4bbfc753889a057bcd219230391d268323be3db4
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259 static struct type *
260 alloc_type_instance (struct type *oldtype)
261 {
262 struct type *type;
263
264 /* Allocate the structure. */
265
266 if (! TYPE_OBJFILE_OWNED (oldtype))
267 type = XCNEW (struct type);
268 else
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
276 return type;
277 }
278
279 /* Clear all remnants of the previous type at TYPE, in preparation for
280 replacing it with something else. Preserve owner information. */
281
282 static void
283 smash_type (struct type *type)
284 {
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298 }
299
300 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305 struct type *
306 make_pointer_type (struct type *type, struct type **typeptr)
307 {
308 struct type *ntype; /* New type */
309 struct type *chain;
310
311 ntype = TYPE_POINTER_TYPE (type);
312
313 if (ntype)
314 {
315 if (typeptr == 0)
316 return ntype; /* Don't care about alloc,
317 and have new type. */
318 else if (*typeptr == 0)
319 {
320 *typeptr = ntype; /* Tracking alloc, and have new type. */
321 return ntype;
322 }
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
327 ntype = alloc_type_copy (type);
328 if (typeptr)
329 *typeptr = ntype;
330 }
331 else /* We have storage, but need to reset it. */
332 {
333 ntype = *typeptr;
334 chain = TYPE_CHAIN (ntype);
335 smash_type (ntype);
336 TYPE_CHAIN (ntype) = chain;
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
342 /* FIXME! Assumes the machine has only one representation for pointers! */
343
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
348 /* Mark pointers as unsigned. The target converts between pointers
349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
350 gdbarch_address_to_pointer. */
351 TYPE_UNSIGNED (ntype) = 1;
352
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
361 return ntype;
362 }
363
364 /* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367 struct type *
368 lookup_pointer_type (struct type *type)
369 {
370 return make_pointer_type (type, (struct type **) 0);
371 }
372
373 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
377
378 struct type *
379 make_reference_type (struct type *type, struct type **typeptr)
380 {
381 struct type *ntype; /* New type */
382 struct type *chain;
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
386 if (ntype)
387 {
388 if (typeptr == 0)
389 return ntype; /* Don't care about alloc,
390 and have new type. */
391 else if (*typeptr == 0)
392 {
393 *typeptr = ntype; /* Tracking alloc, and have new type. */
394 return ntype;
395 }
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
400 ntype = alloc_type_copy (type);
401 if (typeptr)
402 *typeptr = ntype;
403 }
404 else /* We have storage, but need to reset it. */
405 {
406 ntype = *typeptr;
407 chain = TYPE_CHAIN (ntype);
408 smash_type (ntype);
409 TYPE_CHAIN (ntype) = chain;
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
418
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
421 TYPE_CODE (ntype) = TYPE_CODE_REF;
422
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
434 return ntype;
435 }
436
437 /* Same as above, but caller doesn't care about memory allocation
438 details. */
439
440 struct type *
441 lookup_reference_type (struct type *type)
442 {
443 return make_reference_type (type, (struct type **) 0);
444 }
445
446 /* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
449 function type we return. We allocate new memory if needed. */
450
451 struct type *
452 make_function_type (struct type *type, struct type **typeptr)
453 {
454 struct type *ntype; /* New type */
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
458 ntype = alloc_type_copy (type);
459 if (typeptr)
460 *typeptr = ntype;
461 }
462 else /* We have storage, but need to reset it. */
463 {
464 ntype = *typeptr;
465 smash_type (ntype);
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
472
473 INIT_FUNC_SPECIFIC (ntype);
474
475 return ntype;
476 }
477
478 /* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481 struct type *
482 lookup_function_type (struct type *type)
483 {
484 return make_function_type (type, (struct type **) 0);
485 }
486
487 /* Given a type TYPE and argument types, return the appropriate
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
490
491 struct type *
492 lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495 {
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
499 if (nparams > 0)
500 {
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
514 }
515
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522 }
523
524 /* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
526
527 int
528 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
529 {
530 int type_flags;
531
532 /* Check for known address space delimiters. */
533 if (!strcmp (space_identifier, "code"))
534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
535 else if (!strcmp (space_identifier, "data"))
536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
541 return type_flags;
542 else
543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
544 }
545
546 /* Identify address space identifier by integer flag as defined in
547 gdbtypes.h -- return the string version of the adress space name. */
548
549 const char *
550 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
551 {
552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
553 return "code";
554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
555 return "data";
556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
559 else
560 return NULL;
561 }
562
563 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
567
568 static struct type *
569 make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
571 {
572 struct type *ntype;
573
574 ntype = type;
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
582
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
598
599 /* Pointers or references to the original type are not relevant to
600 the new type. */
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
603
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
610
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
614 return ntype;
615 }
616
617 /* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
625
626 struct type *
627 make_type_with_address_space (struct type *type, int space_flag)
628 {
629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636 }
637
638 /* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
643
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
649
650 struct type *
651 make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
654 {
655 struct type *ntype; /* New type */
656
657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
660
661 if (cnst)
662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
663
664 if (voltl)
665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
666
667 if (typeptr && *typeptr != NULL)
668 {
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
682 }
683
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
686
687 if (typeptr != NULL)
688 *typeptr = ntype;
689
690 return ntype;
691 }
692
693 /* Make a 'restrict'-qualified version of TYPE. */
694
695 struct type *
696 make_restrict_type (struct type *type)
697 {
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702 }
703
704 /* Make a type without const, volatile, or restrict. */
705
706 struct type *
707 make_unqualified_type (struct type *type)
708 {
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715 }
716
717 /* Make a '_Atomic'-qualified version of TYPE. */
718
719 struct type *
720 make_atomic_type (struct type *type)
721 {
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726 }
727
728 /* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
731
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
737
738 void
739 replace_type (struct type *ntype, struct type *type)
740 {
741 struct type *chain;
742
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
750
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
753 chain = ntype;
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
768
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
772 }
773
774 /* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779 struct type *
780 lookup_memberptr_type (struct type *type, struct type *domain)
781 {
782 struct type *mtype;
783
784 mtype = alloc_type_copy (type);
785 smash_to_memberptr_type (mtype, domain, type);
786 return mtype;
787 }
788
789 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791 struct type *
792 lookup_methodptr_type (struct type *to_type)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (to_type);
797 smash_to_methodptr_type (mtype, to_type);
798 return mtype;
799 }
800
801 /* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
806
807 struct type *
808 allocate_stub_method (struct type *type)
809 {
810 struct type *mtype;
811
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
816 TYPE_TARGET_TYPE (mtype) = type;
817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
818 return mtype;
819 }
820
821 /* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
823
824 struct type *
825 create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
828 {
829 if (result_type == NULL)
830 result_type = alloc_type_copy (index_type);
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
833 if (TYPE_STUB (index_type))
834 TYPE_TARGET_STUB (result_type) = 1;
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
837
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
842
843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
844 TYPE_UNSIGNED (result_type) = 1;
845
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
853 return result_type;
854 }
855
856 /* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866 struct type *
867 create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869 {
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881 }
882
883 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886 static int
887 has_static_range (const struct range_bounds *bounds)
888 {
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891 }
892
893
894 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
897
898 int
899 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
900 {
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
912 entries. */
913 int i;
914
915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
922 }
923
924 /* Set unsigned indicator if warranted. */
925 if (*lowp >= 0)
926 {
927 TYPE_UNSIGNED (type) = 1;
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
946 *highp = -*lowp - 1;
947 return 0;
948 }
949 /* ... fall through for unsigned ints ... */
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961 }
962
963 /* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
967 Return 1 if the operation was successful. Return zero otherwise,
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977 int
978 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979 {
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005 }
1006
1007 /* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
1020
1021 struct type *
1022 create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
1026 {
1027 if (result_type == NULL)
1028 result_type = alloc_type_copy (range_type);
1029
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
1051 else
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1065 TYPE_INDEX_TYPE (result_type) = range_type;
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1068
1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1070 if (TYPE_LENGTH (result_type) == 0)
1071 TYPE_TARGET_STUB (result_type) = 1;
1072
1073 return result_type;
1074 }
1075
1076 /* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079 struct type *
1080 create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083 {
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086 }
1087
1088 struct type *
1089 lookup_array_range_type (struct type *element_type,
1090 LONGEST low_bound, LONGEST high_bound)
1091 {
1092 struct gdbarch *gdbarch = get_type_arch (element_type);
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1096
1097 return create_array_type (NULL, element_type, range_type);
1098 }
1099
1100 /* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
1111
1112 struct type *
1113 create_string_type (struct type *result_type,
1114 struct type *string_char_type,
1115 struct type *range_type)
1116 {
1117 result_type = create_array_type (result_type,
1118 string_char_type,
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1121 return result_type;
1122 }
1123
1124 struct type *
1125 lookup_string_range_type (struct type *string_char_type,
1126 LONGEST low_bound, LONGEST high_bound)
1127 {
1128 struct type *result_type;
1129
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134 }
1135
1136 struct type *
1137 create_set_type (struct type *result_type, struct type *domain_type)
1138 {
1139 if (result_type == NULL)
1140 result_type = alloc_type_copy (domain_type);
1141
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1145
1146 if (!TYPE_STUB (domain_type))
1147 {
1148 LONGEST low_bound, high_bound, bit_length;
1149
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1155 if (low_bound >= 0)
1156 TYPE_UNSIGNED (result_type) = 1;
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
1160 return result_type;
1161 }
1162
1163 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166 void
1167 make_vector_type (struct type *array_type)
1168 {
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
1186 TYPE_VECTOR (array_type) = 1;
1187 }
1188
1189 struct type *
1190 init_vector_type (struct type *elt_type, int n)
1191 {
1192 struct type *array_type;
1193
1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1195 make_vector_type (array_type);
1196 return array_type;
1197 }
1198
1199 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205 struct type *
1206 internal_type_self_type (struct type *type)
1207 {
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
1212 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1213 return NULL;
1214 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1215 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1216 case TYPE_CODE_METHOD:
1217 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1218 return NULL;
1219 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1220 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1221 default:
1222 gdb_assert_not_reached ("bad type");
1223 }
1224 }
1225
1226 /* Set the type of the class that TYPE belongs to.
