Increase timeout in watch-bitfields.exp for software watchpoint
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259 static struct type *
260 alloc_type_instance (struct type *oldtype)
261 {
262 struct type *type;
263
264 /* Allocate the structure. */
265
266 if (! TYPE_OBJFILE_OWNED (oldtype))
267 type = XCNEW (struct type);
268 else
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
276 return type;
277 }
278
279 /* Clear all remnants of the previous type at TYPE, in preparation for
280 replacing it with something else. Preserve owner information. */
281
282 static void
283 smash_type (struct type *type)
284 {
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298 }
299
300 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305 struct type *
306 make_pointer_type (struct type *type, struct type **typeptr)
307 {
308 struct type *ntype; /* New type */
309 struct type *chain;
310
311 ntype = TYPE_POINTER_TYPE (type);
312
313 if (ntype)
314 {
315 if (typeptr == 0)
316 return ntype; /* Don't care about alloc,
317 and have new type. */
318 else if (*typeptr == 0)
319 {
320 *typeptr = ntype; /* Tracking alloc, and have new type. */
321 return ntype;
322 }
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
327 ntype = alloc_type_copy (type);
328 if (typeptr)
329 *typeptr = ntype;
330 }
331 else /* We have storage, but need to reset it. */
332 {
333 ntype = *typeptr;
334 chain = TYPE_CHAIN (ntype);
335 smash_type (ntype);
336 TYPE_CHAIN (ntype) = chain;
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
342 /* FIXME! Assumes the machine has only one representation for pointers! */
343
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
348 /* Mark pointers as unsigned. The target converts between pointers
349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
350 gdbarch_address_to_pointer. */
351 TYPE_UNSIGNED (ntype) = 1;
352
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
361 return ntype;
362 }
363
364 /* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367 struct type *
368 lookup_pointer_type (struct type *type)
369 {
370 return make_pointer_type (type, (struct type **) 0);
371 }
372
373 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
377
378 struct type *
379 make_reference_type (struct type *type, struct type **typeptr)
380 {
381 struct type *ntype; /* New type */
382 struct type *chain;
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
386 if (ntype)
387 {
388 if (typeptr == 0)
389 return ntype; /* Don't care about alloc,
390 and have new type. */
391 else if (*typeptr == 0)
392 {
393 *typeptr = ntype; /* Tracking alloc, and have new type. */
394 return ntype;
395 }
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
400 ntype = alloc_type_copy (type);
401 if (typeptr)
402 *typeptr = ntype;
403 }
404 else /* We have storage, but need to reset it. */
405 {
406 ntype = *typeptr;
407 chain = TYPE_CHAIN (ntype);
408 smash_type (ntype);
409 TYPE_CHAIN (ntype) = chain;
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
418
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
421 TYPE_CODE (ntype) = TYPE_CODE_REF;
422
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
434 return ntype;
435 }
436
437 /* Same as above, but caller doesn't care about memory allocation
438 details. */
439
440 struct type *
441 lookup_reference_type (struct type *type)
442 {
443 return make_reference_type (type, (struct type **) 0);
444 }
445
446 /* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
449 function type we return. We allocate new memory if needed. */
450
451 struct type *
452 make_function_type (struct type *type, struct type **typeptr)
453 {
454 struct type *ntype; /* New type */
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
458 ntype = alloc_type_copy (type);
459 if (typeptr)
460 *typeptr = ntype;
461 }
462 else /* We have storage, but need to reset it. */
463 {
464 ntype = *typeptr;
465 smash_type (ntype);
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
472
473 INIT_FUNC_SPECIFIC (ntype);
474
475 return ntype;
476 }
477
478 /* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481 struct type *
482 lookup_function_type (struct type *type)
483 {
484 return make_function_type (type, (struct type **) 0);
485 }
486
487 /* Given a type TYPE and argument types, return the appropriate
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
490
491 struct type *
492 lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495 {
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
499 if (nparams > 0)
500 {
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
514 }
515
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522 }
523
524 /* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
526
527 int
528 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
529 {
530 int type_flags;
531
532 /* Check for known address space delimiters. */
533 if (!strcmp (space_identifier, "code"))
534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
535 else if (!strcmp (space_identifier, "data"))
536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
541 return type_flags;
542 else
543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
544 }
545
546 /* Identify address space identifier by integer flag as defined in
547 gdbtypes.h -- return the string version of the adress space name. */
548
549 const char *
550 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
551 {
552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
553 return "code";
554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
555 return "data";
556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
559 else
560 return NULL;
561 }
562
563 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
567
568 static struct type *
569 make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
571 {
572 struct type *ntype;
573
574 ntype = type;
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
582
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
598
599 /* Pointers or references to the original type are not relevant to
600 the new type. */
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
603
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
610
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
614 return ntype;
615 }
616
617 /* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
625
626 struct type *
627 make_type_with_address_space (struct type *type, int space_flag)
628 {
629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636 }
637
638 /* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
643
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
649
650 struct type *
651 make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
654 {
655 struct type *ntype; /* New type */
656
657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
660
661 if (cnst)
662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
663
664 if (voltl)
665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
666
667 if (typeptr && *typeptr != NULL)
668 {
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
682 }
683
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
686
687 if (typeptr != NULL)
688 *typeptr = ntype;
689
690 return ntype;
691 }
692
693 /* Make a 'restrict'-qualified version of TYPE. */
694
695 struct type *
696 make_restrict_type (struct type *type)
697 {
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702 }
703
704 /* Make a type without const, volatile, or restrict. */
705
706 struct type *
707 make_unqualified_type (struct type *type)
708 {
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715 }
716
717 /* Make a '_Atomic'-qualified version of TYPE. */
718
719 struct type *
720 make_atomic_type (struct type *type)
721 {
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726 }
727
728 /* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
731
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
737
738 void
739 replace_type (struct type *ntype, struct type *type)
740 {
741 struct type *chain;
742
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
750
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
753 chain = ntype;
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
768
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
772 }
773
774 /* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779 struct type *
780 lookup_memberptr_type (struct type *type, struct type *domain)
781 {
782 struct type *mtype;
783
784 mtype = alloc_type_copy (type);
785 smash_to_memberptr_type (mtype, domain, type);
786 return mtype;
787 }
788
789 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791 struct type *
792 lookup_methodptr_type (struct type *to_type)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (to_type);
797 smash_to_methodptr_type (mtype, to_type);
798 return mtype;
799 }
800
801 /* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
806
807 struct type *
808 allocate_stub_method (struct type *type)
809 {
810 struct type *mtype;
811
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
816 TYPE_TARGET_TYPE (mtype) = type;
817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
818 return mtype;
819 }
820
821 /* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
823
824 struct type *
825 create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
828 {
829 if (result_type == NULL)
830 result_type = alloc_type_copy (index_type);
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
833 if (TYPE_STUB (index_type))
834 TYPE_TARGET_STUB (result_type) = 1;
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
837
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
842
843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
844 TYPE_UNSIGNED (result_type) = 1;
845
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
853 return result_type;
854 }
855
856 /* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866 struct type *
867 create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869 {
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881 }
882
883 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886 static int
887 has_static_range (const struct range_bounds *bounds)
888 {
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891 }
892
893
894 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
897
898 int
899 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
900 {
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
912 entries. */
913 int i;
914
915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
922 }
923
924 /* Set unsigned indicator if warranted. */
925 if (*lowp >= 0)
926 {
927 TYPE_UNSIGNED (type) = 1;
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
946 *highp = -*lowp - 1;
947 return 0;
948 }
949 /* ... fall through for unsigned ints ... */
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961 }
962
963 /* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
967 Return 1 if the operation was successful. Return zero otherwise,
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977 int
978 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979 {
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005 }
1006
1007 /* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
1020
1021 struct type *
1022 create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
1026 {
1027 if (result_type == NULL)
1028 result_type = alloc_type_copy (range_type);
1029
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
1051 else
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1065 TYPE_INDEX_TYPE (result_type) = range_type;
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1068
1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1070 if (TYPE_LENGTH (result_type) == 0)
1071 TYPE_TARGET_STUB (result_type) = 1;
1072
1073 return result_type;
1074 }
1075
1076 /* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079 struct type *
1080 create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083 {
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086 }
1087
1088 struct type *
1089 lookup_array_range_type (struct type *element_type,
1090 LONGEST low_bound, LONGEST high_bound)
1091 {
1092 struct gdbarch *gdbarch = get_type_arch (element_type);
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1096
1097 return create_array_type (NULL, element_type, range_type);
1098 }
1099
1100 /* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
1111
1112 struct type *
1113 create_string_type (struct type *result_type,
1114 struct type *string_char_type,
1115 struct type *range_type)
1116 {
1117 result_type = create_array_type (result_type,
1118 string_char_type,
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1121 return result_type;
1122 }
1123
1124 struct type *
1125 lookup_string_range_type (struct type *string_char_type,
1126 LONGEST low_bound, LONGEST high_bound)
1127 {
1128 struct type *result_type;
1129
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134 }
1135
1136 struct type *
1137 create_set_type (struct type *result_type, struct type *domain_type)
1138 {
1139 if (result_type == NULL)
1140 result_type = alloc_type_copy (domain_type);
1141
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1145
1146 if (!TYPE_STUB (domain_type))
1147 {
1148 LONGEST low_bound, high_bound, bit_length;
1149
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1155 if (low_bound >= 0)
1156 TYPE_UNSIGNED (result_type) = 1;
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
1160 return result_type;
1161 }
1162
1163 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166 void
1167 make_vector_type (struct type *array_type)
1168 {
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
1186 TYPE_VECTOR (array_type) = 1;
1187 }
1188
1189 struct type *
1190 init_vector_type (struct type *elt_type, int n)
1191 {
1192 struct type *array_type;
1193
1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1195 make_vector_type (array_type);
1196 return array_type;
1197 }
1198
1199 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205 struct type *
1206 internal_type_self_type (struct type *type)
1207 {
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
1212 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1213 return NULL;
1214 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1215 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1216 case TYPE_CODE_METHOD:
1217 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1218 return NULL;
1219 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1220 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1221 default:
1222 gdb_assert_not_reached ("bad type");
1223 }
1224 }
1225
1226 /* Set the type of the class that TYPE belongs to.
1227 In c++ this is the class of "this".
1228 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1229 TYPE_CODE_METHOD. */
1230
1231 void
1232 set_type_self_type (struct type *type, struct type *self_type)
1233 {
1234 switch (TYPE_CODE (type))
1235 {
1236 case TYPE_CODE_METHODPTR:
1237 case TYPE_CODE_MEMBERPTR:
1238 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1239 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1240 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1241 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1242 break;
1243 case TYPE_CODE_METHOD:
1244 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1245 INIT_FUNC_SPECIFIC (type);
1246 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1247 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1248 break;
1249 default:
1250 gdb_assert_not_reached ("bad type");
1251 }
1252 }
1253
1254 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1255 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1256 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1257 TYPE doesn't include the offset (that's the value of the MEMBER
1258 itself), but does include the structure type into which it points
1259 (for some reason).
1260
1261 When "smashing" the type, we preserve the objfile that the old type
1262 pointed to, since we aren't changing where the type is actually
1263 allocated. */
1264
1265 void
1266 smash_to_memberptr_type (struct type *type, struct type *self_type,
1267 struct type *to_type)
1268 {
1269 smash_type (type);
1270 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1271 TYPE_TARGET_TYPE (type) = to_type;
1272 set_type_self_type (type, self_type);
1273 /* Assume that a data member pointer is the same size as a normal
1274 pointer. */
1275 TYPE_LENGTH (type)
1276 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1277 }
1278
1279 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1280
1281 When "smashing" the type, we preserve the objfile that the old type
1282 pointed to, since we aren't changing where the type is actually
1283 allocated. */
1284
1285 void
1286 smash_to_methodptr_type (struct type *type, struct type *to_type)
1287 {
1288 smash_type (type);
1289 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1290 TYPE_TARGET_TYPE (type) = to_type;
1291 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1292 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1293 }
1294
1295 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1296 METHOD just means `function that gets an extra "this" argument'.
1297
1298 When "smashing" the type, we preserve the objfile that the old type
1299 pointed to, since we aren't changing where the type is actually
1300 allocated. */
1301
1302 void
1303 smash_to_method_type (struct type *type, struct type *self_type,
1304 struct type *to_type, struct field *args,
1305 int nargs, int varargs)
1306 {
1307 smash_type (type);
1308 TYPE_CODE (type) = TYPE_CODE_METHOD;
1309 TYPE_TARGET_TYPE (type) = to_type;
1310 set_type_self_type (type, self_type);
1311 TYPE_FIELDS (type) = args;
1312 TYPE_NFIELDS (type) = nargs;
1313 if (varargs)
1314 TYPE_VARARGS (type) = 1;
1315 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1316 }
1317
1318 /* Return a typename for a struct/union/enum type without "struct ",
1319 "union ", or "enum ". If the type has a NULL name, return NULL. */
1320
1321 const char *
1322 type_name_no_tag (const struct type *type)
1323 {
1324 if (TYPE_TAG_NAME (type) != NULL)
1325 return TYPE_TAG_NAME (type);
1326
1327 /* Is there code which expects this to return the name if there is
1328 no tag name? My guess is that this is mainly used for C++ in
1329 cases where the two will always be the same. */
1330 return TYPE_NAME (type);
1331 }
1332
1333 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1334 Since GCC PR debug/47510 DWARF provides associated information to detect the
1335 anonymous class linkage name from its typedef.
