struct floatformat **floatformats)
2924 {
2925 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2926 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2927 struct type *t;
2928
2929 bit = verify_floatformat (bit, fmt);
2930 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2931 TYPE_FLOATFORMAT (t) = fmt;
2932
2933 return t;
2934 }
2935
2936 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2937 BIT is the type size in bits. NAME is the type name. */
2938
2939 struct type *
2940 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2941 {
2942 struct type *t;
2943
2944 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2945 return t;
2946 }
2947
2948 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2949 NAME is the type name. TARGET_TYPE is the component float type. */
2950
2951 struct type *
2952 init_complex_type (struct objfile *objfile,
2953 const char *name, struct type *target_type)
2954 {
2955 struct type *t;
2956
2957 t = init_type (objfile, TYPE_CODE_COMPLEX,
2958 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2959 TYPE_TARGET_TYPE (t) = target_type;
2960 return t;
2961 }
2962
2963 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2964 BIT is the pointer type size in bits. NAME is the type name.
2965 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2966 TYPE_UNSIGNED flag. */
2967
2968 struct type *
2969 init_pointer_type (struct objfile *objfile,
2970 int bit, const char *name, struct type *target_type)
2971 {
2972 struct type *t;
2973
2974 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2975 TYPE_TARGET_TYPE (t) = target_type;
2976 TYPE_UNSIGNED (t) = 1;
2977 return t;
2978 }
2979
2980 /* See gdbtypes.h. */
2981
2982 unsigned
2983 type_raw_align (struct type *type)
2984 {
2985 if (type->align_log2 != 0)
2986 return 1 << (type->align_log2 - 1);
2987 return 0;
2988 }
2989
2990 /* See gdbtypes.h. */
2991
2992 unsigned
2993 type_align (struct type *type)
2994 {
2995 unsigned raw_align = type_raw_align (type);
2996 if (raw_align != 0)
2997 return raw_align;
2998
2999 ULONGEST align = 0;
3000 switch (TYPE_CODE (type))
3001 {
3002 case TYPE_CODE_PTR:
3003 case TYPE_CODE_FUNC:
3004 case TYPE_CODE_FLAGS:
3005 case TYPE_CODE_INT:
3006 case TYPE_CODE_RANGE:
3007 case TYPE_CODE_FLT:
3008 case TYPE_CODE_ENUM:
3009 case TYPE_CODE_REF:
3010 case TYPE_CODE_RVALUE_REF:
3011 case TYPE_CODE_CHAR:
3012 case TYPE_CODE_BOOL:
3013 case TYPE_CODE_DECFLOAT:
3014 case TYPE_CODE_METHODPTR:
3015 case TYPE_CODE_MEMBERPTR:
3016 {
3017 struct gdbarch *arch = get_type_arch (type);
3018 align = gdbarch_type_align (arch, type);
3019 }
3020 break;
3021
3022 case TYPE_CODE_ARRAY:
3023 case TYPE_CODE_COMPLEX:
3024 case TYPE_CODE_TYPEDEF:
3025 align = type_align (TYPE_TARGET_TYPE (type));
3026 break;
3027
3028 case TYPE_CODE_STRUCT:
3029 case TYPE_CODE_UNION:
3030 {
3031 if (TYPE_NFIELDS (type) == 0)
3032 {
3033 /* An empty struct has alignment 1. */
3034 align = 1;
3035 break;
3036 }
3037 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3038 {
3039 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3040 if (f_align == 0)
3041 {
3042 /* Don't pretend we know something we don't. */
3043 align = 0;
3044 break;
3045 }
3046 if (f_align > align)
3047 align = f_align;
3048 }
3049 }
3050 break;
3051
3052 case TYPE_CODE_SET:
3053 case TYPE_CODE_STRING:
3054 /* Not sure what to do here, and these can't appear in C or C++
3055 anyway. */
3056 break;
3057
3058 case TYPE_CODE_VOID:
3059 align = 1;
3060 break;
3061
3062 case TYPE_CODE_ERROR:
3063 case TYPE_CODE_METHOD:
3064 default:
3065 break;
3066 }
3067
3068 if ((align & (align - 1)) != 0)
3069 {
3070 /* Not a power of 2, so pass. */
3071 align = 0;
3072 }
3073
3074 return align;
3075 }
3076
3077 /* See gdbtypes.h. */
3078
3079 bool
3080 set_type_align (struct type *type, ULONGEST align)
3081 {
3082 /* Must be a power of 2. Zero is ok. */
3083 gdb_assert ((align & (align - 1)) == 0);
3084
3085 unsigned result = 0;
3086 while (align != 0)
3087 {
3088 ++result;
3089 align >>= 1;
3090 }
3091
3092 if (result >= (1 << TYPE_ALIGN_BITS))
3093 return false;
3094
3095 type->align_log2 = result;
3096 return true;
3097 }
3098
3099 \f
3100 /* Queries on types. */
3101
3102 int
3103 can_dereference (struct type *t)
3104 {
3105 /* FIXME: Should we return true for references as well as
3106 pointers? */
3107 t = check_typedef (t);
3108 return
3109 (t != NULL
3110 && TYPE_CODE (t) == TYPE_CODE_PTR
3111 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3112 }
3113
3114 int
3115 is_integral_type (struct type *t)
3116 {
3117 t = check_typedef (t);
3118 return
3119 ((t != NULL)
3120 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3121 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3122 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3123 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3124 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3125 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3126 }
3127
3128 int
3129 is_floating_type (struct type *t)
3130 {
3131 t = check_typedef (t);
3132 return
3133 ((t != NULL)
3134 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3135 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3136 }
3137
3138 /* Return true if TYPE is scalar. */
3139
3140 int
3141 is_scalar_type (struct type *type)
3142 {
3143 type = check_typedef (type);
3144
3145 switch (TYPE_CODE (type))
3146 {
3147 case TYPE_CODE_ARRAY:
3148 case TYPE_CODE_STRUCT:
3149 case TYPE_CODE_UNION:
3150 case TYPE_CODE_SET:
3151 case TYPE_CODE_STRING:
3152 return 0;
3153 default:
3154 return 1;
3155 }
3156 }
3157
3158 /* Return true if T is scalar, or a composite type which in practice has
3159 the memory layout of a scalar type. E.g., an array or struct with only
3160 one scalar element inside it, or a union with only scalar elements. */
3161
3162 int
3163 is_scalar_type_recursive (struct type *t)
3164 {
3165 t = check_typedef (t);
3166
3167 if (is_scalar_type (t))
3168 return 1;
3169 /* Are we dealing with an array or string of known dimensions? */
3170 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3171 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3172 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3173 {
3174 LONGEST low_bound, high_bound;
3175 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3176
3177 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3178
3179 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3180 }
3181 /* Are we dealing with a struct with one element? */
3182 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3183 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3184 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3185 {
3186 int i, n = TYPE_NFIELDS (t);
3187
3188 /* If all elements of the union are scalar, then the union is scalar. */
3189 for (i = 0; i < n; i++)
3190 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3191 return 0;
3192
3193 return 1;
3194 }
3195
3196 return 0;
3197 }
3198
3199 /* Return true is T is a class or a union. False otherwise. */
3200
3201 int
3202 class_or_union_p (const struct type *t)
3203 {
3204 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3205 || TYPE_CODE (t) == TYPE_CODE_UNION);
3206 }
3207
3208 /* A helper function which returns true if types A and B represent the
3209 "same" class type. This is true if the types have the same main
3210 type, or the same name. */
3211
3212 int
3213 class_types_same_p (const struct type *a, const struct type *b)
3214 {
3215 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3216 || (TYPE_NAME (a) && TYPE_NAME (b)
3217 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3218 }
3219
3220 /* If BASE is an ancestor of DCLASS return the distance between them.
3221 otherwise return -1;
3222 eg:
3223
3224 class A {};
3225 class B: public A {};
3226 class C: public B {};
3227 class D: C {};
3228
3229 distance_to_ancestor (A, A, 0) = 0
3230 distance_to_ancestor (A, B, 0) = 1
3231 distance_to_ancestor (A, C, 0) = 2
3232 distance_to_ancestor (A, D, 0) = 3
3233
3234 If PUBLIC is 1 then only public ancestors are considered,
3235 and the function returns the distance only if BASE is a public ancestor
3236 of DCLASS.
3237 Eg:
3238
3239 distance_to_ancestor (A, D, 1) = -1. */
3240
3241 static int
3242 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3243 {
3244 int i;
3245 int d;
3246
3247 base = check_typedef (base);
3248 dclass = check_typedef (dclass);
3249
3250 if (class_types_same_p (base, dclass))
3251 return 0;
3252
3253 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3254 {
3255 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3256 continue;
3257
3258 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3259 if (d >= 0)
3260 return 1 + d;
3261 }
3262
3263 return -1;