1227 In c++ this is the class of "this".
1228 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1229 TYPE_CODE_METHOD. */
1230
1231 void
1232 set_type_self_type (struct type *type, struct type *self_type)
1233 {
1234 switch (TYPE_CODE (type))
1235 {
1236 case TYPE_CODE_METHODPTR:
1237 case TYPE_CODE_MEMBERPTR:
1238 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1239 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1240 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1241 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1242 break;
1243 case TYPE_CODE_METHOD:
1244 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1245 INIT_FUNC_SPECIFIC (type);
1246 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1247 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1248 break;
1249 default:
1250 gdb_assert_not_reached ("bad type");
1251 }
1252 }
1253
1254 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1255 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1256 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1257 TYPE doesn't include the offset (that's the value of the MEMBER
1258 itself), but does include the structure type into which it points
1259 (for some reason).
1260
1261 When "smashing" the type, we preserve the objfile that the old type
1262 pointed to, since we aren't changing where the type is actually
1263 allocated. */
1264
1265 void
1266 smash_to_memberptr_type (struct type *type, struct type *self_type,
1267 struct type *to_type)
1268 {
1269 smash_type (type);
1270 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1271 TYPE_TARGET_TYPE (type) = to_type;
1272 set_type_self_type (type, self_type);
1273 /* Assume that a data member pointer is the same size as a normal
1274 pointer. */
1275 TYPE_LENGTH (type)
1276 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1277 }
1278
1279 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1280
1281 When "smashing" the type, we preserve the objfile that the old type
1282 pointed to, since we aren't changing where the type is actually
1283 allocated. */
1284
1285 void
1286 smash_to_methodptr_type (struct type *type, struct type *to_type)
1287 {
1288 smash_type (type);
1289 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1290 TYPE_TARGET_TYPE (type) = to_type;
1291 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1292 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1293 }
1294
1295 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1296 METHOD just means `function that gets an extra "this" argument'.
1297
1298 When "smashing" the type, we preserve the objfile that the old type
1299 pointed to, since we aren't changing where the type is actually
1300 allocated. */
1301
1302 void
1303 smash_to_method_type (struct type *type, struct type *self_type,
1304 struct type *to_type, struct field *args,
1305 int nargs, int varargs)
1306 {
1307 smash_type (type);
1308 TYPE_CODE (type) = TYPE_CODE_METHOD;
1309 TYPE_TARGET_TYPE (type) = to_type;
1310 set_type_self_type (type, self_type);
1311 TYPE_FIELDS (type) = args;
1312 TYPE_NFIELDS (type) = nargs;
1313 if (varargs)
1314 TYPE_VARARGS (type) = 1;
1315 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1316 }
1317
1318 /* Return a typename for a struct/union/enum type without "struct ",
1319 "union ", or "enum ". If the type has a NULL name, return NULL. */
1320
1321 const char *
1322 type_name_no_tag (const struct type *type)
1323 {
1324 if (TYPE_TAG_NAME (type) != NULL)
1325 return TYPE_TAG_NAME (type);
1326
1327 /* Is there code which expects this to return the name if there is
1328 no tag name? My guess is that this is mainly used for C++ in
1329 cases where the two will always be the same. */
1330 return TYPE_NAME (type);
1331 }
1332
1333 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1334 Since GCC PR debug/47510 DWARF provides associated information to detect the
1335 anonymous class linkage name from its typedef.
1336
1337 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1338 apply it itself. */
1339
1340 const char *
1341 type_name_no_tag_or_error (struct type *type)
1342 {
1343 struct type *saved_type = type;
1344 const char *name;
1345 struct objfile *objfile;
1346
1347 CHECK_TYPEDEF (type);
1348
1349 name = type_name_no_tag (type);
1350 if (name != NULL)
1351 return name;
1352
1353 name = type_name_no_tag (saved_type);
1354 objfile = TYPE_OBJFILE (saved_type);
1355 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1356 name ? name : "<anonymous>",
1357 objfile ? objfile_name (objfile) : "<arch>");
1358 }
1359
1360 /* Lookup a typedef or primitive type named NAME, visible in lexical
1361 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1362 suitably defined. */
1363
1364 struct type *
1365 lookup_typename (const struct language_defn *language,
1366 struct gdbarch *gdbarch, const char *name,
1367 const struct block *block, int noerr)
1368 {
1369 struct symbol *sym;
1370 struct type *type;
1371
1372 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1373 language->la_language, NULL);
1374 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1375 return SYMBOL_TYPE (sym);
1376
1377 if (noerr)
1378 return NULL;
1379 error (_("No type named %s."), name);
1380 }
1381
1382 struct type *
1383 lookup_unsigned_typename (const struct language_defn *language,
1384 struct gdbarch *gdbarch, const char *name)
1385 {
1386 char *uns = alloca (strlen (name) + 10);
1387
1388 strcpy (uns, "unsigned ");
1389 strcpy (uns + 9, name);
1390 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1391 }
1392
1393 struct type *
1394 lookup_signed_typename (const struct language_defn *language,
1395 struct gdbarch *gdbarch, const char *name)
1396 {
1397 struct type *t;
1398 char *uns = alloca (strlen (name) + 8);
1399
1400 strcpy (uns, "signed ");
1401 strcpy (uns + 7, name);
1402 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1403 /* If we don't find "signed FOO" just try again with plain "FOO". */
1404 if (t != NULL)
1405 return t;
1406 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1407 }
1408
1409 /* Lookup a structure type named "struct NAME",
1410 visible in lexical block BLOCK. */
1411
1412 struct type *
1413 lookup_struct (const char *name, const struct block *block)
1414 {
1415 struct symbol *sym;
1416
1417 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1418
1419 if (sym == NULL)
1420 {
1421 error (_("No struct type named %s."), name);
1422 }
1423 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1424 {
1425 error (_("This context has class, union or enum %s, not a struct."),
1426 name);
1427 }
1428 return (SYMBOL_TYPE (sym));
1429 }
1430
1431 /* Lookup a union type named "union NAME",
1432 visible in lexical block BLOCK. */
1433
1434 struct type *
1435 lookup_union (const char *name, const struct block *block)
1436 {
1437 struct symbol *sym;
1438 struct type *t;
1439
1440 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1441
1442 if (sym == NULL)
1443 error (_("No union type named %s."), name);
1444
1445 t = SYMBOL_TYPE (sym);
1446
1447 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1448 return t;
1449
1450 /* If we get here, it's not a union. */
1451 error (_("This context has class, struct or enum %s, not a union."),
1452 name);
1453 }
1454
1455 /* Lookup an enum type named "enum NAME",
1456 visible in lexical block BLOCK. */
1457
1458 struct type *
1459 lookup_enum (const char *name, const struct block *block)
1460 {
1461 struct symbol *sym;
1462
1463 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1464 if (sym == NULL)
1465 {
1466 error (_("No enum type named %s."), name);
1467 }
1468 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1469 {
1470 error (_("This context has class, struct or union %s, not an enum."),
1471 name);
1472 }
1473 return (SYMBOL_TYPE (sym));
1474 }
1475
1476 /* Lookup a template type named "template NAME<TYPE>",
1477 visible in lexical block BLOCK. */
1478
1479 struct type *
1480 lookup_template_type (char *name, struct type *type,
1481 const struct block *block)
1482 {
1483 struct symbol *sym;
1484 char *nam = (char *)
1485 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1486
1487 strcpy (nam, name);
1488 strcat (nam, "<");
1489 strcat (nam, TYPE_NAME (type));
1490 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1491
1492 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1493
1494 if (sym == NULL)
1495 {
1496 error (_("No template type named %s."), name);
1497 }
1498 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1499 {
1500 error (_("This context has class, union or enum %s, not a struct."),
1501 name);
1502 }
1503 return (SYMBOL_TYPE (sym));