1336
1337 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1338 apply it itself. */
1339
1340 const char *
1341 type_name_no_tag_or_error (struct type *type)
1342 {
1343 struct type *saved_type = type;
1344 const char *name;
1345 struct objfile *objfile;
1346
1347 CHECK_TYPEDEF (type);
1348
1349 name = type_name_no_tag (type);
1350 if (name != NULL)
1351 return name;
1352
1353 name = type_name_no_tag (saved_type);
1354 objfile = TYPE_OBJFILE (saved_type);
1355 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1356 name ? name : "<anonymous>",
1357 objfile ? objfile_name (objfile) : "<arch>");
1358 }
1359
1360 /* Lookup a typedef or primitive type named NAME, visible in lexical
1361 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1362 suitably defined. */
1363
1364 struct type *
1365 lookup_typename (const struct language_defn *language,
1366 struct gdbarch *gdbarch, const char *name,
1367 const struct block *block, int noerr)
1368 {
1369 struct symbol *sym;
1370 struct type *type;
1371
1372 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1373 language->la_language, NULL);
1374 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1375 return SYMBOL_TYPE (sym);
1376
1377 if (noerr)
1378 return NULL;
1379 error (_("No type named %s."), name);
1380 }
1381
1382 struct type *
1383 lookup_unsigned_typename (const struct language_defn *language,
1384 struct gdbarch *gdbarch, const char *name)
1385 {
1386 char *uns = alloca (strlen (name) + 10);
1387
1388 strcpy (uns, "unsigned ");
1389 strcpy (uns + 9, name);
1390 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1391 }
1392
1393 struct type *
1394 lookup_signed_typename (const struct language_defn *language,
1395 struct gdbarch *gdbarch, const char *name)
1396 {
1397 struct type *t;
1398 char *uns = alloca (strlen (name) + 8);
1399
1400 strcpy (uns, "signed ");
1401 strcpy (uns + 7, name);
1402 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1403 /* If we don't find "signed FOO" just try again with plain "FOO". */
1404 if (t != NULL)
1405 return t;
1406 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1407 }
1408
1409 /* Lookup a structure type named "struct NAME",
1410 visible in lexical block BLOCK. */
1411
1412 struct type *
1413 lookup_struct (const char *name, const struct block *block)
1414 {
1415 struct symbol *sym;
1416
1417 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1418
1419 if (sym == NULL)
1420 {
1421 error (_("No struct type named %s."), name);
1422 }
1423 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1424 {
1425 error (_("This context has class, union or enum %s, not a struct."),
1426 name);
1427 }
1428 return (SYMBOL_TYPE (sym));
1429 }
1430
1431 /* Lookup a union type named "union NAME",
1432 visible in lexical block BLOCK. */
1433
1434 struct type *
1435 lookup_union (const char *name, const struct block *block)
1436 {
1437 struct symbol *sym;
1438 struct type *t;
1439
1440 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1441
1442 if (sym == NULL)
1443 error (_("No union type named %s."), name);
1444
1445 t = SYMBOL_TYPE (sym);
1446
1447 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1448 return t;
1449
1450 /* If we get here, it's not a union. */
1451 error (_("This context has class, struct or enum %s, not a union."),
1452 name);
1453 }
1454
1455 /* Lookup an enum type named "enum NAME",
1456 visible in lexical block BLOCK. */
1457
1458 struct type *
1459 lookup_enum (const char *name, const struct block *block)
1460 {
1461 struct symbol *sym;
1462
1463 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1464 if (sym == NULL)
1465 {
1466 error (_("No enum type named %s."), name);
1467 }
1468 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1469 {
1470 error (_("This context has class, struct or union %s, not an enum."),
1471 name);
1472 }
1473 return (SYMBOL_TYPE (sym));
1474 }
1475
1476 /* Lookup a template type named "template NAME<TYPE>",
1477 visible in lexical block BLOCK. */
1478
1479 struct type *
1480 lookup_template_type (char *name, struct type *type,
1481 const struct block *block)
1482 {
1483 struct symbol *sym;
1484 char *nam = (char *)
1485 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1486
1487 strcpy (nam, name);
1488 strcat (nam, "<");
1489 strcat (nam, TYPE_NAME (type));
1490 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1491
1492 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1493
1494 if (sym == NULL)
1495 {
1496 error (_("No template type named %s."), name);
1497 }
1498 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1499 {
1500 error (_("This context has class, union or enum %s, not a struct."),
1501 name);
1502 }
1503 return (SYMBOL_TYPE (sym));
1504 }
1505
1506 /* Given a type TYPE, lookup the type of the component of type named
1507 NAME.
1508
1509 TYPE can be either a struct or union, or a pointer or reference to
1510 a struct or union. If it is a pointer or reference, its target
1511 type is automatically used. Thus '.' and '->' are interchangable,
1512 as specified for the definitions of the expression element types
1513 STRUCTOP_STRUCT and STRUCTOP_PTR.
1514
1515 If NOERR is nonzero, return zero if NAME is not suitably defined.
1516 If NAME is the name of a baseclass type, return that type. */
1517
1518 struct type *
1519 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1520 {
1521 int i;
1522 char *type_name;
1523
1524 for (;;)
1525 {
1526 CHECK_TYPEDEF (type);
1527 if (TYPE_CODE (type) != TYPE_CODE_PTR
1528 && TYPE_CODE (type) != TYPE_CODE_REF)
1529 break;
1530 type = TYPE_TARGET_TYPE (type);
1531 }
1532
1533 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1534 && TYPE_CODE (type) != TYPE_CODE_UNION)
1535 {
1536 type_name = type_to_string (type);
1537 make_cleanup (xfree, type_name);
1538 error (_("Type %s is not a structure or union type."), type_name);
1539 }
1540
1541 #if 0
1542 /* FIXME: This change put in by Michael seems incorrect for the case
1543 where the structure tag name is the same as the member name.
1544 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1545 foo; } bell;" Disabled by fnf. */
1546 {
1547 char *type_name;
1548
1549 type_name = type_name_no_tag (type);
1550 if (type_name != NULL && strcmp (type_name, name) == 0)
1551 return type;
1552 }
1553 #endif
1554
1555 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1556 {
1557 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1558
1559 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1560 {
1561 return TYPE_FIELD_TYPE (type, i);
1562 }
1563 else if (!t_field_name || *t_field_name == '\0')
1564 {
1565 struct type *subtype
1566 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1567
1568 if (subtype != NULL)
1569 return subtype;
1570 }
1571 }
1572
1573 /* OK, it's not in this class. Recursively check the baseclasses. */
1574 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1575 {
1576 struct type *t;
1577
1578 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1579 if (t != NULL)
1580 {
1581 return t;
1582 }
1583 }
1584
1585 if (noerr)
1586 {
1587 return NULL;
1588 }
1589
1590 type_name = type_to_string (type);
1591 make_cleanup (xfree, type_name);
1592 error (_("Type %s has no component named %s."), type_name, name);
1593 }
1594
1595 /* Store in *MAX the largest number representable by unsigned integer type
1596 TYPE. */
1597
1598 void
1599 get_unsigned_type_max (struct type *type, ULONGEST *max)
1600 {
1601 unsigned int n;
1602
1603 CHECK_TYPEDEF (type);
1604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1605 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1606
1607 /* Written this way to avoid overflow. */
1608 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1609 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1610 }
1611
1612 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1613 signed integer type TYPE. */
1614
1615 void
1616 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1617 {
1618 unsigned int n;
1619
1620 CHECK_TYPEDEF (type);
1621 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1622 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1623
1624 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1625 *min = -((ULONGEST) 1 << (n - 1));
1626 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1627 }
1628
1629 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1630 cplus_stuff.vptr_fieldno.
1631
1632 cplus_stuff is initialized to cplus_struct_default which does not
1633 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1634 designated initializers). We cope with that here. */
1635
1636 int
1637 internal_type_vptr_fieldno (struct type *type)
1638 {
1639 CHECK_TYPEDEF (type);
1640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1641 || TYPE_CODE (type) == TYPE_CODE_UNION);
1642 if (!HAVE_CPLUS_STRUCT (type))
1643 return -1;
1644 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1645 }
1646
1647 /* Set the value of cplus_stuff.vptr_fieldno. */
1648
1649 void
1650 set_type_vptr_fieldno (struct type *type, int fieldno)
1651 {
1652 CHECK_TYPEDEF (type);
1653 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1654 || TYPE_CODE (type) == TYPE_CODE_UNION);
1655 if (!HAVE_CPLUS_STRUCT (type))
1656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1657 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1658 }
1659
1660 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1661 cplus_stuff.vptr_basetype. */
1662
1663 struct type *
1664 internal_type_vptr_basetype (struct type *type)
1665 {
1666 CHECK_TYPEDEF (type);
1667 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 || TYPE_CODE (type) == TYPE_CODE_UNION);
1669 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1670 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1671 }
1672
1673 /* Set the value of cplus_stuff.vptr_basetype. */
1674
1675 void
1676 set_type_vptr_basetype (struct type *type, struct type *basetype)
1677 {
1678 CHECK_TYPEDEF (type);
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (type) == TYPE_CODE_UNION);
1681 if (!HAVE_CPLUS_STRUCT (type))
1682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1683 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1684 }
1685
1686 /* Lookup the vptr basetype/fieldno values for TYPE.
1687 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1688 vptr_fieldno. Also, if found and basetype is from the same objfile,
1689 cache the results.
1690 If not found, return -1 and ignore BASETYPEP.
1691 Callers should be aware that in some cases (for example,
1692 the type or one of its baseclasses is a stub type and we are
1693 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1694 this function will not be able to find the
1695 virtual function table pointer, and vptr_fieldno will remain -1 and
1696 vptr_basetype will remain NULL or incomplete. */
1697
1698 int
1699 get_vptr_fieldno (struct type *type, struct type **basetypep)
1700 {
1701 CHECK_TYPEDEF (type);
1702
1703 if (TYPE_VPTR_FIELDNO (type) < 0)
1704 {
1705 int i;
1706
1707 /* We must start at zero in case the first (and only) baseclass
1708 is virtual (and hence we cannot share the table pointer). */
1709 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1710 {
1711 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1712 int fieldno;
1713 struct type *basetype;
1714
1715 fieldno = get_vptr_fieldno (baseclass, &basetype);
1716 if (fieldno >= 0)
1717 {
1718 /* If the type comes from a different objfile we can't cache
1719 it, it may have a different lifetime. PR 2384 */
1720 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1721 {
1722 set_type_vptr_fieldno (type, fieldno);
1723 set_type_vptr_basetype (type, basetype);
1724 }
1725 if (basetypep)
1726 *basetypep = basetype;
1727 return fieldno;
1728 }
1729 }
1730
1731 /* Not found. */
1732 return -1;
1733 }
1734 else
1735 {
1736 if (basetypep)
1737 *basetypep = TYPE_VPTR_BASETYPE (type);
1738 return TYPE_VPTR_FIELDNO (type);
1739 }
1740 }
1741
1742 static void
1743 stub_noname_complaint (void)
1744 {
1745 complaint (&symfile_complaints, _("stub type has NULL name"));
1746 }
1747
1748 /* Worker for is_dynamic_type. */
1749
1750 static int
1751 is_dynamic_type_internal (struct type *type)
1752 {
1753 type = check_typedef (type);
1754
1755 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1756 dynamic, even if the type itself is statically defined.
1757 From a user's point of view, this may appear counter-intuitive;
1758 but it makes sense in this context, because the point is to determine
1759 whether any part of the type needs to be resolved before it can
1760 be exploited. */
1761 if (TYPE_DATA_LOCATION (type) != NULL
1762 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1763 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1764 return 1;
1765
1766 switch (TYPE_CODE (type))
1767 {
1768 case TYPE_CODE_RANGE:
1769 {
1770 /* A range type is obviously dynamic if it has at least one
1771 dynamic bound. But also consider the range type to be
1772 dynamic when its subtype is dynamic, even if the bounds
1773 of the range type are static. It allows us to assume that
1774 the subtype of a static range type is also static. */
1775 return (!has_static_range (TYPE_RANGE_DATA (type))
1776 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type)));
1777 }
1778
1779 case TYPE_CODE_ARRAY:
1780 {
1781 gdb_assert (TYPE_NFIELDS (type) == 1);
1782
1783 /* The array is dynamic if either the bounds are dynamic,
1784 or the elements it contains have a dynamic contents. */
1785 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type)))
1786 return 1;
1787 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type));
1788 }
1789
1790 case TYPE_CODE_STRUCT:
1791 case TYPE_CODE_UNION:
1792 {
1793 int i;
1794
1795 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1796 if (!field_is_static (&TYPE_FIELD (type, i))
1797 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i)))
1798 return 1;
1799 }
1800 break;
1801 }
1802
1803 return 0;
1804 }
1805
1806 /* See gdbtypes.h. */
1807
1808 int
1809 is_dynamic_type (struct type *type)
1810 {
1811 return is_dynamic_type_internal (type);
1812 }
1813
1814 static struct type *resolve_dynamic_type_internal
1815 (struct type *type, struct property_addr_info *addr_stack);
1816
1817 /* Given a dynamic range type (dyn_range_type) and a stack of
1818 struct property_addr_info elements, return a static version
1819 of that type. */
1820
1821 static struct type *
1822 resolve_dynamic_range (struct type *dyn_range_type,
1823 struct property_addr_info *addr_stack)
1824 {
1825 CORE_ADDR value;
1826 struct type *static_range_type, *static_target_type;
1827 const struct dynamic_prop *prop;
1828 const struct dwarf2_locexpr_baton *baton;
1829 struct dynamic_prop low_bound, high_bound;
1830
1831 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1832
1833 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1834 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1835 {
1836 low_bound.kind = PROP_CONST;
1837 low_bound.data.const_val = value;
1838 }
1839 else
1840 {
1841 low_bound.kind = PROP_UNDEFINED;
1842 low_bound.data.const_val = 0;
1843 }
1844
1845 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1846 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1847 {
1848 high_bound.kind = PROP_CONST;
1849 high_bound.data.const_val = value;
1850
1851 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1852 high_bound.data.const_val
1853 = low_bound.data.const_val + high_bound.data.const_val - 1;
1854 }
1855 else
1856 {
1857 high_bound.kind = PROP_UNDEFINED;
1858 high_bound.data.const_val = 0;
1859 }
1860
1861 static_target_type
1862 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1863 addr_stack);
1864 static_range_type = create_range_type (copy_type (dyn_range_type),
1865 static_target_type,
1866 &low_bound, &high_bound);
1867 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1868 return static_range_type;
1869 }
1870
1871 /* Resolves dynamic bound values of an array type TYPE to static ones.
1872 ADDR_STACK is a stack of struct property_addr_info to be used
1873 if needed during the dynamic resolution. */
1874
1875 static struct type *
1876 resolve_dynamic_array (struct type *type,
1877 struct property_addr_info *addr_stack)
1878 {
1879 CORE_ADDR value;
1880 struct type *elt_type;
1881 struct type *range_type;
1882 struct type *ary_dim;
1883
1884 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1885
1886 elt_type = type;
1887 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1888 range_type = resolve_dynamic_range (range_type, addr_stack);
1889
1890 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1891
1892 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1893 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
1894 else
1895 elt_type = TYPE_TARGET_TYPE (type);
1896
1897 return create_array_type (copy_type (type),
1898 elt_type,
1899 range_type);
1900 }
1901
1902 /* Resolve dynamic bounds of members of the union TYPE to static
1903 bounds. ADDR_STACK is a stack of struct property_addr_info
1904 to be used if needed during the dynamic resolution. */
1905
1906 static struct type *
1907 resolve_dynamic_union (struct type *type,
1908 struct property_addr_info *addr_stack)
1909 {
1910 struct type *resolved_type;
1911 int i;
1912 unsigned int max_len = 0;
1913
1914 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1915
1916 resolved_type = copy_type (type);
1917 TYPE_FIELDS (resolved_type)
1918 = TYPE_ALLOC (resolved_type,
1919 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1920 memcpy (TYPE_FIELDS (resolved_type),
1921 TYPE_FIELDS (type),
1922 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1923 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1924 {
1925 struct type *t;
1926
1927 if (field_is_static (&TYPE_FIELD (type, i)))
1928 continue;
1929
1930 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1931 addr_stack);
1932 TYPE_FIELD_TYPE (resolved_type, i) = t;
1933 if (TYPE_LENGTH (t) > max_len)
1934 max_len = TYPE_LENGTH (t);
1935 }
1936
1937 TYPE_LENGTH (resolved_type) = max_len;
1938 return resolved_type;
1939 }
1940
1941 /* Resolve dynamic bounds of members of the struct TYPE to static
1942 bounds. ADDR_STACK is a stack of struct property_addr_info to
1943 be used if needed during the dynamic resolution. */
1944
1945 static struct type *
1946 resolve_dynamic_struct (struct type *type,
1947 struct property_addr_info *addr_stack)
1948 {
1949 struct type *resolved_type;
1950 int i;
1951 unsigned resolved_type_bit_length = 0;
1952
1953 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1954 gdb_assert (TYPE_NFIELDS (type) > 0);
1955
1956 resolved_type = copy_type (type);
1957 TYPE_FIELDS (resolved_type)
1958 = TYPE_ALLOC (resolved_type,
1959 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1960 memcpy (TYPE_FIELDS (resolved_type),
1961 TYPE_FIELDS (type),
1962 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1963 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1964 {
1965 unsigned new_bit_length;
1966 struct property_addr_info pinfo;
1967
1968 if (field_is_static (&TYPE_FIELD (type, i)))
1969 continue;
1970
1971 /* As we know this field is not a static field, the field's
1972 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1973 this is the case, but only trigger a simple error rather
1974 than an internal error if that fails. While failing
1975 that verification indicates a bug in our code, the error
1976 is not severe enough to suggest to the user he stops
1977 his debugging session because of it. */
1978 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
1979 error (_("Cannot determine struct field location"
1980 " (invalid location kind)"));
1981
1982 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1983 pinfo.addr = addr_stack->addr;
1984 pinfo.next = addr_stack;
1985
1986 TYPE_FIELD_TYPE (resolved_type, i)
1987 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1988 &pinfo);
1989 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1990 == FIELD_LOC_KIND_BITPOS);
1991
1992 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1993 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1994 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1995 else
1996 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1997 * TARGET_CHAR_BIT);
1998
1999 /* Normally, we would use the position and size of the last field
2000 to determine the size of the enclosing structure. But GCC seems
2001 to be encoding the position of some fields incorrectly when
2002 the struct contains a dynamic field that is not placed last.