3264 }
3265
3266 /* Check whether BASE is an ancestor or base class or DCLASS
3267 Return 1 if so, and 0 if not.
3268 Note: If BASE and DCLASS are of the same type, this function
3269 will return 1. So for some class A, is_ancestor (A, A) will
3270 return 1. */
3271
3272 int
3273 is_ancestor (struct type *base, struct type *dclass)
3274 {
3275 return distance_to_ancestor (base, dclass, 0) >= 0;
3276 }
3277
3278 /* Like is_ancestor, but only returns true when BASE is a public
3279 ancestor of DCLASS. */
3280
3281 int
3282 is_public_ancestor (struct type *base, struct type *dclass)
3283 {
3284 return distance_to_ancestor (base, dclass, 1) >= 0;
3285 }
3286
3287 /* A helper function for is_unique_ancestor. */
3288
3289 static int
3290 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3291 int *offset,
3292 const gdb_byte *valaddr, int embedded_offset,
3293 CORE_ADDR address, struct value *val)
3294 {
3295 int i, count = 0;
3296
3297 base = check_typedef (base);
3298 dclass = check_typedef (dclass);
3299
3300 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3301 {
3302 struct type *iter;
3303 int this_offset;
3304
3305 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3306
3307 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3308 address, val);
3309
3310 if (class_types_same_p (base, iter))
3311 {
3312 /* If this is the first subclass, set *OFFSET and set count
3313 to 1. Otherwise, if this is at the same offset as
3314 previous instances, do nothing. Otherwise, increment
3315 count. */
3316 if (*offset == -1)
3317 {
3318 *offset = this_offset;
3319 count = 1;
3320 }
3321 else if (this_offset == *offset)
3322 {
3323 /* Nothing. */
3324 }
3325 else
3326 ++count;
3327 }
3328 else
3329 count += is_unique_ancestor_worker (base, iter, offset,
3330 valaddr,
3331 embedded_offset + this_offset,
3332 address, val);
3333 }
3334
3335 return count;
3336 }
3337
3338 /* Like is_ancestor, but only returns true if BASE is a unique base
3339 class of the type of VAL. */
3340
3341 int
3342 is_unique_ancestor (struct type *base, struct value *val)
3343 {
3344 int offset = -1;
3345
3346 return is_unique_ancestor_worker (base, value_type (val), &offset,
3347 value_contents_for_printing (val),
3348 value_embedded_offset (val),
3349 value_address (val), val) == 1;
3350 }
3351
3352 \f
3353 /* Overload resolution. */
3354
3355 /* Return the sum of the rank of A with the rank of B. */
3356
3357 struct rank
3358 sum_ranks (struct rank a, struct rank b)
3359 {
3360 struct rank c;
3361 c.rank = a.rank + b.rank;
3362 c.subrank = a.subrank + b.subrank;
3363 return c;
3364 }
3365
3366 /* Compare rank A and B and return:
3367 0 if a = b
3368 1 if a is better than b
3369 -1 if b is better than a. */
3370
3371 int
3372 compare_ranks (struct rank a, struct rank b)
3373 {
3374 if (a.rank == b.rank)
3375 {
3376 if (a.subrank == b.subrank)
3377 return 0;
3378 if (a.subrank < b.subrank)
3379 return 1;
3380 if (a.subrank > b.subrank)
3381 return -1;
3382 }
3383
3384 if (a.rank < b.rank)
3385 return 1;
3386
3387 /* a.rank > b.rank */
3388 return -1;
3389 }
3390
3391 /* Functions for overload resolution begin here. */
3392
3393 /* Compare two badness vectors A and B and return the result.
3394 0 => A and B are identical
3395 1 => A and B are incomparable
3396 2 => A is better than B
3397 3 => A is worse than B */
3398
3399 int
3400 compare_badness (const badness_vector &a, const badness_vector &b)
3401 {
3402 int i;
3403 int tmp;
3404 short found_pos = 0; /* any positives in c? */
3405 short found_neg = 0; /* any negatives in c? */
3406
3407 /* differing sizes => incomparable */
3408 if (a.size () != b.size ())
3409 return 1;
3410
3411 /* Subtract b from a */
3412 for (i = 0; i < a.size (); i++)
3413 {
3414 tmp = compare_ranks (b[i], a[i]);
3415 if (tmp > 0)
3416 found_pos = 1;
3417 else if (tmp < 0)
3418 found_neg = 1;
3419 }
3420
3421 if (found_pos)
3422 {
3423 if (found_neg)
3424 return 1; /* incomparable */
3425 else
3426 return 3; /* A > B */
3427 }
3428 else
3429 /* no positives */
3430 {
3431 if (found_neg)
3432 return 2; /* A < B */
3433 else
3434 return 0; /* A == B */
3435 }
3436 }
3437
3438 /* Rank a function by comparing its parameter types (PARMS), to the
3439 types of an argument list (ARGS). Return the badness vector. This
3440 has ARGS.size() + 1 entries. */
3441
3442 badness_vector
3443 rank_function (gdb::array_view<type *> parms,
3444 gdb::array_view<value *> args)
3445 {
3446 /* add 1 for the length-match rank. */
3447 badness_vector bv;
3448 bv.reserve (1 + args.size ());
3449
3450 /* First compare the lengths of the supplied lists.
3451 If there is a mismatch, set it to a high value. */
3452
3453 /* pai/1997-06-03 FIXME: when we have debug info about default
3454 arguments and ellipsis parameter lists, we should consider those
3455 and rank the length-match more finely. */
3456
3457 bv.push_back ((args.size () != parms.size ())
3458 ? LENGTH_MISMATCH_BADNESS
3459 : EXACT_MATCH_BADNESS);
3460
3461 /* Now rank all the parameters of the candidate function. */
3462 size_t min_len = std::min (parms.size (), args.size ());
3463
3464 for (size_t i = 0; i < min_len; i++)
3465 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3466 args[i]));
3467
3468 /* If more arguments than parameters, add dummy entries. */
3469 for (size_t i = min_len; i < args.size (); i++)
3470 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3471
3472 return bv;
3473 }
3474
3475 /* Compare the names of two integer types, assuming that any sign
3476 qualifiers have been checked already. We do it this way because
3477 there may be an "int" in the name of one of the types. */
3478
3479 static int
3480 integer_types_same_name_p (const char *first, const char *second)
3481 {
3482 int first_p, second_p;
3483
3484 /* If both are shorts, return 1; if neither is a short, keep
3485 checking. */
3486 first_p = (strstr (first, "short") != NULL);
3487 second_p = (strstr (second, "short") != NULL);
3488 if (first_p && second_p)
3489 return 1;
3490 if (first_p || second_p)
3491 return 0;
3492
3493 /* Likewise for long. */
3494 first_p = (strstr (first, "long") != NULL);
3495 second_p = (strstr (second, "long") != NULL);
3496 if (first_p && second_p)
3497 return 1;
3498 if (first_p || second_p)
3499 return 0;
3500
3501 /* Likewise for char. */
3502 first_p = (strstr (first, "char") != NULL);
3503 second_p = (strstr (second, "char") != NULL);
3504 if (first_p && second_p)
3505 return 1;
3506 if (first_p || second_p)
3507 return 0;
3508
3509 /* They must both be ints. */
3510 return 1;
3511 }
3512
3513 /* Compares type A to type B. Returns true if they represent the same
3514 type, false otherwise. */
3515
3516 bool
3517 types_equal (struct type *a, struct type *b)
3518 {
3519 /* Identical type pointers. */
3520 /* However, this still doesn't catch all cases of same type for b
3521 and a. The reason is that builtin types are different from
3522 the same ones constructed from the object. */
3523 if (a == b)
3524 return true;
3525
3526 /* Resolve typedefs */
3527 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3528 a = check_typedef (a);
3529 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3530 b = check_typedef (b);
3531
3532 /* If after resolving typedefs a and b are not of the same type
3533 code then they are not equal. */
3534 if (TYPE_CODE (a) != TYPE_CODE (b))
3535 return false;
3536
3537 /* If a and b are both pointers types or both reference types then
3538 they are equal of the same type iff the objects they refer to are
3539 of the same type. */
3540 if (TYPE_CODE (a) == TYPE_CODE_PTR
3541 || TYPE_CODE (a) == TYPE_CODE_REF)
3542 return types_equal (TYPE_TARGET_TYPE (a),
3543 TYPE_TARGET_TYPE (b));
3544
3545 /* Well, damnit, if the names are exactly the same, I'll say they
3546 are exactly the same. This happens when we generate method
3547 stubs. The types won't point to the same address, but they
3548 really are the same. */
3549
3550 if (TYPE_NAME (a) && TYPE_NAME (b)
3551 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3552 return true;
3553
3554 /* Check if identical after resolving typedefs. */
3555 if (a == b)
3556 return true;
3557
3558 /* Two function types are equal if their argument and return types
3559 are equal. */
3560 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3561 {
3562 int i;
3563
3564 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3565 return false;
3566
3567 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3568 return false;
3569
3570 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3571 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3572 return false;
3573
3574 return true;
3575 }
3576
3577 return false;
3578 }
3579 \f
3580 /* Deep comparison of types. */
3581
3582 /* An entry in the type-equality bcache. */
3583
3584 struct type_equality_entry
3585 {
3586 type_equality_entry (struct type *t1, struct type *t2)
3587 : type1 (t1),
3588 type2 (t2)
3589 {
3590 }
3591
3592 struct type *type1, *type2;
3593 };
3594
3595 /* A helper function to compare two strings. Returns true if they are
3596 the same, false otherwise. Handles NULLs properly. */
3597
3598 static bool
3599 compare_maybe_null_strings (const char *s, const char *t)
3600 {
3601 if (s == NULL || t == NULL)
3602 return s == t;
3603 return strcmp (s, t) == 0;
3604 }
3605
3606 /* A helper function for check_types_worklist that checks two types for
3607 "deep" equality. Returns true if the types are considered the
3608 same, false otherwise. */
3609
3610 static bool
3611 check_types_equal (struct type *type1, struct type *type2,
3612 std::vector<type_equality_entry> *worklist)
3613 {
3614 type1 = check_typedef (type1);
3615 type2 = check_typedef (type2);
3616
3617 if (type1 == type2)
3618 return true;
3619
