Document the GDB 8.1 release in gdb/ChangeLog
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* See gdbtypes.h. */
258
259 unsigned int
260 type_length_units (struct type *type)
261 {
262 struct gdbarch *arch = get_type_arch (type);
263 int unit_size = gdbarch_addressable_memory_unit_size (arch);
264
265 return TYPE_LENGTH (type) / unit_size;
266 }
267
268 /* Alloc a new type instance structure, fill it with some defaults,
269 and point it at OLDTYPE. Allocate the new type instance from the
270 same place as OLDTYPE. */
271
272 static struct type *
273 alloc_type_instance (struct type *oldtype)
274 {
275 struct type *type;
276
277 /* Allocate the structure. */
278
279 if (! TYPE_OBJFILE_OWNED (oldtype))
280 type = XCNEW (struct type);
281 else
282 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
283 struct type);
284
285 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
286
287 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
288
289 return type;
290 }
291
292 /* Clear all remnants of the previous type at TYPE, in preparation for
293 replacing it with something else. Preserve owner information. */
294
295 static void
296 smash_type (struct type *type)
297 {
298 int objfile_owned = TYPE_OBJFILE_OWNED (type);
299 union type_owner owner = TYPE_OWNER (type);
300
301 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
302
303 /* Restore owner information. */
304 TYPE_OBJFILE_OWNED (type) = objfile_owned;
305 TYPE_OWNER (type) = owner;
306
307 /* For now, delete the rings. */
308 TYPE_CHAIN (type) = type;
309
310 /* For now, leave the pointer/reference types alone. */
311 }
312
313 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
314 to a pointer to memory where the pointer type should be stored.
315 If *TYPEPTR is zero, update it to point to the pointer type we return.
316 We allocate new memory if needed. */
317
318 struct type *
319 make_pointer_type (struct type *type, struct type **typeptr)
320 {
321 struct type *ntype; /* New type */
322 struct type *chain;
323
324 ntype = TYPE_POINTER_TYPE (type);
325
326 if (ntype)
327 {
328 if (typeptr == 0)
329 return ntype; /* Don't care about alloc,
330 and have new type. */
331 else if (*typeptr == 0)
332 {
333 *typeptr = ntype; /* Tracking alloc, and have new type. */
334 return ntype;
335 }
336 }
337
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
339 {
340 ntype = alloc_type_copy (type);
341 if (typeptr)
342 *typeptr = ntype;
343 }
344 else /* We have storage, but need to reset it. */
345 {
346 ntype = *typeptr;
347 chain = TYPE_CHAIN (ntype);
348 smash_type (ntype);
349 TYPE_CHAIN (ntype) = chain;
350 }
351
352 TYPE_TARGET_TYPE (ntype) = type;
353 TYPE_POINTER_TYPE (type) = ntype;
354
355 /* FIXME! Assumes the machine has only one representation for pointers! */
356
357 TYPE_LENGTH (ntype)
358 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
359 TYPE_CODE (ntype) = TYPE_CODE_PTR;
360
361 /* Mark pointers as unsigned. The target converts between pointers
362 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
363 gdbarch_address_to_pointer. */
364 TYPE_UNSIGNED (ntype) = 1;
365
366 /* Update the length of all the other variants of this type. */
367 chain = TYPE_CHAIN (ntype);
368 while (chain != ntype)
369 {
370 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
371 chain = TYPE_CHAIN (chain);
372 }
373
374 return ntype;
375 }
376
377 /* Given a type TYPE, return a type of pointers to that type.
378 May need to construct such a type if this is the first use. */
379
380 struct type *
381 lookup_pointer_type (struct type *type)
382 {
383 return make_pointer_type (type, (struct type **) 0);
384 }
385
386 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
387 points to a pointer to memory where the reference type should be
388 stored. If *TYPEPTR is zero, update it to point to the reference
389 type we return. We allocate new memory if needed. REFCODE denotes
390 the kind of reference type to lookup (lvalue or rvalue reference). */
391
392 struct type *
393 make_reference_type (struct type *type, struct type **typeptr,
394 enum type_code refcode)
395 {
396 struct type *ntype; /* New type */
397 struct type **reftype;
398 struct type *chain;
399
400 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
401
402 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
403 : TYPE_RVALUE_REFERENCE_TYPE (type));
404
405 if (ntype)
406 {
407 if (typeptr == 0)
408 return ntype; /* Don't care about alloc,
409 and have new type. */
410 else if (*typeptr == 0)
411 {
412 *typeptr = ntype; /* Tracking alloc, and have new type. */
413 return ntype;
414 }
415 }
416
417 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
418 {
419 ntype = alloc_type_copy (type);
420 if (typeptr)
421 *typeptr = ntype;
422 }
423 else /* We have storage, but need to reset it. */
424 {
425 ntype = *typeptr;
426 chain = TYPE_CHAIN (ntype);
427 smash_type (ntype);
428 TYPE_CHAIN (ntype) = chain;
429 }
430
431 TYPE_TARGET_TYPE (ntype) = type;
432 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
433 : &TYPE_RVALUE_REFERENCE_TYPE (type));
434
435 *reftype = ntype;
436
437 /* FIXME! Assume the machine has only one representation for
438 references, and that it matches the (only) representation for
439 pointers! */
440
441 TYPE_LENGTH (ntype) =
442 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
443 TYPE_CODE (ntype) = refcode;
444
445 *reftype = ntype;
446
447 /* Update the length of all the other variants of this type. */
448 chain = TYPE_CHAIN (ntype);
449 while (chain != ntype)
450 {
451 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
452 chain = TYPE_CHAIN (chain);
453 }
454
455 return ntype;
456 }
457
458 /* Same as above, but caller doesn't care about memory allocation
459 details. */
460
461 struct type *
462 lookup_reference_type (struct type *type, enum type_code refcode)
463 {
464 return make_reference_type (type, (struct type **) 0, refcode);
465 }
466
467 /* Lookup the lvalue reference type for the type TYPE. */
468
469 struct type *
470 lookup_lvalue_reference_type (struct type *type)
471 {
472 return lookup_reference_type (type, TYPE_CODE_REF);
473 }
474
475 /* Lookup the rvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_rvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
481 }
482
483 /* Lookup a function type that returns type TYPE. TYPEPTR, if
484 nonzero, points to a pointer to memory where the function type
485 should be stored. If *TYPEPTR is zero, update it to point to the
486 function type we return. We allocate new memory if needed. */
487
488 struct type *
489 make_function_type (struct type *type, struct type **typeptr)
490 {
491 struct type *ntype; /* New type */
492
493 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
494 {
495 ntype = alloc_type_copy (type);
496 if (typeptr)
497 *typeptr = ntype;
498 }
499 else /* We have storage, but need to reset it. */
500 {
501 ntype = *typeptr;
502 smash_type (ntype);
503 }
504
505 TYPE_TARGET_TYPE (ntype) = type;
506
507 TYPE_LENGTH (ntype) = 1;
508 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
509
510 INIT_FUNC_SPECIFIC (ntype);
511
512 return ntype;
513 }
514
515 /* Given a type TYPE, return a type of functions that return that type.
516 May need to construct such a type if this is the first use. */
517
518 struct type *
519 lookup_function_type (struct type *type)
520 {
521 return make_function_type (type, (struct type **) 0);
522 }
523
524 /* Given a type TYPE and argument types, return the appropriate
525 function type. If the final type in PARAM_TYPES is NULL, make a
526 varargs function. */
527
528 struct type *
529 lookup_function_type_with_arguments (struct type *type,
530 int nparams,
531 struct type **param_types)
532 {
533 struct type *fn = make_function_type (type, (struct type **) 0);
534 int i;
535
536 if (nparams > 0)
537 {
538 if (param_types[nparams - 1] == NULL)
539 {
540 --nparams;
541 TYPE_VARARGS (fn) = 1;
542 }
543 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
544 == TYPE_CODE_VOID)
545 {
546 --nparams;
547 /* Caller should have ensured this. */
548 gdb_assert (nparams == 0);
549 TYPE_PROTOTYPED (fn) = 1;
550 }
551 else
552 TYPE_PROTOTYPED (fn) = 1;
553 }
554
555 TYPE_NFIELDS (fn) = nparams;
556 TYPE_FIELDS (fn)
557 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
558 for (i = 0; i < nparams; ++i)
559 TYPE_FIELD_TYPE (fn, i) = param_types[i];
560
561 return fn;
562 }
563
564 /* Identify address space identifier by name --
565 return the integer flag defined in gdbtypes.h. */
566
567 int
568 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
569 {
570 int type_flags;
571
572 /* Check for known address space delimiters. */
573 if (!strcmp (space_identifier, "code"))
574 return TYPE_INSTANCE_FLAG_CODE_SPACE;
575 else if (!strcmp (space_identifier, "data"))
576 return TYPE_INSTANCE_FLAG_DATA_SPACE;
577 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
578 && gdbarch_address_class_name_to_type_flags (gdbarch,
579 space_identifier,
580 &type_flags))
581 return type_flags;
582 else
583 error (_("Unknown address space specifier: \"%s\""), space_identifier);
584 }
585
586 /* Identify address space identifier by integer flag as defined in
587 gdbtypes.h -- return the string version of the adress space name. */
588
589 const char *
590 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
591 {
592 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
593 return "code";
594 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
595 return "data";
596 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
597 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
598 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
599 else
600 return NULL;
601 }
602
603 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
604
605 If STORAGE is non-NULL, create the new type instance there.
606 STORAGE must be in the same obstack as TYPE. */
607
608 static struct type *
609 make_qualified_type (struct type *type, int new_flags,
610 struct type *storage)
611 {
612 struct type *ntype;
613
614 ntype = type;
615 do
616 {
617 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
618 return ntype;
619 ntype = TYPE_CHAIN (ntype);
620 }
621 while (ntype != type);
622
623 /* Create a new type instance. */
624 if (storage == NULL)
625 ntype = alloc_type_instance (type);
626 else
627 {
628 /* If STORAGE was provided, it had better be in the same objfile
629 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
630 if one objfile is freed and the other kept, we'd have
631 dangling pointers. */
632 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
633
634 ntype = storage;
635 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
636 TYPE_CHAIN (ntype) = ntype;
637 }
638
639 /* Pointers or references to the original type are not relevant to
640 the new type. */
641 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
642 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
643
644 /* Chain the new qualified type to the old type. */
645 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
646 TYPE_CHAIN (type) = ntype;
647
648 /* Now set the instance flags and return the new type. */
649 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
650
651 /* Set length of new type to that of the original type. */
652 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
653
654 return ntype;
655 }
656
657 /* Make an address-space-delimited variant of a type -- a type that
658 is identical to the one supplied except that it has an address
659 space attribute attached to it (such as "code" or "data").
660
661 The space attributes "code" and "data" are for Harvard
662 architectures. The address space attributes are for architectures
663 which have alternately sized pointers or pointers with alternate
664 representations. */
665
666 struct type *
667 make_type_with_address_space (struct type *type, int space_flag)
668 {
669 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
671 | TYPE_INSTANCE_FLAG_DATA_SPACE
672 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
673 | space_flag);
674
675 return make_qualified_type (type, new_flags, NULL);
676 }
677
678 /* Make a "c-v" variant of a type -- a type that is identical to the
679 one supplied except that it may have const or volatile attributes
680 CNST is a flag for setting the const attribute
681 VOLTL is a flag for setting the volatile attribute
682 TYPE is the base type whose variant we are creating.
683
684 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
685 storage to hold the new qualified type; *TYPEPTR and TYPE must be
686 in the same objfile. Otherwise, allocate fresh memory for the new
687 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
688 new type we construct. */
689
690 struct type *
691 make_cv_type (int cnst, int voltl,
692 struct type *type,
693 struct type **typeptr)
694 {
695 struct type *ntype; /* New type */
696
697 int new_flags = (TYPE_INSTANCE_FLAGS (type)
698 & ~(TYPE_INSTANCE_FLAG_CONST
699 | TYPE_INSTANCE_FLAG_VOLATILE));
700
701 if (cnst)
702 new_flags |= TYPE_INSTANCE_FLAG_CONST;
703
704 if (voltl)
705 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
706
707 if (typeptr && *typeptr != NULL)
708 {
709 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
710 a C-V variant chain that threads across objfiles: if one
711 objfile gets freed, then the other has a broken C-V chain.
712
713 This code used to try to copy over the main type from TYPE to
714 *TYPEPTR if they were in different objfiles, but that's
715 wrong, too: TYPE may have a field list or member function
716 lists, which refer to types of their own, etc. etc. The
717 whole shebang would need to be copied over recursively; you
718 can't have inter-objfile pointers. The only thing to do is
719 to leave stub types as stub types, and look them up afresh by
720 name each time you encounter them. */
721 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
722 }
723
724 ntype = make_qualified_type (type, new_flags,
725 typeptr ? *typeptr : NULL);
726
727 if (typeptr != NULL)
728 *typeptr = ntype;
729
730 return ntype;
731 }
732
733 /* Make a 'restrict'-qualified version of TYPE. */
734
735 struct type *
736 make_restrict_type (struct type *type)
737 {
738 return make_qualified_type (type,
739 (TYPE_INSTANCE_FLAGS (type)
740 | TYPE_INSTANCE_FLAG_RESTRICT),
741 NULL);
742 }
743
744 /* Make a type without const, volatile, or restrict. */
745
746 struct type *
747 make_unqualified_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 & ~(TYPE_INSTANCE_FLAG_CONST
752 | TYPE_INSTANCE_FLAG_VOLATILE
753 | TYPE_INSTANCE_FLAG_RESTRICT)),
754 NULL);
755 }
756
757 /* Make a '_Atomic'-qualified version of TYPE. */
758
759 struct type *
760 make_atomic_type (struct type *type)
761 {
762 return make_qualified_type (type,
763 (TYPE_INSTANCE_FLAGS (type)
764 | TYPE_INSTANCE_FLAG_ATOMIC),
765 NULL);
766 }
767
768 /* Replace the contents of ntype with the type *type. This changes the
769 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
770 the changes are propogated to all types in the TYPE_CHAIN.
771
772 In order to build recursive types, it's inevitable that we'll need
773 to update types in place --- but this sort of indiscriminate
774 smashing is ugly, and needs to be replaced with something more
775 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
776 clear if more steps are needed. */
777
778 void
779 replace_type (struct type *ntype, struct type *type)
780 {
781 struct type *chain;
782
783 /* These two types had better be in the same objfile. Otherwise,
784 the assignment of one type's main type structure to the other
785 will produce a type with references to objects (names; field
786 lists; etc.) allocated on an objfile other than its own. */
787 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
788
789 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
790
791 /* The type length is not a part of the main type. Update it for
792 each type on the variant chain. */
793 chain = ntype;
794 do
795 {
796 /* Assert that this element of the chain has no address-class bits
797 set in its flags. Such type variants might have type lengths
798 which are supposed to be different from the non-address-class
799 variants. This assertion shouldn't ever be triggered because
800 symbol readers which do construct address-class variants don't
801 call replace_type(). */
802 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
803
804 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
805 chain = TYPE_CHAIN (chain);
806 }
807 while (ntype != chain);
808
809 /* Assert that the two types have equivalent instance qualifiers.
810 This should be true for at least all of our debug readers. */
811 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
812 }
813
814 /* Implement direct support for MEMBER_TYPE in GNU C++.
815 May need to construct such a type if this is the first use.
816 The TYPE is the type of the member. The DOMAIN is the type
817 of the aggregate that the member belongs to. */
818
819 struct type *
820 lookup_memberptr_type (struct type *type, struct type *domain)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 smash_to_memberptr_type (mtype, domain, type);
826 return mtype;
827 }
828
829 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
830
831 struct type *
832 lookup_methodptr_type (struct type *to_type)
833 {
834 struct type *mtype;
835
836 mtype = alloc_type_copy (to_type);
837 smash_to_methodptr_type (mtype, to_type);
838 return mtype;
839 }
840
841 /* Allocate a stub method whose return type is TYPE. This apparently
842 happens for speed of symbol reading, since parsing out the
843 arguments to the method is cpu-intensive, the way we are doing it.
844 So, we will fill in arguments later. This always returns a fresh
845 type. */
846
847 struct type *
848 allocate_stub_method (struct type *type)
849 {
850 struct type *mtype;
851
852 mtype = alloc_type_copy (type);
853 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
854 TYPE_LENGTH (mtype) = 1;
855 TYPE_STUB (mtype) = 1;
856 TYPE_TARGET_TYPE (mtype) = type;
857 /* TYPE_SELF_TYPE (mtype) = unknown yet */
858 return mtype;
859 }
860
861 /* See gdbtypes.h. */
862
863 bool
864 operator== (const dynamic_prop &l, const dynamic_prop &r)
865 {
866 if (l.kind != r.kind)
867 return false;
868
869 switch (l.kind)
870 {
871 case PROP_UNDEFINED:
872 return true;
873 case PROP_CONST:
874 return l.data.const_val == r.data.const_val;
875 case PROP_ADDR_OFFSET:
876 case PROP_LOCEXPR:
877 case PROP_LOCLIST:
878 return l.data.baton == r.data.baton;
879 }
880
881 gdb_assert_not_reached ("unhandled dynamic_prop kind");
882 }
883
884 /* See gdbtypes.h. */
885
886 bool
887 operator== (const range_bounds &l, const range_bounds &r)
888 {
889 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
890
891 return (FIELD_EQ (low)
892 && FIELD_EQ (high)
893 && FIELD_EQ (flag_upper_bound_is_count)
894 && FIELD_EQ (flag_bound_evaluated));
895
896 #undef FIELD_EQ
897 }
898
899 /* Create a range type with a dynamic range from LOW_BOUND to
900 HIGH_BOUND, inclusive. See create_range_type for further details. */
901
902 struct type *
903 create_range_type (struct type *result_type, struct type *index_type,
904 const struct dynamic_prop *low_bound,
905 const struct dynamic_prop *high_bound)
906 {
907 if (result_type == NULL)
908 result_type = alloc_type_copy (index_type);
909 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
910 TYPE_TARGET_TYPE (result_type) = index_type;
911 if (TYPE_STUB (index_type))
912 TYPE_TARGET_STUB (result_type) = 1;
913 else
914 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
915
916 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
917 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
918 TYPE_RANGE_DATA (result_type)->low = *low_bound;
919 TYPE_RANGE_DATA (result_type)->high = *high_bound;
920
921 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
922 TYPE_UNSIGNED (result_type) = 1;
923
924 /* Ada allows the declaration of range types whose upper bound is
925 less than the lower bound, so checking the lower bound is not
926 enough. Make sure we do not mark a range type whose upper bound
927 is negative as unsigned. */
928 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
929 TYPE_UNSIGNED (result_type) = 0;
930
931 return result_type;
932 }
933
934 /* Create a range type using either a blank type supplied in
935 RESULT_TYPE, or creating a new type, inheriting the objfile from
936 INDEX_TYPE.
937
938 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
939 to HIGH_BOUND, inclusive.