1504 }
1505
1506 /* Given a type TYPE, lookup the type of the component of type named
1507 NAME.
1508
1509 TYPE can be either a struct or union, or a pointer or reference to
1510 a struct or union. If it is a pointer or reference, its target
1511 type is automatically used. Thus '.' and '->' are interchangable,
1512 as specified for the definitions of the expression element types
1513 STRUCTOP_STRUCT and STRUCTOP_PTR.
1514
1515 If NOERR is nonzero, return zero if NAME is not suitably defined.
1516 If NAME is the name of a baseclass type, return that type. */
1517
1518 struct type *
1519 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1520 {
1521 int i;
1522 char *type_name;
1523
1524 for (;;)
1525 {
1526 CHECK_TYPEDEF (type);
1527 if (TYPE_CODE (type) != TYPE_CODE_PTR
1528 && TYPE_CODE (type) != TYPE_CODE_REF)
1529 break;
1530 type = TYPE_TARGET_TYPE (type);
1531 }
1532
1533 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1534 && TYPE_CODE (type) != TYPE_CODE_UNION)
1535 {
1536 type_name = type_to_string (type);
1537 make_cleanup (xfree, type_name);
1538 error (_("Type %s is not a structure or union type."), type_name);
1539 }
1540
1541 #if 0
1542 /* FIXME: This change put in by Michael seems incorrect for the case
1543 where the structure tag name is the same as the member name.
1544 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1545 foo; } bell;" Disabled by fnf. */
1546 {
1547 char *type_name;
1548
1549 type_name = type_name_no_tag (type);
1550 if (type_name != NULL && strcmp (type_name, name) == 0)
1551 return type;
1552 }
1553 #endif
1554
1555 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1556 {
1557 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1558
1559 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1560 {
1561 return TYPE_FIELD_TYPE (type, i);
1562 }
1563 else if (!t_field_name || *t_field_name == '\0')
1564 {
1565 struct type *subtype
1566 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1567
1568 if (subtype != NULL)
1569 return subtype;
1570 }
1571 }
1572
1573 /* OK, it's not in this class. Recursively check the baseclasses. */
1574 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1575 {
1576 struct type *t;
1577
1578 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1579 if (t != NULL)
1580 {
1581 return t;
1582 }
1583 }
1584
1585 if (noerr)
1586 {
1587 return NULL;
1588 }
1589
1590 type_name = type_to_string (type);
1591 make_cleanup (xfree, type_name);
1592 error (_("Type %s has no component named %s."), type_name, name);
1593 }
1594
1595 /* Store in *MAX the largest number representable by unsigned integer type
1596 TYPE. */
1597
1598 void
1599 get_unsigned_type_max (struct type *type, ULONGEST *max)
1600 {
1601 unsigned int n;
1602
1603 CHECK_TYPEDEF (type);
1604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1605 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1606
1607 /* Written this way to avoid overflow. */
1608 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1609 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1610 }
1611
1612 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1613 signed integer type TYPE. */
1614
1615 void
1616 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1617 {
1618 unsigned int n;
1619
1620 CHECK_TYPEDEF (type);
1621 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1622 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1623
1624 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1625 *min = -((ULONGEST) 1 << (n - 1));
1626 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1627 }
1628
1629 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1630 cplus_stuff.vptr_fieldno.
1631
1632 cplus_stuff is initialized to cplus_struct_default which does not
1633 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1634 designated initializers). We cope with that here. */
1635
1636 int
1637 internal_type_vptr_fieldno (struct type *type)
1638 {
1639 CHECK_TYPEDEF (type);
1640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1641 || TYPE_CODE (type) == TYPE_CODE_UNION);
1642 if (!HAVE_CPLUS_STRUCT (type))
1643 return -1;
1644 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1645 }
1646
1647 /* Set the value of cplus_stuff.vptr_fieldno. */
1648
1649 void
1650 set_type_vptr_fieldno (struct type *type, int fieldno)
1651 {
1652 CHECK_TYPEDEF (type);
1653 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1654 || TYPE_CODE (type) == TYPE_CODE_UNION);
1655 if (!HAVE_CPLUS_STRUCT (type))
1656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1657 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1658 }
1659
1660 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1661 cplus_stuff.vptr_basetype. */
1662
1663 struct type *
1664 internal_type_vptr_basetype (struct type *type)
1665 {
1666 CHECK_TYPEDEF (type);
1667 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 || TYPE_CODE (type) == TYPE_CODE_UNION);
1669 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1670 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1671 }
1672
1673 /* Set the value of cplus_stuff.vptr_basetype. */
1674
1675 void
1676 set_type_vptr_basetype (struct type *type, struct type *basetype)
1677 {
1678 CHECK_TYPEDEF (type);
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (type) == TYPE_CODE_UNION);
1681 if (!HAVE_CPLUS_STRUCT (type))
1682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1683 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1684 }
1685
1686 /* Lookup the vptr basetype/fieldno values for TYPE.
1687 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1688 vptr_fieldno. Also, if found and basetype is from the same objfile,
1689 cache the results.
1690 If not found, return -1 and ignore BASETYPEP.
1691 Callers should be aware that in some cases (for example,
1692 the type or one of its baseclasses is a stub type and we are
1693 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1694 this function will not be able to find the
1695 virtual function table pointer, and vptr_fieldno will remain -1 and
1696 vptr_basetype will remain NULL or incomplete. */
1697
1698 int
1699 get_vptr_fieldno (struct type *type, struct type **basetypep)
1700 {
1701 CHECK_TYPEDEF (type);
1702
1703 if (TYPE_VPTR_FIELDNO (type) < 0)
1704 {
1705 int i;
1706
1707 /* We must start at zero in case the first (and only) baseclass
1708 is virtual (and hence we cannot share the table pointer). */
1709 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1710 {
1711 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1712 int fieldno;
1713 struct type *basetype;
1714
1715 fieldno = get_vptr_fieldno (baseclass, &basetype);
1716 if (fieldno >= 0)
1717 {
1718 /* If the type comes from a different objfile we can't cache
1719 it, it may have a different lifetime. PR 2384 */
1720 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1721 {
1722 set_type_vptr_fieldno (type, fieldno);
1723 set_type_vptr_basetype (type, basetype);
1724 }
1725 if (basetypep)
1726 *basetypep = basetype;
1727 return fieldno;
1728 }
1729 }
1730
1731 /* Not found. */
1732 return -1;
1733 }
1734 else
1735 {
1736 if (basetypep)
1737 *basetypep = TYPE_VPTR_BASETYPE (type);
1738 return TYPE_VPTR_FIELDNO (type);
1739 }
1740 }
1741
1742 static void
1743 stub_noname_complaint (void)
1744 {
1745 complaint (&symfile_complaints, _("stub type has NULL name"));
1746 }
1747
1748 /* Worker for is_dynamic_type. */
1749
1750 static int
1751 is_dynamic_type_internal (struct type *type, int top_level)
1752 {
1753 type = check_typedef (type);
1754
1755 /* We only want to recognize references at the outermost level. */
1756 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1757 type = check_typedef (TYPE_TARGET_TYPE (type));
1758
1759 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1760 dynamic, even if the type itself is statically defined.