3620 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3621 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3622 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3623 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3624 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3625 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3626 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3627 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3628 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3629 return false;
3630
3631 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3632 return false;
3633 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3634 return false;
3635
3636 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3637 {
3638 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3639 return false;
3640 }
3641 else
3642 {
3643 int i;
3644
3645 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3646 {
3647 const struct field *field1 = &TYPE_FIELD (type1, i);
3648 const struct field *field2 = &TYPE_FIELD (type2, i);
3649
3650 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3651 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3652 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3653 return false;
3654 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3655 FIELD_NAME (*field2)))
3656 return false;
3657 switch (FIELD_LOC_KIND (*field1))
3658 {
3659 case FIELD_LOC_KIND_BITPOS:
3660 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3661 return false;
3662 break;
3663 case FIELD_LOC_KIND_ENUMVAL:
3664 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3665 return false;
3666 break;
3667 case FIELD_LOC_KIND_PHYSADDR:
3668 if (FIELD_STATIC_PHYSADDR (*field1)
3669 != FIELD_STATIC_PHYSADDR (*field2))
3670 return false;
3671 break;
3672 case FIELD_LOC_KIND_PHYSNAME:
3673 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3674 FIELD_STATIC_PHYSNAME (*field2)))
3675 return false;
3676 break;
3677 case FIELD_LOC_KIND_DWARF_BLOCK:
3678 {
3679 struct dwarf2_locexpr_baton *block1, *block2;
3680
3681 block1 = FIELD_DWARF_BLOCK (*field1);
3682 block2 = FIELD_DWARF_BLOCK (*field2);
3683 if (block1->per_cu != block2->per_cu
3684 || block1->size != block2->size
3685 || memcmp (block1->data, block2->data, block1->size) != 0)
3686 return false;
3687 }
3688 break;
3689 default:
3690 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3691 "%d by check_types_equal"),
3692 FIELD_LOC_KIND (*field1));
3693 }
3694
3695 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3696 }
3697 }
3698
3699 if (TYPE_TARGET_TYPE (type1) != NULL)
3700 {
3701 if (TYPE_TARGET_TYPE (type2) == NULL)
3702 return false;
3703
3704 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3705 TYPE_TARGET_TYPE (type2));
3706 }
3707 else if (TYPE_TARGET_TYPE (type2) != NULL)
3708 return false;
3709
3710 return true;
3711 }
3712
3713 /* Check types on a worklist for equality. Returns false if any pair
3714 is not equal, true if they are all considered equal. */
3715
3716 static bool
3717 check_types_worklist (std::vector<type_equality_entry> *worklist,
3718 struct bcache *cache)
3719 {
3720 while (!worklist->empty ())
3721 {
3722 int added;
3723
3724 struct type_equality_entry entry = std::move (worklist->back ());
3725 worklist->pop_back ();
3726
3727 /* If the type pair has already been visited, we know it is
3728 ok. */
3729 bcache_full (&entry, sizeof (entry), cache, &added);
3730 if (!added)
3731 continue;
3732
3733 if (!check_types_equal (entry.type1, entry.type2, worklist))
3734 return false;
3735 }
3736
3737 return true;
3738 }
3739
3740 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3741 "deep comparison". Otherwise return false. */
3742
3743 bool
3744 types_deeply_equal (struct type *type1, struct type *type2)
3745 {
3746 struct gdb_exception except = exception_none;
3747 bool result = false;
3748 struct bcache *cache;
3749 std::vector<type_equality_entry> worklist;
3750
3751 gdb_assert (type1 != NULL && type2 != NULL);
3752
3753 /* Early exit for the simple case. */
3754 if (type1 == type2)
3755 return true;
3756
3757 cache = bcache_xmalloc (NULL, NULL);
3758
3759 worklist.emplace_back (type1, type2);
3760
3761 /* check_types_worklist calls several nested helper functions, some
3762 of which can raise a GDB exception, so we just check and rethrow
3763 here. If there is a GDB exception, a comparison is not capable
3764 (or trusted), so exit. */
3765 TRY
3766 {
3767 result = check_types_worklist (&worklist, cache);
3768 }
3769 CATCH (ex, RETURN_MASK_ALL)
3770 {
3771 except = ex;
3772 }
3773 END_CATCH
3774
3775 bcache_xfree (cache);
3776
3777 /* Rethrow if there was a problem. */
3778 if (except.reason < 0)
3779 throw_exception (except);
3780
3781 return result;
3782 }
3783
3784 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3785 Otherwise return one. */
3786
3787 int
3788 type_not_allocated (const struct type *type)
3789 {
3790 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3791
3792 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3793 && !TYPE_DYN_PROP_ADDR (prop));
3794 }
3795
3796 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3797 Otherwise return one. */
3798
3799 int
3800 type_not_associated (const struct type *type)
3801 {
3802 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3803
3804 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3805 && !TYPE_DYN_PROP_ADDR (prop));
3806 }
3807 \f
3808 /* Compare one type (PARM) for compatibility with another (ARG).
3809 * PARM is intended to be the parameter type of a function; and
3810 * ARG is the supplied argument's type. This function tests if
3811 * the latter can be converted to the former.
3812 * VALUE is the argument's value or NULL if none (or called recursively)
3813 *
3814 * Return 0 if they are identical types;
3815 * Otherwise, return an integer which corresponds to how compatible
3816 * PARM is to ARG. The higher the return value, the worse the match.
3817 * Generally the "bad" conversions are all uniformly assigned a 100. */
3818
3819 struct rank
3820 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3821 {
3822 struct rank rank = {0,0};
3823
3824 /* Resolve typedefs */
3825 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3826 parm = check_typedef (parm);
3827 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3828 arg = check_typedef (arg);
3829
3830 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3831 {
3832 if (VALUE_LVAL (value) == not_lval)
3833 {
3834 /* Rvalues should preferably bind to rvalue references or const
3835 lvalue references. */
3836 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3837 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3838 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3839 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3840 else
3841 return INCOMPATIBLE_TYPE_BADNESS;
3842 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3843 }
3844 else
3845 {
3846 /* Lvalues should prefer lvalue overloads. */
3847 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3848 {
3849 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3850 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3851 }
3852 }
3853 }
3854
3855 if (types_equal (parm, arg))
3856 {
3857 struct type *t1 = parm;
3858 struct type *t2 = arg;
3859
3860 /* For pointers and references, compare target type. */
3861 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3862 {
3863 t1 = TYPE_TARGET_TYPE (parm);
3864 t2 = TYPE_TARGET_TYPE (arg);
3865 }
3866
3867 /* Make sure they are CV equal, too. */
3868 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3869 rank.subrank |= CV_CONVERSION_CONST;
3870 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3871 rank.subrank |= CV_CONVERSION_VOLATILE;
3872 if (rank.subrank != 0)
3873 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3874 return EXACT_MATCH_BADNESS;
3875 }
3876
3877 /* See through references, since we can almost make non-references
3878 references. */
3879
3880 if (TYPE_IS_REFERENCE (arg))
3881 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3882 REFERENCE_CONVERSION_BADNESS));
3883 if (TYPE_IS_REFERENCE (parm))
3884 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3885 REFERENCE_CONVERSION_BADNESS));
3886 if (overload_debug)
3887 /* Debugging only. */
3888 fprintf_filtered (gdb_stderr,
3889 "------ Arg is %s [%d], parm is %s [%d]\n",
3890 TYPE_NAME (arg), TYPE_CODE (arg),
3891 TYPE_NAME (parm), TYPE_CODE (parm));
3892
3893 /* x -> y means arg of type x being supplied for parameter of type y. */
3894
3895 switch (TYPE_CODE (parm))
3896 {
3897 case TYPE_CODE_PTR:
3898 switch (TYPE_CODE (arg))
3899 {
3900 case TYPE_CODE_PTR:
3901
3902 /* Allowed pointer conversions are:
3903 (a) pointer to void-pointer conversion. */
3904 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3905 return VOID_PTR_CONVERSION_BADNESS;
3906
3907 /* (b) pointer to ancestor-pointer conversion. */
3908 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3909 TYPE_TARGET_TYPE (arg),
3910 0);
3911 if (rank.subrank >= 0)
3912 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3913
3914 return INCOMPATIBLE_TYPE_BADNESS;
3915 case TYPE_CODE_ARRAY:
3916 {
3917 struct type *t1 = TYPE_TARGET_TYPE (parm);
3918 struct type *t2 = TYPE_TARGET_TYPE (arg);
3919
3920 if (types_equal (t1, t2))
3921 {
3922 /* Make sure they are CV equal. */
3923 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3924 rank.subrank |= CV_CONVERSION_CONST;
3925 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3926 rank.subrank |= CV_CONVERSION_VOLATILE;
3927 if (rank.subrank != 0)
3928 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3929 return EXACT_MATCH_BADNESS;
3930 }
3931 return INCOMPATIBLE_TYPE_BADNESS;
3932 }
3933 case TYPE_CODE_FUNC:
3934 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3935 case TYPE_CODE_INT:
3936 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3937 {
3938 if (value_as_long (value) == 0)
3939 {
3940 /* Null pointer conversion: allow it to be cast to a pointer.
