Handle bit offset and bit size in base types
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118 const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
119 &floatformat_bfloat16_big,
120 &floatformat_bfloat16_little
121 };
122
123 /* Should opaque types be resolved? */
124
125 static bool opaque_type_resolution = true;
126
127 /* See gdbtypes.h. */
128
129 unsigned int overload_debug = 0;
130
131 /* A flag to enable strict type checking. */
132
133 static bool strict_type_checking = true;
134
135 /* A function to show whether opaque types are resolved. */
136
137 static void
138 show_opaque_type_resolution (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c,
140 const char *value)
141 {
142 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
143 "(if set before loading symbols) is %s.\n"),
144 value);
145 }
146
147 /* A function to show whether C++ overload debugging is enabled. */
148
149 static void
150 show_overload_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
154 value);
155 }
156
157 /* A function to show the status of strict type checking. */
158
159 static void
160 show_strict_type_checking (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
164 }
165
166 \f
167 /* Allocate a new OBJFILE-associated type structure and fill it
168 with some defaults. Space for the type structure is allocated
169 on the objfile's objfile_obstack. */
170
171 struct type *
172 alloc_type (struct objfile *objfile)
173 {
174 struct type *type;
175
176 gdb_assert (objfile != NULL);
177
178 /* Alloc the structure and start off with all fields zeroed. */
179 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
180 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
181 struct main_type);
182 OBJSTAT (objfile, n_types++);
183
184 TYPE_OBJFILE_OWNED (type) = 1;
185 TYPE_OWNER (type).objfile = objfile;
186
187 /* Initialize the fields that might not be zero. */
188
189 type->set_code (TYPE_CODE_UNDEF);
190 TYPE_CHAIN (type) = type; /* Chain back to itself. */
191
192 return type;
193 }
194
195 /* Allocate a new GDBARCH-associated type structure and fill it
196 with some defaults. Space for the type structure is allocated
197 on the obstack associated with GDBARCH. */
198
199 struct type *
200 alloc_type_arch (struct gdbarch *gdbarch)
201 {
202 struct type *type;
203
204 gdb_assert (gdbarch != NULL);
205
206 /* Alloc the structure and start off with all fields zeroed. */
207
208 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
209 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
210
211 TYPE_OBJFILE_OWNED (type) = 0;
212 TYPE_OWNER (type).gdbarch = gdbarch;
213
214 /* Initialize the fields that might not be zero. */
215
216 type->set_code (TYPE_CODE_UNDEF);
217 TYPE_CHAIN (type) = type; /* Chain back to itself. */
218
219 return type;
220 }
221
222 /* If TYPE is objfile-associated, allocate a new type structure
223 associated with the same objfile. If TYPE is gdbarch-associated,
224 allocate a new type structure associated with the same gdbarch. */
225
226 struct type *
227 alloc_type_copy (const struct type *type)
228 {
229 if (TYPE_OBJFILE_OWNED (type))
230 return alloc_type (TYPE_OWNER (type).objfile);
231 else
232 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
233 }
234
235 /* If TYPE is gdbarch-associated, return that architecture.
236 If TYPE is objfile-associated, return that objfile's architecture. */
237
238 struct gdbarch *
239 get_type_arch (const struct type *type)
240 {
241 struct gdbarch *arch;
242
243 if (TYPE_OBJFILE_OWNED (type))
244 arch = TYPE_OWNER (type).objfile->arch ();
245 else
246 arch = TYPE_OWNER (type).gdbarch;
247
248 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
249 a gdbarch, however, this is very rare, and even then, in most cases
250 that get_type_arch is called, we assume that a non-NULL value is
251 returned. */
252 gdb_assert (arch != NULL);
253 return arch;
254 }
255
256 /* See gdbtypes.h. */
257
258 struct type *
259 get_target_type (struct type *type)
260 {
261 if (type != NULL)
262 {
263 type = TYPE_TARGET_TYPE (type);
264 if (type != NULL)
265 type = check_typedef (type);
266 }
267
268 return type;
269 }
270
271 /* See gdbtypes.h. */
272
273 unsigned int
274 type_length_units (struct type *type)
275 {
276 struct gdbarch *arch = get_type_arch (type);
277 int unit_size = gdbarch_addressable_memory_unit_size (arch);
278
279 return TYPE_LENGTH (type) / unit_size;
280 }
281
282 /* Alloc a new type instance structure, fill it with some defaults,
283 and point it at OLDTYPE. Allocate the new type instance from the
284 same place as OLDTYPE. */
285
286 static struct type *
287 alloc_type_instance (struct type *oldtype)
288 {
289 struct type *type;
290
291 /* Allocate the structure. */
292
293 if (! TYPE_OBJFILE_OWNED (oldtype))
294 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
295 else
296 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
297 struct type);
298
299 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
300
301 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
302
303 return type;
304 }
305
306 /* Clear all remnants of the previous type at TYPE, in preparation for
307 replacing it with something else. Preserve owner information. */
308
309 static void
310 smash_type (struct type *type)
311 {
312 int objfile_owned = TYPE_OBJFILE_OWNED (type);
313 union type_owner owner = TYPE_OWNER (type);
314
315 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
316
317 /* Restore owner information. */
318 TYPE_OBJFILE_OWNED (type) = objfile_owned;
319 TYPE_OWNER (type) = owner;
320
321 /* For now, delete the rings. */
322 TYPE_CHAIN (type) = type;
323
324 /* For now, leave the pointer/reference types alone. */
325 }
326
327 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
328 to a pointer to memory where the pointer type should be stored.
329 If *TYPEPTR is zero, update it to point to the pointer type we return.
330 We allocate new memory if needed. */
331
332 struct type *
333 make_pointer_type (struct type *type, struct type **typeptr)
334 {
335 struct type *ntype; /* New type */
336 struct type *chain;
337
338 ntype = TYPE_POINTER_TYPE (type);
339
340 if (ntype)
341 {
342 if (typeptr == 0)
343 return ntype; /* Don't care about alloc,
344 and have new type. */
345 else if (*typeptr == 0)
346 {
347 *typeptr = ntype; /* Tracking alloc, and have new type. */
348 return ntype;
349 }
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
354 ntype = alloc_type_copy (type);
355 if (typeptr)
356 *typeptr = ntype;
357 }
358 else /* We have storage, but need to reset it. */
359 {
360 ntype = *typeptr;
361 chain = TYPE_CHAIN (ntype);
362 smash_type (ntype);
363 TYPE_CHAIN (ntype) = chain;
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_POINTER_TYPE (type) = ntype;
368
369 /* FIXME! Assumes the machine has only one representation for pointers! */
370
371 TYPE_LENGTH (ntype)
372 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
373 ntype->set_code (TYPE_CODE_PTR);
374
375 /* Mark pointers as unsigned. The target converts between pointers
376 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
377 gdbarch_address_to_pointer. */
378 ntype->set_is_unsigned (true);
379
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
388 return ntype;
389 }
390
391 /* Given a type TYPE, return a type of pointers to that type.
392 May need to construct such a type if this is the first use. */
393
394 struct type *
395 lookup_pointer_type (struct type *type)
396 {
397 return make_pointer_type (type, (struct type **) 0);
398 }
399
400 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
401 points to a pointer to memory where the reference type should be
402 stored. If *TYPEPTR is zero, update it to point to the reference
403 type we return. We allocate new memory if needed. REFCODE denotes
404 the kind of reference type to lookup (lvalue or rvalue reference). */
405
406 struct type *
407 make_reference_type (struct type *type, struct type **typeptr,
408 enum type_code refcode)
409 {
410 struct type *ntype; /* New type */
411 struct type **reftype;
412 struct type *chain;
413
414 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
415
416 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
417 : TYPE_RVALUE_REFERENCE_TYPE (type));
418
419 if (ntype)
420 {
421 if (typeptr == 0)
422 return ntype; /* Don't care about alloc,
423 and have new type. */
424 else if (*typeptr == 0)
425 {
426 *typeptr = ntype; /* Tracking alloc, and have new type. */
427 return ntype;
428 }
429 }
430
431 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
432 {
433 ntype = alloc_type_copy (type);
434 if (typeptr)
435 *typeptr = ntype;
436 }
437 else /* We have storage, but need to reset it. */
438 {
439 ntype = *typeptr;
440 chain = TYPE_CHAIN (ntype);
441 smash_type (ntype);
442 TYPE_CHAIN (ntype) = chain;
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
446 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
447 : &TYPE_RVALUE_REFERENCE_TYPE (type));
448
449 *reftype = ntype;
450
451 /* FIXME! Assume the machine has only one representation for
452 references, and that it matches the (only) representation for
453 pointers! */
454
455 TYPE_LENGTH (ntype) =
456 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
457 ntype->set_code (refcode);
458
459 *reftype = ntype;
460
461 /* Update the length of all the other variants of this type. */
462 chain = TYPE_CHAIN (ntype);
463 while (chain != ntype)
464 {
465 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
466 chain = TYPE_CHAIN (chain);
467 }
468
469 return ntype;
470 }
471
472 /* Same as above, but caller doesn't care about memory allocation
473 details. */
474
475 struct type *
476 lookup_reference_type (struct type *type, enum type_code refcode)
477 {
478 return make_reference_type (type, (struct type **) 0, refcode);
479 }
480
481 /* Lookup the lvalue reference type for the type TYPE. */
482
483 struct type *
484 lookup_lvalue_reference_type (struct type *type)
485 {
486 return lookup_reference_type (type, TYPE_CODE_REF);
487 }
488
489 /* Lookup the rvalue reference type for the type TYPE. */
490
491 struct type *
492 lookup_rvalue_reference_type (struct type *type)
493 {
494 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
495 }
496
497 /* Lookup a function type that returns type TYPE. TYPEPTR, if
498 nonzero, points to a pointer to memory where the function type
499 should be stored. If *TYPEPTR is zero, update it to point to the
500 function type we return. We allocate new memory if needed. */
501
502 struct type *
503 make_function_type (struct type *type, struct type **typeptr)
504 {
505 struct type *ntype; /* New type */
506
507 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
508 {
509 ntype = alloc_type_copy (type);
510 if (typeptr)
511 *typeptr = ntype;
512 }
513 else /* We have storage, but need to reset it. */
514 {
515 ntype = *typeptr;
516 smash_type (ntype);
517 }
518
519 TYPE_TARGET_TYPE (ntype) = type;
520
521 TYPE_LENGTH (ntype) = 1;
522 ntype->set_code (TYPE_CODE_FUNC);
523
524 INIT_FUNC_SPECIFIC (ntype);
525
526 return ntype;
527 }
528
529 /* Given a type TYPE, return a type of functions that return that type.
530 May need to construct such a type if this is the first use. */
531
532 struct type *
533 lookup_function_type (struct type *type)
534 {
535 return make_function_type (type, (struct type **) 0);
536 }
537
538 /* Given a type TYPE and argument types, return the appropriate
539 function type. If the final type in PARAM_TYPES is NULL, make a
540 varargs function. */
541
542 struct type *
543 lookup_function_type_with_arguments (struct type *type,
544 int nparams,
545 struct type **param_types)
546 {
547 struct type *fn = make_function_type (type, (struct type **) 0);
548 int i;
549
550 if (nparams > 0)
551 {
552 if (param_types[nparams - 1] == NULL)
553 {
554 --nparams;
555 fn->set_has_varargs (true);
556 }
557 else if (check_typedef (param_types[nparams - 1])->code ()
558 == TYPE_CODE_VOID)
559 {
560 --nparams;
561 /* Caller should have ensured this. */
562 gdb_assert (nparams == 0);
563 fn->set_is_prototyped (true);
564 }
565 else
566 fn->set_is_prototyped (true);
567 }
568
569 fn->set_num_fields (nparams);
570 fn->set_fields
571 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
572 for (i = 0; i < nparams; ++i)
573 fn->field (i).set_type (param_types[i]);
574
575 return fn;
576 }
577
578 /* Identify address space identifier by name -- return a
579 type_instance_flags. */
580
581 type_instance_flags
582 address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
583 const char *space_identifier)
584 {
585 type_instance_flags type_flags;
586
587 /* Check for known address space delimiters. */
588 if (!strcmp (space_identifier, "code"))
589 return TYPE_INSTANCE_FLAG_CODE_SPACE;
590 else if (!strcmp (space_identifier, "data"))
591 return TYPE_INSTANCE_FLAG_DATA_SPACE;
592 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
593 && gdbarch_address_class_name_to_type_flags (gdbarch,
594 space_identifier,
595 &type_flags))
596 return type_flags;
597 else
598 error (_("Unknown address space specifier: \"%s\""), space_identifier);
599 }
600
601 /* Identify address space identifier by type_instance_flags and return
602 the string version of the adress space name. */
603
604 const char *
605 address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
606 type_instance_flags space_flag)
607 {
608 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
609 return "code";
610 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
611 return "data";
612 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
613 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
614 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
615 else
616 return NULL;
617 }
618
619 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
620
621 If STORAGE is non-NULL, create the new type instance there.
622 STORAGE must be in the same obstack as TYPE. */
623
624 static struct type *
625 make_qualified_type (struct type *type, type_instance_flags new_flags,
626 struct type *storage)
627 {
628 struct type *ntype;
629
630 ntype = type;
631 do
632 {
633 if (ntype->instance_flags () == new_flags)
634 return ntype;
635 ntype = TYPE_CHAIN (ntype);
636 }
637 while (ntype != type);
638
639 /* Create a new type instance. */
640 if (storage == NULL)
641 ntype = alloc_type_instance (type);
642 else
643 {
644 /* If STORAGE was provided, it had better be in the same objfile
645 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
646 if one objfile is freed and the other kept, we'd have
647 dangling pointers. */
648 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
649
650 ntype = storage;
651 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
652 TYPE_CHAIN (ntype) = ntype;
653 }
654
655 /* Pointers or references to the original type are not relevant to
656 the new type. */
657 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
658 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
659
660 /* Chain the new qualified type to the old type. */
661 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
662 TYPE_CHAIN (type) = ntype;
663
664 /* Now set the instance flags and return the new type. */
665 ntype->set_instance_flags (new_flags);
666
667 /* Set length of new type to that of the original type. */
668 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
669
670 return ntype;
671 }
672
673 /* Make an address-space-delimited variant of a type -- a type that
674 is identical to the one supplied except that it has an address
675 space attribute attached to it (such as "code" or "data").
676
677 The space attributes "code" and "data" are for Harvard
678 architectures. The address space attributes are for architectures
679 which have alternately sized pointers or pointers with alternate
680 representations. */
681
682 struct type *
683 make_type_with_address_space (struct type *type,
684 type_instance_flags space_flag)
685 {
686 type_instance_flags new_flags = ((type->instance_flags ()
687 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
688 | TYPE_INSTANCE_FLAG_DATA_SPACE
689 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
690 | space_flag);
691
692 return make_qualified_type (type, new_flags, NULL);
693 }
694
695 /* Make a "c-v" variant of a type -- a type that is identical to the
696 one supplied except that it may have const or volatile attributes
697 CNST is a flag for setting the const attribute
698 VOLTL is a flag for setting the volatile attribute
699 TYPE is the base type whose variant we are creating.
700
701 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
702 storage to hold the new qualified type; *TYPEPTR and TYPE must be
703 in the same objfile. Otherwise, allocate fresh memory for the new
704 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
705 new type we construct. */
706
707 struct type *
708 make_cv_type (int cnst, int voltl,
709 struct type *type,
710 struct type **typeptr)
711 {
712 struct type *ntype; /* New type */
713
714 type_instance_flags new_flags = (type->instance_flags ()
715 & ~(TYPE_INSTANCE_FLAG_CONST
716 | TYPE_INSTANCE_FLAG_VOLATILE));
717
718 if (cnst)
719 new_flags |= TYPE_INSTANCE_FLAG_CONST;
720
721 if (voltl)
722 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
723
724 if (typeptr && *typeptr != NULL)
725 {
726 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
727 a C-V variant chain that threads across objfiles: if one
728 objfile gets freed, then the other has a broken C-V chain.
729
730 This code used to try to copy over the main type from TYPE to
731 *TYPEPTR if they were in different objfiles, but that's
732 wrong, too: TYPE may have a field list or member function
733 lists, which refer to types of their own, etc. etc. The
734 whole shebang would need to be copied over recursively; you
735 can't have inter-objfile pointers. The only thing to do is
736 to leave stub types as stub types, and look them up afresh by
737 name each time you encounter them. */
738 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
739 }
740
741 ntype = make_qualified_type (type, new_flags,
742 typeptr ? *typeptr : NULL);
743
744 if (typeptr != NULL)
745 *typeptr = ntype;
746
747 return ntype;
748 }
749
750 /* Make a 'restrict'-qualified version of TYPE. */
751
752 struct type *
753 make_restrict_type (struct type *type)
754 {
755 return make_qualified_type (type,
756 (type->instance_flags ()
757 | TYPE_INSTANCE_FLAG_RESTRICT),
758 NULL);
759 }
760
761 /* Make a type without const, volatile, or restrict. */
762
763 struct type *
764 make_unqualified_type (struct type *type)
765 {
766 return make_qualified_type (type,
767 (type->instance_flags ()
768 & ~(TYPE_INSTANCE_FLAG_CONST
769 | TYPE_INSTANCE_FLAG_VOLATILE
770 | TYPE_INSTANCE_FLAG_RESTRICT)),
771 NULL);
772 }
773
774 /* Make a '_Atomic'-qualified version of TYPE. */
775
776 struct type *
777 make_atomic_type (struct type *type)
778 {
779 return make_qualified_type (type,
780 (type->instance_flags ()
781 | TYPE_INSTANCE_FLAG_ATOMIC),
782 NULL);
783 }
784
785 /* Replace the contents of ntype with the type *type. This changes the
786 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
787 the changes are propogated to all types in the TYPE_CHAIN.
788
789 In order to build recursive types, it's inevitable that we'll need
790 to update types in place --- but this sort of indiscriminate
791 smashing is ugly, and needs to be replaced with something more
792 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
793 clear if more steps are needed. */
794
795 void
796 replace_type (struct type *ntype, struct type *type)
797 {
798 struct type *chain;
799
800 /* These two types had better be in the same objfile. Otherwise,
801 the assignment of one type's main type structure to the other
802 will produce a type with references to objects (names; field
803 lists; etc.) allocated on an objfile other than its own. */
804 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
805
806 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
807
808 /* The type length is not a part of the main type. Update it for
809 each type on the variant chain. */
810 chain = ntype;
811 do
812 {
813 /* Assert that this element of the chain has no address-class bits
814 set in its flags. Such type variants might have type lengths
815 which are supposed to be different from the non-address-class
816 variants. This assertion shouldn't ever be triggered because
817 symbol readers which do construct address-class variants don't
818 call replace_type(). */
819 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
820
821 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
822 chain = TYPE_CHAIN (chain);
823 }
824 while (ntype != chain);
825
826 /* Assert that the two types have equivalent instance qualifiers.
827 This should be true for at least all of our debug readers. */
828 gdb_assert (ntype->instance_flags () == type->instance_flags ());
829 }
830
831 /* Implement direct support for MEMBER_TYPE in GNU C++.
832 May need to construct such a type if this is the first use.
833 The TYPE is the type of the member. The DOMAIN is the type
834 of the aggregate that the member belongs to. */
835
836 struct type *
837 lookup_memberptr_type (struct type *type, struct type *domain)
838 {
839 struct type *mtype;
840
841 mtype = alloc_type_copy (type);
842 smash_to_memberptr_type (mtype, domain, type);
843 return mtype;
844 }
845
846 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
847
848 struct type *
849 lookup_methodptr_type (struct type *to_type)
850 {
851 struct type *mtype;
852
853 mtype = alloc_type_copy (to_type);
854 smash_to_methodptr_type (mtype, to_type);
855 return mtype;
856 }
857
858 /* Allocate a stub method whose return type is TYPE. This apparently
859 happens for speed of symbol reading, since parsing out the
860 arguments to the method is cpu-intensive, the way we are doing it.