1761 From a user's point of view, this may appear counter-intuitive;
1762 but it makes sense in this context, because the point is to determine
1763 whether any part of the type needs to be resolved before it can
1764 be exploited. */
1765 if (TYPE_DATA_LOCATION (type) != NULL
1766 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1767 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1768 return 1;
1769
1770 switch (TYPE_CODE (type))
1771 {
1772 case TYPE_CODE_RANGE:
1773 {
1774 /* A range type is obviously dynamic if it has at least one
1775 dynamic bound. But also consider the range type to be
1776 dynamic when its subtype is dynamic, even if the bounds
1777 of the range type are static. It allows us to assume that
1778 the subtype of a static range type is also static. */
1779 return (!has_static_range (TYPE_RANGE_DATA (type))
1780 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1781 }
1782
1783 case TYPE_CODE_ARRAY:
1784 {
1785 gdb_assert (TYPE_NFIELDS (type) == 1);
1786
1787 /* The array is dynamic if either the bounds are dynamic,
1788 or the elements it contains have a dynamic contents. */
1789 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1790 return 1;
1791 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1792 }
1793
1794 case TYPE_CODE_STRUCT:
1795 case TYPE_CODE_UNION:
1796 {
1797 int i;
1798
1799 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1800 if (!field_is_static (&TYPE_FIELD (type, i))
1801 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1802 return 1;
1803 }
1804 break;
1805 }
1806
1807 return 0;
1808 }
1809
1810 /* See gdbtypes.h. */
1811
1812 int
1813 is_dynamic_type (struct type *type)
1814 {
1815 return is_dynamic_type_internal (type, 1);
1816 }
1817
1818 static struct type *resolve_dynamic_type_internal
1819 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1820
1821 /* Given a dynamic range type (dyn_range_type) and a stack of
1822 struct property_addr_info elements, return a static version
1823 of that type. */
1824
1825 static struct type *
1826 resolve_dynamic_range (struct type *dyn_range_type,
1827 struct property_addr_info *addr_stack)
1828 {
1829 CORE_ADDR value;
1830 struct type *static_range_type, *static_target_type;
1831 const struct dynamic_prop *prop;
1832 const struct dwarf2_locexpr_baton *baton;
1833 struct dynamic_prop low_bound, high_bound;
1834
1835 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1836
1837 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1838 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1839 {
1840 low_bound.kind = PROP_CONST;
1841 low_bound.data.const_val = value;
1842 }
1843 else
1844 {
1845 low_bound.kind = PROP_UNDEFINED;
1846 low_bound.data.const_val = 0;
1847 }
1848
1849 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1850 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1851 {
1852 high_bound.kind = PROP_CONST;
1853 high_bound.data.const_val = value;
1854
1855 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1856 high_bound.data.const_val
1857 = low_bound.data.const_val + high_bound.data.const_val - 1;
1858 }
1859 else
1860 {
1861 high_bound.kind = PROP_UNDEFINED;
1862 high_bound.data.const_val = 0;
1863 }
1864
1865 static_target_type
1866 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1867 addr_stack, 0);
1868 static_range_type = create_range_type (copy_type (dyn_range_type),
1869 static_target_type,
1870 &low_bound, &high_bound);
1871 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1872 return static_range_type;
1873 }
1874
1875 /* Resolves dynamic bound values of an array type TYPE to static ones.
1876 ADDR_STACK is a stack of struct property_addr_info to be used
1877 if needed during the dynamic resolution. */
1878
1879 static struct type *
1880 resolve_dynamic_array (struct type *type,
1881 struct property_addr_info *addr_stack)
1882 {
1883 CORE_ADDR value;
1884 struct type *elt_type;
1885 struct type *range_type;
1886 struct type *ary_dim;
1887
1888 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1889
1890 elt_type = type;
1891 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1892 range_type = resolve_dynamic_range (range_type, addr_stack);
1893
1894 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1895
1896 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1897 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
1898 else
1899 elt_type = TYPE_TARGET_TYPE (type);
1900
1901 return create_array_type_with_stride (copy_type (type),
1902 elt_type, range_type,
1903 TYPE_FIELD_BITSIZE (type, 0));
1904 }
1905
1906 /* Resolve dynamic bounds of members of the union TYPE to static
1907 bounds. ADDR_STACK is a stack of struct property_addr_info
1908 to be used if needed during the dynamic resolution. */
1909
1910 static struct type *
1911 resolve_dynamic_union (struct type *type,
1912 struct property_addr_info *addr_stack)
1913 {
1914 struct type *resolved_type;
1915 int i;
1916 unsigned int max_len = 0;
1917
1918 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1919
1920 resolved_type = copy_type (type);
1921 TYPE_FIELDS (resolved_type)
1922 = TYPE_ALLOC (resolved_type,
1923 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1924 memcpy (TYPE_FIELDS (resolved_type),
1925 TYPE_FIELDS (type),
1926 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1927 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1928 {
1929 struct type *t;
1930
1931 if (field_is_static (&TYPE_FIELD (type, i)))
1932 continue;
1933
1934 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1935 addr_stack, 0);
1936 TYPE_FIELD_TYPE (resolved_type, i) = t;
1937 if (TYPE_LENGTH (t) > max_len)
1938 max_len = TYPE_LENGTH (t);
1939 }
1940
1941 TYPE_LENGTH (resolved_type) = max_len;
1942 return resolved_type;
1943 }
1944
1945 /* Resolve dynamic bounds of members of the struct TYPE to static
1946 bounds. ADDR_STACK is a stack of struct property_addr_info to
1947 be used if needed during the dynamic resolution. */
1948
1949 static struct type *
1950 resolve_dynamic_struct (struct type *type,
1951 struct property_addr_info *addr_stack)
1952 {
1953 struct type *resolved_type;
1954 int i;
1955 unsigned resolved_type_bit_length = 0;
1956
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1958 gdb_assert (TYPE_NFIELDS (type) > 0);
1959
1960 resolved_type = copy_type (type);
1961 TYPE_FIELDS (resolved_type)
1962 = TYPE_ALLOC (resolved_type,
1963 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1964 memcpy (TYPE_FIELDS (resolved_type),
1965 TYPE_FIELDS (type),
1966 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1967 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1968 {
1969 unsigned new_bit_length;
1970 struct property_addr_info pinfo;
1971
1972 if (field_is_static (&TYPE_FIELD (type, i)))
1973 continue;
1974
1975 /* As we know this field is not a static field, the field's
1976 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1977 this is the case, but only trigger a simple error rather
1978 than an internal error if that fails. While failing
1979 that verification indicates a bug in our code, the error
1980 is not severe enough to suggest to the user he stops
1981 his debugging session because of it. */
1982 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
1983 error (_("Cannot determine struct field location"
1984 " (invalid location kind)"));
1985
1986 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1987 pinfo.valaddr = addr_stack->valaddr;
1988 pinfo.addr = addr_stack->addr;
1989 pinfo.next = addr_stack;
1990
1991 TYPE_FIELD_TYPE (resolved_type, i)
1992 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1993 &pinfo, 0);
1994 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1995 == FIELD_LOC_KIND_BITPOS);
1996
1997 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1998 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1999 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2000 else
2001 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2002 * TARGET_CHAR_BIT);
2003
2004 /* Normally, we would use the position and size of the last field
2005 to determine the size of the enclosing structure. But GCC seems
2006 to be encoding the position of some fields incorrectly when
2007 the struct contains a dynamic field that is not placed last.