940
941 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
942 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
943
944 struct type *
945 create_static_range_type (struct type *result_type, struct type *index_type,
946 LONGEST low_bound, LONGEST high_bound)
947 {
948 struct dynamic_prop low, high;
949
950 low.kind = PROP_CONST;
951 low.data.const_val = low_bound;
952
953 high.kind = PROP_CONST;
954 high.data.const_val = high_bound;
955
956 result_type = create_range_type (result_type, index_type, &low, &high);
957
958 return result_type;
959 }
960
961 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
962 are static, otherwise returns 0. */
963
964 static int
965 has_static_range (const struct range_bounds *bounds)
966 {
967 return (bounds->low.kind == PROP_CONST
968 && bounds->high.kind == PROP_CONST);
969 }
970
971
972 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
973 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
974 bounds will fit in LONGEST), or -1 otherwise. */
975
976 int
977 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
978 {
979 type = check_typedef (type);
980 switch (TYPE_CODE (type))
981 {
982 case TYPE_CODE_RANGE:
983 *lowp = TYPE_LOW_BOUND (type);
984 *highp = TYPE_HIGH_BOUND (type);
985 return 1;
986 case TYPE_CODE_ENUM:
987 if (TYPE_NFIELDS (type) > 0)
988 {
989 /* The enums may not be sorted by value, so search all
990 entries. */
991 int i;
992
993 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
994 for (i = 0; i < TYPE_NFIELDS (type); i++)
995 {
996 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
997 *lowp = TYPE_FIELD_ENUMVAL (type, i);
998 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
999 *highp = TYPE_FIELD_ENUMVAL (type, i);
1000 }
1001
1002 /* Set unsigned indicator if warranted. */
1003 if (*lowp >= 0)
1004 {
1005 TYPE_UNSIGNED (type) = 1;
1006 }
1007 }
1008 else
1009 {
1010 *lowp = 0;
1011 *highp = -1;
1012 }
1013 return 0;
1014 case TYPE_CODE_BOOL:
1015 *lowp = 0;
1016 *highp = 1;
1017 return 0;
1018 case TYPE_CODE_INT:
1019 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1020 return -1;
1021 if (!TYPE_UNSIGNED (type))
1022 {
1023 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1024 *highp = -*lowp - 1;
1025 return 0;
1026 }
1027 /* ... fall through for unsigned ints ... */
1028 case TYPE_CODE_CHAR:
1029 *lowp = 0;
1030 /* This round-about calculation is to avoid shifting by
1031 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1032 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1033 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1034 *highp = (*highp - 1) | *highp;
1035 return 0;
1036 default:
1037 return -1;
1038 }
1039 }
1040
1041 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1042 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1043 Save the high bound into HIGH_BOUND if not NULL.
1044
1045 Return 1 if the operation was successful. Return zero otherwise,
1046 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1047
1048 We now simply use get_discrete_bounds call to get the values
1049 of the low and high bounds.
1050 get_discrete_bounds can return three values:
1051 1, meaning that index is a range,
1052 0, meaning that index is a discrete type,
1053 or -1 for failure. */
1054
1055 int
1056 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1057 {
1058 struct type *index = TYPE_INDEX_TYPE (type);
1059 LONGEST low = 0;
1060 LONGEST high = 0;
1061 int res;
1062
1063 if (index == NULL)
1064 return 0;
1065
1066 res = get_discrete_bounds (index, &low, &high);
1067 if (res == -1)
1068 return 0;
1069
1070 /* Check if the array bounds are undefined. */
1071 if (res == 1
1072 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1073 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1074 return 0;
1075
1076 if (low_bound)
1077 *low_bound = low;
1078
1079 if (high_bound)
1080 *high_bound = high;
1081
1082 return 1;
1083 }
1084
1085 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1086 representation of a value of this type, save the corresponding
1087 position number in POS.
1088
1089 Its differs from VAL only in the case of enumeration types. In
1090 this case, the position number of the value of the first listed
1091 enumeration literal is zero; the position number of the value of
1092 each subsequent enumeration literal is one more than that of its
1093 predecessor in the list.
1094
1095 Return 1 if the operation was successful. Return zero otherwise,
1096 in which case the value of POS is unmodified.
1097 */
1098
1099 int
1100 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1101 {
1102 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1103 {
1104 int i;
1105
1106 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1107 {
1108 if (val == TYPE_FIELD_ENUMVAL (type, i))
1109 {
1110 *pos = i;
1111 return 1;
1112 }
1113 }
1114 /* Invalid enumeration value. */
1115 return 0;
1116 }
1117 else
1118 {
1119 *pos = val;
1120 return 1;
1121 }
1122 }
1123
1124 /* Create an array type using either a blank type supplied in
1125 RESULT_TYPE, or creating a new type, inheriting the objfile from
1126 RANGE_TYPE.
1127
1128 Elements will be of type ELEMENT_TYPE, the indices will be of type
1129 RANGE_TYPE.
1130
1131 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1132 This byte stride property is added to the resulting array type
1133 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1134 argument can only be used to create types that are objfile-owned
1135 (see add_dyn_prop), meaning that either this function must be called
1136 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1137
1138 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1139 If BIT_STRIDE is not zero, build a packed array type whose element
1140 size is BIT_STRIDE. Otherwise, ignore this parameter.
1141
1142 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1143 sure it is TYPE_CODE_UNDEF before we bash it into an array
1144 type? */
1145
1146 struct type *
1147 create_array_type_with_stride (struct type *result_type,
1148 struct type *element_type,
1149 struct type *range_type,
1150 struct dynamic_prop *byte_stride_prop,
1151 unsigned int bit_stride)
1152 {
1153 if (byte_stride_prop != NULL
1154 && byte_stride_prop->kind == PROP_CONST)
1155 {
1156 /* The byte stride is actually not dynamic. Pretend we were
1157 called with bit_stride set instead of byte_stride_prop.
1158 This will give us the same result type, while avoiding
1159 the need to handle this as a special case. */
1160 bit_stride = byte_stride_prop->data.const_val * 8;
1161 byte_stride_prop = NULL;
1162 }
1163
1164 if (result_type == NULL)
1165 result_type = alloc_type_copy (range_type);
1166
1167 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1168 TYPE_TARGET_TYPE (result_type) = element_type;
1169 if (byte_stride_prop == NULL
1170 && has_static_range (TYPE_RANGE_DATA (range_type))
1171 && (!type_not_associated (result_type)
1172 && !type_not_allocated (result_type)))
1173 {
1174 LONGEST low_bound, high_bound;
1175
1176 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1177 low_bound = high_bound = 0;
1178 element_type = check_typedef (element_type);
1179 /* Be careful when setting the array length. Ada arrays can be
1180 empty arrays with the high_bound being smaller than the low_bound.
1181 In such cases, the array length should be zero. */
1182 if (high_bound < low_bound)
1183 TYPE_LENGTH (result_type) = 0;
1184 else if (bit_stride > 0)
1185 TYPE_LENGTH (result_type) =
1186 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1187 else
1188 TYPE_LENGTH (result_type) =
1189 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1190 }
1191 else
1192 {
1193 /* This type is dynamic and its length needs to be computed
1194 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1195 undefined by setting it to zero. Although we are not expected
1196 to trust TYPE_LENGTH in this case, setting the size to zero
1197 allows us to avoid allocating objects of random sizes in case
1198 we accidently do. */
1199 TYPE_LENGTH (result_type) = 0;
1200 }
1201
1202 TYPE_NFIELDS (result_type) = 1;
1203 TYPE_FIELDS (result_type) =
1204 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1205 TYPE_INDEX_TYPE (result_type) = range_type;
1206 if (byte_stride_prop != NULL)
1207 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1208 else if (bit_stride > 0)
1209 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1210
1211 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1212 if (TYPE_LENGTH (result_type) == 0)
1213 TYPE_TARGET_STUB (result_type) = 1;
1214
1215 return result_type;
1216 }
1217
1218 /* Same as create_array_type_with_stride but with no bit_stride
1219 (BIT_STRIDE = 0), thus building an unpacked array. */
1220
1221 struct type *
1222 create_array_type (struct type *result_type,
1223 struct type *element_type,
1224 struct type *range_type)
1225 {
1226 return create_array_type_with_stride (result_type, element_type,
1227 range_type, NULL, 0);
1228 }
1229
1230 struct type *
1231 lookup_array_range_type (struct type *element_type,
1232 LONGEST low_bound, LONGEST high_bound)
1233 {
1234 struct gdbarch *gdbarch = get_type_arch (element_type);
1235 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1236 struct type *range_type
1237 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1238
1239 return create_array_type (NULL, element_type, range_type);
1240 }
1241
1242 /* Create a string type using either a blank type supplied in
1243 RESULT_TYPE, or creating a new type. String types are similar
1244 enough to array of char types that we can use create_array_type to
1245 build the basic type and then bash it into a string type.
1246
1247 For fixed length strings, the range type contains 0 as the lower
1248 bound and the length of the string minus one as the upper bound.
1249
1250 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1251 sure it is TYPE_CODE_UNDEF before we bash it into a string
1252 type? */
1253
1254 struct type *
1255 create_string_type (struct type *result_type,
1256 struct type *string_char_type,
1257 struct type *range_type)
1258 {
1259 result_type = create_array_type (result_type,
1260 string_char_type,
1261 range_type);
1262 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1263 return result_type;
1264 }
1265
1266 struct type *
1267 lookup_string_range_type (struct type *string_char_type,
1268 LONGEST low_bound, LONGEST high_bound)
1269 {
1270 struct type *result_type;
1271
1272 result_type = lookup_array_range_type (string_char_type,
1273 low_bound, high_bound);
1274 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1275 return result_type;
1276 }
1277
1278 struct type *
1279 create_set_type (struct type *result_type, struct type *domain_type)
1280 {
1281 if (result_type == NULL)
1282 result_type = alloc_type_copy (domain_type);
1283
1284 TYPE_CODE (result_type) = TYPE_CODE_SET;
1285 TYPE_NFIELDS (result_type) = 1;
1286 TYPE_FIELDS (result_type)
1287 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1288
1289 if (!TYPE_STUB (domain_type))
1290 {
1291 LONGEST low_bound, high_bound, bit_length;
1292
1293 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1294 low_bound = high_bound = 0;
1295 bit_length = high_bound - low_bound + 1;
1296 TYPE_LENGTH (result_type)
1297 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1298 if (low_bound >= 0)
1299 TYPE_UNSIGNED (result_type) = 1;
1300 }
1301 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1302
1303 return result_type;
1304 }
1305
1306 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1307 and any array types nested inside it. */
1308
1309 void
1310 make_vector_type (struct type *array_type)
1311 {
1312 struct type *inner_array, *elt_type;
1313 int flags;
1314
1315 /* Find the innermost array type, in case the array is
1316 multi-dimensional. */
1317 inner_array = array_type;
1318 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1319 inner_array = TYPE_TARGET_TYPE (inner_array);
1320
1321 elt_type = TYPE_TARGET_TYPE (inner_array);
1322 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1323 {
1324 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1325 elt_type = make_qualified_type (elt_type, flags, NULL);
1326 TYPE_TARGET_TYPE (inner_array) = elt_type;
1327 }
1328
1329 TYPE_VECTOR (array_type) = 1;
1330 }
1331
1332 struct type *
1333 init_vector_type (struct type *elt_type, int n)
1334 {
1335 struct type *array_type;
1336
1337 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1338 make_vector_type (array_type);
1339 return array_type;
1340 }
1341
1342 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1343 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1344 confusing. "self" is a common enough replacement for "this".
1345 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1346 TYPE_CODE_METHOD. */
1347
1348 struct type *
1349 internal_type_self_type (struct type *type)
1350 {
1351 switch (TYPE_CODE (type))
1352 {
1353 case TYPE_CODE_METHODPTR:
1354 case TYPE_CODE_MEMBERPTR:
1355 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1356 return NULL;
1357 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1358 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1359 case TYPE_CODE_METHOD:
1360 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1361 return NULL;
1362 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1363 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1364 default:
1365 gdb_assert_not_reached ("bad type");
1366 }
1367 }
1368
1369 /* Set the type of the class that TYPE belongs to.
1370 In c++ this is the class of "this".
1371 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1372 TYPE_CODE_METHOD. */
1373
1374 void
1375 set_type_self_type (struct type *type, struct type *self_type)
1376 {
1377 switch (TYPE_CODE (type))
1378 {
1379 case TYPE_CODE_METHODPTR:
1380 case TYPE_CODE_MEMBERPTR:
1381 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1382 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1383 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1384 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1385 break;
1386 case TYPE_CODE_METHOD:
1387 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1388 INIT_FUNC_SPECIFIC (type);
1389 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1390 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1391 break;
1392 default:
1393 gdb_assert_not_reached ("bad type");
1394 }
1395 }
1396
1397 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1398 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1399 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1400 TYPE doesn't include the offset (that's the value of the MEMBER
1401 itself), but does include the structure type into which it points
1402 (for some reason).
1403
1404 When "smashing" the type, we preserve the objfile that the old type
1405 pointed to, since we aren't changing where the type is actually
1406 allocated. */
1407
1408 void
1409 smash_to_memberptr_type (struct type *type, struct type *self_type,
1410 struct type *to_type)
1411 {
1412 smash_type (type);
1413 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1414 TYPE_TARGET_TYPE (type) = to_type;
1415 set_type_self_type (type, self_type);
1416 /* Assume that a data member pointer is the same size as a normal
1417 pointer. */
1418 TYPE_LENGTH (type)
1419 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1420 }
1421
1422 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1423
1424 When "smashing" the type, we preserve the objfile that the old type
1425 pointed to, since we aren't changing where the type is actually
1426 allocated. */
1427
1428 void
1429 smash_to_methodptr_type (struct type *type, struct type *to_type)
1430 {
1431 smash_type (type);
1432 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1433 TYPE_TARGET_TYPE (type) = to_type;
1434 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1435 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1436 }
1437
1438 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1439 METHOD just means `function that gets an extra "this" argument'.
1440
1441 When "smashing" the type, we preserve the objfile that the old type
1442 pointed to, since we aren't changing where the type is actually
1443 allocated. */
1444
1445 void
1446 smash_to_method_type (struct type *type, struct type *self_type,
1447 struct type *to_type, struct field *args,
1448 int nargs, int varargs)
1449 {
1450 smash_type (type);
1451 TYPE_CODE (type) = TYPE_CODE_METHOD;
1452 TYPE_TARGET_TYPE (type) = to_type;
1453 set_type_self_type (type, self_type);
1454 TYPE_FIELDS (type) = args;
1455 TYPE_NFIELDS (type) = nargs;
1456 if (varargs)
1457 TYPE_VARARGS (type) = 1;
1458 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1459 }
1460
1461 /* Return a typename for a struct/union/enum type without "struct ",
1462 "union ", or "enum ". If the type has a NULL name, return NULL. */
1463
1464 const char *
1465 type_name_no_tag (const struct type *type)
1466 {
1467 if (TYPE_TAG_NAME (type) != NULL)
1468 return TYPE_TAG_NAME (type);
1469
1470 /* Is there code which expects this to return the name if there is
1471 no tag name? My guess is that this is mainly used for C++ in
1472 cases where the two will always be the same. */
1473 return TYPE_NAME (type);
1474 }
1475
1476 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1477 Since GCC PR debug/47510 DWARF provides associated information to detect the
1478 anonymous class linkage name from its typedef.
1479
1480 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1481 apply it itself. */
1482
1483 const char *
1484 type_name_no_tag_or_error (struct type *type)
1485 {
1486 struct type *saved_type = type;
1487 const char *name;
1488 struct objfile *objfile;
1489
1490 type = check_typedef (type);
1491
1492 name = type_name_no_tag (type);
1493 if (name != NULL)
1494 return name;
1495
1496 name = type_name_no_tag (saved_type);
1497 objfile = TYPE_OBJFILE (saved_type);
1498 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1499 name ? name : "<anonymous>",
1500 objfile ? objfile_name (objfile) : "<arch>");
1501 }
1502
1503 /* Lookup a typedef or primitive type named NAME, visible in lexical
1504 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1505 suitably defined. */
1506
1507 struct type *
1508 lookup_typename (const struct language_defn *language,
1509 struct gdbarch *gdbarch, const char *name,
1510 const struct block *block, int noerr)
1511 {
1512 struct symbol *sym;
1513
1514 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1515 language->la_language, NULL).symbol;
1516 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1517 return SYMBOL_TYPE (sym);
1518
1519 if (noerr)
1520 return NULL;
1521 error (_("No type named %s."), name);
1522 }
1523
1524 struct type *
1525 lookup_unsigned_typename (const struct language_defn *language,
1526 struct gdbarch *gdbarch, const char *name)
1527 {
1528 char *uns = (char *) alloca (strlen (name) + 10);
1529
1530 strcpy (uns, "unsigned ");
1531 strcpy (uns + 9, name);
1532 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1533 }
1534
1535 struct type *
1536 lookup_signed_typename (const struct language_defn *language,
1537 struct gdbarch *gdbarch, const char *name)
1538 {
1539 struct type *t;
1540 char *uns = (char *) alloca (strlen (name) + 8);
1541
1542 strcpy (uns, "signed ");
1543 strcpy (uns + 7, name);
1544 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1545 /* If we don't find "signed FOO" just try again with plain "FOO". */
1546 if (t != NULL)
1547 return t;
1548 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1549 }
1550
1551 /* Lookup a structure type named "struct NAME",
1552 visible in lexical block BLOCK. */
1553
1554 struct type *
1555 lookup_struct (const char *name, const struct block *block)
1556 {
1557 struct symbol *sym;
1558
1559 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1560
1561 if (sym == NULL)
1562 {
1563 error (_("No struct type named %s."), name);
1564 }
1565 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1566 {
1567 error (_("This context has class, union or enum %s, not a struct."),
1568 name);
1569 }
1570 return (SYMBOL_TYPE (sym));
1571 }
1572
1573 /* Lookup a union type named "union NAME",
1574 visible in lexical block BLOCK. */
1575
1576 struct type *
1577 lookup_union (const char *name, const struct block *block)
1578 {
1579 struct symbol *sym;
1580 struct type *t;
1581
1582 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1583
1584 if (sym == NULL)
1585 error (_("No union type named %s."), name);
1586
1587 t = SYMBOL_TYPE (sym);
1588
1589 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1590 return t;
1591
1592 /* If we get here, it's not a union. */
1593 error (_("This context has class, struct or enum %s, not a union."),
1594 name);
1595 }
1596
1597 /* Lookup an enum type named "enum NAME",
1598 visible in lexical block BLOCK. */
1599
1600 struct type *
1601 lookup_enum (const char *name, const struct block *block)
1602 {
1603 struct symbol *sym;
1604
1605 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1606 if (sym == NULL)
1607 {
1608 error (_("No enum type named %s."), name);
1609 }
1610 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1611 {
1612 error (_("This context has class, struct or union %s, not an enum."),
1613 name);
1614 }
1615 return (SYMBOL_TYPE (sym));
1616 }
1617
1618 /* Lookup a template type named "template NAME<TYPE>",
1619 visible in lexical block BLOCK. */
1620
1621 struct type *
1622 lookup_template_type (char *name, struct type *type,
1623 const struct block *block)
1624 {
1625 struct symbol *sym;
1626 char *nam = (char *)
1627 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1628
1629 strcpy (nam, name);
1630 strcat (nam, "<");
1631 strcat (nam, TYPE_NAME (type));
1632 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1633
1634 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1635
1636 if (sym == NULL)
1637 {
1638 error (_("No template type named %s."), name);
1639 }
1640 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1641 {
1642 error (_("This context has class, union or enum %s, not a struct."),
1643 name);
1644 }
1645 return (SYMBOL_TYPE (sym));
1646 }
1647
1648 /* Given a type TYPE, lookup the type of the component of type named
1649 NAME.
1650
1651 TYPE can be either a struct or union, or a pointer or reference to
1652 a struct or union. If it is a pointer or reference, its target
1653 type is automatically used. Thus '.' and '->' are interchangable,
1654 as specified for the definitions of the expression element types
1655 STRUCTOP_STRUCT and STRUCTOP_PTR.
1656
1657 If NOERR is nonzero, return zero if NAME is not suitably defined.
1658 If NAME is the name of a baseclass type, return that type. */
1659
1660 struct type *
1661 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1662 {
1663 int i;
1664
1665 for (;;)
1666 {
1667 type = check_typedef (type);
1668 if (TYPE_CODE (type) != TYPE_CODE_PTR
1669 && TYPE_CODE (type) != TYPE_CODE_REF)
1670 break;
1671 type = TYPE_TARGET_TYPE (type);
1672 }
1673
1674 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1675 && TYPE_CODE (type) != TYPE_CODE_UNION)
1676 {
1677 std::string type_name = type_to_string (type);
1678 error (_("Type %s is not a structure or union type."),
1679 type_name.c_str ());
1680 }
1681
1682 #if 0
1683 /* FIXME: This change put in by Michael seems incorrect for the case
1684 where the structure tag name is the same as the member name.