861 So, we will fill in arguments later. This always returns a fresh
862 type. */
863
864 struct type *
865 allocate_stub_method (struct type *type)
866 {
867 struct type *mtype;
868
869 mtype = alloc_type_copy (type);
870 mtype->set_code (TYPE_CODE_METHOD);
871 TYPE_LENGTH (mtype) = 1;
872 mtype->set_is_stub (true);
873 TYPE_TARGET_TYPE (mtype) = type;
874 /* TYPE_SELF_TYPE (mtype) = unknown yet */
875 return mtype;
876 }
877
878 /* See gdbtypes.h. */
879
880 bool
881 operator== (const dynamic_prop &l, const dynamic_prop &r)
882 {
883 if (l.kind () != r.kind ())
884 return false;
885
886 switch (l.kind ())
887 {
888 case PROP_UNDEFINED:
889 return true;
890 case PROP_CONST:
891 return l.const_val () == r.const_val ();
892 case PROP_ADDR_OFFSET:
893 case PROP_LOCEXPR:
894 case PROP_LOCLIST:
895 return l.baton () == r.baton ();
896 case PROP_VARIANT_PARTS:
897 return l.variant_parts () == r.variant_parts ();
898 case PROP_TYPE:
899 return l.original_type () == r.original_type ();
900 }
901
902 gdb_assert_not_reached ("unhandled dynamic_prop kind");
903 }
904
905 /* See gdbtypes.h. */
906
907 bool
908 operator== (const range_bounds &l, const range_bounds &r)
909 {
910 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
911
912 return (FIELD_EQ (low)
913 && FIELD_EQ (high)
914 && FIELD_EQ (flag_upper_bound_is_count)
915 && FIELD_EQ (flag_bound_evaluated)
916 && FIELD_EQ (bias));
917
918 #undef FIELD_EQ
919 }
920
921 /* Create a range type with a dynamic range from LOW_BOUND to
922 HIGH_BOUND, inclusive. See create_range_type for further details. */
923
924 struct type *
925 create_range_type (struct type *result_type, struct type *index_type,
926 const struct dynamic_prop *low_bound,
927 const struct dynamic_prop *high_bound,
928 LONGEST bias)
929 {
930 /* The INDEX_TYPE should be a type capable of holding the upper and lower
931 bounds, as such a zero sized, or void type makes no sense. */
932 gdb_assert (index_type->code () != TYPE_CODE_VOID);
933 gdb_assert (TYPE_LENGTH (index_type) > 0);
934
935 if (result_type == NULL)
936 result_type = alloc_type_copy (index_type);
937 result_type->set_code (TYPE_CODE_RANGE);
938 TYPE_TARGET_TYPE (result_type) = index_type;
939 if (index_type->is_stub ())
940 result_type->set_target_is_stub (true);
941 else
942 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
943
944 range_bounds *bounds
945 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
946 bounds->low = *low_bound;
947 bounds->high = *high_bound;
948 bounds->bias = bias;
949 bounds->stride.set_const_val (0);
950
951 result_type->set_bounds (bounds);
952
953 if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
954 result_type->set_is_unsigned (true);
955
956 /* Ada allows the declaration of range types whose upper bound is
957 less than the lower bound, so checking the lower bound is not
958 enough. Make sure we do not mark a range type whose upper bound
959 is negative as unsigned. */
960 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
961 result_type->set_is_unsigned (false);
962
963 result_type->set_endianity_is_not_default
964 (index_type->endianity_is_not_default ());
965
966 return result_type;
967 }
968
969 /* See gdbtypes.h. */
970
971 struct type *
972 create_range_type_with_stride (struct type *result_type,
973 struct type *index_type,
974 const struct dynamic_prop *low_bound,
975 const struct dynamic_prop *high_bound,
976 LONGEST bias,
977 const struct dynamic_prop *stride,
978 bool byte_stride_p)
979 {
980 result_type = create_range_type (result_type, index_type, low_bound,
981 high_bound, bias);
982
983 gdb_assert (stride != nullptr);
984 result_type->bounds ()->stride = *stride;
985 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
986
987 return result_type;
988 }
989
990
991
992 /* Create a range type using either a blank type supplied in
993 RESULT_TYPE, or creating a new type, inheriting the objfile from
994 INDEX_TYPE.
995
996 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
997 to HIGH_BOUND, inclusive.
998
999 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1000 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1001
1002 struct type *
1003 create_static_range_type (struct type *result_type, struct type *index_type,
1004 LONGEST low_bound, LONGEST high_bound)
1005 {
1006 struct dynamic_prop low, high;
1007
1008 low.set_const_val (low_bound);
1009 high.set_const_val (high_bound);
1010
1011 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1012
1013 return result_type;
1014 }
1015
1016 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1017 are static, otherwise returns 0. */
1018
1019 static bool
1020 has_static_range (const struct range_bounds *bounds)
1021 {
1022 /* If the range doesn't have a defined stride then its stride field will
1023 be initialized to the constant 0. */
1024 return (bounds->low.kind () == PROP_CONST
1025 && bounds->high.kind () == PROP_CONST
1026 && bounds->stride.kind () == PROP_CONST);
1027 }
1028
1029
1030 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1031 TYPE.
1032
1033 Return 1 if type is a range type with two defined, constant bounds.
1034 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1035 Else, return -1. */
1036
1037 int
1038 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1039 {
1040 type = check_typedef (type);
1041 switch (type->code ())
1042 {
1043 case TYPE_CODE_RANGE:
1044 /* This function currently only works for ranges with two defined,
1045 constant bounds. */
1046 if (type->bounds ()->low.kind () != PROP_CONST
1047 || type->bounds ()->high.kind () != PROP_CONST)
1048 return -1;
1049
1050 *lowp = type->bounds ()->low.const_val ();
1051 *highp = type->bounds ()->high.const_val ();
1052
1053 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1054 {
1055 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1056 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1057 return 0;
1058 }
1059 return 1;
1060 case TYPE_CODE_ENUM:
1061 if (type->num_fields () > 0)
1062 {
1063 /* The enums may not be sorted by value, so search all
1064 entries. */
1065 int i;
1066
1067 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1068 for (i = 0; i < type->num_fields (); i++)
1069 {
1070 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1071 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1072 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1073 *highp = TYPE_FIELD_ENUMVAL (type, i);
1074 }
1075
1076 /* Set unsigned indicator if warranted. */
1077 if (*lowp >= 0)
1078 type->set_is_unsigned (true);
1079 }
1080 else
1081 {
1082 *lowp = 0;
1083 *highp = -1;
1084 }
1085 return 0;
1086 case TYPE_CODE_BOOL:
1087 *lowp = 0;
1088 *highp = 1;
1089 return 0;
1090 case TYPE_CODE_INT:
1091 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1092 return -1;
1093 if (!type->is_unsigned ())
1094 {
1095 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1096 *highp = -*lowp - 1;
1097 return 0;
1098 }
1099 /* fall through */
1100 case TYPE_CODE_CHAR:
1101 *lowp = 0;
1102 /* This round-about calculation is to avoid shifting by
1103 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1104 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1105 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1106 *highp = (*highp - 1) | *highp;
1107 return 0;
1108 default:
1109 return -1;
1110 }
1111 }
1112
1113 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1114 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1115 Save the high bound into HIGH_BOUND if not NULL.
1116
1117 Return 1 if the operation was successful. Return zero otherwise,
1118 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
1119
1120 int
1121 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1122 {
1123 struct type *index = type->index_type ();
1124 LONGEST low = 0;
1125 LONGEST high = 0;
1126 int res;
1127
1128 if (index == NULL)
1129 return 0;
1130
1131 res = get_discrete_bounds (index, &low, &high);
1132 if (res == -1)
1133 return 0;
1134
1135 if (low_bound)
1136 *low_bound = low;
1137
1138 if (high_bound)
1139 *high_bound = high;
1140
1141 return 1;
1142 }
1143
1144 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1145 representation of a value of this type, save the corresponding
1146 position number in POS.
1147
1148 Its differs from VAL only in the case of enumeration types. In
1149 this case, the position number of the value of the first listed
1150 enumeration literal is zero; the position number of the value of
1151 each subsequent enumeration literal is one more than that of its
1152 predecessor in the list.
1153
1154 Return 1 if the operation was successful. Return zero otherwise,
1155 in which case the value of POS is unmodified.
1156 */
1157
1158 int
1159 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1160 {
1161 if (type->code () == TYPE_CODE_RANGE)
1162 type = TYPE_TARGET_TYPE (type);
1163
1164 if (type->code () == TYPE_CODE_ENUM)
1165 {
1166 int i;
1167
1168 for (i = 0; i < type->num_fields (); i += 1)
1169 {
1170 if (val == TYPE_FIELD_ENUMVAL (type, i))
1171 {
1172 *pos = i;
1173 return 1;
1174 }
1175 }
1176 /* Invalid enumeration value. */
1177 return 0;
1178 }
1179 else
1180 {
1181 *pos = val;
1182 return 1;
1183 }
1184 }
1185
1186 /* If the array TYPE has static bounds calculate and update its
1187 size, then return true. Otherwise return false and leave TYPE
1188 unchanged. */
1189
1190 static bool
1191 update_static_array_size (struct type *type)
1192 {
1193 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1194
1195 struct type *range_type = type->index_type ();
1196
1197 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1198 && has_static_range (range_type->bounds ())
1199 && (!type_not_associated (type)
1200 && !type_not_allocated (type)))
1201 {
1202 LONGEST low_bound, high_bound;
1203 int stride;
1204 struct type *element_type;
1205
1206 /* If the array itself doesn't provide a stride value then take
1207 whatever stride the range provides. Don't update BIT_STRIDE as
1208 we don't want to place the stride value from the range into this
1209 arrays bit size field. */
1210 stride = TYPE_FIELD_BITSIZE (type, 0);
1211 if (stride == 0)
1212 stride = range_type->bit_stride ();
1213
1214 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1215 low_bound = high_bound = 0;
1216 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1217 /* Be careful when setting the array length. Ada arrays can be
1218 empty arrays with the high_bound being smaller than the low_bound.
1219 In such cases, the array length should be zero. */
1220 if (high_bound < low_bound)
1221 TYPE_LENGTH (type) = 0;
1222 else if (stride != 0)
1223 {
1224 /* Ensure that the type length is always positive, even in the
1225 case where (for example in Fortran) we have a negative
1226 stride. It is possible to have a single element array with a
1227 negative stride in Fortran (this doesn't mean anything
1228 special, it's still just a single element array) so do
1229 consider that case when touching this code. */
1230 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1231 TYPE_LENGTH (type)
1232 = ((std::abs (stride) * element_count) + 7) / 8;
1233 }
1234 else
1235 TYPE_LENGTH (type) =
1236 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1237
1238 return true;
1239 }
1240
1241 return false;
1242 }
1243
1244 /* Create an array type using either a blank type supplied in
1245 RESULT_TYPE, or creating a new type, inheriting the objfile from
1246 RANGE_TYPE.
1247
1248 Elements will be of type ELEMENT_TYPE, the indices will be of type
1249 RANGE_TYPE.
1250
1251 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1252 This byte stride property is added to the resulting array type
1253 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1254 argument can only be used to create types that are objfile-owned
1255 (see add_dyn_prop), meaning that either this function must be called
1256 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1257
1258 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1259 If BIT_STRIDE is not zero, build a packed array type whose element
1260 size is BIT_STRIDE. Otherwise, ignore this parameter.
1261
1262 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1263 sure it is TYPE_CODE_UNDEF before we bash it into an array
1264 type? */
1265
1266 struct type *
1267 create_array_type_with_stride (struct type *result_type,
1268 struct type *element_type,
1269 struct type *range_type,
1270 struct dynamic_prop *byte_stride_prop,
1271 unsigned int bit_stride)
1272 {
1273 if (byte_stride_prop != NULL
1274 && byte_stride_prop->kind () == PROP_CONST)
1275 {
1276 /* The byte stride is actually not dynamic. Pretend we were
1277 called with bit_stride set instead of byte_stride_prop.
1278 This will give us the same result type, while avoiding
1279 the need to handle this as a special case. */
1280 bit_stride = byte_stride_prop->const_val () * 8;
1281 byte_stride_prop = NULL;
1282 }
1283
1284 if (result_type == NULL)
1285 result_type = alloc_type_copy (range_type);
1286
1287 result_type->set_code (TYPE_CODE_ARRAY);
1288 TYPE_TARGET_TYPE (result_type) = element_type;
1289
1290 result_type->set_num_fields (1);
1291 result_type->set_fields
1292 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1293 result_type->set_index_type (range_type);
1294 if (byte_stride_prop != NULL)
1295 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1296 else if (bit_stride > 0)
1297 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1298
1299 if (!update_static_array_size (result_type))
1300 {
1301 /* This type is dynamic and its length needs to be computed
1302 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1303 undefined by setting it to zero. Although we are not expected
1304 to trust TYPE_LENGTH in this case, setting the size to zero
1305 allows us to avoid allocating objects of random sizes in case
1306 we accidently do. */
1307 TYPE_LENGTH (result_type) = 0;
1308 }
1309
1310 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1311 if (TYPE_LENGTH (result_type) == 0)
1312 result_type->set_target_is_stub (true);
1313
1314 return result_type;
1315 }
1316
1317 /* Same as create_array_type_with_stride but with no bit_stride
1318 (BIT_STRIDE = 0), thus building an unpacked array. */
1319
1320 struct type *
1321 create_array_type (struct type *result_type,
1322 struct type *element_type,
1323 struct type *range_type)
1324 {
1325 return create_array_type_with_stride (result_type, element_type,
1326 range_type, NULL, 0);
1327 }
1328
1329 struct type *
1330 lookup_array_range_type (struct type *element_type,
1331 LONGEST low_bound, LONGEST high_bound)
1332 {
1333 struct type *index_type;
1334 struct type *range_type;
1335
1336 if (TYPE_OBJFILE_OWNED (element_type))
1337 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1338 else
1339 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1340 range_type = create_static_range_type (NULL, index_type,
1341 low_bound, high_bound);
1342
1343 return create_array_type (NULL, element_type, range_type);
1344 }
1345
1346 /* Create a string type using either a blank type supplied in
1347 RESULT_TYPE, or creating a new type. String types are similar
1348 enough to array of char types that we can use create_array_type to
1349 build the basic type and then bash it into a string type.
1350
1351 For fixed length strings, the range type contains 0 as the lower
1352 bound and the length of the string minus one as the upper bound.
1353
1354 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1355 sure it is TYPE_CODE_UNDEF before we bash it into a string
1356 type? */
1357
1358 struct type *
1359 create_string_type (struct type *result_type,
1360 struct type *string_char_type,
1361 struct type *range_type)
1362 {
1363 result_type = create_array_type (result_type,
1364 string_char_type,
1365 range_type);
1366 result_type->set_code (TYPE_CODE_STRING);
1367 return result_type;
1368 }
1369
1370 struct type *
1371 lookup_string_range_type (struct type *string_char_type,
1372 LONGEST low_bound, LONGEST high_bound)
1373 {
1374 struct type *result_type;
1375
1376 result_type = lookup_array_range_type (string_char_type,
1377 low_bound, high_bound);
1378 result_type->set_code (TYPE_CODE_STRING);
1379 return result_type;
1380 }
1381
1382 struct type *
1383 create_set_type (struct type *result_type, struct type *domain_type)
1384 {
1385 if (result_type == NULL)
1386 result_type = alloc_type_copy (domain_type);
1387
1388 result_type->set_code (TYPE_CODE_SET);
1389 result_type->set_num_fields (1);
1390 result_type->set_fields
1391 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1392
1393 if (!domain_type->is_stub ())
1394 {
1395 LONGEST low_bound, high_bound, bit_length;
1396
1397 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1398 low_bound = high_bound = 0;
1399 bit_length = high_bound - low_bound + 1;
1400 TYPE_LENGTH (result_type)
1401 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1402 if (low_bound >= 0)
1403 result_type->set_is_unsigned (true);
1404 }
1405 result_type->field (0).set_type (domain_type);
1406
1407 return result_type;
1408 }
1409
1410 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1411 and any array types nested inside it. */
1412
1413 void
1414 make_vector_type (struct type *array_type)
1415 {
1416 struct type *inner_array, *elt_type;
1417
1418 /* Find the innermost array type, in case the array is
1419 multi-dimensional. */
1420 inner_array = array_type;
1421 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1422 inner_array = TYPE_TARGET_TYPE (inner_array);
1423
1424 elt_type = TYPE_TARGET_TYPE (inner_array);
1425 if (elt_type->code () == TYPE_CODE_INT)
1426 {
1427 type_instance_flags flags
1428 = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
1429 elt_type = make_qualified_type (elt_type, flags, NULL);
1430 TYPE_TARGET_TYPE (inner_array) = elt_type;
1431 }
1432
1433 array_type->set_is_vector (true);
1434 }
1435
1436 struct type *
1437 init_vector_type (struct type *elt_type, int n)
1438 {
1439 struct type *array_type;
1440
1441 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1442 make_vector_type (array_type);
1443 return array_type;
1444 }
1445
1446 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1447 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1448 confusing. "self" is a common enough replacement for "this".
1449 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1450 TYPE_CODE_METHOD. */
1451
1452 struct type *
1453 internal_type_self_type (struct type *type)
1454 {
1455 switch (type->code ())
1456 {
1457 case TYPE_CODE_METHODPTR:
1458 case TYPE_CODE_MEMBERPTR:
1459 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1460 return NULL;
1461 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1462 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1463 case TYPE_CODE_METHOD:
1464 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1465 return NULL;
1466 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1467 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1468 default:
1469 gdb_assert_not_reached ("bad type");
1470 }
1471 }
1472
1473 /* Set the type of the class that TYPE belongs to.
1474 In c++ this is the class of "this".
1475 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1476 TYPE_CODE_METHOD. */
1477
1478 void
1479 set_type_self_type (struct type *type, struct type *self_type)
1480 {
1481 switch (type->code ())
1482 {
1483 case TYPE_CODE_METHODPTR:
1484 case TYPE_CODE_MEMBERPTR:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1488 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1489 break;
1490 case TYPE_CODE_METHOD:
1491 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1492 INIT_FUNC_SPECIFIC (type);
1493 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1494 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1495 break;
1496 default:
1497 gdb_assert_not_reached ("bad type");
1498 }
1499 }
1500
1501 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1502 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1503 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1504 TYPE doesn't include the offset (that's the value of the MEMBER
1505 itself), but does include the structure type into which it points
1506 (for some reason).
1507
1508 When "smashing" the type, we preserve the objfile that the old type
1509 pointed to, since we aren't changing where the type is actually
1510 allocated. */
1511
1512 void
1513 smash_to_memberptr_type (struct type *type, struct type *self_type,
1514 struct type *to_type)
1515 {
1516 smash_type (type);
1517 type->set_code (TYPE_CODE_MEMBERPTR);
1518 TYPE_TARGET_TYPE (type) = to_type;
1519 set_type_self_type (type, self_type);
1520 /* Assume that a data member pointer is the same size as a normal
1521 pointer. */
1522 TYPE_LENGTH (type)
1523 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1524 }
1525
1526 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1527
1528 When "smashing" the type, we preserve the objfile that the old type
1529 pointed to, since we aren't changing where the type is actually
1530 allocated. */
1531
1532 void
1533 smash_to_methodptr_type (struct type *type, struct type *to_type)
1534 {
1535 smash_type (type);
1536 type->set_code (TYPE_CODE_METHODPTR);
1537 TYPE_TARGET_TYPE (type) = to_type;
1538 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1539 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1540 }
1541
1542 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1543 METHOD just means `function that gets an extra "this" argument'.
1544
1545 When "smashing" the type, we preserve the objfile that the old type
1546 pointed to, since we aren't changing where the type is actually
1547 allocated. */
1548
1549 void
1550 smash_to_method_type (struct type *type, struct type *self_type,
1551 struct type *to_type, struct field *args,
1552 int nargs, int varargs)
1553 {
1554 smash_type (type);
1555 type->set_code (TYPE_CODE_METHOD);
1556 TYPE_TARGET_TYPE (type) = to_type;
1557 set_type_self_type (type, self_type);
1558 type->set_fields (args);
1559 type->set_num_fields (nargs);
1560 if (varargs)
1561 type->set_has_varargs (true);
1562 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1563 }
1564
1565 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1566 Since GCC PR debug/47510 DWARF provides associated information to detect the
1567 anonymous class linkage name from its typedef.