3941 [4.10.1 of C++ standard draft n3290] */
3942 return NULL_POINTER_CONVERSION_BADNESS;
3943 }
3944 else
3945 {
3946 /* If type checking is disabled, allow the conversion. */
3947 if (!strict_type_checking)
3948 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3949 }
3950 }
3951 /* fall through */
3952 case TYPE_CODE_ENUM:
3953 case TYPE_CODE_FLAGS:
3954 case TYPE_CODE_CHAR:
3955 case TYPE_CODE_RANGE:
3956 case TYPE_CODE_BOOL:
3957 default:
3958 return INCOMPATIBLE_TYPE_BADNESS;
3959 }
3960 case TYPE_CODE_ARRAY:
3961 switch (TYPE_CODE (arg))
3962 {
3963 case TYPE_CODE_PTR:
3964 case TYPE_CODE_ARRAY:
3965 return rank_one_type (TYPE_TARGET_TYPE (parm),
3966 TYPE_TARGET_TYPE (arg), NULL);
3967 default:
3968 return INCOMPATIBLE_TYPE_BADNESS;
3969 }
3970 case TYPE_CODE_FUNC:
3971 switch (TYPE_CODE (arg))
3972 {
3973 case TYPE_CODE_PTR: /* funcptr -> func */
3974 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3975 default:
3976 return INCOMPATIBLE_TYPE_BADNESS;
3977 }
3978 case TYPE_CODE_INT:
3979 switch (TYPE_CODE (arg))
3980 {
3981 case TYPE_CODE_INT:
3982 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3983 {
3984 /* Deal with signed, unsigned, and plain chars and
3985 signed and unsigned ints. */
3986 if (TYPE_NOSIGN (parm))
3987 {
3988 /* This case only for character types. */
3989 if (TYPE_NOSIGN (arg))
3990 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3991 else /* signed/unsigned char -> plain char */
3992 return INTEGER_CONVERSION_BADNESS;
3993 }
3994 else if (TYPE_UNSIGNED (parm))
3995 {
3996 if (TYPE_UNSIGNED (arg))
3997 {
3998 /* unsigned int -> unsigned int, or
3999 unsigned long -> unsigned long */
4000 if (integer_types_same_name_p (TYPE_NAME (parm),
4001 TYPE_NAME (arg)))
4002 return EXACT_MATCH_BADNESS;
4003 else if (integer_types_same_name_p (TYPE_NAME (arg),
4004 "int")
4005 && integer_types_same_name_p (TYPE_NAME (parm),
4006 "long"))
4007 /* unsigned int -> unsigned long */
4008 return INTEGER_PROMOTION_BADNESS;
4009 else
4010 /* unsigned long -> unsigned int */
4011 return INTEGER_CONVERSION_BADNESS;
4012 }
4013 else
4014 {
4015 if (integer_types_same_name_p (TYPE_NAME (arg),
4016 "long")
4017 && integer_types_same_name_p (TYPE_NAME (parm),
4018 "int"))
4019 /* signed long -> unsigned int */
4020 return INTEGER_CONVERSION_BADNESS;
4021 else
4022 /* signed int/long -> unsigned int/long */
4023 return INTEGER_CONVERSION_BADNESS;
4024 }
4025 }
4026 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4027 {
4028 if (integer_types_same_name_p (TYPE_NAME (parm),
4029 TYPE_NAME (arg)))
4030 return EXACT_MATCH_BADNESS;
4031 else if (integer_types_same_name_p (TYPE_NAME (arg),
4032 "int")
4033 && integer_types_same_name_p (TYPE_NAME (parm),
4034 "long"))
4035 return INTEGER_PROMOTION_BADNESS;
4036 else
4037 return INTEGER_CONVERSION_BADNESS;
4038 }
4039 else
4040 return INTEGER_CONVERSION_BADNESS;
4041 }
4042 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4043 return INTEGER_PROMOTION_BADNESS;
4044 else
4045 return INTEGER_CONVERSION_BADNESS;
4046 case TYPE_CODE_ENUM:
4047 case TYPE_CODE_FLAGS:
4048 case TYPE_CODE_CHAR:
4049 case TYPE_CODE_RANGE:
4050 case TYPE_CODE_BOOL:
4051 if (TYPE_DECLARED_CLASS (arg))
4052 return INCOMPATIBLE_TYPE_BADNESS;
4053 return INTEGER_PROMOTION_BADNESS;
4054 case TYPE_CODE_FLT:
4055 return INT_FLOAT_CONVERSION_BADNESS;
4056 case TYPE_CODE_PTR:
4057 return NS_POINTER_CONVERSION_BADNESS;
4058 default:
4059 return INCOMPATIBLE_TYPE_BADNESS;
4060 }
4061 break;
4062 case TYPE_CODE_ENUM:
4063 switch (TYPE_CODE (arg))
4064 {
4065 case TYPE_CODE_INT:
4066 case TYPE_CODE_CHAR:
4067 case TYPE_CODE_RANGE:
4068 case TYPE_CODE_BOOL:
4069 case TYPE_CODE_ENUM:
4070 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4071 return INCOMPATIBLE_TYPE_BADNESS;
4072 return INTEGER_CONVERSION_BADNESS;
4073 case TYPE_CODE_FLT:
4074 return INT_FLOAT_CONVERSION_BADNESS;
4075 default:
4076 return INCOMPATIBLE_TYPE_BADNESS;
4077 }
4078 break;
4079 case TYPE_CODE_CHAR:
4080 switch (TYPE_CODE (arg))
4081 {
4082 case TYPE_CODE_RANGE:
4083 case TYPE_CODE_BOOL:
4084 case TYPE_CODE_ENUM:
4085 if (TYPE_DECLARED_CLASS (arg))
4086 return INCOMPATIBLE_TYPE_BADNESS;
4087 return INTEGER_CONVERSION_BADNESS;
4088 case TYPE_CODE_FLT:
4089 return INT_FLOAT_CONVERSION_BADNESS;
4090 case TYPE_CODE_INT:
4091 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4092 return INTEGER_CONVERSION_BADNESS;
4093 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4094 return INTEGER_PROMOTION_BADNESS;
4095 /* fall through */
4096 case TYPE_CODE_CHAR:
4097 /* Deal with signed, unsigned, and plain chars for C++ and
4098 with int cases falling through from previous case. */
4099 if (TYPE_NOSIGN (parm))
4100 {
4101 if (TYPE_NOSIGN (arg))
4102 return EXACT_MATCH_BADNESS;
4103 else
4104 return INTEGER_CONVERSION_BADNESS;
4105 }
4106 else if (TYPE_UNSIGNED (parm))
4107 {
4108 if (TYPE_UNSIGNED (arg))
4109 return EXACT_MATCH_BADNESS;
4110 else
4111 return INTEGER_PROMOTION_BADNESS;
4112 }
4113 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4114 return EXACT_MATCH_BADNESS;
4115 else
4116 return INTEGER_CONVERSION_BADNESS;
4117 default:
4118 return INCOMPATIBLE_TYPE_BADNESS;
4119 }
4120 break;
4121 case TYPE_CODE_RANGE:
4122 switch (TYPE_CODE (arg))
4123 {
4124 case TYPE_CODE_INT:
4125 case TYPE_CODE_CHAR:
4126 case TYPE_CODE_RANGE:
4127 case TYPE_CODE_BOOL:
4128 case TYPE_CODE_ENUM:
4129 return INTEGER_CONVERSION_BADNESS;
4130 case TYPE_CODE_FLT:
4131 return INT_FLOAT_CONVERSION_BADNESS;
4132 default:
4133 return INCOMPATIBLE_TYPE_BADNESS;
4134 }
4135 break;
4136 case TYPE_CODE_BOOL:
4137 switch (TYPE_CODE (arg))
4138 {
4139 /* n3290 draft, section 4.12.1 (conv.bool):
4140
4141 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4142 pointer to member type can be converted to a prvalue of type
4143 bool. A zero value, null pointer value, or null member pointer
4144 value is converted to false; any other value is converted to
4145 true. A prvalue of type std::nullptr_t can be converted to a
4146 prvalue of type bool; the resulting value is false." */
4147 case TYPE_CODE_INT:
4148 case TYPE_CODE_CHAR:
4149 case TYPE_CODE_ENUM:
4150 case TYPE_CODE_FLT:
4151 case TYPE_CODE_MEMBERPTR:
4152 case TYPE_CODE_PTR:
4153 return BOOL_CONVERSION_BADNESS;
4154 case TYPE_CODE_RANGE:
4155 return INCOMPATIBLE_TYPE_BADNESS;
4156 case TYPE_CODE_BOOL:
4157 return EXACT_MATCH_BADNESS;
4158 default:
4159 return INCOMPATIBLE_TYPE_BADNESS;
4160 }
4161 break;
4162 case TYPE_CODE_FLT:
4163 switch (TYPE_CODE (arg))
4164 {
4165 case TYPE_CODE_FLT:
4166 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4167 return FLOAT_PROMOTION_BADNESS;
4168 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4169 return EXACT_MATCH_BADNESS;
4170 else
4171 return FLOAT_CONVERSION_BADNESS;
4172 case TYPE_CODE_INT:
4173 case TYPE_CODE_BOOL:
4174 case TYPE_CODE_ENUM:
4175 case TYPE_CODE_RANGE:
4176 case TYPE_CODE_CHAR:
4177 return INT_FLOAT_CONVERSION_BADNESS;
4178 default:
4179 return INCOMPATIBLE_TYPE_BADNESS;
4180 }
4181 break;
4182 case TYPE_CODE_COMPLEX:
4183 switch (TYPE_CODE (arg))
4184 { /* Strictly not needed for C++, but... */
4185 case TYPE_CODE_FLT:
4186 return FLOAT_PROMOTION_BADNESS;
4187 case TYPE_CODE_COMPLEX:
4188 return EXACT_MATCH_BADNESS;
4189 default:
4190 return INCOMPATIBLE_TYPE_BADNESS;
4191 }
4192 break;
4193 case TYPE_CODE_STRUCT:
4194 switch (TYPE_CODE (arg))
4195 {
4196 case TYPE_CODE_STRUCT:
4197 /* Check for derivation */
4198 rank.subrank = distance_to_ancestor (parm, arg, 0);
4199 if (rank.subrank >= 0)
4200 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4201 /* fall through */
4202 default:
4203 return INCOMPATIBLE_TYPE_BADNESS;
4204 }
4205 break;
4206 case TYPE_CODE_UNION:
4207 switch (TYPE_CODE (arg))
4208 {
4209 case TYPE_CODE_UNION:
4210 default:
4211 return INCOMPATIBLE_TYPE_BADNESS;
4212 }
4213 break;
4214 case TYPE_CODE_MEMBERPTR:
4215 switch (TYPE_CODE (arg))
4216 {
4217 default:
4218 return INCOMPATIBLE_TYPE_BADNESS;
4219 }
4220 break;
4221 case TYPE_CODE_METHOD:
4222 switch (TYPE_CODE (arg))
4223 {
4224
4225 default:
4226 return INCOMPATIBLE_TYPE_BADNESS;
4227 }
4228 break;
4229 case TYPE_CODE_REF:
4230 switch (TYPE_CODE (arg))
4231 {
4232
4233 default:
4234 return INCOMPATIBLE_TYPE_BADNESS;
4235 }
4236
4237 break;
4238 case TYPE_CODE_SET:
4239 switch (TYPE_CODE (arg))
4240 {
4241 /* Not in C++ */
4242 case TYPE_CODE_SET:
4243 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4244 TYPE_FIELD_TYPE (arg, 0), NULL);
4245 default:
4246 return INCOMPATIBLE_TYPE_BADNESS;
4247 }
4248 break;
4249 case TYPE_CODE_VOID:
4250 default:
4251 return INCOMPATIBLE_TYPE_BADNESS;
4252 } /* switch (TYPE_CODE (arg)) */
4253 }
4254
4255 /* End of functions for overload resolution. */
4256 \f
4257 /* Routines to pretty-print types. */
4258
4259 static void
4260 print_bit_vector (B_TYPE *bits, int nbits)
4261 {
4262 int bitno;
4263
4264 for (bitno = 0; bitno < nbits; bitno++)
4265 {
4266 if ((bitno % 8) == 0)
4267 {
4268 puts_filtered (" ");
4269 }
4270 if (B_TST (bits, bitno))
4271 printf_filtered (("1"));
4272 else
4273 printf_filtered (("0"));
4274 }
4275 }
4276
4277 /* Note the first arg should be the "this" pointer, we may not want to
4278 include it since we may get into a infinitely recursive
4279 situation. */
4280
4281 static void
4282 print_args (struct field *args, int nargs, int spaces)
4283 {
4284 if (args != NULL)
4285 {
4286 int i;
4287
4288 for (i = 0; i < nargs; i++)
4289 {
4290 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4291 args[i].name != NULL ? args[i].name : "<NULL>");
4292 recursive_dump_type (args[i].type, spaces + 2);
4293 }
4294 }
4295 }
4296
4297 int
4298 field_is_static (struct field *f)
4299 {
4300 /* "static" fields are the fields whose location is not relative
4301 to the address of the enclosing struct. It would be nice to
4302 have a dedicated flag that would be set for static fields when