2003 So we compute the struct size based on the field that has
2004 the highest position + size - probably the best we can do. */
2005 if (new_bit_length > resolved_type_bit_length)
2006 resolved_type_bit_length = new_bit_length;
2007 }
2008
2009 TYPE_LENGTH (resolved_type)
2010 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2011
2012 return resolved_type;
2013 }
2014
2015 /* Worker for resolved_dynamic_type. */
2016
2017 static struct type *
2018 resolve_dynamic_type_internal (struct type *type,
2019 struct property_addr_info *addr_stack)
2020 {
2021 struct type *real_type = check_typedef (type);
2022 struct type *resolved_type = type;
2023 struct dynamic_prop *prop;
2024 CORE_ADDR value;
2025
2026 if (!is_dynamic_type_internal (real_type))
2027 return type;
2028
2029 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2030 {
2031 resolved_type = copy_type (type);
2032 TYPE_TARGET_TYPE (resolved_type)
2033 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack);
2034 }
2035 else
2036 {
2037 /* Before trying to resolve TYPE, make sure it is not a stub. */
2038 type = real_type;
2039
2040 switch (TYPE_CODE (type))
2041 {
2042 case TYPE_CODE_ARRAY:
2043 resolved_type = resolve_dynamic_array (type, addr_stack);
2044 break;
2045
2046 case TYPE_CODE_RANGE:
2047 resolved_type = resolve_dynamic_range (type, addr_stack);
2048 break;
2049
2050 case TYPE_CODE_UNION:
2051 resolved_type = resolve_dynamic_union (type, addr_stack);
2052 break;
2053
2054 case TYPE_CODE_STRUCT:
2055 resolved_type = resolve_dynamic_struct (type, addr_stack);
2056 break;
2057 }
2058 }
2059
2060 /* Resolve data_location attribute. */
2061 prop = TYPE_DATA_LOCATION (resolved_type);
2062 if (prop != NULL && dwarf2_evaluate_property (prop, addr_stack, &value))
2063 {
2064 TYPE_DYN_PROP_ADDR (prop) = value;
2065 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2066 }
2067
2068 return resolved_type;
2069 }
2070
2071 /* See gdbtypes.h */
2072
2073 struct type *
2074 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2075 {
2076 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2077
2078 return resolve_dynamic_type_internal (type, &pinfo);
2079 }
2080
2081 /* See gdbtypes.h */
2082
2083 struct dynamic_prop *
2084 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2085 {
2086 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2087
2088 while (node != NULL)
2089 {
2090 if (node->prop_kind == prop_kind)
2091 return &node->prop;
2092 node = node->next;
2093 }
2094 return NULL;
2095 }
2096
2097 /* See gdbtypes.h */
2098
2099 void
2100 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2101 struct type *type, struct objfile *objfile)
2102 {
2103 struct dynamic_prop_list *temp;
2104
2105 gdb_assert (TYPE_OBJFILE_OWNED (type));
2106
2107 temp = obstack_alloc (&objfile->objfile_obstack,
2108 sizeof (struct dynamic_prop_list));
2109 temp->prop_kind = prop_kind;
2110 temp->prop = prop;
2111 temp->next = TYPE_DYN_PROP_LIST (type);
2112
2113 TYPE_DYN_PROP_LIST (type) = temp;
2114 }
2115
2116
2117 /* Find the real type of TYPE. This function returns the real type,
2118 after removing all layers of typedefs, and completing opaque or stub
2119 types. Completion changes the TYPE argument, but stripping of
2120 typedefs does not.
2121
2122 Instance flags (e.g. const/volatile) are preserved as typedefs are
2123 stripped. If necessary a new qualified form of the underlying type
2124 is created.
2125
2126 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2127 not been computed and we're either in the middle of reading symbols, or
2128 there was no name for the typedef in the debug info.
2129
2130 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2131 QUITs in the symbol reading code can also throw.
2132 Thus this function can throw an exception.
2133
2134 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2135 the target type.
2136
2137 If this is a stubbed struct (i.e. declared as struct foo *), see if
2138 we can find a full definition in some other file. If so, copy this
2139 definition, so we can use it in future. There used to be a comment
2140 (but not any code) that if we don't find a full definition, we'd
2141 set a flag so we don't spend time in the future checking the same
2142 type. That would be a mistake, though--we might load in more
2143 symbols which contain a full definition for the type. */
2144
2145 struct type *
2146 check_typedef (struct type *type)
2147 {
2148 struct type *orig_type = type;
2149 /* While we're removing typedefs, we don't want to lose qualifiers.
2150 E.g., const/volatile. */
2151 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2152
2153 gdb_assert (type);
2154
2155 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2156 {
2157 if (!TYPE_TARGET_TYPE (type))
2158 {
2159 const char *name;
2160 struct symbol *sym;
2161
2162 /* It is dangerous to call lookup_symbol if we are currently
2163 reading a symtab. Infinite recursion is one danger. */
2164 if (currently_reading_symtab)
2165 return make_qualified_type (type, instance_flags, NULL);
2166
2167 name = type_name_no_tag (type);
2168 /* FIXME: shouldn't we separately check the TYPE_NAME and
2169 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2170 VAR_DOMAIN as appropriate? (this code was written before
2171 TYPE_NAME and TYPE_TAG_NAME were separate). */
2172 if (name == NULL)
2173 {
2174 stub_noname_complaint ();
2175 return make_qualified_type (type, instance_flags, NULL);
2176 }
2177 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2178 if (sym)
2179 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2180 else /* TYPE_CODE_UNDEF */
2181 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2182 }
2183 type = TYPE_TARGET_TYPE (type);
2184
2185 /* Preserve the instance flags as we traverse down the typedef chain.
2186
2187 Handling address spaces/classes is nasty, what do we do if there's a
2188 conflict?
2189 E.g., what if an outer typedef marks the type as class_1 and an inner
2190 typedef marks the type as class_2?
2191 This is the wrong place to do such error checking. We leave it to
2192 the code that created the typedef in the first place to flag the
2193 error. We just pick the outer address space (akin to letting the
2194 outer cast in a chain of casting win), instead of assuming
2195 "it can't happen". */
2196 {
2197 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2198 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2199 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2200 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2201
2202 /* Treat code vs data spaces and address classes separately. */
2203 if ((instance_flags & ALL_SPACES) != 0)
2204 new_instance_flags &= ~ALL_SPACES;
2205 if ((instance_flags & ALL_CLASSES) != 0)
2206 new_instance_flags &= ~ALL_CLASSES;
2207
2208 instance_flags |= new_instance_flags;
2209 }
2210 }
2211
2212 /* If this is a struct/class/union with no fields, then check
2213 whether a full definition exists somewhere else. This is for
2214 systems where a type definition with no fields is issued for such
2215 types, instead of identifying them as stub types in the first
2216 place. */
2217
2218 if (TYPE_IS_OPAQUE (type)
2219 && opaque_type_resolution
2220 && !currently_reading_symtab)
2221 {
2222 const char *name = type_name_no_tag (type);
2223 struct type *newtype;
2224
2225 if (name == NULL)
2226 {
2227 stub_noname_complaint ();
2228 return make_qualified_type (type, instance_flags, NULL);
2229 }
2230 newtype = lookup_transparent_type (name);
2231
2232 if (newtype)
2233 {
2234 /* If the resolved type and the stub are in the same
2235 objfile, then replace the stub type with the real deal.
2236 But if they're in separate objfiles, leave the stub
2237 alone; we'll just look up the transparent type every time
2238 we call check_typedef. We can't create pointers between
2239 types allocated to different objfiles, since they may
2240 have different lifetimes. Trying to copy NEWTYPE over to
2241 TYPE's objfile is pointless, too, since you'll have to
2242 move over any other types NEWTYPE refers to, which could
2243 be an unbounded amount of stuff. */
2244 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2245 type = make_qualified_type (newtype,
2246 TYPE_INSTANCE_FLAGS (type),
2247 type);
2248 else
2249 type = newtype;
2250 }
2251 }
2252 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2253 types. */
2254 else if (TYPE_STUB (type) && !currently_reading_symtab)
2255 {
2256 const char *name = type_name_no_tag (type);
2257 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2258 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2259 as appropriate? (this code was written before TYPE_NAME and
2260 TYPE_TAG_NAME were separate). */
2261 struct symbol *sym;
2262
2263 if (name == NULL)
2264 {
2265 stub_noname_complaint ();
2266 return make_qualified_type (type, instance_flags, NULL);
2267 }
2268 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2269 if (sym)
2270 {
2271 /* Same as above for opaque types, we can replace the stub
2272 with the complete type only if they are in the same
2273 objfile. */
2274 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2275 type = make_qualified_type (SYMBOL_TYPE (sym),
2276 TYPE_INSTANCE_FLAGS (type),
2277 type);
2278 else
2279 type = SYMBOL_TYPE (sym);
2280 }
2281 }
2282
2283 if (TYPE_TARGET_STUB (type))
2284 {
2285 struct type *range_type;
2286 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2287
2288 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2289 {
2290 /* Nothing we can do. */
2291 }
2292 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2293 {
2294 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2295 TYPE_TARGET_STUB (type) = 0;
2296 }
2297 }
2298
2299 type = make_qualified_type (type, instance_flags, NULL);
2300
2301 /* Cache TYPE_LENGTH for future use. */
2302 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2303
2304 return type;
2305 }
2306
2307 /* Parse a type expression in the string [P..P+LENGTH). If an error
2308 occurs, silently return a void type. */
2309
2310 static struct type *
2311 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2312 {
2313 struct ui_file *saved_gdb_stderr;
2314 struct type *type = NULL; /* Initialize to keep gcc happy. */
2315
2316 /* Suppress error messages. */
2317 saved_gdb_stderr = gdb_stderr;
2318 gdb_stderr = ui_file_new ();
2319
2320 /* Call parse_and_eval_type() without fear of longjmp()s. */
2321 TRY
2322 {
2323 type = parse_and_eval_type (p, length);
2324 }
2325 CATCH (except, RETURN_MASK_ERROR)
2326 {
2327 type = builtin_type (gdbarch)->builtin_void;
2328 }
2329 END_CATCH
2330
2331 /* Stop suppressing error messages. */
2332 ui_file_delete (gdb_stderr);
2333 gdb_stderr = saved_gdb_stderr;
2334
2335 return type;
2336 }
2337
2338 /* Ugly hack to convert method stubs into method types.
2339
2340 He ain't kiddin'. This demangles the name of the method into a
2341 string including argument types, parses out each argument type,
2342 generates a string casting a zero to that type, evaluates the
2343 string, and stuffs the resulting type into an argtype vector!!!
2344 Then it knows the type of the whole function (including argument
2345 types for overloading), which info used to be in the stab's but was
2346 removed to hack back the space required for them. */
2347
2348 static void
2349 check_stub_method (struct type *type, int method_id, int signature_id)
2350 {
2351 struct gdbarch *gdbarch = get_type_arch (type);
2352 struct fn_field *f;
2353 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2354 char *demangled_name = gdb_demangle (mangled_name,
2355 DMGL_PARAMS | DMGL_ANSI);
2356 char *argtypetext, *p;
2357 int depth = 0, argcount = 1;
2358 struct field *argtypes;
2359 struct type *mtype;
2360
2361 /* Make sure we got back a function string that we can use. */
2362 if (demangled_name)
2363 p = strchr (demangled_name, '(');
2364 else
2365 p = NULL;
2366
2367 if (demangled_name == NULL || p == NULL)
2368 error (_("Internal: Cannot demangle mangled name `%s'."),
2369 mangled_name);
2370
2371 /* Now, read in the parameters that define this type. */
2372 p += 1;
2373 argtypetext = p;
2374 while (*p)
2375 {
2376 if (*p == '(' || *p == '<')
2377 {
2378 depth += 1;
2379 }
2380 else if (*p == ')' || *p == '>')
2381 {
2382 depth -= 1;
2383 }
2384 else if (*p == ',' && depth == 0)
2385 {
2386 argcount += 1;
2387 }
2388
2389 p += 1;
2390 }
2391
2392 /* If we read one argument and it was ``void'', don't count it. */
2393 if (startswith (argtypetext, "(void)"))
2394 argcount -= 1;
2395
2396 /* We need one extra slot, for the THIS pointer. */
2397
2398 argtypes = (struct field *)
2399 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2400 p = argtypetext;
2401
2402 /* Add THIS pointer for non-static methods. */
2403 f = TYPE_FN_FIELDLIST1 (type, method_id);
2404 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2405 argcount = 0;
2406 else
2407 {
2408 argtypes[0].type = lookup_pointer_type (type);
2409 argcount = 1;
2410 }
2411
2412 if (*p != ')') /* () means no args, skip while. */
2413 {
2414 depth = 0;
2415 while (*p)
2416 {
2417 if (depth <= 0 && (*p == ',' || *p == ')'))
2418 {
2419 /* Avoid parsing of ellipsis, they will be handled below.
2420 Also avoid ``void'' as above. */
2421 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2422 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2423 {
2424 argtypes[argcount].type =
2425 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2426 argcount += 1;
2427 }
2428 argtypetext = p + 1;
2429 }
2430
2431 if (*p == '(' || *p == '<')
2432 {
2433 depth += 1;
2434 }
2435 else if (*p == ')' || *p == '>')
2436 {
2437 depth -= 1;
2438 }
2439
2440 p += 1;
2441 }
2442 }
2443
2444 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2445
2446 /* Now update the old "stub" type into a real type. */
2447 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2448 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2449 We want a method (TYPE_CODE_METHOD). */
2450 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2451 argtypes, argcount, p[-2] == '.');
2452 TYPE_STUB (mtype) = 0;
2453 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2454
2455 xfree (demangled_name);
2456 }
2457
2458 /* This is the external interface to check_stub_method, above. This
2459 function unstubs all of the signatures for TYPE's METHOD_ID method
2460 name. After calling this function TYPE_FN_FIELD_STUB will be
2461 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2462 correct.
2463
2464 This function unfortunately can not die until stabs do. */
2465
2466 void
2467 check_stub_method_group (struct type *type, int method_id)
2468 {
2469 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2470 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2471 int j, found_stub = 0;
2472
2473 for (j = 0; j < len; j++)
2474 if (TYPE_FN_FIELD_STUB (f, j))
2475 {
2476 found_stub = 1;
2477 check_stub_method (type, method_id, j);
2478 }
2479
2480 /* GNU v3 methods with incorrect names were corrected when we read
2481 in type information, because it was cheaper to do it then. The
2482 only GNU v2 methods with incorrect method names are operators and
2483 destructors; destructors were also corrected when we read in type
2484 information.