2008 So we compute the struct size based on the field that has
2009 the highest position + size - probably the best we can do. */
2010 if (new_bit_length > resolved_type_bit_length)
2011 resolved_type_bit_length = new_bit_length;
2012 }
2013
2014 TYPE_LENGTH (resolved_type)
2015 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2016
2017 /* The Ada language uses this field as a cache for static fixed types: reset
2018 it as RESOLVED_TYPE must have its own static fixed type. */
2019 TYPE_TARGET_TYPE (resolved_type) = NULL;
2020
2021 return resolved_type;
2022 }
2023
2024 /* Worker for resolved_dynamic_type. */
2025
2026 static struct type *
2027 resolve_dynamic_type_internal (struct type *type,
2028 struct property_addr_info *addr_stack,
2029 int top_level)
2030 {
2031 struct type *real_type = check_typedef (type);
2032 struct type *resolved_type = type;
2033 struct dynamic_prop *prop;
2034 CORE_ADDR value;
2035
2036 if (!is_dynamic_type_internal (real_type, top_level))
2037 return type;
2038
2039 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2040 {
2041 resolved_type = copy_type (type);
2042 TYPE_TARGET_TYPE (resolved_type)
2043 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2044 top_level);
2045 }
2046 else
2047 {
2048 /* Before trying to resolve TYPE, make sure it is not a stub. */
2049 type = real_type;
2050
2051 switch (TYPE_CODE (type))
2052 {
2053 case TYPE_CODE_REF:
2054 {
2055 struct property_addr_info pinfo;
2056
2057 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2058 pinfo.valaddr = NULL;
2059 if (addr_stack->valaddr != NULL)
2060 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2061 else
2062 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2063 pinfo.next = addr_stack;
2064
2065 resolved_type = copy_type (type);
2066 TYPE_TARGET_TYPE (resolved_type)
2067 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2068 &pinfo, top_level);
2069 break;
2070 }
2071
2072 case TYPE_CODE_ARRAY:
2073 resolved_type = resolve_dynamic_array (type, addr_stack);
2074 break;
2075
2076 case TYPE_CODE_RANGE:
2077 resolved_type = resolve_dynamic_range (type, addr_stack);
2078 break;
2079
2080 case TYPE_CODE_UNION:
2081 resolved_type = resolve_dynamic_union (type, addr_stack);
2082 break;
2083
2084 case TYPE_CODE_STRUCT:
2085 resolved_type = resolve_dynamic_struct (type, addr_stack);
2086 break;
2087 }
2088 }
2089
2090 /* Resolve data_location attribute. */
2091 prop = TYPE_DATA_LOCATION (resolved_type);
2092 if (prop != NULL && dwarf2_evaluate_property (prop, addr_stack, &value))
2093 {
2094 TYPE_DYN_PROP_ADDR (prop) = value;
2095 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2096 }
2097
2098 return resolved_type;
2099 }
2100
2101 /* See gdbtypes.h */
2102
2103 struct type *
2104 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2105 CORE_ADDR addr)
2106 {
2107 struct property_addr_info pinfo
2108 = {check_typedef (type), valaddr, addr, NULL};
2109
2110 return resolve_dynamic_type_internal (type, &pinfo, 1);
2111 }
2112
2113 /* See gdbtypes.h */
2114
2115 struct dynamic_prop *
2116 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2117 {
2118 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2119
2120 while (node != NULL)
2121 {
2122 if (node->prop_kind == prop_kind)
2123 return &node->prop;
2124 node = node->next;
2125 }
2126 return NULL;
2127 }
2128
2129 /* See gdbtypes.h */
2130
2131 void
2132 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2133 struct type *type, struct objfile *objfile)
2134 {
2135 struct dynamic_prop_list *temp;
2136
2137 gdb_assert (TYPE_OBJFILE_OWNED (type));
2138
2139 temp = obstack_alloc (&objfile->objfile_obstack,
2140 sizeof (struct dynamic_prop_list));
2141 temp->prop_kind = prop_kind;
2142 temp->prop = prop;
2143 temp->next = TYPE_DYN_PROP_LIST (type);
2144
2145 TYPE_DYN_PROP_LIST (type) = temp;
2146 }
2147
2148
2149 /* Find the real type of TYPE. This function returns the real type,
2150 after removing all layers of typedefs, and completing opaque or stub
2151 types. Completion changes the TYPE argument, but stripping of
2152 typedefs does not.
2153
2154 Instance flags (e.g. const/volatile) are preserved as typedefs are
2155 stripped. If necessary a new qualified form of the underlying type
2156 is created.
2157
2158 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2159 not been computed and we're either in the middle of reading symbols, or
2160 there was no name for the typedef in the debug info.
2161
2162 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2163 QUITs in the symbol reading code can also throw.
2164 Thus this function can throw an exception.
2165
2166 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2167 the target type.
2168
2169 If this is a stubbed struct (i.e. declared as struct foo *), see if
2170 we can find a full definition in some other file. If so, copy this
2171 definition, so we can use it in future. There used to be a comment
2172 (but not any code) that if we don't find a full definition, we'd
2173 set a flag so we don't spend time in the future checking the same
2174 type. That would be a mistake, though--we might load in more
2175 symbols which contain a full definition for the type. */
2176
2177 struct type *
2178 check_typedef (struct type *type)
2179 {
2180 struct type *orig_type = type;
2181 /* While we're removing typedefs, we don't want to lose qualifiers.
2182 E.g., const/volatile. */
2183 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2184
2185 gdb_assert (type);
2186
2187 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2188 {
2189 if (!TYPE_TARGET_TYPE (type))
2190 {
2191 const char *name;
2192 struct symbol *sym;
2193
2194 /* It is dangerous to call lookup_symbol if we are currently
2195 reading a symtab. Infinite recursion is one danger. */
2196 if (currently_reading_symtab)
2197 return make_qualified_type (type, instance_flags, NULL);
2198
2199 name = type_name_no_tag (type);
2200 /* FIXME: shouldn't we separately check the TYPE_NAME and
2201 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2202 VAR_DOMAIN as appropriate? (this code was written before
2203 TYPE_NAME and TYPE_TAG_NAME were separate). */
2204 if (name == NULL)
2205 {
2206 stub_noname_complaint ();
2207 return make_qualified_type (type, instance_flags, NULL);
2208 }
2209 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2210 if (sym)
2211 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2212 else /* TYPE_CODE_UNDEF */
2213 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2214 }
2215 type = TYPE_TARGET_TYPE (type);
2216
2217 /* Preserve the instance flags as we traverse down the typedef chain.
2218
2219 Handling address spaces/classes is nasty, what do we do if there's a
2220 conflict?
2221 E.g., what if an outer typedef marks the type as class_1 and an inner
2222 typedef marks the type as class_2?
2223 This is the wrong place to do such error checking. We leave it to
2224 the code that created the typedef in the first place to flag the
2225 error. We just pick the outer address space (akin to letting the
2226 outer cast in a chain of casting win), instead of assuming
2227 "it can't happen". */
2228 {
2229 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2230 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2231 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2232 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2233
2234 /* Treat code vs data spaces and address classes separately. */
2235 if ((instance_flags & ALL_SPACES) != 0)
2236 new_instance_flags &= ~ALL_SPACES;
2237 if ((instance_flags & ALL_CLASSES) != 0)
2238 new_instance_flags &= ~ALL_CLASSES;
2239
2240 instance_flags |= new_instance_flags;
2241 }
2242 }
2243
2244 /* If this is a struct/class/union with no fields, then check
2245 whether a full definition exists somewhere else. This is for
2246 systems where a type definition with no fields is issued for such
2247 types, instead of identifying them as stub types in the first
2248 place. */
2249
2250 if (TYPE_IS_OPAQUE (type)
2251 && opaque_type_resolution
2252 && !currently_reading_symtab)
2253 {
2254 const char *name = type_name_no_tag (type);
2255 struct type *newtype;
2256
2257 if (name == NULL)
2258 {
2259 stub_noname_complaint ();
2260 return make_qualified_type (type, instance_flags, NULL);
2261 }
2262 newtype = lookup_transparent_type (name);
2263
2264 if (newtype)
2265 {
2266 /* If the resolved type and the stub are in the same
2267 objfile, then replace the stub type with the real deal.