1568
1569 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1570 apply it itself. */
1571
1572 const char *
1573 type_name_or_error (struct type *type)
1574 {
1575 struct type *saved_type = type;
1576 const char *name;
1577 struct objfile *objfile;
1578
1579 type = check_typedef (type);
1580
1581 name = type->name ();
1582 if (name != NULL)
1583 return name;
1584
1585 name = saved_type->name ();
1586 objfile = TYPE_OBJFILE (saved_type);
1587 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1588 name ? name : "<anonymous>",
1589 objfile ? objfile_name (objfile) : "<arch>");
1590 }
1591
1592 /* Lookup a typedef or primitive type named NAME, visible in lexical
1593 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1594 suitably defined. */
1595
1596 struct type *
1597 lookup_typename (const struct language_defn *language,
1598 const char *name,
1599 const struct block *block, int noerr)
1600 {
1601 struct symbol *sym;
1602
1603 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1604 language->la_language, NULL).symbol;
1605 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1606 return SYMBOL_TYPE (sym);
1607
1608 if (noerr)
1609 return NULL;
1610 error (_("No type named %s."), name);
1611 }
1612
1613 struct type *
1614 lookup_unsigned_typename (const struct language_defn *language,
1615 const char *name)
1616 {
1617 char *uns = (char *) alloca (strlen (name) + 10);
1618
1619 strcpy (uns, "unsigned ");
1620 strcpy (uns + 9, name);
1621 return lookup_typename (language, uns, NULL, 0);
1622 }
1623
1624 struct type *
1625 lookup_signed_typename (const struct language_defn *language, const char *name)
1626 {
1627 struct type *t;
1628 char *uns = (char *) alloca (strlen (name) + 8);
1629
1630 strcpy (uns, "signed ");
1631 strcpy (uns + 7, name);
1632 t = lookup_typename (language, uns, NULL, 1);
1633 /* If we don't find "signed FOO" just try again with plain "FOO". */
1634 if (t != NULL)
1635 return t;
1636 return lookup_typename (language, name, NULL, 0);
1637 }
1638
1639 /* Lookup a structure type named "struct NAME",
1640 visible in lexical block BLOCK. */
1641
1642 struct type *
1643 lookup_struct (const char *name, const struct block *block)
1644 {
1645 struct symbol *sym;
1646
1647 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1648
1649 if (sym == NULL)
1650 {
1651 error (_("No struct type named %s."), name);
1652 }
1653 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1654 {
1655 error (_("This context has class, union or enum %s, not a struct."),
1656 name);
1657 }
1658 return (SYMBOL_TYPE (sym));
1659 }
1660
1661 /* Lookup a union type named "union NAME",
1662 visible in lexical block BLOCK. */
1663
1664 struct type *
1665 lookup_union (const char *name, const struct block *block)
1666 {
1667 struct symbol *sym;
1668 struct type *t;
1669
1670 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1671
1672 if (sym == NULL)
1673 error (_("No union type named %s."), name);
1674
1675 t = SYMBOL_TYPE (sym);
1676
1677 if (t->code () == TYPE_CODE_UNION)
1678 return t;
1679
1680 /* If we get here, it's not a union. */
1681 error (_("This context has class, struct or enum %s, not a union."),
1682 name);
1683 }
1684
1685 /* Lookup an enum type named "enum NAME",
1686 visible in lexical block BLOCK. */
1687
1688 struct type *
1689 lookup_enum (const char *name, const struct block *block)
1690 {
1691 struct symbol *sym;
1692
1693 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1694 if (sym == NULL)
1695 {
1696 error (_("No enum type named %s."), name);
1697 }
1698 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1699 {
1700 error (_("This context has class, struct or union %s, not an enum."),
1701 name);
1702 }
1703 return (SYMBOL_TYPE (sym));
1704 }
1705
1706 /* Lookup a template type named "template NAME<TYPE>",
1707 visible in lexical block BLOCK. */
1708
1709 struct type *
1710 lookup_template_type (const char *name, struct type *type,
1711 const struct block *block)
1712 {
1713 struct symbol *sym;
1714 char *nam = (char *)
1715 alloca (strlen (name) + strlen (type->name ()) + 4);
1716
1717 strcpy (nam, name);
1718 strcat (nam, "<");
1719 strcat (nam, type->name ());
1720 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1721
1722 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1723
1724 if (sym == NULL)
1725 {
1726 error (_("No template type named %s."), name);
1727 }
1728 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1729 {
1730 error (_("This context has class, union or enum %s, not a struct."),
1731 name);
1732 }
1733 return (SYMBOL_TYPE (sym));
1734 }
1735
1736 /* See gdbtypes.h. */
1737
1738 struct_elt
1739 lookup_struct_elt (struct type *type, const char *name, int noerr)
1740 {
1741 int i;
1742
1743 for (;;)
1744 {
1745 type = check_typedef (type);
1746 if (type->code () != TYPE_CODE_PTR
1747 && type->code () != TYPE_CODE_REF)
1748 break;
1749 type = TYPE_TARGET_TYPE (type);
1750 }
1751
1752 if (type->code () != TYPE_CODE_STRUCT
1753 && type->code () != TYPE_CODE_UNION)
1754 {
1755 std::string type_name = type_to_string (type);
1756 error (_("Type %s is not a structure or union type."),
1757 type_name.c_str ());
1758 }
1759
1760 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1761 {
1762 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1763
1764 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1765 {
1766 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1767 }
1768 else if (!t_field_name || *t_field_name == '\0')
1769 {
1770 struct_elt elt
1771 = lookup_struct_elt (type->field (i).type (), name, 1);
1772 if (elt.field != NULL)
1773 {
1774 elt.offset += TYPE_FIELD_BITPOS (type, i);
1775 return elt;
1776 }
1777 }
1778 }
1779
1780 /* OK, it's not in this class. Recursively check the baseclasses. */
1781 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1782 {
1783 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1784 if (elt.field != NULL)
1785 return elt;
1786 }
1787
1788 if (noerr)
1789 return {nullptr, 0};
1790
1791 std::string type_name = type_to_string (type);
1792 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1793 }
1794
1795 /* See gdbtypes.h. */
1796
1797 struct type *
1798 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1799 {
1800 struct_elt elt = lookup_struct_elt (type, name, noerr);
1801 if (elt.field != NULL)
1802 return elt.field->type ();
1803 else
1804 return NULL;
1805 }
1806
1807 /* Store in *MAX the largest number representable by unsigned integer type
1808 TYPE. */
1809
1810 void
1811 get_unsigned_type_max (struct type *type, ULONGEST *max)
1812 {
1813 unsigned int n;
1814
1815 type = check_typedef (type);
1816 gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
1817 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1818
1819 /* Written this way to avoid overflow. */
1820 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1821 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1822 }
1823
1824 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1825 signed integer type TYPE. */
1826
1827 void
1828 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1829 {
1830 unsigned int n;
1831
1832 type = check_typedef (type);
1833 gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
1834 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1835
1836 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1837 *min = -((ULONGEST) 1 << (n - 1));
1838 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1839 }
1840
1841 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1842 cplus_stuff.vptr_fieldno.
1843
1844 cplus_stuff is initialized to cplus_struct_default which does not
1845 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1846 designated initializers). We cope with that here. */
1847
1848 int
1849 internal_type_vptr_fieldno (struct type *type)
1850 {
1851 type = check_typedef (type);
1852 gdb_assert (type->code () == TYPE_CODE_STRUCT
1853 || type->code () == TYPE_CODE_UNION);
1854 if (!HAVE_CPLUS_STRUCT (type))
1855 return -1;
1856 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1857 }
1858
1859 /* Set the value of cplus_stuff.vptr_fieldno. */
1860
1861 void
1862 set_type_vptr_fieldno (struct type *type, int fieldno)
1863 {
1864 type = check_typedef (type);
1865 gdb_assert (type->code () == TYPE_CODE_STRUCT
1866 || type->code () == TYPE_CODE_UNION);
1867 if (!HAVE_CPLUS_STRUCT (type))
1868 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1869 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1870 }
1871
1872 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1873 cplus_stuff.vptr_basetype. */
1874
1875 struct type *
1876 internal_type_vptr_basetype (struct type *type)
1877 {
1878 type = check_typedef (type);
1879 gdb_assert (type->code () == TYPE_CODE_STRUCT
1880 || type->code () == TYPE_CODE_UNION);
1881 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1882 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1883 }
1884
1885 /* Set the value of cplus_stuff.vptr_basetype. */
1886
1887 void
1888 set_type_vptr_basetype (struct type *type, struct type *basetype)
1889 {
1890 type = check_typedef (type);
1891 gdb_assert (type->code () == TYPE_CODE_STRUCT
1892 || type->code () == TYPE_CODE_UNION);
1893 if (!HAVE_CPLUS_STRUCT (type))
1894 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1895 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1896 }
1897
1898 /* Lookup the vptr basetype/fieldno values for TYPE.
1899 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1900 vptr_fieldno. Also, if found and basetype is from the same objfile,
1901 cache the results.
1902 If not found, return -1 and ignore BASETYPEP.
1903 Callers should be aware that in some cases (for example,
1904 the type or one of its baseclasses is a stub type and we are
1905 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1906 this function will not be able to find the
1907 virtual function table pointer, and vptr_fieldno will remain -1 and
1908 vptr_basetype will remain NULL or incomplete. */
1909
1910 int
1911 get_vptr_fieldno (struct type *type, struct type **basetypep)
1912 {
1913 type = check_typedef (type);
1914
1915 if (TYPE_VPTR_FIELDNO (type) < 0)
1916 {
1917 int i;
1918
1919 /* We must start at zero in case the first (and only) baseclass
1920 is virtual (and hence we cannot share the table pointer). */
1921 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1922 {
1923 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1924 int fieldno;
1925 struct type *basetype;
1926
1927 fieldno = get_vptr_fieldno (baseclass, &basetype);
1928 if (fieldno >= 0)
1929 {
1930 /* If the type comes from a different objfile we can't cache
1931 it, it may have a different lifetime. PR 2384 */
1932 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1933 {
1934 set_type_vptr_fieldno (type, fieldno);
1935 set_type_vptr_basetype (type, basetype);
1936 }
1937 if (basetypep)
1938 *basetypep = basetype;
1939 return fieldno;
1940 }
1941 }
1942
1943 /* Not found. */
1944 return -1;
1945 }
1946 else
1947 {
1948 if (basetypep)
1949 *basetypep = TYPE_VPTR_BASETYPE (type);
1950 return TYPE_VPTR_FIELDNO (type);
1951 }
1952 }
1953
1954 static void
1955 stub_noname_complaint (void)
1956 {
1957 complaint (_("stub type has NULL name"));
1958 }
1959
1960 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1961 attached to it, and that property has a non-constant value. */
1962
1963 static int
1964 array_type_has_dynamic_stride (struct type *type)
1965 {
1966 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1967
1968 return (prop != NULL && prop->kind () != PROP_CONST);
1969 }
1970
1971 /* Worker for is_dynamic_type. */
1972
1973 static int
1974 is_dynamic_type_internal (struct type *type, int top_level)
1975 {
1976 type = check_typedef (type);
1977
1978 /* We only want to recognize references at the outermost level. */
1979 if (top_level && type->code () == TYPE_CODE_REF)
1980 type = check_typedef (TYPE_TARGET_TYPE (type));
1981
1982 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1983 dynamic, even if the type itself is statically defined.
1984 From a user's point of view, this may appear counter-intuitive;
1985 but it makes sense in this context, because the point is to determine
1986 whether any part of the type needs to be resolved before it can
1987 be exploited. */
1988 if (TYPE_DATA_LOCATION (type) != NULL
1989 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1990 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1991 return 1;
1992
1993 if (TYPE_ASSOCIATED_PROP (type))
1994 return 1;
1995
1996 if (TYPE_ALLOCATED_PROP (type))
1997 return 1;
1998
1999 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2000 if (prop != nullptr && prop->kind () != PROP_TYPE)
2001 return 1;
2002
2003 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2004 return 1;
2005
2006 switch (type->code ())
2007 {
2008 case TYPE_CODE_RANGE:
2009 {
2010 /* A range type is obviously dynamic if it has at least one
2011 dynamic bound. But also consider the range type to be
2012 dynamic when its subtype is dynamic, even if the bounds
2013 of the range type are static. It allows us to assume that
2014 the subtype of a static range type is also static. */
2015 return (!has_static_range (type->bounds ())
2016 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2017 }
2018
2019 case TYPE_CODE_STRING:
2020 /* Strings are very much like an array of characters, and can be
2021 treated as one here. */
2022 case TYPE_CODE_ARRAY:
2023 {
2024 gdb_assert (type->num_fields () == 1);
2025
2026 /* The array is dynamic if either the bounds are dynamic... */
2027 if (is_dynamic_type_internal (type->index_type (), 0))
2028 return 1;
2029 /* ... or the elements it contains have a dynamic contents... */
2030 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2031 return 1;
2032 /* ... or if it has a dynamic stride... */
2033 if (array_type_has_dynamic_stride (type))
2034 return 1;
2035 return 0;
2036 }
2037
2038 case TYPE_CODE_STRUCT:
2039 case TYPE_CODE_UNION:
2040 {
2041 int i;
2042
2043 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2044
2045 for (i = 0; i < type->num_fields (); ++i)
2046 {
2047 /* Static fields can be ignored here. */
2048 if (field_is_static (&type->field (i)))
2049 continue;
2050 /* If the field has dynamic type, then so does TYPE. */
2051 if (is_dynamic_type_internal (type->field (i).type (), 0))
2052 return 1;
2053 /* If the field is at a fixed offset, then it is not
2054 dynamic. */
2055 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2056 continue;
2057 /* Do not consider C++ virtual base types to be dynamic
2058 due to the field's offset being dynamic; these are
2059 handled via other means. */
2060 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2061 continue;
2062 return 1;
2063 }
2064 }
2065 break;
2066 }
2067
2068 return 0;
2069 }
2070
2071 /* See gdbtypes.h. */
2072
2073 int
2074 is_dynamic_type (struct type *type)
2075 {
2076 return is_dynamic_type_internal (type, 1);
2077 }
2078
2079 static struct type *resolve_dynamic_type_internal
2080 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2081
2082 /* Given a dynamic range type (dyn_range_type) and a stack of
2083 struct property_addr_info elements, return a static version
2084 of that type. */
2085
2086 static struct type *
2087 resolve_dynamic_range (struct type *dyn_range_type,
2088 struct property_addr_info *addr_stack)
2089 {
2090 CORE_ADDR value;
2091 struct type *static_range_type, *static_target_type;
2092 struct dynamic_prop low_bound, high_bound, stride;
2093
2094 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2095
2096 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2097 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2098 low_bound.set_const_val (value);
2099 else
2100 low_bound.set_undefined ();
2101
2102 prop = &dyn_range_type->bounds ()->high;
2103 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2104 {
2105 high_bound.set_const_val (value);
2106
2107 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2108 high_bound.set_const_val
2109 (low_bound.const_val () + high_bound.const_val () - 1);
2110 }
2111 else
2112 high_bound.set_undefined ();
2113
2114 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2115 prop = &dyn_range_type->bounds ()->stride;
2116 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2117 {
2118 stride.set_const_val (value);
2119
2120 /* If we have a bit stride that is not an exact number of bytes then
2121 I really don't think this is going to work with current GDB, the
2122 array indexing code in GDB seems to be pretty heavily tied to byte
2123 offsets right now. Assuming 8 bits in a byte. */
2124 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2125 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2126 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2127 error (_("bit strides that are not a multiple of the byte size "
2128 "are currently not supported"));
2129 }
2130 else
2131 {
2132 stride.set_undefined ();
2133 byte_stride_p = true;
2134 }
2135
2136 static_target_type
2137 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2138 addr_stack, 0);
2139 LONGEST bias = dyn_range_type->bounds ()->bias;
2140 static_range_type = create_range_type_with_stride
2141 (copy_type (dyn_range_type), static_target_type,
2142 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2143 static_range_type->bounds ()->flag_bound_evaluated = 1;
2144 return static_range_type;
2145 }
2146
2147 /* Resolves dynamic bound values of an array or string type TYPE to static
2148 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2149 needed during the dynamic resolution. */
2150
2151 static struct type *
2152 resolve_dynamic_array_or_string (struct type *type,
2153 struct property_addr_info *addr_stack)
2154 {
2155 CORE_ADDR value;
2156 struct type *elt_type;
2157 struct type *range_type;
2158 struct type *ary_dim;
2159 struct dynamic_prop *prop;
2160 unsigned int bit_stride = 0;
2161
2162 /* For dynamic type resolution strings can be treated like arrays of
2163 characters. */
2164 gdb_assert (type->code () == TYPE_CODE_ARRAY
2165 || type->code () == TYPE_CODE_STRING);
2166
2167 type = copy_type (type);
2168
2169 elt_type = type;
2170 range_type = check_typedef (elt_type->index_type ());
2171 range_type = resolve_dynamic_range (range_type, addr_stack);
2172
2173 /* Resolve allocated/associated here before creating a new array type, which
2174 will update the length of the array accordingly. */
2175 prop = TYPE_ALLOCATED_PROP (type);
2176 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2177 prop->set_const_val (value);
2178
2179 prop = TYPE_ASSOCIATED_PROP (type);
2180 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2181 prop->set_const_val (value);
2182
2183 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2184
2185 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2186 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2187 else
2188 elt_type = TYPE_TARGET_TYPE (type);
2189
2190 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2191 if (prop != NULL)
2192 {
2193 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2194 {
2195 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2196 bit_stride = (unsigned int) (value * 8);
2197 }
2198 else
2199 {
2200 /* Could be a bug in our code, but it could also happen
2201 if the DWARF info is not correct. Issue a warning,
2202 and assume no byte/bit stride (leave bit_stride = 0). */
2203 warning (_("cannot determine array stride for type %s"),
2204 type->name () ? type->name () : "<no name>");
2205 }
2206 }
2207 else
2208 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2209
2210 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2211 bit_stride);
2212 }
2213
2214 /* Resolve dynamic bounds of members of the union TYPE to static
2215 bounds. ADDR_STACK is a stack of struct property_addr_info
2216 to be used if needed during the dynamic resolution. */
2217
2218 static struct type *
2219 resolve_dynamic_union (struct type *type,
2220 struct property_addr_info *addr_stack)
2221 {
2222 struct type *resolved_type;
2223 int i;
2224 unsigned int max_len = 0;
2225
2226 gdb_assert (type->code () == TYPE_CODE_UNION);
2227
2228 resolved_type = copy_type (type);
2229 resolved_type->set_fields
2230 ((struct field *)
2231 TYPE_ALLOC (resolved_type,
2232 resolved_type->num_fields () * sizeof (struct field)));
2233 memcpy (resolved_type->fields (),
2234 type->fields (),
2235 resolved_type->num_fields () * sizeof (struct field));
2236 for (i = 0; i < resolved_type->num_fields (); ++i)
2237 {
2238 struct type *t;
2239
2240 if (field_is_static (&type->field (i)))
2241 continue;
2242
2243 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2244 addr_stack, 0);
2245 resolved_type->field (i).set_type (t);
2246
2247 struct type *real_type = check_typedef (t);
2248 if (TYPE_LENGTH (real_type) > max_len)
2249 max_len = TYPE_LENGTH (real_type);
2250 }
2251
2252 TYPE_LENGTH (resolved_type) = max_len;
2253 return resolved_type;
2254 }
2255
2256 /* See gdbtypes.h. */
2257
2258 bool
2259 variant::matches (ULONGEST value, bool is_unsigned) const
2260 {
2261 for (const discriminant_range &range : discriminants)
2262 if (range.contains (value, is_unsigned))
2263 return true;
2264 return false;
2265 }
2266
2267 static void
2268 compute_variant_fields_inner (struct type *type,
2269 struct property_addr_info *addr_stack,
2270 const variant_part &part,
2271 std::vector<bool> &flags);
2272
2273 /* A helper function to determine which variant fields will be active.
2274 This handles both the variant's direct fields, and any variant
2275 parts embedded in this variant. TYPE is the type we're examining.
2276 ADDR_STACK holds information about the concrete object. VARIANT is
2277 the current variant to be handled. FLAGS is where the results are
2278 stored -- this function sets the Nth element in FLAGS if the
2279 corresponding field is enabled. ENABLED is whether this variant is
2280 enabled or not. */
2281
2282 static void
2283 compute_variant_fields_recurse (struct type *type,
2284 struct property_addr_info *addr_stack,
2285 const variant &variant,
2286 std::vector<bool> &flags,
2287 bool enabled)
2288 {
2289 for (int field = variant.first_field; field < variant.last_field; ++field)
2290 flags[field] = enabled;
2291
2292 for (const variant_part &new_part : variant.parts)
2293 {
2294 if (enabled)
2295 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2296 else
2297 {
2298 for (const auto &sub_variant : new_part.variants)
2299 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2300 flags, enabled);
2301 }
2302 }
2303 }
2304
2305 /* A helper function to determine which variant fields will be active.
2306 This evaluates the discriminant, decides which variant (if any) is
2307 active, and then updates FLAGS to reflect which fields should be
2308 available. TYPE is the type we're examining. ADDR_STACK holds
2309 information about the concrete object. VARIANT is the current
2310 variant to be handled. FLAGS is where the results are stored --
2311 this function sets the Nth element in FLAGS if the corresponding
2312 field is enabled. */
2313
2314 static void
2315 compute_variant_fields_inner (struct type *type,
2316 struct property_addr_info *addr_stack,
2317 const variant_part &part,
2318 std::vector<bool> &flags)
2319 {
2320 /* Evaluate the discriminant. */
2321 gdb::optional<ULONGEST> discr_value;
2322 if (part.discriminant_index != -1)
2323 {
2324 int idx = part.discriminant_index;
2325
2326 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2327 error (_("Cannot determine struct field location"
2328 " (invalid location kind)"));
2329
2330 if (addr_stack->valaddr.data () != NULL)
2331 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2332 idx);
2333 else
2334 {
2335 CORE_ADDR addr = (addr_stack->addr
2336 + (TYPE_FIELD_BITPOS (type, idx)
2337 / TARGET_CHAR_BIT));
2338
2339 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2340 LONGEST size = bitsize / 8;
2341 if (size == 0)
2342 size = TYPE_LENGTH (type->field (idx).type ());
2343
2344 gdb_byte bits[sizeof (ULONGEST)];
2345 read_memory (addr, bits, size);
2346
2347 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2348 % TARGET_CHAR_BIT);
2349
2350 discr_value = unpack_bits_as_long (type->field (idx).type (),
2351 bits, bitpos, bitsize);
2352 }
2353 }
2354
2355 /* Go through each variant and see which applies. */
2356 const variant *default_variant = nullptr;
2357 const variant *applied_variant = nullptr;
2358 for (const auto &variant : part.variants)
2359 {
2360 if (variant.is_default ())
2361 default_variant = &variant;
2362 else if (discr_value.has_value ()
2363 && variant.matches (*discr_value, part.is_unsigned))
2364 {
2365 applied_variant = &variant;
2366 break;
2367 }
2368 }
2369 if (applied_variant == nullptr)
2370 applied_variant = default_variant;
2371
2372 for (const auto &variant : part.variants)
2373 compute_variant_fields_recurse (type, addr_stack, variant,
2374 flags, applied_variant == &variant);
2375 }
2376
2377 /* Determine which variant fields are available in TYPE. The enabled
2378 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2379 about the concrete object. PARTS describes the top-level variant
2380 parts for this type. */
2381
2382 static void
2383 compute_variant_fields (struct type *type,
2384 struct type *resolved_type,
2385 struct property_addr_info *addr_stack,
2386 const gdb::array_view<variant_part> &parts)
2387 {
2388 /* Assume all fields are included by default. */
2389 std::vector<bool> flags (resolved_type->num_fields (), true);
2390
2391 /* Now disable fields based on the variants that control them. */
2392 for (const auto &part : parts)
2393 compute_variant_fields_inner (type, addr_stack, part, flags);
2394
2395 resolved_type->set_num_fields
2396 (std::count (flags.begin (), flags.end (), true));
2397 resolved_type->set_fields
2398 ((struct field *)
2399 TYPE_ALLOC (resolved_type,
2400 resolved_type->num_fields () * sizeof (struct field)));
2401
2402 int out = 0;
2403 for (int i = 0; i < type->num_fields (); ++i)
2404 {
2405 if (!flags[i])
2406 continue;
2407
2408 resolved_type->field (out) = type->field (i);
2409 ++out;
2410 }
2411 }
2412
2413 /* Resolve dynamic bounds of members of the struct TYPE to static
2414 bounds. ADDR_STACK is a stack of struct property_addr_info to
2415 be used if needed during the dynamic resolution. */
2416
2417 static struct type *
2418 resolve_dynamic_struct (struct type *type,
2419 struct property_addr_info *addr_stack)
2420 {
2421 struct type *resolved_type;
2422 int i;
2423 unsigned resolved_type_bit_length = 0;
2424
2425 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2426 gdb_assert (type->num_fields () > 0);
2427
2428 resolved_type = copy_type (type);
2429
2430 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2431 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2432 {
2433 compute_variant_fields (type, resolved_type, addr_stack,
2434 *variant_prop->variant_parts ());
2435 /* We want to leave the property attached, so that the Rust code
2436 can tell whether the type was originally an enum. */
2437 variant_prop->set_original_type (type);
2438 }
2439 else
2440 {
2441 resolved_type->set_fields
2442 ((struct field *)
2443 TYPE_ALLOC (resolved_type,
2444 resolved_type->num_fields () * sizeof (struct field)));
2445 memcpy (resolved_type->fields (),
2446 type->fields (),
2447 resolved_type->num_fields () * sizeof (struct field));
2448 }
2449
2450 for (i = 0; i < resolved_type->num_fields (); ++i)
2451 {
2452 unsigned new_bit_length;
2453 struct property_addr_info pinfo;
2454
2455 if (field_is_static (&resolved_type->field (i)))
2456 continue;
2457
2458 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2459 {
2460 struct dwarf2_property_baton baton;
2461 baton.property_type
2462 = lookup_pointer_type (resolved_type->field (i).type ());
2463 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2464
2465 struct dynamic_prop prop;
2466 prop.set_locexpr (&baton);
2467
2468 CORE_ADDR addr;
2469 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2470 true))
2471 SET_FIELD_BITPOS (resolved_type->field (i),
2472 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2473 }
2474
2475 /* As we know this field is not a static field, the field's
2476 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2477 this is the case, but only trigger a simple error rather
2478 than an internal error if that fails. While failing
2479 that verification indicates a bug in our code, the error
2480 is not severe enough to suggest to the user he stops
2481 his debugging session because of it. */
2482 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2483 error (_("Cannot determine struct field location"
2484 " (invalid location kind)"));
2485
2486 pinfo.type = check_typedef (resolved_type->field (i).type ());
2487 pinfo.valaddr = addr_stack->valaddr;
2488 pinfo.addr
2489 = (addr_stack->addr
2490 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2491 pinfo.next = addr_stack;
2492
2493 resolved_type->field (i).set_type
2494 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2495 &pinfo, 0));
2496 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2497 == FIELD_LOC_KIND_BITPOS);
2498
2499 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2500 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2501 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2502 else
2503 {
2504 struct type *real_type
2505 = check_typedef (resolved_type->field (i).type ());
2506
2507 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2508 }
2509
2510 /* Normally, we would use the position and size of the last field
2511 to determine the size of the enclosing structure. But GCC seems
2512 to be encoding the position of some fields incorrectly when
2513 the struct contains a dynamic field that is not placed last.