1685 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1686 foo; } bell;" Disabled by fnf. */
1687 {
1688 char *type_name;
1689
1690 type_name = type_name_no_tag (type);
1691 if (type_name != NULL && strcmp (type_name, name) == 0)
1692 return type;
1693 }
1694 #endif
1695
1696 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1697 {
1698 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1699
1700 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1701 {
1702 return TYPE_FIELD_TYPE (type, i);
1703 }
1704 else if (!t_field_name || *t_field_name == '\0')
1705 {
1706 struct type *subtype
1707 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1708
1709 if (subtype != NULL)
1710 return subtype;
1711 }
1712 }
1713
1714 /* OK, it's not in this class. Recursively check the baseclasses. */
1715 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1716 {
1717 struct type *t;
1718
1719 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1720 if (t != NULL)
1721 {
1722 return t;
1723 }
1724 }
1725
1726 if (noerr)
1727 {
1728 return NULL;
1729 }
1730
1731 std::string type_name = type_to_string (type);
1732 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1733 }
1734
1735 /* Store in *MAX the largest number representable by unsigned integer type
1736 TYPE. */
1737
1738 void
1739 get_unsigned_type_max (struct type *type, ULONGEST *max)
1740 {
1741 unsigned int n;
1742
1743 type = check_typedef (type);
1744 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1745 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1746
1747 /* Written this way to avoid overflow. */
1748 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1749 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1750 }
1751
1752 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1753 signed integer type TYPE. */
1754
1755 void
1756 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1757 {
1758 unsigned int n;
1759
1760 type = check_typedef (type);
1761 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1762 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1763
1764 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1765 *min = -((ULONGEST) 1 << (n - 1));
1766 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1767 }
1768
1769 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1770 cplus_stuff.vptr_fieldno.
1771
1772 cplus_stuff is initialized to cplus_struct_default which does not
1773 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1774 designated initializers). We cope with that here. */
1775
1776 int
1777 internal_type_vptr_fieldno (struct type *type)
1778 {
1779 type = check_typedef (type);
1780 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1781 || TYPE_CODE (type) == TYPE_CODE_UNION);
1782 if (!HAVE_CPLUS_STRUCT (type))
1783 return -1;
1784 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1785 }
1786
1787 /* Set the value of cplus_stuff.vptr_fieldno. */
1788
1789 void
1790 set_type_vptr_fieldno (struct type *type, int fieldno)
1791 {
1792 type = check_typedef (type);
1793 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1794 || TYPE_CODE (type) == TYPE_CODE_UNION);
1795 if (!HAVE_CPLUS_STRUCT (type))
1796 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1797 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1798 }
1799
1800 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1801 cplus_stuff.vptr_basetype. */
1802
1803 struct type *
1804 internal_type_vptr_basetype (struct type *type)
1805 {
1806 type = check_typedef (type);
1807 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1808 || TYPE_CODE (type) == TYPE_CODE_UNION);
1809 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1810 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1811 }
1812
1813 /* Set the value of cplus_stuff.vptr_basetype. */
1814
1815 void
1816 set_type_vptr_basetype (struct type *type, struct type *basetype)
1817 {
1818 type = check_typedef (type);
1819 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 || TYPE_CODE (type) == TYPE_CODE_UNION);
1821 if (!HAVE_CPLUS_STRUCT (type))
1822 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1823 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1824 }
1825
1826 /* Lookup the vptr basetype/fieldno values for TYPE.
1827 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1828 vptr_fieldno. Also, if found and basetype is from the same objfile,
1829 cache the results.
1830 If not found, return -1 and ignore BASETYPEP.
1831 Callers should be aware that in some cases (for example,
1832 the type or one of its baseclasses is a stub type and we are
1833 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1834 this function will not be able to find the
1835 virtual function table pointer, and vptr_fieldno will remain -1 and
1836 vptr_basetype will remain NULL or incomplete. */
1837
1838 int
1839 get_vptr_fieldno (struct type *type, struct type **basetypep)
1840 {
1841 type = check_typedef (type);
1842
1843 if (TYPE_VPTR_FIELDNO (type) < 0)
1844 {
1845 int i;
1846
1847 /* We must start at zero in case the first (and only) baseclass
1848 is virtual (and hence we cannot share the table pointer). */
1849 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1850 {
1851 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1852 int fieldno;
1853 struct type *basetype;
1854
1855 fieldno = get_vptr_fieldno (baseclass, &basetype);
1856 if (fieldno >= 0)
1857 {
1858 /* If the type comes from a different objfile we can't cache
1859 it, it may have a different lifetime. PR 2384 */
1860 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1861 {
1862 set_type_vptr_fieldno (type, fieldno);
1863 set_type_vptr_basetype (type, basetype);
1864 }
1865 if (basetypep)
1866 *basetypep = basetype;
1867 return fieldno;
1868 }
1869 }
1870
1871 /* Not found. */
1872 return -1;
1873 }
1874 else
1875 {
1876 if (basetypep)
1877 *basetypep = TYPE_VPTR_BASETYPE (type);
1878 return TYPE_VPTR_FIELDNO (type);
1879 }
1880 }
1881
1882 static void
1883 stub_noname_complaint (void)
1884 {
1885 complaint (&symfile_complaints, _("stub type has NULL name"));
1886 }
1887
1888 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1889 attached to it, and that property has a non-constant value. */
1890
1891 static int
1892 array_type_has_dynamic_stride (struct type *type)
1893 {
1894 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1895
1896 return (prop != NULL && prop->kind != PROP_CONST);
1897 }
1898
1899 /* Worker for is_dynamic_type. */
1900
1901 static int
1902 is_dynamic_type_internal (struct type *type, int top_level)
1903 {
1904 type = check_typedef (type);
1905
1906 /* We only want to recognize references at the outermost level. */
1907 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1908 type = check_typedef (TYPE_TARGET_TYPE (type));
1909
1910 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1911 dynamic, even if the type itself is statically defined.
1912 From a user's point of view, this may appear counter-intuitive;
1913 but it makes sense in this context, because the point is to determine
1914 whether any part of the type needs to be resolved before it can
1915 be exploited. */
1916 if (TYPE_DATA_LOCATION (type) != NULL
1917 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1918 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1919 return 1;
1920
1921 if (TYPE_ASSOCIATED_PROP (type))
1922 return 1;
1923
1924 if (TYPE_ALLOCATED_PROP (type))
1925 return 1;
1926
1927 switch (TYPE_CODE (type))
1928 {
1929 case TYPE_CODE_RANGE:
1930 {
1931 /* A range type is obviously dynamic if it has at least one
1932 dynamic bound. But also consider the range type to be
1933 dynamic when its subtype is dynamic, even if the bounds
1934 of the range type are static. It allows us to assume that
1935 the subtype of a static range type is also static. */
1936 return (!has_static_range (TYPE_RANGE_DATA (type))
1937 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1938 }
1939
1940 case TYPE_CODE_ARRAY:
1941 {
1942 gdb_assert (TYPE_NFIELDS (type) == 1);
1943
1944 /* The array is dynamic if either the bounds are dynamic... */
1945 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1946 return 1;
1947 /* ... or the elements it contains have a dynamic contents... */
1948 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1949 return 1;
1950 /* ... or if it has a dynamic stride... */
1951 if (array_type_has_dynamic_stride (type))
1952 return 1;
1953 return 0;
1954 }
1955
1956 case TYPE_CODE_STRUCT:
1957 case TYPE_CODE_UNION:
1958 {
1959 int i;
1960
1961 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1962 if (!field_is_static (&TYPE_FIELD (type, i))
1963 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1964 return 1;
1965 }
1966 break;
1967 }
1968
1969 return 0;
1970 }
1971
1972 /* See gdbtypes.h. */
1973
1974 int
1975 is_dynamic_type (struct type *type)
1976 {
1977 return is_dynamic_type_internal (type, 1);
1978 }
1979
1980 static struct type *resolve_dynamic_type_internal
1981 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1982
1983 /* Given a dynamic range type (dyn_range_type) and a stack of
1984 struct property_addr_info elements, return a static version
1985 of that type. */
1986
1987 static struct type *
1988 resolve_dynamic_range (struct type *dyn_range_type,
1989 struct property_addr_info *addr_stack)
1990 {
1991 CORE_ADDR value;
1992 struct type *static_range_type, *static_target_type;
1993 const struct dynamic_prop *prop;
1994 struct dynamic_prop low_bound, high_bound;
1995
1996 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1997
1998 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1999 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2000 {
2001 low_bound.kind = PROP_CONST;
2002 low_bound.data.const_val = value;
2003 }
2004 else
2005 {
2006 low_bound.kind = PROP_UNDEFINED;
2007 low_bound.data.const_val = 0;
2008 }
2009
2010 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2011 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2012 {
2013 high_bound.kind = PROP_CONST;
2014 high_bound.data.const_val = value;
2015
2016 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2017 high_bound.data.const_val
2018 = low_bound.data.const_val + high_bound.data.const_val - 1;
2019 }
2020 else
2021 {
2022 high_bound.kind = PROP_UNDEFINED;
2023 high_bound.data.const_val = 0;
2024 }
2025
2026 static_target_type
2027 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2028 addr_stack, 0);
2029 static_range_type = create_range_type (copy_type (dyn_range_type),
2030 static_target_type,
2031 &low_bound, &high_bound);
2032 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2033 return static_range_type;
2034 }
2035
2036 /* Resolves dynamic bound values of an array type TYPE to static ones.
2037 ADDR_STACK is a stack of struct property_addr_info to be used
2038 if needed during the dynamic resolution. */
2039
2040 static struct type *
2041 resolve_dynamic_array (struct type *type,
2042 struct property_addr_info *addr_stack)
2043 {
2044 CORE_ADDR value;
2045 struct type *elt_type;
2046 struct type *range_type;
2047 struct type *ary_dim;
2048 struct dynamic_prop *prop;
2049 unsigned int bit_stride = 0;
2050
2051 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2052
2053 type = copy_type (type);
2054
2055 elt_type = type;
2056 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2057 range_type = resolve_dynamic_range (range_type, addr_stack);
2058
2059 /* Resolve allocated/associated here before creating a new array type, which
2060 will update the length of the array accordingly. */
2061 prop = TYPE_ALLOCATED_PROP (type);
2062 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2063 {
2064 TYPE_DYN_PROP_ADDR (prop) = value;
2065 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2066 }
2067 prop = TYPE_ASSOCIATED_PROP (type);
2068 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2069 {
2070 TYPE_DYN_PROP_ADDR (prop) = value;
2071 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2072 }
2073
2074 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2075
2076 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2077 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2078 else
2079 elt_type = TYPE_TARGET_TYPE (type);
2080
2081 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2082 if (prop != NULL)
2083 {
2084 int prop_eval_ok
2085 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2086
2087 if (prop_eval_ok)
2088 {
2089 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2090 bit_stride = (unsigned int) (value * 8);
2091 }
2092 else
2093 {
2094 /* Could be a bug in our code, but it could also happen
2095 if the DWARF info is not correct. Issue a warning,
2096 and assume no byte/bit stride (leave bit_stride = 0). */
2097 warning (_("cannot determine array stride for type %s"),
2098 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2099 }
2100 }
2101 else
2102 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2103
2104 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2105 bit_stride);
2106 }
2107
2108 /* Resolve dynamic bounds of members of the union TYPE to static
2109 bounds. ADDR_STACK is a stack of struct property_addr_info
2110 to be used if needed during the dynamic resolution. */
2111
2112 static struct type *
2113 resolve_dynamic_union (struct type *type,
2114 struct property_addr_info *addr_stack)
2115 {
2116 struct type *resolved_type;
2117 int i;
2118 unsigned int max_len = 0;
2119
2120 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2121
2122 resolved_type = copy_type (type);
2123 TYPE_FIELDS (resolved_type)
2124 = (struct field *) TYPE_ALLOC (resolved_type,
2125 TYPE_NFIELDS (resolved_type)
2126 * sizeof (struct field));
2127 memcpy (TYPE_FIELDS (resolved_type),
2128 TYPE_FIELDS (type),
2129 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2130 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2131 {
2132 struct type *t;
2133
2134 if (field_is_static (&TYPE_FIELD (type, i)))
2135 continue;
2136
2137 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2138 addr_stack, 0);
2139 TYPE_FIELD_TYPE (resolved_type, i) = t;
2140 if (TYPE_LENGTH (t) > max_len)
2141 max_len = TYPE_LENGTH (t);
2142 }
2143
2144 TYPE_LENGTH (resolved_type) = max_len;
2145 return resolved_type;
2146 }
2147
2148 /* Resolve dynamic bounds of members of the struct TYPE to static
2149 bounds. ADDR_STACK is a stack of struct property_addr_info to
2150 be used if needed during the dynamic resolution. */
2151
2152 static struct type *
2153 resolve_dynamic_struct (struct type *type,
2154 struct property_addr_info *addr_stack)
2155 {
2156 struct type *resolved_type;
2157 int i;
2158 unsigned resolved_type_bit_length = 0;
2159
2160 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2161 gdb_assert (TYPE_NFIELDS (type) > 0);
2162
2163 resolved_type = copy_type (type);
2164 TYPE_FIELDS (resolved_type)
2165 = (struct field *) TYPE_ALLOC (resolved_type,
2166 TYPE_NFIELDS (resolved_type)
2167 * sizeof (struct field));
2168 memcpy (TYPE_FIELDS (resolved_type),
2169 TYPE_FIELDS (type),
2170 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2171 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2172 {
2173 unsigned new_bit_length;
2174 struct property_addr_info pinfo;
2175
2176 if (field_is_static (&TYPE_FIELD (type, i)))
2177 continue;
2178
2179 /* As we know this field is not a static field, the field's
2180 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2181 this is the case, but only trigger a simple error rather
2182 than an internal error if that fails. While failing
2183 that verification indicates a bug in our code, the error
2184 is not severe enough to suggest to the user he stops
2185 his debugging session because of it. */
2186 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2187 error (_("Cannot determine struct field location"
2188 " (invalid location kind)"));
2189
2190 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2191 pinfo.valaddr = addr_stack->valaddr;
2192 pinfo.addr
2193 = (addr_stack->addr
2194 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2195 pinfo.next = addr_stack;
2196
2197 TYPE_FIELD_TYPE (resolved_type, i)
2198 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2199 &pinfo, 0);
2200 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2201 == FIELD_LOC_KIND_BITPOS);
2202
2203 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2204 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2205 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2206 else
2207 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2208 * TARGET_CHAR_BIT);
2209
2210 /* Normally, we would use the position and size of the last field
2211 to determine the size of the enclosing structure. But GCC seems
2212 to be encoding the position of some fields incorrectly when
2213 the struct contains a dynamic field that is not placed last.
2214 So we compute the struct size based on the field that has
2215 the highest position + size - probably the best we can do. */
2216 if (new_bit_length > resolved_type_bit_length)
2217 resolved_type_bit_length = new_bit_length;
2218 }
2219
2220 /* The length of a type won't change for fortran, but it does for C and Ada.
2221 For fortran the size of dynamic fields might change over time but not the
2222 type length of the structure. If we adapt it, we run into problems
2223 when calculating the element offset for arrays of structs. */
2224 if (current_language->la_language != language_fortran)
2225 TYPE_LENGTH (resolved_type)
2226 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2227
2228 /* The Ada language uses this field as a cache for static fixed types: reset
2229 it as RESOLVED_TYPE must have its own static fixed type. */
2230 TYPE_TARGET_TYPE (resolved_type) = NULL;
2231
2232 return resolved_type;
2233 }
2234
2235 /* Worker for resolved_dynamic_type. */
2236
2237 static struct type *
2238 resolve_dynamic_type_internal (struct type *type,
2239 struct property_addr_info *addr_stack,
2240 int top_level)
2241 {
2242 struct type *real_type = check_typedef (type);
2243 struct type *resolved_type = type;
2244 struct dynamic_prop *prop;
2245 CORE_ADDR value;
2246
2247 if (!is_dynamic_type_internal (real_type, top_level))
2248 return type;
2249
2250 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2251 {
2252 resolved_type = copy_type (type);
2253 TYPE_TARGET_TYPE (resolved_type)
2254 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2255 top_level);
2256 }
2257 else
2258 {
2259 /* Before trying to resolve TYPE, make sure it is not a stub. */
2260 type = real_type;
2261
2262 switch (TYPE_CODE (type))
2263 {
2264 case TYPE_CODE_REF:
2265 {
2266 struct property_addr_info pinfo;
2267
2268 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2269 pinfo.valaddr = NULL;
2270 if (addr_stack->valaddr != NULL)
2271 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2272 else
2273 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2274 pinfo.next = addr_stack;
2275
2276 resolved_type = copy_type (type);
2277 TYPE_TARGET_TYPE (resolved_type)
2278 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2279 &pinfo, top_level);
2280 break;
2281 }
2282
2283 case TYPE_CODE_ARRAY:
2284 resolved_type = resolve_dynamic_array (type, addr_stack);
2285 break;
2286
2287 case TYPE_CODE_RANGE:
2288 resolved_type = resolve_dynamic_range (type, addr_stack);
2289 break;
2290
2291 case TYPE_CODE_UNION:
2292 resolved_type = resolve_dynamic_union (type, addr_stack);
2293 break;
2294
2295 case TYPE_CODE_STRUCT:
2296 resolved_type = resolve_dynamic_struct (type, addr_stack);
2297 break;
2298 }
2299 }
2300
2301 /* Resolve data_location attribute. */
2302 prop = TYPE_DATA_LOCATION (resolved_type);
2303 if (prop != NULL
2304 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2305 {
2306 TYPE_DYN_PROP_ADDR (prop) = value;
2307 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2308 }
2309
2310 return resolved_type;
2311 }
2312
2313 /* See gdbtypes.h */
2314
2315 struct type *
2316 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2317 CORE_ADDR addr)
2318 {
2319 struct property_addr_info pinfo
2320 = {check_typedef (type), valaddr, addr, NULL};
2321
2322 return resolve_dynamic_type_internal (type, &pinfo, 1);
2323 }
2324
2325 /* See gdbtypes.h */
2326
2327 struct dynamic_prop *
2328 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2329 {
2330 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2331
2332 while (node != NULL)
2333 {
2334 if (node->prop_kind == prop_kind)
2335 return &node->prop;
2336 node = node->next;
2337 }
2338 return NULL;
2339 }
2340
2341 /* See gdbtypes.h */
2342
2343 void
2344 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2345 struct type *type)
2346 {
2347 struct dynamic_prop_list *temp;
2348
2349 gdb_assert (TYPE_OBJFILE_OWNED (type));
2350
2351 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2352 struct dynamic_prop_list);
2353 temp->prop_kind = prop_kind;
2354 temp->prop = prop;
2355 temp->next = TYPE_DYN_PROP_LIST (type);
2356
2357 TYPE_DYN_PROP_LIST (type) = temp;
2358 }
2359
2360 /* Remove dynamic property from TYPE in case it exists. */
2361
2362 void
2363 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2364 struct type *type)
2365 {
2366 struct dynamic_prop_list *prev_node, *curr_node;
2367
2368 curr_node = TYPE_DYN_PROP_LIST (type);
2369 prev_node = NULL;
2370
2371 while (NULL != curr_node)
2372 {
2373 if (curr_node->prop_kind == prop_kind)
2374 {
2375 /* Update the linked list but don't free anything.