2268 But if they're in separate objfiles, leave the stub
2269 alone; we'll just look up the transparent type every time
2270 we call check_typedef. We can't create pointers between
2271 types allocated to different objfiles, since they may
2272 have different lifetimes. Trying to copy NEWTYPE over to
2273 TYPE's objfile is pointless, too, since you'll have to
2274 move over any other types NEWTYPE refers to, which could
2275 be an unbounded amount of stuff. */
2276 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2277 type = make_qualified_type (newtype,
2278 TYPE_INSTANCE_FLAGS (type),
2279 type);
2280 else
2281 type = newtype;
2282 }
2283 }
2284 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2285 types. */
2286 else if (TYPE_STUB (type) && !currently_reading_symtab)
2287 {
2288 const char *name = type_name_no_tag (type);
2289 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2290 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2291 as appropriate? (this code was written before TYPE_NAME and
2292 TYPE_TAG_NAME were separate). */
2293 struct symbol *sym;
2294
2295 if (name == NULL)
2296 {
2297 stub_noname_complaint ();
2298 return make_qualified_type (type, instance_flags, NULL);
2299 }
2300 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2301 if (sym)
2302 {
2303 /* Same as above for opaque types, we can replace the stub
2304 with the complete type only if they are in the same
2305 objfile. */
2306 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2307 type = make_qualified_type (SYMBOL_TYPE (sym),
2308 TYPE_INSTANCE_FLAGS (type),
2309 type);
2310 else
2311 type = SYMBOL_TYPE (sym);
2312 }
2313 }
2314
2315 if (TYPE_TARGET_STUB (type))
2316 {
2317 struct type *range_type;
2318 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2319
2320 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2321 {
2322 /* Nothing we can do. */
2323 }
2324 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2325 {
2326 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2327 TYPE_TARGET_STUB (type) = 0;
2328 }
2329 }
2330
2331 type = make_qualified_type (type, instance_flags, NULL);
2332
2333 /* Cache TYPE_LENGTH for future use. */
2334 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2335
2336 return type;
2337 }
2338
2339 /* Parse a type expression in the string [P..P+LENGTH). If an error
2340 occurs, silently return a void type. */
2341
2342 static struct type *
2343 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2344 {
2345 struct ui_file *saved_gdb_stderr;
2346 struct type *type = NULL; /* Initialize to keep gcc happy. */
2347
2348 /* Suppress error messages. */
2349 saved_gdb_stderr = gdb_stderr;
2350 gdb_stderr = ui_file_new ();
2351
2352 /* Call parse_and_eval_type() without fear of longjmp()s. */
2353 TRY
2354 {
2355 type = parse_and_eval_type (p, length);
2356 }
2357 CATCH (except, RETURN_MASK_ERROR)
2358 {
2359 type = builtin_type (gdbarch)->builtin_void;
2360 }
2361 END_CATCH
2362
2363 /* Stop suppressing error messages. */
2364 ui_file_delete (gdb_stderr);
2365 gdb_stderr = saved_gdb_stderr;
2366
2367 return type;
2368 }
2369
2370 /* Ugly hack to convert method stubs into method types.
2371
2372 He ain't kiddin'. This demangles the name of the method into a
2373 string including argument types, parses out each argument type,
2374 generates a string casting a zero to that type, evaluates the
2375 string, and stuffs the resulting type into an argtype vector!!!
2376 Then it knows the type of the whole function (including argument
2377 types for overloading), which info used to be in the stab's but was
2378 removed to hack back the space required for them. */
2379
2380 static void
2381 check_stub_method (struct type *type, int method_id, int signature_id)
2382 {
2383 struct gdbarch *gdbarch = get_type_arch (type);
2384 struct fn_field *f;
2385 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2386 char *demangled_name = gdb_demangle (mangled_name,
2387 DMGL_PARAMS | DMGL_ANSI);
2388 char *argtypetext, *p;
2389 int depth = 0, argcount = 1;
2390 struct field *argtypes;
2391 struct type *mtype;
2392
2393 /* Make sure we got back a function string that we can use. */
2394 if (demangled_name)
2395 p = strchr (demangled_name, '(');
2396 else
2397 p = NULL;
2398
2399 if (demangled_name == NULL || p == NULL)
2400 error (_("Internal: Cannot demangle mangled name `%s'."),
2401 mangled_name);
2402
2403 /* Now, read in the parameters that define this type. */
2404 p += 1;
2405 argtypetext = p;
2406 while (*p)
2407 {
2408 if (*p == '(' || *p == '<')
2409 {
2410 depth += 1;
2411 }
2412 else if (*p == ')' || *p == '>')
2413 {
2414 depth -= 1;
2415 }
2416 else if (*p == ',' && depth == 0)
2417 {
2418 argcount += 1;
2419 }
2420
2421 p += 1;
2422 }
2423
2424 /* If we read one argument and it was ``void'', don't count it. */
2425 if (startswith (argtypetext, "(void)"))
2426 argcount -= 1;
2427
2428 /* We need one extra slot, for the THIS pointer. */
2429
2430 argtypes = (struct field *)
2431 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2432 p = argtypetext;
2433
2434 /* Add THIS pointer for non-static methods. */
2435 f = TYPE_FN_FIELDLIST1 (type, method_id);
2436 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2437 argcount = 0;
2438 else
2439 {
2440 argtypes[0].type = lookup_pointer_type (type);
2441 argcount = 1;
2442 }
2443
2444 if (*p != ')') /* () means no args, skip while. */
2445 {
2446 depth = 0;
2447 while (*p)
2448 {
2449 if (depth <= 0 && (*p == ',' || *p == ')'))
2450 {
2451 /* Avoid parsing of ellipsis, they will be handled below.
2452 Also avoid ``void'' as above. */
2453 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2454 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2455 {
2456 argtypes[argcount].type =
2457 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2458 argcount += 1;
2459 }
2460 argtypetext = p + 1;
2461 }
2462
2463 if (*p == '(' || *p == '<')
2464 {
2465 depth += 1;
2466 }
2467 else if (*p == ')' || *p == '>')
2468 {
2469 depth -= 1;
2470 }
2471
2472 p += 1;
2473 }
2474 }
2475
2476 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2477
2478 /* Now update the old "stub" type into a real type. */
2479 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2480 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2481 We want a method (TYPE_CODE_METHOD). */
2482 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2483 argtypes, argcount, p[-2] == '.');
2484 TYPE_STUB (mtype) = 0;
2485 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2486
2487 xfree (demangled_name);
2488 }
2489
2490 /* This is the external interface to check_stub_method, above. This
2491 function unstubs all of the signatures for TYPE's METHOD_ID method
2492 name. After calling this function TYPE_FN_FIELD_STUB will be
2493 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2494 correct.
2495
2496 This function unfortunately can not die until stabs do. */
2497
2498 void
2499 check_stub_method_group (struct type *type, int method_id)
2500 {
2501 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2502 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2503 int j, found_stub = 0;
2504
2505 for (j = 0; j < len; j++)
2506 if (TYPE_FN_FIELD_STUB (f, j))
2507 {
2508 found_stub = 1;
2509 check_stub_method (type, method_id, j);
2510 }
2511
2512 /* GNU v3 methods with incorrect names were corrected when we read
2513 in type information, because it was cheaper to do it then. The
2514 only GNU v2 methods with incorrect method names are operators and
2515 destructors; destructors were also corrected when we read in type
2516 information.
2517
2518 Therefore the only thing we need to handle here are v2 operator
2519 names. */
2520 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2521 {
2522 int ret;
2523 char dem_opname[256];
2524
2525 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2526 method_id),
2527 dem_opname, DMGL_ANSI);
2528 if (!ret)
2529 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2530 method_id),
2531 dem_opname, 0);
2532 if (ret)
2533 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2534 }
2535 }
2536
2537 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2538 const struct cplus_struct_type cplus_struct_default = { };
2539
2540 void
2541 allocate_cplus_struct_type (struct type *type)
2542 {
2543 if (HAVE_CPLUS_STRUCT (type))
2544 /* Structure was already allocated. Nothing more to do. */
2545 return;
2546
2547 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2548 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2549 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2550 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2551 set_type_vptr_fieldno (type, -1);
2552 }
2553
2554 const struct gnat_aux_type gnat_aux_default =
2555 { NULL };
2556
2557 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2558 and allocate the associated gnat-specific data. The gnat-specific
2559 data is also initialized to gnat_aux_default. */
2560
2561 void
2562 allocate_gnat_aux_type (struct type *type)
2563 {
2564 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2565 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2566 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2567 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2568 }
2569
2570 /* Helper function to initialize the standard scalar types.