2514 So we compute the struct size based on the field that has
2515 the highest position + size - probably the best we can do. */
2516 if (new_bit_length > resolved_type_bit_length)
2517 resolved_type_bit_length = new_bit_length;
2518 }
2519
2520 /* The length of a type won't change for fortran, but it does for C and Ada.
2521 For fortran the size of dynamic fields might change over time but not the
2522 type length of the structure. If we adapt it, we run into problems
2523 when calculating the element offset for arrays of structs. */
2524 if (current_language->la_language != language_fortran)
2525 TYPE_LENGTH (resolved_type)
2526 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2527
2528 /* The Ada language uses this field as a cache for static fixed types: reset
2529 it as RESOLVED_TYPE must have its own static fixed type. */
2530 TYPE_TARGET_TYPE (resolved_type) = NULL;
2531
2532 return resolved_type;
2533 }
2534
2535 /* Worker for resolved_dynamic_type. */
2536
2537 static struct type *
2538 resolve_dynamic_type_internal (struct type *type,
2539 struct property_addr_info *addr_stack,
2540 int top_level)
2541 {
2542 struct type *real_type = check_typedef (type);
2543 struct type *resolved_type = nullptr;
2544 struct dynamic_prop *prop;
2545 CORE_ADDR value;
2546
2547 if (!is_dynamic_type_internal (real_type, top_level))
2548 return type;
2549
2550 gdb::optional<CORE_ADDR> type_length;
2551 prop = TYPE_DYNAMIC_LENGTH (type);
2552 if (prop != NULL
2553 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2554 type_length = value;
2555
2556 if (type->code () == TYPE_CODE_TYPEDEF)
2557 {
2558 resolved_type = copy_type (type);
2559 TYPE_TARGET_TYPE (resolved_type)
2560 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2561 top_level);
2562 }
2563 else
2564 {
2565 /* Before trying to resolve TYPE, make sure it is not a stub. */
2566 type = real_type;
2567
2568 switch (type->code ())
2569 {
2570 case TYPE_CODE_REF:
2571 {
2572 struct property_addr_info pinfo;
2573
2574 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2575 pinfo.valaddr = {};
2576 if (addr_stack->valaddr.data () != NULL)
2577 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2578 type);
2579 else
2580 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2581 pinfo.next = addr_stack;
2582
2583 resolved_type = copy_type (type);
2584 TYPE_TARGET_TYPE (resolved_type)
2585 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2586 &pinfo, top_level);
2587 break;
2588 }
2589
2590 case TYPE_CODE_STRING:
2591 /* Strings are very much like an array of characters, and can be
2592 treated as one here. */
2593 case TYPE_CODE_ARRAY:
2594 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2595 break;
2596
2597 case TYPE_CODE_RANGE:
2598 resolved_type = resolve_dynamic_range (type, addr_stack);
2599 break;
2600
2601 case TYPE_CODE_UNION:
2602 resolved_type = resolve_dynamic_union (type, addr_stack);
2603 break;
2604
2605 case TYPE_CODE_STRUCT:
2606 resolved_type = resolve_dynamic_struct (type, addr_stack);
2607 break;
2608 }
2609 }
2610
2611 if (resolved_type == nullptr)
2612 return type;
2613
2614 if (type_length.has_value ())
2615 {
2616 TYPE_LENGTH (resolved_type) = *type_length;
2617 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2618 }
2619
2620 /* Resolve data_location attribute. */
2621 prop = TYPE_DATA_LOCATION (resolved_type);
2622 if (prop != NULL
2623 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2624 prop->set_const_val (value);
2625
2626 return resolved_type;
2627 }
2628
2629 /* See gdbtypes.h */
2630
2631 struct type *
2632 resolve_dynamic_type (struct type *type,
2633 gdb::array_view<const gdb_byte> valaddr,
2634 CORE_ADDR addr)
2635 {
2636 struct property_addr_info pinfo
2637 = {check_typedef (type), valaddr, addr, NULL};
2638
2639 return resolve_dynamic_type_internal (type, &pinfo, 1);
2640 }
2641
2642 /* See gdbtypes.h */
2643
2644 dynamic_prop *
2645 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2646 {
2647 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2648
2649 while (node != NULL)
2650 {
2651 if (node->prop_kind == prop_kind)
2652 return &node->prop;
2653 node = node->next;
2654 }
2655 return NULL;
2656 }
2657
2658 /* See gdbtypes.h */
2659
2660 void
2661 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2662 {
2663 struct dynamic_prop_list *temp;
2664
2665 gdb_assert (TYPE_OBJFILE_OWNED (this));
2666
2667 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2668 struct dynamic_prop_list);
2669 temp->prop_kind = prop_kind;
2670 temp->prop = prop;
2671 temp->next = this->main_type->dyn_prop_list;
2672
2673 this->main_type->dyn_prop_list = temp;
2674 }
2675
2676 /* See gdbtypes.h. */
2677
2678 void
2679 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2680 {
2681 struct dynamic_prop_list *prev_node, *curr_node;
2682
2683 curr_node = this->main_type->dyn_prop_list;
2684 prev_node = NULL;
2685
2686 while (NULL != curr_node)
2687 {
2688 if (curr_node->prop_kind == kind)
2689 {
2690 /* Update the linked list but don't free anything.
2691 The property was allocated on objstack and it is not known
2692 if we are on top of it. Nevertheless, everything is released
2693 when the complete objstack is freed. */
2694 if (NULL == prev_node)
2695 this->main_type->dyn_prop_list = curr_node->next;
2696 else
2697 prev_node->next = curr_node->next;
2698
2699 return;
2700 }
2701
2702 prev_node = curr_node;
2703 curr_node = curr_node->next;
2704 }
2705 }
2706
2707 /* Find the real type of TYPE. This function returns the real type,
2708 after removing all layers of typedefs, and completing opaque or stub
2709 types. Completion changes the TYPE argument, but stripping of
2710 typedefs does not.
2711
2712 Instance flags (e.g. const/volatile) are preserved as typedefs are
2713 stripped. If necessary a new qualified form of the underlying type
2714 is created.
2715
2716 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2717 not been computed and we're either in the middle of reading symbols, or
2718 there was no name for the typedef in the debug info.
2719
2720 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2721 QUITs in the symbol reading code can also throw.
2722 Thus this function can throw an exception.
2723
2724 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2725 the target type.
2726
2727 If this is a stubbed struct (i.e. declared as struct foo *), see if
2728 we can find a full definition in some other file. If so, copy this
2729 definition, so we can use it in future. There used to be a comment
2730 (but not any code) that if we don't find a full definition, we'd
2731 set a flag so we don't spend time in the future checking the same
2732 type. That would be a mistake, though--we might load in more
2733 symbols which contain a full definition for the type. */
2734
2735 struct type *
2736 check_typedef (struct type *type)
2737 {
2738 struct type *orig_type = type;
2739
2740 gdb_assert (type);
2741
2742 /* While we're removing typedefs, we don't want to lose qualifiers.
2743 E.g., const/volatile. */
2744 type_instance_flags instance_flags = type->instance_flags ();
2745
2746 while (type->code () == TYPE_CODE_TYPEDEF)
2747 {
2748 if (!TYPE_TARGET_TYPE (type))
2749 {
2750 const char *name;
2751 struct symbol *sym;
2752
2753 /* It is dangerous to call lookup_symbol if we are currently
2754 reading a symtab. Infinite recursion is one danger. */
2755 if (currently_reading_symtab)
2756 return make_qualified_type (type, instance_flags, NULL);
2757
2758 name = type->name ();
2759 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2760 VAR_DOMAIN as appropriate? */
2761 if (name == NULL)
2762 {
2763 stub_noname_complaint ();
2764 return make_qualified_type (type, instance_flags, NULL);
2765 }
2766 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2767 if (sym)
2768 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2769 else /* TYPE_CODE_UNDEF */
2770 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2771 }
2772 type = TYPE_TARGET_TYPE (type);
2773
2774 /* Preserve the instance flags as we traverse down the typedef chain.
2775
2776 Handling address spaces/classes is nasty, what do we do if there's a
2777 conflict?
2778 E.g., what if an outer typedef marks the type as class_1 and an inner
2779 typedef marks the type as class_2?
2780 This is the wrong place to do such error checking. We leave it to
2781 the code that created the typedef in the first place to flag the
2782 error. We just pick the outer address space (akin to letting the
2783 outer cast in a chain of casting win), instead of assuming
2784 "it can't happen". */
2785 {
2786 const type_instance_flags ALL_SPACES
2787 = (TYPE_INSTANCE_FLAG_CODE_SPACE
2788 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2789 const type_instance_flags ALL_CLASSES
2790 = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2791
2792 type_instance_flags new_instance_flags = type->instance_flags ();
2793
2794 /* Treat code vs data spaces and address classes separately. */
2795 if ((instance_flags & ALL_SPACES) != 0)
2796 new_instance_flags &= ~ALL_SPACES;
2797 if ((instance_flags & ALL_CLASSES) != 0)
2798 new_instance_flags &= ~ALL_CLASSES;
2799
2800 instance_flags |= new_instance_flags;
2801 }
2802 }
2803
2804 /* If this is a struct/class/union with no fields, then check
2805 whether a full definition exists somewhere else. This is for
2806 systems where a type definition with no fields is issued for such
2807 types, instead of identifying them as stub types in the first
2808 place. */
2809
2810 if (TYPE_IS_OPAQUE (type)
2811 && opaque_type_resolution
2812 && !currently_reading_symtab)
2813 {
2814 const char *name = type->name ();
2815 struct type *newtype;
2816
2817 if (name == NULL)
2818 {
2819 stub_noname_complaint ();
2820 return make_qualified_type (type, instance_flags, NULL);
2821 }
2822 newtype = lookup_transparent_type (name);
2823
2824 if (newtype)
2825 {
2826 /* If the resolved type and the stub are in the same
2827 objfile, then replace the stub type with the real deal.
2828 But if they're in separate objfiles, leave the stub
2829 alone; we'll just look up the transparent type every time
2830 we call check_typedef. We can't create pointers between
2831 types allocated to different objfiles, since they may
2832 have different lifetimes. Trying to copy NEWTYPE over to
2833 TYPE's objfile is pointless, too, since you'll have to
2834 move over any other types NEWTYPE refers to, which could
2835 be an unbounded amount of stuff. */
2836 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2837 type = make_qualified_type (newtype, type->instance_flags (), type);
2838 else
2839 type = newtype;
2840 }
2841 }
2842 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2843 types. */
2844 else if (type->is_stub () && !currently_reading_symtab)
2845 {
2846 const char *name = type->name ();
2847 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2848 as appropriate? */
2849 struct symbol *sym;
2850
2851 if (name == NULL)
2852 {
2853 stub_noname_complaint ();
2854 return make_qualified_type (type, instance_flags, NULL);
2855 }
2856 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2857 if (sym)
2858 {
2859 /* Same as above for opaque types, we can replace the stub
2860 with the complete type only if they are in the same
2861 objfile. */
2862 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2863 type = make_qualified_type (SYMBOL_TYPE (sym),
2864 type->instance_flags (), type);
2865 else
2866 type = SYMBOL_TYPE (sym);
2867 }
2868 }
2869
2870 if (type->target_is_stub ())
2871 {
2872 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2873
2874 if (target_type->is_stub () || target_type->target_is_stub ())
2875 {
2876 /* Nothing we can do. */
2877 }
2878 else if (type->code () == TYPE_CODE_RANGE)
2879 {
2880 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2881 type->set_target_is_stub (false);
2882 }
2883 else if (type->code () == TYPE_CODE_ARRAY
2884 && update_static_array_size (type))
2885 type->set_target_is_stub (false);
2886 }
2887
2888 type = make_qualified_type (type, instance_flags, NULL);
2889
2890 /* Cache TYPE_LENGTH for future use. */
2891 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2892
2893 return type;
2894 }
2895
2896 /* Parse a type expression in the string [P..P+LENGTH). If an error
2897 occurs, silently return a void type. */
2898
2899 static struct type *
2900 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2901 {
2902 struct ui_file *saved_gdb_stderr;
2903 struct type *type = NULL; /* Initialize to keep gcc happy. */
2904
2905 /* Suppress error messages. */
2906 saved_gdb_stderr = gdb_stderr;
2907 gdb_stderr = &null_stream;
2908
2909 /* Call parse_and_eval_type() without fear of longjmp()s. */
2910 try
2911 {
2912 type = parse_and_eval_type (p, length);
2913 }
2914 catch (const gdb_exception_error &except)
2915 {
2916 type = builtin_type (gdbarch)->builtin_void;
2917 }
2918
2919 /* Stop suppressing error messages. */
2920 gdb_stderr = saved_gdb_stderr;
2921
2922 return type;
2923 }
2924
2925 /* Ugly hack to convert method stubs into method types.
2926
2927 He ain't kiddin'. This demangles the name of the method into a
2928 string including argument types, parses out each argument type,
2929 generates a string casting a zero to that type, evaluates the
2930 string, and stuffs the resulting type into an argtype vector!!!
2931 Then it knows the type of the whole function (including argument
2932 types for overloading), which info used to be in the stab's but was
2933 removed to hack back the space required for them. */
2934
2935 static void
2936 check_stub_method (struct type *type, int method_id, int signature_id)
2937 {
2938 struct gdbarch *gdbarch = get_type_arch (type);
2939 struct fn_field *f;
2940 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2941 char *demangled_name = gdb_demangle (mangled_name,
2942 DMGL_PARAMS | DMGL_ANSI);
2943 char *argtypetext, *p;
2944 int depth = 0, argcount = 1;
2945 struct field *argtypes;
2946 struct type *mtype;
2947
2948 /* Make sure we got back a function string that we can use. */
2949 if (demangled_name)
2950 p = strchr (demangled_name, '(');
2951 else
2952 p = NULL;
2953
2954 if (demangled_name == NULL || p == NULL)
2955 error (_("Internal: Cannot demangle mangled name `%s'."),
2956 mangled_name);
2957
2958 /* Now, read in the parameters that define this type. */
2959 p += 1;
2960 argtypetext = p;
2961 while (*p)
2962 {
2963 if (*p == '(' || *p == '<')
2964 {
2965 depth += 1;
2966 }
2967 else if (*p == ')' || *p == '>')
2968 {
2969 depth -= 1;
2970 }
2971 else if (*p == ',' && depth == 0)
2972 {
2973 argcount += 1;
2974 }
2975
2976 p += 1;
2977 }
2978
2979 /* If we read one argument and it was ``void'', don't count it. */
2980 if (startswith (argtypetext, "(void)"))
2981 argcount -= 1;
2982
2983 /* We need one extra slot, for the THIS pointer. */
2984
2985 argtypes = (struct field *)
2986 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2987 p = argtypetext;
2988
2989 /* Add THIS pointer for non-static methods. */
2990 f = TYPE_FN_FIELDLIST1 (type, method_id);
2991 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2992 argcount = 0;
2993 else
2994 {
2995 argtypes[0].set_type (lookup_pointer_type (type));
2996 argcount = 1;
2997 }
2998
2999 if (*p != ')') /* () means no args, skip while. */
3000 {
3001 depth = 0;
3002 while (*p)
3003 {
3004 if (depth <= 0 && (*p == ',' || *p == ')'))
3005 {
3006 /* Avoid parsing of ellipsis, they will be handled below.
3007 Also avoid ``void'' as above. */
3008 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3009 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3010 {
3011 argtypes[argcount].set_type
3012 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3013 argcount += 1;
3014 }
3015 argtypetext = p + 1;
3016 }
3017
3018 if (*p == '(' || *p == '<')
3019 {
3020 depth += 1;
3021 }
3022 else if (*p == ')' || *p == '>')
3023 {
3024 depth -= 1;
3025 }
3026
3027 p += 1;
3028 }
3029 }
3030
3031 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3032
3033 /* Now update the old "stub" type into a real type. */
3034 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3035 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3036 We want a method (TYPE_CODE_METHOD). */
3037 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3038 argtypes, argcount, p[-2] == '.');
3039 mtype->set_is_stub (false);
3040 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3041
3042 xfree (demangled_name);
3043 }
3044
3045 /* This is the external interface to check_stub_method, above. This
3046 function unstubs all of the signatures for TYPE's METHOD_ID method
3047 name. After calling this function TYPE_FN_FIELD_STUB will be
3048 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3049 correct.
3050
3051 This function unfortunately can not die until stabs do. */
3052
3053 void
3054 check_stub_method_group (struct type *type, int method_id)
3055 {
3056 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3057 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3058
3059 for (int j = 0; j < len; j++)
3060 {
3061 if (TYPE_FN_FIELD_STUB (f, j))
3062 check_stub_method (type, method_id, j);
3063 }
3064 }
3065
3066 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3067 const struct cplus_struct_type cplus_struct_default = { };
3068
3069 void
3070 allocate_cplus_struct_type (struct type *type)
3071 {
3072 if (HAVE_CPLUS_STRUCT (type))
3073 /* Structure was already allocated. Nothing more to do. */
3074 return;
3075
3076 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3077 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3078 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3079 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3080 set_type_vptr_fieldno (type, -1);
3081 }
3082
3083 const struct gnat_aux_type gnat_aux_default =
3084 { NULL };
3085
3086 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3087 and allocate the associated gnat-specific data. The gnat-specific
3088 data is also initialized to gnat_aux_default. */
3089
3090 void
3091 allocate_gnat_aux_type (struct type *type)
3092 {
3093 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3094 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3095 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3096 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3097 }
3098
3099 /* Helper function to initialize a newly allocated type. Set type code
3100 to CODE and initialize the type-specific fields accordingly. */
3101
3102 static void
3103 set_type_code (struct type *type, enum type_code code)
3104 {
3105 type->set_code (code);
3106
3107 switch (code)
3108 {
3109 case TYPE_CODE_STRUCT:
3110 case TYPE_CODE_UNION:
3111 case TYPE_CODE_NAMESPACE:
3112 INIT_CPLUS_SPECIFIC (type);
3113 break;
3114 case TYPE_CODE_FLT:
3115 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3116 break;
3117 case TYPE_CODE_FUNC:
3118 INIT_FUNC_SPECIFIC (type);
3119 break;
3120 }
3121 }
3122
3123 /* Helper function to verify floating-point format and size.
3124 BIT is the type size in bits; if BIT equals -1, the size is
3125 determined by the floatformat. Returns size to be used. */
3126
3127 static int
3128 verify_floatformat (int bit, const struct floatformat *floatformat)
3129 {
3130 gdb_assert (floatformat != NULL);
3131
3132 if (bit == -1)
3133 bit = floatformat->totalsize;
3134
3135 gdb_assert (bit >= 0);
3136 gdb_assert (bit >= floatformat->totalsize);
3137
3138 return bit;
3139 }
3140
3141 /* Return the floating-point format for a floating-point variable of
3142 type TYPE. */
3143
3144 const struct floatformat *
3145 floatformat_from_type (const struct type *type)
3146 {
3147 gdb_assert (type->code () == TYPE_CODE_FLT);
3148 gdb_assert (TYPE_FLOATFORMAT (type));
3149 return TYPE_FLOATFORMAT (type);
3150 }
3151
3152 /* Helper function to initialize the standard scalar types.
