2010-05-14 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Floatformat pairs. */
45 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
46 &floatformat_ieee_single_big,
47 &floatformat_ieee_single_little
48 };
49 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
50 &floatformat_ieee_double_big,
51 &floatformat_ieee_double_little
52 };
53 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
54 &floatformat_ieee_double_big,
55 &floatformat_ieee_double_littlebyte_bigword
56 };
57 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
58 &floatformat_i387_ext,
59 &floatformat_i387_ext
60 };
61 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
62 &floatformat_m68881_ext,
63 &floatformat_m68881_ext
64 };
65 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_arm_ext_big,
67 &floatformat_arm_ext_littlebyte_bigword
68 };
69 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ia64_spill_big,
71 &floatformat_ia64_spill_little
72 };
73 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ia64_quad_big,
75 &floatformat_ia64_quad_little
76 };
77 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_vax_f,
79 &floatformat_vax_f
80 };
81 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_vax_d,
83 &floatformat_vax_d
84 };
85 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_ibm_long_double,
87 &floatformat_ibm_long_double
88 };
89
90
91 int opaque_type_resolution = 1;
92 static void
93 show_opaque_type_resolution (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c,
95 const char *value)
96 {
97 fprintf_filtered (file, _("\
98 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
99 value);
100 }
101
102 int overload_debug = 0;
103 static void
104 show_overload_debug (struct ui_file *file, int from_tty,
105 struct cmd_list_element *c, const char *value)
106 {
107 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
108 value);
109 }
110
111 struct extra
112 {
113 char str[128];
114 int len;
115 }; /* Maximum extension is 128! FIXME */
116
117 static void print_bit_vector (B_TYPE *, int);
118 static void print_arg_types (struct field *, int, int);
119 static void dump_fn_fieldlists (struct type *, int);
120 static void print_cplus_stuff (struct type *, int);
121
122
123 /* Allocate a new OBJFILE-associated type structure and fill it
124 with some defaults. Space for the type structure is allocated
125 on the objfile's objfile_obstack. */
126
127 struct type *
128 alloc_type (struct objfile *objfile)
129 {
130 struct type *type;
131
132 gdb_assert (objfile != NULL);
133
134 /* Alloc the structure and start off with all fields zeroed. */
135 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
136 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
137 struct main_type);
138 OBJSTAT (objfile, n_types++);
139
140 TYPE_OBJFILE_OWNED (type) = 1;
141 TYPE_OWNER (type).objfile = objfile;
142
143 /* Initialize the fields that might not be zero. */
144
145 TYPE_CODE (type) = TYPE_CODE_UNDEF;
146 TYPE_VPTR_FIELDNO (type) = -1;
147 TYPE_CHAIN (type) = type; /* Chain back to itself. */
148
149 return type;
150 }
151
152 /* Allocate a new GDBARCH-associated type structure and fill it
153 with some defaults. Space for the type structure is allocated
154 on the heap. */
155
156 struct type *
157 alloc_type_arch (struct gdbarch *gdbarch)
158 {
159 struct type *type;
160
161 gdb_assert (gdbarch != NULL);
162
163 /* Alloc the structure and start off with all fields zeroed. */
164
165 type = XZALLOC (struct type);
166 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
167
168 TYPE_OBJFILE_OWNED (type) = 0;
169 TYPE_OWNER (type).gdbarch = gdbarch;
170
171 /* Initialize the fields that might not be zero. */
172
173 TYPE_CODE (type) = TYPE_CODE_UNDEF;
174 TYPE_VPTR_FIELDNO (type) = -1;
175 TYPE_CHAIN (type) = type; /* Chain back to itself. */
176
177 return type;
178 }
179
180 /* If TYPE is objfile-associated, allocate a new type structure
181 associated with the same objfile. If TYPE is gdbarch-associated,
182 allocate a new type structure associated with the same gdbarch. */
183
184 struct type *
185 alloc_type_copy (const struct type *type)
186 {
187 if (TYPE_OBJFILE_OWNED (type))
188 return alloc_type (TYPE_OWNER (type).objfile);
189 else
190 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
191 }
192
193 /* If TYPE is gdbarch-associated, return that architecture.
194 If TYPE is objfile-associated, return that objfile's architecture. */
195
196 struct gdbarch *
197 get_type_arch (const struct type *type)
198 {
199 if (TYPE_OBJFILE_OWNED (type))
200 return get_objfile_arch (TYPE_OWNER (type).objfile);
201 else
202 return TYPE_OWNER (type).gdbarch;
203 }
204
205
206 /* Alloc a new type instance structure, fill it with some defaults,
207 and point it at OLDTYPE. Allocate the new type instance from the
208 same place as OLDTYPE. */
209
210 static struct type *
211 alloc_type_instance (struct type *oldtype)
212 {
213 struct type *type;
214
215 /* Allocate the structure. */
216
217 if (! TYPE_OBJFILE_OWNED (oldtype))
218 type = XZALLOC (struct type);
219 else
220 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
221 struct type);
222
223 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
224
225 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
226
227 return type;
228 }
229
230 /* Clear all remnants of the previous type at TYPE, in preparation for
231 replacing it with something else. Preserve owner information. */
232 static void
233 smash_type (struct type *type)
234 {
235 int objfile_owned = TYPE_OBJFILE_OWNED (type);
236 union type_owner owner = TYPE_OWNER (type);
237
238 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
239
240 /* Restore owner information. */
241 TYPE_OBJFILE_OWNED (type) = objfile_owned;
242 TYPE_OWNER (type) = owner;
243
244 /* For now, delete the rings. */
245 TYPE_CHAIN (type) = type;
246
247 /* For now, leave the pointer/reference types alone. */
248 }
249
250 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
251 to a pointer to memory where the pointer type should be stored.
252 If *TYPEPTR is zero, update it to point to the pointer type we return.
253 We allocate new memory if needed. */
254
255 struct type *
256 make_pointer_type (struct type *type, struct type **typeptr)
257 {
258 struct type *ntype; /* New type */
259 struct type *chain;
260
261 ntype = TYPE_POINTER_TYPE (type);
262
263 if (ntype)
264 {
265 if (typeptr == 0)
266 return ntype; /* Don't care about alloc,
267 and have new type. */
268 else if (*typeptr == 0)
269 {
270 *typeptr = ntype; /* Tracking alloc, and have new type. */
271 return ntype;
272 }
273 }
274
275 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
276 {
277 ntype = alloc_type_copy (type);
278 if (typeptr)
279 *typeptr = ntype;
280 }
281 else /* We have storage, but need to reset it. */
282 {
283 ntype = *typeptr;
284 chain = TYPE_CHAIN (ntype);
285 smash_type (ntype);
286 TYPE_CHAIN (ntype) = chain;
287 }
288
289 TYPE_TARGET_TYPE (ntype) = type;
290 TYPE_POINTER_TYPE (type) = ntype;
291
292 /* FIXME! Assume the machine has only one representation for
293 pointers! */
294
295 TYPE_LENGTH (ntype)
296 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
297 TYPE_CODE (ntype) = TYPE_CODE_PTR;
298
299 /* Mark pointers as unsigned. The target converts between pointers
300 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
301 gdbarch_address_to_pointer. */
302 TYPE_UNSIGNED (ntype) = 1;
303
304 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
305 TYPE_POINTER_TYPE (type) = ntype;
306
307 /* Update the length of all the other variants of this type. */
308 chain = TYPE_CHAIN (ntype);
309 while (chain != ntype)
310 {
311 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
312 chain = TYPE_CHAIN (chain);
313 }
314
315 return ntype;
316 }
317
318 /* Given a type TYPE, return a type of pointers to that type.
319 May need to construct such a type if this is the first use. */
320
321 struct type *
322 lookup_pointer_type (struct type *type)
323 {
324 return make_pointer_type (type, (struct type **) 0);
325 }
326
327 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
328 points to a pointer to memory where the reference type should be
329 stored. If *TYPEPTR is zero, update it to point to the reference
330 type we return. We allocate new memory if needed. */
331
332 struct type *
333 make_reference_type (struct type *type, struct type **typeptr)
334 {
335 struct type *ntype; /* New type */
336 struct type *chain;
337
338 ntype = TYPE_REFERENCE_TYPE (type);
339
340 if (ntype)
341 {
342 if (typeptr == 0)
343 return ntype; /* Don't care about alloc,
344 and have new type. */
345 else if (*typeptr == 0)
346 {
347 *typeptr = ntype; /* Tracking alloc, and have new type. */
348 return ntype;
349 }
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
354 ntype = alloc_type_copy (type);
355 if (typeptr)
356 *typeptr = ntype;
357 }
358 else /* We have storage, but need to reset it. */
359 {
360 ntype = *typeptr;
361 chain = TYPE_CHAIN (ntype);
362 smash_type (ntype);
363 TYPE_CHAIN (ntype) = chain;
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_REFERENCE_TYPE (type) = ntype;
368
369 /* FIXME! Assume the machine has only one representation for
370 references, and that it matches the (only) representation for
371 pointers! */
372
373 TYPE_LENGTH (ntype) =
374 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
375 TYPE_CODE (ntype) = TYPE_CODE_REF;
376
377 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
378 TYPE_REFERENCE_TYPE (type) = ntype;
379
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
388 return ntype;
389 }
390
391 /* Same as above, but caller doesn't care about memory allocation
392 details. */
393
394 struct type *
395 lookup_reference_type (struct type *type)
396 {
397 return make_reference_type (type, (struct type **) 0);
398 }
399
400 /* Lookup a function type that returns type TYPE. TYPEPTR, if
401 nonzero, points to a pointer to memory where the function type
402 should be stored. If *TYPEPTR is zero, update it to point to the
403 function type we return. We allocate new memory if needed. */
404
405 struct type *
406 make_function_type (struct type *type, struct type **typeptr)
407 {
408 struct type *ntype; /* New type */
409
410 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
411 {
412 ntype = alloc_type_copy (type);
413 if (typeptr)
414 *typeptr = ntype;
415 }
416 else /* We have storage, but need to reset it. */
417 {
418 ntype = *typeptr;
419 smash_type (ntype);
420 }
421
422 TYPE_TARGET_TYPE (ntype) = type;
423
424 TYPE_LENGTH (ntype) = 1;
425 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
426
427 return ntype;
428 }
429
430
431 /* Given a type TYPE, return a type of functions that return that type.
432 May need to construct such a type if this is the first use. */
433
434 struct type *
435 lookup_function_type (struct type *type)
436 {
437 return make_function_type (type, (struct type **) 0);
438 }
439
440 /* Identify address space identifier by name --
441 return the integer flag defined in gdbtypes.h. */
442 extern int
443 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
444 {
445 int type_flags;
446 /* Check for known address space delimiters. */
447 if (!strcmp (space_identifier, "code"))
448 return TYPE_INSTANCE_FLAG_CODE_SPACE;
449 else if (!strcmp (space_identifier, "data"))
450 return TYPE_INSTANCE_FLAG_DATA_SPACE;
451 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
452 && gdbarch_address_class_name_to_type_flags (gdbarch,
453 space_identifier,
454 &type_flags))
455 return type_flags;
456 else
457 error (_("Unknown address space specifier: \"%s\""), space_identifier);
458 }
459
460 /* Identify address space identifier by integer flag as defined in
461 gdbtypes.h -- return the string version of the adress space name. */
462
463 const char *
464 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
465 {
466 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
467 return "code";
468 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
469 return "data";
470 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
471 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
472 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
473 else
474 return NULL;
475 }
476
477 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
478
479 If STORAGE is non-NULL, create the new type instance there.
480 STORAGE must be in the same obstack as TYPE. */
481
482 static struct type *
483 make_qualified_type (struct type *type, int new_flags,
484 struct type *storage)
485 {
486 struct type *ntype;
487
488 ntype = type;
489 do
490 {
491 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
492 return ntype;
493 ntype = TYPE_CHAIN (ntype);
494 }
495 while (ntype != type);
496
497 /* Create a new type instance. */
498 if (storage == NULL)
499 ntype = alloc_type_instance (type);
500 else
501 {
502 /* If STORAGE was provided, it had better be in the same objfile
503 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
504 if one objfile is freed and the other kept, we'd have
505 dangling pointers. */
506 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
507
508 ntype = storage;
509 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
510 TYPE_CHAIN (ntype) = ntype;
511 }
512
513 /* Pointers or references to the original type are not relevant to
514 the new type. */
515 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
516 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
517
518 /* Chain the new qualified type to the old type. */
519 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
520 TYPE_CHAIN (type) = ntype;
521
522 /* Now set the instance flags and return the new type. */
523 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
524
525 /* Set length of new type to that of the original type. */
526 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
527
528 return ntype;
529 }
530
531 /* Make an address-space-delimited variant of a type -- a type that
532 is identical to the one supplied except that it has an address
533 space attribute attached to it (such as "code" or "data").
534
535 The space attributes "code" and "data" are for Harvard
536 architectures. The address space attributes are for architectures
537 which have alternately sized pointers or pointers with alternate
538 representations. */
539
540 struct type *
541 make_type_with_address_space (struct type *type, int space_flag)
542 {
543 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
544 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
545 | TYPE_INSTANCE_FLAG_DATA_SPACE
546 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
547 | space_flag);
548
549 return make_qualified_type (type, new_flags, NULL);
550 }
551
552 /* Make a "c-v" variant of a type -- a type that is identical to the
553 one supplied except that it may have const or volatile attributes
554 CNST is a flag for setting the const attribute
555 VOLTL is a flag for setting the volatile attribute
556 TYPE is the base type whose variant we are creating.
557
558 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
559 storage to hold the new qualified type; *TYPEPTR and TYPE must be
560 in the same objfile. Otherwise, allocate fresh memory for the new
561 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
562 new type we construct. */
563 struct type *
564 make_cv_type (int cnst, int voltl,
565 struct type *type,
566 struct type **typeptr)
567 {
568 struct type *ntype; /* New type */
569
570 int new_flags = (TYPE_INSTANCE_FLAGS (type)
571 & ~(TYPE_INSTANCE_FLAG_CONST
572 | TYPE_INSTANCE_FLAG_VOLATILE));
573
574 if (cnst)
575 new_flags |= TYPE_INSTANCE_FLAG_CONST;
576
577 if (voltl)
578 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
579
580 if (typeptr && *typeptr != NULL)
581 {
582 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
583 a C-V variant chain that threads across objfiles: if one
584 objfile gets freed, then the other has a broken C-V chain.