2376 The property was allocated on objstack and it is not known
2377 if we are on top of it. Nevertheless, everything is released
2378 when the complete objstack is freed. */
2379 if (NULL == prev_node)
2380 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2381 else
2382 prev_node->next = curr_node->next;
2383
2384 return;
2385 }
2386
2387 prev_node = curr_node;
2388 curr_node = curr_node->next;
2389 }
2390 }
2391
2392 /* Find the real type of TYPE. This function returns the real type,
2393 after removing all layers of typedefs, and completing opaque or stub
2394 types. Completion changes the TYPE argument, but stripping of
2395 typedefs does not.
2396
2397 Instance flags (e.g. const/volatile) are preserved as typedefs are
2398 stripped. If necessary a new qualified form of the underlying type
2399 is created.
2400
2401 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2402 not been computed and we're either in the middle of reading symbols, or
2403 there was no name for the typedef in the debug info.
2404
2405 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2406 QUITs in the symbol reading code can also throw.
2407 Thus this function can throw an exception.
2408
2409 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2410 the target type.
2411
2412 If this is a stubbed struct (i.e. declared as struct foo *), see if
2413 we can find a full definition in some other file. If so, copy this
2414 definition, so we can use it in future. There used to be a comment
2415 (but not any code) that if we don't find a full definition, we'd
2416 set a flag so we don't spend time in the future checking the same
2417 type. That would be a mistake, though--we might load in more
2418 symbols which contain a full definition for the type. */
2419
2420 struct type *
2421 check_typedef (struct type *type)
2422 {
2423 struct type *orig_type = type;
2424 /* While we're removing typedefs, we don't want to lose qualifiers.
2425 E.g., const/volatile. */
2426 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2427
2428 gdb_assert (type);
2429
2430 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2431 {
2432 if (!TYPE_TARGET_TYPE (type))
2433 {
2434 const char *name;
2435 struct symbol *sym;
2436
2437 /* It is dangerous to call lookup_symbol if we are currently
2438 reading a symtab. Infinite recursion is one danger. */
2439 if (currently_reading_symtab)
2440 return make_qualified_type (type, instance_flags, NULL);
2441
2442 name = type_name_no_tag (type);
2443 /* FIXME: shouldn't we separately check the TYPE_NAME and
2444 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2445 VAR_DOMAIN as appropriate? (this code was written before
2446 TYPE_NAME and TYPE_TAG_NAME were separate). */
2447 if (name == NULL)
2448 {
2449 stub_noname_complaint ();
2450 return make_qualified_type (type, instance_flags, NULL);
2451 }
2452 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2453 if (sym)
2454 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2455 else /* TYPE_CODE_UNDEF */
2456 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2457 }
2458 type = TYPE_TARGET_TYPE (type);
2459
2460 /* Preserve the instance flags as we traverse down the typedef chain.
2461
2462 Handling address spaces/classes is nasty, what do we do if there's a
2463 conflict?
2464 E.g., what if an outer typedef marks the type as class_1 and an inner
2465 typedef marks the type as class_2?
2466 This is the wrong place to do such error checking. We leave it to
2467 the code that created the typedef in the first place to flag the
2468 error. We just pick the outer address space (akin to letting the
2469 outer cast in a chain of casting win), instead of assuming
2470 "it can't happen". */
2471 {
2472 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2473 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2474 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2475 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2476
2477 /* Treat code vs data spaces and address classes separately. */
2478 if ((instance_flags & ALL_SPACES) != 0)
2479 new_instance_flags &= ~ALL_SPACES;
2480 if ((instance_flags & ALL_CLASSES) != 0)
2481 new_instance_flags &= ~ALL_CLASSES;
2482
2483 instance_flags |= new_instance_flags;
2484 }
2485 }
2486
2487 /* If this is a struct/class/union with no fields, then check
2488 whether a full definition exists somewhere else. This is for
2489 systems where a type definition with no fields is issued for such
2490 types, instead of identifying them as stub types in the first
2491 place. */
2492
2493 if (TYPE_IS_OPAQUE (type)
2494 && opaque_type_resolution
2495 && !currently_reading_symtab)
2496 {
2497 const char *name = type_name_no_tag (type);
2498 struct type *newtype;
2499
2500 if (name == NULL)
2501 {
2502 stub_noname_complaint ();
2503 return make_qualified_type (type, instance_flags, NULL);
2504 }
2505 newtype = lookup_transparent_type (name);
2506
2507 if (newtype)
2508 {
2509 /* If the resolved type and the stub are in the same
2510 objfile, then replace the stub type with the real deal.
2511 But if they're in separate objfiles, leave the stub
2512 alone; we'll just look up the transparent type every time
2513 we call check_typedef. We can't create pointers between
2514 types allocated to different objfiles, since they may
2515 have different lifetimes. Trying to copy NEWTYPE over to
2516 TYPE's objfile is pointless, too, since you'll have to
2517 move over any other types NEWTYPE refers to, which could
2518 be an unbounded amount of stuff. */
2519 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2520 type = make_qualified_type (newtype,
2521 TYPE_INSTANCE_FLAGS (type),
2522 type);
2523 else
2524 type = newtype;
2525 }
2526 }
2527 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2528 types. */
2529 else if (TYPE_STUB (type) && !currently_reading_symtab)
2530 {
2531 const char *name = type_name_no_tag (type);
2532 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2533 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2534 as appropriate? (this code was written before TYPE_NAME and
2535 TYPE_TAG_NAME were separate). */
2536 struct symbol *sym;
2537
2538 if (name == NULL)
2539 {
2540 stub_noname_complaint ();
2541 return make_qualified_type (type, instance_flags, NULL);
2542 }
2543 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2544 if (sym)
2545 {
2546 /* Same as above for opaque types, we can replace the stub
2547 with the complete type only if they are in the same
2548 objfile. */
2549 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2550 type = make_qualified_type (SYMBOL_TYPE (sym),
2551 TYPE_INSTANCE_FLAGS (type),
2552 type);
2553 else
2554 type = SYMBOL_TYPE (sym);
2555 }
2556 }
2557
2558 if (TYPE_TARGET_STUB (type))
2559 {
2560 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2561
2562 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2563 {
2564 /* Nothing we can do. */
2565 }
2566 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2567 {
2568 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2569 TYPE_TARGET_STUB (type) = 0;
2570 }
2571 }
2572
2573 type = make_qualified_type (type, instance_flags, NULL);
2574
2575 /* Cache TYPE_LENGTH for future use. */
2576 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2577
2578 return type;
2579 }
2580
2581 /* Parse a type expression in the string [P..P+LENGTH). If an error
2582 occurs, silently return a void type. */
2583
2584 static struct type *
2585 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2586 {
2587 struct ui_file *saved_gdb_stderr;
2588 struct type *type = NULL; /* Initialize to keep gcc happy. */
2589
2590 /* Suppress error messages. */
2591 saved_gdb_stderr = gdb_stderr;
2592 gdb_stderr = &null_stream;
2593
2594 /* Call parse_and_eval_type() without fear of longjmp()s. */
2595 TRY
2596 {
2597 type = parse_and_eval_type (p, length);
2598 }
2599 CATCH (except, RETURN_MASK_ERROR)
2600 {
2601 type = builtin_type (gdbarch)->builtin_void;
2602 }
2603 END_CATCH
2604
2605 /* Stop suppressing error messages. */
2606 gdb_stderr = saved_gdb_stderr;
2607
2608 return type;
2609 }
2610
2611 /* Ugly hack to convert method stubs into method types.
2612
2613 He ain't kiddin'. This demangles the name of the method into a
2614 string including argument types, parses out each argument type,
2615 generates a string casting a zero to that type, evaluates the
2616 string, and stuffs the resulting type into an argtype vector!!!
2617 Then it knows the type of the whole function (including argument
2618 types for overloading), which info used to be in the stab's but was
2619 removed to hack back the space required for them. */
2620
2621 static void
2622 check_stub_method (struct type *type, int method_id, int signature_id)
2623 {
2624 struct gdbarch *gdbarch = get_type_arch (type);
2625 struct fn_field *f;
2626 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2627 char *demangled_name = gdb_demangle (mangled_name,
2628 DMGL_PARAMS | DMGL_ANSI);
2629 char *argtypetext, *p;
2630 int depth = 0, argcount = 1;
2631 struct field *argtypes;
2632 struct type *mtype;
2633
2634 /* Make sure we got back a function string that we can use. */
2635 if (demangled_name)
2636 p = strchr (demangled_name, '(');
2637 else
2638 p = NULL;
2639
2640 if (demangled_name == NULL || p == NULL)
2641 error (_("Internal: Cannot demangle mangled name `%s'."),
2642 mangled_name);
2643
2644 /* Now, read in the parameters that define this type. */
2645 p += 1;
2646 argtypetext = p;
2647 while (*p)
2648 {
2649 if (*p == '(' || *p == '<')
2650 {
2651 depth += 1;
2652 }
2653 else if (*p == ')' || *p == '>')
2654 {
2655 depth -= 1;
2656 }
2657 else if (*p == ',' && depth == 0)
2658 {
2659 argcount += 1;
2660 }
2661
2662 p += 1;
2663 }
2664
2665 /* If we read one argument and it was ``void'', don't count it. */
2666 if (startswith (argtypetext, "(void)"))
2667 argcount -= 1;
2668
2669 /* We need one extra slot, for the THIS pointer. */
2670
2671 argtypes = (struct field *)
2672 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2673 p = argtypetext;
2674
2675 /* Add THIS pointer for non-static methods. */
2676 f = TYPE_FN_FIELDLIST1 (type, method_id);
2677 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2678 argcount = 0;
2679 else
2680 {
2681 argtypes[0].type = lookup_pointer_type (type);
2682 argcount = 1;
2683 }
2684
2685 if (*p != ')') /* () means no args, skip while. */
2686 {
2687 depth = 0;
2688 while (*p)
2689 {
2690 if (depth <= 0 && (*p == ',' || *p == ')'))
2691 {
2692 /* Avoid parsing of ellipsis, they will be handled below.
2693 Also avoid ``void'' as above. */
2694 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2695 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2696 {
2697 argtypes[argcount].type =
2698 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2699 argcount += 1;
2700 }
2701 argtypetext = p + 1;
2702 }
2703
2704 if (*p == '(' || *p == '<')
2705 {
2706 depth += 1;
2707 }
2708 else if (*p == ')' || *p == '>')
2709 {
2710 depth -= 1;
2711 }
2712
2713 p += 1;
2714 }
2715 }
2716
2717 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2718
2719 /* Now update the old "stub" type into a real type. */
2720 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2721 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2722 We want a method (TYPE_CODE_METHOD). */
2723 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2724 argtypes, argcount, p[-2] == '.');
2725 TYPE_STUB (mtype) = 0;
2726 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2727
2728 xfree (demangled_name);
2729 }
2730
2731 /* This is the external interface to check_stub_method, above. This
2732 function unstubs all of the signatures for TYPE's METHOD_ID method
2733 name. After calling this function TYPE_FN_FIELD_STUB will be
2734 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2735 correct.
2736
2737 This function unfortunately can not die until stabs do. */
2738
2739 void
2740 check_stub_method_group (struct type *type, int method_id)
2741 {
2742 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2743 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2744 int j, found_stub = 0;
2745
2746 for (j = 0; j < len; j++)
2747 if (TYPE_FN_FIELD_STUB (f, j))
2748 {
2749 found_stub = 1;
2750 check_stub_method (type, method_id, j);
2751 }
2752
2753 /* GNU v3 methods with incorrect names were corrected when we read
2754 in type information, because it was cheaper to do it then. The
2755 only GNU v2 methods with incorrect method names are operators and
2756 destructors; destructors were also corrected when we read in type
2757 information.
2758
2759 Therefore the only thing we need to handle here are v2 operator
2760 names. */
2761 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2762 {
2763 int ret;
2764 char dem_opname[256];
2765
2766 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2767 method_id),
2768 dem_opname, DMGL_ANSI);
2769 if (!ret)
2770 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2771 method_id),
2772 dem_opname, 0);
2773 if (ret)
2774 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2775 }
2776 }
2777
2778 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2779 const struct cplus_struct_type cplus_struct_default = { };
2780
2781 void
2782 allocate_cplus_struct_type (struct type *type)
2783 {
2784 if (HAVE_CPLUS_STRUCT (type))
2785 /* Structure was already allocated. Nothing more to do. */
2786 return;
2787
2788 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2789 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2790 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2791 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2792 set_type_vptr_fieldno (type, -1);
2793 }
2794
2795 const struct gnat_aux_type gnat_aux_default =
2796 { NULL };
2797
2798 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2799 and allocate the associated gnat-specific data. The gnat-specific
2800 data is also initialized to gnat_aux_default. */
2801
2802 void
2803 allocate_gnat_aux_type (struct type *type)
2804 {
2805 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2806 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2807 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2808 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2809 }
2810
2811 /* Helper function to initialize a newly allocated type. Set type code
2812 to CODE and initialize the type-specific fields accordingly. */
2813
2814 static void
2815 set_type_code (struct type *type, enum type_code code)
2816 {
2817 TYPE_CODE (type) = code;
2818
2819 switch (code)
2820 {
2821 case TYPE_CODE_STRUCT:
2822 case TYPE_CODE_UNION:
2823 case TYPE_CODE_NAMESPACE:
2824 INIT_CPLUS_SPECIFIC (type);
2825 break;
2826 case TYPE_CODE_FLT:
2827 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2828 break;
2829 case TYPE_CODE_FUNC:
2830 INIT_FUNC_SPECIFIC (type);
2831 break;
2832 }
2833 }
2834
2835 /* Helper function to verify floating-point format and size.
2836 BIT is the type size in bits; if BIT equals -1, the size is
2837 determined by the floatformat. Returns size to be used. */
2838
2839 static int
2840 verify_floatformat (int bit, const struct floatformat *floatformat)
2841 {
2842 gdb_assert (floatformat != NULL);
2843
2844 if (bit == -1)
2845 bit = floatformat->totalsize;
2846
2847 gdb_assert (bit >= 0);
2848 gdb_assert (bit >= floatformat->totalsize);
2849
2850 return bit;
2851 }
2852
2853 /* Return the floating-point format for a floating-point variable of
2854 type TYPE. */
2855
2856 const struct floatformat *
2857 floatformat_from_type (const struct type *type)
2858 {
2859 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2860 gdb_assert (TYPE_FLOATFORMAT (type));
2861 return TYPE_FLOATFORMAT (type);
2862 }
2863
2864 /* Helper function to initialize the standard scalar types.
2865
2866 If NAME is non-NULL, then it is used to initialize the type name.
2867 Note that NAME is not copied; it is required to have a lifetime at
2868 least as long as OBJFILE. */
2869
2870 struct type *
2871 init_type (struct objfile *objfile, enum type_code code, int bit,
2872 const char *name)
2873 {
2874 struct type *type;
2875
2876 type = alloc_type (objfile);
2877 set_type_code (type, code);
2878 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2879 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2880 TYPE_NAME (type) = name;
2881
2882 return type;
2883 }
2884
2885 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2886 to use with variables that have no debug info. NAME is the type
2887 name. */
2888
2889 static struct type *
2890 init_nodebug_var_type (struct objfile *objfile, const char *name)
2891 {
2892 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2893 }
2894
2895 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2896 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2897 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2898
2899 struct type *
2900 init_integer_type (struct objfile *objfile,
2901 int bit, int unsigned_p, const char *name)
2902 {
2903 struct type *t;
2904
2905 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2906 if (unsigned_p)
2907 TYPE_UNSIGNED (t) = 1;
2908
2909 return t;
2910 }
2911
2912 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2913 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2914 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2915
2916 struct type *
2917 init_character_type (struct objfile *objfile,
2918 int bit, int unsigned_p, const char *name)
2919 {
2920 struct type *t;
2921
2922 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2923 if (unsigned_p)
2924 TYPE_UNSIGNED (t) = 1;
2925
2926 return t;
2927 }
2928
2929 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2930 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2931 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2932
2933 struct type *
2934 init_boolean_type (struct objfile *objfile,
2935 int bit, int unsigned_p, const char *name)
2936 {
2937 struct type *t;
2938
2939 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2940 if (unsigned_p)
2941 TYPE_UNSIGNED (t) = 1;
2942
2943 return t;
2944 }
2945
2946 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2947 BIT is the type size in bits; if BIT equals -1, the size is
2948 determined by the floatformat. NAME is the type name. Set the
2949 TYPE_FLOATFORMAT from FLOATFORMATS. */
2950
2951 struct type *
2952 init_float_type (struct objfile *objfile,
2953 int bit, const char *name,
2954 const struct floatformat **floatformats)
2955 {
2956 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2957 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2958 struct type *t;
2959
2960 bit = verify_floatformat (bit, fmt);
2961 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2962 TYPE_FLOATFORMAT (t) = fmt;
2963
2964 return t;
2965 }
2966
2967 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2968 BIT is the type size in bits. NAME is the type name. */
2969
2970 struct type *
2971 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2972 {
2973 struct type *t;
2974
2975 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2976 return t;
2977 }
2978
2979 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2980 NAME is the type name. TARGET_TYPE is the component float type. */
2981
2982 struct type *
2983 init_complex_type (struct objfile *objfile,
2984 const char *name, struct type *target_type)
2985 {
2986 struct type *t;
2987
2988 t = init_type (objfile, TYPE_CODE_COMPLEX,
2989 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2990 TYPE_TARGET_TYPE (t) = target_type;
2991 return t;
2992 }
2993
2994 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2995 BIT is the pointer type size in bits. NAME is the type name.