3153
3154 If NAME is non-NULL, then it is used to initialize the type name.
3155 Note that NAME is not copied; it is required to have a lifetime at
3156 least as long as OBJFILE. */
3157
3158 struct type *
3159 init_type (struct objfile *objfile, enum type_code code, int bit,
3160 const char *name)
3161 {
3162 struct type *type;
3163
3164 type = alloc_type (objfile);
3165 set_type_code (type, code);
3166 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3167 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3168 type->set_name (name);
3169
3170 return type;
3171 }
3172
3173 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3174 to use with variables that have no debug info. NAME is the type
3175 name. */
3176
3177 static struct type *
3178 init_nodebug_var_type (struct objfile *objfile, const char *name)
3179 {
3180 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3181 }
3182
3183 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3184 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3185 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3186
3187 struct type *
3188 init_integer_type (struct objfile *objfile,
3189 int bit, int unsigned_p, const char *name)
3190 {
3191 struct type *t;
3192
3193 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3194 if (unsigned_p)
3195 t->set_is_unsigned (true);
3196
3197 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3198 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3199 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3200
3201 return t;
3202 }
3203
3204 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3205 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3206 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3207
3208 struct type *
3209 init_character_type (struct objfile *objfile,
3210 int bit, int unsigned_p, const char *name)
3211 {
3212 struct type *t;
3213
3214 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3215 if (unsigned_p)
3216 t->set_is_unsigned (true);
3217
3218 return t;
3219 }
3220
3221 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3222 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3223 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3224
3225 struct type *
3226 init_boolean_type (struct objfile *objfile,
3227 int bit, int unsigned_p, const char *name)
3228 {
3229 struct type *t;
3230
3231 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3232 if (unsigned_p)
3233 t->set_is_unsigned (true);
3234
3235 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3236 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3237 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3238
3239 return t;
3240 }
3241
3242 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3243 BIT is the type size in bits; if BIT equals -1, the size is
3244 determined by the floatformat. NAME is the type name. Set the
3245 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3246 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3247 order of the objfile's architecture is used. */
3248
3249 struct type *
3250 init_float_type (struct objfile *objfile,
3251 int bit, const char *name,
3252 const struct floatformat **floatformats,
3253 enum bfd_endian byte_order)
3254 {
3255 if (byte_order == BFD_ENDIAN_UNKNOWN)
3256 {
3257 struct gdbarch *gdbarch = objfile->arch ();
3258 byte_order = gdbarch_byte_order (gdbarch);
3259 }
3260 const struct floatformat *fmt = floatformats[byte_order];
3261 struct type *t;
3262
3263 bit = verify_floatformat (bit, fmt);
3264 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3265 TYPE_FLOATFORMAT (t) = fmt;
3266
3267 return t;
3268 }
3269
3270 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3271 BIT is the type size in bits. NAME is the type name. */
3272
3273 struct type *
3274 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3275 {
3276 struct type *t;
3277
3278 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3279 return t;
3280 }
3281
3282 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3283 name. TARGET_TYPE is the component type. */
3284
3285 struct type *
3286 init_complex_type (const char *name, struct type *target_type)
3287 {
3288 struct type *t;
3289
3290 gdb_assert (target_type->code () == TYPE_CODE_INT
3291 || target_type->code () == TYPE_CODE_FLT);
3292
3293 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3294 {
3295 if (name == nullptr)
3296 {
3297 char *new_name
3298 = (char *) TYPE_ALLOC (target_type,
3299 strlen (target_type->name ())
3300 + strlen ("_Complex ") + 1);
3301 strcpy (new_name, "_Complex ");
3302 strcat (new_name, target_type->name ());
3303 name = new_name;
3304 }
3305
3306 t = alloc_type_copy (target_type);
3307 set_type_code (t, TYPE_CODE_COMPLEX);
3308 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3309 t->set_name (name);
3310
3311 TYPE_TARGET_TYPE (t) = target_type;
3312 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3313 }
3314
3315 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3316 }
3317
3318 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3319 BIT is the pointer type size in bits. NAME is the type name.
3320 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3321 TYPE_UNSIGNED flag. */
3322
3323 struct type *
3324 init_pointer_type (struct objfile *objfile,
3325 int bit, const char *name, struct type *target_type)
3326 {
3327 struct type *t;
3328
3329 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3330 TYPE_TARGET_TYPE (t) = target_type;
3331 t->set_is_unsigned (true);
3332 return t;
3333 }
3334
3335 /* See gdbtypes.h. */
3336
3337 unsigned
3338 type_raw_align (struct type *type)
3339 {
3340 if (type->align_log2 != 0)
3341 return 1 << (type->align_log2 - 1);
3342 return 0;
3343 }
3344
3345 /* See gdbtypes.h. */
3346
3347 unsigned
3348 type_align (struct type *type)
3349 {
3350 /* Check alignment provided in the debug information. */
3351 unsigned raw_align = type_raw_align (type);
3352 if (raw_align != 0)
3353 return raw_align;
3354
3355 /* Allow the architecture to provide an alignment. */
3356 struct gdbarch *arch = get_type_arch (type);
3357 ULONGEST align = gdbarch_type_align (arch, type);
3358 if (align != 0)
3359 return align;
3360
3361 switch (type->code ())
3362 {
3363 case TYPE_CODE_PTR:
3364 case TYPE_CODE_FUNC:
3365 case TYPE_CODE_FLAGS:
3366 case TYPE_CODE_INT:
3367 case TYPE_CODE_RANGE:
3368 case TYPE_CODE_FLT:
3369 case TYPE_CODE_ENUM:
3370 case TYPE_CODE_REF:
3371 case TYPE_CODE_RVALUE_REF:
3372 case TYPE_CODE_CHAR:
3373 case TYPE_CODE_BOOL:
3374 case TYPE_CODE_DECFLOAT:
3375 case TYPE_CODE_METHODPTR:
3376 case TYPE_CODE_MEMBERPTR:
3377 align = type_length_units (check_typedef (type));
3378 break;
3379
3380 case TYPE_CODE_ARRAY:
3381 case TYPE_CODE_COMPLEX:
3382 case TYPE_CODE_TYPEDEF:
3383 align = type_align (TYPE_TARGET_TYPE (type));
3384 break;
3385
3386 case TYPE_CODE_STRUCT:
3387 case TYPE_CODE_UNION:
3388 {
3389 int number_of_non_static_fields = 0;
3390 for (unsigned i = 0; i < type->num_fields (); ++i)
3391 {
3392 if (!field_is_static (&type->field (i)))
3393 {
3394 number_of_non_static_fields++;
3395 ULONGEST f_align = type_align (type->field (i).type ());
3396 if (f_align == 0)
3397 {
3398 /* Don't pretend we know something we don't. */
3399 align = 0;
3400 break;
3401 }
3402 if (f_align > align)
3403 align = f_align;
3404 }
3405 }
3406 /* A struct with no fields, or with only static fields has an
3407 alignment of 1. */
3408 if (number_of_non_static_fields == 0)
3409 align = 1;
3410 }
3411 break;
3412
3413 case TYPE_CODE_SET:
3414 case TYPE_CODE_STRING:
3415 /* Not sure what to do here, and these can't appear in C or C++
3416 anyway. */
3417 break;
3418
3419 case TYPE_CODE_VOID:
3420 align = 1;
3421 break;
3422
3423 case TYPE_CODE_ERROR:
3424 case TYPE_CODE_METHOD:
3425 default:
3426 break;
3427 }
3428
3429 if ((align & (align - 1)) != 0)
3430 {
3431 /* Not a power of 2, so pass. */
3432 align = 0;
3433 }
3434
3435 return align;
3436 }
3437
3438 /* See gdbtypes.h. */
3439
3440 bool
3441 set_type_align (struct type *type, ULONGEST align)
3442 {
3443 /* Must be a power of 2. Zero is ok. */
3444 gdb_assert ((align & (align - 1)) == 0);
3445
3446 unsigned result = 0;
3447 while (align != 0)
3448 {
3449 ++result;
3450 align >>= 1;
3451 }
3452
3453 if (result >= (1 << TYPE_ALIGN_BITS))
3454 return false;
3455
3456 type->align_log2 = result;
3457 return true;
3458 }
3459
3460 \f
3461 /* Queries on types. */
3462
3463 int
3464 can_dereference (struct type *t)
3465 {
3466 /* FIXME: Should we return true for references as well as
3467 pointers? */
3468 t = check_typedef (t);
3469 return
3470 (t != NULL
3471 && t->code () == TYPE_CODE_PTR
3472 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3473 }
3474
3475 int
3476 is_integral_type (struct type *t)
3477 {
3478 t = check_typedef (t);
3479 return
3480 ((t != NULL)
3481 && ((t->code () == TYPE_CODE_INT)
3482 || (t->code () == TYPE_CODE_ENUM)
3483 || (t->code () == TYPE_CODE_FLAGS)
3484 || (t->code () == TYPE_CODE_CHAR)
3485 || (t->code () == TYPE_CODE_RANGE)
3486 || (t->code () == TYPE_CODE_BOOL)));
3487 }
3488
3489 int
3490 is_floating_type (struct type *t)
3491 {
3492 t = check_typedef (t);
3493 return
3494 ((t != NULL)
3495 && ((t->code () == TYPE_CODE_FLT)
3496 || (t->code () == TYPE_CODE_DECFLOAT)));
3497 }
3498
3499 /* Return true if TYPE is scalar. */
3500
3501 int
3502 is_scalar_type (struct type *type)
3503 {
3504 type = check_typedef (type);
3505
3506 switch (type->code ())
3507 {
3508 case TYPE_CODE_ARRAY:
3509 case TYPE_CODE_STRUCT:
3510 case TYPE_CODE_UNION:
3511 case TYPE_CODE_SET:
3512 case TYPE_CODE_STRING:
3513 return 0;
3514 default:
3515 return 1;
3516 }
3517 }
3518
3519 /* Return true if T is scalar, or a composite type which in practice has
3520 the memory layout of a scalar type. E.g., an array or struct with only
3521 one scalar element inside it, or a union with only scalar elements. */
3522
3523 int
3524 is_scalar_type_recursive (struct type *t)
3525 {
3526 t = check_typedef (t);
3527
3528 if (is_scalar_type (t))
3529 return 1;
3530 /* Are we dealing with an array or string of known dimensions? */
3531 else if ((t->code () == TYPE_CODE_ARRAY
3532 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3533 && t->index_type ()->code () == TYPE_CODE_RANGE)
3534 {
3535 LONGEST low_bound, high_bound;
3536 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3537
3538 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
3539
3540 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3541 }
3542 /* Are we dealing with a struct with one element? */
3543 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3544 return is_scalar_type_recursive (t->field (0).type ());
3545 else if (t->code () == TYPE_CODE_UNION)
3546 {
3547 int i, n = t->num_fields ();
3548
3549 /* If all elements of the union are scalar, then the union is scalar. */
3550 for (i = 0; i < n; i++)
3551 if (!is_scalar_type_recursive (t->field (i).type ()))
3552 return 0;
3553
3554 return 1;
3555 }
3556
3557 return 0;
3558 }
3559
3560 /* Return true is T is a class or a union. False otherwise. */
3561
3562 int
3563 class_or_union_p (const struct type *t)
3564 {
3565 return (t->code () == TYPE_CODE_STRUCT
3566 || t->code () == TYPE_CODE_UNION);
3567 }
3568
3569 /* A helper function which returns true if types A and B represent the
3570 "same" class type. This is true if the types have the same main
3571 type, or the same name. */
3572
3573 int
3574 class_types_same_p (const struct type *a, const struct type *b)
3575 {
3576 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3577 || (a->name () && b->name ()
3578 && !strcmp (a->name (), b->name ())));
3579 }
3580
3581 /* If BASE is an ancestor of DCLASS return the distance between them.
3582 otherwise return -1;
3583 eg:
3584
3585 class A {};
3586 class B: public A {};
3587 class C: public B {};
3588 class D: C {};
3589
3590 distance_to_ancestor (A, A, 0) = 0
3591 distance_to_ancestor (A, B, 0) = 1
3592 distance_to_ancestor (A, C, 0) = 2
3593 distance_to_ancestor (A, D, 0) = 3
3594
3595 If PUBLIC is 1 then only public ancestors are considered,
3596 and the function returns the distance only if BASE is a public ancestor
3597 of DCLASS.
3598 Eg:
3599
3600 distance_to_ancestor (A, D, 1) = -1. */
3601
3602 static int
3603 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3604 {
3605 int i;
3606 int d;
3607
3608 base = check_typedef (base);
3609 dclass = check_typedef (dclass);
3610
3611 if (class_types_same_p (base, dclass))
3612 return 0;
3613
3614 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3615 {
3616 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3617 continue;
3618
3619 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3620 if (d >= 0)
3621 return 1 + d;
3622 }
3623
3624 return -1;
3625 }
3626
3627 /* Check whether BASE is an ancestor or base class or DCLASS
3628 Return 1 if so, and 0 if not.
3629 Note: If BASE and DCLASS are of the same type, this function
3630 will return 1. So for some class A, is_ancestor (A, A) will
3631 return 1. */
3632
3633 int
3634 is_ancestor (struct type *base, struct type *dclass)
3635 {
3636 return distance_to_ancestor (base, dclass, 0) >= 0;
3637 }
3638
3639 /* Like is_ancestor, but only returns true when BASE is a public
3640 ancestor of DCLASS. */
3641
3642 int
3643 is_public_ancestor (struct type *base, struct type *dclass)
3644 {
3645 return distance_to_ancestor (base, dclass, 1) >= 0;
3646 }
3647
3648 /* A helper function for is_unique_ancestor. */
3649
3650 static int
3651 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3652 int *offset,
3653 const gdb_byte *valaddr, int embedded_offset,
3654 CORE_ADDR address, struct value *val)
3655 {
3656 int i, count = 0;
3657
3658 base = check_typedef (base);
3659 dclass = check_typedef (dclass);
3660
3661 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3662 {
3663 struct type *iter;
3664 int this_offset;
3665
3666 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3667
3668 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3669 address, val);
3670
3671 if (class_types_same_p (base, iter))
3672 {
3673 /* If this is the first subclass, set *OFFSET and set count
3674 to 1. Otherwise, if this is at the same offset as
3675 previous instances, do nothing. Otherwise, increment
3676 count. */
3677 if (*offset == -1)
3678 {
3679 *offset = this_offset;
3680 count = 1;
3681 }
3682 else if (this_offset == *offset)
3683 {
3684 /* Nothing. */
3685 }
3686 else
3687 ++count;
3688 }
3689 else
3690 count += is_unique_ancestor_worker (base, iter, offset,
3691 valaddr,
3692 embedded_offset + this_offset,
3693 address, val);
3694 }
3695
3696 return count;
3697 }
3698
3699 /* Like is_ancestor, but only returns true if BASE is a unique base
3700 class of the type of VAL. */
3701
3702 int
3703 is_unique_ancestor (struct type *base, struct value *val)
3704 {
3705 int offset = -1;
3706
3707 return is_unique_ancestor_worker (base, value_type (val), &offset,
3708 value_contents_for_printing (val),
3709 value_embedded_offset (val),
3710 value_address (val), val) == 1;
3711 }
3712
3713 /* See gdbtypes.h. */
3714
3715 enum bfd_endian
3716 type_byte_order (const struct type *type)
3717 {
3718 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3719 if (type->endianity_is_not_default ())
3720 {
3721 if (byteorder == BFD_ENDIAN_BIG)
3722 return BFD_ENDIAN_LITTLE;
3723 else
3724 {
3725 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3726 return BFD_ENDIAN_BIG;
3727 }
3728 }
3729
3730 return byteorder;
3731 }
3732
3733 \f
3734 /* Overload resolution. */
3735
3736 /* Return the sum of the rank of A with the rank of B. */
3737
3738 struct rank
3739 sum_ranks (struct rank a, struct rank b)
3740 {
3741 struct rank c;
3742 c.rank = a.rank + b.rank;
3743 c.subrank = a.subrank + b.subrank;
3744 return c;
3745 }
3746
3747 /* Compare rank A and B and return:
3748 0 if a = b
3749 1 if a is better than b
3750 -1 if b is better than a. */
3751
3752 int
3753 compare_ranks (struct rank a, struct rank b)
3754 {
3755 if (a.rank == b.rank)
3756 {
3757 if (a.subrank == b.subrank)
3758 return 0;
3759 if (a.subrank < b.subrank)
3760 return 1;
3761 if (a.subrank > b.subrank)
3762 return -1;
3763 }
3764
3765 if (a.rank < b.rank)
3766 return 1;
3767
3768 /* a.rank > b.rank */
3769 return -1;
3770 }
3771
3772 /* Functions for overload resolution begin here. */
3773
3774 /* Compare two badness vectors A and B and return the result.
3775 0 => A and B are identical
3776 1 => A and B are incomparable
3777 2 => A is better than B
3778 3 => A is worse than B */
3779
3780 int
3781 compare_badness (const badness_vector &a, const badness_vector &b)
3782 {
3783 int i;
3784 int tmp;
3785 short found_pos = 0; /* any positives in c? */
3786 short found_neg = 0; /* any negatives in c? */
3787
3788 /* differing sizes => incomparable */
3789 if (a.size () != b.size ())
3790 return 1;
3791
3792 /* Subtract b from a */
3793 for (i = 0; i < a.size (); i++)
3794 {
3795 tmp = compare_ranks (b[i], a[i]);
3796 if (tmp > 0)
3797 found_pos = 1;
3798 else if (tmp < 0)
3799 found_neg = 1;
3800 }
3801
3802 if (found_pos)
3803 {
3804 if (found_neg)
3805 return 1; /* incomparable */
3806 else
3807 return 3; /* A > B */
3808 }
3809 else
3810 /* no positives */
3811 {
3812 if (found_neg)
3813 return 2; /* A < B */
3814 else
3815 return 0; /* A == B */
3816 }
3817 }
3818
3819 /* Rank a function by comparing its parameter types (PARMS), to the
3820 types of an argument list (ARGS). Return the badness vector. This
3821 has ARGS.size() + 1 entries. */
3822
3823 badness_vector
3824 rank_function (gdb::array_view<type *> parms,
3825 gdb::array_view<value *> args)
3826 {
3827 /* add 1 for the length-match rank. */
3828 badness_vector bv;
3829 bv.reserve (1 + args.size ());
3830
3831 /* First compare the lengths of the supplied lists.