585
586 This code used to try to copy over the main type from TYPE to
587 *TYPEPTR if they were in different objfiles, but that's
588 wrong, too: TYPE may have a field list or member function
589 lists, which refer to types of their own, etc. etc. The
590 whole shebang would need to be copied over recursively; you
591 can't have inter-objfile pointers. The only thing to do is
592 to leave stub types as stub types, and look them up afresh by
593 name each time you encounter them. */
594 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
595 }
596
597 ntype = make_qualified_type (type, new_flags,
598 typeptr ? *typeptr : NULL);
599
600 if (typeptr != NULL)
601 *typeptr = ntype;
602
603 return ntype;
604 }
605
606 /* Replace the contents of ntype with the type *type. This changes the
607 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
608 the changes are propogated to all types in the TYPE_CHAIN.
609
610 In order to build recursive types, it's inevitable that we'll need
611 to update types in place --- but this sort of indiscriminate
612 smashing is ugly, and needs to be replaced with something more
613 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
614 clear if more steps are needed. */
615 void
616 replace_type (struct type *ntype, struct type *type)
617 {
618 struct type *chain;
619
620 /* These two types had better be in the same objfile. Otherwise,
621 the assignment of one type's main type structure to the other
622 will produce a type with references to objects (names; field
623 lists; etc.) allocated on an objfile other than its own. */
624 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
625
626 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
627
628 /* The type length is not a part of the main type. Update it for
629 each type on the variant chain. */
630 chain = ntype;
631 do
632 {
633 /* Assert that this element of the chain has no address-class bits
634 set in its flags. Such type variants might have type lengths
635 which are supposed to be different from the non-address-class
636 variants. This assertion shouldn't ever be triggered because
637 symbol readers which do construct address-class variants don't
638 call replace_type(). */
639 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
640
641 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
642 chain = TYPE_CHAIN (chain);
643 }
644 while (ntype != chain);
645
646 /* Assert that the two types have equivalent instance qualifiers.
647 This should be true for at least all of our debug readers. */
648 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
649 }
650
651 /* Implement direct support for MEMBER_TYPE in GNU C++.
652 May need to construct such a type if this is the first use.
653 The TYPE is the type of the member. The DOMAIN is the type
654 of the aggregate that the member belongs to. */
655
656 struct type *
657 lookup_memberptr_type (struct type *type, struct type *domain)
658 {
659 struct type *mtype;
660
661 mtype = alloc_type_copy (type);
662 smash_to_memberptr_type (mtype, domain, type);
663 return mtype;
664 }
665
666 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
667
668 struct type *
669 lookup_methodptr_type (struct type *to_type)
670 {
671 struct type *mtype;
672
673 mtype = alloc_type_copy (to_type);
674 smash_to_methodptr_type (mtype, to_type);
675 return mtype;
676 }
677
678 /* Allocate a stub method whose return type is TYPE. This apparently
679 happens for speed of symbol reading, since parsing out the
680 arguments to the method is cpu-intensive, the way we are doing it.
681 So, we will fill in arguments later. This always returns a fresh
682 type. */
683
684 struct type *
685 allocate_stub_method (struct type *type)
686 {
687 struct type *mtype;
688
689 mtype = alloc_type_copy (type);
690 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
691 TYPE_LENGTH (mtype) = 1;
692 TYPE_STUB (mtype) = 1;
693 TYPE_TARGET_TYPE (mtype) = type;
694 /* _DOMAIN_TYPE (mtype) = unknown yet */
695 return mtype;
696 }
697
698 /* Create a range type using either a blank type supplied in
699 RESULT_TYPE, or creating a new type, inheriting the objfile from
700 INDEX_TYPE.
701
702 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
703 to HIGH_BOUND, inclusive.
704
705 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
706 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
707
708 struct type *
709 create_range_type (struct type *result_type, struct type *index_type,
710 LONGEST low_bound, LONGEST high_bound)
711 {
712 if (result_type == NULL)
713 result_type = alloc_type_copy (index_type);
714 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
715 TYPE_TARGET_TYPE (result_type) = index_type;
716 if (TYPE_STUB (index_type))
717 TYPE_TARGET_STUB (result_type) = 1;
718 else
719 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
720 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
721 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
722 TYPE_LOW_BOUND (result_type) = low_bound;
723 TYPE_HIGH_BOUND (result_type) = high_bound;
724
725 if (low_bound >= 0)
726 TYPE_UNSIGNED (result_type) = 1;
727
728 return result_type;
729 }
730
731 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
732 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
733 bounds will fit in LONGEST), or -1 otherwise. */
734
735 int
736 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
737 {
738 CHECK_TYPEDEF (type);
739 switch (TYPE_CODE (type))
740 {
741 case TYPE_CODE_RANGE:
742 *lowp = TYPE_LOW_BOUND (type);
743 *highp = TYPE_HIGH_BOUND (type);
744 return 1;
745 case TYPE_CODE_ENUM:
746 if (TYPE_NFIELDS (type) > 0)
747 {
748 /* The enums may not be sorted by value, so search all
749 entries */
750 int i;
751
752 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
753 for (i = 0; i < TYPE_NFIELDS (type); i++)
754 {
755 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
756 *lowp = TYPE_FIELD_BITPOS (type, i);
757 if (TYPE_FIELD_BITPOS (type, i) > *highp)
758 *highp = TYPE_FIELD_BITPOS (type, i);
759 }
760
761 /* Set unsigned indicator if warranted. */
762 if (*lowp >= 0)
763 {
764 TYPE_UNSIGNED (type) = 1;
765 }
766 }
767 else
768 {
769 *lowp = 0;
770 *highp = -1;
771 }
772 return 0;
773 case TYPE_CODE_BOOL:
774 *lowp = 0;
775 *highp = 1;
776 return 0;
777 case TYPE_CODE_INT:
778 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
779 return -1;
780 if (!TYPE_UNSIGNED (type))
781 {
782 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
783 *highp = -*lowp - 1;
784 return 0;
785 }
786 /* ... fall through for unsigned ints ... */
787 case TYPE_CODE_CHAR:
788 *lowp = 0;
789 /* This round-about calculation is to avoid shifting by
790 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
791 if TYPE_LENGTH (type) == sizeof (LONGEST). */
792 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
793 *highp = (*highp - 1) | *highp;
794 return 0;
795 default:
796 return -1;
797 }
798 }
799
800 /* Create an array type using either a blank type supplied in
801 RESULT_TYPE, or creating a new type, inheriting the objfile from
802 RANGE_TYPE.
803
804 Elements will be of type ELEMENT_TYPE, the indices will be of type
805 RANGE_TYPE.
806
807 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
808 sure it is TYPE_CODE_UNDEF before we bash it into an array
809 type? */
810
811 struct type *
812 create_array_type (struct type *result_type,
813 struct type *element_type,
814 struct type *range_type)
815 {
816 LONGEST low_bound, high_bound;
817
818 if (result_type == NULL)
819 result_type = alloc_type_copy (range_type);
820
821 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
822 TYPE_TARGET_TYPE (result_type) = element_type;
823 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
824 low_bound = high_bound = 0;
825 CHECK_TYPEDEF (element_type);
826 /* Be careful when setting the array length. Ada arrays can be
827 empty arrays with the high_bound being smaller than the low_bound.
828 In such cases, the array length should be zero. */
829 if (high_bound < low_bound)
830 TYPE_LENGTH (result_type) = 0;
831 else
832 TYPE_LENGTH (result_type) =
833 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
834 TYPE_NFIELDS (result_type) = 1;
835 TYPE_FIELDS (result_type) =
836 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
837 TYPE_INDEX_TYPE (result_type) = range_type;
838 TYPE_VPTR_FIELDNO (result_type) = -1;
839
840 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
841 if (TYPE_LENGTH (result_type) == 0)
842 TYPE_TARGET_STUB (result_type) = 1;
843
844 return result_type;
845 }
846
847 struct type *
848 lookup_array_range_type (struct type *element_type,
849 int low_bound, int high_bound)
850 {
851 struct gdbarch *gdbarch = get_type_arch (element_type);
852 struct type *index_type = builtin_type (gdbarch)->builtin_int;
853 struct type *range_type
854 = create_range_type (NULL, index_type, low_bound, high_bound);
855 return create_array_type (NULL, element_type, range_type);
856 }
857
858 /* Create a string type using either a blank type supplied in
859 RESULT_TYPE, or creating a new type. String types are similar
860 enough to array of char types that we can use create_array_type to
861 build the basic type and then bash it into a string type.
862
863 For fixed length strings, the range type contains 0 as the lower
864 bound and the length of the string minus one as the upper bound.
865
866 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
867 sure it is TYPE_CODE_UNDEF before we bash it into a string
868 type? */
869
870 struct type *
871 create_string_type (struct type *result_type,
872 struct type *string_char_type,
873 struct type *range_type)
874 {
875 result_type = create_array_type (result_type,
876 string_char_type,
877 range_type);
878 TYPE_CODE (result_type) = TYPE_CODE_STRING;
879 return result_type;
880 }
881
882 struct type *
883 lookup_string_range_type (struct type *string_char_type,
884 int low_bound, int high_bound)
885 {
886 struct type *result_type;
887 result_type = lookup_array_range_type (string_char_type,
888 low_bound, high_bound);
889 TYPE_CODE (result_type) = TYPE_CODE_STRING;
890 return result_type;
891 }
892
893 struct type *
894 create_set_type (struct type *result_type, struct type *domain_type)
895 {
896 if (result_type == NULL)
897 result_type = alloc_type_copy (domain_type);
898
899 TYPE_CODE (result_type) = TYPE_CODE_SET;
900 TYPE_NFIELDS (result_type) = 1;
901 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
902
903 if (!TYPE_STUB (domain_type))
904 {
905 LONGEST low_bound, high_bound, bit_length;
906 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
907 low_bound = high_bound = 0;
908 bit_length = high_bound - low_bound + 1;
909 TYPE_LENGTH (result_type)
910 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
911 if (low_bound >= 0)
912 TYPE_UNSIGNED (result_type) = 1;
913 }
914 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
915
916 return result_type;
917 }
918
919 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
920 and any array types nested inside it. */
921
922 void
923 make_vector_type (struct type *array_type)
924 {
925 struct type *inner_array, *elt_type;
926 int flags;
927
928 /* Find the innermost array type, in case the array is
929 multi-dimensional. */
930 inner_array = array_type;
931 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
932 inner_array = TYPE_TARGET_TYPE (inner_array);
933
934 elt_type = TYPE_TARGET_TYPE (inner_array);
935 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
936 {
937 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
938 elt_type = make_qualified_type (elt_type, flags, NULL);
939 TYPE_TARGET_TYPE (inner_array) = elt_type;
940 }
941
942 TYPE_VECTOR (array_type) = 1;
943 }
944
945 struct type *
946 init_vector_type (struct type *elt_type, int n)
947 {
948 struct type *array_type;
949 array_type = lookup_array_range_type (elt_type, 0, n - 1);
950 make_vector_type (array_type);
951 return array_type;
952 }
953
954 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
955 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
956 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
957 TYPE doesn't include the offset (that's the value of the MEMBER
958 itself), but does include the structure type into which it points
959 (for some reason).