2485
2486 Therefore the only thing we need to handle here are v2 operator
2487 names. */
2488 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2489 {
2490 int ret;
2491 char dem_opname[256];
2492
2493 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2494 method_id),
2495 dem_opname, DMGL_ANSI);
2496 if (!ret)
2497 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2498 method_id),
2499 dem_opname, 0);
2500 if (ret)
2501 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2502 }
2503 }
2504
2505 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2506 const struct cplus_struct_type cplus_struct_default = { };
2507
2508 void
2509 allocate_cplus_struct_type (struct type *type)
2510 {
2511 if (HAVE_CPLUS_STRUCT (type))
2512 /* Structure was already allocated. Nothing more to do. */
2513 return;
2514
2515 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2516 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2517 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2518 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2519 set_type_vptr_fieldno (type, -1);
2520 }
2521
2522 const struct gnat_aux_type gnat_aux_default =
2523 { NULL };
2524
2525 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2526 and allocate the associated gnat-specific data. The gnat-specific
2527 data is also initialized to gnat_aux_default. */
2528
2529 void
2530 allocate_gnat_aux_type (struct type *type)
2531 {
2532 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2533 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2534 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2535 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2536 }
2537
2538 /* Helper function to initialize the standard scalar types.
2539
2540 If NAME is non-NULL, then it is used to initialize the type name.
2541 Note that NAME is not copied; it is required to have a lifetime at
2542 least as long as OBJFILE. */
2543
2544 struct type *
2545 init_type (enum type_code code, int length, int flags,
2546 const char *name, struct objfile *objfile)
2547 {
2548 struct type *type;
2549
2550 type = alloc_type (objfile);
2551 TYPE_CODE (type) = code;
2552 TYPE_LENGTH (type) = length;
2553
2554 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2555 if (flags & TYPE_FLAG_UNSIGNED)
2556 TYPE_UNSIGNED (type) = 1;
2557 if (flags & TYPE_FLAG_NOSIGN)
2558 TYPE_NOSIGN (type) = 1;
2559 if (flags & TYPE_FLAG_STUB)
2560 TYPE_STUB (type) = 1;
2561 if (flags & TYPE_FLAG_TARGET_STUB)
2562 TYPE_TARGET_STUB (type) = 1;
2563 if (flags & TYPE_FLAG_STATIC)
2564 TYPE_STATIC (type) = 1;
2565 if (flags & TYPE_FLAG_PROTOTYPED)
2566 TYPE_PROTOTYPED (type) = 1;
2567 if (flags & TYPE_FLAG_INCOMPLETE)
2568 TYPE_INCOMPLETE (type) = 1;
2569 if (flags & TYPE_FLAG_VARARGS)
2570 TYPE_VARARGS (type) = 1;
2571 if (flags & TYPE_FLAG_VECTOR)
2572 TYPE_VECTOR (type) = 1;
2573 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2574 TYPE_STUB_SUPPORTED (type) = 1;
2575 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2576 TYPE_FIXED_INSTANCE (type) = 1;
2577 if (flags & TYPE_FLAG_GNU_IFUNC)
2578 TYPE_GNU_IFUNC (type) = 1;
2579
2580 TYPE_NAME (type) = name;
2581
2582 /* C++ fancies. */
2583
2584 if (name && strcmp (name, "char") == 0)
2585 TYPE_NOSIGN (type) = 1;
2586
2587 switch (code)
2588 {
2589 case TYPE_CODE_STRUCT:
2590 case TYPE_CODE_UNION:
2591 case TYPE_CODE_NAMESPACE:
2592 INIT_CPLUS_SPECIFIC (type);
2593 break;
2594 case TYPE_CODE_FLT:
2595 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2596 break;
2597 case TYPE_CODE_FUNC:
2598 INIT_FUNC_SPECIFIC (type);
2599 break;
2600 }
2601 return type;
2602 }
2603 \f
2604 /* Queries on types. */
2605
2606 int
2607 can_dereference (struct type *t)
2608 {
2609 /* FIXME: Should we return true for references as well as
2610 pointers? */
2611 CHECK_TYPEDEF (t);
2612 return
2613 (t != NULL
2614 && TYPE_CODE (t) == TYPE_CODE_PTR
2615 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2616 }
2617
2618 int
2619 is_integral_type (struct type *t)
2620 {
2621 CHECK_TYPEDEF (t);
2622 return
2623 ((t != NULL)
2624 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2625 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2626 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2627 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2628 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2629 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2630 }
2631
2632 /* Return true if TYPE is scalar. */
2633
2634 static int
2635 is_scalar_type (struct type *type)
2636 {
2637 CHECK_TYPEDEF (type);
2638
2639 switch (TYPE_CODE (type))
2640 {
2641 case TYPE_CODE_ARRAY:
2642 case TYPE_CODE_STRUCT:
2643 case TYPE_CODE_UNION:
2644 case TYPE_CODE_SET:
2645 case TYPE_CODE_STRING:
2646 return 0;
2647 default:
2648 return 1;
2649 }
2650 }
2651
2652 /* Return true if T is scalar, or a composite type which in practice has
2653 the memory layout of a scalar type. E.g., an array or struct with only
2654 one scalar element inside it, or a union with only scalar elements. */
2655
2656 int
2657 is_scalar_type_recursive (struct type *t)
2658 {
2659 CHECK_TYPEDEF (t);
2660
2661 if (is_scalar_type (t))
2662 return 1;
2663 /* Are we dealing with an array or string of known dimensions? */
2664 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2665 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2666 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2667 {
2668 LONGEST low_bound, high_bound;
2669 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2670
2671 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2672
2673 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2674 }
2675 /* Are we dealing with a struct with one element? */
2676 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2677 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2678 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2679 {
2680 int i, n = TYPE_NFIELDS (t);
2681
2682 /* If all elements of the union are scalar, then the union is scalar. */
2683 for (i = 0; i < n; i++)
2684 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2685 return 0;
2686
2687 return 1;
2688 }
2689
2690 return 0;
2691 }
2692
2693 /* Return true is T is a class or a union. False otherwise. */
2694
2695 int
2696 class_or_union_p (const struct type *t)
2697 {
2698 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2699 || TYPE_CODE (t) == TYPE_CODE_UNION);
2700 }
2701
2702 /* A helper function which returns true if types A and B represent the
2703 "same" class type. This is true if the types have the same main
2704 type, or the same name. */
2705
2706 int
2707 class_types_same_p (const struct type *a, const struct type *b)
2708 {
2709 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2710 || (TYPE_NAME (a) && TYPE_NAME (b)
2711 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2712 }
2713
2714 /* If BASE is an ancestor of DCLASS return the distance between them.
2715 otherwise return -1;
2716 eg:
2717
2718 class A {};
2719 class B: public A {};
2720 class C: public B {};
2721 class D: C {};
2722
2723 distance_to_ancestor (A, A, 0) = 0
2724 distance_to_ancestor (A, B, 0) = 1
2725 distance_to_ancestor (A, C, 0) = 2
2726 distance_to_ancestor (A, D, 0) = 3
2727
2728 If PUBLIC is 1 then only public ancestors are considered,
2729 and the function returns the distance only if BASE is a public ancestor
2730 of DCLASS.
2731 Eg:
2732
2733 distance_to_ancestor (A, D, 1) = -1. */
2734
2735 static int
2736 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2737 {
2738 int i;
2739 int d;
2740
2741 CHECK_TYPEDEF (base);
2742 CHECK_TYPEDEF (dclass);
2743
2744 if (class_types_same_p (base, dclass))
2745 return 0;
2746
2747 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2748 {
2749 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2750 continue;
2751
2752 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2753 if (d >= 0)
2754 return 1 + d;
2755 }
2756
2757 return -1;
2758 }
2759
2760 /* Check whether BASE is an ancestor or base class or DCLASS
2761 Return 1 if so, and 0 if not.
2762 Note: If BASE and DCLASS are of the same type, this function
2763 will return 1. So for some class A, is_ancestor (A, A) will
2764 return 1. */
2765
2766 int
2767 is_ancestor (struct type *base, struct type *dclass)
2768 {
2769 return distance_to_ancestor (base, dclass, 0) >= 0;
2770 }
2771
2772 /* Like is_ancestor, but only returns true when BASE is a public
2773 ancestor of DCLASS. */
2774
2775 int
2776 is_public_ancestor (struct type *base, struct type *dclass)
2777 {
2778 return distance_to_ancestor (base, dclass, 1) >= 0;
2779 }
2780
2781 /* A helper function for is_unique_ancestor. */
2782
2783 static int
2784 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2785 int *offset,
2786 const gdb_byte *valaddr, int embedded_offset,
2787 CORE_ADDR address, struct value *val)
2788 {
2789 int i, count = 0;
2790
2791 CHECK_TYPEDEF (base);
2792 CHECK_TYPEDEF (dclass);
2793
2794 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2795 {
2796 struct type *iter;
2797 int this_offset;
2798
2799 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2800
2801 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2802 address, val);
2803
2804 if (class_types_same_p (base, iter))
2805 {
2806 /* If this is the first subclass, set *OFFSET and set count
2807 to 1. Otherwise, if this is at the same offset as
2808 previous instances, do nothing. Otherwise, increment
2809 count. */
2810 if (*offset == -1)
2811 {
2812 *offset = this_offset;
2813 count = 1;
2814 }
2815 else if (this_offset == *offset)
2816 {
2817 /* Nothing. */
2818 }
2819 else
2820 ++count;
2821 }
2822 else
2823 count += is_unique_ancestor_worker (base, iter, offset,
2824 valaddr,
2825 embedded_offset + this_offset,
2826 address, val);
2827 }
2828
2829 return count;
2830 }
2831
2832 /* Like is_ancestor, but only returns true if BASE is a unique base
2833 class of the type of VAL. */
2834
2835 int
2836 is_unique_ancestor (struct type *base, struct value *val)
2837 {
2838 int offset = -1;
2839
2840 return is_unique_ancestor_worker (base, value_type (val), &offset,
2841 value_contents_for_printing (val),
2842 value_embedded_offset (val),
2843 value_address (val), val) == 1;
2844 }
2845
2846 \f
2847 /* Overload resolution. */
2848
2849 /* Return the sum of the rank of A with the rank of B. */
2850
2851 struct rank
2852 sum_ranks (struct rank a, struct rank b)
2853 {
2854 struct rank c;
2855 c.rank = a.rank + b.rank;
2856 c.subrank = a.subrank + b.subrank;
2857 return c;
2858 }
2859
2860 /* Compare rank A and B and return:
2861 0 if a = b
2862 1 if a is better than b
2863 -1 if b is better than a. */
2864
2865 int
2866 compare_ranks (struct rank a, struct rank b)
2867 {
2868 if (a.rank == b.rank)
2869 {
2870 if (a.subrank == b.subrank)
2871 return 0;
2872 if (a.subrank < b.subrank)
2873 return 1;
2874 if (a.subrank > b.subrank)
2875 return -1;
2876 }
2877
2878 if (a.rank < b.rank)
2879 return 1;
2880
2881 /* a.rank > b.rank */
2882 return -1;
2883 }
2884
2885 /* Functions for overload resolution begin here. */
2886
2887 /* Compare two badness vectors A and B and return the result.
2888 0 => A and B are identical
2889 1 => A and B are incomparable
2890 2 => A is better than B
2891 3 => A is worse than B */
2892
2893 int
2894 compare_badness (struct badness_vector *a, struct badness_vector *b)
2895 {
2896 int i;
2897 int tmp;
2898 short found_pos = 0; /* any positives in c? */
2899 short found_neg = 0; /* any negatives in c? */
2900
2901 /* differing lengths => incomparable */
2902 if (a->length != b->length)
2903 return 1;
2904
2905 /* Subtract b from a */
2906 for (i = 0; i < a->length; i++)
2907 {
2908 tmp = compare_ranks (b->rank[i], a->rank[i]);
2909 if (tmp > 0)
2910 found_pos = 1;
2911 else if (tmp < 0)
2912 found_neg = 1;
2913 }
2914
2915 if (found_pos)
2916 {
2917 if (found_neg)
2918 return 1; /* incomparable */
2919 else
2920 return 3; /* A > B */
2921 }
2922 else
2923 /* no positives */
2924 {
2925 if (found_neg)
2926 return 2; /* A < B */
2927 else
2928 return 0; /* A == B */
2929 }
2930 }
2931
2932 /* Rank a function by comparing its parameter types (PARMS, length
2933 NPARMS), to the types of an argument list (ARGS, length NARGS).
2934 Return a pointer to a badness vector. This has NARGS + 1
2935 entries. */
2936
2937 struct badness_vector *
2938 rank_function (struct type **parms, int nparms,
2939 struct value **args, int nargs)
2940 {
2941 int i;
2942 struct badness_vector *bv;
2943 int min_len = nparms < nargs ? nparms : nargs;
2944
2945 bv = xmalloc (sizeof (struct badness_vector));
2946 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2947 bv->rank = XNEWVEC (struct rank, nargs + 1);
2948
2949 /* First compare the lengths of the supplied lists.