3832 If there is a mismatch, set it to a high value. */
3833
3834 /* pai/1997-06-03 FIXME: when we have debug info about default
3835 arguments and ellipsis parameter lists, we should consider those
3836 and rank the length-match more finely. */
3837
3838 bv.push_back ((args.size () != parms.size ())
3839 ? LENGTH_MISMATCH_BADNESS
3840 : EXACT_MATCH_BADNESS);
3841
3842 /* Now rank all the parameters of the candidate function. */
3843 size_t min_len = std::min (parms.size (), args.size ());
3844
3845 for (size_t i = 0; i < min_len; i++)
3846 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3847 args[i]));
3848
3849 /* If more arguments than parameters, add dummy entries. */
3850 for (size_t i = min_len; i < args.size (); i++)
3851 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3852
3853 return bv;
3854 }
3855
3856 /* Compare the names of two integer types, assuming that any sign
3857 qualifiers have been checked already. We do it this way because
3858 there may be an "int" in the name of one of the types. */
3859
3860 static int
3861 integer_types_same_name_p (const char *first, const char *second)
3862 {
3863 int first_p, second_p;
3864
3865 /* If both are shorts, return 1; if neither is a short, keep
3866 checking. */
3867 first_p = (strstr (first, "short") != NULL);
3868 second_p = (strstr (second, "short") != NULL);
3869 if (first_p && second_p)
3870 return 1;
3871 if (first_p || second_p)
3872 return 0;
3873
3874 /* Likewise for long. */
3875 first_p = (strstr (first, "long") != NULL);
3876 second_p = (strstr (second, "long") != NULL);
3877 if (first_p && second_p)
3878 return 1;
3879 if (first_p || second_p)
3880 return 0;
3881
3882 /* Likewise for char. */
3883 first_p = (strstr (first, "char") != NULL);
3884 second_p = (strstr (second, "char") != NULL);
3885 if (first_p && second_p)
3886 return 1;
3887 if (first_p || second_p)
3888 return 0;
3889
3890 /* They must both be ints. */
3891 return 1;
3892 }
3893
3894 /* Compares type A to type B. Returns true if they represent the same
3895 type, false otherwise. */
3896
3897 bool
3898 types_equal (struct type *a, struct type *b)
3899 {
3900 /* Identical type pointers. */
3901 /* However, this still doesn't catch all cases of same type for b
3902 and a. The reason is that builtin types are different from
3903 the same ones constructed from the object. */
3904 if (a == b)
3905 return true;
3906
3907 /* Resolve typedefs */
3908 if (a->code () == TYPE_CODE_TYPEDEF)
3909 a = check_typedef (a);
3910 if (b->code () == TYPE_CODE_TYPEDEF)
3911 b = check_typedef (b);
3912
3913 /* If after resolving typedefs a and b are not of the same type
3914 code then they are not equal. */
3915 if (a->code () != b->code ())
3916 return false;
3917
3918 /* If a and b are both pointers types or both reference types then
3919 they are equal of the same type iff the objects they refer to are
3920 of the same type. */
3921 if (a->code () == TYPE_CODE_PTR
3922 || a->code () == TYPE_CODE_REF)
3923 return types_equal (TYPE_TARGET_TYPE (a),
3924 TYPE_TARGET_TYPE (b));
3925
3926 /* Well, damnit, if the names are exactly the same, I'll say they
3927 are exactly the same. This happens when we generate method
3928 stubs. The types won't point to the same address, but they
3929 really are the same. */
3930
3931 if (a->name () && b->name ()
3932 && strcmp (a->name (), b->name ()) == 0)
3933 return true;
3934
3935 /* Check if identical after resolving typedefs. */
3936 if (a == b)
3937 return true;
3938
3939 /* Two function types are equal if their argument and return types
3940 are equal. */
3941 if (a->code () == TYPE_CODE_FUNC)
3942 {
3943 int i;
3944
3945 if (a->num_fields () != b->num_fields ())
3946 return false;
3947
3948 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3949 return false;
3950
3951 for (i = 0; i < a->num_fields (); ++i)
3952 if (!types_equal (a->field (i).type (), b->field (i).type ()))
3953 return false;
3954
3955 return true;
3956 }
3957
3958 return false;
3959 }
3960 \f
3961 /* Deep comparison of types. */
3962
3963 /* An entry in the type-equality bcache. */
3964
3965 struct type_equality_entry
3966 {
3967 type_equality_entry (struct type *t1, struct type *t2)
3968 : type1 (t1),
3969 type2 (t2)
3970 {
3971 }
3972
3973 struct type *type1, *type2;
3974 };
3975
3976 /* A helper function to compare two strings. Returns true if they are
3977 the same, false otherwise. Handles NULLs properly. */
3978
3979 static bool
3980 compare_maybe_null_strings (const char *s, const char *t)
3981 {
3982 if (s == NULL || t == NULL)
3983 return s == t;
3984 return strcmp (s, t) == 0;
3985 }
3986
3987 /* A helper function for check_types_worklist that checks two types for
3988 "deep" equality. Returns true if the types are considered the
3989 same, false otherwise. */
3990
3991 static bool
3992 check_types_equal (struct type *type1, struct type *type2,
3993 std::vector<type_equality_entry> *worklist)
3994 {
3995 type1 = check_typedef (type1);
3996 type2 = check_typedef (type2);
3997
3998 if (type1 == type2)
3999 return true;
4000
4001 if (type1->code () != type2->code ()
4002 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4003 || type1->is_unsigned () != type2->is_unsigned ()
4004 || type1->has_no_signedness () != type2->has_no_signedness ()
4005 || type1->endianity_is_not_default () != type2->endianity_is_not_default ()
4006 || type1->has_varargs () != type2->has_varargs ()
4007 || type1->is_vector () != type2->is_vector ()
4008 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4009 || type1->instance_flags () != type2->instance_flags ()
4010 || type1->num_fields () != type2->num_fields ())
4011 return false;
4012
4013 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4014 return false;
4015 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4016 return false;
4017
4018 if (type1->code () == TYPE_CODE_RANGE)
4019 {
4020 if (*type1->bounds () != *type2->bounds ())
4021 return false;
4022 }
4023 else
4024 {
4025 int i;
4026
4027 for (i = 0; i < type1->num_fields (); ++i)
4028 {
4029 const struct field *field1 = &type1->field (i);
4030 const struct field *field2 = &type2->field (i);
4031
4032 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4033 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4034 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4035 return false;
4036 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4037 FIELD_NAME (*field2)))
4038 return false;
4039 switch (FIELD_LOC_KIND (*field1))
4040 {
4041 case FIELD_LOC_KIND_BITPOS:
4042 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4043 return false;
4044 break;
4045 case FIELD_LOC_KIND_ENUMVAL:
4046 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4047 return false;
4048 break;
4049 case FIELD_LOC_KIND_PHYSADDR:
4050 if (FIELD_STATIC_PHYSADDR (*field1)
4051 != FIELD_STATIC_PHYSADDR (*field2))
4052 return false;
4053 break;
4054 case FIELD_LOC_KIND_PHYSNAME:
4055 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4056 FIELD_STATIC_PHYSNAME (*field2)))
4057 return false;
4058 break;
4059 case FIELD_LOC_KIND_DWARF_BLOCK:
4060 {
4061 struct dwarf2_locexpr_baton *block1, *block2;
4062
4063 block1 = FIELD_DWARF_BLOCK (*field1);
4064 block2 = FIELD_DWARF_BLOCK (*field2);
4065 if (block1->per_cu != block2->per_cu
4066 || block1->size != block2->size
4067 || memcmp (block1->data, block2->data, block1->size) != 0)
4068 return false;
4069 }
4070 break;
4071 default:
4072 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4073 "%d by check_types_equal"),
4074 FIELD_LOC_KIND (*field1));
4075 }
4076
4077 worklist->emplace_back (field1->type (), field2->type ());
4078 }
4079 }
4080
4081 if (TYPE_TARGET_TYPE (type1) != NULL)
4082 {
4083 if (TYPE_TARGET_TYPE (type2) == NULL)
4084 return false;
4085
4086 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4087 TYPE_TARGET_TYPE (type2));
4088 }
4089 else if (TYPE_TARGET_TYPE (type2) != NULL)
4090 return false;
4091
4092 return true;
4093 }
4094
4095 /* Check types on a worklist for equality. Returns false if any pair
4096 is not equal, true if they are all considered equal. */
4097
4098 static bool
4099 check_types_worklist (std::vector<type_equality_entry> *worklist,
4100 gdb::bcache *cache)
4101 {
4102 while (!worklist->empty ())
4103 {
4104 bool added;
4105
4106 struct type_equality_entry entry = std::move (worklist->back ());
4107 worklist->pop_back ();
4108
4109 /* If the type pair has already been visited, we know it is
4110 ok. */
4111 cache->insert (&entry, sizeof (entry), &added);
4112 if (!added)
4113 continue;
4114
4115 if (!check_types_equal (entry.type1, entry.type2, worklist))
4116 return false;
4117 }
4118
4119 return true;
4120 }
4121
4122 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4123 "deep comparison". Otherwise return false. */
4124
4125 bool
4126 types_deeply_equal (struct type *type1, struct type *type2)
4127 {
4128 std::vector<type_equality_entry> worklist;
4129
4130 gdb_assert (type1 != NULL && type2 != NULL);
4131
4132 /* Early exit for the simple case. */
4133 if (type1 == type2)
4134 return true;
4135
4136 gdb::bcache cache;
4137 worklist.emplace_back (type1, type2);
4138 return check_types_worklist (&worklist, &cache);
4139 }
4140
4141 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4142 Otherwise return one. */
4143
4144 int
4145 type_not_allocated (const struct type *type)
4146 {
4147 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4148
4149 return (prop != nullptr && prop->kind () == PROP_CONST
4150 && prop->const_val () == 0);
4151 }
4152
4153 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4154 Otherwise return one. */
4155
4156 int
4157 type_not_associated (const struct type *type)
4158 {
4159 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4160
4161 return (prop != nullptr && prop->kind () == PROP_CONST
4162 && prop->const_val () == 0);
4163 }
4164
4165 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4166
4167 static struct rank
4168 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4169 {
4170 struct rank rank = {0,0};
4171
4172 switch (arg->code ())
4173 {
4174 case TYPE_CODE_PTR:
4175
4176 /* Allowed pointer conversions are:
4177 (a) pointer to void-pointer conversion. */
4178 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4179 return VOID_PTR_CONVERSION_BADNESS;
4180
4181 /* (b) pointer to ancestor-pointer conversion. */
4182 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4183 TYPE_TARGET_TYPE (arg),
4184 0);
4185 if (rank.subrank >= 0)
4186 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4187
4188 return INCOMPATIBLE_TYPE_BADNESS;
4189 case TYPE_CODE_ARRAY:
4190 {
4191 struct type *t1 = TYPE_TARGET_TYPE (parm);
4192 struct type *t2 = TYPE_TARGET_TYPE (arg);
4193
4194 if (types_equal (t1, t2))
4195 {
4196 /* Make sure they are CV equal. */
4197 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4198 rank.subrank |= CV_CONVERSION_CONST;
4199 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4200 rank.subrank |= CV_CONVERSION_VOLATILE;
4201 if (rank.subrank != 0)
4202 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4203 return EXACT_MATCH_BADNESS;
4204 }
4205 return INCOMPATIBLE_TYPE_BADNESS;
4206 }
4207 case TYPE_CODE_FUNC:
4208 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4209 case TYPE_CODE_INT:
4210 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4211 {
4212 if (value_as_long (value) == 0)
4213 {
4214 /* Null pointer conversion: allow it to be cast to a pointer.
4215 [4.10.1 of C++ standard draft n3290] */
4216 return NULL_POINTER_CONVERSION_BADNESS;
4217 }
4218 else
4219 {
4220 /* If type checking is disabled, allow the conversion. */
4221 if (!strict_type_checking)
4222 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4223 }
4224 }
4225 /* fall through */
4226 case TYPE_CODE_ENUM:
4227 case TYPE_CODE_FLAGS:
4228 case TYPE_CODE_CHAR:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_BOOL:
4231 default:
4232 return INCOMPATIBLE_TYPE_BADNESS;
4233 }
4234 }
4235
4236 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4237
4238 static struct rank
4239 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4240 {
4241 switch (arg->code ())
4242 {
4243 case TYPE_CODE_PTR:
4244 case TYPE_CODE_ARRAY:
4245 return rank_one_type (TYPE_TARGET_TYPE (parm),
4246 TYPE_TARGET_TYPE (arg), NULL);
4247 default:
4248 return INCOMPATIBLE_TYPE_BADNESS;
4249 }
4250 }
4251
4252 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4253
4254 static struct rank
4255 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4256 {
4257 switch (arg->code ())
4258 {
4259 case TYPE_CODE_PTR: /* funcptr -> func */
4260 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4261 default:
4262 return INCOMPATIBLE_TYPE_BADNESS;
4263 }
4264 }
4265
4266 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4267
4268 static struct rank
4269 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4270 {
4271 switch (arg->code ())
4272 {
4273 case TYPE_CODE_INT:
4274 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4275 {
4276 /* Deal with signed, unsigned, and plain chars and
4277 signed and unsigned ints. */
4278 if (parm->has_no_signedness ())
4279 {
4280 /* This case only for character types. */
4281 if (arg->has_no_signedness ())
4282 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4283 else /* signed/unsigned char -> plain char */
4284 return INTEGER_CONVERSION_BADNESS;
4285 }
4286 else if (parm->is_unsigned ())
4287 {
4288 if (arg->is_unsigned ())
4289 {
4290 /* unsigned int -> unsigned int, or
4291 unsigned long -> unsigned long */
4292 if (integer_types_same_name_p (parm->name (),
4293 arg->name ()))
4294 return EXACT_MATCH_BADNESS;
4295 else if (integer_types_same_name_p (arg->name (),
4296 "int")
4297 && integer_types_same_name_p (parm->name (),
4298 "long"))
4299 /* unsigned int -> unsigned long */
4300 return INTEGER_PROMOTION_BADNESS;
4301 else
4302 /* unsigned long -> unsigned int */
4303 return INTEGER_CONVERSION_BADNESS;
4304 }
4305 else
4306 {
4307 if (integer_types_same_name_p (arg->name (),
4308 "long")
4309 && integer_types_same_name_p (parm->name (),
4310 "int"))
4311 /* signed long -> unsigned int */
4312 return INTEGER_CONVERSION_BADNESS;
4313 else
4314 /* signed int/long -> unsigned int/long */
4315 return INTEGER_CONVERSION_BADNESS;
4316 }
4317 }
4318 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4319 {
4320 if (integer_types_same_name_p (parm->name (),
4321 arg->name ()))
4322 return EXACT_MATCH_BADNESS;
4323 else if (integer_types_same_name_p (arg->name (),
4324 "int")
4325 && integer_types_same_name_p (parm->name (),
4326 "long"))
4327 return INTEGER_PROMOTION_BADNESS;
4328 else
4329 return INTEGER_CONVERSION_BADNESS;
4330 }
4331 else
4332 return INTEGER_CONVERSION_BADNESS;
4333 }
4334 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4335 return INTEGER_PROMOTION_BADNESS;
4336 else
4337 return INTEGER_CONVERSION_BADNESS;
4338 case TYPE_CODE_ENUM:
4339 case TYPE_CODE_FLAGS:
4340 case TYPE_CODE_CHAR:
4341 case TYPE_CODE_RANGE:
4342 case TYPE_CODE_BOOL:
4343 if (TYPE_DECLARED_CLASS (arg))
4344 return INCOMPATIBLE_TYPE_BADNESS;
4345 return INTEGER_PROMOTION_BADNESS;
4346 case TYPE_CODE_FLT:
4347 return INT_FLOAT_CONVERSION_BADNESS;
4348 case TYPE_CODE_PTR:
4349 return NS_POINTER_CONVERSION_BADNESS;
4350 default:
4351 return INCOMPATIBLE_TYPE_BADNESS;
4352 }
4353 }
4354
4355 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4356
4357 static struct rank
4358 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4359 {
4360 switch (arg->code ())
4361 {
4362 case TYPE_CODE_INT:
4363 case TYPE_CODE_CHAR:
4364 case TYPE_CODE_RANGE:
4365 case TYPE_CODE_BOOL:
4366 case TYPE_CODE_ENUM:
4367 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4368 return INCOMPATIBLE_TYPE_BADNESS;
4369 return INTEGER_CONVERSION_BADNESS;
4370 case TYPE_CODE_FLT:
4371 return INT_FLOAT_CONVERSION_BADNESS;
4372 default:
4373 return INCOMPATIBLE_TYPE_BADNESS;
4374 }
4375 }
4376
4377 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4378
4379 static struct rank
4380 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4381 {
4382 switch (arg->code ())
4383 {
4384 case TYPE_CODE_RANGE:
4385 case TYPE_CODE_BOOL:
4386 case TYPE_CODE_ENUM:
4387 if (TYPE_DECLARED_CLASS (arg))
4388 return INCOMPATIBLE_TYPE_BADNESS;
4389 return INTEGER_CONVERSION_BADNESS;
4390 case TYPE_CODE_FLT:
4391 return INT_FLOAT_CONVERSION_BADNESS;
4392 case TYPE_CODE_INT:
4393 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4394 return INTEGER_CONVERSION_BADNESS;
4395 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4396 return INTEGER_PROMOTION_BADNESS;
4397 /* fall through */
4398 case TYPE_CODE_CHAR:
4399 /* Deal with signed, unsigned, and plain chars for C++ and
4400 with int cases falling through from previous case. */
4401 if (parm->has_no_signedness ())
4402 {
4403 if (arg->has_no_signedness ())
4404 return EXACT_MATCH_BADNESS;
4405 else
4406 return INTEGER_CONVERSION_BADNESS;
4407 }
4408 else if (parm->is_unsigned ())
4409 {
4410 if (arg->is_unsigned ())
4411 return EXACT_MATCH_BADNESS;
4412 else
4413 return INTEGER_PROMOTION_BADNESS;
4414 }
4415 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4416 return EXACT_MATCH_BADNESS;
4417 else
4418 return INTEGER_CONVERSION_BADNESS;
4419 default:
4420 return INCOMPATIBLE_TYPE_BADNESS;
4421 }
4422 }
4423
4424 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4425
4426 static struct rank
4427 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4428 {
4429 switch (arg->code ())
4430 {
4431 case TYPE_CODE_INT:
4432 case TYPE_CODE_CHAR:
4433 case TYPE_CODE_RANGE:
4434 case TYPE_CODE_BOOL:
4435 case TYPE_CODE_ENUM:
4436 return INTEGER_CONVERSION_BADNESS;
4437 case TYPE_CODE_FLT:
4438 return INT_FLOAT_CONVERSION_BADNESS;
4439 default:
4440 return INCOMPATIBLE_TYPE_BADNESS;
4441 }
4442 }
4443
4444 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4445
4446 static struct rank
4447 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4448 {
4449 switch (arg->code ())
4450 {
4451 /* n3290 draft, section 4.12.1 (conv.bool):
4452
4453 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4454 pointer to member type can be converted to a prvalue of type
4455 bool. A zero value, null pointer value, or null member pointer
4456 value is converted to false; any other value is converted to
4457 true. A prvalue of type std::nullptr_t can be converted to a
4458 prvalue of type bool; the resulting value is false." */
4459 case TYPE_CODE_INT:
4460 case TYPE_CODE_CHAR:
4461 case TYPE_CODE_ENUM:
4462 case TYPE_CODE_FLT:
4463 case TYPE_CODE_MEMBERPTR:
4464 case TYPE_CODE_PTR:
4465 return BOOL_CONVERSION_BADNESS;
4466 case TYPE_CODE_RANGE:
4467 return INCOMPATIBLE_TYPE_BADNESS;
4468 case TYPE_CODE_BOOL:
4469 return EXACT_MATCH_BADNESS;
4470 default:
4471 return INCOMPATIBLE_TYPE_BADNESS;
4472 }
4473 }
4474
4475 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4476
4477 static struct rank
4478 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4479 {
4480 switch (arg->code ())
4481 {
4482 case TYPE_CODE_FLT:
4483 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4484 return FLOAT_PROMOTION_BADNESS;
4485 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4486 return EXACT_MATCH_BADNESS;
4487 else
4488 return FLOAT_CONVERSION_BADNESS;
4489 case TYPE_CODE_INT:
4490 case TYPE_CODE_BOOL:
4491 case TYPE_CODE_ENUM:
4492 case TYPE_CODE_RANGE:
4493 case TYPE_CODE_CHAR:
4494 return INT_FLOAT_CONVERSION_BADNESS;
4495 default:
4496 return INCOMPATIBLE_TYPE_BADNESS;
4497 }
4498 }
4499
4500 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4501
4502 static struct rank
4503 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4504 {
4505 switch (arg->code ())
4506 { /* Strictly not needed for C++, but... */
4507 case TYPE_CODE_FLT:
4508 return FLOAT_PROMOTION_BADNESS;
4509 case TYPE_CODE_COMPLEX:
4510 return EXACT_MATCH_BADNESS;
4511 default:
4512 return INCOMPATIBLE_TYPE_BADNESS;
4513 }
4514 }
4515
4516 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4517
4518 static struct rank
4519 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4520 {
4521 struct rank rank = {0, 0};
4522
4523 switch (arg->code ())
4524 {
4525 case TYPE_CODE_STRUCT:
4526 /* Check for derivation */
4527 rank.subrank = distance_to_ancestor (parm, arg, 0);
4528 if (rank.subrank >= 0)
4529 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4530 /* fall through */
4531 default:
4532 return INCOMPATIBLE_TYPE_BADNESS;
4533 }
4534 }
4535
4536 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4537
4538 static struct rank
4539 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4540 {
4541 switch (arg->code ())
4542 {
4543 /* Not in C++ */
4544 case TYPE_CODE_SET:
4545 return rank_one_type (parm->field (0).type (),
4546 arg->field (0).type (), NULL);
4547 default:
4548 return INCOMPATIBLE_TYPE_BADNESS;
4549 }
4550 }
4551
4552 /* Compare one type (PARM) for compatibility with another (ARG).
4553 * PARM is intended to be the parameter type of a function; and
4554 * ARG is the supplied argument's type. This function tests if
4555 * the latter can be converted to the former.
4556 * VALUE is the argument's value or NULL if none (or called recursively)
4557 *
4558 * Return 0 if they are identical types;
4559 * Otherwise, return an integer which corresponds to how compatible
4560 * PARM is to ARG. The higher the return value, the worse the match.