4303 the type is being created. But in practice, checking the field
4304 loc_kind should give us an accurate answer. */
4305 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4306 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4307 }
4308
4309 static void
4310 dump_fn_fieldlists (struct type *type, int spaces)
4311 {
4312 int method_idx;
4313 int overload_idx;
4314 struct fn_field *f;
4315
4316 printfi_filtered (spaces, "fn_fieldlists ");
4317 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4318 printf_filtered ("\n");
4319 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4320 {
4321 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4322 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4323 method_idx,
4324 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4325 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4326 gdb_stdout);
4327 printf_filtered (_(") length %d\n"),
4328 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4329 for (overload_idx = 0;
4330 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4331 overload_idx++)
4332 {
4333 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4334 overload_idx,
4335 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4336 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4337 gdb_stdout);
4338 printf_filtered (")\n");
4339 printfi_filtered (spaces + 8, "type ");
4340 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4341 gdb_stdout);
4342 printf_filtered ("\n");
4343
4344 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4345 spaces + 8 + 2);
4346
4347 printfi_filtered (spaces + 8, "args ");
4348 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4349 gdb_stdout);
4350 printf_filtered ("\n");
4351 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4352 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4353 spaces + 8 + 2);
4354 printfi_filtered (spaces + 8, "fcontext ");
4355 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4356 gdb_stdout);
4357 printf_filtered ("\n");
4358
4359 printfi_filtered (spaces + 8, "is_const %d\n",
4360 TYPE_FN_FIELD_CONST (f, overload_idx));
4361 printfi_filtered (spaces + 8, "is_volatile %d\n",
4362 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4363 printfi_filtered (spaces + 8, "is_private %d\n",
4364 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4365 printfi_filtered (spaces + 8, "is_protected %d\n",
4366 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4367 printfi_filtered (spaces + 8, "is_stub %d\n",
4368 TYPE_FN_FIELD_STUB (f, overload_idx));
4369 printfi_filtered (spaces + 8, "voffset %u\n",
4370 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4371 }
4372 }
4373 }
4374
4375 static void
4376 print_cplus_stuff (struct type *type, int spaces)
4377 {
4378 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4379 printfi_filtered (spaces, "vptr_basetype ");
4380 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4381 puts_filtered ("\n");
4382 if (TYPE_VPTR_BASETYPE (type) != NULL)
4383 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4384
4385 printfi_filtered (spaces, "n_baseclasses %d\n",
4386 TYPE_N_BASECLASSES (type));
4387 printfi_filtered (spaces, "nfn_fields %d\n",
4388 TYPE_NFN_FIELDS (type));
4389 if (TYPE_N_BASECLASSES (type) > 0)
4390 {
4391 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4392 TYPE_N_BASECLASSES (type));
4393 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4394 gdb_stdout);
4395 printf_filtered (")");
4396
4397 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4398 TYPE_N_BASECLASSES (type));
4399 puts_filtered ("\n");
4400 }
4401 if (TYPE_NFIELDS (type) > 0)
4402 {
4403 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4404 {
4405 printfi_filtered (spaces,
4406 "private_field_bits (%d bits at *",
4407 TYPE_NFIELDS (type));
4408 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4409 gdb_stdout);
4410 printf_filtered (")");
4411 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4412 TYPE_NFIELDS (type));
4413 puts_filtered ("\n");
4414 }
4415 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4416 {
4417 printfi_filtered (spaces,
4418 "protected_field_bits (%d bits at *",
4419 TYPE_NFIELDS (type));
4420 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4421 gdb_stdout);
4422 printf_filtered (")");
4423 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4424 TYPE_NFIELDS (type));
4425 puts_filtered ("\n");
4426 }
4427 }
4428 if (TYPE_NFN_FIELDS (type) > 0)
4429 {
4430 dump_fn_fieldlists (type, spaces);
4431 }
4432 }
4433
4434 /* Print the contents of the TYPE's type_specific union, assuming that
4435 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4436
4437 static void
4438 print_gnat_stuff (struct type *type, int spaces)
4439 {
4440 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4441
4442 if (descriptive_type == NULL)
4443 printfi_filtered (spaces + 2, "no descriptive type\n");
4444 else
4445 {
4446 printfi_filtered (spaces + 2, "descriptive type\n");
4447 recursive_dump_type (descriptive_type, spaces + 4);
4448 }
4449 }
4450
4451 static struct obstack dont_print_type_obstack;
4452
4453 void
4454 recursive_dump_type (struct type *type, int spaces)
4455 {
4456 int idx;
4457
4458 if (spaces == 0)
4459 obstack_begin (&dont_print_type_obstack, 0);
4460
4461 if (TYPE_NFIELDS (type) > 0
4462 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4463 {
4464 struct type **first_dont_print
4465 = (struct type **) obstack_base (&dont_print_type_obstack);
4466
4467 int i = (struct type **)
4468 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4469
4470 while (--i >= 0)
4471 {
4472 if (type == first_dont_print[i])
4473 {
4474 printfi_filtered (spaces, "type node ");
4475 gdb_print_host_address (type, gdb_stdout);
4476 printf_filtered (_(" <same as already seen type>\n"));
4477 return;
4478 }
4479 }
4480
4481 obstack_ptr_grow (&dont_print_type_obstack, type);
4482 }
4483
4484 printfi_filtered (spaces, "type node ");
4485 gdb_print_host_address (type, gdb_stdout);
4486 printf_filtered ("\n");
4487 printfi_filtered (spaces, "name '%s' (",
4488 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4489 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4490 printf_filtered (")\n");
4491 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4492 switch (TYPE_CODE (type))
4493 {
4494 case TYPE_CODE_UNDEF:
4495 printf_filtered ("(TYPE_CODE_UNDEF)");
4496 break;
4497 case TYPE_CODE_PTR:
4498 printf_filtered ("(TYPE_CODE_PTR)");
4499 break;
4500 case TYPE_CODE_ARRAY:
4501 printf_filtered ("(TYPE_CODE_ARRAY)");
4502 break;
4503 case TYPE_CODE_STRUCT:
4504 printf_filtered ("(TYPE_CODE_STRUCT)");
4505 break;
4506 case TYPE_CODE_UNION:
4507 printf_filtered ("(TYPE_CODE_UNION)");
4508 break;
4509 case TYPE_CODE_ENUM:
4510 printf_filtered ("(TYPE_CODE_ENUM)");
4511 break;
4512 case TYPE_CODE_FLAGS:
4513 printf_filtered ("(TYPE_CODE_FLAGS)");
4514 break;
4515 case TYPE_CODE_FUNC:
4516 printf_filtered ("(TYPE_CODE_FUNC)");
4517 break;
4518 case TYPE_CODE_INT:
4519 printf_filtered ("(TYPE_CODE_INT)");
4520 break;
4521 case TYPE_CODE_FLT:
4522 printf_filtered ("(TYPE_CODE_FLT)");
4523 break;
4524 case TYPE_CODE_VOID:
4525 printf_filtered ("(TYPE_CODE_VOID)");
4526 break;
4527 case TYPE_CODE_SET:
4528 printf_filtered ("(TYPE_CODE_SET)");
4529 break;
4530 case TYPE_CODE_RANGE:
4531 printf_filtered ("(TYPE_CODE_RANGE)");
4532 break;
4533 case TYPE_CODE_STRING:
4534 printf_filtered ("(TYPE_CODE_STRING)");
4535 break;
4536 case TYPE_CODE_ERROR:
4537 printf_filtered ("(TYPE_CODE_ERROR)");
4538 break;
4539 case TYPE_CODE_MEMBERPTR:
4540 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4541 break;
4542 case TYPE_CODE_METHODPTR:
4543 printf_filtered ("(TYPE_CODE_METHODPTR)");
4544 break;
4545 case TYPE_CODE_METHOD:
4546 printf_filtered ("(TYPE_CODE_METHOD)");
4547 break;
4548 case TYPE_CODE_REF:
4549 printf_filtered ("(TYPE_CODE_REF)");
4550 break;
4551 case TYPE_CODE_CHAR:
4552 printf_filtered ("(TYPE_CODE_CHAR)");
4553 break;
4554 case TYPE_CODE_BOOL:
4555 printf_filtered ("(TYPE_CODE_BOOL)");
4556 break;
4557 case TYPE_CODE_COMPLEX:
4558 printf_filtered ("(TYPE_CODE_COMPLEX)");
4559 break;
4560 case TYPE_CODE_TYPEDEF:
4561 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4562 break;
4563 case TYPE_CODE_NAMESPACE:
4564 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4565 break;
4566 default:
4567 printf_filtered ("(UNKNOWN TYPE CODE)");
4568 break;
4569 }
4570 puts_filtered ("\n");
4571 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4572 if (TYPE_OBJFILE_OWNED (type))
4573 {
4574 printfi_filtered (spaces, "objfile ");
4575 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4576 }
4577 else
4578 {
4579 printfi_filtered (spaces, "gdbarch ");
4580 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4581 }
4582 printf_filtered ("\n");
4583 printfi_filtered (spaces, "target_type ");
4584 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4585 printf_filtered ("\n");
4586 if (TYPE_TARGET_TYPE (type) != NULL)
4587 {
4588 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4589 }
4590 printfi_filtered (spaces, "pointer_type ");
4591 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4592 printf_filtered ("\n");
4593 printfi_filtered (spaces, "reference_type ");
4594 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4595 printf_filtered ("\n");
4596 printfi_filtered (spaces, "type_chain ");
4597 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4598 printf_filtered ("\n");
4599 printfi_filtered (spaces, "instance_flags 0x%x",
4600 TYPE_INSTANCE_FLAGS (type));
4601 if (TYPE_CONST (type))
4602 {
4603 puts_filtered (" TYPE_CONST");
4604 }
4605 if (TYPE_VOLATILE (type))
4606 {
4607 puts_filtered (" TYPE_VOLATILE");
4608 }
4609 if (TYPE_CODE_SPACE (type))
4610 {
4611 puts_filtered (" TYPE_CODE_SPACE");
4612 }
4613 if (TYPE_DATA_SPACE (type))
4614 {
4615 puts_filtered (" TYPE_DATA_SPACE");
4616 }
4617 if (TYPE_ADDRESS_CLASS_1 (type))
4618 {
4619 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4620 }