2950 If there is a mismatch, set it to a high value. */
2951
2952 /* pai/1997-06-03 FIXME: when we have debug info about default
2953 arguments and ellipsis parameter lists, we should consider those
2954 and rank the length-match more finely. */
2955
2956 LENGTH_MATCH (bv) = (nargs != nparms)
2957 ? LENGTH_MISMATCH_BADNESS
2958 : EXACT_MATCH_BADNESS;
2959
2960 /* Now rank all the parameters of the candidate function. */
2961 for (i = 1; i <= min_len; i++)
2962 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2963 args[i - 1]);
2964
2965 /* If more arguments than parameters, add dummy entries. */
2966 for (i = min_len + 1; i <= nargs; i++)
2967 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2968
2969 return bv;
2970 }
2971
2972 /* Compare the names of two integer types, assuming that any sign
2973 qualifiers have been checked already. We do it this way because
2974 there may be an "int" in the name of one of the types. */
2975
2976 static int
2977 integer_types_same_name_p (const char *first, const char *second)
2978 {
2979 int first_p, second_p;
2980
2981 /* If both are shorts, return 1; if neither is a short, keep
2982 checking. */
2983 first_p = (strstr (first, "short") != NULL);
2984 second_p = (strstr (second, "short") != NULL);
2985 if (first_p && second_p)
2986 return 1;
2987 if (first_p || second_p)
2988 return 0;
2989
2990 /* Likewise for long. */
2991 first_p = (strstr (first, "long") != NULL);
2992 second_p = (strstr (second, "long") != NULL);
2993 if (first_p && second_p)
2994 return 1;
2995 if (first_p || second_p)
2996 return 0;
2997
2998 /* Likewise for char. */
2999 first_p = (strstr (first, "char") != NULL);
3000 second_p = (strstr (second, "char") != NULL);
3001 if (first_p && second_p)
3002 return 1;
3003 if (first_p || second_p)
3004 return 0;
3005
3006 /* They must both be ints. */
3007 return 1;
3008 }
3009
3010 /* Compares type A to type B returns 1 if the represent the same type
3011 0 otherwise. */
3012
3013 int
3014 types_equal (struct type *a, struct type *b)
3015 {
3016 /* Identical type pointers. */
3017 /* However, this still doesn't catch all cases of same type for b
3018 and a. The reason is that builtin types are different from
3019 the same ones constructed from the object. */
3020 if (a == b)
3021 return 1;
3022
3023 /* Resolve typedefs */
3024 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3025 a = check_typedef (a);
3026 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3027 b = check_typedef (b);
3028
3029 /* If after resolving typedefs a and b are not of the same type
3030 code then they are not equal. */
3031 if (TYPE_CODE (a) != TYPE_CODE (b))
3032 return 0;
3033
3034 /* If a and b are both pointers types or both reference types then
3035 they are equal of the same type iff the objects they refer to are
3036 of the same type. */
3037 if (TYPE_CODE (a) == TYPE_CODE_PTR
3038 || TYPE_CODE (a) == TYPE_CODE_REF)
3039 return types_equal (TYPE_TARGET_TYPE (a),
3040 TYPE_TARGET_TYPE (b));
3041
3042 /* Well, damnit, if the names are exactly the same, I'll say they
3043 are exactly the same. This happens when we generate method
3044 stubs. The types won't point to the same address, but they
3045 really are the same. */
3046
3047 if (TYPE_NAME (a) && TYPE_NAME (b)
3048 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3049 return 1;
3050
3051 /* Check if identical after resolving typedefs. */
3052 if (a == b)
3053 return 1;
3054
3055 /* Two function types are equal if their argument and return types
3056 are equal. */
3057 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3058 {
3059 int i;
3060
3061 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3062 return 0;
3063
3064 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3065 return 0;
3066
3067 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3068 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3069 return 0;
3070
3071 return 1;
3072 }
3073
3074 return 0;
3075 }
3076 \f
3077 /* Deep comparison of types. */
3078
3079 /* An entry in the type-equality bcache. */
3080
3081 typedef struct type_equality_entry
3082 {
3083 struct type *type1, *type2;
3084 } type_equality_entry_d;
3085
3086 DEF_VEC_O (type_equality_entry_d);
3087
3088 /* A helper function to compare two strings. Returns 1 if they are
3089 the same, 0 otherwise. Handles NULLs properly. */
3090
3091 static int
3092 compare_maybe_null_strings (const char *s, const char *t)
3093 {
3094 if (s == NULL && t != NULL)
3095 return 0;
3096 else if (s != NULL && t == NULL)
3097 return 0;
3098 else if (s == NULL && t== NULL)
3099 return 1;
3100 return strcmp (s, t) == 0;
3101 }
3102
3103 /* A helper function for check_types_worklist that checks two types for
3104 "deep" equality. Returns non-zero if the types are considered the
3105 same, zero otherwise. */
3106
3107 static int
3108 check_types_equal (struct type *type1, struct type *type2,
3109 VEC (type_equality_entry_d) **worklist)
3110 {
3111 CHECK_TYPEDEF (type1);
3112 CHECK_TYPEDEF (type2);
3113
3114 if (type1 == type2)
3115 return 1;
3116
3117 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3118 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3119 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3120 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3121 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3122 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3123 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3124 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3125 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3126 return 0;
3127
3128 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3129 TYPE_TAG_NAME (type2)))
3130 return 0;
3131 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3132 return 0;
3133
3134 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3135 {
3136 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3137 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3138 return 0;
3139 }
3140 else
3141 {
3142 int i;
3143
3144 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3145 {
3146 const struct field *field1 = &TYPE_FIELD (type1, i);
3147 const struct field *field2 = &TYPE_FIELD (type2, i);
3148 struct type_equality_entry entry;
3149
3150 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3151 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3152 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3153 return 0;
3154 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3155 FIELD_NAME (*field2)))
3156 return 0;
3157 switch (FIELD_LOC_KIND (*field1))
3158 {
3159 case FIELD_LOC_KIND_BITPOS:
3160 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3161 return 0;
3162 break;
3163 case FIELD_LOC_KIND_ENUMVAL:
3164 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3165 return 0;
3166 break;
3167 case FIELD_LOC_KIND_PHYSADDR:
3168 if (FIELD_STATIC_PHYSADDR (*field1)
3169 != FIELD_STATIC_PHYSADDR (*field2))
3170 return 0;
3171 break;
3172 case FIELD_LOC_KIND_PHYSNAME:
3173 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3174 FIELD_STATIC_PHYSNAME (*field2)))
3175 return 0;
3176 break;
3177 case FIELD_LOC_KIND_DWARF_BLOCK:
3178 {
3179 struct dwarf2_locexpr_baton *block1, *block2;
3180
3181 block1 = FIELD_DWARF_BLOCK (*field1);
3182 block2 = FIELD_DWARF_BLOCK (*field2);
3183 if (block1->per_cu != block2->per_cu
3184 || block1->size != block2->size
3185 || memcmp (block1->data, block2->data, block1->size) != 0)
3186 return 0;
3187 }
3188 break;
3189 default:
3190 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3191 "%d by check_types_equal"),
3192 FIELD_LOC_KIND (*field1));
3193 }
3194
3195 entry.type1 = FIELD_TYPE (*field1);
3196 entry.type2 = FIELD_TYPE (*field2);
3197 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3198 }
3199 }
3200
3201 if (TYPE_TARGET_TYPE (type1) != NULL)
3202 {
3203 struct type_equality_entry entry;
3204
3205 if (TYPE_TARGET_TYPE (type2) == NULL)
3206 return 0;
3207
3208 entry.type1 = TYPE_TARGET_TYPE (type1);
3209 entry.type2 = TYPE_TARGET_TYPE (type2);
3210 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3211 }
3212 else if (TYPE_TARGET_TYPE (type2) != NULL)
3213 return 0;
3214
3215 return 1;
3216 }
3217
3218 /* Check types on a worklist for equality. Returns zero if any pair
3219 is not equal, non-zero if they are all considered equal. */
3220
3221 static int
3222 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3223 struct bcache *cache)
3224 {
3225 while (!VEC_empty (type_equality_entry_d, *worklist))
3226 {
3227 struct type_equality_entry entry;
3228 int added;
3229
3230 entry = *VEC_last (type_equality_entry_d, *worklist);
3231 VEC_pop (type_equality_entry_d, *worklist);
3232
3233 /* If the type pair has already been visited, we know it is
3234 ok. */
3235 bcache_full (&entry, sizeof (entry), cache, &added);
3236 if (!added)
3237 continue;
3238
3239 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3240 return 0;
3241 }
3242
3243 return 1;
3244 }
3245
3246 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3247 "deep comparison". Otherwise return zero. */
3248
3249 int
3250 types_deeply_equal (struct type *type1, struct type *type2)
3251 {
3252 struct gdb_exception except = exception_none;
3253 int result = 0;
3254 struct bcache *cache;
3255 VEC (type_equality_entry_d) *worklist = NULL;
3256 struct type_equality_entry entry;
3257
3258 gdb_assert (type1 != NULL && type2 != NULL);
3259
3260 /* Early exit for the simple case. */
3261 if (type1 == type2)
3262 return 1;
3263
3264 cache = bcache_xmalloc (NULL, NULL);
3265
3266 entry.type1 = type1;
3267 entry.type2 = type2;
3268 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3269
3270 /* check_types_worklist calls several nested helper functions, some
3271 of which can raise a GDB exception, so we just check and rethrow
3272 here. If there is a GDB exception, a comparison is not capable
3273 (or trusted), so exit. */
3274 TRY
3275 {
3276 result = check_types_worklist (&worklist, cache);
3277 }
3278 CATCH (ex, RETURN_MASK_ALL)
3279 {
3280 except = ex;
3281 }
3282 END_CATCH
3283
3284 bcache_xfree (cache);
3285 VEC_free (type_equality_entry_d, worklist);
3286
3287 /* Rethrow if there was a problem. */
3288 if (except.reason < 0)
3289 throw_exception (except);
3290
3291 return result;
3292 }
3293 \f
3294 /* Compare one type (PARM) for compatibility with another (ARG).
3295 * PARM is intended to be the parameter type of a function; and
3296 * ARG is the supplied argument's type. This function tests if
3297 * the latter can be converted to the former.
3298 * VALUE is the argument's value or NULL if none (or called recursively)
3299 *
3300 * Return 0 if they are identical types;
3301 * Otherwise, return an integer which corresponds to how compatible
3302 * PARM is to ARG. The higher the return value, the worse the match.
3303 * Generally the "bad" conversions are all uniformly assigned a 100. */
3304
3305 struct rank
3306 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3307 {
3308 struct rank rank = {0,0};
3309
3310 if (types_equal (parm, arg))
3311 return EXACT_MATCH_BADNESS;
3312
3313 /* Resolve typedefs */
3314 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3315 parm = check_typedef (parm);
3316 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3317 arg = check_typedef (arg);
3318
3319 /* See through references, since we can almost make non-references
3320 references. */
3321 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3322 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3323 REFERENCE_CONVERSION_BADNESS));
3324 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3325 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3326 REFERENCE_CONVERSION_BADNESS));
3327 if (overload_debug)
3328 /* Debugging only. */
3329 fprintf_filtered (gdb_stderr,
3330 "------ Arg is %s [%d], parm is %s [%d]\n",
3331 TYPE_NAME (arg), TYPE_CODE (arg),
3332 TYPE_NAME (parm), TYPE_CODE (parm));
3333
3334 /* x -> y means arg of type x being supplied for parameter of type y. */
3335
3336 switch (TYPE_CODE (parm))
3337 {
3338 case TYPE_CODE_PTR:
3339 switch (TYPE_CODE (arg))
3340 {
3341 case TYPE_CODE_PTR:
3342
3343 /* Allowed pointer conversions are:
3344 (a) pointer to void-pointer conversion. */
3345 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3346 return VOID_PTR_CONVERSION_BADNESS;
3347
3348 /* (b) pointer to ancestor-pointer conversion. */
3349 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3350 TYPE_TARGET_TYPE (arg),
3351 0);
3352 if (rank.subrank >= 0)
3353 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3354
3355 return INCOMPATIBLE_TYPE_BADNESS;
3356 case TYPE_CODE_ARRAY:
3357 if (types_equal (TYPE_TARGET_TYPE (parm),
3358 TYPE_TARGET_TYPE (arg)))
3359 return EXACT_MATCH_BADNESS;
3360 return INCOMPATIBLE_TYPE_BADNESS;
3361 case TYPE_CODE_FUNC:
3362 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3363 case TYPE_CODE_INT:
3364 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3365 {
3366 if (value_as_long (value) == 0)
3367 {
3368 /* Null pointer conversion: allow it to be cast to a pointer.
3369 [4.10.1 of C++ standard draft n3290] */
3370 return NULL_POINTER_CONVERSION_BADNESS;
3371 }
3372 else
3373 {
3374 /* If type checking is disabled, allow the conversion. */
3375 if (!strict_type_checking)
3376 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3377 }
3378 }
3379 /* fall through */
3380 case TYPE_CODE_ENUM:
3381 case TYPE_CODE_FLAGS:
3382 case TYPE_CODE_CHAR:
3383 case TYPE_CODE_RANGE:
3384 case TYPE_CODE_BOOL:
3385 default:
3386 return INCOMPATIBLE_TYPE_BADNESS;
3387 }
3388 case TYPE_CODE_ARRAY:
3389 switch (TYPE_CODE (arg))
3390 {
3391 case TYPE_CODE_PTR:
3392 case TYPE_CODE_ARRAY:
3393 return rank_one_type (TYPE_TARGET_TYPE (parm),
3394 TYPE_TARGET_TYPE (arg), NULL);
3395 default:
3396 return INCOMPATIBLE_TYPE_BADNESS;
3397 }
3398 case TYPE_CODE_FUNC:
3399 switch (TYPE_CODE (arg))
3400 {
3401 case TYPE_CODE_PTR: /* funcptr -> func */
3402 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3403 default:
3404 return INCOMPATIBLE_TYPE_BADNESS;
3405 }
3406 case TYPE_CODE_INT:
3407 switch (TYPE_CODE (arg))
3408 {
3409 case TYPE_CODE_INT:
3410 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3411 {
3412 /* Deal with signed, unsigned, and plain chars and
3413 signed and unsigned ints. */
3414 if (TYPE_NOSIGN (parm))
3415 {
3416 /* This case only for character types. */
3417 if (TYPE_NOSIGN (arg))
3418 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3419 else /* signed/unsigned char -> plain char */
3420 return INTEGER_CONVERSION_BADNESS;
3421 }
3422 else if (TYPE_UNSIGNED (parm))
3423 {
3424 if (TYPE_UNSIGNED (arg))
3425 {
3426 /* unsigned int -> unsigned int, or
3427 unsigned long -> unsigned long */
3428 if (integer_types_same_name_p (TYPE_NAME (parm),
3429 TYPE_NAME (arg)))
3430 return EXACT_MATCH_BADNESS;