960
961 When "smashing" the type, we preserve the objfile that the old type
962 pointed to, since we aren't changing where the type is actually
963 allocated. */
964
965 void
966 smash_to_memberptr_type (struct type *type, struct type *domain,
967 struct type *to_type)
968 {
969 smash_type (type);
970 TYPE_TARGET_TYPE (type) = to_type;
971 TYPE_DOMAIN_TYPE (type) = domain;
972 /* Assume that a data member pointer is the same size as a normal
973 pointer. */
974 TYPE_LENGTH (type)
975 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
976 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
977 }
978
979 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
980
981 When "smashing" the type, we preserve the objfile that the old type
982 pointed to, since we aren't changing where the type is actually
983 allocated. */
984
985 void
986 smash_to_methodptr_type (struct type *type, struct type *to_type)
987 {
988 smash_type (type);
989 TYPE_TARGET_TYPE (type) = to_type;
990 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
991 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
992 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
993 }
994
995 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
996 METHOD just means `function that gets an extra "this" argument'.
997
998 When "smashing" the type, we preserve the objfile that the old type
999 pointed to, since we aren't changing where the type is actually
1000 allocated. */
1001
1002 void
1003 smash_to_method_type (struct type *type, struct type *domain,
1004 struct type *to_type, struct field *args,
1005 int nargs, int varargs)
1006 {
1007 smash_type (type);
1008 TYPE_TARGET_TYPE (type) = to_type;
1009 TYPE_DOMAIN_TYPE (type) = domain;
1010 TYPE_FIELDS (type) = args;
1011 TYPE_NFIELDS (type) = nargs;
1012 if (varargs)
1013 TYPE_VARARGS (type) = 1;
1014 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1015 TYPE_CODE (type) = TYPE_CODE_METHOD;
1016 }
1017
1018 /* Return a typename for a struct/union/enum type without "struct ",
1019 "union ", or "enum ". If the type has a NULL name, return NULL. */
1020
1021 char *
1022 type_name_no_tag (const struct type *type)
1023 {
1024 if (TYPE_TAG_NAME (type) != NULL)
1025 return TYPE_TAG_NAME (type);
1026
1027 /* Is there code which expects this to return the name if there is
1028 no tag name? My guess is that this is mainly used for C++ in
1029 cases where the two will always be the same. */
1030 return TYPE_NAME (type);
1031 }
1032
1033 /* Lookup a typedef or primitive type named NAME, visible in lexical
1034 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1035 suitably defined. */
1036
1037 struct type *
1038 lookup_typename (const struct language_defn *language,
1039 struct gdbarch *gdbarch, char *name,
1040 struct block *block, int noerr)
1041 {
1042 struct symbol *sym;
1043 struct type *tmp;
1044
1045 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1046 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1047 {
1048 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1049 if (tmp)
1050 {
1051 return tmp;
1052 }
1053 else if (!tmp && noerr)
1054 {
1055 return NULL;
1056 }
1057 else
1058 {
1059 error (_("No type named %s."), name);
1060 }
1061 }
1062 return (SYMBOL_TYPE (sym));
1063 }
1064
1065 struct type *
1066 lookup_unsigned_typename (const struct language_defn *language,
1067 struct gdbarch *gdbarch, char *name)
1068 {
1069 char *uns = alloca (strlen (name) + 10);
1070
1071 strcpy (uns, "unsigned ");
1072 strcpy (uns + 9, name);
1073 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1074 }
1075
1076 struct type *
1077 lookup_signed_typename (const struct language_defn *language,
1078 struct gdbarch *gdbarch, char *name)
1079 {
1080 struct type *t;
1081 char *uns = alloca (strlen (name) + 8);
1082
1083 strcpy (uns, "signed ");
1084 strcpy (uns + 7, name);
1085 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1086 /* If we don't find "signed FOO" just try again with plain "FOO". */
1087 if (t != NULL)
1088 return t;
1089 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1090 }
1091
1092 /* Lookup a structure type named "struct NAME",
1093 visible in lexical block BLOCK. */
1094
1095 struct type *
1096 lookup_struct (char *name, struct block *block)
1097 {
1098 struct symbol *sym;
1099
1100 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1101
1102 if (sym == NULL)
1103 {
1104 error (_("No struct type named %s."), name);
1105 }
1106 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1107 {
1108 error (_("This context has class, union or enum %s, not a struct."),
1109 name);
1110 }
1111 return (SYMBOL_TYPE (sym));
1112 }
1113
1114 /* Lookup a union type named "union NAME",
1115 visible in lexical block BLOCK. */
1116
1117 struct type *
1118 lookup_union (char *name, struct block *block)
1119 {
1120 struct symbol *sym;
1121 struct type *t;
1122
1123 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1124
1125 if (sym == NULL)
1126 error (_("No union type named %s."), name);
1127
1128 t = SYMBOL_TYPE (sym);
1129
1130 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1131 return t;
1132
1133 /* If we get here, it's not a union. */
1134 error (_("This context has class, struct or enum %s, not a union."),
1135 name);
1136 }
1137
1138
1139 /* Lookup an enum type named "enum NAME",
1140 visible in lexical block BLOCK. */
1141
1142 struct type *
1143 lookup_enum (char *name, struct block *block)
1144 {
1145 struct symbol *sym;
1146
1147 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1148 if (sym == NULL)
1149 {
1150 error (_("No enum type named %s."), name);
1151 }
1152 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1153 {
1154 error (_("This context has class, struct or union %s, not an enum."),
1155 name);
1156 }
1157 return (SYMBOL_TYPE (sym));
1158 }
1159
1160 /* Lookup a template type named "template NAME<TYPE>",
1161 visible in lexical block BLOCK. */
1162
1163 struct type *
1164 lookup_template_type (char *name, struct type *type,
1165 struct block *block)
1166 {
1167 struct symbol *sym;
1168 char *nam = (char *)
1169 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1170 strcpy (nam, name);
1171 strcat (nam, "<");
1172 strcat (nam, TYPE_NAME (type));
1173 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1174
1175 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1176
1177 if (sym == NULL)
1178 {
1179 error (_("No template type named %s."), name);
1180 }
1181 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1182 {
1183 error (_("This context has class, union or enum %s, not a struct."),
1184 name);
1185 }
1186 return (SYMBOL_TYPE (sym));
1187 }
1188
1189 /* Given a type TYPE, lookup the type of the component of type named
1190 NAME.
1191
1192 TYPE can be either a struct or union, or a pointer or reference to
1193 a struct or union. If it is a pointer or reference, its target
1194 type is automatically used. Thus '.' and '->' are interchangable,
1195 as specified for the definitions of the expression element types
1196 STRUCTOP_STRUCT and STRUCTOP_PTR.
1197
1198 If NOERR is nonzero, return zero if NAME is not suitably defined.
1199 If NAME is the name of a baseclass type, return that type. */
1200
1201 struct type *
1202 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1203 {
1204 int i;
1205
1206 for (;;)
1207 {
1208 CHECK_TYPEDEF (type);
1209 if (TYPE_CODE (type) != TYPE_CODE_PTR
1210 && TYPE_CODE (type) != TYPE_CODE_REF)
1211 break;
1212 type = TYPE_TARGET_TYPE (type);
1213 }
1214
1215 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1216 && TYPE_CODE (type) != TYPE_CODE_UNION)
1217 {
1218 target_terminal_ours ();
1219 gdb_flush (gdb_stdout);
1220 fprintf_unfiltered (gdb_stderr, "Type ");
1221 type_print (type, "", gdb_stderr, -1);
1222 error (_(" is not a structure or union type."));
1223 }
1224
1225 #if 0
1226 /* FIXME: This change put in by Michael seems incorrect for the case
1227 where the structure tag name is the same as the member name.
1228 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1229 foo; } bell;" Disabled by fnf. */
1230 {
1231 char *typename;
1232
1233 typename = type_name_no_tag (type);
1234 if (typename != NULL && strcmp (typename, name) == 0)
1235 return type;
1236 }
1237 #endif
1238
1239 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1240 {
1241 char *t_field_name = TYPE_FIELD_NAME (type, i);
1242
1243 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1244 {
1245 return TYPE_FIELD_TYPE (type, i);
1246 }
1247 else if (!t_field_name || *t_field_name == '\0')
1248 {
1249 struct type *subtype = lookup_struct_elt_type (
1250 TYPE_FIELD_TYPE (type, i), name, 1);
1251 if (subtype != NULL)
1252 return subtype;
1253 }
1254 }
1255
1256 /* OK, it's not in this class. Recursively check the baseclasses. */
1257 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1258 {
1259 struct type *t;
1260
1261 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1262 if (t != NULL)
1263 {
1264 return t;
1265 }
1266 }
1267
1268 if (noerr)
1269 {
1270 return NULL;
1271 }
1272
1273 target_terminal_ours ();
1274 gdb_flush (gdb_stdout);
1275 fprintf_unfiltered (gdb_stderr, "Type ");
1276 type_print (type, "", gdb_stderr, -1);
1277 fprintf_unfiltered (gdb_stderr, " has no component named ");
1278 fputs_filtered (name, gdb_stderr);
1279 error (("."));
1280 return (struct type *) -1; /* For lint */
1281 }
1282
1283 /* Lookup the vptr basetype/fieldno values for TYPE.
1284 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1285 vptr_fieldno. Also, if found and basetype is from the same objfile,
1286 cache the results.
1287 If not found, return -1 and ignore BASETYPEP.
1288 Callers should be aware that in some cases (for example,
1289 the type or one of its baseclasses is a stub type and we are
1290 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1291 this function will not be able to find the
1292 virtual function table pointer, and vptr_fieldno will remain -1 and
1293 vptr_basetype will remain NULL or incomplete. */
1294
1295 int
1296 get_vptr_fieldno (struct type *type, struct type **basetypep)
1297 {
1298 CHECK_TYPEDEF (type);
1299
1300 if (TYPE_VPTR_FIELDNO (type) < 0)
1301 {
1302 int i;
1303
1304 /* We must start at zero in case the first (and only) baseclass
1305 is virtual (and hence we cannot share the table pointer). */
1306 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1307 {
1308 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1309 int fieldno;
1310 struct type *basetype;
1311
1312 fieldno = get_vptr_fieldno (baseclass, &basetype);
1313 if (fieldno >= 0)
1314 {
1315 /* If the type comes from a different objfile we can't cache
1316 it, it may have a different lifetime. PR 2384 */
1317 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1318 {
1319 TYPE_VPTR_FIELDNO (type) = fieldno;
1320 TYPE_VPTR_BASETYPE (type) = basetype;
1321 }
1322 if (basetypep)
1323 *basetypep = basetype;
1324 return fieldno;
1325 }
1326 }
1327
1328 /* Not found. */
1329 return -1;
1330 }
1331 else
1332 {
1333 if (basetypep)
1334 *basetypep = TYPE_VPTR_BASETYPE (type);
1335 return TYPE_VPTR_FIELDNO (type);
1336 }
1337 }
1338
1339 static void
1340 stub_noname_complaint (void)
1341 {
1342 complaint (&symfile_complaints, _("stub type has NULL name"));
1343 }
1344
1345 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1346
1347 If this is a stubbed struct (i.e. declared as struct foo *), see if
1348 we can find a full definition in some other file. If so, copy this
1349 definition, so we can use it in future. There used to be a comment
1350 (but not any code) that if we don't find a full definition, we'd
1351 set a flag so we don't spend time in the future checking the same
1352 type. That would be a mistake, though--we might load in more
1353 symbols which contain a full definition for the type.
1354
1355 This used to be coded as a macro, but I don't think it is called
1356 often enough to merit such treatment.
1357
1358 Find the real type of TYPE. This function returns the real type,
1359 after removing all layers of typedefs and completing opaque or stub
1360 types. Completion changes the TYPE argument, but stripping of
1361 typedefs does not.
1362
1363 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of
1364 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF
1365 check_typedef can still return different type than the original TYPE
1366 pointer. */
1367
1368 struct type *
1369 check_typedef (struct type *type)
1370 {
1371 struct type *orig_type = type;
1372 int is_const, is_volatile;
1373
1374 gdb_assert (type);
1375
1376 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1377 {
1378 if (!TYPE_TARGET_TYPE (type))
1379 {
1380 char *name;
1381 struct symbol *sym;
1382
1383 /* It is dangerous to call lookup_symbol if we are currently
1384 reading a symtab. Infinite recursion is one danger. */
1385 if (currently_reading_symtab)
1386 return type;
1387
1388 name = type_name_no_tag (type);
1389 /* FIXME: shouldn't we separately check the TYPE_NAME and
1390 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1391 VAR_DOMAIN as appropriate? (this code was written before
1392 TYPE_NAME and TYPE_TAG_NAME were separate). */
1393 if (name == NULL)
1394 {
1395 stub_noname_complaint ();
1396 return type;
1397 }
1398 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1399 if (sym)
1400 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1401 else /* TYPE_CODE_UNDEF */
1402 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1403 }
1404 type = TYPE_TARGET_TYPE (type);
1405 }
1406
1407 is_const = TYPE_CONST (type);
1408 is_volatile = TYPE_VOLATILE (type);
1409
1410 /* If this is a struct/class/union with no fields, then check
1411 whether a full definition exists somewhere else. This is for
1412 systems where a type definition with no fields is issued for such
1413 types, instead of identifying them as stub types in the first
1414 place. */
1415
1416 if (TYPE_IS_OPAQUE (type)
1417 && opaque_type_resolution
1418 && !currently_reading_symtab)
1419 {
1420 char *name = type_name_no_tag (type);
1421 struct type *newtype;
1422 if (name == NULL)
1423 {
1424 stub_noname_complaint ();
1425 return type;
1426 }
1427 newtype = lookup_transparent_type (name);
1428
1429 if (newtype)
1430 {
1431 /* If the resolved type and the stub are in the same
1432 objfile, then replace the stub type with the real deal.
1433 But if they're in separate objfiles, leave the stub
1434 alone; we'll just look up the transparent type every time
1435 we call check_typedef. We can't create pointers between
1436 types allocated to different objfiles, since they may
1437 have different lifetimes. Trying to copy NEWTYPE over to
1438 TYPE's objfile is pointless, too, since you'll have to
1439 move over any other types NEWTYPE refers to, which could
1440 be an unbounded amount of stuff. */
1441 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1442 make_cv_type (is_const, is_volatile, newtype, &type);
1443 else
1444 type = newtype;
1445 }
1446 }
1447 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1448 types. */
1449 else if (TYPE_STUB (type) && !currently_reading_symtab)
1450 {
1451 char *name = type_name_no_tag (type);
1452 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1453 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1454 as appropriate? (this code was written before TYPE_NAME and
1455 TYPE_TAG_NAME were separate). */
1456 struct symbol *sym;
1457 if (name == NULL)
1458 {
1459 stub_noname_complaint ();
1460 return type;
1461 }
1462 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1463 if (sym)
1464 {
1465 /* Same as above for opaque types, we can replace the stub
1466 with the complete type only if they are int the same
1467 objfile. */
1468 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1469 make_cv_type (is_const, is_volatile,
1470 SYMBOL_TYPE (sym), &type);
1471 else
1472 type = SYMBOL_TYPE (sym);
1473 }
1474 }
1475
1476 if (TYPE_TARGET_STUB (type))
1477 {
1478 struct type *range_type;
1479 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1480
1481 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1482 {
1483 /* Empty. */
1484 }
1485 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1486 && TYPE_NFIELDS (type) == 1
1487 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1488 == TYPE_CODE_RANGE))
1489 {
1490 /* Now recompute the length of the array type, based on its
1491 number of elements and the target type's length.