2996 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2997 TYPE_UNSIGNED flag. */
2998
2999 struct type *
3000 init_pointer_type (struct objfile *objfile,
3001 int bit, const char *name, struct type *target_type)
3002 {
3003 struct type *t;
3004
3005 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3006 TYPE_TARGET_TYPE (t) = target_type;
3007 TYPE_UNSIGNED (t) = 1;
3008 return t;
3009 }
3010
3011 \f
3012 /* Queries on types. */
3013
3014 int
3015 can_dereference (struct type *t)
3016 {
3017 /* FIXME: Should we return true for references as well as
3018 pointers? */
3019 t = check_typedef (t);
3020 return
3021 (t != NULL
3022 && TYPE_CODE (t) == TYPE_CODE_PTR
3023 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3024 }
3025
3026 int
3027 is_integral_type (struct type *t)
3028 {
3029 t = check_typedef (t);
3030 return
3031 ((t != NULL)
3032 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3033 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3034 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3035 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3036 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3037 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3038 }
3039
3040 int
3041 is_floating_type (struct type *t)
3042 {
3043 t = check_typedef (t);
3044 return
3045 ((t != NULL)
3046 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3047 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3048 }
3049
3050 /* Return true if TYPE is scalar. */
3051
3052 int
3053 is_scalar_type (struct type *type)
3054 {
3055 type = check_typedef (type);
3056
3057 switch (TYPE_CODE (type))
3058 {
3059 case TYPE_CODE_ARRAY:
3060 case TYPE_CODE_STRUCT:
3061 case TYPE_CODE_UNION:
3062 case TYPE_CODE_SET:
3063 case TYPE_CODE_STRING:
3064 return 0;
3065 default:
3066 return 1;
3067 }
3068 }
3069
3070 /* Return true if T is scalar, or a composite type which in practice has
3071 the memory layout of a scalar type. E.g., an array or struct with only
3072 one scalar element inside it, or a union with only scalar elements. */
3073
3074 int
3075 is_scalar_type_recursive (struct type *t)
3076 {
3077 t = check_typedef (t);
3078
3079 if (is_scalar_type (t))
3080 return 1;
3081 /* Are we dealing with an array or string of known dimensions? */
3082 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3083 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3084 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3085 {
3086 LONGEST low_bound, high_bound;
3087 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3088
3089 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3090
3091 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3092 }
3093 /* Are we dealing with a struct with one element? */
3094 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3095 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3096 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3097 {
3098 int i, n = TYPE_NFIELDS (t);
3099
3100 /* If all elements of the union are scalar, then the union is scalar. */
3101 for (i = 0; i < n; i++)
3102 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3103 return 0;
3104
3105 return 1;
3106 }
3107
3108 return 0;
3109 }
3110
3111 /* Return true is T is a class or a union. False otherwise. */
3112
3113 int
3114 class_or_union_p (const struct type *t)
3115 {
3116 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3117 || TYPE_CODE (t) == TYPE_CODE_UNION);
3118 }
3119
3120 /* A helper function which returns true if types A and B represent the
3121 "same" class type. This is true if the types have the same main
3122 type, or the same name. */
3123
3124 int
3125 class_types_same_p (const struct type *a, const struct type *b)
3126 {
3127 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3128 || (TYPE_NAME (a) && TYPE_NAME (b)
3129 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3130 }
3131
3132 /* If BASE is an ancestor of DCLASS return the distance between them.
3133 otherwise return -1;
3134 eg:
3135
3136 class A {};
3137 class B: public A {};
3138 class C: public B {};
3139 class D: C {};
3140
3141 distance_to_ancestor (A, A, 0) = 0
3142 distance_to_ancestor (A, B, 0) = 1
3143 distance_to_ancestor (A, C, 0) = 2
3144 distance_to_ancestor (A, D, 0) = 3
3145
3146 If PUBLIC is 1 then only public ancestors are considered,
3147 and the function returns the distance only if BASE is a public ancestor
3148 of DCLASS.
3149 Eg:
3150
3151 distance_to_ancestor (A, D, 1) = -1. */
3152
3153 static int
3154 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3155 {
3156 int i;
3157 int d;
3158
3159 base = check_typedef (base);
3160 dclass = check_typedef (dclass);
3161
3162 if (class_types_same_p (base, dclass))
3163 return 0;
3164
3165 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3166 {
3167 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3168 continue;
3169
3170 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3171 if (d >= 0)
3172 return 1 + d;
3173 }
3174
3175 return -1;
3176 }
3177
3178 /* Check whether BASE is an ancestor or base class or DCLASS
3179 Return 1 if so, and 0 if not.
3180 Note: If BASE and DCLASS are of the same type, this function
3181 will return 1. So for some class A, is_ancestor (A, A) will
3182 return 1. */
3183
3184 int
3185 is_ancestor (struct type *base, struct type *dclass)
3186 {
3187 return distance_to_ancestor (base, dclass, 0) >= 0;
3188 }
3189
3190 /* Like is_ancestor, but only returns true when BASE is a public
3191 ancestor of DCLASS. */
3192
3193 int
3194 is_public_ancestor (struct type *base, struct type *dclass)
3195 {
3196 return distance_to_ancestor (base, dclass, 1) >= 0;
3197 }
3198
3199 /* A helper function for is_unique_ancestor. */
3200
3201 static int
3202 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3203 int *offset,
3204 const gdb_byte *valaddr, int embedded_offset,
3205 CORE_ADDR address, struct value *val)
3206 {
3207 int i, count = 0;
3208
3209 base = check_typedef (base);
3210 dclass = check_typedef (dclass);
3211
3212 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3213 {
3214 struct type *iter;
3215 int this_offset;
3216
3217 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3218
3219 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3220 address, val);
3221
3222 if (class_types_same_p (base, iter))
3223 {
3224 /* If this is the first subclass, set *OFFSET and set count
3225 to 1. Otherwise, if this is at the same offset as
3226 previous instances, do nothing. Otherwise, increment
3227 count. */
3228 if (*offset == -1)
3229 {
3230 *offset = this_offset;
3231 count = 1;
3232 }
3233 else if (this_offset == *offset)
3234 {
3235 /* Nothing. */
3236 }
3237 else
3238 ++count;
3239 }
3240 else
3241 count += is_unique_ancestor_worker (base, iter, offset,
3242 valaddr,
3243 embedded_offset + this_offset,
3244 address, val);
3245 }
3246
3247 return count;
3248 }
3249
3250 /* Like is_ancestor, but only returns true if BASE is a unique base
3251 class of the type of VAL. */
3252
3253 int
3254 is_unique_ancestor (struct type *base, struct value *val)
3255 {
3256 int offset = -1;
3257
3258 return is_unique_ancestor_worker (base, value_type (val), &offset,
3259 value_contents_for_printing (val),
3260 value_embedded_offset (val),
3261 value_address (val), val) == 1;
3262 }
3263
3264 \f
3265 /* Overload resolution. */
3266
3267 /* Return the sum of the rank of A with the rank of B. */
3268
3269 struct rank
3270 sum_ranks (struct rank a, struct rank b)
3271 {
3272 struct rank c;
3273 c.rank = a.rank + b.rank;
3274 c.subrank = a.subrank + b.subrank;
3275 return c;
3276 }
3277
3278 /* Compare rank A and B and return:
3279 0 if a = b
3280 1 if a is better than b
3281 -1 if b is better than a. */
3282
3283 int
3284 compare_ranks (struct rank a, struct rank b)
3285 {
3286 if (a.rank == b.rank)
3287 {
3288 if (a.subrank == b.subrank)
3289 return 0;
3290 if (a.subrank < b.subrank)
3291 return 1;
3292 if (a.subrank > b.subrank)
3293 return -1;
3294 }
3295
3296 if (a.rank < b.rank)
3297 return 1;
3298
3299 /* a.rank > b.rank */
3300 return -1;
3301 }
3302
3303 /* Functions for overload resolution begin here. */
3304
3305 /* Compare two badness vectors A and B and return the result.
3306 0 => A and B are identical
3307 1 => A and B are incomparable
3308 2 => A is better than B
3309 3 => A is worse than B */
3310
3311 int
3312 compare_badness (struct badness_vector *a, struct badness_vector *b)
3313 {
3314 int i;
3315 int tmp;
3316 short found_pos = 0; /* any positives in c? */
3317 short found_neg = 0; /* any negatives in c? */
3318
3319 /* differing lengths => incomparable */
3320 if (a->length != b->length)
3321 return 1;
3322
3323 /* Subtract b from a */
3324 for (i = 0; i < a->length; i++)
3325 {
3326 tmp = compare_ranks (b->rank[i], a->rank[i]);
3327 if (tmp > 0)
3328 found_pos = 1;
3329 else if (tmp < 0)
3330 found_neg = 1;
3331 }
3332
3333 if (found_pos)
3334 {
3335 if (found_neg)
3336 return 1; /* incomparable */
3337 else
3338 return 3; /* A > B */
3339 }
3340 else
3341 /* no positives */
3342 {
3343 if (found_neg)
3344 return 2; /* A < B */
3345 else
3346 return 0; /* A == B */
3347 }
3348 }
3349
3350 /* Rank a function by comparing its parameter types (PARMS, length
3351 NPARMS), to the types of an argument list (ARGS, length NARGS).
3352 Return a pointer to a badness vector. This has NARGS + 1
3353 entries. */
3354
3355 struct badness_vector *
3356 rank_function (struct type **parms, int nparms,
3357 struct value **args, int nargs)
3358 {
3359 int i;
3360 struct badness_vector *bv = XNEW (struct badness_vector);
3361 int min_len = nparms < nargs ? nparms : nargs;
3362
3363 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3364 bv->rank = XNEWVEC (struct rank, nargs + 1);
3365
3366 /* First compare the lengths of the supplied lists.
3367 If there is a mismatch, set it to a high value. */
3368
3369 /* pai/1997-06-03 FIXME: when we have debug info about default
3370 arguments and ellipsis parameter lists, we should consider those
3371 and rank the length-match more finely. */
3372
3373 LENGTH_MATCH (bv) = (nargs != nparms)
3374 ? LENGTH_MISMATCH_BADNESS
3375 : EXACT_MATCH_BADNESS;
3376
3377 /* Now rank all the parameters of the candidate function. */
3378 for (i = 1; i <= min_len; i++)
3379 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3380 args[i - 1]);
3381
3382 /* If more arguments than parameters, add dummy entries. */
3383 for (i = min_len + 1; i <= nargs; i++)
3384 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3385
3386 return bv;
3387 }
3388
3389 /* Compare the names of two integer types, assuming that any sign
3390 qualifiers have been checked already. We do it this way because
3391 there may be an "int" in the name of one of the types. */
3392
3393 static int
3394 integer_types_same_name_p (const char *first, const char *second)
3395 {
3396 int first_p, second_p;
3397
3398 /* If both are shorts, return 1; if neither is a short, keep
3399 checking. */
3400 first_p = (strstr (first, "short") != NULL);
3401 second_p = (strstr (second, "short") != NULL);
3402 if (first_p && second_p)
3403 return 1;
3404 if (first_p || second_p)
3405 return 0;
3406
3407 /* Likewise for long. */
3408 first_p = (strstr (first, "long") != NULL);
3409 second_p = (strstr (second, "long") != NULL);
3410 if (first_p && second_p)
3411 return 1;
3412 if (first_p || second_p)
3413 return 0;
3414
3415 /* Likewise for char. */
3416 first_p = (strstr (first, "char") != NULL);
3417 second_p = (strstr (second, "char") != NULL);
3418 if (first_p && second_p)
3419 return 1;
3420 if (first_p || second_p)
3421 return 0;
3422
3423 /* They must both be ints. */
3424 return 1;
3425 }
3426
3427 /* Compares type A to type B returns 1 if the represent the same type
3428 0 otherwise. */
3429
3430 int
3431 types_equal (struct type *a, struct type *b)
3432 {
3433 /* Identical type pointers. */
3434 /* However, this still doesn't catch all cases of same type for b
3435 and a. The reason is that builtin types are different from
3436 the same ones constructed from the object. */
3437 if (a == b)
3438 return 1;
3439
3440 /* Resolve typedefs */
3441 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3442 a = check_typedef (a);
3443 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3444 b = check_typedef (b);
3445
3446 /* If after resolving typedefs a and b are not of the same type
3447 code then they are not equal. */
3448 if (TYPE_CODE (a) != TYPE_CODE (b))
3449 return 0;
3450
3451 /* If a and b are both pointers types or both reference types then
3452 they are equal of the same type iff the objects they refer to are
3453 of the same type. */
3454 if (TYPE_CODE (a) == TYPE_CODE_PTR
3455 || TYPE_CODE (a) == TYPE_CODE_REF)
3456 return types_equal (TYPE_TARGET_TYPE (a),
3457 TYPE_TARGET_TYPE (b));
3458
3459 /* Well, damnit, if the names are exactly the same, I'll say they
3460 are exactly the same. This happens when we generate method
3461 stubs. The types won't point to the same address, but they
3462 really are the same. */
3463
3464 if (TYPE_NAME (a) && TYPE_NAME (b)
3465 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3466 return 1;
3467
3468 /* Check if identical after resolving typedefs. */
3469 if (a == b)
3470 return 1;
3471
3472 /* Two function types are equal if their argument and return types
3473 are equal. */
3474 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3475 {
3476 int i;
3477
3478 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3479 return 0;
3480
3481 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3482 return 0;
3483
3484 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3485 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3486 return 0;
3487
3488 return 1;
3489 }
3490
3491 return 0;
3492 }
3493 \f
3494 /* Deep comparison of types. */
3495
3496 /* An entry in the type-equality bcache. */
3497
3498 typedef struct type_equality_entry
3499 {
3500 struct type *type1, *type2;
3501 } type_equality_entry_d;
3502
3503 DEF_VEC_O (type_equality_entry_d);
3504
3505 /* A helper function to compare two strings. Returns 1 if they are
3506 the same, 0 otherwise. Handles NULLs properly. */
3507
3508 static int
3509 compare_maybe_null_strings (const char *s, const char *t)
3510 {
3511 if (s == NULL && t != NULL)
3512 return 0;
3513 else if (s != NULL && t == NULL)
3514 return 0;
3515 else if (s == NULL && t== NULL)
3516 return 1;
3517 return strcmp (s, t) == 0;
3518 }
3519
3520 /* A helper function for check_types_worklist that checks two types for
3521 "deep" equality. Returns non-zero if the types are considered the
3522 same, zero otherwise. */
3523
3524 static int
3525 check_types_equal (struct type *type1, struct type *type2,
3526 VEC (type_equality_entry_d) **worklist)
3527 {
3528 type1 = check_typedef (type1);
3529 type2 = check_typedef (type2);
3530
3531 if (type1 == type2)
3532 return 1;
3533
3534 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3535 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3536 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3537 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3538 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3539 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3540 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3541 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3542 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3543 return 0;
3544
3545 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3546 TYPE_TAG_NAME (type2)))
3547 return 0;
3548 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3549 return 0;
3550
3551 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3552 {
3553 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3554 return 0;
3555 }
3556 else
3557 {
3558 int i;
3559
3560 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3561 {
3562 const struct field *field1 = &TYPE_FIELD (type1, i);
3563 const struct field *field2 = &TYPE_FIELD (type2, i);
3564 struct type_equality_entry entry;
3565
3566 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3567 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3568 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3569 return 0;
3570 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3571 FIELD_NAME (*field2)))
3572 return 0;
3573 switch (FIELD_LOC_KIND (*field1))
3574 {
3575 case FIELD_LOC_KIND_BITPOS:
3576 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3577 return 0;
3578 break;
3579 case FIELD_LOC_KIND_ENUMVAL:
3580 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3581 return 0;
3582 break;
3583 case FIELD_LOC_KIND_PHYSADDR:
3584 if (FIELD_STATIC_PHYSADDR (*field1)
3585 != FIELD_STATIC_PHYSADDR (*field2))
3586 return 0;
3587 break;
3588 case FIELD_LOC_KIND_PHYSNAME:
3589 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3590 FIELD_STATIC_PHYSNAME (*field2)))
3591 return 0;
3592 break;
3593 case FIELD_LOC_KIND_DWARF_BLOCK:
3594 {
3595 struct dwarf2_locexpr_baton *block1, *block2;
3596
3597 block1 = FIELD_DWARF_BLOCK (*field1);
3598 block2 = FIELD_DWARF_BLOCK (*field2);
3599 if (block1->per_cu != block2->per_cu
3600 || block1->size != block2->size
3601 || memcmp (block1->data, block2->data, block1->size) != 0)
3602 return 0;
3603 }
3604 break;
3605 default:
3606 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3607 "%d by check_types_equal"),
3608 FIELD_LOC_KIND (*field1));
3609 }
3610
3611 entry.type1 = FIELD_TYPE (*field1);
3612 entry.type2 = FIELD_TYPE (*field2);
3613 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3614 }
3615 }
3616
3617 if (TYPE_TARGET_TYPE (type1) != NULL)
3618 {
3619 struct type_equality_entry entry;
3620
3621 if (TYPE_TARGET_TYPE (type2) == NULL)
3622 return 0;
3623
3624 entry.type1 = TYPE_TARGET_TYPE (type1);
3625 entry.type2 = TYPE_TARGET_TYPE (type2);
3626 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3627 }
3628 else if (TYPE_TARGET_TYPE (type2) != NULL)
3629 return 0;
3630
3631 return 1;
3632 }
3633
3634 /* Check types on a worklist for equality. Returns zero if any pair
3635 is not equal, non-zero if they are all considered equal. */
3636
3637 static int
3638 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3639 struct bcache *cache)
3640 {
3641 while (!VEC_empty (type_equality_entry_d, *worklist))
3642 {
3643 struct type_equality_entry entry;
3644 int added;
3645
3646 entry = *VEC_last (type_equality_entry_d, *worklist);
3647 VEC_pop (type_equality_entry_d, *worklist);
3648
3649 /* If the type pair has already been visited, we know it is
3650 ok. */
3651 bcache_full (&entry, sizeof (entry), cache, &added);
3652 if (!added)
3653 continue;
3654
3655 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3656 return 0;
3657 }
3658
3659 return 1;
3660 }
3661
3662 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3663 "deep comparison". Otherwise return zero. */
3664
3665 int
3666 types_deeply_equal (struct type *type1, struct type *type2)
3667 {
3668 struct gdb_exception except = exception_none;
3669 int result = 0;
3670 struct bcache *cache;
3671 VEC (type_equality_entry_d) *worklist = NULL;
3672 struct type_equality_entry entry;
3673
3674 gdb_assert (type1 != NULL && type2 != NULL);
3675
3676 /* Early exit for the simple case. */
3677 if (type1 == type2)
3678 return 1;
3679
3680 cache = bcache_xmalloc (NULL, NULL);
3681
3682 entry.type1 = type1;
3683 entry.type2 = type2;
3684 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3685
3686 /* check_types_worklist calls several nested helper functions, some
3687 of which can raise a GDB exception, so we just check and rethrow
3688 here. If there is a GDB exception, a comparison is not capable
3689 (or trusted), so exit. */
3690 TRY
3691 {
3692 result = check_types_worklist (&worklist, cache);
3693 }
3694 CATCH (ex, RETURN_MASK_ALL)
3695 {
3696 except = ex;
3697 }
3698 END_CATCH
3699
3700 bcache_xfree (cache);
3701 VEC_free (type_equality_entry_d, worklist);
3702
3703 /* Rethrow if there was a problem. */
3704 if (except.reason < 0)
3705 throw_exception (except);
3706
3707 return result;
3708 }
3709
3710 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3711 Otherwise return one. */
3712
3713 int
3714 type_not_allocated (const struct type *type)
3715 {
3716 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3717
3718 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3719 && !TYPE_DYN_PROP_ADDR (prop));
3720 }
3721
3722 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3723 Otherwise return one. */
3724
3725 int
3726 type_not_associated (const struct type *type)
3727 {
3728 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3729
3730 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3731 && !TYPE_DYN_PROP_ADDR (prop));
3732 }
3733 \f
3734 /* Compare one type (PARM) for compatibility with another (ARG).