4621 if (TYPE_ADDRESS_CLASS_2 (type))
4622 {
4623 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4624 }
4625 if (TYPE_RESTRICT (type))
4626 {
4627 puts_filtered (" TYPE_RESTRICT");
4628 }
4629 if (TYPE_ATOMIC (type))
4630 {
4631 puts_filtered (" TYPE_ATOMIC");
4632 }
4633 puts_filtered ("\n");
4634
4635 printfi_filtered (spaces, "flags");
4636 if (TYPE_UNSIGNED (type))
4637 {
4638 puts_filtered (" TYPE_UNSIGNED");
4639 }
4640 if (TYPE_NOSIGN (type))
4641 {
4642 puts_filtered (" TYPE_NOSIGN");
4643 }
4644 if (TYPE_STUB (type))
4645 {
4646 puts_filtered (" TYPE_STUB");
4647 }
4648 if (TYPE_TARGET_STUB (type))
4649 {
4650 puts_filtered (" TYPE_TARGET_STUB");
4651 }
4652 if (TYPE_PROTOTYPED (type))
4653 {
4654 puts_filtered (" TYPE_PROTOTYPED");
4655 }
4656 if (TYPE_INCOMPLETE (type))
4657 {
4658 puts_filtered (" TYPE_INCOMPLETE");
4659 }
4660 if (TYPE_VARARGS (type))
4661 {
4662 puts_filtered (" TYPE_VARARGS");
4663 }
4664 /* This is used for things like AltiVec registers on ppc. Gcc emits
4665 an attribute for the array type, which tells whether or not we
4666 have a vector, instead of a regular array. */
4667 if (TYPE_VECTOR (type))
4668 {
4669 puts_filtered (" TYPE_VECTOR");
4670 }
4671 if (TYPE_FIXED_INSTANCE (type))
4672 {
4673 puts_filtered (" TYPE_FIXED_INSTANCE");
4674 }
4675 if (TYPE_STUB_SUPPORTED (type))
4676 {
4677 puts_filtered (" TYPE_STUB_SUPPORTED");
4678 }
4679 if (TYPE_NOTTEXT (type))
4680 {
4681 puts_filtered (" TYPE_NOTTEXT");
4682 }
4683 puts_filtered ("\n");
4684 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4685 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4686 puts_filtered ("\n");
4687 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4688 {
4689 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4690 printfi_filtered (spaces + 2,
4691 "[%d] enumval %s type ",
4692 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4693 else
4694 printfi_filtered (spaces + 2,
4695 "[%d] bitpos %s bitsize %d type ",
4696 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4697 TYPE_FIELD_BITSIZE (type, idx));
4698 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4699 printf_filtered (" name '%s' (",
4700 TYPE_FIELD_NAME (type, idx) != NULL
4701 ? TYPE_FIELD_NAME (type, idx)
4702 : "<NULL>");
4703 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4704 printf_filtered (")\n");
4705 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4706 {
4707 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4708 }
4709 }
4710 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4711 {
4712 printfi_filtered (spaces, "low %s%s high %s%s\n",
4713 plongest (TYPE_LOW_BOUND (type)),
4714 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4715 plongest (TYPE_HIGH_BOUND (type)),
4716 TYPE_HIGH_BOUND_UNDEFINED (type)
4717 ? " (undefined)" : "");
4718 }
4719
4720 switch (TYPE_SPECIFIC_FIELD (type))
4721 {
4722 case TYPE_SPECIFIC_CPLUS_STUFF:
4723 printfi_filtered (spaces, "cplus_stuff ");
4724 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4725 gdb_stdout);
4726 puts_filtered ("\n");
4727 print_cplus_stuff (type, spaces);
4728 break;
4729
4730 case TYPE_SPECIFIC_GNAT_STUFF:
4731 printfi_filtered (spaces, "gnat_stuff ");
4732 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4733 puts_filtered ("\n");
4734 print_gnat_stuff (type, spaces);
4735 break;
4736
4737 case TYPE_SPECIFIC_FLOATFORMAT:
4738 printfi_filtered (spaces, "floatformat ");
4739 if (TYPE_FLOATFORMAT (type) == NULL
4740 || TYPE_FLOATFORMAT (type)->name == NULL)
4741 puts_filtered ("(null)");
4742 else
4743 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4744 puts_filtered ("\n");
4745 break;
4746
4747 case TYPE_SPECIFIC_FUNC:
4748 printfi_filtered (spaces, "calling_convention %d\n",
4749 TYPE_CALLING_CONVENTION (type));
4750 /* tail_call_list is not printed. */
4751 break;
4752
4753 case TYPE_SPECIFIC_SELF_TYPE:
4754 printfi_filtered (spaces, "self_type ");
4755 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4756 puts_filtered ("\n");
4757 break;
4758 }
4759
4760 if (spaces == 0)
4761 obstack_free (&dont_print_type_obstack, NULL);
4762 }
4763 \f
4764 /* Trivial helpers for the libiberty hash table, for mapping one
4765 type to another. */
4766
4767 struct type_pair : public allocate_on_obstack
4768 {
4769 type_pair (struct type *old_, struct type *newobj_)
4770 : old (old_), newobj (newobj_)
4771 {}
4772
4773 struct type * const old, * const newobj;
4774 };
4775
4776 static hashval_t
4777 type_pair_hash (const void *item)
4778 {
4779 const struct type_pair *pair = (const struct type_pair *) item;
4780
4781 return htab_hash_pointer (pair->old);
4782 }
4783
4784 static int
4785 type_pair_eq (const void *item_lhs, const void *item_rhs)
4786 {
4787 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4788 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4789
4790 return lhs->old == rhs->old;
4791 }
4792
4793 /* Allocate the hash table used by copy_type_recursive to walk
4794 types without duplicates. We use OBJFILE's obstack, because
4795 OBJFILE is about to be deleted. */
4796
4797 htab_t
4798 create_copied_types_hash (struct objfile *objfile)
4799 {
4800 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4801 NULL, &objfile->objfile_obstack,
4802 hashtab_obstack_allocate,
4803 dummy_obstack_deallocate);
4804 }
4805
4806 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4807
4808 static struct dynamic_prop_list *
4809 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4810 struct dynamic_prop_list *list)
4811 {
4812 struct dynamic_prop_list *copy = list;
4813 struct dynamic_prop_list **node_ptr = &copy;
4814
4815 while (*node_ptr != NULL)
4816 {
4817 struct dynamic_prop_list *node_copy;
4818
4819 node_copy = ((struct dynamic_prop_list *)
4820 obstack_copy (objfile_obstack, *node_ptr,
4821 sizeof (struct dynamic_prop_list)));
4822 node_copy->prop = (*node_ptr)->prop;
4823 *node_ptr = node_copy;
4824
4825 node_ptr = &node_copy->next;
4826 }
4827
4828 return copy;
4829 }
4830
4831 /* Recursively copy (deep copy) TYPE, if it is associated with
4832 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4833 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4834 it is not associated with OBJFILE. */
4835
4836 struct type *
4837 copy_type_recursive (struct objfile *objfile,
4838 struct type *type,
4839 htab_t copied_types)
4840 {
4841 void **slot;
4842 struct type *new_type;
4843
4844 if (! TYPE_OBJFILE_OWNED (type))
4845 return type;
4846
4847 /* This type shouldn't be pointing to any types in other objfiles;
4848 if it did, the type might disappear unexpectedly. */
4849 gdb_assert (TYPE_OBJFILE (type) == objfile);
4850
4851 struct type_pair pair (type, nullptr);
4852
4853 slot = htab_find_slot (copied_types, &pair, INSERT);
4854 if (*slot != NULL)
4855 return ((struct type_pair *) *slot)->newobj;
4856
4857 new_type = alloc_type_arch (get_type_arch (type));
4858
4859 /* We must add the new type to the hash table immediately, in case
4860 we encounter this type again during a recursive call below. */
4861 struct type_pair *stored
4862 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4863
4864 *slot = stored;
4865
4866 /* Copy the common fields of types. For the main type, we simply
4867 copy the entire thing and then update specific fields as needed. */
4868 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4869 TYPE_OBJFILE_OWNED (new_type) = 0;
4870 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4871
4872 if (TYPE_NAME (type))
4873 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4874
4875 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4876 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4877
4878 /* Copy the fields. */
4879 if (TYPE_NFIELDS (type))
4880 {
4881 int i, nfields;
4882
4883 nfields = TYPE_NFIELDS (type);
4884 TYPE_FIELDS (new_type) = (struct field *)
4885 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4886 for (i = 0; i < nfields; i++)
4887 {
4888 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4889 TYPE_FIELD_ARTIFICIAL (type, i);
4890 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4891 if (TYPE_FIELD_TYPE (type, i))
4892 TYPE_FIELD_TYPE (new_type, i)
4893 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4894 copied_types);
4895 if (TYPE_FIELD_NAME (type, i))
4896 TYPE_FIELD_NAME (new_type, i) =
4897 xstrdup (TYPE_FIELD_NAME (type, i));
4898 switch (TYPE_FIELD_LOC_KIND (type, i))
4899 {
4900 case FIELD_LOC_KIND_BITPOS:
4901 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4902 TYPE_FIELD_BITPOS (type, i));
4903 break;
4904 case FIELD_LOC_KIND_ENUMVAL:
4905 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4906 TYPE_FIELD_ENUMVAL (type, i));
4907 break;
4908 case FIELD_LOC_KIND_PHYSADDR:
4909 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4910 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4911 break;
4912 case FIELD_LOC_KIND_PHYSNAME:
4913 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4914 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4915 i)));
4916 break;
4917 default:
4918 internal_error (__FILE__, __LINE__,
4919 _("Unexpected type field location kind: %d"),
4920 TYPE_FIELD_LOC_KIND (type, i));
4921 }
4922 }
4923 }
4924
4925 /* For range types, copy the bounds information. */
4926 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4927 {
4928 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4929 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4930 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4931 }
4932
4933 if (TYPE_DYN_PROP_LIST (type) != NULL)
4934 TYPE_DYN_PROP_LIST (new_type)
4935 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4936 TYPE_DYN_PROP_LIST (type));
4937
4938
4939 /* Copy pointers to other types. */
4940 if (TYPE_TARGET_TYPE (type))
4941 TYPE_TARGET_TYPE (new_type) =
4942 copy_type_recursive (objfile,
4943 TYPE_TARGET_TYPE (type),
4944 copied_types);
4945
4946 /* Maybe copy the type_specific bits.