2571
2572 If NAME is non-NULL, then it is used to initialize the type name.
2573 Note that NAME is not copied; it is required to have a lifetime at
2574 least as long as OBJFILE. */
2575
2576 struct type *
2577 init_type (enum type_code code, int length, int flags,
2578 const char *name, struct objfile *objfile)
2579 {
2580 struct type *type;
2581
2582 type = alloc_type (objfile);
2583 TYPE_CODE (type) = code;
2584 TYPE_LENGTH (type) = length;
2585
2586 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2587 if (flags & TYPE_FLAG_UNSIGNED)
2588 TYPE_UNSIGNED (type) = 1;
2589 if (flags & TYPE_FLAG_NOSIGN)
2590 TYPE_NOSIGN (type) = 1;
2591 if (flags & TYPE_FLAG_STUB)
2592 TYPE_STUB (type) = 1;
2593 if (flags & TYPE_FLAG_TARGET_STUB)
2594 TYPE_TARGET_STUB (type) = 1;
2595 if (flags & TYPE_FLAG_STATIC)
2596 TYPE_STATIC (type) = 1;
2597 if (flags & TYPE_FLAG_PROTOTYPED)
2598 TYPE_PROTOTYPED (type) = 1;
2599 if (flags & TYPE_FLAG_INCOMPLETE)
2600 TYPE_INCOMPLETE (type) = 1;
2601 if (flags & TYPE_FLAG_VARARGS)
2602 TYPE_VARARGS (type) = 1;
2603 if (flags & TYPE_FLAG_VECTOR)
2604 TYPE_VECTOR (type) = 1;
2605 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2606 TYPE_STUB_SUPPORTED (type) = 1;
2607 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2608 TYPE_FIXED_INSTANCE (type) = 1;
2609 if (flags & TYPE_FLAG_GNU_IFUNC)
2610 TYPE_GNU_IFUNC (type) = 1;
2611
2612 TYPE_NAME (type) = name;
2613
2614 /* C++ fancies. */
2615
2616 if (name && strcmp (name, "char") == 0)
2617 TYPE_NOSIGN (type) = 1;
2618
2619 switch (code)
2620 {
2621 case TYPE_CODE_STRUCT:
2622 case TYPE_CODE_UNION:
2623 case TYPE_CODE_NAMESPACE:
2624 INIT_CPLUS_SPECIFIC (type);
2625 break;
2626 case TYPE_CODE_FLT:
2627 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2628 break;
2629 case TYPE_CODE_FUNC:
2630 INIT_FUNC_SPECIFIC (type);
2631 break;
2632 }
2633 return type;
2634 }
2635 \f
2636 /* Queries on types. */
2637
2638 int
2639 can_dereference (struct type *t)
2640 {
2641 /* FIXME: Should we return true for references as well as
2642 pointers? */
2643 CHECK_TYPEDEF (t);
2644 return
2645 (t != NULL
2646 && TYPE_CODE (t) == TYPE_CODE_PTR
2647 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2648 }
2649
2650 int
2651 is_integral_type (struct type *t)
2652 {
2653 CHECK_TYPEDEF (t);
2654 return
2655 ((t != NULL)
2656 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2657 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2658 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2659 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2660 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2661 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2662 }
2663
2664 /* Return true if TYPE is scalar. */
2665
2666 static int
2667 is_scalar_type (struct type *type)
2668 {
2669 CHECK_TYPEDEF (type);
2670
2671 switch (TYPE_CODE (type))
2672 {
2673 case TYPE_CODE_ARRAY:
2674 case TYPE_CODE_STRUCT:
2675 case TYPE_CODE_UNION:
2676 case TYPE_CODE_SET:
2677 case TYPE_CODE_STRING:
2678 return 0;
2679 default:
2680 return 1;
2681 }
2682 }
2683
2684 /* Return true if T is scalar, or a composite type which in practice has
2685 the memory layout of a scalar type. E.g., an array or struct with only
2686 one scalar element inside it, or a union with only scalar elements. */
2687
2688 int
2689 is_scalar_type_recursive (struct type *t)
2690 {
2691 CHECK_TYPEDEF (t);
2692
2693 if (is_scalar_type (t))
2694 return 1;
2695 /* Are we dealing with an array or string of known dimensions? */
2696 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2697 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2698 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2699 {
2700 LONGEST low_bound, high_bound;
2701 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2702
2703 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2704
2705 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2706 }
2707 /* Are we dealing with a struct with one element? */
2708 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2709 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2710 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2711 {
2712 int i, n = TYPE_NFIELDS (t);
2713
2714 /* If all elements of the union are scalar, then the union is scalar. */
2715 for (i = 0; i < n; i++)
2716 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2717 return 0;
2718
2719 return 1;
2720 }
2721
2722 return 0;
2723 }
2724
2725 /* Return true is T is a class or a union. False otherwise. */
2726
2727 int
2728 class_or_union_p (const struct type *t)
2729 {
2730 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2731 || TYPE_CODE (t) == TYPE_CODE_UNION);
2732 }
2733
2734 /* A helper function which returns true if types A and B represent the
2735 "same" class type. This is true if the types have the same main
2736 type, or the same name. */
2737
2738 int
2739 class_types_same_p (const struct type *a, const struct type *b)
2740 {
2741 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2742 || (TYPE_NAME (a) && TYPE_NAME (b)
2743 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2744 }
2745
2746 /* If BASE is an ancestor of DCLASS return the distance between them.
2747 otherwise return -1;
2748 eg:
2749
2750 class A {};
2751 class B: public A {};
2752 class C: public B {};
2753 class D: C {};
2754
2755 distance_to_ancestor (A, A, 0) = 0
2756 distance_to_ancestor (A, B, 0) = 1
2757 distance_to_ancestor (A, C, 0) = 2
2758 distance_to_ancestor (A, D, 0) = 3
2759
2760 If PUBLIC is 1 then only public ancestors are considered,
2761 and the function returns the distance only if BASE is a public ancestor
2762 of DCLASS.
2763 Eg:
2764
2765 distance_to_ancestor (A, D, 1) = -1. */
2766
2767 static int
2768 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2769 {
2770 int i;
2771 int d;
2772
2773 CHECK_TYPEDEF (base);
2774 CHECK_TYPEDEF (dclass);
2775
2776 if (class_types_same_p (base, dclass))
2777 return 0;
2778
2779 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2780 {
2781 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2782 continue;
2783
2784 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2785 if (d >= 0)
2786 return 1 + d;
2787 }
2788
2789 return -1;