1492 Watch out for Ada null Ada arrays where the high bound
1493 is smaller than the low bound. */
1494 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1495 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1496 ULONGEST len;
1497
1498 if (high_bound < low_bound)
1499 len = 0;
1500 else {
1501 /* For now, we conservatively take the array length to be 0
1502 if its length exceeds UINT_MAX. The code below assumes
1503 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1504 which is technically not guaranteed by C, but is usually true
1505 (because it would be true if x were unsigned with its
1506 high-order bit on). It uses the fact that
1507 high_bound-low_bound is always representable in
1508 ULONGEST and that if high_bound-low_bound+1 overflows,
1509 it overflows to 0. We must change these tests if we
1510 decide to increase the representation of TYPE_LENGTH
1511 from unsigned int to ULONGEST. */
1512 ULONGEST ulow = low_bound, uhigh = high_bound;
1513 ULONGEST tlen = TYPE_LENGTH (target_type);
1514
1515 len = tlen * (uhigh - ulow + 1);
1516 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1517 || len > UINT_MAX)
1518 len = 0;
1519 }
1520 TYPE_LENGTH (type) = len;
1521 TYPE_TARGET_STUB (type) = 0;
1522 }
1523 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1524 {
1525 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1526 TYPE_TARGET_STUB (type) = 0;
1527 }
1528 }
1529 /* Cache TYPE_LENGTH for future use. */
1530 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1531 return type;
1532 }
1533
1534 /* Parse a type expression in the string [P..P+LENGTH). If an error
1535 occurs, silently return a void type. */
1536
1537 static struct type *
1538 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1539 {
1540 struct ui_file *saved_gdb_stderr;
1541 struct type *type;
1542
1543 /* Suppress error messages. */
1544 saved_gdb_stderr = gdb_stderr;
1545 gdb_stderr = ui_file_new ();
1546
1547 /* Call parse_and_eval_type() without fear of longjmp()s. */
1548 if (!gdb_parse_and_eval_type (p, length, &type))
1549 type = builtin_type (gdbarch)->builtin_void;
1550
1551 /* Stop suppressing error messages. */
1552 ui_file_delete (gdb_stderr);
1553 gdb_stderr = saved_gdb_stderr;
1554
1555 return type;
1556 }
1557
1558 /* Ugly hack to convert method stubs into method types.
1559
1560 He ain't kiddin'. This demangles the name of the method into a
1561 string including argument types, parses out each argument type,
1562 generates a string casting a zero to that type, evaluates the
1563 string, and stuffs the resulting type into an argtype vector!!!
1564 Then it knows the type of the whole function (including argument
1565 types for overloading), which info used to be in the stab's but was
1566 removed to hack back the space required for them. */
1567
1568 static void
1569 check_stub_method (struct type *type, int method_id, int signature_id)
1570 {
1571 struct gdbarch *gdbarch = get_type_arch (type);
1572 struct fn_field *f;
1573 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1574 char *demangled_name = cplus_demangle (mangled_name,
1575 DMGL_PARAMS | DMGL_ANSI);
1576 char *argtypetext, *p;
1577 int depth = 0, argcount = 1;
1578 struct field *argtypes;
1579 struct type *mtype;
1580
1581 /* Make sure we got back a function string that we can use. */
1582 if (demangled_name)
1583 p = strchr (demangled_name, '(');
1584 else
1585 p = NULL;
1586
1587 if (demangled_name == NULL || p == NULL)
1588 error (_("Internal: Cannot demangle mangled name `%s'."),
1589 mangled_name);
1590
1591 /* Now, read in the parameters that define this type. */
1592 p += 1;
1593 argtypetext = p;
1594 while (*p)
1595 {
1596 if (*p == '(' || *p == '<')
1597 {
1598 depth += 1;
1599 }
1600 else if (*p == ')' || *p == '>')
1601 {
1602 depth -= 1;
1603 }
1604 else if (*p == ',' && depth == 0)
1605 {
1606 argcount += 1;
1607 }
1608
1609 p += 1;
1610 }
1611
1612 /* If we read one argument and it was ``void'', don't count it. */
1613 if (strncmp (argtypetext, "(void)", 6) == 0)
1614 argcount -= 1;
1615
1616 /* We need one extra slot, for the THIS pointer. */
1617
1618 argtypes = (struct field *)
1619 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1620 p = argtypetext;
1621
1622 /* Add THIS pointer for non-static methods. */
1623 f = TYPE_FN_FIELDLIST1 (type, method_id);
1624 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1625 argcount = 0;
1626 else
1627 {
1628 argtypes[0].type = lookup_pointer_type (type);
1629 argcount = 1;
1630 }
1631
1632 if (*p != ')') /* () means no args, skip while */
1633 {
1634 depth = 0;
1635 while (*p)
1636 {
1637 if (depth <= 0 && (*p == ',' || *p == ')'))
1638 {
1639 /* Avoid parsing of ellipsis, they will be handled below.
1640 Also avoid ``void'' as above. */
1641 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1642 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1643 {
1644 argtypes[argcount].type =
1645 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1646 argcount += 1;
1647 }
1648 argtypetext = p + 1;
1649 }
1650
1651 if (*p == '(' || *p == '<')
1652 {
1653 depth += 1;
1654 }
1655 else if (*p == ')' || *p == '>')
1656 {
1657 depth -= 1;
1658 }
1659
1660 p += 1;
1661 }
1662 }
1663
1664 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1665
1666 /* Now update the old "stub" type into a real type. */
1667 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1668 TYPE_DOMAIN_TYPE (mtype) = type;
1669 TYPE_FIELDS (mtype) = argtypes;
1670 TYPE_NFIELDS (mtype) = argcount;
1671 TYPE_STUB (mtype) = 0;
1672 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1673 if (p[-2] == '.')
1674 TYPE_VARARGS (mtype) = 1;
1675
1676 xfree (demangled_name);
1677 }
1678
1679 /* This is the external interface to check_stub_method, above. This
1680 function unstubs all of the signatures for TYPE's METHOD_ID method
1681 name. After calling this function TYPE_FN_FIELD_STUB will be
1682 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1683 correct.
1684
1685 This function unfortunately can not die until stabs do. */
1686
1687 void
1688 check_stub_method_group (struct type *type, int method_id)
1689 {
1690 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1691 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1692 int j, found_stub = 0;
1693
1694 for (j = 0; j < len; j++)
1695 if (TYPE_FN_FIELD_STUB (f, j))
1696 {
1697 found_stub = 1;
1698 check_stub_method (type, method_id, j);
1699 }
1700
1701 /* GNU v3 methods with incorrect names were corrected when we read
1702 in type information, because it was cheaper to do it then. The
1703 only GNU v2 methods with incorrect method names are operators and
1704 destructors; destructors were also corrected when we read in type
1705 information.
1706
1707 Therefore the only thing we need to handle here are v2 operator
1708 names. */
1709 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1710 {
1711 int ret;
1712 char dem_opname[256];
1713
1714 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1715 method_id),
1716 dem_opname, DMGL_ANSI);
1717 if (!ret)
1718 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1719 method_id),
1720 dem_opname, 0);
1721 if (ret)
1722 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1723 }
1724 }
1725
1726 const struct cplus_struct_type cplus_struct_default;
1727
1728 void
1729 allocate_cplus_struct_type (struct type *type)
1730 {
1731 if (HAVE_CPLUS_STRUCT (type))
1732 /* Structure was already allocated. Nothing more to do. */
1733 return;
1734
1735 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1736 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1737 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1738 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1739 }
1740
1741 const struct gnat_aux_type gnat_aux_default =
1742 { NULL };
1743
1744 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1745 and allocate the associated gnat-specific data. The gnat-specific
1746 data is also initialized to gnat_aux_default. */
1747 void
1748 allocate_gnat_aux_type (struct type *type)
1749 {
1750 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1751 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1752 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1753 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1754 }
1755
1756
1757 /* Helper function to initialize the standard scalar types.
1758
1759 If NAME is non-NULL, then we make a copy of the string pointed
1760 to by name in the objfile_obstack for that objfile, and initialize
1761 the type name to that copy. There are places (mipsread.c in particular),
1762 where init_type is called with a NULL value for NAME). */
1763
1764 struct type *
1765 init_type (enum type_code code, int length, int flags,
1766 char *name, struct objfile *objfile)
1767 {
1768 struct type *type;
1769
1770 type = alloc_type (objfile);
1771 TYPE_CODE (type) = code;
1772 TYPE_LENGTH (type) = length;
1773
1774 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1775 if (flags & TYPE_FLAG_UNSIGNED)
1776 TYPE_UNSIGNED (type) = 1;
1777 if (flags & TYPE_FLAG_NOSIGN)
1778 TYPE_NOSIGN (type) = 1;
1779 if (flags & TYPE_FLAG_STUB)
1780 TYPE_STUB (type) = 1;
1781 if (flags & TYPE_FLAG_TARGET_STUB)
1782 TYPE_TARGET_STUB (type) = 1;
1783 if (flags & TYPE_FLAG_STATIC)
1784 TYPE_STATIC (type) = 1;
1785 if (flags & TYPE_FLAG_PROTOTYPED)
1786 TYPE_PROTOTYPED (type) = 1;
1787 if (flags & TYPE_FLAG_INCOMPLETE)
1788 TYPE_INCOMPLETE (type) = 1;
1789 if (flags & TYPE_FLAG_VARARGS)
1790 TYPE_VARARGS (type) = 1;
1791 if (flags & TYPE_FLAG_VECTOR)
1792 TYPE_VECTOR (type) = 1;
1793 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1794 TYPE_STUB_SUPPORTED (type) = 1;
1795 if (flags & TYPE_FLAG_NOTTEXT)
1796 TYPE_NOTTEXT (type) = 1;
1797 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1798 TYPE_FIXED_INSTANCE (type) = 1;
1799
1800 if (name)
1801 TYPE_NAME (type) = obsavestring (name, strlen (name),
1802 &objfile->objfile_obstack);
1803
1804 /* C++ fancies. */
1805
1806 if (name && strcmp (name, "char") == 0)
1807 TYPE_NOSIGN (type) = 1;
1808
1809 switch (code)
1810 {
1811 case TYPE_CODE_STRUCT:
1812 case TYPE_CODE_UNION:
1813 case TYPE_CODE_NAMESPACE:
1814 INIT_CPLUS_SPECIFIC (type);
1815 break;
1816 case TYPE_CODE_FLT:
1817 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1818 break;
1819 case TYPE_CODE_FUNC:
1820 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1821 break;
1822 }
1823 return type;
1824 }
1825
1826 int
1827 can_dereference (struct type *t)
1828 {
1829 /* FIXME: Should we return true for references as well as
1830 pointers? */
1831 CHECK_TYPEDEF (t);
1832 return
1833 (t != NULL
1834 && TYPE_CODE (t) == TYPE_CODE_PTR
1835 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1836 }
1837
1838 int
1839 is_integral_type (struct type *t)
1840 {
1841 CHECK_TYPEDEF (t);
1842 return
1843 ((t != NULL)
1844 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1845 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1846 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1847 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1848 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1849 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1850 }
1851
1852 /* A helper function which returns true if types A and B represent the
1853 "same" class type. This is true if the types have the same main
1854 type, or the same name. */
1855
1856 int
1857 class_types_same_p (const struct type *a, const struct type *b)
1858 {
1859 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1860 || (TYPE_NAME (a) && TYPE_NAME (b)
1861 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1862 }
1863
1864 /* Check whether BASE is an ancestor or base class or DCLASS
1865 Return 1 if so, and 0 if not.
1866 Note: callers may want to check for identity of the types before
1867 calling this function -- identical types are considered to satisfy
1868 the ancestor relationship even if they're identical. */
1869
1870 int
1871 is_ancestor (struct type *base, struct type *dclass)
1872 {
1873 int i;
1874
1875 CHECK_TYPEDEF (base);
1876 CHECK_TYPEDEF (dclass);
1877
1878 if (class_types_same_p (base, dclass))
1879 return 1;
1880
1881 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1882 {
1883 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1884 return 1;
1885 }
1886
1887 return 0;
1888 }
1889
1890 /* Like is_ancestor, but only returns true when BASE is a public
1891 ancestor of DCLASS. */
1892
1893 int
1894 is_public_ancestor (struct type *base, struct type *dclass)
1895 {
1896 int i;
1897
1898 CHECK_TYPEDEF (base);
1899 CHECK_TYPEDEF (dclass);
1900
1901 if (class_types_same_p (base, dclass))
1902 return 1;
1903
1904 for (i = 0; i < TYPE_N_BASECLASSES (dclass); ++i)
1905 {
1906 if (! BASETYPE_VIA_PUBLIC (dclass, i))
1907 continue;
1908 if (is_public_ancestor (base, TYPE_BASECLASS (dclass, i)))
1909 return 1;
1910 }
1911
1912 return 0;
1913 }
1914
1915 /* A helper function for is_unique_ancestor. */
1916
1917 static int
1918 is_unique_ancestor_worker (struct type *base, struct type *dclass,
1919 int *offset,
1920 const bfd_byte *contents, CORE_ADDR address)
1921 {
1922 int i, count = 0;
1923
1924 CHECK_TYPEDEF (base);
1925 CHECK_TYPEDEF (dclass);
1926
1927 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
1928 {
1929 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
1930 int this_offset = baseclass_offset (dclass, i, contents, address);
1931
1932 if (this_offset == -1)
1933 error (_("virtual baseclass botch"));
1934
1935 if (class_types_same_p (base, iter))
1936 {
1937 /* If this is the first subclass, set *OFFSET and set count
1938 to 1. Otherwise, if this is at the same offset as
1939 previous instances, do nothing. Otherwise, increment
1940 count. */
1941 if (*offset == -1)
1942 {
1943 *offset = this_offset;
1944 count = 1;
1945 }
1946 else if (this_offset == *offset)
1947 {
1948 /* Nothing. */
1949 }
1950 else
1951 ++count;
1952 }
1953 else
1954 count += is_unique_ancestor_worker (base, iter, offset,
1955 contents + this_offset,
1956 address + this_offset);
1957 }
1958
1959 return count;
1960 }
1961
1962 /* Like is_ancestor, but only returns true if BASE is a unique base
1963 class of the type of VAL. */
1964
1965 int
1966 is_unique_ancestor (struct type *base, struct value *val)
1967 {
1968 int offset = -1;
1969
1970 return is_unique_ancestor_worker (base, value_type (val), &offset,
1971 value_contents (val),
1972 value_address (val)) == 1;
1973 }
1974
1975 \f
1976
1977
1978 /* Functions for overload resolution begin here */
1979
1980 /* Compare two badness vectors A and B and return the result.