3735 * PARM is intended to be the parameter type of a function; and
3736 * ARG is the supplied argument's type. This function tests if
3737 * the latter can be converted to the former.
3738 * VALUE is the argument's value or NULL if none (or called recursively)
3739 *
3740 * Return 0 if they are identical types;
3741 * Otherwise, return an integer which corresponds to how compatible
3742 * PARM is to ARG. The higher the return value, the worse the match.
3743 * Generally the "bad" conversions are all uniformly assigned a 100. */
3744
3745 struct rank
3746 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3747 {
3748 struct rank rank = {0,0};
3749
3750 /* Resolve typedefs */
3751 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3752 parm = check_typedef (parm);
3753 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3754 arg = check_typedef (arg);
3755
3756 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3757 {
3758 if (VALUE_LVAL (value) == not_lval)
3759 {
3760 /* Rvalues should preferably bind to rvalue references or const
3761 lvalue references. */
3762 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3763 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3764 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3765 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3766 else
3767 return INCOMPATIBLE_TYPE_BADNESS;
3768 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3769 }
3770 else
3771 {
3772 /* Lvalues should prefer lvalue overloads. */
3773 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3774 {
3775 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3776 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3777 }
3778 }
3779 }
3780
3781 if (types_equal (parm, arg))
3782 {
3783 struct type *t1 = parm;
3784 struct type *t2 = arg;
3785
3786 /* For pointers and references, compare target type. */
3787 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3788 {
3789 t1 = TYPE_TARGET_TYPE (parm);
3790 t2 = TYPE_TARGET_TYPE (arg);
3791 }
3792
3793 /* Make sure they are CV equal, too. */
3794 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3795 rank.subrank |= CV_CONVERSION_CONST;
3796 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3797 rank.subrank |= CV_CONVERSION_VOLATILE;
3798 if (rank.subrank != 0)
3799 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3800 return EXACT_MATCH_BADNESS;
3801 }
3802
3803 /* See through references, since we can almost make non-references
3804 references. */
3805
3806 if (TYPE_IS_REFERENCE (arg))
3807 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3808 REFERENCE_CONVERSION_BADNESS));
3809 if (TYPE_IS_REFERENCE (parm))
3810 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3811 REFERENCE_CONVERSION_BADNESS));
3812 if (overload_debug)
3813 /* Debugging only. */
3814 fprintf_filtered (gdb_stderr,
3815 "------ Arg is %s [%d], parm is %s [%d]\n",
3816 TYPE_NAME (arg), TYPE_CODE (arg),
3817 TYPE_NAME (parm), TYPE_CODE (parm));
3818
3819 /* x -> y means arg of type x being supplied for parameter of type y. */
3820
3821 switch (TYPE_CODE (parm))
3822 {
3823 case TYPE_CODE_PTR:
3824 switch (TYPE_CODE (arg))
3825 {
3826 case TYPE_CODE_PTR:
3827
3828 /* Allowed pointer conversions are:
3829 (a) pointer to void-pointer conversion. */
3830 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3831 return VOID_PTR_CONVERSION_BADNESS;
3832
3833 /* (b) pointer to ancestor-pointer conversion. */
3834 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3835 TYPE_TARGET_TYPE (arg),
3836 0);
3837 if (rank.subrank >= 0)
3838 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3839
3840 return INCOMPATIBLE_TYPE_BADNESS;
3841 case TYPE_CODE_ARRAY:
3842 {
3843 struct type *t1 = TYPE_TARGET_TYPE (parm);
3844 struct type *t2 = TYPE_TARGET_TYPE (arg);
3845
3846 if (types_equal (t1, t2))
3847 {
3848 /* Make sure they are CV equal. */
3849 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3850 rank.subrank |= CV_CONVERSION_CONST;
3851 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3852 rank.subrank |= CV_CONVERSION_VOLATILE;
3853 if (rank.subrank != 0)
3854 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3855 return EXACT_MATCH_BADNESS;
3856 }
3857 return INCOMPATIBLE_TYPE_BADNESS;
3858 }
3859 case TYPE_CODE_FUNC:
3860 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3861 case TYPE_CODE_INT:
3862 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3863 {
3864 if (value_as_long (value) == 0)
3865 {
3866 /* Null pointer conversion: allow it to be cast to a pointer.
3867 [4.10.1 of C++ standard draft n3290] */
3868 return NULL_POINTER_CONVERSION_BADNESS;
3869 }
3870 else
3871 {
3872 /* If type checking is disabled, allow the conversion. */
3873 if (!strict_type_checking)
3874 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3875 }
3876 }
3877 /* fall through */
3878 case TYPE_CODE_ENUM:
3879 case TYPE_CODE_FLAGS:
3880 case TYPE_CODE_CHAR:
3881 case TYPE_CODE_RANGE:
3882 case TYPE_CODE_BOOL:
3883 default:
3884 return INCOMPATIBLE_TYPE_BADNESS;
3885 }
3886 case TYPE_CODE_ARRAY:
3887 switch (TYPE_CODE (arg))
3888 {
3889 case TYPE_CODE_PTR:
3890 case TYPE_CODE_ARRAY:
3891 return rank_one_type (TYPE_TARGET_TYPE (parm),
3892 TYPE_TARGET_TYPE (arg), NULL);
3893 default:
3894 return INCOMPATIBLE_TYPE_BADNESS;
3895 }
3896 case TYPE_CODE_FUNC:
3897 switch (TYPE_CODE (arg))
3898 {
3899 case TYPE_CODE_PTR: /* funcptr -> func */
3900 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3901 default:
3902 return INCOMPATIBLE_TYPE_BADNESS;
3903 }
3904 case TYPE_CODE_INT:
3905 switch (TYPE_CODE (arg))
3906 {
3907 case TYPE_CODE_INT:
3908 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3909 {
3910 /* Deal with signed, unsigned, and plain chars and
3911 signed and unsigned ints. */
3912 if (TYPE_NOSIGN (parm))
3913 {
3914 /* This case only for character types. */
3915 if (TYPE_NOSIGN (arg))
3916 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3917 else /* signed/unsigned char -> plain char */
3918 return INTEGER_CONVERSION_BADNESS;
3919 }
3920 else if (TYPE_UNSIGNED (parm))
3921 {
3922 if (TYPE_UNSIGNED (arg))
3923 {
3924 /* unsigned int -> unsigned int, or
3925 unsigned long -> unsigned long */
3926 if (integer_types_same_name_p (TYPE_NAME (parm),
3927 TYPE_NAME (arg)))
3928 return EXACT_MATCH_BADNESS;
3929 else if (integer_types_same_name_p (TYPE_NAME (arg),
3930 "int")
3931 && integer_types_same_name_p (TYPE_NAME (parm),
3932 "long"))
3933 /* unsigned int -> unsigned long */
3934 return INTEGER_PROMOTION_BADNESS;
3935 else
3936 /* unsigned long -> unsigned int */
3937 return INTEGER_CONVERSION_BADNESS;
3938 }
3939 else
3940 {
3941 if (integer_types_same_name_p (TYPE_NAME (arg),
3942 "long")
3943 && integer_types_same_name_p (TYPE_NAME (parm),
3944 "int"))
3945 /* signed long -> unsigned int */
3946 return INTEGER_CONVERSION_BADNESS;
3947 else
3948 /* signed int/long -> unsigned int/long */
3949 return INTEGER_CONVERSION_BADNESS;
3950 }
3951 }
3952 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3953 {
3954 if (integer_types_same_name_p (TYPE_NAME (parm),
3955 TYPE_NAME (arg)))
3956 return EXACT_MATCH_BADNESS;
3957 else if (integer_types_same_name_p (TYPE_NAME (arg),
3958 "int")
3959 && integer_types_same_name_p (TYPE_NAME (parm),
3960 "long"))
3961 return INTEGER_PROMOTION_BADNESS;
3962 else
3963 return INTEGER_CONVERSION_BADNESS;
3964 }
3965 else
3966 return INTEGER_CONVERSION_BADNESS;
3967 }
3968 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3969 return INTEGER_PROMOTION_BADNESS;
3970 else
3971 return INTEGER_CONVERSION_BADNESS;
3972 case TYPE_CODE_ENUM:
3973 case TYPE_CODE_FLAGS:
3974 case TYPE_CODE_CHAR:
3975 case TYPE_CODE_RANGE:
3976 case TYPE_CODE_BOOL:
3977 if (TYPE_DECLARED_CLASS (arg))
3978 return INCOMPATIBLE_TYPE_BADNESS;
3979 return INTEGER_PROMOTION_BADNESS;
3980 case TYPE_CODE_FLT:
3981 return INT_FLOAT_CONVERSION_BADNESS;
3982 case TYPE_CODE_PTR:
3983 return NS_POINTER_CONVERSION_BADNESS;
3984 default:
3985 return INCOMPATIBLE_TYPE_BADNESS;
3986 }
3987 break;
3988 case TYPE_CODE_ENUM:
3989 switch (TYPE_CODE (arg))
3990 {
3991 case TYPE_CODE_INT:
3992 case TYPE_CODE_CHAR:
3993 case TYPE_CODE_RANGE:
3994 case TYPE_CODE_BOOL:
3995 case TYPE_CODE_ENUM:
3996 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3997 return INCOMPATIBLE_TYPE_BADNESS;
3998 return INTEGER_CONVERSION_BADNESS;
3999 case TYPE_CODE_FLT:
4000 return INT_FLOAT_CONVERSION_BADNESS;
4001 default:
4002 return INCOMPATIBLE_TYPE_BADNESS;
4003 }
4004 break;
4005 case TYPE_CODE_CHAR:
4006 switch (TYPE_CODE (arg))
4007 {
4008 case TYPE_CODE_RANGE:
4009 case TYPE_CODE_BOOL:
4010 case TYPE_CODE_ENUM:
4011 if (TYPE_DECLARED_CLASS (arg))
4012 return INCOMPATIBLE_TYPE_BADNESS;
4013 return INTEGER_CONVERSION_BADNESS;
4014 case TYPE_CODE_FLT:
4015 return INT_FLOAT_CONVERSION_BADNESS;
4016 case TYPE_CODE_INT:
4017 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4018 return INTEGER_CONVERSION_BADNESS;
4019 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4020 return INTEGER_PROMOTION_BADNESS;
4021 /* >>> !! else fall through !! <<< */
4022 case TYPE_CODE_CHAR:
4023 /* Deal with signed, unsigned, and plain chars for C++ and
4024 with int cases falling through from previous case. */
4025 if (TYPE_NOSIGN (parm))
4026 {
4027 if (TYPE_NOSIGN (arg))
4028 return EXACT_MATCH_BADNESS;
4029 else
4030 return INTEGER_CONVERSION_BADNESS;
4031 }
4032 else if (TYPE_UNSIGNED (parm))
4033 {
4034 if (TYPE_UNSIGNED (arg))
4035 return EXACT_MATCH_BADNESS;
4036 else
4037 return INTEGER_PROMOTION_BADNESS;
4038 }
4039 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4040 return EXACT_MATCH_BADNESS;
4041 else
4042 return INTEGER_CONVERSION_BADNESS;
4043 default:
4044 return INCOMPATIBLE_TYPE_BADNESS;
4045 }
4046 break;
4047 case TYPE_CODE_RANGE:
4048 switch (TYPE_CODE (arg))
4049 {
4050 case TYPE_CODE_INT:
4051 case TYPE_CODE_CHAR:
4052 case TYPE_CODE_RANGE:
4053 case TYPE_CODE_BOOL:
4054 case TYPE_CODE_ENUM:
4055 return INTEGER_CONVERSION_BADNESS;
4056 case TYPE_CODE_FLT:
4057 return INT_FLOAT_CONVERSION_BADNESS;
4058 default:
4059 return INCOMPATIBLE_TYPE_BADNESS;
4060 }
4061 break;
4062 case TYPE_CODE_BOOL:
4063 switch (TYPE_CODE (arg))
4064 {
4065 /* n3290 draft, section 4.12.1 (conv.bool):
4066
4067 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4068 pointer to member type can be converted to a prvalue of type
4069 bool. A zero value, null pointer value, or null member pointer
4070 value is converted to false; any other value is converted to
4071 true. A prvalue of type std::nullptr_t can be converted to a
4072 prvalue of type bool; the resulting value is false." */
4073 case TYPE_CODE_INT:
4074 case TYPE_CODE_CHAR:
4075 case TYPE_CODE_ENUM:
4076 case TYPE_CODE_FLT:
4077 case TYPE_CODE_MEMBERPTR:
4078 case TYPE_CODE_PTR:
4079 return BOOL_CONVERSION_BADNESS;
4080 case TYPE_CODE_RANGE:
4081 return INCOMPATIBLE_TYPE_BADNESS;
4082 case TYPE_CODE_BOOL:
4083 return EXACT_MATCH_BADNESS;
4084 default:
4085 return INCOMPATIBLE_TYPE_BADNESS;
4086 }
4087 break;
4088 case TYPE_CODE_FLT:
4089 switch (TYPE_CODE (arg))
4090 {
4091 case TYPE_CODE_FLT:
4092 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4093 return FLOAT_PROMOTION_BADNESS;
4094 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4095 return EXACT_MATCH_BADNESS;
4096 else
4097 return FLOAT_CONVERSION_BADNESS;
4098 case TYPE_CODE_INT:
4099 case TYPE_CODE_BOOL:
4100 case TYPE_CODE_ENUM:
4101 case TYPE_CODE_RANGE:
4102 case TYPE_CODE_CHAR:
4103 return INT_FLOAT_CONVERSION_BADNESS;
4104 default:
4105 return INCOMPATIBLE_TYPE_BADNESS;
4106 }
4107 break;
4108 case TYPE_CODE_COMPLEX:
4109 switch (TYPE_CODE (arg))
4110 { /* Strictly not needed for C++, but... */
4111 case TYPE_CODE_FLT:
4112 return FLOAT_PROMOTION_BADNESS;
4113 case TYPE_CODE_COMPLEX:
4114 return EXACT_MATCH_BADNESS;
4115 default:
4116 return INCOMPATIBLE_TYPE_BADNESS;
4117 }
4118 break;
4119 case TYPE_CODE_STRUCT:
4120 switch (TYPE_CODE (arg))
4121 {
4122 case TYPE_CODE_STRUCT:
4123 /* Check for derivation */
4124 rank.subrank = distance_to_ancestor (parm, arg, 0);
4125 if (rank.subrank >= 0)
4126 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4127 /* else fall through */
4128 default:
4129 return INCOMPATIBLE_TYPE_BADNESS;
4130 }
4131 break;
4132 case TYPE_CODE_UNION:
4133 switch (TYPE_CODE (arg))
4134 {
4135 case TYPE_CODE_UNION:
4136 default:
4137 return INCOMPATIBLE_TYPE_BADNESS;
4138 }
4139 break;
4140 case TYPE_CODE_MEMBERPTR:
4141 switch (TYPE_CODE (arg))
4142 {
4143 default:
4144 return INCOMPATIBLE_TYPE_BADNESS;
4145 }
4146 break;
4147 case TYPE_CODE_METHOD:
4148 switch (TYPE_CODE (arg))
4149 {
4150
4151 default:
4152 return INCOMPATIBLE_TYPE_BADNESS;
4153 }
4154 break;
4155 case TYPE_CODE_REF:
4156 switch (TYPE_CODE (arg))
4157 {
4158
4159 default:
4160 return INCOMPATIBLE_TYPE_BADNESS;
4161 }
4162
4163 break;
4164 case TYPE_CODE_SET:
4165 switch (TYPE_CODE (arg))
4166 {
4167 /* Not in C++ */
4168 case TYPE_CODE_SET:
4169 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4170 TYPE_FIELD_TYPE (arg, 0), NULL);
4171 default:
4172 return INCOMPATIBLE_TYPE_BADNESS;
4173 }
4174 break;
4175 case TYPE_CODE_VOID:
4176 default:
4177 return INCOMPATIBLE_TYPE_BADNESS;
4178 } /* switch (TYPE_CODE (arg)) */
4179 }
4180
4181 /* End of functions for overload resolution. */
4182 \f
4183 /* Routines to pretty-print types. */
4184
4185 static void
4186 print_bit_vector (B_TYPE *bits, int nbits)
4187 {
4188 int bitno;
4189
4190 for (bitno = 0; bitno < nbits; bitno++)
4191 {
4192 if ((bitno % 8) == 0)
4193 {
4194 puts_filtered (" ");
4195 }
4196 if (B_TST (bits, bitno))
4197 printf_filtered (("1"));
4198 else
4199 printf_filtered (("0"));
4200 }
4201 }
4202
4203 /* Note the first arg should be the "this" pointer, we may not want to
4204 include it since we may get into a infinitely recursive
4205 situation. */
4206
4207 static void
4208 print_args (struct field *args, int nargs, int spaces)
4209 {
4210 if (args != NULL)
4211 {
4212 int i;
4213
4214 for (i = 0; i < nargs; i++)
4215 {
4216 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4217 args[i].name != NULL ? args[i].name : "<NULL>");
4218 recursive_dump_type (args[i].type, spaces + 2);
4219 }
4220 }
4221 }
4222
4223 int
4224 field_is_static (struct field *f)
4225 {
4226 /* "static" fields are the fields whose location is not relative
4227 to the address of the enclosing struct. It would be nice to
4228 have a dedicated flag that would be set for static fields when
4229 the type is being created. But in practice, checking the field
4230 loc_kind should give us an accurate answer. */
4231 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4232 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4233 }
4234
4235 static void
4236 dump_fn_fieldlists (struct type *type, int spaces)
4237 {
4238 int method_idx;
4239 int overload_idx;
4240 struct fn_field *f;
4241
4242 printfi_filtered (spaces, "fn_fieldlists ");
4243 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4244 printf_filtered ("\n");
4245 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4246 {
4247 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4248 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4249 method_idx,
4250 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4251 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4252 gdb_stdout);
4253 printf_filtered (_(") length %d\n"),
4254 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4255 for (overload_idx = 0;
4256 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4257 overload_idx++)
4258 {
4259 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4260 overload_idx,
4261 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4262 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4263 gdb_stdout);
4264 printf_filtered (")\n");
4265 printfi_filtered (spaces + 8, "type ");
4266 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4267 gdb_stdout);
4268 printf_filtered ("\n");
4269
4270 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4271 spaces + 8 + 2);
4272
4273 printfi_filtered (spaces + 8, "args ");
4274 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4275 gdb_stdout);
4276 printf_filtered ("\n");
4277 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4278 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4279 spaces + 8 + 2);
4280 printfi_filtered (spaces + 8, "fcontext ");
4281 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4282 gdb_stdout);
4283 printf_filtered ("\n");
4284
4285 printfi_filtered (spaces + 8, "is_const %d\n",
4286 TYPE_FN_FIELD_CONST (f, overload_idx));
4287 printfi_filtered (spaces + 8, "is_volatile %d\n",
4288 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4289 printfi_filtered (spaces + 8, "is_private %d\n",
4290 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4291 printfi_filtered (spaces + 8, "is_protected %d\n",
4292 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4293 printfi_filtered (spaces + 8, "is_stub %d\n",
4294 TYPE_FN_FIELD_STUB (f, overload_idx));
4295 printfi_filtered (spaces + 8, "voffset %u\n",
4296 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4297 }
4298 }
4299 }
4300
4301 static void
4302 print_cplus_stuff (struct type *type, int spaces)
4303 {