4561 * Generally the "bad" conversions are all uniformly assigned a 100. */
4562
4563 struct rank
4564 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4565 {
4566 struct rank rank = {0,0};
4567
4568 /* Resolve typedefs */
4569 if (parm->code () == TYPE_CODE_TYPEDEF)
4570 parm = check_typedef (parm);
4571 if (arg->code () == TYPE_CODE_TYPEDEF)
4572 arg = check_typedef (arg);
4573
4574 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4575 {
4576 if (VALUE_LVAL (value) == not_lval)
4577 {
4578 /* Rvalues should preferably bind to rvalue references or const
4579 lvalue references. */
4580 if (parm->code () == TYPE_CODE_RVALUE_REF)
4581 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4582 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4583 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4584 else
4585 return INCOMPATIBLE_TYPE_BADNESS;
4586 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4587 }
4588 else
4589 {
4590 /* It's illegal to pass an lvalue as an rvalue. */
4591 if (parm->code () == TYPE_CODE_RVALUE_REF)
4592 return INCOMPATIBLE_TYPE_BADNESS;
4593 }
4594 }
4595
4596 if (types_equal (parm, arg))
4597 {
4598 struct type *t1 = parm;
4599 struct type *t2 = arg;
4600
4601 /* For pointers and references, compare target type. */
4602 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4603 {
4604 t1 = TYPE_TARGET_TYPE (parm);
4605 t2 = TYPE_TARGET_TYPE (arg);
4606 }
4607
4608 /* Make sure they are CV equal, too. */
4609 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4610 rank.subrank |= CV_CONVERSION_CONST;
4611 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4612 rank.subrank |= CV_CONVERSION_VOLATILE;
4613 if (rank.subrank != 0)
4614 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4615 return EXACT_MATCH_BADNESS;
4616 }
4617
4618 /* See through references, since we can almost make non-references
4619 references. */
4620
4621 if (TYPE_IS_REFERENCE (arg))
4622 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4623 REFERENCE_SEE_THROUGH_BADNESS));
4624 if (TYPE_IS_REFERENCE (parm))
4625 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4626 REFERENCE_SEE_THROUGH_BADNESS));
4627 if (overload_debug)
4628 /* Debugging only. */
4629 fprintf_filtered (gdb_stderr,
4630 "------ Arg is %s [%d], parm is %s [%d]\n",
4631 arg->name (), arg->code (),
4632 parm->name (), parm->code ());
4633
4634 /* x -> y means arg of type x being supplied for parameter of type y. */
4635
4636 switch (parm->code ())
4637 {
4638 case TYPE_CODE_PTR:
4639 return rank_one_type_parm_ptr (parm, arg, value);
4640 case TYPE_CODE_ARRAY:
4641 return rank_one_type_parm_array (parm, arg, value);
4642 case TYPE_CODE_FUNC:
4643 return rank_one_type_parm_func (parm, arg, value);
4644 case TYPE_CODE_INT:
4645 return rank_one_type_parm_int (parm, arg, value);
4646 case TYPE_CODE_ENUM:
4647 return rank_one_type_parm_enum (parm, arg, value);
4648 case TYPE_CODE_CHAR:
4649 return rank_one_type_parm_char (parm, arg, value);
4650 case TYPE_CODE_RANGE:
4651 return rank_one_type_parm_range (parm, arg, value);
4652 case TYPE_CODE_BOOL:
4653 return rank_one_type_parm_bool (parm, arg, value);
4654 case TYPE_CODE_FLT:
4655 return rank_one_type_parm_float (parm, arg, value);
4656 case TYPE_CODE_COMPLEX:
4657 return rank_one_type_parm_complex (parm, arg, value);
4658 case TYPE_CODE_STRUCT:
4659 return rank_one_type_parm_struct (parm, arg, value);
4660 case TYPE_CODE_SET:
4661 return rank_one_type_parm_set (parm, arg, value);
4662 default:
4663 return INCOMPATIBLE_TYPE_BADNESS;
4664 } /* switch (arg->code ()) */
4665 }
4666
4667 /* End of functions for overload resolution. */
4668 \f
4669 /* Routines to pretty-print types. */
4670
4671 static void
4672 print_bit_vector (B_TYPE *bits, int nbits)
4673 {
4674 int bitno;
4675
4676 for (bitno = 0; bitno < nbits; bitno++)
4677 {
4678 if ((bitno % 8) == 0)
4679 {
4680 puts_filtered (" ");
4681 }
4682 if (B_TST (bits, bitno))
4683 printf_filtered (("1"));
4684 else
4685 printf_filtered (("0"));
4686 }
4687 }
4688
4689 /* Note the first arg should be the "this" pointer, we may not want to
4690 include it since we may get into a infinitely recursive
4691 situation. */
4692
4693 static void
4694 print_args (struct field *args, int nargs, int spaces)
4695 {
4696 if (args != NULL)
4697 {
4698 int i;
4699
4700 for (i = 0; i < nargs; i++)
4701 {
4702 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4703 args[i].name != NULL ? args[i].name : "<NULL>");
4704 recursive_dump_type (args[i].type (), spaces + 2);
4705 }
4706 }
4707 }
4708
4709 int
4710 field_is_static (struct field *f)
4711 {
4712 /* "static" fields are the fields whose location is not relative
4713 to the address of the enclosing struct. It would be nice to
4714 have a dedicated flag that would be set for static fields when
4715 the type is being created. But in practice, checking the field
4716 loc_kind should give us an accurate answer. */
4717 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4718 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4719 }
4720
4721 static void
4722 dump_fn_fieldlists (struct type *type, int spaces)
4723 {
4724 int method_idx;
4725 int overload_idx;
4726 struct fn_field *f;
4727
4728 printfi_filtered (spaces, "fn_fieldlists ");
4729 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4730 printf_filtered ("\n");
4731 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4732 {
4733 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4734 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4735 method_idx,
4736 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4737 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4738 gdb_stdout);
4739 printf_filtered (_(") length %d\n"),
4740 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4741 for (overload_idx = 0;
4742 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4743 overload_idx++)
4744 {
4745 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4746 overload_idx,
4747 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4748 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4749 gdb_stdout);
4750 printf_filtered (")\n");
4751 printfi_filtered (spaces + 8, "type ");
4752 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4753 gdb_stdout);
4754 printf_filtered ("\n");
4755
4756 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4757 spaces + 8 + 2);
4758
4759 printfi_filtered (spaces + 8, "args ");
4760 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4761 gdb_stdout);
4762 printf_filtered ("\n");
4763 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4764 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4765 spaces + 8 + 2);
4766 printfi_filtered (spaces + 8, "fcontext ");
4767 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4768 gdb_stdout);
4769 printf_filtered ("\n");
4770
4771 printfi_filtered (spaces + 8, "is_const %d\n",
4772 TYPE_FN_FIELD_CONST (f, overload_idx));
4773 printfi_filtered (spaces + 8, "is_volatile %d\n",
4774 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4775 printfi_filtered (spaces + 8, "is_private %d\n",
4776 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4777 printfi_filtered (spaces + 8, "is_protected %d\n",
4778 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4779 printfi_filtered (spaces + 8, "is_stub %d\n",
4780 TYPE_FN_FIELD_STUB (f, overload_idx));
4781 printfi_filtered (spaces + 8, "defaulted %d\n",
4782 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4783 printfi_filtered (spaces + 8, "is_deleted %d\n",
4784 TYPE_FN_FIELD_DELETED (f, overload_idx));
4785 printfi_filtered (spaces + 8, "voffset %u\n",
4786 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4787 }
4788 }
4789 }
4790
4791 static void
4792 print_cplus_stuff (struct type *type, int spaces)
4793 {
4794 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4795 printfi_filtered (spaces, "vptr_basetype ");
4796 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4797 puts_filtered ("\n");
4798 if (TYPE_VPTR_BASETYPE (type) != NULL)
4799 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4800
4801 printfi_filtered (spaces, "n_baseclasses %d\n",
4802 TYPE_N_BASECLASSES (type));
4803 printfi_filtered (spaces, "nfn_fields %d\n",
4804 TYPE_NFN_FIELDS (type));
4805 if (TYPE_N_BASECLASSES (type) > 0)
4806 {
4807 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4808 TYPE_N_BASECLASSES (type));
4809 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4810 gdb_stdout);
4811 printf_filtered (")");
4812
4813 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4814 TYPE_N_BASECLASSES (type));
4815 puts_filtered ("\n");
4816 }
4817 if (type->num_fields () > 0)
4818 {
4819 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4820 {
4821 printfi_filtered (spaces,
4822 "private_field_bits (%d bits at *",
4823 type->num_fields ());
4824 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4825 gdb_stdout);
4826 printf_filtered (")");
4827 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4828 type->num_fields ());
4829 puts_filtered ("\n");
4830 }
4831 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4832 {
4833 printfi_filtered (spaces,
4834 "protected_field_bits (%d bits at *",
4835 type->num_fields ());
4836 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4837 gdb_stdout);
4838 printf_filtered (")");
4839 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4840 type->num_fields ());
4841 puts_filtered ("\n");
4842 }
4843 }
4844 if (TYPE_NFN_FIELDS (type) > 0)
4845 {
4846 dump_fn_fieldlists (type, spaces);
4847 }
4848
4849 printfi_filtered (spaces, "calling_convention %d\n",
4850 TYPE_CPLUS_CALLING_CONVENTION (type));
4851 }
4852
4853 /* Print the contents of the TYPE's type_specific union, assuming that
4854 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4855
4856 static void
4857 print_gnat_stuff (struct type *type, int spaces)
4858 {
4859 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4860
4861 if (descriptive_type == NULL)
4862 printfi_filtered (spaces + 2, "no descriptive type\n");
4863 else
4864 {
4865 printfi_filtered (spaces + 2, "descriptive type\n");
4866 recursive_dump_type (descriptive_type, spaces + 4);
4867 }
4868 }
4869
4870 static struct obstack dont_print_type_obstack;
4871
4872 /* Print the dynamic_prop PROP. */
4873
4874 static void
4875 dump_dynamic_prop (dynamic_prop const& prop)
4876 {
4877 switch (prop.kind ())
4878 {
4879 case PROP_CONST:
4880 printf_filtered ("%s", plongest (prop.const_val ()));
4881 break;
4882 case PROP_UNDEFINED:
4883 printf_filtered ("(undefined)");
4884 break;
4885 case PROP_LOCEXPR:
4886 case PROP_LOCLIST:
4887 printf_filtered ("(dynamic)");
4888 break;
4889 default:
4890 gdb_assert_not_reached ("unhandled prop kind");
4891 break;
4892 }
4893 }
4894
4895 void
4896 recursive_dump_type (struct type *type, int spaces)
4897 {
4898 int idx;
4899
4900 if (spaces == 0)
4901 obstack_begin (&dont_print_type_obstack, 0);
4902
4903 if (type->num_fields () > 0
4904 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4905 {
4906 struct type **first_dont_print
4907 = (struct type **) obstack_base (&dont_print_type_obstack);
4908
4909 int i = (struct type **)
4910 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4911
4912 while (--i >= 0)
4913 {
4914 if (type == first_dont_print[i])
4915 {
4916 printfi_filtered (spaces, "type node ");
4917 gdb_print_host_address (type, gdb_stdout);
4918 printf_filtered (_(" <same as already seen type>\n"));
4919 return;
4920 }
4921 }
4922
4923 obstack_ptr_grow (&dont_print_type_obstack, type);
4924 }
4925
4926 printfi_filtered (spaces, "type node ");
4927 gdb_print_host_address (type, gdb_stdout);
4928 printf_filtered ("\n");
4929 printfi_filtered (spaces, "name '%s' (",
4930 type->name () ? type->name () : "<NULL>");
4931 gdb_print_host_address (type->name (), gdb_stdout);
4932 printf_filtered (")\n");
4933 printfi_filtered (spaces, "code 0x%x ", type->code ());
4934 switch (type->code ())
4935 {
4936 case TYPE_CODE_UNDEF:
4937 printf_filtered ("(TYPE_CODE_UNDEF)");
4938 break;
4939 case TYPE_CODE_PTR:
4940 printf_filtered ("(TYPE_CODE_PTR)");
4941 break;
4942 case TYPE_CODE_ARRAY:
4943 printf_filtered ("(TYPE_CODE_ARRAY)");
4944 break;
4945 case TYPE_CODE_STRUCT:
4946 printf_filtered ("(TYPE_CODE_STRUCT)");
4947 break;
4948 case TYPE_CODE_UNION:
4949 printf_filtered ("(TYPE_CODE_UNION)");
4950 break;
4951 case TYPE_CODE_ENUM:
4952 printf_filtered ("(TYPE_CODE_ENUM)");
4953 break;
4954 case TYPE_CODE_FLAGS:
4955 printf_filtered ("(TYPE_CODE_FLAGS)");
4956 break;
4957 case TYPE_CODE_FUNC:
4958 printf_filtered ("(TYPE_CODE_FUNC)");
4959 break;
4960 case TYPE_CODE_INT:
4961 printf_filtered ("(TYPE_CODE_INT)");
4962 break;
4963 case TYPE_CODE_FLT:
4964 printf_filtered ("(TYPE_CODE_FLT)");
4965 break;
4966 case TYPE_CODE_VOID:
4967 printf_filtered ("(TYPE_CODE_VOID)");
4968 break;
4969 case TYPE_CODE_SET:
4970 printf_filtered ("(TYPE_CODE_SET)");
4971 break;
4972 case TYPE_CODE_RANGE:
4973 printf_filtered ("(TYPE_CODE_RANGE)");
4974 break;
4975 case TYPE_CODE_STRING:
4976 printf_filtered ("(TYPE_CODE_STRING)");
4977 break;
4978 case TYPE_CODE_ERROR:
4979 printf_filtered ("(TYPE_CODE_ERROR)");
4980 break;
4981 case TYPE_CODE_MEMBERPTR:
4982 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4983 break;
4984 case TYPE_CODE_METHODPTR:
4985 printf_filtered ("(TYPE_CODE_METHODPTR)");
4986 break;
4987 case TYPE_CODE_METHOD:
4988 printf_filtered ("(TYPE_CODE_METHOD)");
4989 break;
4990 case TYPE_CODE_REF:
4991 printf_filtered ("(TYPE_CODE_REF)");
4992 break;
4993 case TYPE_CODE_CHAR:
4994 printf_filtered ("(TYPE_CODE_CHAR)");
4995 break;
4996 case TYPE_CODE_BOOL:
4997 printf_filtered ("(TYPE_CODE_BOOL)");
4998 break;
4999 case TYPE_CODE_COMPLEX:
5000 printf_filtered ("(TYPE_CODE_COMPLEX)");
5001 break;
5002 case TYPE_CODE_TYPEDEF:
5003 printf_filtered ("(TYPE_CODE_TYPEDEF)");
5004 break;
5005 case TYPE_CODE_NAMESPACE:
5006 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5007 break;
5008 default:
5009 printf_filtered ("(UNKNOWN TYPE CODE)");
5010 break;
5011 }
5012 puts_filtered ("\n");
5013 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
5014 if (TYPE_OBJFILE_OWNED (type))
5015 {
5016 printfi_filtered (spaces, "objfile ");
5017 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5018 }
5019 else
5020 {
5021 printfi_filtered (spaces, "gdbarch ");
5022 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5023 }
5024 printf_filtered ("\n");
5025 printfi_filtered (spaces, "target_type ");
5026 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5027 printf_filtered ("\n");
5028 if (TYPE_TARGET_TYPE (type) != NULL)
5029 {
5030 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5031 }
5032 printfi_filtered (spaces, "pointer_type ");
5033 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5034 printf_filtered ("\n");
5035 printfi_filtered (spaces, "reference_type ");
5036 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5037 printf_filtered ("\n");
5038 printfi_filtered (spaces, "type_chain ");
5039 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5040 printf_filtered ("\n");
5041 printfi_filtered (spaces, "instance_flags 0x%x",
5042 (unsigned) type->instance_flags ());
5043 if (TYPE_CONST (type))
5044 {
5045 puts_filtered (" TYPE_CONST");
5046 }
5047 if (TYPE_VOLATILE (type))
5048 {
5049 puts_filtered (" TYPE_VOLATILE");
5050 }
5051 if (TYPE_CODE_SPACE (type))
5052 {
5053 puts_filtered (" TYPE_CODE_SPACE");
5054 }
5055 if (TYPE_DATA_SPACE (type))
5056 {
5057 puts_filtered (" TYPE_DATA_SPACE");
5058 }
5059 if (TYPE_ADDRESS_CLASS_1 (type))
5060 {
5061 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5062 }
5063 if (TYPE_ADDRESS_CLASS_2 (type))
5064 {
5065 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5066 }
5067 if (TYPE_RESTRICT (type))
5068 {
5069 puts_filtered (" TYPE_RESTRICT");
5070 }
5071 if (TYPE_ATOMIC (type))
5072 {
5073 puts_filtered (" TYPE_ATOMIC");
5074 }
5075 puts_filtered ("\n");
5076
5077 printfi_filtered (spaces, "flags");
5078 if (type->is_unsigned ())
5079 {
5080 puts_filtered (" TYPE_UNSIGNED");
5081 }
5082 if (type->has_no_signedness ())
5083 {
5084 puts_filtered (" TYPE_NOSIGN");
5085 }
5086 if (type->endianity_is_not_default ())
5087 {
5088 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5089 }
5090 if (type->is_stub ())
5091 {
5092 puts_filtered (" TYPE_STUB");
5093 }
5094 if (type->target_is_stub ())
5095 {
5096 puts_filtered (" TYPE_TARGET_STUB");
5097 }
5098 if (type->is_prototyped ())
5099 {
5100 puts_filtered (" TYPE_PROTOTYPED");
5101 }
5102 if (type->has_varargs ())
5103 {
5104 puts_filtered (" TYPE_VARARGS");
5105 }
5106 /* This is used for things like AltiVec registers on ppc. Gcc emits
5107 an attribute for the array type, which tells whether or not we
5108 have a vector, instead of a regular array. */
5109 if (type->is_vector ())
5110 {
5111 puts_filtered (" TYPE_VECTOR");
5112 }
5113 if (type->is_fixed_instance ())
5114 {
5115 puts_filtered (" TYPE_FIXED_INSTANCE");
5116 }
5117 if (type->stub_is_supported ())
5118 {
5119 puts_filtered (" TYPE_STUB_SUPPORTED");
5120 }
5121 if (TYPE_NOTTEXT (type))
5122 {
5123 puts_filtered (" TYPE_NOTTEXT");
5124 }
5125 puts_filtered ("\n");
5126 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5127 gdb_print_host_address (type->fields (), gdb_stdout);
5128 puts_filtered ("\n");
5129 for (idx = 0; idx < type->num_fields (); idx++)
5130 {
5131 if (type->code () == TYPE_CODE_ENUM)
5132 printfi_filtered (spaces + 2,
5133 "[%d] enumval %s type ",
5134 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5135 else
5136 printfi_filtered (spaces + 2,
5137 "[%d] bitpos %s bitsize %d type ",
5138 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5139 TYPE_FIELD_BITSIZE (type, idx));
5140 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5141 printf_filtered (" name '%s' (",
5142 TYPE_FIELD_NAME (type, idx) != NULL
5143 ? TYPE_FIELD_NAME (type, idx)
5144 : "<NULL>");
5145 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5146 printf_filtered (")\n");
5147 if (type->field (idx).type () != NULL)
5148 {
5149 recursive_dump_type (type->field (idx).type (), spaces + 4);
5150 }
5151 }
5152 if (type->code () == TYPE_CODE_RANGE)
5153 {
5154 printfi_filtered (spaces, "low ");
5155 dump_dynamic_prop (type->bounds ()->low);
5156 printf_filtered (" high ");
5157 dump_dynamic_prop (type->bounds ()->high);
5158 printf_filtered ("\n");
5159 }
5160
5161 switch (TYPE_SPECIFIC_FIELD (type))
5162 {
5163 case TYPE_SPECIFIC_CPLUS_STUFF:
5164 printfi_filtered (spaces, "cplus_stuff ");
5165 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5166 gdb_stdout);
5167 puts_filtered ("\n");
5168 print_cplus_stuff (type, spaces);
5169 break;
5170
5171 case TYPE_SPECIFIC_GNAT_STUFF:
5172 printfi_filtered (spaces, "gnat_stuff ");
5173 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5174 puts_filtered ("\n");
5175 print_gnat_stuff (type, spaces);
5176 break;
5177
5178 case TYPE_SPECIFIC_FLOATFORMAT:
5179 printfi_filtered (spaces, "floatformat ");
5180 if (TYPE_FLOATFORMAT (type) == NULL
5181 || TYPE_FLOATFORMAT (type)->name == NULL)
5182 puts_filtered ("(null)");
5183 else
5184 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5185 puts_filtered ("\n");
5186 break;
5187
5188 case TYPE_SPECIFIC_FUNC:
5189 printfi_filtered (spaces, "calling_convention %d\n",
5190 TYPE_CALLING_CONVENTION (type));
5191 /* tail_call_list is not printed. */
5192 break;
5193
5194 case TYPE_SPECIFIC_SELF_TYPE:
5195 printfi_filtered (spaces, "self_type ");
5196 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5197 puts_filtered ("\n");
5198 break;
5199
5200 case TYPE_SPECIFIC_INT:
5201 if (type->bit_size_differs_p ())
5202 {
5203 unsigned bit_size = type->bit_size ();
5204 unsigned bit_off = type->bit_offset ();
5205 printfi_filtered (spaces, " bit size = %u, bit offset = %u\n",
5206 bit_size, bit_off);
5207 }
5208 break;
5209 }
5210
5211 if (spaces == 0)
5212 obstack_free (&dont_print_type_obstack, NULL);
5213 }
5214 \f
5215 /* Trivial helpers for the libiberty hash table, for mapping one
5216 type to another. */
5217
5218 struct type_pair : public allocate_on_obstack
5219 {
5220 type_pair (struct type *old_, struct type *newobj_)
5221 : old (old_), newobj (newobj_)
5222 {}
5223
5224 struct type * const old, * const newobj;
5225 };
5226
5227 static hashval_t
5228 type_pair_hash (const void *item)
5229 {
5230 const struct type_pair *pair = (const struct type_pair *) item;
5231
5232 return htab_hash_pointer (pair->old);
5233 }
5234
5235 static int
5236 type_pair_eq (const void *item_lhs, const void *item_rhs)
5237 {
5238 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5239 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5240
5241 return lhs->old == rhs->old;
5242 }
5243
5244 /* Allocate the hash table used by copy_type_recursive to walk
5245 types without duplicates. We use OBJFILE's obstack, because
5246 OBJFILE is about to be deleted. */
5247
5248 htab_up
5249 create_copied_types_hash (struct objfile *objfile)
5250 {
5251 return htab_up (htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5252 NULL, &objfile->objfile_obstack,
5253 hashtab_obstack_allocate,
5254 dummy_obstack_deallocate));
5255 }
5256
5257 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5258
5259 static struct dynamic_prop_list *
5260 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5261 struct dynamic_prop_list *list)
5262 {
5263 struct dynamic_prop_list *copy = list;
5264 struct dynamic_prop_list **node_ptr = &copy;
5265
5266 while (*node_ptr != NULL)
5267 {
5268 struct dynamic_prop_list *node_copy;
5269
5270 node_copy = ((struct dynamic_prop_list *)
5271 obstack_copy (objfile_obstack, *node_ptr,
5272 sizeof (struct dynamic_prop_list)));
5273 node_copy->prop = (*node_ptr)->prop;
5274 *node_ptr = node_copy;
5275
5276 node_ptr = &node_copy->next;
5277 }
5278
5279 return copy;
5280 }
5281
5282 /* Recursively copy (deep copy) TYPE, if it is associated with
5283 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5284 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5285 it is not associated with OBJFILE. */
5286
5287 struct type *
5288 copy_type_recursive (struct objfile *objfile,
5289 struct type *type,
5290 htab_t copied_types)
5291 {
5292 void **slot;
5293 struct type *new_type;
5294
5295 if (! TYPE_OBJFILE_OWNED (type))
5296 return type;
5297
5298 /* This type shouldn't be pointing to any types in other objfiles;
5299 if it did, the type might disappear unexpectedly. */
5300 gdb_assert (TYPE_OBJFILE (type) == objfile);
5301
5302 struct type_pair pair (type, nullptr);
5303
5304 slot = htab_find_slot (copied_types, &pair, INSERT);
5305 if (*slot != NULL)
5306 return ((struct type_pair *) *slot)->newobj;
5307
5308 new_type = alloc_type_arch (get_type_arch (type));
5309
5310 /* We must add the new type to the hash table immediately, in case
5311 we encounter this type again during a recursive call below. */
5312 struct type_pair *stored
5313 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5314
5315 *slot = stored;
5316
5317 /* Copy the common fields of types. For the main type, we simply
5318 copy the entire thing and then update specific fields as needed. */
5319 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5320 TYPE_OBJFILE_OWNED (new_type) = 0;
5321 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5322
5323 if (type->name ())
5324 new_type->set_name (xstrdup (type->name ()));
5325
5326 new_type->set_instance_flags (type->instance_flags ());
5327 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5328
5329 /* Copy the fields. */
5330 if (type->num_fields ())
5331 {
5332 int i, nfields;
5333
5334 nfields = type->num_fields ();
5335 new_type->set_fields
5336 ((struct field *)
5337 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5338
5339 for (i = 0; i < nfields; i++)
5340 {
5341 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5342 TYPE_FIELD_ARTIFICIAL (type, i);
5343 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5344 if (type->field (i).type ())
5345 new_type->field (i).set_type
5346 (copy_type_recursive (objfile, type->field (i).type (),
5347 copied_types));
5348 if (TYPE_FIELD_NAME (type, i))
5349 TYPE_FIELD_NAME (new_type, i) =
5350 xstrdup (TYPE_FIELD_NAME (type, i));
5351 switch (TYPE_FIELD_LOC_KIND (type, i))
5352 {
5353 case FIELD_LOC_KIND_BITPOS:
5354 SET_FIELD_BITPOS (new_type->field (i),
5355 TYPE_FIELD_BITPOS (type, i));
5356 break;
5357 case FIELD_LOC_KIND_ENUMVAL:
5358 SET_FIELD_ENUMVAL (new_type->field (i),
5359 TYPE_FIELD_ENUMVAL (type, i));
5360 break;
5361 case FIELD_LOC_KIND_PHYSADDR:
5362 SET_FIELD_PHYSADDR (new_type->field (i),
5363 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5364 break;
5365 case FIELD_LOC_KIND_PHYSNAME:
5366 SET_FIELD_PHYSNAME (new_type->field (i),
5367 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5368 i)));
5369 break;
5370 default:
5371 internal_error (__FILE__, __LINE__,
5372 _("Unexpected type field location kind: %d"),
5373 TYPE_FIELD_LOC_KIND (type, i));
5374 }
5375 }
5376 }
5377
5378 /* For range types, copy the bounds information. */
5379 if (type->code () == TYPE_CODE_RANGE)
5380 {
5381 range_bounds *bounds
5382 = ((struct range_bounds *) TYPE_ALLOC
5383 (new_type, sizeof (struct range_bounds)));
5384
5385 *bounds = *type->bounds ();
5386 new_type->set_bounds (bounds);
5387 }
5388
5389 if (type->main_type->dyn_prop_list != NULL)
5390 new_type->main_type->dyn_prop_list
5391 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5392 type->main_type->dyn_prop_list);
5393
5394
5395 /* Copy pointers to other types. */
5396 if (TYPE_TARGET_TYPE (type))
5397 TYPE_TARGET_TYPE (new_type) =
5398 copy_type_recursive (objfile,
5399 TYPE_TARGET_TYPE (type),
5400 copied_types);
5401
5402 /* Maybe copy the type_specific bits.