1981 0 => A and B are identical
1982 1 => A and B are incomparable
1983 2 => A is better than B
1984 3 => A is worse than B */
1985
1986 int
1987 compare_badness (struct badness_vector *a, struct badness_vector *b)
1988 {
1989 int i;
1990 int tmp;
1991 short found_pos = 0; /* any positives in c? */
1992 short found_neg = 0; /* any negatives in c? */
1993
1994 /* differing lengths => incomparable */
1995 if (a->length != b->length)
1996 return 1;
1997
1998 /* Subtract b from a */
1999 for (i = 0; i < a->length; i++)
2000 {
2001 tmp = a->rank[i] - b->rank[i];
2002 if (tmp > 0)
2003 found_pos = 1;
2004 else if (tmp < 0)
2005 found_neg = 1;
2006 }
2007
2008 if (found_pos)
2009 {
2010 if (found_neg)
2011 return 1; /* incomparable */
2012 else
2013 return 3; /* A > B */
2014 }
2015 else
2016 /* no positives */
2017 {
2018 if (found_neg)
2019 return 2; /* A < B */
2020 else
2021 return 0; /* A == B */
2022 }
2023 }
2024
2025 /* Rank a function by comparing its parameter types (PARMS, length
2026 NPARMS), to the types of an argument list (ARGS, length NARGS).
2027 Return a pointer to a badness vector. This has NARGS + 1
2028 entries. */
2029
2030 struct badness_vector *
2031 rank_function (struct type **parms, int nparms,
2032 struct type **args, int nargs)
2033 {
2034 int i;
2035 struct badness_vector *bv;
2036 int min_len = nparms < nargs ? nparms : nargs;
2037
2038 bv = xmalloc (sizeof (struct badness_vector));
2039 bv->length = nargs + 1; /* add 1 for the length-match rank */
2040 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2041
2042 /* First compare the lengths of the supplied lists.
2043 If there is a mismatch, set it to a high value. */
2044
2045 /* pai/1997-06-03 FIXME: when we have debug info about default
2046 arguments and ellipsis parameter lists, we should consider those
2047 and rank the length-match more finely. */
2048
2049 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2050
2051 /* Now rank all the parameters of the candidate function */
2052 for (i = 1; i <= min_len; i++)
2053 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2054
2055 /* If more arguments than parameters, add dummy entries */
2056 for (i = min_len + 1; i <= nargs; i++)
2057 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2058
2059 return bv;
2060 }
2061
2062 /* Compare the names of two integer types, assuming that any sign
2063 qualifiers have been checked already. We do it this way because
2064 there may be an "int" in the name of one of the types. */
2065
2066 static int
2067 integer_types_same_name_p (const char *first, const char *second)
2068 {
2069 int first_p, second_p;
2070
2071 /* If both are shorts, return 1; if neither is a short, keep
2072 checking. */
2073 first_p = (strstr (first, "short") != NULL);
2074 second_p = (strstr (second, "short") != NULL);
2075 if (first_p && second_p)
2076 return 1;
2077 if (first_p || second_p)
2078 return 0;
2079
2080 /* Likewise for long. */
2081 first_p = (strstr (first, "long") != NULL);
2082 second_p = (strstr (second, "long") != NULL);
2083 if (first_p && second_p)
2084 return 1;
2085 if (first_p || second_p)
2086 return 0;
2087
2088 /* Likewise for char. */
2089 first_p = (strstr (first, "char") != NULL);
2090 second_p = (strstr (second, "char") != NULL);
2091 if (first_p && second_p)
2092 return 1;
2093 if (first_p || second_p)
2094 return 0;
2095
2096 /* They must both be ints. */
2097 return 1;
2098 }
2099
2100 /* Compare one type (PARM) for compatibility with another (ARG).
2101 * PARM is intended to be the parameter type of a function; and
2102 * ARG is the supplied argument's type. This function tests if
2103 * the latter can be converted to the former.
2104 *
2105 * Return 0 if they are identical types;
2106 * Otherwise, return an integer which corresponds to how compatible
2107 * PARM is to ARG. The higher the return value, the worse the match.
2108 * Generally the "bad" conversions are all uniformly assigned a 100. */
2109
2110 int
2111 rank_one_type (struct type *parm, struct type *arg)
2112 {
2113 /* Identical type pointers. */
2114 /* However, this still doesn't catch all cases of same type for arg
2115 and param. The reason is that builtin types are different from
2116 the same ones constructed from the object. */
2117 if (parm == arg)
2118 return 0;
2119
2120 /* Resolve typedefs */
2121 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2122 parm = check_typedef (parm);
2123 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2124 arg = check_typedef (arg);
2125
2126 /*
2127 Well, damnit, if the names are exactly the same, I'll say they
2128 are exactly the same. This happens when we generate method
2129 stubs. The types won't point to the same address, but they
2130 really are the same.
2131 */
2132
2133 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2134 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2135 return 0;
2136
2137 /* Check if identical after resolving typedefs. */
2138 if (parm == arg)
2139 return 0;
2140
2141 /* See through references, since we can almost make non-references
2142 references. */
2143 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2144 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2145 + REFERENCE_CONVERSION_BADNESS);
2146 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2147 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2148 + REFERENCE_CONVERSION_BADNESS);
2149 if (overload_debug)
2150 /* Debugging only. */
2151 fprintf_filtered (gdb_stderr,
2152 "------ Arg is %s [%d], parm is %s [%d]\n",
2153 TYPE_NAME (arg), TYPE_CODE (arg),
2154 TYPE_NAME (parm), TYPE_CODE (parm));
2155
2156 /* x -> y means arg of type x being supplied for parameter of type y */
2157
2158 switch (TYPE_CODE (parm))
2159 {
2160 case TYPE_CODE_PTR:
2161 switch (TYPE_CODE (arg))
2162 {
2163 case TYPE_CODE_PTR:
2164 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
2165 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
2166 return VOID_PTR_CONVERSION_BADNESS;
2167 else
2168 return rank_one_type (TYPE_TARGET_TYPE (parm),
2169 TYPE_TARGET_TYPE (arg));
2170 case TYPE_CODE_ARRAY:
2171 return rank_one_type (TYPE_TARGET_TYPE (parm),
2172 TYPE_TARGET_TYPE (arg));
2173 case TYPE_CODE_FUNC:
2174 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2175 case TYPE_CODE_INT:
2176 case TYPE_CODE_ENUM:
2177 case TYPE_CODE_FLAGS:
2178 case TYPE_CODE_CHAR:
2179 case TYPE_CODE_RANGE:
2180 case TYPE_CODE_BOOL:
2181 return POINTER_CONVERSION_BADNESS;
2182 default:
2183 return INCOMPATIBLE_TYPE_BADNESS;
2184 }
2185 case TYPE_CODE_ARRAY:
2186 switch (TYPE_CODE (arg))
2187 {
2188 case TYPE_CODE_PTR:
2189 case TYPE_CODE_ARRAY:
2190 return rank_one_type (TYPE_TARGET_TYPE (parm),
2191 TYPE_TARGET_TYPE (arg));
2192 default:
2193 return INCOMPATIBLE_TYPE_BADNESS;
2194 }
2195 case TYPE_CODE_FUNC:
2196 switch (TYPE_CODE (arg))
2197 {
2198 case TYPE_CODE_PTR: /* funcptr -> func */
2199 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2200 default:
2201 return INCOMPATIBLE_TYPE_BADNESS;
2202 }
2203 case TYPE_CODE_INT:
2204 switch (TYPE_CODE (arg))
2205 {
2206 case TYPE_CODE_INT:
2207 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2208 {
2209 /* Deal with signed, unsigned, and plain chars and
2210 signed and unsigned ints. */
2211 if (TYPE_NOSIGN (parm))
2212 {
2213 /* This case only for character types */
2214 if (TYPE_NOSIGN (arg))
2215 return 0; /* plain char -> plain char */
2216 else /* signed/unsigned char -> plain char */
2217 return INTEGER_CONVERSION_BADNESS;
2218 }
2219 else if (TYPE_UNSIGNED (parm))
2220 {
2221 if (TYPE_UNSIGNED (arg))
2222 {
2223 /* unsigned int -> unsigned int, or
2224 unsigned long -> unsigned long */
2225 if (integer_types_same_name_p (TYPE_NAME (parm),
2226 TYPE_NAME (arg)))
2227 return 0;
2228 else if (integer_types_same_name_p (TYPE_NAME (arg),
2229 "int")
2230 && integer_types_same_name_p (TYPE_NAME (parm),
2231 "long"))
2232 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2233 else
2234 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2235 }
2236 else
2237 {
2238 if (integer_types_same_name_p (TYPE_NAME (arg),
2239 "long")
2240 && integer_types_same_name_p (TYPE_NAME (parm),
2241 "int"))
2242 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2243 else
2244 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2245 }
2246 }
2247 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2248 {
2249 if (integer_types_same_name_p (TYPE_NAME (parm),
2250 TYPE_NAME (arg)))
2251 return 0;
2252 else if (integer_types_same_name_p (TYPE_NAME (arg),
2253 "int")
2254 && integer_types_same_name_p (TYPE_NAME (parm),
2255 "long"))
2256 return INTEGER_PROMOTION_BADNESS;
2257 else
2258 return INTEGER_CONVERSION_BADNESS;
2259 }
2260 else
2261 return INTEGER_CONVERSION_BADNESS;
2262 }
2263 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2264 return INTEGER_PROMOTION_BADNESS;
2265 else
2266 return INTEGER_CONVERSION_BADNESS;
2267 case TYPE_CODE_ENUM:
2268 case TYPE_CODE_FLAGS:
2269 case TYPE_CODE_CHAR:
2270 case TYPE_CODE_RANGE:
2271 case TYPE_CODE_BOOL:
2272 return INTEGER_PROMOTION_BADNESS;
2273 case TYPE_CODE_FLT:
2274 return INT_FLOAT_CONVERSION_BADNESS;
2275 case TYPE_CODE_PTR:
2276 return NS_POINTER_CONVERSION_BADNESS;
2277 default:
2278 return INCOMPATIBLE_TYPE_BADNESS;
2279 }
2280 break;
2281 case TYPE_CODE_ENUM:
2282 switch (TYPE_CODE (arg))
2283 {
2284 case TYPE_CODE_INT:
2285 case TYPE_CODE_CHAR:
2286 case TYPE_CODE_RANGE:
2287 case TYPE_CODE_BOOL:
2288 case TYPE_CODE_ENUM:
2289 return INTEGER_CONVERSION_BADNESS;
2290 case TYPE_CODE_FLT:
2291 return INT_FLOAT_CONVERSION_BADNESS;
2292 default:
2293 return INCOMPATIBLE_TYPE_BADNESS;
2294 }
2295 break;
2296 case TYPE_CODE_CHAR:
2297 switch (TYPE_CODE (arg))
2298 {
2299 case TYPE_CODE_RANGE:
2300 case TYPE_CODE_BOOL:
2301 case TYPE_CODE_ENUM:
2302 return INTEGER_CONVERSION_BADNESS;
2303 case TYPE_CODE_FLT:
2304 return INT_FLOAT_CONVERSION_BADNESS;
2305 case TYPE_CODE_INT:
2306 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2307 return INTEGER_CONVERSION_BADNESS;
2308 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2309 return INTEGER_PROMOTION_BADNESS;
2310 /* >>> !! else fall through !! <<< */
2311 case TYPE_CODE_CHAR:
2312 /* Deal with signed, unsigned, and plain chars for C++ and
2313 with int cases falling through from previous case. */
2314 if (TYPE_NOSIGN (parm))
2315 {
2316 if (TYPE_NOSIGN (arg))
2317 return 0;
2318 else
2319 return INTEGER_CONVERSION_BADNESS;
2320 }
2321 else if (TYPE_UNSIGNED (parm))
2322 {
2323 if (TYPE_UNSIGNED (arg))
2324 return 0;
2325 else
2326 return INTEGER_PROMOTION_BADNESS;
2327 }
2328 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2329 return 0;
2330 else
2331 return INTEGER_CONVERSION_BADNESS;
2332 default:
2333 return INCOMPATIBLE_TYPE_BADNESS;
2334 }
2335 break;
2336 case TYPE_CODE_RANGE:
2337 switch (TYPE_CODE (arg))
2338 {
2339 case TYPE_CODE_INT:
2340 case TYPE_CODE_CHAR:
2341 case TYPE_CODE_RANGE:
2342 case TYPE_CODE_BOOL:
2343 case TYPE_CODE_ENUM:
2344 return INTEGER_CONVERSION_BADNESS;
2345 case TYPE_CODE_FLT:
2346 return INT_FLOAT_CONVERSION_BADNESS;
2347 default:
2348 return INCOMPATIBLE_TYPE_BADNESS;
2349 }
2350 break;
2351 case TYPE_CODE_BOOL:
2352 switch (TYPE_CODE (arg))
2353 {
2354 case TYPE_CODE_INT:
2355 case TYPE_CODE_CHAR:
2356 case TYPE_CODE_RANGE:
2357 case TYPE_CODE_ENUM:
2358 case TYPE_CODE_FLT:
2359 case TYPE_CODE_PTR:
2360 return BOOLEAN_CONVERSION_BADNESS;
2361 case TYPE_CODE_BOOL:
2362 return 0;
2363 default:
2364 return INCOMPATIBLE_TYPE_BADNESS;
2365 }
2366 break;
2367 case TYPE_CODE_FLT:
2368 switch (TYPE_CODE (arg))
2369 {
2370 case TYPE_CODE_FLT:
2371 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2372 return FLOAT_PROMOTION_BADNESS;
2373 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2374 return 0;
2375 else
2376 return FLOAT_CONVERSION_BADNESS;
2377 case TYPE_CODE_INT:
2378 case TYPE_CODE_BOOL:
2379 case TYPE_CODE_ENUM:
2380 case TYPE_CODE_RANGE:
2381 case TYPE_CODE_CHAR:
2382 return INT_FLOAT_CONVERSION_BADNESS;
2383 default:
2384 return INCOMPATIBLE_TYPE_BADNESS;
2385 }
2386 break;
2387 case TYPE_CODE_COMPLEX:
2388 switch (TYPE_CODE (arg))
2389 { /* Strictly not needed for C++, but... */
2390 case TYPE_CODE_FLT:
2391 return FLOAT_PROMOTION_BADNESS;
2392 case TYPE_CODE_COMPLEX:
2393 return 0;
2394 default:
2395 return INCOMPATIBLE_TYPE_BADNESS;
2396 }
2397 break;
2398 case TYPE_CODE_STRUCT:
2399 /* currently same as TYPE_CODE_CLASS */
2400 switch (TYPE_CODE (arg))
2401 {
2402 case TYPE_CODE_STRUCT:
2403 /* Check for derivation */
2404 if (is_ancestor (parm, arg))
2405 return BASE_CONVERSION_BADNESS;
2406 /* else fall through */
2407 default:
2408 return INCOMPATIBLE_TYPE_BADNESS;
2409 }
2410 break;
2411 case TYPE_CODE_UNION:
2412 switch (TYPE_CODE (arg))
2413 {
2414 case TYPE_CODE_UNION:
2415 default:
2416 return INCOMPATIBLE_TYPE_BADNESS;
2417 }
2418 break;
2419 case TYPE_CODE_MEMBERPTR:
2420 switch (TYPE_CODE (arg))
2421 {
2422 default:
2423 return INCOMPATIBLE_TYPE_BADNESS;
2424 }
2425 break;
2426 case TYPE_CODE_METHOD:
2427 switch (TYPE_CODE (arg))
2428 {
2429
2430 default:
2431 return INCOMPATIBLE_TYPE_BADNESS;
2432 }
2433 break;
2434 case TYPE_CODE_REF:
2435 switch (TYPE_CODE (arg))
2436 {
2437
2438 default:
2439 return INCOMPATIBLE_TYPE_BADNESS;
2440 }
2441
2442 break;
2443 case TYPE_CODE_SET:
2444 switch (TYPE_CODE (arg))
2445 {
2446 /* Not in C++ */
2447 case TYPE_CODE_SET:
2448 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2449 TYPE_FIELD_TYPE (arg, 0));
2450 default:
2451 return INCOMPATIBLE_TYPE_BADNESS;
2452 }
2453 break;
2454 case TYPE_CODE_VOID:
2455 default:
2456 return INCOMPATIBLE_TYPE_BADNESS;
2457 } /* switch (TYPE_CODE (arg)) */
2458 }
2459
2460
2461 /* End of functions for overload resolution */
2462
2463 static void
2464 print_bit_vector (B_TYPE *bits, int nbits)
2465 {
2466 int bitno;
2467
2468 for (bitno = 0; bitno < nbits; bitno++)
2469 {
2470 if ((bitno % 8) == 0)
2471 {
2472 puts_filtered (" ");
2473 }
2474 if (B_TST (bits, bitno))
2475 printf_filtered (("1"));
2476 else
2477 printf_filtered (("0"));
2478 }
2479 }
2480
2481 /* Note the first arg should be the "this" pointer, we may not want to
2482 include it since we may get into a infinitely recursive
2483 situation. */
2484
2485 static void
2486 print_arg_types (struct field *args, int nargs, int spaces)
2487 {
2488 if (args != NULL)
2489 {
2490 int i;
2491
2492 for (i = 0; i < nargs; i++)
2493 recursive_dump_type (args[i].type, spaces + 2);
2494 }
2495 }
2496
2497 int
2498 field_is_static (struct field *f)
2499 {
2500 /* "static" fields are the fields whose location is not relative
2501 to the address of the enclosing struct. It would be nice to
2502 have a dedicated flag that would be set for static fields when
2503 the type is being created. But in practice, checking the field
2504 loc_kind should give us an accurate answer (at least as long as
2505 we assume that DWARF block locations are not going to be used
2506 for static fields). FIXME? */
2507 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2508 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2509 }
2510
2511 static void
2512 dump_fn_fieldlists (struct type *type, int spaces)
2513 {
2514 int method_idx;
2515 int overload_idx;
2516 struct fn_field *f;
2517
2518 printfi_filtered (spaces, "fn_fieldlists ");
2519 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2520 printf_filtered ("\n");
2521 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2522 {
2523 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2524 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2525 method_idx,
2526 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2527 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2528 gdb_stdout);
2529 printf_filtered (_(") length %d\n"),
2530 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2531 for (overload_idx = 0;
2532 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2533 overload_idx++)
2534 {
2535 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2536 overload_idx,
2537 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2538 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2539 gdb_stdout);
2540 printf_filtered (")\n");
2541 printfi_filtered (spaces + 8, "type ");
2542 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2543 gdb_stdout);
2544 printf_filtered ("\n");
2545
2546 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2547 spaces + 8 + 2);
2548
2549 printfi_filtered (spaces + 8, "args ");
2550 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2551 gdb_stdout);
2552 printf_filtered ("\n");
2553
2554 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2555 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2556 overload_idx)),
2557 spaces);
2558 printfi_filtered (spaces + 8, "fcontext ");
2559 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2560 gdb_stdout);
2561 printf_filtered ("\n");
2562
2563 printfi_filtered (spaces + 8, "is_const %d\n",
2564 TYPE_FN_FIELD_CONST (f, overload_idx));
2565 printfi_filtered (spaces + 8, "is_volatile %d\n",
2566 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2567 printfi_filtered (spaces + 8, "is_private %d\n",
2568 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2569 printfi_filtered (spaces + 8, "is_protected %d\n",
2570 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2571 printfi_filtered (spaces + 8, "is_stub %d\n",
2572 TYPE_FN_FIELD_STUB (f, overload_idx));
2573 printfi_filtered (spaces + 8, "voffset %u\n",
2574 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2575 }
2576 }
2577 }
2578
2579 static void
2580 print_cplus_stuff (struct type *type, int spaces)
2581 {
2582 printfi_filtered (spaces, "n_baseclasses %d\n",
2583 TYPE_N_BASECLASSES (type));
2584 printfi_filtered (spaces, "nfn_fields %d\n",
2585 TYPE_NFN_FIELDS (type));
2586 printfi_filtered (spaces, "nfn_fields_total %d\n",
2587 TYPE_NFN_FIELDS_TOTAL (type));
2588 if (TYPE_N_BASECLASSES (type) > 0)
2589 {
2590 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2591 TYPE_N_BASECLASSES (type));
2592 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2593 gdb_stdout);
2594 printf_filtered (")");
2595
2596 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2597 TYPE_N_BASECLASSES (type));
2598 puts_filtered ("\n");
2599 }
2600 if (TYPE_NFIELDS (type) > 0)
2601 {
2602 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2603 {
2604 printfi_filtered (spaces,
2605 "private_field_bits (%d bits at *",
2606 TYPE_NFIELDS (type));
2607 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2608 gdb_stdout);
2609 printf_filtered (")");
2610 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2611 TYPE_NFIELDS (type));
2612 puts_filtered ("\n");
2613 }
2614 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2615 {
2616 printfi_filtered (spaces,
2617 "protected_field_bits (%d bits at *",
2618 TYPE_NFIELDS (type));
2619 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2620 gdb_stdout);
2621 printf_filtered (")");
2622 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2623 TYPE_NFIELDS (type));
2624 puts_filtered ("\n");
2625 }
2626 }
2627 if (TYPE_NFN_FIELDS (type) > 0)
2628 {
2629 dump_fn_fieldlists (type, spaces);
2630 }
2631 }
2632
2633 /* Print the contents of the TYPE's type_specific union, assuming that
2634 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2635
2636 static void
2637 print_gnat_stuff (struct type *type, int spaces)
2638 {
2639 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2640
2641 recursive_dump_type (descriptive_type, spaces + 2);
2642 }
2643
2644 static struct obstack dont_print_type_obstack;
2645
2646 void
2647 recursive_dump_type (struct type *type, int spaces)
2648 {
2649 int idx;
2650
2651 if (spaces == 0)
2652 obstack_begin (&dont_print_type_obstack, 0);
2653
2654 if (TYPE_NFIELDS (type) > 0
2655 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2656 {
2657 struct type **first_dont_print
2658 = (struct type **) obstack_base (&dont_print_type_obstack);
2659
2660 int i = (struct type **)
2661 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2662
2663 while (--i >= 0)
2664 {
2665 if (type == first_dont_print[i])
2666 {
2667 printfi_filtered (spaces, "type node ");
2668 gdb_print_host_address (type, gdb_stdout);
2669 printf_filtered (_(" <same as already seen type>\n"));
2670 return;
2671 }
2672 }
2673
2674 obstack_ptr_grow (&dont_print_type_obstack, type);
2675 }
2676
2677 printfi_filtered (spaces, "type node ");
2678 gdb_print_host_address (type, gdb_stdout);
2679 printf_filtered ("\n");
2680 printfi_filtered (spaces, "name '%s' (",
2681 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2682 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2683 printf_filtered (")\n");
2684 printfi_filtered (spaces, "tagname '%s' (",
2685 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2686 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2687 printf_filtered (")\n");
2688 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2689 switch (TYPE_CODE (type))
2690 {
2691 case TYPE_CODE_UNDEF:
2692 printf_filtered ("(TYPE_CODE_UNDEF)");
2693 break;
2694 case TYPE_CODE_PTR:
2695 printf_filtered ("(TYPE_CODE_PTR)");
2696 break;
2697 case TYPE_CODE_ARRAY:
2698 printf_filtered ("(TYPE_CODE_ARRAY)");
2699 break;
2700 case TYPE_CODE_STRUCT:
2701 printf_filtered ("(TYPE_CODE_STRUCT)");
2702 break;
2703 case TYPE_CODE_UNION:
2704 printf_filtered ("(TYPE_CODE_UNION)");
2705 break;
2706 case TYPE_CODE_ENUM:
2707 printf_filtered ("(TYPE_CODE_ENUM)");
2708 break;
2709 case TYPE_CODE_FLAGS:
2710 printf_filtered ("(TYPE_CODE_FLAGS)");
2711 break;
2712 case TYPE_CODE_FUNC:
2713 printf_filtered ("(TYPE_CODE_FUNC)");
2714 break;
2715 case TYPE_CODE_INT:
2716 printf_filtered ("(TYPE_CODE_INT)");
2717 break;
2718 case TYPE_CODE_FLT:
2719 printf_filtered ("(TYPE_CODE_FLT)");
2720 break;
2721 case TYPE_CODE_VOID:
2722 printf_filtered ("(TYPE_CODE_VOID)");
2723 break;
2724 case TYPE_CODE_SET:
2725 printf_filtered ("(TYPE_CODE_SET)");
2726 break;
2727 case TYPE_CODE_RANGE:
2728 printf_filtered ("(TYPE_CODE_RANGE)");
2729 break;
2730 case TYPE_CODE_STRING:
2731 printf_filtered ("(TYPE_CODE_STRING)");
2732 break;
2733 case TYPE_CODE_BITSTRING:
2734 printf_filtered ("(TYPE_CODE_BITSTRING)");
2735 break;
2736 case TYPE_CODE_ERROR:
2737 printf_filtered ("(TYPE_CODE_ERROR)");
2738 break;
2739 case TYPE_CODE_MEMBERPTR:
2740 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2741 break;
2742 case TYPE_CODE_METHODPTR:
2743 printf_filtered ("(TYPE_CODE_METHODPTR)");
2744 break;
2745 case TYPE_CODE_METHOD:
2746 printf_filtered ("(TYPE_CODE_METHOD)");
2747 break;
2748 case TYPE_CODE_REF:
2749 printf_filtered ("(TYPE_CODE_REF)");
2750 break;
2751 case TYPE_CODE_CHAR:
2752 printf_filtered ("(TYPE_CODE_CHAR)");
2753 break;
2754 case TYPE_CODE_BOOL:
2755 printf_filtered ("(TYPE_CODE_BOOL)");
2756 break;
2757 case TYPE_CODE_COMPLEX:
2758 printf_filtered ("(TYPE_CODE_COMPLEX)");
2759 break;
2760 case TYPE_CODE_TYPEDEF:
2761 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2762 break;
2763 case TYPE_CODE_NAMESPACE:
2764 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2765 break;