4304 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4305 printfi_filtered (spaces, "vptr_basetype ");
4306 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4307 puts_filtered ("\n");
4308 if (TYPE_VPTR_BASETYPE (type) != NULL)
4309 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4310
4311 printfi_filtered (spaces, "n_baseclasses %d\n",
4312 TYPE_N_BASECLASSES (type));
4313 printfi_filtered (spaces, "nfn_fields %d\n",
4314 TYPE_NFN_FIELDS (type));
4315 if (TYPE_N_BASECLASSES (type) > 0)
4316 {
4317 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4318 TYPE_N_BASECLASSES (type));
4319 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4320 gdb_stdout);
4321 printf_filtered (")");
4322
4323 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4324 TYPE_N_BASECLASSES (type));
4325 puts_filtered ("\n");
4326 }
4327 if (TYPE_NFIELDS (type) > 0)
4328 {
4329 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4330 {
4331 printfi_filtered (spaces,
4332 "private_field_bits (%d bits at *",
4333 TYPE_NFIELDS (type));
4334 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4335 gdb_stdout);
4336 printf_filtered (")");
4337 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4338 TYPE_NFIELDS (type));
4339 puts_filtered ("\n");
4340 }
4341 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4342 {
4343 printfi_filtered (spaces,
4344 "protected_field_bits (%d bits at *",
4345 TYPE_NFIELDS (type));
4346 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4347 gdb_stdout);
4348 printf_filtered (")");
4349 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4350 TYPE_NFIELDS (type));
4351 puts_filtered ("\n");
4352 }
4353 }
4354 if (TYPE_NFN_FIELDS (type) > 0)
4355 {
4356 dump_fn_fieldlists (type, spaces);
4357 }
4358 }
4359
4360 /* Print the contents of the TYPE's type_specific union, assuming that
4361 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4362
4363 static void
4364 print_gnat_stuff (struct type *type, int spaces)
4365 {
4366 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4367
4368 if (descriptive_type == NULL)
4369 printfi_filtered (spaces + 2, "no descriptive type\n");
4370 else
4371 {
4372 printfi_filtered (spaces + 2, "descriptive type\n");
4373 recursive_dump_type (descriptive_type, spaces + 4);
4374 }
4375 }
4376
4377 static struct obstack dont_print_type_obstack;
4378
4379 void
4380 recursive_dump_type (struct type *type, int spaces)
4381 {
4382 int idx;
4383
4384 if (spaces == 0)
4385 obstack_begin (&dont_print_type_obstack, 0);
4386
4387 if (TYPE_NFIELDS (type) > 0
4388 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4389 {
4390 struct type **first_dont_print
4391 = (struct type **) obstack_base (&dont_print_type_obstack);
4392
4393 int i = (struct type **)
4394 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4395
4396 while (--i >= 0)
4397 {
4398 if (type == first_dont_print[i])
4399 {
4400 printfi_filtered (spaces, "type node ");
4401 gdb_print_host_address (type, gdb_stdout);
4402 printf_filtered (_(" <same as already seen type>\n"));
4403 return;
4404 }
4405 }
4406
4407 obstack_ptr_grow (&dont_print_type_obstack, type);
4408 }
4409
4410 printfi_filtered (spaces, "type node ");
4411 gdb_print_host_address (type, gdb_stdout);
4412 printf_filtered ("\n");
4413 printfi_filtered (spaces, "name '%s' (",
4414 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4415 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4416 printf_filtered (")\n");
4417 printfi_filtered (spaces, "tagname '%s' (",
4418 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4419 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4420 printf_filtered (")\n");
4421 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4422 switch (TYPE_CODE (type))
4423 {
4424 case TYPE_CODE_UNDEF:
4425 printf_filtered ("(TYPE_CODE_UNDEF)");
4426 break;
4427 case TYPE_CODE_PTR:
4428 printf_filtered ("(TYPE_CODE_PTR)");
4429 break;
4430 case TYPE_CODE_ARRAY:
4431 printf_filtered ("(TYPE_CODE_ARRAY)");
4432 break;
4433 case TYPE_CODE_STRUCT:
4434 printf_filtered ("(TYPE_CODE_STRUCT)");
4435 break;
4436 case TYPE_CODE_UNION:
4437 printf_filtered ("(TYPE_CODE_UNION)");
4438 break;
4439 case TYPE_CODE_ENUM:
4440 printf_filtered ("(TYPE_CODE_ENUM)");
4441 break;
4442 case TYPE_CODE_FLAGS:
4443 printf_filtered ("(TYPE_CODE_FLAGS)");
4444 break;
4445 case TYPE_CODE_FUNC:
4446 printf_filtered ("(TYPE_CODE_FUNC)");
4447 break;
4448 case TYPE_CODE_INT:
4449 printf_filtered ("(TYPE_CODE_INT)");
4450 break;
4451 case TYPE_CODE_FLT:
4452 printf_filtered ("(TYPE_CODE_FLT)");
4453 break;
4454 case TYPE_CODE_VOID:
4455 printf_filtered ("(TYPE_CODE_VOID)");
4456 break;
4457 case TYPE_CODE_SET:
4458 printf_filtered ("(TYPE_CODE_SET)");
4459 break;
4460 case TYPE_CODE_RANGE:
4461 printf_filtered ("(TYPE_CODE_RANGE)");
4462 break;
4463 case TYPE_CODE_STRING:
4464 printf_filtered ("(TYPE_CODE_STRING)");
4465 break;
4466 case TYPE_CODE_ERROR:
4467 printf_filtered ("(TYPE_CODE_ERROR)");
4468 break;
4469 case TYPE_CODE_MEMBERPTR:
4470 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4471 break;
4472 case TYPE_CODE_METHODPTR:
4473 printf_filtered ("(TYPE_CODE_METHODPTR)");
4474 break;
4475 case TYPE_CODE_METHOD:
4476 printf_filtered ("(TYPE_CODE_METHOD)");
4477 break;
4478 case TYPE_CODE_REF:
4479 printf_filtered ("(TYPE_CODE_REF)");
4480 break;
4481 case TYPE_CODE_CHAR:
4482 printf_filtered ("(TYPE_CODE_CHAR)");
4483 break;
4484 case TYPE_CODE_BOOL:
4485 printf_filtered ("(TYPE_CODE_BOOL)");
4486 break;
4487 case TYPE_CODE_COMPLEX:
4488 printf_filtered ("(TYPE_CODE_COMPLEX)");
4489 break;
4490 case TYPE_CODE_TYPEDEF:
4491 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4492 break;
4493 case TYPE_CODE_NAMESPACE:
4494 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4495 break;
4496 default:
4497 printf_filtered ("(UNKNOWN TYPE CODE)");
4498 break;
4499 }
4500 puts_filtered ("\n");
4501 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4502 if (TYPE_OBJFILE_OWNED (type))
4503 {
4504 printfi_filtered (spaces, "objfile ");
4505 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4506 }
4507 else
4508 {
4509 printfi_filtered (spaces, "gdbarch ");
4510 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4511 }
4512 printf_filtered ("\n");
4513 printfi_filtered (spaces, "target_type ");
4514 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4515 printf_filtered ("\n");
4516 if (TYPE_TARGET_TYPE (type) != NULL)
4517 {
4518 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4519 }
4520 printfi_filtered (spaces, "pointer_type ");
4521 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4522 printf_filtered ("\n");
4523 printfi_filtered (spaces, "reference_type ");
4524 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4525 printf_filtered ("\n");
4526 printfi_filtered (spaces, "type_chain ");
4527 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4528 printf_filtered ("\n");
4529 printfi_filtered (spaces, "instance_flags 0x%x",
4530 TYPE_INSTANCE_FLAGS (type));
4531 if (TYPE_CONST (type))
4532 {
4533 puts_filtered (" TYPE_CONST");
4534 }
4535 if (TYPE_VOLATILE (type))
4536 {
4537 puts_filtered (" TYPE_VOLATILE");
4538 }
4539 if (TYPE_CODE_SPACE (type))
4540 {
4541 puts_filtered (" TYPE_CODE_SPACE");
4542 }
4543 if (TYPE_DATA_SPACE (type))
4544 {
4545 puts_filtered (" TYPE_DATA_SPACE");
4546 }
4547 if (TYPE_ADDRESS_CLASS_1 (type))
4548 {
4549 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4550 }
4551 if (TYPE_ADDRESS_CLASS_2 (type))
4552 {
4553 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4554 }
4555 if (TYPE_RESTRICT (type))
4556 {
4557 puts_filtered (" TYPE_RESTRICT");
4558 }
4559 if (TYPE_ATOMIC (type))
4560 {
4561 puts_filtered (" TYPE_ATOMIC");
4562 }
4563 puts_filtered ("\n");
4564
4565 printfi_filtered (spaces, "flags");
4566 if (TYPE_UNSIGNED (type))
4567 {
4568 puts_filtered (" TYPE_UNSIGNED");
4569 }
4570 if (TYPE_NOSIGN (type))
4571 {
4572 puts_filtered (" TYPE_NOSIGN");
4573 }
4574 if (TYPE_STUB (type))
4575 {
4576 puts_filtered (" TYPE_STUB");
4577 }
4578 if (TYPE_TARGET_STUB (type))
4579 {
4580 puts_filtered (" TYPE_TARGET_STUB");
4581 }
4582 if (TYPE_PROTOTYPED (type))
4583 {
4584 puts_filtered (" TYPE_PROTOTYPED");
4585 }
4586 if (TYPE_INCOMPLETE (type))
4587 {
4588 puts_filtered (" TYPE_INCOMPLETE");
4589 }
4590 if (TYPE_VARARGS (type))
4591 {
4592 puts_filtered (" TYPE_VARARGS");
4593 }
4594 /* This is used for things like AltiVec registers on ppc. Gcc emits
4595 an attribute for the array type, which tells whether or not we
4596 have a vector, instead of a regular array. */
4597 if (TYPE_VECTOR (type))
4598 {
4599 puts_filtered (" TYPE_VECTOR");
4600 }
4601 if (TYPE_FIXED_INSTANCE (type))
4602 {
4603 puts_filtered (" TYPE_FIXED_INSTANCE");
4604 }
4605 if (TYPE_STUB_SUPPORTED (type))
4606 {
4607 puts_filtered (" TYPE_STUB_SUPPORTED");
4608 }
4609 if (TYPE_NOTTEXT (type))
4610 {
4611 puts_filtered (" TYPE_NOTTEXT");
4612 }
4613 puts_filtered ("\n");
4614 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4615 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4616 puts_filtered ("\n");
4617 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4618 {
4619 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4620 printfi_filtered (spaces + 2,
4621 "[%d] enumval %s type ",
4622 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4623 else
4624 printfi_filtered (spaces + 2,
4625 "[%d] bitpos %s bitsize %d type ",
4626 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4627 TYPE_FIELD_BITSIZE (type, idx));
4628 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4629 printf_filtered (" name '%s' (",
4630 TYPE_FIELD_NAME (type, idx) != NULL
4631 ? TYPE_FIELD_NAME (type, idx)
4632 : "<NULL>");
4633 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4634 printf_filtered (")\n");
4635 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4636 {
4637 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4638 }
4639 }
4640 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4641 {
4642 printfi_filtered (spaces, "low %s%s high %s%s\n",
4643 plongest (TYPE_LOW_BOUND (type)),
4644 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4645 plongest (TYPE_HIGH_BOUND (type)),
4646 TYPE_HIGH_BOUND_UNDEFINED (type)
4647 ? " (undefined)" : "");
4648 }
4649
4650 switch (TYPE_SPECIFIC_FIELD (type))
4651 {
4652 case TYPE_SPECIFIC_CPLUS_STUFF:
4653 printfi_filtered (spaces, "cplus_stuff ");
4654 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4655 gdb_stdout);
4656 puts_filtered ("\n");
4657 print_cplus_stuff (type, spaces);
4658 break;
4659
4660 case TYPE_SPECIFIC_GNAT_STUFF:
4661 printfi_filtered (spaces, "gnat_stuff ");
4662 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4663 puts_filtered ("\n");
4664 print_gnat_stuff (type, spaces);
4665 break;
4666
4667 case TYPE_SPECIFIC_FLOATFORMAT:
4668 printfi_filtered (spaces, "floatformat ");
4669 if (TYPE_FLOATFORMAT (type) == NULL
4670 || TYPE_FLOATFORMAT (type)->name == NULL)
4671 puts_filtered ("(null)");
4672 else
4673 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4674 puts_filtered ("\n");
4675 break;
4676
4677 case TYPE_SPECIFIC_FUNC:
4678 printfi_filtered (spaces, "calling_convention %d\n",
4679 TYPE_CALLING_CONVENTION (type));
4680 /* tail_call_list is not printed. */
4681 break;
4682
4683 case TYPE_SPECIFIC_SELF_TYPE:
4684 printfi_filtered (spaces, "self_type ");
4685 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4686 puts_filtered ("\n");
4687 break;
4688 }
4689
4690 if (spaces == 0)
4691 obstack_free (&dont_print_type_obstack, NULL);
4692 }
4693 \f
4694 /* Trivial helpers for the libiberty hash table, for mapping one
4695 type to another. */
4696
4697 struct type_pair
4698 {
4699 struct type *old, *newobj;
4700 };
4701
4702 static hashval_t
4703 type_pair_hash (const void *item)
4704 {
4705 const struct type_pair *pair = (const struct type_pair *) item;
4706
4707 return htab_hash_pointer (pair->old);
4708 }
4709
4710 static int
4711 type_pair_eq (const void *item_lhs, const void *item_rhs)
4712 {
4713 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4714 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4715
4716 return lhs->old == rhs->old;
4717 }
4718
4719 /* Allocate the hash table used by copy_type_recursive to walk
4720 types without duplicates. We use OBJFILE's obstack, because
4721 OBJFILE is about to be deleted. */
4722
4723 htab_t
4724 create_copied_types_hash (struct objfile *objfile)
4725 {
4726 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4727 NULL, &objfile->objfile_obstack,
4728 hashtab_obstack_allocate,
4729 dummy_obstack_deallocate);
4730 }
4731
4732 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4733
4734 static struct dynamic_prop_list *
4735 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4736 struct dynamic_prop_list *list)
4737 {
4738 struct dynamic_prop_list *copy = list;
4739 struct dynamic_prop_list **node_ptr = &copy;
4740
4741 while (*node_ptr != NULL)
4742 {
4743 struct dynamic_prop_list *node_copy;
4744
4745 node_copy = ((struct dynamic_prop_list *)
4746 obstack_copy (objfile_obstack, *node_ptr,
4747 sizeof (struct dynamic_prop_list)));
4748 node_copy->prop = (*node_ptr)->prop;
4749 *node_ptr = node_copy;
4750
4751 node_ptr = &node_copy->next;
4752 }
4753
4754 return copy;
4755 }
4756
4757 /* Recursively copy (deep copy) TYPE, if it is associated with
4758 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4759 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4760 it is not associated with OBJFILE. */
4761
4762 struct type *
4763 copy_type_recursive (struct objfile *objfile,
4764 struct type *type,
4765 htab_t copied_types)
4766 {
4767 struct type_pair *stored, pair;
4768 void **slot;
4769 struct type *new_type;
4770
4771 if (! TYPE_OBJFILE_OWNED (type))
4772 return type;
4773
4774 /* This type shouldn't be pointing to any types in other objfiles;
4775 if it did, the type might disappear unexpectedly. */
4776 gdb_assert (TYPE_OBJFILE (type) == objfile);
4777
4778 pair.old = type;
4779 slot = htab_find_slot (copied_types, &pair, INSERT);
4780 if (*slot != NULL)
4781 return ((struct type_pair *) *slot)->newobj;
4782
4783 new_type = alloc_type_arch (get_type_arch (type));
4784
4785 /* We must add the new type to the hash table immediately, in case
4786 we encounter this type again during a recursive call below. */
4787 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4788 stored->old = type;
4789 stored->newobj = new_type;
4790 *slot = stored;
4791
4792 /* Copy the common fields of types. For the main type, we simply
4793 copy the entire thing and then update specific fields as needed. */
4794 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4795 TYPE_OBJFILE_OWNED (new_type) = 0;
4796 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4797
4798 if (TYPE_NAME (type))
4799 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4800 if (TYPE_TAG_NAME (type))
4801 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4802
4803 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4804 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4805
4806 /* Copy the fields. */
4807 if (TYPE_NFIELDS (type))
4808 {
4809 int i, nfields;
4810
4811 nfields = TYPE_NFIELDS (type);
4812 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4813 for (i = 0; i < nfields; i++)
4814 {
4815 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4816 TYPE_FIELD_ARTIFICIAL (type, i);
4817 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4818 if (TYPE_FIELD_TYPE (type, i))
4819 TYPE_FIELD_TYPE (new_type, i)
4820 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4821 copied_types);
4822 if (TYPE_FIELD_NAME (type, i))
4823 TYPE_FIELD_NAME (new_type, i) =
4824 xstrdup (TYPE_FIELD_NAME (type, i));
4825 switch (TYPE_FIELD_LOC_KIND (type, i))
4826 {
4827 case FIELD_LOC_KIND_BITPOS:
4828 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4829 TYPE_FIELD_BITPOS (type, i));
4830 break;
4831 case FIELD_LOC_KIND_ENUMVAL:
4832 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4833 TYPE_FIELD_ENUMVAL (type, i));
4834 break;
4835 case FIELD_LOC_KIND_PHYSADDR:
4836 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4837 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4838 break;
4839 case FIELD_LOC_KIND_PHYSNAME:
4840 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4841 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4842 i)));
4843 break;
4844 default:
4845 internal_error (__FILE__, __LINE__,
4846 _("Unexpected type field location kind: %d"),
4847 TYPE_FIELD_LOC_KIND (type, i));
4848 }
4849 }
4850 }
4851
4852 /* For range types, copy the bounds information. */
4853 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4854 {
4855 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4856 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4857 }
4858
4859 if (TYPE_DYN_PROP_LIST (type) != NULL)
4860 TYPE_DYN_PROP_LIST (new_type)
4861 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4862 TYPE_DYN_PROP_LIST (type));
4863
4864
4865 /* Copy pointers to other types. */
4866 if (TYPE_TARGET_TYPE (type))
4867 TYPE_TARGET_TYPE (new_type) =
4868 copy_type_recursive (objfile,
4869 TYPE_TARGET_TYPE (type),
4870 copied_types);
4871
4872 /* Maybe copy the type_specific bits.