5403
5404 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5405 base classes and methods. There's no fundamental reason why we
5406 can't, but at the moment it is not needed. */
5407
5408 switch (TYPE_SPECIFIC_FIELD (type))
5409 {
5410 case TYPE_SPECIFIC_NONE:
5411 break;
5412 case TYPE_SPECIFIC_FUNC:
5413 INIT_FUNC_SPECIFIC (new_type);
5414 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5415 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5416 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5417 break;
5418 case TYPE_SPECIFIC_FLOATFORMAT:
5419 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5420 break;
5421 case TYPE_SPECIFIC_CPLUS_STUFF:
5422 INIT_CPLUS_SPECIFIC (new_type);
5423 break;
5424 case TYPE_SPECIFIC_GNAT_STUFF:
5425 INIT_GNAT_SPECIFIC (new_type);
5426 break;
5427 case TYPE_SPECIFIC_SELF_TYPE:
5428 set_type_self_type (new_type,
5429 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5430 copied_types));
5431 break;
5432 case TYPE_SPECIFIC_INT:
5433 TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT;
5434 TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff
5435 = TYPE_MAIN_TYPE (type)->type_specific.int_stuff;
5436 break;
5437
5438 default:
5439 gdb_assert_not_reached ("bad type_specific_kind");
5440 }
5441
5442 return new_type;
5443 }
5444
5445 /* Make a copy of the given TYPE, except that the pointer & reference
5446 types are not preserved.
5447
5448 This function assumes that the given type has an associated objfile.
5449 This objfile is used to allocate the new type. */
5450
5451 struct type *
5452 copy_type (const struct type *type)
5453 {
5454 struct type *new_type;
5455
5456 gdb_assert (TYPE_OBJFILE_OWNED (type));
5457
5458 new_type = alloc_type_copy (type);
5459 new_type->set_instance_flags (type->instance_flags ());
5460 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5461 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5462 sizeof (struct main_type));
5463 if (type->main_type->dyn_prop_list != NULL)
5464 new_type->main_type->dyn_prop_list
5465 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5466 type->main_type->dyn_prop_list);
5467
5468 return new_type;
5469 }
5470 \f
5471 /* Helper functions to initialize architecture-specific types. */
5472
5473 /* Allocate a type structure associated with GDBARCH and set its
5474 CODE, LENGTH, and NAME fields. */
5475
5476 struct type *
5477 arch_type (struct gdbarch *gdbarch,
5478 enum type_code code, int bit, const char *name)
5479 {
5480 struct type *type;
5481
5482 type = alloc_type_arch (gdbarch);
5483 set_type_code (type, code);
5484 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5485 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5486
5487 if (name)
5488 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5489
5490 return type;
5491 }
5492
5493 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5494 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5495 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5496
5497 struct type *
5498 arch_integer_type (struct gdbarch *gdbarch,
5499 int bit, int unsigned_p, const char *name)
5500 {
5501 struct type *t;
5502
5503 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5504 if (unsigned_p)
5505 t->set_is_unsigned (true);
5506
5507 return t;
5508 }
5509
5510 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5511 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5512 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5513
5514 struct type *
5515 arch_character_type (struct gdbarch *gdbarch,
5516 int bit, int unsigned_p, const char *name)
5517 {
5518 struct type *t;
5519
5520 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5521 if (unsigned_p)
5522 t->set_is_unsigned (true);
5523
5524 return t;
5525 }
5526
5527 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5528 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5529 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5530
5531 struct type *
5532 arch_boolean_type (struct gdbarch *gdbarch,
5533 int bit, int unsigned_p, const char *name)
5534 {
5535 struct type *t;
5536
5537 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5538 if (unsigned_p)
5539 t->set_is_unsigned (true);
5540
5541 return t;
5542 }
5543
5544 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5545 BIT is the type size in bits; if BIT equals -1, the size is
5546 determined by the floatformat. NAME is the type name. Set the
5547 TYPE_FLOATFORMAT from FLOATFORMATS. */
5548
5549 struct type *
5550 arch_float_type (struct gdbarch *gdbarch,
5551 int bit, const char *name,
5552 const struct floatformat **floatformats)
5553 {
5554 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5555 struct type *t;
5556
5557 bit = verify_floatformat (bit, fmt);
5558 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5559 TYPE_FLOATFORMAT (t) = fmt;
5560
5561 return t;
5562 }
5563
5564 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5565 BIT is the type size in bits. NAME is the type name. */
5566
5567 struct type *
5568 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5569 {
5570 struct type *t;
5571
5572 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5573 return t;
5574 }
5575
5576 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5577 BIT is the pointer type size in bits. NAME is the type name.
5578 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5579 TYPE_UNSIGNED flag. */
5580
5581 struct type *
5582 arch_pointer_type (struct gdbarch *gdbarch,
5583 int bit, const char *name, struct type *target_type)
5584 {
5585 struct type *t;
5586
5587 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5588 TYPE_TARGET_TYPE (t) = target_type;
5589 t->set_is_unsigned (true);
5590 return t;
5591 }
5592
5593 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5594 NAME is the type name. BIT is the size of the flag word in bits. */
5595
5596 struct type *
5597 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5598 {
5599 struct type *type;
5600
5601 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5602 type->set_is_unsigned (true);
5603 type->set_num_fields (0);
5604 /* Pre-allocate enough space assuming every field is one bit. */
5605 type->set_fields
5606 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5607
5608 return type;
5609 }
5610
5611 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5612 position BITPOS is called NAME. Pass NAME as "" for fields that
5613 should not be printed. */
5614
5615 void
5616 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5617 struct type *field_type, const char *name)
5618 {
5619 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5620 int field_nr = type->num_fields ();
5621
5622 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5623 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5624 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5625 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5626 gdb_assert (name != NULL);
5627
5628 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5629 type->field (field_nr).set_type (field_type);
5630 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5631 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5632 type->set_num_fields (type->num_fields () + 1);
5633 }
5634
5635 /* Special version of append_flags_type_field to add a flag field.
5636 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5637 position BITPOS is called NAME. */
5638
5639 void
5640 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5641 {
5642 struct gdbarch *gdbarch = get_type_arch (type);
5643
5644 append_flags_type_field (type, bitpos, 1,
5645 builtin_type (gdbarch)->builtin_bool,
5646 name);
5647 }
5648
5649 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5650 specified by CODE) associated with GDBARCH. NAME is the type name. */
5651
5652 struct type *
5653 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5654 enum type_code code)
5655 {
5656 struct type *t;
5657
5658 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5659 t = arch_type (gdbarch, code, 0, NULL);
5660 t->set_name (name);
5661 INIT_CPLUS_SPECIFIC (t);
5662 return t;
5663 }
5664
5665 /* Add new field with name NAME and type FIELD to composite type T.
5666 Do not set the field's position or adjust the type's length;
5667 the caller should do so. Return the new field. */
5668
5669 struct field *
5670 append_composite_type_field_raw (struct type *t, const char *name,
5671 struct type *field)
5672 {
5673 struct field *f;
5674
5675 t->set_num_fields (t->num_fields () + 1);
5676 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5677 t->num_fields ()));
5678 f = &t->field (t->num_fields () - 1);
5679 memset (f, 0, sizeof f[0]);
5680 f[0].set_type (field);
5681 FIELD_NAME (f[0]) = name;
5682 return f;
5683 }
5684
5685 /* Add new field with name NAME and type FIELD to composite type T.
5686 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5687
5688 void
5689 append_composite_type_field_aligned (struct type *t, const char *name,
5690 struct type *field, int alignment)
5691 {
5692 struct field *f = append_composite_type_field_raw (t, name, field);
5693
5694 if (t->code () == TYPE_CODE_UNION)
5695 {
5696 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5697 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5698 }
5699 else if (t->code () == TYPE_CODE_STRUCT)
5700 {
5701 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5702 if (t->num_fields () > 1)
5703 {
5704 SET_FIELD_BITPOS (f[0],
5705 (FIELD_BITPOS (f[-1])
5706 + (TYPE_LENGTH (f[-1].type ())
5707 * TARGET_CHAR_BIT)));
5708
5709 if (alignment)
5710 {
5711 int left;
5712
5713 alignment *= TARGET_CHAR_BIT;
5714 left = FIELD_BITPOS (f[0]) % alignment;
5715
5716 if (left)
5717 {
5718 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5719 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5720 }
5721 }
5722 }
5723 }
5724 }
5725
5726 /* Add new field with name NAME and type FIELD to composite type T. */
5727
5728 void
5729 append_composite_type_field (struct type *t, const char *name,
5730 struct type *field)
5731 {
5732 append_composite_type_field_aligned (t, name, field, 0);
5733 }
5734
5735 static struct gdbarch_data *gdbtypes_data;
5736
5737 const struct builtin_type *
5738 builtin_type (struct gdbarch *gdbarch)
5739 {
5740 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5741 }
5742
5743 static void *
5744 gdbtypes_post_init (struct gdbarch *gdbarch)
5745 {
5746 struct builtin_type *builtin_type
5747 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5748
5749 /* Basic types. */
5750 builtin_type->builtin_void
5751 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5752 builtin_type->builtin_char
5753 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5754 !gdbarch_char_signed (gdbarch), "char");
5755 builtin_type->builtin_char->set_has_no_signedness (true);
5756 builtin_type->builtin_signed_char
5757 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5758 0, "signed char");
5759 builtin_type->builtin_unsigned_char
5760 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5761 1, "unsigned char");
5762 builtin_type->builtin_short
5763 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5764 0, "short");
5765 builtin_type->builtin_unsigned_short
5766 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5767 1, "unsigned short");
5768 builtin_type->builtin_int
5769 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5770 0, "int");
5771 builtin_type->builtin_unsigned_int
5772 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5773 1, "unsigned int");
5774 builtin_type->builtin_long
5775 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5776 0, "long");
5777 builtin_type->builtin_unsigned_long
5778 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5779 1, "unsigned long");
5780 builtin_type->builtin_long_long
5781 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5782 0, "long long");
5783 builtin_type->builtin_unsigned_long_long
5784 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5785 1, "unsigned long long");
5786 builtin_type->builtin_half
5787 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5788 "half", gdbarch_half_format (gdbarch));
5789 builtin_type->builtin_float
5790 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5791 "float", gdbarch_float_format (gdbarch));
5792 builtin_type->builtin_bfloat16
5793 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
5794 "bfloat16", gdbarch_bfloat16_format (gdbarch));
5795 builtin_type->builtin_double
5796 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5797 "double", gdbarch_double_format (gdbarch));
5798 builtin_type->builtin_long_double
5799 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5800 "long double", gdbarch_long_double_format (gdbarch));
5801 builtin_type->builtin_complex
5802 = init_complex_type ("complex", builtin_type->builtin_float);
5803 builtin_type->builtin_double_complex
5804 = init_complex_type ("double complex", builtin_type->builtin_double);
5805 builtin_type->builtin_string
5806 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5807 builtin_type->builtin_bool
5808 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5809
5810 /* The following three are about decimal floating point types, which
5811 are 32-bits, 64-bits and 128-bits respectively. */
5812 builtin_type->builtin_decfloat
5813 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5814 builtin_type->builtin_decdouble
5815 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5816 builtin_type->builtin_declong
5817 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5818
5819 /* "True" character types. */
5820 builtin_type->builtin_true_char
5821 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5822 builtin_type->builtin_true_unsigned_char
5823 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5824
5825 /* Fixed-size integer types. */
5826 builtin_type->builtin_int0
5827 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5828 builtin_type->builtin_int8
5829 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5830 builtin_type->builtin_uint8
5831 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5832 builtin_type->builtin_int16
5833 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5834 builtin_type->builtin_uint16
5835 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5836 builtin_type->builtin_int24
5837 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5838 builtin_type->builtin_uint24
5839 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5840 builtin_type->builtin_int32
5841 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5842 builtin_type->builtin_uint32
5843 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5844 builtin_type->builtin_int64
5845 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5846 builtin_type->builtin_uint64
5847 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5848 builtin_type->builtin_int128
5849 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5850 builtin_type->builtin_uint128
5851 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5852
5853 builtin_type->builtin_int8->set_instance_flags
5854 (builtin_type->builtin_int8->instance_flags ()
5855 | TYPE_INSTANCE_FLAG_NOTTEXT);
5856
5857 builtin_type->builtin_uint8->set_instance_flags
5858 (builtin_type->builtin_uint8->instance_flags ()
5859 | TYPE_INSTANCE_FLAG_NOTTEXT);
5860
5861 /* Wide character types. */
5862 builtin_type->builtin_char16
5863 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5864 builtin_type->builtin_char32
5865 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5866 builtin_type->builtin_wchar
5867 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5868 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5869
5870 /* Default data/code pointer types. */
5871 builtin_type->builtin_data_ptr
5872 = lookup_pointer_type (builtin_type->builtin_void);
5873 builtin_type->builtin_func_ptr
5874 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5875 builtin_type->builtin_func_func
5876 = lookup_function_type (builtin_type->builtin_func_ptr);
5877
5878 /* This type represents a GDB internal function. */
5879 builtin_type->internal_fn
5880 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5881 "<internal function>");
5882
5883 /* This type represents an xmethod. */
5884 builtin_type->xmethod
5885 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5886
5887 return builtin_type;
5888 }
5889
5890 /* This set of objfile-based types is intended to be used by symbol
5891 readers as basic types. */
5892
5893 static const struct objfile_key<struct objfile_type,
5894 gdb::noop_deleter<struct objfile_type>>
5895 objfile_type_data;
5896
5897 const struct objfile_type *
5898 objfile_type (struct objfile *objfile)
5899 {
5900 struct gdbarch *gdbarch;
5901 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5902
5903 if (objfile_type)
5904 return objfile_type;
5905
5906 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5907 1, struct objfile_type);
5908
5909 /* Use the objfile architecture to determine basic type properties. */
5910 gdbarch = objfile->arch ();
5911
5912 /* Basic types. */
5913 objfile_type->builtin_void
5914 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5915 objfile_type->builtin_char
5916 = init_integer_type (objfile, TARGET_CHAR_BIT,
5917 !gdbarch_char_signed (gdbarch), "char");
5918 objfile_type->builtin_char->set_has_no_signedness (true);
5919 objfile_type->builtin_signed_char
5920 = init_integer_type (objfile, TARGET_CHAR_BIT,
5921 0, "signed char");
5922 objfile_type->builtin_unsigned_char
5923 = init_integer_type (objfile, TARGET_CHAR_BIT,
5924 1, "unsigned char");
5925 objfile_type->builtin_short
5926 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5927 0, "short");
5928 objfile_type->builtin_unsigned_short
5929 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5930 1, "unsigned short");
5931 objfile_type->builtin_int
5932 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5933 0, "int");
5934 objfile_type->builtin_unsigned_int
5935 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5936 1, "unsigned int");
5937 objfile_type->builtin_long
5938 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5939 0, "long");
5940 objfile_type->builtin_unsigned_long
5941 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5942 1, "unsigned long");
5943 objfile_type->builtin_long_long
5944 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5945 0, "long long");
5946 objfile_type->builtin_unsigned_long_long
5947 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5948 1, "unsigned long long");
5949 objfile_type->builtin_float
5950 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5951 "float", gdbarch_float_format (gdbarch));
5952 objfile_type->builtin_double
5953 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5954 "double", gdbarch_double_format (gdbarch));
5955 objfile_type->builtin_long_double
5956 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5957 "long double", gdbarch_long_double_format (gdbarch));
5958
5959 /* This type represents a type that was unrecognized in symbol read-in. */
5960 objfile_type->builtin_error
5961 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5962
5963 /* The following set of types is used for symbols with no
5964 debug information. */
5965 objfile_type->nodebug_text_symbol
5966 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5967 "<text variable, no debug info>");
5968
5969 objfile_type->nodebug_text_gnu_ifunc_symbol
5970 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5971 "<text gnu-indirect-function variable, no debug info>");
5972 objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
5973
5974 objfile_type->nodebug_got_plt_symbol
5975 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5976 "<text from jump slot in .got.plt, no debug info>",
5977 objfile_type->nodebug_text_symbol);
5978 objfile_type->nodebug_data_symbol
5979 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5980 objfile_type->nodebug_unknown_symbol
5981 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5982 objfile_type->nodebug_tls_symbol
5983 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5984
5985 /* NOTE: on some targets, addresses and pointers are not necessarily
5986 the same.
5987
5988 The upshot is:
5989 - gdb's `struct type' always describes the target's
5990 representation.
5991 - gdb's `struct value' objects should always hold values in
5992 target form.
5993 - gdb's CORE_ADDR values are addresses in the unified virtual
5994 address space that the assembler and linker work with. Thus,
5995 since target_read_memory takes a CORE_ADDR as an argument, it
5996 can access any memory on the target, even if the processor has
5997 separate code and data address spaces.
5998
5999 In this context, objfile_type->builtin_core_addr is a bit odd:
6000 it's a target type for a value the target will never see. It's
6001 only used to hold the values of (typeless) linker symbols, which
6002 are indeed in the unified virtual address space. */
6003
6004 objfile_type->builtin_core_addr
6005 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
6006 "__CORE_ADDR");
6007
6008 objfile_type_data.set (objfile, objfile_type);
6009 return objfile_type;
6010 }
6011
6012 void _initialize_gdbtypes ();
6013 void
6014 _initialize_gdbtypes ()
6015 {
6016 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
6017
6018 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
6019 _("Set debugging of C++ overloading."),
6020 _("Show debugging of C++ overloading."),
6021 _("When enabled, ranking of the "
6022 "functions is displayed."),
6023 NULL,
6024 show_overload_debug,
6025 &setdebuglist, &showdebuglist);
6026
6027 /* Add user knob for controlling resolution of opaque types. */
6028 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
6029 &opaque_type_resolution,
6030 _("Set resolution of opaque struct/class/union"
6031 " types (if set before loading symbols)."),
6032 _("Show resolution of opaque struct/class/union"
6033 " types (if set before loading symbols)."),
6034 NULL, NULL,
6035 show_opaque_type_resolution,
6036 &setlist, &showlist);
6037
6038 /* Add an option to permit non-strict type checking. */
6039 add_setshow_boolean_cmd ("type", class_support,
6040 &strict_type_checking,
6041 _("Set strict type checking."),
6042 _("Show strict type checking."),
6043 NULL, NULL,
6044 show_strict_type_checking,
6045 &setchecklist, &showchecklist);
6046 }
This page took 0.277441 seconds and 4 git commands to generate.