2766 default:
2767 printf_filtered ("(UNKNOWN TYPE CODE)");
2768 break;
2769 }
2770 puts_filtered ("\n");
2771 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2772 if (TYPE_OBJFILE_OWNED (type))
2773 {
2774 printfi_filtered (spaces, "objfile ");
2775 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2776 }
2777 else
2778 {
2779 printfi_filtered (spaces, "gdbarch ");
2780 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2781 }
2782 printf_filtered ("\n");
2783 printfi_filtered (spaces, "target_type ");
2784 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2785 printf_filtered ("\n");
2786 if (TYPE_TARGET_TYPE (type) != NULL)
2787 {
2788 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2789 }
2790 printfi_filtered (spaces, "pointer_type ");
2791 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2792 printf_filtered ("\n");
2793 printfi_filtered (spaces, "reference_type ");
2794 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2795 printf_filtered ("\n");
2796 printfi_filtered (spaces, "type_chain ");
2797 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2798 printf_filtered ("\n");
2799 printfi_filtered (spaces, "instance_flags 0x%x",
2800 TYPE_INSTANCE_FLAGS (type));
2801 if (TYPE_CONST (type))
2802 {
2803 puts_filtered (" TYPE_FLAG_CONST");
2804 }
2805 if (TYPE_VOLATILE (type))
2806 {
2807 puts_filtered (" TYPE_FLAG_VOLATILE");
2808 }
2809 if (TYPE_CODE_SPACE (type))
2810 {
2811 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2812 }
2813 if (TYPE_DATA_SPACE (type))
2814 {
2815 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2816 }
2817 if (TYPE_ADDRESS_CLASS_1 (type))
2818 {
2819 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2820 }
2821 if (TYPE_ADDRESS_CLASS_2 (type))
2822 {
2823 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2824 }
2825 puts_filtered ("\n");
2826
2827 printfi_filtered (spaces, "flags");
2828 if (TYPE_UNSIGNED (type))
2829 {
2830 puts_filtered (" TYPE_FLAG_UNSIGNED");
2831 }
2832 if (TYPE_NOSIGN (type))
2833 {
2834 puts_filtered (" TYPE_FLAG_NOSIGN");
2835 }
2836 if (TYPE_STUB (type))
2837 {
2838 puts_filtered (" TYPE_FLAG_STUB");
2839 }
2840 if (TYPE_TARGET_STUB (type))
2841 {
2842 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2843 }
2844 if (TYPE_STATIC (type))
2845 {
2846 puts_filtered (" TYPE_FLAG_STATIC");
2847 }
2848 if (TYPE_PROTOTYPED (type))
2849 {
2850 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2851 }
2852 if (TYPE_INCOMPLETE (type))
2853 {
2854 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2855 }
2856 if (TYPE_VARARGS (type))
2857 {
2858 puts_filtered (" TYPE_FLAG_VARARGS");
2859 }
2860 /* This is used for things like AltiVec registers on ppc. Gcc emits
2861 an attribute for the array type, which tells whether or not we
2862 have a vector, instead of a regular array. */
2863 if (TYPE_VECTOR (type))
2864 {
2865 puts_filtered (" TYPE_FLAG_VECTOR");
2866 }
2867 if (TYPE_FIXED_INSTANCE (type))
2868 {
2869 puts_filtered (" TYPE_FIXED_INSTANCE");
2870 }
2871 if (TYPE_STUB_SUPPORTED (type))
2872 {
2873 puts_filtered (" TYPE_STUB_SUPPORTED");
2874 }
2875 if (TYPE_NOTTEXT (type))
2876 {
2877 puts_filtered (" TYPE_NOTTEXT");
2878 }
2879 puts_filtered ("\n");
2880 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2881 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2882 puts_filtered ("\n");
2883 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2884 {
2885 printfi_filtered (spaces + 2,
2886 "[%d] bitpos %d bitsize %d type ",
2887 idx, TYPE_FIELD_BITPOS (type, idx),
2888 TYPE_FIELD_BITSIZE (type, idx));
2889 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2890 printf_filtered (" name '%s' (",
2891 TYPE_FIELD_NAME (type, idx) != NULL
2892 ? TYPE_FIELD_NAME (type, idx)
2893 : "<NULL>");
2894 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2895 printf_filtered (")\n");
2896 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2897 {
2898 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2899 }
2900 }
2901 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2902 {
2903 printfi_filtered (spaces, "low %s%s high %s%s\n",
2904 plongest (TYPE_LOW_BOUND (type)),
2905 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
2906 plongest (TYPE_HIGH_BOUND (type)),
2907 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
2908 }
2909 printfi_filtered (spaces, "vptr_basetype ");
2910 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2911 puts_filtered ("\n");
2912 if (TYPE_VPTR_BASETYPE (type) != NULL)
2913 {
2914 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2915 }
2916 printfi_filtered (spaces, "vptr_fieldno %d\n",
2917 TYPE_VPTR_FIELDNO (type));
2918
2919 switch (TYPE_SPECIFIC_FIELD (type))
2920 {
2921 case TYPE_SPECIFIC_CPLUS_STUFF:
2922 printfi_filtered (spaces, "cplus_stuff ");
2923 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2924 gdb_stdout);
2925 puts_filtered ("\n");
2926 print_cplus_stuff (type, spaces);
2927 break;
2928
2929 case TYPE_SPECIFIC_GNAT_STUFF:
2930 printfi_filtered (spaces, "gnat_stuff ");
2931 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
2932 puts_filtered ("\n");
2933 print_gnat_stuff (type, spaces);
2934 break;
2935
2936 case TYPE_SPECIFIC_FLOATFORMAT:
2937 printfi_filtered (spaces, "floatformat ");
2938 if (TYPE_FLOATFORMAT (type) == NULL)
2939 puts_filtered ("(null)");
2940 else
2941 {
2942 puts_filtered ("{ ");
2943 if (TYPE_FLOATFORMAT (type)[0] == NULL
2944 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2945 puts_filtered ("(null)");
2946 else
2947 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2948
2949 puts_filtered (", ");
2950 if (TYPE_FLOATFORMAT (type)[1] == NULL
2951 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2952 puts_filtered ("(null)");
2953 else
2954 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2955
2956 puts_filtered (" }");
2957 }
2958 puts_filtered ("\n");
2959 break;
2960
2961 case TYPE_SPECIFIC_CALLING_CONVENTION:
2962 printfi_filtered (spaces, "calling_convention %d\n",
2963 TYPE_CALLING_CONVENTION (type));
2964 break;
2965 }
2966
2967 if (spaces == 0)
2968 obstack_free (&dont_print_type_obstack, NULL);
2969 }
2970
2971 /* Trivial helpers for the libiberty hash table, for mapping one
2972 type to another. */
2973
2974 struct type_pair
2975 {
2976 struct type *old, *new;
2977 };
2978
2979 static hashval_t
2980 type_pair_hash (const void *item)
2981 {
2982 const struct type_pair *pair = item;
2983 return htab_hash_pointer (pair->old);
2984 }
2985
2986 static int
2987 type_pair_eq (const void *item_lhs, const void *item_rhs)
2988 {
2989 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2990 return lhs->old == rhs->old;
2991 }
2992
2993 /* Allocate the hash table used by copy_type_recursive to walk
2994 types without duplicates. We use OBJFILE's obstack, because
2995 OBJFILE is about to be deleted. */
2996
2997 htab_t
2998 create_copied_types_hash (struct objfile *objfile)
2999 {
3000 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3001 NULL, &objfile->objfile_obstack,
3002 hashtab_obstack_allocate,
3003 dummy_obstack_deallocate);
3004 }
3005
3006 /* Recursively copy (deep copy) TYPE, if it is associated with
3007 OBJFILE. Return a new type allocated using malloc, a saved type if
3008 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3009 not associated with OBJFILE. */
3010
3011 struct type *
3012 copy_type_recursive (struct objfile *objfile,
3013 struct type *type,
3014 htab_t copied_types)
3015 {
3016 struct type_pair *stored, pair;
3017 void **slot;
3018 struct type *new_type;
3019
3020 if (! TYPE_OBJFILE_OWNED (type))
3021 return type;
3022
3023 /* This type shouldn't be pointing to any types in other objfiles;
3024 if it did, the type might disappear unexpectedly. */
3025 gdb_assert (TYPE_OBJFILE (type) == objfile);
3026
3027 pair.old = type;
3028 slot = htab_find_slot (copied_types, &pair, INSERT);
3029 if (*slot != NULL)
3030 return ((struct type_pair *) *slot)->new;
3031
3032 new_type = alloc_type_arch (get_type_arch (type));
3033
3034 /* We must add the new type to the hash table immediately, in case
3035 we encounter this type again during a recursive call below. */
3036 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3037 stored->old = type;
3038 stored->new = new_type;
3039 *slot = stored;
3040
3041 /* Copy the common fields of types. For the main type, we simply
3042 copy the entire thing and then update specific fields as needed. */
3043 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3044 TYPE_OBJFILE_OWNED (new_type) = 0;
3045 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3046
3047 if (TYPE_NAME (type))
3048 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3049 if (TYPE_TAG_NAME (type))
3050 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3051
3052 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3053 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3054
3055 /* Copy the fields. */
3056 if (TYPE_NFIELDS (type))
3057 {
3058 int i, nfields;
3059
3060 nfields = TYPE_NFIELDS (type);
3061 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3062 for (i = 0; i < nfields; i++)
3063 {
3064 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3065 TYPE_FIELD_ARTIFICIAL (type, i);
3066 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3067 if (TYPE_FIELD_TYPE (type, i))
3068 TYPE_FIELD_TYPE (new_type, i)
3069 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3070 copied_types);
3071 if (TYPE_FIELD_NAME (type, i))
3072 TYPE_FIELD_NAME (new_type, i) =
3073 xstrdup (TYPE_FIELD_NAME (type, i));
3074 switch (TYPE_FIELD_LOC_KIND (type, i))
3075 {
3076 case FIELD_LOC_KIND_BITPOS:
3077 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3078 TYPE_FIELD_BITPOS (type, i));
3079 break;
3080 case FIELD_LOC_KIND_PHYSADDR:
3081 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3082 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3083 break;
3084 case FIELD_LOC_KIND_PHYSNAME:
3085 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3086 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3087 i)));
3088 break;
3089 default:
3090 internal_error (__FILE__, __LINE__,
3091 _("Unexpected type field location kind: %d"),
3092 TYPE_FIELD_LOC_KIND (type, i));
3093 }
3094 }
3095 }
3096
3097 /* For range types, copy the bounds information. */
3098 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3099 {
3100 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3101 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3102 }
3103
3104 /* Copy pointers to other types. */
3105 if (TYPE_TARGET_TYPE (type))
3106 TYPE_TARGET_TYPE (new_type) =
3107 copy_type_recursive (objfile,
3108 TYPE_TARGET_TYPE (type),
3109 copied_types);
3110 if (TYPE_VPTR_BASETYPE (type))
3111 TYPE_VPTR_BASETYPE (new_type) =
3112 copy_type_recursive (objfile,
3113 TYPE_VPTR_BASETYPE (type),
3114 copied_types);
3115 /* Maybe copy the type_specific bits.
3116
3117 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3118 base classes and methods. There's no fundamental reason why we
3119 can't, but at the moment it is not needed. */
3120
3121 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3122 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3123 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3124 || TYPE_CODE (type) == TYPE_CODE_UNION
3125 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3126 INIT_CPLUS_SPECIFIC (new_type);
3127
3128 return new_type;
3129 }
3130
3131 /* Make a copy of the given TYPE, except that the pointer & reference
3132 types are not preserved.