4873
4874 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4875 base classes and methods. There's no fundamental reason why we
4876 can't, but at the moment it is not needed. */
4877
4878 switch (TYPE_SPECIFIC_FIELD (type))
4879 {
4880 case TYPE_SPECIFIC_NONE:
4881 break;
4882 case TYPE_SPECIFIC_FUNC:
4883 INIT_FUNC_SPECIFIC (new_type);
4884 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4885 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4886 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4887 break;
4888 case TYPE_SPECIFIC_FLOATFORMAT:
4889 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4890 break;
4891 case TYPE_SPECIFIC_CPLUS_STUFF:
4892 INIT_CPLUS_SPECIFIC (new_type);
4893 break;
4894 case TYPE_SPECIFIC_GNAT_STUFF:
4895 INIT_GNAT_SPECIFIC (new_type);
4896 break;
4897 case TYPE_SPECIFIC_SELF_TYPE:
4898 set_type_self_type (new_type,
4899 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4900 copied_types));
4901 break;
4902 default:
4903 gdb_assert_not_reached ("bad type_specific_kind");
4904 }
4905
4906 return new_type;
4907 }
4908
4909 /* Make a copy of the given TYPE, except that the pointer & reference
4910 types are not preserved.
4911
4912 This function assumes that the given type has an associated objfile.
4913 This objfile is used to allocate the new type. */
4914
4915 struct type *
4916 copy_type (const struct type *type)
4917 {
4918 struct type *new_type;
4919
4920 gdb_assert (TYPE_OBJFILE_OWNED (type));
4921
4922 new_type = alloc_type_copy (type);
4923 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4924 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4925 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4926 sizeof (struct main_type));
4927 if (TYPE_DYN_PROP_LIST (type) != NULL)
4928 TYPE_DYN_PROP_LIST (new_type)
4929 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4930 TYPE_DYN_PROP_LIST (type));
4931
4932 return new_type;
4933 }
4934 \f
4935 /* Helper functions to initialize architecture-specific types. */
4936
4937 /* Allocate a type structure associated with GDBARCH and set its
4938 CODE, LENGTH, and NAME fields. */
4939
4940 struct type *
4941 arch_type (struct gdbarch *gdbarch,
4942 enum type_code code, int bit, const char *name)
4943 {
4944 struct type *type;
4945
4946 type = alloc_type_arch (gdbarch);
4947 set_type_code (type, code);
4948 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
4949 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
4950
4951 if (name)
4952 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4953
4954 return type;
4955 }
4956
4957 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4958 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4959 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4960
4961 struct type *
4962 arch_integer_type (struct gdbarch *gdbarch,
4963 int bit, int unsigned_p, const char *name)
4964 {
4965 struct type *t;
4966
4967 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
4968 if (unsigned_p)
4969 TYPE_UNSIGNED (t) = 1;
4970
4971 return t;
4972 }
4973
4974 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4975 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4976 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4977
4978 struct type *
4979 arch_character_type (struct gdbarch *gdbarch,
4980 int bit, int unsigned_p, const char *name)
4981 {
4982 struct type *t;
4983
4984 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
4985 if (unsigned_p)
4986 TYPE_UNSIGNED (t) = 1;
4987
4988 return t;
4989 }
4990
4991 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4992 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4993 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4994
4995 struct type *
4996 arch_boolean_type (struct gdbarch *gdbarch,
4997 int bit, int unsigned_p, const char *name)
4998 {
4999 struct type *t;
5000
5001 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5002 if (unsigned_p)
5003 TYPE_UNSIGNED (t) = 1;
5004
5005 return t;
5006 }
5007
5008 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5009 BIT is the type size in bits; if BIT equals -1, the size is
5010 determined by the floatformat. NAME is the type name. Set the
5011 TYPE_FLOATFORMAT from FLOATFORMATS. */
5012
5013 struct type *
5014 arch_float_type (struct gdbarch *gdbarch,
5015 int bit, const char *name,
5016 const struct floatformat **floatformats)
5017 {
5018 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5019 struct type *t;
5020
5021 bit = verify_floatformat (bit, fmt);
5022 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5023 TYPE_FLOATFORMAT (t) = fmt;
5024
5025 return t;
5026 }
5027
5028 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5029 BIT is the type size in bits. NAME is the type name. */
5030
5031 struct type *
5032 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5033 {
5034 struct type *t;
5035
5036 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5037 return t;
5038 }
5039
5040 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5041 NAME is the type name. TARGET_TYPE is the component float type. */
5042
5043 struct type *
5044 arch_complex_type (struct gdbarch *gdbarch,
5045 const char *name, struct type *target_type)
5046 {
5047 struct type *t;
5048
5049 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5050 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5051 TYPE_TARGET_TYPE (t) = target_type;
5052 return t;
5053 }
5054
5055 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5056 BIT is the pointer type size in bits. NAME is the type name.
5057 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5058 TYPE_UNSIGNED flag. */
5059
5060 struct type *
5061 arch_pointer_type (struct gdbarch *gdbarch,
5062 int bit, const char *name, struct type *target_type)
5063 {
5064 struct type *t;
5065
5066 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5067 TYPE_TARGET_TYPE (t) = target_type;
5068 TYPE_UNSIGNED (t) = 1;
5069 return t;
5070 }
5071
5072 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5073 NAME is the type name. BIT is the size of the flag word in bits. */
5074
5075 struct type *
5076 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5077 {
5078 struct type *type;
5079
5080 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5081 TYPE_UNSIGNED (type) = 1;
5082 TYPE_NFIELDS (type) = 0;
5083 /* Pre-allocate enough space assuming every field is one bit. */
5084 TYPE_FIELDS (type)
5085 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5086
5087 return type;
5088 }
5089
5090 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5091 position BITPOS is called NAME. Pass NAME as "" for fields that
5092 should not be printed. */
5093
5094 void
5095 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5096 struct type *field_type, const char *name)
5097 {
5098 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5099 int field_nr = TYPE_NFIELDS (type);
5100
5101 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5102 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5103 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5104 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5105 gdb_assert (name != NULL);
5106
5107 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5108 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5109 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5110 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5111 ++TYPE_NFIELDS (type);
5112 }
5113
5114 /* Special version of append_flags_type_field to add a flag field.
5115 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5116 position BITPOS is called NAME. */
5117
5118 void
5119 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5120 {
5121 struct gdbarch *gdbarch = get_type_arch (type);
5122
5123 append_flags_type_field (type, bitpos, 1,
5124 builtin_type (gdbarch)->builtin_bool,
5125 name);
5126 }
5127
5128 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5129 specified by CODE) associated with GDBARCH. NAME is the type name. */
5130
5131 struct type *
5132 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5133 enum type_code code)
5134 {
5135 struct type *t;
5136
5137 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5138 t = arch_type (gdbarch, code, 0, NULL);
5139 TYPE_TAG_NAME (t) = name;
5140 INIT_CPLUS_SPECIFIC (t);
5141 return t;
5142 }
5143
5144 /* Add new field with name NAME and type FIELD to composite type T.
5145 Do not set the field's position or adjust the type's length;
5146 the caller should do so. Return the new field. */
5147
5148 struct field *
5149 append_composite_type_field_raw (struct type *t, const char *name,
5150 struct type *field)
5151 {
5152 struct field *f;
5153
5154 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5155 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5156 TYPE_NFIELDS (t));
5157 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5158 memset (f, 0, sizeof f[0]);
5159 FIELD_TYPE (f[0]) = field;
5160 FIELD_NAME (f[0]) = name;
5161 return f;
5162 }
5163
5164 /* Add new field with name NAME and type FIELD to composite type T.
5165 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5166
5167 void
5168 append_composite_type_field_aligned (struct type *t, const char *name,
5169 struct type *field, int alignment)
5170 {
5171 struct field *f = append_composite_type_field_raw (t, name, field);
5172
5173 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5174 {
5175 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5176 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5177 }
5178 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5179 {
5180 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5181 if (TYPE_NFIELDS (t) > 1)
5182 {
5183 SET_FIELD_BITPOS (f[0],
5184 (FIELD_BITPOS (f[-1])
5185 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5186 * TARGET_CHAR_BIT)));
5187
5188 if (alignment)
5189 {
5190 int left;
5191
5192 alignment *= TARGET_CHAR_BIT;
5193 left = FIELD_BITPOS (f[0]) % alignment;
5194
5195 if (left)
5196 {
5197 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5198 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5199 }
5200 }
5201 }
5202 }
5203 }
5204
5205 /* Add new field with name NAME and type FIELD to composite type T. */
5206
5207 void
5208 append_composite_type_field (struct type *t, const char *name,
5209 struct type *field)
5210 {
5211 append_composite_type_field_aligned (t, name, field, 0);
5212 }
5213
5214 static struct gdbarch_data *gdbtypes_data;
5215
5216 const struct builtin_type *
5217 builtin_type (struct gdbarch *gdbarch)
5218 {
5219 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5220 }
5221
5222 static void *
5223 gdbtypes_post_init (struct gdbarch *gdbarch)
5224 {
5225 struct builtin_type *builtin_type
5226 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5227
5228 /* Basic types. */
5229 builtin_type->builtin_void
5230 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5231 builtin_type->builtin_char
5232 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5233 !gdbarch_char_signed (gdbarch), "char");
5234 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5235 builtin_type->builtin_signed_char
5236 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5237 0, "signed char");
5238 builtin_type->builtin_unsigned_char
5239 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5240 1, "unsigned char");
5241 builtin_type->builtin_short
5242 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5243 0, "short");
5244 builtin_type->builtin_unsigned_short
5245 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5246 1, "unsigned short");
5247 builtin_type->builtin_int
5248 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5249 0, "int");
5250 builtin_type->builtin_unsigned_int
5251 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5252 1, "unsigned int");
5253 builtin_type->builtin_long
5254 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5255 0, "long");
5256 builtin_type->builtin_unsigned_long
5257 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5258 1, "unsigned long");
5259 builtin_type->builtin_long_long
5260 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5261 0, "long long");
5262 builtin_type->builtin_unsigned_long_long
5263 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5264 1, "unsigned long long");
5265 builtin_type->builtin_float
5266 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5267 "float", gdbarch_float_format (gdbarch));
5268 builtin_type->builtin_double
5269 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5270 "double", gdbarch_double_format (gdbarch));
5271 builtin_type->builtin_long_double
5272 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5273 "long double", gdbarch_long_double_format (gdbarch));
5274 builtin_type->builtin_complex
5275 = arch_complex_type (gdbarch, "complex",
5276 builtin_type->builtin_float);
5277 builtin_type->builtin_double_complex
5278 = arch_complex_type (gdbarch, "double complex",
5279 builtin_type->builtin_double);
5280 builtin_type->builtin_string
5281 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5282 builtin_type->builtin_bool
5283 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5284
5285 /* The following three are about decimal floating point types, which
5286 are 32-bits, 64-bits and 128-bits respectively. */
5287 builtin_type->builtin_decfloat
5288 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5289 builtin_type->builtin_decdouble
5290 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5291 builtin_type->builtin_declong
5292 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5293
5294 /* "True" character types. */
5295 builtin_type->builtin_true_char
5296 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5297 builtin_type->builtin_true_unsigned_char
5298 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5299
5300 /* Fixed-size integer types. */
5301 builtin_type->builtin_int0
5302 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5303 builtin_type->builtin_int8
5304 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5305 builtin_type->builtin_uint8
5306 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5307 builtin_type->builtin_int16
5308 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5309 builtin_type->builtin_uint16
5310 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5311 builtin_type->builtin_int32
5312 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5313 builtin_type->builtin_uint32
5314 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5315 builtin_type->builtin_int64
5316 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5317 builtin_type->builtin_uint64
5318 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5319 builtin_type->builtin_int128
5320 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5321 builtin_type->builtin_uint128
5322 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5323 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5324 TYPE_INSTANCE_FLAG_NOTTEXT;
5325 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5326 TYPE_INSTANCE_FLAG_NOTTEXT;
5327
5328 /* Wide character types. */
5329 builtin_type->builtin_char16
5330 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5331 builtin_type->builtin_char32
5332 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5333 builtin_type->builtin_wchar
5334 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5335 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5336
5337 /* Default data/code pointer types. */
5338 builtin_type->builtin_data_ptr
5339 = lookup_pointer_type (builtin_type->builtin_void);
5340 builtin_type->builtin_func_ptr
5341 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5342 builtin_type->builtin_func_func
5343 = lookup_function_type (builtin_type->builtin_func_ptr);
5344
5345 /* This type represents a GDB internal function. */
5346 builtin_type->internal_fn
5347 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5348 "<internal function>");
5349
5350 /* This type represents an xmethod. */
5351 builtin_type->xmethod
5352 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5353
5354 return builtin_type;
5355 }
5356
5357 /* This set of objfile-based types is intended to be used by symbol
5358 readers as basic types. */
5359
5360 static const struct objfile_data *objfile_type_data;
5361
5362 const struct objfile_type *
5363 objfile_type (struct objfile *objfile)
5364 {
5365 struct gdbarch *gdbarch;
5366 struct objfile_type *objfile_type
5367 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5368
5369 if (objfile_type)
5370 return objfile_type;
5371
5372 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5373 1, struct objfile_type);
5374
5375 /* Use the objfile architecture to determine basic type properties. */
5376 gdbarch = get_objfile_arch (objfile);
5377
5378 /* Basic types. */
5379 objfile_type->builtin_void
5380 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5381 objfile_type->builtin_char
5382 = init_integer_type (objfile, TARGET_CHAR_BIT,
5383 !gdbarch_char_signed (gdbarch), "char");
5384 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5385 objfile_type->builtin_signed_char
5386 = init_integer_type (objfile, TARGET_CHAR_BIT,
5387 0, "signed char");
5388 objfile_type->builtin_unsigned_char
5389 = init_integer_type (objfile, TARGET_CHAR_BIT,
5390 1, "unsigned char");
5391 objfile_type->builtin_short
5392 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5393 0, "short");
5394 objfile_type->builtin_unsigned_short
5395 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5396 1, "unsigned short");
5397 objfile_type->builtin_int
5398 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5399 0, "int");
5400 objfile_type->builtin_unsigned_int
5401 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5402 1, "unsigned int");
5403 objfile_type->builtin_long
5404 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5405 0, "long");
5406 objfile_type->builtin_unsigned_long
5407 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5408 1, "unsigned long");
5409 objfile_type->builtin_long_long
5410 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5411 0, "long long");
5412 objfile_type->builtin_unsigned_long_long
5413 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5414 1, "unsigned long long");
5415 objfile_type->builtin_float
5416 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5417 "float", gdbarch_float_format (gdbarch));
5418 objfile_type->builtin_double
5419 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5420 "double", gdbarch_double_format (gdbarch));
5421 objfile_type->builtin_long_double
5422 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5423 "long double", gdbarch_long_double_format (gdbarch));
5424
5425 /* This type represents a type that was unrecognized in symbol read-in. */
5426 objfile_type->builtin_error
5427 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5428
5429 /* The following set of types is used for symbols with no
5430 debug information. */
5431 objfile_type->nodebug_text_symbol
5432 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5433 "<text variable, no debug info>");
5434 objfile_type->nodebug_text_gnu_ifunc_symbol
5435 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5436 "<text gnu-indirect-function variable, no debug info>");
5437 /* Ifunc resolvers return a function address. */
5438 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5439 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5440 "__IFUNC_RESOLVER_RET");
5441 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5442 objfile_type->nodebug_got_plt_symbol
5443 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5444 "<text from jump slot in .got.plt, no debug info>",
5445 objfile_type->nodebug_text_symbol);
5446 objfile_type->nodebug_data_symbol
5447 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5448 objfile_type->nodebug_unknown_symbol
5449 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5450 objfile_type->nodebug_tls_symbol
5451 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5452
5453 /* NOTE: on some targets, addresses and pointers are not necessarily
5454 the same.
5455
5456 The upshot is:
5457 - gdb's `struct type' always describes the target's
5458 representation.
5459 - gdb's `struct value' objects should always hold values in
5460 target form.
5461 - gdb's CORE_ADDR values are addresses in the unified virtual
5462 address space that the assembler and linker work with. Thus,
5463 since target_read_memory takes a CORE_ADDR as an argument, it
5464 can access any memory on the target, even if the processor has
5465 separate code and data address spaces.
5466
5467 In this context, objfile_type->builtin_core_addr is a bit odd:
5468 it's a target type for a value the target will never see. It's
5469 only used to hold the values of (typeless) linker symbols, which
5470 are indeed in the unified virtual address space. */
5471
5472 objfile_type->builtin_core_addr
5473 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5474 "__CORE_ADDR");
5475
5476 set_objfile_data (objfile, objfile_type_data, objfile_type);
5477 return objfile_type;
5478 }
5479
5480 void
5481 _initialize_gdbtypes (void)
5482 {
5483 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5484 objfile_type_data = register_objfile_data ();
5485
5486 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5487 _("Set debugging of C++ overloading."),
5488 _("Show debugging of C++ overloading."),
5489 _("When enabled, ranking of the "
5490 "functions is displayed."),
5491 NULL,
5492 show_overload_debug,
5493 &setdebuglist, &showdebuglist);
5494
5495 /* Add user knob for controlling resolution of opaque types. */
5496 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5497 &opaque_type_resolution,
5498 _("Set resolution of opaque struct/class/union"
5499 " types (if set before loading symbols)."),
5500 _("Show resolution of opaque struct/class/union"
5501 " types (if set before loading symbols)."),
5502 NULL, NULL,
5503 show_opaque_type_resolution,
5504 &setlist, &showlist);
5505
5506 /* Add an option to permit non-strict type checking. */
5507 add_setshow_boolean_cmd ("type", class_support,
5508 &strict_type_checking,
5509 _("Set strict type checking."),
5510 _("Show strict type checking."),
5511 NULL, NULL,
5512 show_strict_type_checking,
5513 &setchecklist, &showchecklist);
5514 }
This page took 0.200622 seconds and 4 git commands to generate.