3431 else if (integer_types_same_name_p (TYPE_NAME (arg),
3432 "int")
3433 && integer_types_same_name_p (TYPE_NAME (parm),
3434 "long"))
3435 /* unsigned int -> unsigned long */
3436 return INTEGER_PROMOTION_BADNESS;
3437 else
3438 /* unsigned long -> unsigned int */
3439 return INTEGER_CONVERSION_BADNESS;
3440 }
3441 else
3442 {
3443 if (integer_types_same_name_p (TYPE_NAME (arg),
3444 "long")
3445 && integer_types_same_name_p (TYPE_NAME (parm),
3446 "int"))
3447 /* signed long -> unsigned int */
3448 return INTEGER_CONVERSION_BADNESS;
3449 else
3450 /* signed int/long -> unsigned int/long */
3451 return INTEGER_CONVERSION_BADNESS;
3452 }
3453 }
3454 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3455 {
3456 if (integer_types_same_name_p (TYPE_NAME (parm),
3457 TYPE_NAME (arg)))
3458 return EXACT_MATCH_BADNESS;
3459 else if (integer_types_same_name_p (TYPE_NAME (arg),
3460 "int")
3461 && integer_types_same_name_p (TYPE_NAME (parm),
3462 "long"))
3463 return INTEGER_PROMOTION_BADNESS;
3464 else
3465 return INTEGER_CONVERSION_BADNESS;
3466 }
3467 else
3468 return INTEGER_CONVERSION_BADNESS;
3469 }
3470 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3471 return INTEGER_PROMOTION_BADNESS;
3472 else
3473 return INTEGER_CONVERSION_BADNESS;
3474 case TYPE_CODE_ENUM:
3475 case TYPE_CODE_FLAGS:
3476 case TYPE_CODE_CHAR:
3477 case TYPE_CODE_RANGE:
3478 case TYPE_CODE_BOOL:
3479 if (TYPE_DECLARED_CLASS (arg))
3480 return INCOMPATIBLE_TYPE_BADNESS;
3481 return INTEGER_PROMOTION_BADNESS;
3482 case TYPE_CODE_FLT:
3483 return INT_FLOAT_CONVERSION_BADNESS;
3484 case TYPE_CODE_PTR:
3485 return NS_POINTER_CONVERSION_BADNESS;
3486 default:
3487 return INCOMPATIBLE_TYPE_BADNESS;
3488 }
3489 break;
3490 case TYPE_CODE_ENUM:
3491 switch (TYPE_CODE (arg))
3492 {
3493 case TYPE_CODE_INT:
3494 case TYPE_CODE_CHAR:
3495 case TYPE_CODE_RANGE:
3496 case TYPE_CODE_BOOL:
3497 case TYPE_CODE_ENUM:
3498 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3499 return INCOMPATIBLE_TYPE_BADNESS;
3500 return INTEGER_CONVERSION_BADNESS;
3501 case TYPE_CODE_FLT:
3502 return INT_FLOAT_CONVERSION_BADNESS;
3503 default:
3504 return INCOMPATIBLE_TYPE_BADNESS;
3505 }
3506 break;
3507 case TYPE_CODE_CHAR:
3508 switch (TYPE_CODE (arg))
3509 {
3510 case TYPE_CODE_RANGE:
3511 case TYPE_CODE_BOOL:
3512 case TYPE_CODE_ENUM:
3513 if (TYPE_DECLARED_CLASS (arg))
3514 return INCOMPATIBLE_TYPE_BADNESS;
3515 return INTEGER_CONVERSION_BADNESS;
3516 case TYPE_CODE_FLT:
3517 return INT_FLOAT_CONVERSION_BADNESS;
3518 case TYPE_CODE_INT:
3519 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3520 return INTEGER_CONVERSION_BADNESS;
3521 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3522 return INTEGER_PROMOTION_BADNESS;
3523 /* >>> !! else fall through !! <<< */
3524 case TYPE_CODE_CHAR:
3525 /* Deal with signed, unsigned, and plain chars for C++ and
3526 with int cases falling through from previous case. */
3527 if (TYPE_NOSIGN (parm))
3528 {
3529 if (TYPE_NOSIGN (arg))
3530 return EXACT_MATCH_BADNESS;
3531 else
3532 return INTEGER_CONVERSION_BADNESS;
3533 }
3534 else if (TYPE_UNSIGNED (parm))
3535 {
3536 if (TYPE_UNSIGNED (arg))
3537 return EXACT_MATCH_BADNESS;
3538 else
3539 return INTEGER_PROMOTION_BADNESS;
3540 }
3541 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3542 return EXACT_MATCH_BADNESS;
3543 else
3544 return INTEGER_CONVERSION_BADNESS;
3545 default:
3546 return INCOMPATIBLE_TYPE_BADNESS;
3547 }
3548 break;
3549 case TYPE_CODE_RANGE:
3550 switch (TYPE_CODE (arg))
3551 {
3552 case TYPE_CODE_INT:
3553 case TYPE_CODE_CHAR:
3554 case TYPE_CODE_RANGE:
3555 case TYPE_CODE_BOOL:
3556 case TYPE_CODE_ENUM:
3557 return INTEGER_CONVERSION_BADNESS;
3558 case TYPE_CODE_FLT:
3559 return INT_FLOAT_CONVERSION_BADNESS;
3560 default:
3561 return INCOMPATIBLE_TYPE_BADNESS;
3562 }
3563 break;
3564 case TYPE_CODE_BOOL:
3565 switch (TYPE_CODE (arg))
3566 {
3567 /* n3290 draft, section 4.12.1 (conv.bool):
3568
3569 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3570 pointer to member type can be converted to a prvalue of type
3571 bool. A zero value, null pointer value, or null member pointer
3572 value is converted to false; any other value is converted to
3573 true. A prvalue of type std::nullptr_t can be converted to a
3574 prvalue of type bool; the resulting value is false." */
3575 case TYPE_CODE_INT:
3576 case TYPE_CODE_CHAR:
3577 case TYPE_CODE_ENUM:
3578 case TYPE_CODE_FLT:
3579 case TYPE_CODE_MEMBERPTR:
3580 case TYPE_CODE_PTR:
3581 return BOOL_CONVERSION_BADNESS;
3582 case TYPE_CODE_RANGE:
3583 return INCOMPATIBLE_TYPE_BADNESS;
3584 case TYPE_CODE_BOOL:
3585 return EXACT_MATCH_BADNESS;
3586 default:
3587 return INCOMPATIBLE_TYPE_BADNESS;
3588 }
3589 break;
3590 case TYPE_CODE_FLT:
3591 switch (TYPE_CODE (arg))
3592 {
3593 case TYPE_CODE_FLT:
3594 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3595 return FLOAT_PROMOTION_BADNESS;
3596 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3597 return EXACT_MATCH_BADNESS;
3598 else
3599 return FLOAT_CONVERSION_BADNESS;
3600 case TYPE_CODE_INT:
3601 case TYPE_CODE_BOOL:
3602 case TYPE_CODE_ENUM:
3603 case TYPE_CODE_RANGE:
3604 case TYPE_CODE_CHAR:
3605 return INT_FLOAT_CONVERSION_BADNESS;
3606 default:
3607 return INCOMPATIBLE_TYPE_BADNESS;
3608 }
3609 break;
3610 case TYPE_CODE_COMPLEX:
3611 switch (TYPE_CODE (arg))
3612 { /* Strictly not needed for C++, but... */
3613 case TYPE_CODE_FLT:
3614 return FLOAT_PROMOTION_BADNESS;
3615 case TYPE_CODE_COMPLEX:
3616 return EXACT_MATCH_BADNESS;
3617 default:
3618 return INCOMPATIBLE_TYPE_BADNESS;
3619 }
3620 break;
3621 case TYPE_CODE_STRUCT:
3622 switch (TYPE_CODE (arg))
3623 {
3624 case TYPE_CODE_STRUCT:
3625 /* Check for derivation */
3626 rank.subrank = distance_to_ancestor (parm, arg, 0);
3627 if (rank.subrank >= 0)
3628 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3629 /* else fall through */
3630 default:
3631 return INCOMPATIBLE_TYPE_BADNESS;
3632 }
3633 break;
3634 case TYPE_CODE_UNION:
3635 switch (TYPE_CODE (arg))
3636 {
3637 case TYPE_CODE_UNION:
3638 default:
3639 return INCOMPATIBLE_TYPE_BADNESS;
3640 }
3641 break;
3642 case TYPE_CODE_MEMBERPTR:
3643 switch (TYPE_CODE (arg))
3644 {
3645 default:
3646 return INCOMPATIBLE_TYPE_BADNESS;
3647 }
3648 break;
3649 case TYPE_CODE_METHOD:
3650 switch (TYPE_CODE (arg))
3651 {
3652
3653 default:
3654 return INCOMPATIBLE_TYPE_BADNESS;
3655 }
3656 break;
3657 case TYPE_CODE_REF:
3658 switch (TYPE_CODE (arg))
3659 {
3660
3661 default:
3662 return INCOMPATIBLE_TYPE_BADNESS;
3663 }
3664
3665 break;
3666 case TYPE_CODE_SET:
3667 switch (TYPE_CODE (arg))
3668 {
3669 /* Not in C++ */
3670 case TYPE_CODE_SET:
3671 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3672 TYPE_FIELD_TYPE (arg, 0), NULL);
3673 default:
3674 return INCOMPATIBLE_TYPE_BADNESS;
3675 }
3676 break;
3677 case TYPE_CODE_VOID:
3678 default:
3679 return INCOMPATIBLE_TYPE_BADNESS;
3680 } /* switch (TYPE_CODE (arg)) */
3681 }
3682
3683 /* End of functions for overload resolution. */
3684 \f
3685 /* Routines to pretty-print types. */
3686
3687 static void
3688 print_bit_vector (B_TYPE *bits, int nbits)
3689 {
3690 int bitno;
3691
3692 for (bitno = 0; bitno < nbits; bitno++)
3693 {
3694 if ((bitno % 8) == 0)
3695 {
3696 puts_filtered (" ");
3697 }
3698 if (B_TST (bits, bitno))
3699 printf_filtered (("1"));
3700 else
3701 printf_filtered (("0"));
3702 }
3703 }
3704
3705 /* Note the first arg should be the "this" pointer, we may not want to
3706 include it since we may get into a infinitely recursive
3707 situation. */
3708
3709 static void
3710 print_args (struct field *args, int nargs, int spaces)
3711 {
3712 if (args != NULL)
3713 {
3714 int i;
3715
3716 for (i = 0; i < nargs; i++)
3717 {
3718 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3719 args[i].name != NULL ? args[i].name : "<NULL>");
3720 recursive_dump_type (args[i].type, spaces + 2);
3721 }
3722 }
3723 }
3724
3725 int
3726 field_is_static (struct field *f)
3727 {
3728 /* "static" fields are the fields whose location is not relative
3729 to the address of the enclosing struct. It would be nice to
3730 have a dedicated flag that would be set for static fields when
3731 the type is being created. But in practice, checking the field
3732 loc_kind should give us an accurate answer. */
3733 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3734 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3735 }
3736
3737 static void
3738 dump_fn_fieldlists (struct type *type, int spaces)
3739 {
3740 int method_idx;
3741 int overload_idx;
3742 struct fn_field *f;
3743
3744 printfi_filtered (spaces, "fn_fieldlists ");
3745 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3746 printf_filtered ("\n");
3747 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3748 {
3749 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3750 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3751 method_idx,
3752 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3753 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3754 gdb_stdout);
3755 printf_filtered (_(") length %d\n"),
3756 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3757 for (overload_idx = 0;
3758 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3759 overload_idx++)
3760 {
3761 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3762 overload_idx,
3763 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3764 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3765 gdb_stdout);
3766 printf_filtered (")\n");
3767 printfi_filtered (spaces + 8, "type ");
3768 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3769 gdb_stdout);
3770 printf_filtered ("\n");
3771
3772 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3773 spaces + 8 + 2);
3774
3775 printfi_filtered (spaces + 8, "args ");
3776 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3777 gdb_stdout);
3778 printf_filtered ("\n");
3779 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3780 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3781 spaces + 8 + 2);
3782 printfi_filtered (spaces + 8, "fcontext ");
3783 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3784 gdb_stdout);
3785 printf_filtered ("\n");
3786
3787 printfi_filtered (spaces + 8, "is_const %d\n",
3788 TYPE_FN_FIELD_CONST (f, overload_idx));
3789 printfi_filtered (spaces + 8, "is_volatile %d\n",
3790 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3791 printfi_filtered (spaces + 8, "is_private %d\n",
3792 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3793 printfi_filtered (spaces + 8, "is_protected %d\n",
3794 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3795 printfi_filtered (spaces + 8, "is_stub %d\n",
3796 TYPE_FN_FIELD_STUB (f, overload_idx));
3797 printfi_filtered (spaces + 8, "voffset %u\n",
3798 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3799 }
3800 }
3801 }
3802
3803 static void
3804 print_cplus_stuff (struct type *type, int spaces)
3805 {
3806 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3807 printfi_filtered (spaces, "vptr_basetype ");
3808 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3809 puts_filtered ("\n");
3810 if (TYPE_VPTR_BASETYPE (type) != NULL)
3811 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3812
3813 printfi_filtered (spaces, "n_baseclasses %d\n",
3814 TYPE_N_BASECLASSES (type));
3815 printfi_filtered (spaces, "nfn_fields %d\n",
3816 TYPE_NFN_FIELDS (type));
3817 if (TYPE_N_BASECLASSES (type) > 0)
3818 {
3819 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3820 TYPE_N_BASECLASSES (type));
3821 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3822 gdb_stdout);
3823 printf_filtered (")");
3824
3825 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3826 TYPE_N_BASECLASSES (type));
3827 puts_filtered ("\n");
3828 }
3829 if (TYPE_NFIELDS (type) > 0)
3830 {
3831 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3832 {
3833 printfi_filtered (spaces,
3834 "private_field_bits (%d bits at *",
3835 TYPE_NFIELDS (type));
3836 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3837 gdb_stdout);
3838 printf_filtered (")");
3839 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3840 TYPE_NFIELDS (type));
3841 puts_filtered ("\n");
3842 }
3843 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3844 {
3845 printfi_filtered (spaces,
3846 "protected_field_bits (%d bits at *",
3847 TYPE_NFIELDS (type));
3848 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3849 gdb_stdout);
3850 printf_filtered (")");
3851 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3852 TYPE_NFIELDS (type));
3853 puts_filtered ("\n");
3854 }
3855 }
3856 if (TYPE_NFN_FIELDS (type) > 0)
3857 {
3858 dump_fn_fieldlists (type, spaces);
3859 }
3860 }
3861
3862 /* Print the contents of the TYPE's type_specific union, assuming that
3863 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3864
3865 static void
3866 print_gnat_stuff (struct type *type, int spaces)
3867 {
3868 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3869
3870 recursive_dump_type (descriptive_type, spaces + 2);
3871 }
3872
3873 static struct obstack dont_print_type_obstack;
3874
3875 void
3876 recursive_dump_type (struct type *type, int spaces)
3877 {
3878 int idx;
3879
3880 if (spaces == 0)
3881 obstack_begin (&dont_print_type_obstack, 0);
3882
3883 if (TYPE_NFIELDS (type) > 0
3884 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3885 {
3886 struct type **first_dont_print
3887 = (struct type **) obstack_base (&dont_print_type_obstack);
3888
3889 int i = (struct type **)
3890 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3891
3892 while (--i >= 0)
3893 {
3894 if (type == first_dont_print[i])
3895 {
3896 printfi_filtered (spaces, "type node ");
3897 gdb_print_host_address (type, gdb_stdout);
3898 printf_filtered (_(" <same as already seen type>\n"));
3899 return;
3900 }
3901 }
3902
3903 obstack_ptr_grow (&dont_print_type_obstack, type);
3904 }
3905
3906 printfi_filtered (spaces, "type node ");
3907 gdb_print_host_address (type, gdb_stdout);
3908 printf_filtered ("\n");
3909 printfi_filtered (spaces, "name '%s' (",
3910 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3911 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3912 printf_filtered (")\n");
3913 printfi_filtered (spaces, "tagname '%s' (",
3914 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3915 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3916 printf_filtered (")\n");
3917 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3918 switch (TYPE_CODE (type))
3919 {
3920 case TYPE_CODE_UNDEF:
3921 printf_filtered ("(TYPE_CODE_UNDEF)");
3922 break;
3923 case TYPE_CODE_PTR:
3924 printf_filtered ("(TYPE_CODE_PTR)");
3925 break;
3926 case TYPE_CODE_ARRAY:
3927 printf_filtered ("(TYPE_CODE_ARRAY)");
3928 break;
3929 case TYPE_CODE_STRUCT:
3930 printf_filtered ("(TYPE_CODE_STRUCT)");
3931 break;