4947
4948 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4949 base classes and methods. There's no fundamental reason why we
4950 can't, but at the moment it is not needed. */
4951
4952 switch (TYPE_SPECIFIC_FIELD (type))
4953 {
4954 case TYPE_SPECIFIC_NONE:
4955 break;
4956 case TYPE_SPECIFIC_FUNC:
4957 INIT_FUNC_SPECIFIC (new_type);
4958 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4959 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4960 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4961 break;
4962 case TYPE_SPECIFIC_FLOATFORMAT:
4963 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4964 break;
4965 case TYPE_SPECIFIC_CPLUS_STUFF:
4966 INIT_CPLUS_SPECIFIC (new_type);
4967 break;
4968 case TYPE_SPECIFIC_GNAT_STUFF:
4969 INIT_GNAT_SPECIFIC (new_type);
4970 break;
4971 case TYPE_SPECIFIC_SELF_TYPE:
4972 set_type_self_type (new_type,
4973 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4974 copied_types));
4975 break;
4976 default:
4977 gdb_assert_not_reached ("bad type_specific_kind");
4978 }
4979
4980 return new_type;
4981 }
4982
4983 /* Make a copy of the given TYPE, except that the pointer & reference
4984 types are not preserved.
4985
4986 This function assumes that the given type has an associated objfile.
4987 This objfile is used to allocate the new type. */
4988
4989 struct type *
4990 copy_type (const struct type *type)
4991 {
4992 struct type *new_type;
4993
4994 gdb_assert (TYPE_OBJFILE_OWNED (type));
4995
4996 new_type = alloc_type_copy (type);
4997 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4998 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4999 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5000 sizeof (struct main_type));
5001 if (TYPE_DYN_PROP_LIST (type) != NULL)
5002 TYPE_DYN_PROP_LIST (new_type)
5003 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5004 TYPE_DYN_PROP_LIST (type));
5005
5006 return new_type;
5007 }
5008 \f
5009 /* Helper functions to initialize architecture-specific types. */
5010
5011 /* Allocate a type structure associated with GDBARCH and set its
5012 CODE, LENGTH, and NAME fields. */
5013
5014 struct type *
5015 arch_type (struct gdbarch *gdbarch,
5016 enum type_code code, int bit, const char *name)
5017 {
5018 struct type *type;
5019
5020 type = alloc_type_arch (gdbarch);
5021 set_type_code (type, code);
5022 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5023 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5024
5025 if (name)
5026 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5027
5028 return type;
5029 }
5030
5031 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5032 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5033 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5034
5035 struct type *
5036 arch_integer_type (struct gdbarch *gdbarch,
5037 int bit, int unsigned_p, const char *name)
5038 {
5039 struct type *t;
5040
5041 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5042 if (unsigned_p)
5043 TYPE_UNSIGNED (t) = 1;
5044
5045 return t;
5046 }
5047
5048 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5049 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5050 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5051
5052 struct type *
5053 arch_character_type (struct gdbarch *gdbarch,
5054 int bit, int unsigned_p, const char *name)
5055 {
5056 struct type *t;
5057
5058 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5059 if (unsigned_p)
5060 TYPE_UNSIGNED (t) = 1;
5061
5062 return t;
5063 }
5064
5065 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5066 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5067 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5068
5069 struct type *
5070 arch_boolean_type (struct gdbarch *gdbarch,
5071 int bit, int unsigned_p, const char *name)
5072 {
5073 struct type *t;
5074
5075 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5076 if (unsigned_p)
5077 TYPE_UNSIGNED (t) = 1;
5078
5079 return t;
5080 }
5081
5082 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5083 BIT is the type size in bits; if BIT equals -1, the size is
5084 determined by the floatformat. NAME is the type name. Set the
5085 TYPE_FLOATFORMAT from FLOATFORMATS. */
5086
5087 struct type *
5088 arch_float_type (struct gdbarch *gdbarch,
5089 int bit, const char *name,
5090 const struct floatformat **floatformats)
5091 {
5092 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5093 struct type *t;
5094
5095 bit = verify_floatformat (bit, fmt);
5096 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5097 TYPE_FLOATFORMAT (t) = fmt;
5098
5099 return t;
5100 }
5101
5102 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5103 BIT is the type size in bits. NAME is the type name. */
5104
5105 struct type *
5106 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5107 {
5108 struct type *t;
5109
5110 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5111 return t;
5112 }
5113
5114 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5115 NAME is the type name. TARGET_TYPE is the component float type. */
5116
5117 struct type *
5118 arch_complex_type (struct gdbarch *gdbarch,
5119 const char *name, struct type *target_type)
5120 {
5121 struct type *t;
5122
5123 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5124 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5125 TYPE_TARGET_TYPE (t) = target_type;
5126 return t;
5127 }
5128
5129 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5130 BIT is the pointer type size in bits. NAME is the type name.
5131 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5132 TYPE_UNSIGNED flag. */
5133
5134 struct type *
5135 arch_pointer_type (struct gdbarch *gdbarch,
5136 int bit, const char *name, struct type *target_type)
5137 {
5138 struct type *t;
5139
5140 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5141 TYPE_TARGET_TYPE (t) = target_type;
5142 TYPE_UNSIGNED (t) = 1;
5143 return t;
5144 }
5145
5146 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5147 NAME is the type name. BIT is the size of the flag word in bits. */
5148
5149 struct type *
5150 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5151 {
5152 struct type *type;
5153
5154 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5155 TYPE_UNSIGNED (type) = 1;
5156 TYPE_NFIELDS (type) = 0;
5157 /* Pre-allocate enough space assuming every field is one bit. */
5158 TYPE_FIELDS (type)
5159 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5160
5161 return type;
5162 }
5163
5164 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5165 position BITPOS is called NAME. Pass NAME as "" for fields that
5166 should not be printed. */
5167
5168 void
5169 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5170 struct type *field_type, const char *name)
5171 {
5172 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5173 int field_nr = TYPE_NFIELDS (type);
5174
5175 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5176 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5177 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5178 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5179 gdb_assert (name != NULL);
5180
5181 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5182 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5183 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5184 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5185 ++TYPE_NFIELDS (type);
5186 }
5187
5188 /* Special version of append_flags_type_field to add a flag field.
5189 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5190 position BITPOS is called NAME. */
5191
5192 void
5193 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5194 {
5195 struct gdbarch *gdbarch = get_type_arch (type);
5196
5197 append_flags_type_field (type, bitpos, 1,
5198 builtin_type (gdbarch)->builtin_bool,
5199 name);
5200 }
5201
5202 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5203 specified by CODE) associated with GDBARCH. NAME is the type name. */
5204
5205 struct type *
5206 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5207 enum type_code code)
5208 {
5209 struct type *t;
5210
5211 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5212 t = arch_type (gdbarch, code, 0, NULL);
5213 TYPE_NAME (t) = name;
5214 INIT_CPLUS_SPECIFIC (t);
5215 return t;
5216 }
5217
5218 /* Add new field with name NAME and type FIELD to composite type T.
5219 Do not set the field's position or adjust the type's length;
5220 the caller should do so. Return the new field. */
5221
5222 struct field *
5223 append_composite_type_field_raw (struct type *t, const char *name,
5224 struct type *field)
5225 {
5226 struct field *f;
5227
5228 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5229 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5230 TYPE_NFIELDS (t));
5231 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5232 memset (f, 0, sizeof f[0]);
5233 FIELD_TYPE (f[0]) = field;
5234 FIELD_NAME (f[0]) = name;
5235 return f;
5236 }
5237
5238 /* Add new field with name NAME and type FIELD to composite type T.