3133
3134 This function assumes that the given type has an associated objfile.
3135 This objfile is used to allocate the new type. */
3136
3137 struct type *
3138 copy_type (const struct type *type)
3139 {
3140 struct type *new_type;
3141
3142 gdb_assert (TYPE_OBJFILE_OWNED (type));
3143
3144 new_type = alloc_type_copy (type);
3145 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3146 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3147 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3148 sizeof (struct main_type));
3149
3150 return new_type;
3151 }
3152
3153
3154 /* Helper functions to initialize architecture-specific types. */
3155
3156 /* Allocate a type structure associated with GDBARCH and set its
3157 CODE, LENGTH, and NAME fields. */
3158 struct type *
3159 arch_type (struct gdbarch *gdbarch,
3160 enum type_code code, int length, char *name)
3161 {
3162 struct type *type;
3163
3164 type = alloc_type_arch (gdbarch);
3165 TYPE_CODE (type) = code;
3166 TYPE_LENGTH (type) = length;
3167
3168 if (name)
3169 TYPE_NAME (type) = xstrdup (name);
3170
3171 return type;
3172 }
3173
3174 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3175 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3176 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3177 struct type *
3178 arch_integer_type (struct gdbarch *gdbarch,
3179 int bit, int unsigned_p, char *name)
3180 {
3181 struct type *t;
3182
3183 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3184 if (unsigned_p)
3185 TYPE_UNSIGNED (t) = 1;
3186 if (name && strcmp (name, "char") == 0)
3187 TYPE_NOSIGN (t) = 1;
3188
3189 return t;
3190 }
3191
3192 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3193 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3194 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3195 struct type *
3196 arch_character_type (struct gdbarch *gdbarch,
3197 int bit, int unsigned_p, char *name)
3198 {
3199 struct type *t;
3200
3201 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3202 if (unsigned_p)
3203 TYPE_UNSIGNED (t) = 1;
3204
3205 return t;
3206 }
3207
3208 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3209 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3210 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3211 struct type *
3212 arch_boolean_type (struct gdbarch *gdbarch,
3213 int bit, int unsigned_p, char *name)
3214 {
3215 struct type *t;
3216
3217 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3218 if (unsigned_p)
3219 TYPE_UNSIGNED (t) = 1;
3220
3221 return t;
3222 }
3223
3224 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3225 BIT is the type size in bits; if BIT equals -1, the size is
3226 determined by the floatformat. NAME is the type name. Set the
3227 TYPE_FLOATFORMAT from FLOATFORMATS. */
3228 struct type *
3229 arch_float_type (struct gdbarch *gdbarch,
3230 int bit, char *name, const struct floatformat **floatformats)
3231 {
3232 struct type *t;
3233
3234 if (bit == -1)
3235 {
3236 gdb_assert (floatformats != NULL);
3237 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3238 bit = floatformats[0]->totalsize;
3239 }
3240 gdb_assert (bit >= 0);
3241
3242 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3243 TYPE_FLOATFORMAT (t) = floatformats;
3244 return t;
3245 }
3246
3247 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3248 NAME is the type name. TARGET_TYPE is the component float type. */
3249 struct type *
3250 arch_complex_type (struct gdbarch *gdbarch,
3251 char *name, struct type *target_type)
3252 {
3253 struct type *t;
3254 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3255 2 * TYPE_LENGTH (target_type), name);
3256 TYPE_TARGET_TYPE (t) = target_type;
3257 return t;
3258 }
3259
3260 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3261 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3262 struct type *
3263 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3264 {
3265 int nfields = length * TARGET_CHAR_BIT;
3266 struct type *type;
3267
3268 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3269 TYPE_UNSIGNED (type) = 1;
3270 TYPE_NFIELDS (type) = nfields;
3271 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3272
3273 return type;
3274 }
3275
3276 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3277 position BITPOS is called NAME. */
3278 void
3279 append_flags_type_flag (struct type *type, int bitpos, char *name)
3280 {
3281 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3282 gdb_assert (bitpos < TYPE_NFIELDS (type));
3283 gdb_assert (bitpos >= 0);
3284
3285 if (name)
3286 {
3287 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3288 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3289 }
3290 else
3291 {
3292 /* Don't show this field to the user. */
3293 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3294 }
3295 }
3296
3297 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3298 specified by CODE) associated with GDBARCH. NAME is the type name. */
3299 struct type *
3300 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3301 {
3302 struct type *t;
3303 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3304 t = arch_type (gdbarch, code, 0, NULL);
3305 TYPE_TAG_NAME (t) = name;
3306 INIT_CPLUS_SPECIFIC (t);
3307 return t;
3308 }
3309
3310 /* Add new field with name NAME and type FIELD to composite type T.
3311 Do not set the field's position or adjust the type's length;
3312 the caller should do so. Return the new field. */
3313 struct field *
3314 append_composite_type_field_raw (struct type *t, char *name,
3315 struct type *field)
3316 {
3317 struct field *f;
3318 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3319 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3320 sizeof (struct field) * TYPE_NFIELDS (t));
3321 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3322 memset (f, 0, sizeof f[0]);
3323 FIELD_TYPE (f[0]) = field;
3324 FIELD_NAME (f[0]) = name;
3325 return f;
3326 }
3327
3328 /* Add new field with name NAME and type FIELD to composite type T.
3329 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3330 void
3331 append_composite_type_field_aligned (struct type *t, char *name,
3332 struct type *field, int alignment)
3333 {
3334 struct field *f = append_composite_type_field_raw (t, name, field);
3335 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3336 {
3337 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3338 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3339 }
3340 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3341 {
3342 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3343 if (TYPE_NFIELDS (t) > 1)
3344 {
3345 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3346 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3347 * TARGET_CHAR_BIT));
3348
3349 if (alignment)
3350 {
3351 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3352 if (left)
3353 {
3354 FIELD_BITPOS (f[0]) += left;
3355 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3356 }
3357 }
3358 }
3359 }
3360 }
3361
3362 /* Add new field with name NAME and type FIELD to composite type T. */
3363 void
3364 append_composite_type_field (struct type *t, char *name,
3365 struct type *field)
3366 {
3367 append_composite_type_field_aligned (t, name, field, 0);
3368 }
3369
3370
3371 static struct gdbarch_data *gdbtypes_data;
3372
3373 const struct builtin_type *
3374 builtin_type (struct gdbarch *gdbarch)
3375 {
3376 return gdbarch_data (gdbarch, gdbtypes_data);
3377 }
3378
3379 static void *
3380 gdbtypes_post_init (struct gdbarch *gdbarch)
3381 {
3382 struct builtin_type *builtin_type
3383 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3384
3385 /* Basic types. */
3386 builtin_type->builtin_void
3387 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3388 builtin_type->builtin_char
3389 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3390 !gdbarch_char_signed (gdbarch), "char");
3391 builtin_type->builtin_signed_char
3392 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3393 0, "signed char");
3394 builtin_type->builtin_unsigned_char
3395 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3396 1, "unsigned char");
3397 builtin_type->builtin_short
3398 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3399 0, "short");
3400 builtin_type->builtin_unsigned_short
3401 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3402 1, "unsigned short");
3403 builtin_type->builtin_int
3404 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3405 0, "int");
3406 builtin_type->builtin_unsigned_int
3407 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3408 1, "unsigned int");
3409 builtin_type->builtin_long
3410 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3411 0, "long");
3412 builtin_type->builtin_unsigned_long
3413 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3414 1, "unsigned long");
3415 builtin_type->builtin_long_long
3416 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3417 0, "long long");
3418 builtin_type->builtin_unsigned_long_long
3419 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3420 1, "unsigned long long");
3421 builtin_type->builtin_float
3422 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3423 "float", gdbarch_float_format (gdbarch));
3424 builtin_type->builtin_double
3425 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3426 "double", gdbarch_double_format (gdbarch));
3427 builtin_type->builtin_long_double
3428 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3429 "long double", gdbarch_long_double_format (gdbarch));
3430 builtin_type->builtin_complex
3431 = arch_complex_type (gdbarch, "complex",
3432 builtin_type->builtin_float);
3433 builtin_type->builtin_double_complex
3434 = arch_complex_type (gdbarch, "double complex",
3435 builtin_type->builtin_double);
3436 builtin_type->builtin_string
3437 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3438 builtin_type->builtin_bool
3439 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3440
3441 /* The following three are about decimal floating point types, which
3442 are 32-bits, 64-bits and 128-bits respectively. */
3443 builtin_type->builtin_decfloat
3444 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3445 builtin_type->builtin_decdouble
3446 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3447 builtin_type->builtin_declong
3448 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3449
3450 /* "True" character types. */
3451 builtin_type->builtin_true_char
3452 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3453 builtin_type->builtin_true_unsigned_char
3454 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3455
3456 /* Fixed-size integer types. */
3457 builtin_type->builtin_int0
3458 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3459 builtin_type->builtin_int8
3460 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3461 builtin_type->builtin_uint8
3462 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3463 builtin_type->builtin_int16
3464 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3465 builtin_type->builtin_uint16
3466 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3467 builtin_type->builtin_int32
3468 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3469 builtin_type->builtin_uint32
3470 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3471 builtin_type->builtin_int64
3472 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3473 builtin_type->builtin_uint64
3474 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3475 builtin_type->builtin_int128
3476 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3477 builtin_type->builtin_uint128
3478 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3479 TYPE_NOTTEXT (builtin_type->builtin_int8) = 1;
3480 TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1;
3481
3482 /* Wide character types. */
3483 builtin_type->builtin_char16
3484 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3485 builtin_type->builtin_char32
3486 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3487
3488
3489 /* Default data/code pointer types. */
3490 builtin_type->builtin_data_ptr
3491 = lookup_pointer_type (builtin_type->builtin_void);
3492 builtin_type->builtin_func_ptr
3493 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3494
3495 /* This type represents a GDB internal function. */
3496 builtin_type->internal_fn
3497 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3498 "<internal function>");
3499
3500 return builtin_type;
3501 }
3502
3503
3504 /* This set of objfile-based types is intended to be used by symbol
3505 readers as basic types. */
3506
3507 static const struct objfile_data *objfile_type_data;
3508
3509 const struct objfile_type *
3510 objfile_type (struct objfile *objfile)
3511 {
3512 struct gdbarch *gdbarch;
3513 struct objfile_type *objfile_type
3514 = objfile_data (objfile, objfile_type_data);
3515
3516 if (objfile_type)
3517 return objfile_type;
3518
3519 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3520 1, struct objfile_type);
3521
3522 /* Use the objfile architecture to determine basic type properties. */
3523 gdbarch = get_objfile_arch (objfile);
3524
3525 /* Basic types. */
3526 objfile_type->builtin_void
3527 = init_type (TYPE_CODE_VOID, 1,
3528 0,
3529 "void", objfile);
3530
3531 objfile_type->builtin_char
3532 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3533 (TYPE_FLAG_NOSIGN
3534 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3535 "char", objfile);
3536 objfile_type->builtin_signed_char
3537 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3538 0,
3539 "signed char", objfile);
3540 objfile_type->builtin_unsigned_char
3541 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3542 TYPE_FLAG_UNSIGNED,
3543 "unsigned char", objfile);
3544 objfile_type->builtin_short
3545 = init_type (TYPE_CODE_INT,
3546 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3547 0, "short", objfile);
3548 objfile_type->builtin_unsigned_short
3549 = init_type (TYPE_CODE_INT,
3550 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3551 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3552 objfile_type->builtin_int
3553 = init_type (TYPE_CODE_INT,
3554 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3555 0, "int", objfile);
3556 objfile_type->builtin_unsigned_int
3557 = init_type (TYPE_CODE_INT,
3558 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3559 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3560 objfile_type->builtin_long
3561 = init_type (TYPE_CODE_INT,
3562 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3563 0, "long", objfile);
3564 objfile_type->builtin_unsigned_long
3565 = init_type (TYPE_CODE_INT,
3566 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3567 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3568 objfile_type->builtin_long_long
3569 = init_type (TYPE_CODE_INT,
3570 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3571 0, "long long", objfile);
3572 objfile_type->builtin_unsigned_long_long
3573 = init_type (TYPE_CODE_INT,
3574 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3575 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3576
3577 objfile_type->builtin_float
3578 = init_type (TYPE_CODE_FLT,
3579 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3580 0, "float", objfile);
3581 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3582 = gdbarch_float_format (gdbarch);
3583 objfile_type->builtin_double
3584 = init_type (TYPE_CODE_FLT,
3585 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3586 0, "double", objfile);
3587 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3588 = gdbarch_double_format (gdbarch);
3589 objfile_type->builtin_long_double
3590 = init_type (TYPE_CODE_FLT,
3591 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3592 0, "long double", objfile);
3593 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3594 = gdbarch_long_double_format (gdbarch);
3595
3596 /* This type represents a type that was unrecognized in symbol read-in. */
3597 objfile_type->builtin_error
3598 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3599
3600 /* The following set of types is used for symbols with no
3601 debug information. */
3602 objfile_type->nodebug_text_symbol
3603 = init_type (TYPE_CODE_FUNC, 1, 0,
3604 "<text variable, no debug info>", objfile);
3605 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3606 = objfile_type->builtin_int;
3607 objfile_type->nodebug_data_symbol
3608 = init_type (TYPE_CODE_INT,
3609 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3610 "<data variable, no debug info>", objfile);
3611 objfile_type->nodebug_unknown_symbol
3612 = init_type (TYPE_CODE_INT, 1, 0,
3613 "<variable (not text or data), no debug info>", objfile);
3614 objfile_type->nodebug_tls_symbol
3615 = init_type (TYPE_CODE_INT,
3616 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3617 "<thread local variable, no debug info>", objfile);
3618
3619 /* NOTE: on some targets, addresses and pointers are not necessarily
3620 the same --- for example, on the D10V, pointers are 16 bits long,
3621 but addresses are 32 bits long. See doc/gdbint.texinfo,
3622 ``Pointers Are Not Always Addresses''.
3623
3624 The upshot is:
3625 - gdb's `struct type' always describes the target's
3626 representation.
3627 - gdb's `struct value' objects should always hold values in
3628 target form.
3629 - gdb's CORE_ADDR values are addresses in the unified virtual
3630 address space that the assembler and linker work with. Thus,
3631 since target_read_memory takes a CORE_ADDR as an argument, it
3632 can access any memory on the target, even if the processor has
3633 separate code and data address spaces.
3634
3635 So, for example:
3636 - If v is a value holding a D10V code pointer, its contents are
3637 in target form: a big-endian address left-shifted two bits.
3638 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3639 sizeof (void *) == 2 on the target.
3640
3641 In this context, objfile_type->builtin_core_addr is a bit odd:
3642 it's a target type for a value the target will never see. It's
3643 only used to hold the values of (typeless) linker symbols, which
3644 are indeed in the unified virtual address space. */
3645
3646 objfile_type->builtin_core_addr
3647 = init_type (TYPE_CODE_INT,
3648 gdbarch_addr_bit (gdbarch) / 8,
3649 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3650
3651 set_objfile_data (objfile, objfile_type_data, objfile_type);
3652 return objfile_type;
3653 }
3654
3655
3656 extern void _initialize_gdbtypes (void);
3657 void
3658 _initialize_gdbtypes (void)
3659 {
3660 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3661 objfile_type_data = register_objfile_data ();
3662
3663 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3664 Set debugging of C++ overloading."), _("\
3665 Show debugging of C++ overloading."), _("\
3666 When enabled, ranking of the functions is displayed."),
3667 NULL,
3668 show_overload_debug,
3669 &setdebuglist, &showdebuglist);
3670
3671 /* Add user knob for controlling resolution of opaque types. */
3672 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3673 &opaque_type_resolution, _("\
3674 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3675 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3676 NULL,
3677 show_opaque_type_resolution,
3678 &setlist, &showlist);
3679 }
This page took 0.110392 seconds and 4 git commands to generate.