3932 case TYPE_CODE_UNION:
3933 printf_filtered ("(TYPE_CODE_UNION)");
3934 break;
3935 case TYPE_CODE_ENUM:
3936 printf_filtered ("(TYPE_CODE_ENUM)");
3937 break;
3938 case TYPE_CODE_FLAGS:
3939 printf_filtered ("(TYPE_CODE_FLAGS)");
3940 break;
3941 case TYPE_CODE_FUNC:
3942 printf_filtered ("(TYPE_CODE_FUNC)");
3943 break;
3944 case TYPE_CODE_INT:
3945 printf_filtered ("(TYPE_CODE_INT)");
3946 break;
3947 case TYPE_CODE_FLT:
3948 printf_filtered ("(TYPE_CODE_FLT)");
3949 break;
3950 case TYPE_CODE_VOID:
3951 printf_filtered ("(TYPE_CODE_VOID)");
3952 break;
3953 case TYPE_CODE_SET:
3954 printf_filtered ("(TYPE_CODE_SET)");
3955 break;
3956 case TYPE_CODE_RANGE:
3957 printf_filtered ("(TYPE_CODE_RANGE)");
3958 break;
3959 case TYPE_CODE_STRING:
3960 printf_filtered ("(TYPE_CODE_STRING)");
3961 break;
3962 case TYPE_CODE_ERROR:
3963 printf_filtered ("(TYPE_CODE_ERROR)");
3964 break;
3965 case TYPE_CODE_MEMBERPTR:
3966 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3967 break;
3968 case TYPE_CODE_METHODPTR:
3969 printf_filtered ("(TYPE_CODE_METHODPTR)");
3970 break;
3971 case TYPE_CODE_METHOD:
3972 printf_filtered ("(TYPE_CODE_METHOD)");
3973 break;
3974 case TYPE_CODE_REF:
3975 printf_filtered ("(TYPE_CODE_REF)");
3976 break;
3977 case TYPE_CODE_CHAR:
3978 printf_filtered ("(TYPE_CODE_CHAR)");
3979 break;
3980 case TYPE_CODE_BOOL:
3981 printf_filtered ("(TYPE_CODE_BOOL)");
3982 break;
3983 case TYPE_CODE_COMPLEX:
3984 printf_filtered ("(TYPE_CODE_COMPLEX)");
3985 break;
3986 case TYPE_CODE_TYPEDEF:
3987 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3988 break;
3989 case TYPE_CODE_NAMESPACE:
3990 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3991 break;
3992 default:
3993 printf_filtered ("(UNKNOWN TYPE CODE)");
3994 break;
3995 }
3996 puts_filtered ("\n");
3997 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3998 if (TYPE_OBJFILE_OWNED (type))
3999 {
4000 printfi_filtered (spaces, "objfile ");
4001 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4002 }
4003 else
4004 {
4005 printfi_filtered (spaces, "gdbarch ");
4006 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4007 }
4008 printf_filtered ("\n");
4009 printfi_filtered (spaces, "target_type ");
4010 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4011 printf_filtered ("\n");
4012 if (TYPE_TARGET_TYPE (type) != NULL)
4013 {
4014 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4015 }
4016 printfi_filtered (spaces, "pointer_type ");
4017 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4018 printf_filtered ("\n");
4019 printfi_filtered (spaces, "reference_type ");
4020 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4021 printf_filtered ("\n");
4022 printfi_filtered (spaces, "type_chain ");
4023 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4024 printf_filtered ("\n");
4025 printfi_filtered (spaces, "instance_flags 0x%x",
4026 TYPE_INSTANCE_FLAGS (type));
4027 if (TYPE_CONST (type))
4028 {
4029 puts_filtered (" TYPE_FLAG_CONST");
4030 }
4031 if (TYPE_VOLATILE (type))
4032 {
4033 puts_filtered (" TYPE_FLAG_VOLATILE");
4034 }
4035 if (TYPE_CODE_SPACE (type))
4036 {
4037 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4038 }
4039 if (TYPE_DATA_SPACE (type))
4040 {
4041 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4042 }
4043 if (TYPE_ADDRESS_CLASS_1 (type))
4044 {
4045 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4046 }
4047 if (TYPE_ADDRESS_CLASS_2 (type))
4048 {
4049 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4050 }
4051 if (TYPE_RESTRICT (type))
4052 {
4053 puts_filtered (" TYPE_FLAG_RESTRICT");
4054 }
4055 if (TYPE_ATOMIC (type))
4056 {
4057 puts_filtered (" TYPE_FLAG_ATOMIC");
4058 }
4059 puts_filtered ("\n");
4060
4061 printfi_filtered (spaces, "flags");
4062 if (TYPE_UNSIGNED (type))
4063 {
4064 puts_filtered (" TYPE_FLAG_UNSIGNED");
4065 }
4066 if (TYPE_NOSIGN (type))
4067 {
4068 puts_filtered (" TYPE_FLAG_NOSIGN");
4069 }
4070 if (TYPE_STUB (type))
4071 {
4072 puts_filtered (" TYPE_FLAG_STUB");
4073 }
4074 if (TYPE_TARGET_STUB (type))
4075 {
4076 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4077 }
4078 if (TYPE_STATIC (type))
4079 {
4080 puts_filtered (" TYPE_FLAG_STATIC");
4081 }
4082 if (TYPE_PROTOTYPED (type))
4083 {
4084 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4085 }
4086 if (TYPE_INCOMPLETE (type))
4087 {
4088 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4089 }
4090 if (TYPE_VARARGS (type))
4091 {
4092 puts_filtered (" TYPE_FLAG_VARARGS");
4093 }
4094 /* This is used for things like AltiVec registers on ppc. Gcc emits
4095 an attribute for the array type, which tells whether or not we
4096 have a vector, instead of a regular array. */
4097 if (TYPE_VECTOR (type))
4098 {
4099 puts_filtered (" TYPE_FLAG_VECTOR");
4100 }
4101 if (TYPE_FIXED_INSTANCE (type))
4102 {
4103 puts_filtered (" TYPE_FIXED_INSTANCE");
4104 }
4105 if (TYPE_STUB_SUPPORTED (type))
4106 {
4107 puts_filtered (" TYPE_STUB_SUPPORTED");
4108 }
4109 if (TYPE_NOTTEXT (type))
4110 {
4111 puts_filtered (" TYPE_NOTTEXT");
4112 }
4113 puts_filtered ("\n");
4114 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4115 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4116 puts_filtered ("\n");
4117 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4118 {
4119 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4120 printfi_filtered (spaces + 2,
4121 "[%d] enumval %s type ",
4122 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4123 else
4124 printfi_filtered (spaces + 2,
4125 "[%d] bitpos %d bitsize %d type ",
4126 idx, TYPE_FIELD_BITPOS (type, idx),
4127 TYPE_FIELD_BITSIZE (type, idx));
4128 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4129 printf_filtered (" name '%s' (",
4130 TYPE_FIELD_NAME (type, idx) != NULL
4131 ? TYPE_FIELD_NAME (type, idx)
4132 : "<NULL>");
4133 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4134 printf_filtered (")\n");
4135 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4136 {
4137 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4138 }
4139 }
4140 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4141 {
4142 printfi_filtered (spaces, "low %s%s high %s%s\n",
4143 plongest (TYPE_LOW_BOUND (type)),
4144 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4145 plongest (TYPE_HIGH_BOUND (type)),
4146 TYPE_HIGH_BOUND_UNDEFINED (type)
4147 ? " (undefined)" : "");
4148 }
4149
4150 switch (TYPE_SPECIFIC_FIELD (type))
4151 {
4152 case TYPE_SPECIFIC_CPLUS_STUFF:
4153 printfi_filtered (spaces, "cplus_stuff ");
4154 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4155 gdb_stdout);
4156 puts_filtered ("\n");
4157 print_cplus_stuff (type, spaces);
4158 break;
4159
4160 case TYPE_SPECIFIC_GNAT_STUFF:
4161 printfi_filtered (spaces, "gnat_stuff ");
4162 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4163 puts_filtered ("\n");
4164 print_gnat_stuff (type, spaces);
4165 break;
4166
4167 case TYPE_SPECIFIC_FLOATFORMAT:
4168 printfi_filtered (spaces, "floatformat ");
4169 if (TYPE_FLOATFORMAT (type) == NULL)
4170 puts_filtered ("(null)");
4171 else
4172 {
4173 puts_filtered ("{ ");
4174 if (TYPE_FLOATFORMAT (type)[0] == NULL
4175 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4176 puts_filtered ("(null)");
4177 else
4178 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4179
4180 puts_filtered (", ");
4181 if (TYPE_FLOATFORMAT (type)[1] == NULL
4182 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4183 puts_filtered ("(null)");
4184 else
4185 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4186
4187 puts_filtered (" }");
4188 }
4189 puts_filtered ("\n");
4190 break;
4191
4192 case TYPE_SPECIFIC_FUNC:
4193 printfi_filtered (spaces, "calling_convention %d\n",
4194 TYPE_CALLING_CONVENTION (type));
4195 /* tail_call_list is not printed. */
4196 break;
4197
4198 case TYPE_SPECIFIC_SELF_TYPE:
4199 printfi_filtered (spaces, "self_type ");
4200 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4201 puts_filtered ("\n");
4202 break;
4203 }
4204
4205 if (spaces == 0)
4206 obstack_free (&dont_print_type_obstack, NULL);
4207 }
4208 \f
4209 /* Trivial helpers for the libiberty hash table, for mapping one
4210 type to another. */
4211
4212 struct type_pair
4213 {
4214 struct type *old, *newobj;
4215 };
4216
4217 static hashval_t
4218 type_pair_hash (const void *item)
4219 {
4220 const struct type_pair *pair = item;
4221
4222 return htab_hash_pointer (pair->old);
4223 }
4224
4225 static int
4226 type_pair_eq (const void *item_lhs, const void *item_rhs)
4227 {
4228 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4229
4230 return lhs->old == rhs->old;
4231 }
4232
4233 /* Allocate the hash table used by copy_type_recursive to walk
4234 types without duplicates. We use OBJFILE's obstack, because
4235 OBJFILE is about to be deleted. */
4236
4237 htab_t
4238 create_copied_types_hash (struct objfile *objfile)
4239 {
4240 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4241 NULL, &objfile->objfile_obstack,
4242 hashtab_obstack_allocate,
4243 dummy_obstack_deallocate);
4244 }
4245
4246 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4247
4248 static struct dynamic_prop_list *
4249 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4250 struct dynamic_prop_list *list)
4251 {
4252 struct dynamic_prop_list *copy = list;
4253 struct dynamic_prop_list **node_ptr = &copy;
4254
4255 while (*node_ptr != NULL)
4256 {
4257 struct dynamic_prop_list *node_copy;
4258
4259 node_copy = obstack_copy (objfile_obstack, *node_ptr,
4260 sizeof (struct dynamic_prop_list));
4261 node_copy->prop = (*node_ptr)->prop;
4262 *node_ptr = node_copy;
4263
4264 node_ptr = &node_copy->next;
4265 }
4266
4267 return copy;
4268 }
4269
4270 /* Recursively copy (deep copy) TYPE, if it is associated with
4271 OBJFILE. Return a new type allocated using malloc, a saved type if
4272 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4273 not associated with OBJFILE. */
4274
4275 struct type *
4276 copy_type_recursive (struct objfile *objfile,
4277 struct type *type,
4278 htab_t copied_types)
4279 {
4280 struct type_pair *stored, pair;
4281 void **slot;
4282 struct type *new_type;
4283
4284 if (! TYPE_OBJFILE_OWNED (type))
4285 return type;
4286
4287 /* This type shouldn't be pointing to any types in other objfiles;
4288 if it did, the type might disappear unexpectedly. */
4289 gdb_assert (TYPE_OBJFILE (type) == objfile);
4290
4291 pair.old = type;
4292 slot = htab_find_slot (copied_types, &pair, INSERT);
4293 if (*slot != NULL)
4294 return ((struct type_pair *) *slot)->newobj;
4295
4296 new_type = alloc_type_arch (get_type_arch (type));
4297
4298 /* We must add the new type to the hash table immediately, in case
4299 we encounter this type again during a recursive call below. */
4300 stored
4301 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4302 stored->old = type;
4303 stored->newobj = new_type;
4304 *slot = stored;
4305
4306 /* Copy the common fields of types. For the main type, we simply
4307 copy the entire thing and then update specific fields as needed. */
4308 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4309 TYPE_OBJFILE_OWNED (new_type) = 0;
4310 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4311
4312 if (TYPE_NAME (type))
4313 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4314 if (TYPE_TAG_NAME (type))
4315 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4316
4317 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4318 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4319
4320 /* Copy the fields. */
4321 if (TYPE_NFIELDS (type))
4322 {
4323 int i, nfields;
4324
4325 nfields = TYPE_NFIELDS (type);
4326 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4327 for (i = 0; i < nfields; i++)
4328 {
4329 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4330 TYPE_FIELD_ARTIFICIAL (type, i);
4331 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4332 if (TYPE_FIELD_TYPE (type, i))
4333 TYPE_FIELD_TYPE (new_type, i)
4334 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4335 copied_types);
4336 if (TYPE_FIELD_NAME (type, i))
4337 TYPE_FIELD_NAME (new_type, i) =
4338 xstrdup (TYPE_FIELD_NAME (type, i));
4339 switch (TYPE_FIELD_LOC_KIND (type, i))
4340 {
4341 case FIELD_LOC_KIND_BITPOS:
4342 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4343 TYPE_FIELD_BITPOS (type, i));
4344 break;
4345 case FIELD_LOC_KIND_ENUMVAL:
4346 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4347 TYPE_FIELD_ENUMVAL (type, i));
4348 break;
4349 case FIELD_LOC_KIND_PHYSADDR:
4350 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4351 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4352 break;
4353 case FIELD_LOC_KIND_PHYSNAME:
4354 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4355 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4356 i)));
4357 break;
4358 default:
4359 internal_error (__FILE__, __LINE__,
4360 _("Unexpected type field location kind: %d"),
4361 TYPE_FIELD_LOC_KIND (type, i));
4362 }
4363 }
4364 }
4365
4366 /* For range types, copy the bounds information. */
4367 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4368 {
4369 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4370 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4371 }
4372
4373 if (TYPE_DYN_PROP_LIST (type) != NULL)
4374 TYPE_DYN_PROP_LIST (new_type)
4375 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4376 TYPE_DYN_PROP_LIST (type));
4377
4378
4379 /* Copy pointers to other types. */
4380 if (TYPE_TARGET_TYPE (type))
4381 TYPE_TARGET_TYPE (new_type) =
4382 copy_type_recursive (objfile,
4383 TYPE_TARGET_TYPE (type),
4384 copied_types);
4385
4386 /* Maybe copy the type_specific bits.
4387
4388 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4389 base classes and methods. There's no fundamental reason why we
4390 can't, but at the moment it is not needed. */
4391
4392 switch (TYPE_SPECIFIC_FIELD (type))
4393 {
4394 case TYPE_SPECIFIC_NONE:
4395 break;
4396 case TYPE_SPECIFIC_FUNC:
4397 INIT_FUNC_SPECIFIC (new_type);
4398 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4399 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4400 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4401 break;
4402 case TYPE_SPECIFIC_FLOATFORMAT:
4403 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4404 break;
4405 case TYPE_SPECIFIC_CPLUS_STUFF:
4406 INIT_CPLUS_SPECIFIC (new_type);
4407 break;
4408 case TYPE_SPECIFIC_GNAT_STUFF:
4409 INIT_GNAT_SPECIFIC (new_type);
4410 break;
4411 case TYPE_SPECIFIC_SELF_TYPE:
4412 set_type_self_type (new_type,
4413 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4414 copied_types));
4415 break;
4416 default:
4417 gdb_assert_not_reached ("bad type_specific_kind");
4418 }
4419
4420 return new_type;
4421 }
4422
4423 /* Make a copy of the given TYPE, except that the pointer & reference
4424 types are not preserved.