5239 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5240
5241 void
5242 append_composite_type_field_aligned (struct type *t, const char *name,
5243 struct type *field, int alignment)
5244 {
5245 struct field *f = append_composite_type_field_raw (t, name, field);
5246
5247 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5248 {
5249 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5250 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5251 }
5252 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5253 {
5254 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5255 if (TYPE_NFIELDS (t) > 1)
5256 {
5257 SET_FIELD_BITPOS (f[0],
5258 (FIELD_BITPOS (f[-1])
5259 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5260 * TARGET_CHAR_BIT)));
5261
5262 if (alignment)
5263 {
5264 int left;
5265
5266 alignment *= TARGET_CHAR_BIT;
5267 left = FIELD_BITPOS (f[0]) % alignment;
5268
5269 if (left)
5270 {
5271 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5272 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5273 }
5274 }
5275 }
5276 }
5277 }
5278
5279 /* Add new field with name NAME and type FIELD to composite type T. */
5280
5281 void
5282 append_composite_type_field (struct type *t, const char *name,
5283 struct type *field)
5284 {
5285 append_composite_type_field_aligned (t, name, field, 0);
5286 }
5287
5288 static struct gdbarch_data *gdbtypes_data;
5289
5290 const struct builtin_type *
5291 builtin_type (struct gdbarch *gdbarch)
5292 {
5293 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5294 }
5295
5296 static void *
5297 gdbtypes_post_init (struct gdbarch *gdbarch)
5298 {
5299 struct builtin_type *builtin_type
5300 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5301
5302 /* Basic types. */
5303 builtin_type->builtin_void
5304 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5305 builtin_type->builtin_char
5306 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5307 !gdbarch_char_signed (gdbarch), "char");
5308 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5309 builtin_type->builtin_signed_char
5310 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5311 0, "signed char");
5312 builtin_type->builtin_unsigned_char
5313 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5314 1, "unsigned char");
5315 builtin_type->builtin_short
5316 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5317 0, "short");
5318 builtin_type->builtin_unsigned_short
5319 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5320 1, "unsigned short");
5321 builtin_type->builtin_int
5322 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5323 0, "int");
5324 builtin_type->builtin_unsigned_int
5325 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5326 1, "unsigned int");
5327 builtin_type->builtin_long
5328 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5329 0, "long");
5330 builtin_type->builtin_unsigned_long
5331 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5332 1, "unsigned long");
5333 builtin_type->builtin_long_long
5334 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5335 0, "long long");
5336 builtin_type->builtin_unsigned_long_long
5337 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5338 1, "unsigned long long");
5339 builtin_type->builtin_float
5340 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5341 "float", gdbarch_float_format (gdbarch));
5342 builtin_type->builtin_double
5343 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5344 "double", gdbarch_double_format (gdbarch));
5345 builtin_type->builtin_long_double
5346 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5347 "long double", gdbarch_long_double_format (gdbarch));
5348 builtin_type->builtin_complex
5349 = arch_complex_type (gdbarch, "complex",
5350 builtin_type->builtin_float);
5351 builtin_type->builtin_double_complex
5352 = arch_complex_type (gdbarch, "double complex",
5353 builtin_type->builtin_double);
5354 builtin_type->builtin_string
5355 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5356 builtin_type->builtin_bool
5357 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5358
5359 /* The following three are about decimal floating point types, which
5360 are 32-bits, 64-bits and 128-bits respectively. */
5361 builtin_type->builtin_decfloat
5362 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5363 builtin_type->builtin_decdouble
5364 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5365 builtin_type->builtin_declong
5366 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5367
5368 /* "True" character types. */
5369 builtin_type->builtin_true_char
5370 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5371 builtin_type->builtin_true_unsigned_char
5372 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5373
5374 /* Fixed-size integer types. */
5375 builtin_type->builtin_int0
5376 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5377 builtin_type->builtin_int8
5378 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5379 builtin_type->builtin_uint8
5380 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5381 builtin_type->builtin_int16
5382 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5383 builtin_type->builtin_uint16
5384 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5385 builtin_type->builtin_int24
5386 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5387 builtin_type->builtin_uint24
5388 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5389 builtin_type->builtin_int32
5390 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5391 builtin_type->builtin_uint32
5392 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5393 builtin_type->builtin_int64
5394 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5395 builtin_type->builtin_uint64
5396 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5397 builtin_type->builtin_int128
5398 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5399 builtin_type->builtin_uint128
5400 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5401 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5402 TYPE_INSTANCE_FLAG_NOTTEXT;
5403 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5404 TYPE_INSTANCE_FLAG_NOTTEXT;
5405
5406 /* Wide character types. */
5407 builtin_type->builtin_char16
5408 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5409 builtin_type->builtin_char32
5410 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5411 builtin_type->builtin_wchar
5412 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5413 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5414
5415 /* Default data/code pointer types. */
5416 builtin_type->builtin_data_ptr
5417 = lookup_pointer_type (builtin_type->builtin_void);
5418 builtin_type->builtin_func_ptr
5419 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5420 builtin_type->builtin_func_func
5421 = lookup_function_type (builtin_type->builtin_func_ptr);
5422
5423 /* This type represents a GDB internal function. */
5424 builtin_type->internal_fn
5425 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5426 "<internal function>");
5427
5428 /* This type represents an xmethod. */
5429 builtin_type->xmethod
5430 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5431
5432 return builtin_type;
5433 }
5434
5435 /* This set of objfile-based types is intended to be used by symbol
5436 readers as basic types. */
5437
5438 static const struct objfile_data *objfile_type_data;
5439
5440 const struct objfile_type *
5441 objfile_type (struct objfile *objfile)
5442 {
5443 struct gdbarch *gdbarch;
5444 struct objfile_type *objfile_type
5445 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5446
5447 if (objfile_type)
5448 return objfile_type;
5449
5450 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5451 1, struct objfile_type);
5452
5453 /* Use the objfile architecture to determine basic type properties. */
5454 gdbarch = get_objfile_arch (objfile);
5455
5456 /* Basic types. */
5457 objfile_type->builtin_void
5458 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5459 objfile_type->builtin_char
5460 = init_integer_type (objfile, TARGET_CHAR_BIT,
5461 !gdbarch_char_signed (gdbarch), "char");
5462 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5463 objfile_type->builtin_signed_char
5464 = init_integer_type (objfile, TARGET_CHAR_BIT,
5465 0, "signed char");
5466 objfile_type->builtin_unsigned_char
5467 = init_integer_type (objfile, TARGET_CHAR_BIT,
5468 1, "unsigned char");
5469 objfile_type->builtin_short
5470 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5471 0, "short");
5472 objfile_type->builtin_unsigned_short
5473 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5474 1, "unsigned short");
5475 objfile_type->builtin_int
5476 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5477 0, "int");
5478 objfile_type->builtin_unsigned_int
5479 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5480 1, "unsigned int");
5481 objfile_type->builtin_long
5482 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5483 0, "long");
5484 objfile_type->builtin_unsigned_long
5485 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5486 1, "unsigned long");
5487 objfile_type->builtin_long_long
5488 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5489 0, "long long");
5490 objfile_type->builtin_unsigned_long_long
5491 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5492 1, "unsigned long long");
5493 objfile_type->builtin_float
5494 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5495 "float", gdbarch_float_format (gdbarch));
5496 objfile_type->builtin_double
5497 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5498 "double", gdbarch_double_format (gdbarch));
5499 objfile_type->builtin_long_double
5500 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5501 "long double", gdbarch_long_double_format (gdbarch));
5502
5503 /* This type represents a type that was unrecognized in symbol read-in. */
5504 objfile_type->builtin_error
5505 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5506
5507 /* The following set of types is used for symbols with no
5508 debug information. */
5509 objfile_type->nodebug_text_symbol
5510 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5511 "<text variable, no debug info>");
5512 objfile_type->nodebug_text_gnu_ifunc_symbol
5513 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5514 "<text gnu-indirect-function variable, no debug info>");
5515 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5516 objfile_type->nodebug_got_plt_symbol
5517 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5518 "<text from jump slot in .got.plt, no debug info>",
5519 objfile_type->nodebug_text_symbol);
5520 objfile_type->nodebug_data_symbol
5521 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5522 objfile_type->nodebug_unknown_symbol
5523 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5524 objfile_type->nodebug_tls_symbol
5525 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5526
5527 /* NOTE: on some targets, addresses and pointers are not necessarily
5528 the same.
5529
5530 The upshot is:
5531 - gdb's `struct type' always describes the target's
5532 representation.
5533 - gdb's `struct value' objects should always hold values in
5534 target form.
5535 - gdb's CORE_ADDR values are addresses in the unified virtual
5536 address space that the assembler and linker work with. Thus,
5537 since target_read_memory takes a CORE_ADDR as an argument, it
5538 can access any memory on the target, even if the processor has
5539 separate code and data address spaces.
5540
5541 In this context, objfile_type->builtin_core_addr is a bit odd:
5542 it's a target type for a value the target will never see. It's
5543 only used to hold the values of (typeless) linker symbols, which
5544 are indeed in the unified virtual address space. */
5545
5546 objfile_type->builtin_core_addr
5547 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5548 "__CORE_ADDR");
5549
5550 set_objfile_data (objfile, objfile_type_data, objfile_type);
5551 return objfile_type;
5552 }
5553
5554 void
5555 _initialize_gdbtypes (void)
5556 {
5557 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5558 objfile_type_data = register_objfile_data ();
5559
5560 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5561 _("Set debugging of C++ overloading."),
5562 _("Show debugging of C++ overloading."),
5563 _("When enabled, ranking of the "
5564 "functions is displayed."),
5565 NULL,
5566 show_overload_debug,
5567 &setdebuglist, &showdebuglist);
5568
5569 /* Add user knob for controlling resolution of opaque types. */
5570 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5571 &opaque_type_resolution,
5572 _("Set resolution of opaque struct/class/union"
5573 " types (if set before loading symbols)."),
5574 _("Show resolution of opaque struct/class/union"
5575 " types (if set before loading symbols)."),
5576 NULL, NULL,
5577 show_opaque_type_resolution,
5578 &setlist, &showlist);
5579
5580 /* Add an option to permit non-strict type checking. */
5581 add_setshow_boolean_cmd ("type", class_support,
5582 &strict_type_checking,
5583 _("Set strict type checking."),
5584 _("Show strict type checking."),
5585 NULL, NULL,
5586 show_strict_type_checking,
5587 &setchecklist, &showchecklist);
5588 }
This page took 0.154487 seconds and 4 git commands to generate.