4425
4426 This function assumes that the given type has an associated objfile.
4427 This objfile is used to allocate the new type. */
4428
4429 struct type *
4430 copy_type (const struct type *type)
4431 {
4432 struct type *new_type;
4433
4434 gdb_assert (TYPE_OBJFILE_OWNED (type));
4435
4436 new_type = alloc_type_copy (type);
4437 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4438 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4439 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4440 sizeof (struct main_type));
4441 if (TYPE_DYN_PROP_LIST (type) != NULL)
4442 TYPE_DYN_PROP_LIST (new_type)
4443 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4444 TYPE_DYN_PROP_LIST (type));
4445
4446 return new_type;
4447 }
4448 \f
4449 /* Helper functions to initialize architecture-specific types. */
4450
4451 /* Allocate a type structure associated with GDBARCH and set its
4452 CODE, LENGTH, and NAME fields. */
4453
4454 struct type *
4455 arch_type (struct gdbarch *gdbarch,
4456 enum type_code code, int length, char *name)
4457 {
4458 struct type *type;
4459
4460 type = alloc_type_arch (gdbarch);
4461 TYPE_CODE (type) = code;
4462 TYPE_LENGTH (type) = length;
4463
4464 if (name)
4465 TYPE_NAME (type) = xstrdup (name);
4466
4467 return type;
4468 }
4469
4470 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4471 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4472 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4473
4474 struct type *
4475 arch_integer_type (struct gdbarch *gdbarch,
4476 int bit, int unsigned_p, char *name)
4477 {
4478 struct type *t;
4479
4480 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4481 if (unsigned_p)
4482 TYPE_UNSIGNED (t) = 1;
4483 if (name && strcmp (name, "char") == 0)
4484 TYPE_NOSIGN (t) = 1;
4485
4486 return t;
4487 }
4488
4489 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4490 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4491 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4492
4493 struct type *
4494 arch_character_type (struct gdbarch *gdbarch,
4495 int bit, int unsigned_p, char *name)
4496 {
4497 struct type *t;
4498
4499 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4500 if (unsigned_p)
4501 TYPE_UNSIGNED (t) = 1;
4502
4503 return t;
4504 }
4505
4506 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4507 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4508 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4509
4510 struct type *
4511 arch_boolean_type (struct gdbarch *gdbarch,
4512 int bit, int unsigned_p, char *name)
4513 {
4514 struct type *t;
4515
4516 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4517 if (unsigned_p)
4518 TYPE_UNSIGNED (t) = 1;
4519
4520 return t;
4521 }
4522
4523 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4524 BIT is the type size in bits; if BIT equals -1, the size is
4525 determined by the floatformat. NAME is the type name. Set the
4526 TYPE_FLOATFORMAT from FLOATFORMATS. */
4527
4528 struct type *
4529 arch_float_type (struct gdbarch *gdbarch,
4530 int bit, char *name, const struct floatformat **floatformats)
4531 {
4532 struct type *t;
4533
4534 if (bit == -1)
4535 {
4536 gdb_assert (floatformats != NULL);
4537 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4538 bit = floatformats[0]->totalsize;
4539 }
4540 gdb_assert (bit >= 0);
4541
4542 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4543 TYPE_FLOATFORMAT (t) = floatformats;
4544 return t;
4545 }
4546
4547 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4548 NAME is the type name. TARGET_TYPE is the component float type. */
4549
4550 struct type *
4551 arch_complex_type (struct gdbarch *gdbarch,
4552 char *name, struct type *target_type)
4553 {
4554 struct type *t;
4555
4556 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4557 2 * TYPE_LENGTH (target_type), name);
4558 TYPE_TARGET_TYPE (t) = target_type;
4559 return t;
4560 }
4561
4562 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4563 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4564
4565 struct type *
4566 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4567 {
4568 int nfields = length * TARGET_CHAR_BIT;
4569 struct type *type;
4570
4571 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4572 TYPE_UNSIGNED (type) = 1;
4573 TYPE_NFIELDS (type) = nfields;
4574 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4575
4576 return type;
4577 }
4578
4579 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4580 position BITPOS is called NAME. */
4581
4582 void
4583 append_flags_type_flag (struct type *type, int bitpos, char *name)
4584 {
4585 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4586 gdb_assert (bitpos < TYPE_NFIELDS (type));
4587 gdb_assert (bitpos >= 0);
4588
4589 if (name)
4590 {
4591 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4592 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4593 }
4594 else
4595 {
4596 /* Don't show this field to the user. */
4597 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4598 }
4599 }
4600
4601 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4602 specified by CODE) associated with GDBARCH. NAME is the type name. */
4603
4604 struct type *
4605 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4606 {
4607 struct type *t;
4608
4609 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4610 t = arch_type (gdbarch, code, 0, NULL);
4611 TYPE_TAG_NAME (t) = name;
4612 INIT_CPLUS_SPECIFIC (t);
4613 return t;
4614 }
4615
4616 /* Add new field with name NAME and type FIELD to composite type T.
4617 Do not set the field's position or adjust the type's length;
4618 the caller should do so. Return the new field. */
4619
4620 struct field *
4621 append_composite_type_field_raw (struct type *t, char *name,
4622 struct type *field)
4623 {
4624 struct field *f;
4625
4626 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4627 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4628 sizeof (struct field) * TYPE_NFIELDS (t));
4629 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4630 memset (f, 0, sizeof f[0]);
4631 FIELD_TYPE (f[0]) = field;
4632 FIELD_NAME (f[0]) = name;
4633 return f;
4634 }
4635
4636 /* Add new field with name NAME and type FIELD to composite type T.
4637 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4638
4639 void
4640 append_composite_type_field_aligned (struct type *t, char *name,
4641 struct type *field, int alignment)
4642 {
4643 struct field *f = append_composite_type_field_raw (t, name, field);
4644
4645 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4646 {
4647 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4648 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4649 }
4650 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4651 {
4652 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4653 if (TYPE_NFIELDS (t) > 1)
4654 {
4655 SET_FIELD_BITPOS (f[0],
4656 (FIELD_BITPOS (f[-1])
4657 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4658 * TARGET_CHAR_BIT)));
4659
4660 if (alignment)
4661 {
4662 int left;
4663
4664 alignment *= TARGET_CHAR_BIT;
4665 left = FIELD_BITPOS (f[0]) % alignment;
4666
4667 if (left)
4668 {
4669 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4670 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4671 }
4672 }
4673 }
4674 }
4675 }
4676
4677 /* Add new field with name NAME and type FIELD to composite type T. */
4678
4679 void
4680 append_composite_type_field (struct type *t, char *name,
4681 struct type *field)
4682 {
4683 append_composite_type_field_aligned (t, name, field, 0);
4684 }
4685
4686 static struct gdbarch_data *gdbtypes_data;
4687
4688 const struct builtin_type *
4689 builtin_type (struct gdbarch *gdbarch)
4690 {
4691 return gdbarch_data (gdbarch, gdbtypes_data);
4692 }
4693
4694 static void *
4695 gdbtypes_post_init (struct gdbarch *gdbarch)
4696 {
4697 struct builtin_type *builtin_type
4698 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4699
4700 /* Basic types. */
4701 builtin_type->builtin_void
4702 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4703 builtin_type->builtin_char
4704 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4705 !gdbarch_char_signed (gdbarch), "char");
4706 builtin_type->builtin_signed_char
4707 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4708 0, "signed char");
4709 builtin_type->builtin_unsigned_char
4710 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4711 1, "unsigned char");
4712 builtin_type->builtin_short
4713 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4714 0, "short");
4715 builtin_type->builtin_unsigned_short
4716 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4717 1, "unsigned short");
4718 builtin_type->builtin_int
4719 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4720 0, "int");
4721 builtin_type->builtin_unsigned_int
4722 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4723 1, "unsigned int");
4724 builtin_type->builtin_long
4725 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4726 0, "long");
4727 builtin_type->builtin_unsigned_long
4728 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4729 1, "unsigned long");
4730 builtin_type->builtin_long_long
4731 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4732 0, "long long");
4733 builtin_type->builtin_unsigned_long_long
4734 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4735 1, "unsigned long long");
4736 builtin_type->builtin_float
4737 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4738 "float", gdbarch_float_format (gdbarch));
4739 builtin_type->builtin_double
4740 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4741 "double", gdbarch_double_format (gdbarch));
4742 builtin_type->builtin_long_double
4743 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4744 "long double", gdbarch_long_double_format (gdbarch));
4745 builtin_type->builtin_complex
4746 = arch_complex_type (gdbarch, "complex",
4747 builtin_type->builtin_float);
4748 builtin_type->builtin_double_complex
4749 = arch_complex_type (gdbarch, "double complex",
4750 builtin_type->builtin_double);
4751 builtin_type->builtin_string
4752 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4753 builtin_type->builtin_bool
4754 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4755
4756 /* The following three are about decimal floating point types, which
4757 are 32-bits, 64-bits and 128-bits respectively. */
4758 builtin_type->builtin_decfloat
4759 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4760 builtin_type->builtin_decdouble
4761 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4762 builtin_type->builtin_declong
4763 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4764
4765 /* "True" character types. */
4766 builtin_type->builtin_true_char
4767 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4768 builtin_type->builtin_true_unsigned_char
4769 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4770
4771 /* Fixed-size integer types. */
4772 builtin_type->builtin_int0
4773 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4774 builtin_type->builtin_int8
4775 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4776 builtin_type->builtin_uint8
4777 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4778 builtin_type->builtin_int16
4779 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4780 builtin_type->builtin_uint16
4781 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4782 builtin_type->builtin_int32
4783 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4784 builtin_type->builtin_uint32
4785 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4786 builtin_type->builtin_int64
4787 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4788 builtin_type->builtin_uint64
4789 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4790 builtin_type->builtin_int128
4791 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4792 builtin_type->builtin_uint128
4793 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4794 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4795 TYPE_INSTANCE_FLAG_NOTTEXT;
4796 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4797 TYPE_INSTANCE_FLAG_NOTTEXT;
4798
4799 /* Wide character types. */
4800 builtin_type->builtin_char16
4801 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4802 builtin_type->builtin_char32
4803 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4804
4805
4806 /* Default data/code pointer types. */
4807 builtin_type->builtin_data_ptr
4808 = lookup_pointer_type (builtin_type->builtin_void);
4809 builtin_type->builtin_func_ptr
4810 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4811 builtin_type->builtin_func_func
4812 = lookup_function_type (builtin_type->builtin_func_ptr);
4813
4814 /* This type represents a GDB internal function. */
4815 builtin_type->internal_fn
4816 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4817 "<internal function>");
4818
4819 /* This type represents an xmethod. */
4820 builtin_type->xmethod
4821 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4822
4823 return builtin_type;
4824 }
4825
4826 /* This set of objfile-based types is intended to be used by symbol
4827 readers as basic types. */
4828
4829 static const struct objfile_data *objfile_type_data;
4830
4831 const struct objfile_type *
4832 objfile_type (struct objfile *objfile)
4833 {
4834 struct gdbarch *gdbarch;
4835 struct objfile_type *objfile_type
4836 = objfile_data (objfile, objfile_type_data);
4837
4838 if (objfile_type)
4839 return objfile_type;
4840
4841 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4842 1, struct objfile_type);
4843
4844 /* Use the objfile architecture to determine basic type properties. */
4845 gdbarch = get_objfile_arch (objfile);
4846
4847 /* Basic types. */
4848 objfile_type->builtin_void
4849 = init_type (TYPE_CODE_VOID, 1,
4850 0,
4851 "void", objfile);
4852
4853 objfile_type->builtin_char
4854 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4855 (TYPE_FLAG_NOSIGN
4856 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4857 "char", objfile);
4858 objfile_type->builtin_signed_char
4859 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4860 0,
4861 "signed char", objfile);
4862 objfile_type->builtin_unsigned_char
4863 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4864 TYPE_FLAG_UNSIGNED,
4865 "unsigned char", objfile);
4866 objfile_type->builtin_short
4867 = init_type (TYPE_CODE_INT,
4868 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4869 0, "short", objfile);
4870 objfile_type->builtin_unsigned_short
4871 = init_type (TYPE_CODE_INT,
4872 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4873 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4874 objfile_type->builtin_int
4875 = init_type (TYPE_CODE_INT,
4876 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4877 0, "int", objfile);
4878 objfile_type->builtin_unsigned_int
4879 = init_type (TYPE_CODE_INT,
4880 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4881 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4882 objfile_type->builtin_long
4883 = init_type (TYPE_CODE_INT,
4884 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4885 0, "long", objfile);
4886 objfile_type->builtin_unsigned_long
4887 = init_type (TYPE_CODE_INT,
4888 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4889 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4890 objfile_type->builtin_long_long
4891 = init_type (TYPE_CODE_INT,
4892 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4893 0, "long long", objfile);
4894 objfile_type->builtin_unsigned_long_long
4895 = init_type (TYPE_CODE_INT,
4896 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4897 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4898
4899 objfile_type->builtin_float
4900 = init_type (TYPE_CODE_FLT,
4901 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4902 0, "float", objfile);
4903 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4904 = gdbarch_float_format (gdbarch);
4905 objfile_type->builtin_double
4906 = init_type (TYPE_CODE_FLT,
4907 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4908 0, "double", objfile);
4909 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4910 = gdbarch_double_format (gdbarch);
4911 objfile_type->builtin_long_double
4912 = init_type (TYPE_CODE_FLT,
4913 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4914 0, "long double", objfile);
4915 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4916 = gdbarch_long_double_format (gdbarch);
4917
4918 /* This type represents a type that was unrecognized in symbol read-in. */
4919 objfile_type->builtin_error
4920 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4921
4922 /* The following set of types is used for symbols with no
4923 debug information. */
4924 objfile_type->nodebug_text_symbol
4925 = init_type (TYPE_CODE_FUNC, 1, 0,
4926 "<text variable, no debug info>", objfile);
4927 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4928 = objfile_type->builtin_int;
4929 objfile_type->nodebug_text_gnu_ifunc_symbol
4930 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4931 "<text gnu-indirect-function variable, no debug info>",
4932 objfile);
4933 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4934 = objfile_type->nodebug_text_symbol;
4935 objfile_type->nodebug_got_plt_symbol
4936 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4937 "<text from jump slot in .got.plt, no debug info>",
4938 objfile);
4939 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4940 = objfile_type->nodebug_text_symbol;
4941 objfile_type->nodebug_data_symbol
4942 = init_type (TYPE_CODE_INT,
4943 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4944 "<data variable, no debug info>", objfile);
4945 objfile_type->nodebug_unknown_symbol
4946 = init_type (TYPE_CODE_INT, 1, 0,
4947 "<variable (not text or data), no debug info>", objfile);
4948 objfile_type->nodebug_tls_symbol
4949 = init_type (TYPE_CODE_INT,
4950 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4951 "<thread local variable, no debug info>", objfile);
4952
4953 /* NOTE: on some targets, addresses and pointers are not necessarily
4954 the same.
4955
4956 The upshot is:
4957 - gdb's `struct type' always describes the target's
4958 representation.
4959 - gdb's `struct value' objects should always hold values in
4960 target form.
4961 - gdb's CORE_ADDR values are addresses in the unified virtual
4962 address space that the assembler and linker work with. Thus,
4963 since target_read_memory takes a CORE_ADDR as an argument, it
4964 can access any memory on the target, even if the processor has
4965 separate code and data address spaces.
4966
4967 In this context, objfile_type->builtin_core_addr is a bit odd:
4968 it's a target type for a value the target will never see. It's
4969 only used to hold the values of (typeless) linker symbols, which
4970 are indeed in the unified virtual address space. */
4971
4972 objfile_type->builtin_core_addr
4973 = init_type (TYPE_CODE_INT,
4974 gdbarch_addr_bit (gdbarch) / 8,
4975 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4976
4977 set_objfile_data (objfile, objfile_type_data, objfile_type);
4978 return objfile_type;
4979 }
4980
4981 extern initialize_file_ftype _initialize_gdbtypes;
4982
4983 void
4984 _initialize_gdbtypes (void)
4985 {
4986 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4987 objfile_type_data = register_objfile_data ();
4988
4989 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4990 _("Set debugging of C++ overloading."),
4991 _("Show debugging of C++ overloading."),
4992 _("When enabled, ranking of the "
4993 "functions is displayed."),
4994 NULL,
4995 show_overload_debug,
4996 &setdebuglist, &showdebuglist);
4997
4998 /* Add user knob for controlling resolution of opaque types. */
4999 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5000 &opaque_type_resolution,
5001 _("Set resolution of opaque struct/class/union"
5002 " types (if set before loading symbols)."),
5003 _("Show resolution of opaque struct/class/union"
5004 " types (if set before loading symbols)."),
5005 NULL, NULL,
5006 show_opaque_type_resolution,
5007 &setlist, &showlist);
5008
5009 /* Add an option to permit non-strict type checking. */
5010 add_setshow_boolean_cmd ("type", class_support,
5011 &strict_type_checking,
5012 _("Set strict type checking."),
5013 _("Show strict type checking."),
5014 NULL, NULL,
5015 show_strict_type_checking,
5016 &setchecklist, &showchecklist);
5017 }
This page took 0.158721 seconds and 4 git commands to generate.