2790 }
2791
2792 /* Check whether BASE is an ancestor or base class or DCLASS
2793 Return 1 if so, and 0 if not.
2794 Note: If BASE and DCLASS are of the same type, this function
2795 will return 1. So for some class A, is_ancestor (A, A) will
2796 return 1. */
2797
2798 int
2799 is_ancestor (struct type *base, struct type *dclass)
2800 {
2801 return distance_to_ancestor (base, dclass, 0) >= 0;
2802 }
2803
2804 /* Like is_ancestor, but only returns true when BASE is a public
2805 ancestor of DCLASS. */
2806
2807 int
2808 is_public_ancestor (struct type *base, struct type *dclass)
2809 {
2810 return distance_to_ancestor (base, dclass, 1) >= 0;
2811 }
2812
2813 /* A helper function for is_unique_ancestor. */
2814
2815 static int
2816 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2817 int *offset,
2818 const gdb_byte *valaddr, int embedded_offset,
2819 CORE_ADDR address, struct value *val)
2820 {
2821 int i, count = 0;
2822
2823 CHECK_TYPEDEF (base);
2824 CHECK_TYPEDEF (dclass);
2825
2826 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2827 {
2828 struct type *iter;
2829 int this_offset;
2830
2831 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2832
2833 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2834 address, val);
2835
2836 if (class_types_same_p (base, iter))
2837 {
2838 /* If this is the first subclass, set *OFFSET and set count
2839 to 1. Otherwise, if this is at the same offset as
2840 previous instances, do nothing. Otherwise, increment
2841 count. */
2842 if (*offset == -1)
2843 {
2844 *offset = this_offset;
2845 count = 1;
2846 }
2847 else if (this_offset == *offset)
2848 {
2849 /* Nothing. */
2850 }
2851 else
2852 ++count;
2853 }
2854 else
2855 count += is_unique_ancestor_worker (base, iter, offset,
2856 valaddr,
2857 embedded_offset + this_offset,
2858 address, val);
2859 }
2860
2861 return count;
2862 }
2863
2864 /* Like is_ancestor, but only returns true if BASE is a unique base
2865 class of the type of VAL. */
2866
2867 int
2868 is_unique_ancestor (struct type *base, struct value *val)
2869 {
2870 int offset = -1;
2871
2872 return is_unique_ancestor_worker (base, value_type (val), &offset,
2873 value_contents_for_printing (val),
2874 value_embedded_offset (val),
2875 value_address (val), val) == 1;
2876 }
2877
2878 \f
2879 /* Overload resolution. */
2880
2881 /* Return the sum of the rank of A with the rank of B. */
2882
2883 struct rank
2884 sum_ranks (struct rank a, struct rank b)
2885 {
2886 struct rank c;
2887 c.rank = a.rank + b.rank;
2888 c.subrank = a.subrank + b.subrank;
2889 return c;
2890 }
2891
2892 /* Compare rank A and B and return:
2893 0 if a = b
2894 1 if a is better than b
2895 -1 if b is better than a. */
2896
2897 int
2898 compare_ranks (struct rank a, struct rank b)
2899 {
2900 if (a.rank == b.rank)
2901 {
2902 if (a.subrank == b.subrank)
2903 return 0;
2904 if (a.subrank < b.subrank)
2905 return 1;
2906 if (a.subrank > b.subrank)
2907 return -1;
2908 }
2909
2910 if (a.rank < b.rank)
2911 return 1;
2912
2913 /* a.rank > b.rank */
2914 return -1;
2915 }
2916
2917 /* Functions for overload resolution begin here. */
2918
2919 /* Compare two badness vectors A and B and return the result.
2920 0 => A and B are identical
2921 1 => A and B are incomparable
2922 2 => A is better than B
2923 3 => A is worse than B */
2924
2925 int
2926 compare_badness (struct badness_vector *a, struct badness_vector *b)
2927 {
2928 int i;
2929 int tmp;
2930 short found_pos = 0; /* any positives in c? */
2931 short found_neg = 0; /* any negatives in c? */
2932
2933 /* differing lengths => incomparable */
2934 if (a->length != b->length)
2935 return 1;
2936
2937 /* Subtract b from a */
2938 for (i = 0; i < a->length; i++)
2939 {
2940 tmp = compare_ranks (b->rank[i], a->rank[i]);
2941 if (tmp > 0)
2942 found_pos = 1;
2943 else if (tmp < 0)
2944 found_neg = 1;
2945 }
2946
2947 if (found_pos)
2948 {
2949 if (found_neg)
2950 return 1; /* incomparable */
2951 else
2952 return 3; /* A > B */
2953 }
2954 else
2955 /* no positives */
2956 {
2957 if (found_neg)
2958 return 2; /* A < B */
2959 else
2960 return 0; /* A == B */
2961 }
2962 }
2963
2964 /* Rank a function by comparing its parameter types (PARMS, length
2965 NPARMS), to the types of an argument list (ARGS, length NARGS).
2966 Return a pointer to a badness vector. This has NARGS + 1
2967 entries. */
2968
2969 struct badness_vector *
2970 rank_function (struct type **parms, int nparms,
2971 struct value **args, int nargs)
2972 {
2973 int i;
2974 struct badness_vector *bv;
2975 int min_len = nparms < nargs ? nparms : nargs;
2976
2977 bv = xmalloc (sizeof (struct badness_vector));
2978 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2979 bv->rank = XNEWVEC (struct rank, nargs + 1);
2980
2981 /* First compare the lengths of the supplied lists.
2982 If there is a mismatch, set it to a high value. */
2983
2984 /* pai/1997-06-03 FIXME: when we have debug info about default
2985 arguments and ellipsis parameter lists, we should consider those
2986 and rank the length-match more finely. */
2987
2988 LENGTH_MATCH (bv) = (nargs != nparms)
2989 ? LENGTH_MISMATCH_BADNESS
2990 : EXACT_MATCH_BADNESS;
2991
2992 /* Now rank all the parameters of the candidate function. */
2993 for (i = 1; i <= min_len; i++)
2994 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2995 args[i - 1]);
2996
2997 /* If more arguments than parameters, add dummy entries. */
2998 for (i = min_len + 1; i <= nargs; i++)
2999 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3000
3001 return bv;
3002 }
3003
3004 /* Compare the names of two integer types, assuming that any sign
3005 qualifiers have been checked already. We do it this way because
3006 there may be an "int" in the name of one of the types. */
3007
3008 static int
3009 integer_types_same_name_p (const char *first, const char *second)
3010 {
3011 int first_p, second_p;
3012
3013 /* If both are shorts, return 1; if neither is a short, keep
3014 checking. */
3015 first_p = (strstr (first, "short") != NULL);
3016 second_p = (strstr (second, "short") != NULL);
3017 if (first_p && second_p)
3018 return 1;
3019 if (first_p || second_p)
3020 return 0;
3021
3022 /* Likewise for long. */
3023 first_p = (strstr (first, "long") != NULL);
3024 second_p = (strstr (second, "long") != NULL);
3025 if (first_p && second_p)
3026 return 1;
3027 if (first_p || second_p)
3028 return 0;
3029
3030 /* Likewise for char. */
3031 first_p = (strstr (first, "char") != NULL);
3032 second_p = (strstr (second, "char") != NULL);
3033 if (first_p && second_p)
3034 return 1;
3035 if (first_p || second_p)
3036 return 0;
3037
3038 /* They must both be ints. */
3039 return 1;
3040 }
3041
3042 /* Compares type A to type B returns 1 if the represent the same type
3043 0 otherwise. */
3044
3045 int
3046 types_equal (struct type *a, struct type *b)
3047 {
3048 /* Identical type pointers. */
3049 /* However, this still doesn't catch all cases of same type for b
3050 and a. The reason is that builtin types are different from
3051 the same ones constructed from the object. */
3052 if (a == b)
3053 return 1;
3054
3055 /* Resolve typedefs */
3056 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3057 a = check_typedef (a);
3058 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3059 b = check_typedef (b);
3060
3061 /* If after resolving typedefs a and b are not of the same type
3062 code then they are not equal. */
3063 if (TYPE_CODE (a) != TYPE_CODE (b))
3064 return 0;
3065
3066 /* If a and b are both pointers types or both reference types then
3067 they are equal of the same type iff the objects they refer to are
3068 of the same type. */
3069 if (TYPE_CODE (a) == TYPE_CODE_PTR
3070 || TYPE_CODE (a) == TYPE_CODE_REF)
3071 return types_equal (TYPE_TARGET_TYPE (a),
3072 TYPE_TARGET_TYPE (b));
3073
3074 /* Well, damnit, if the names are exactly the same, I'll say they
3075 are exactly the same. This happens when we generate method
3076 stubs. The types won't point to the same address, but they
3077 really are the same. */
3078
3079 if (TYPE_NAME (a) && TYPE_NAME (b)
3080 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3081 return 1;
3082
3083 /* Check if identical after resolving typedefs. */
3084 if (a == b)
3085 return 1;
3086
3087 /* Two function types are equal if their argument and return types
3088 are equal. */
3089 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3090 {
3091 int i;
3092
3093 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3094 return 0;
3095
3096 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3097 return 0;
3098
3099 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3100 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3101 return 0;
3102
3103 return 1;
3104 }
3105
3106 return 0;
3107 }
3108 \f
3109 /* Deep comparison of types. */
3110
3111 /* An entry in the type-equality bcache. */
3112
3113 typedef struct type_equality_entry
3114 {
3115 struct type *type1, *type2;
3116 } type_equality_entry_d;
3117
3118 DEF_VEC_O (type_equality_entry_d);
3119
3120 /* A helper function to compare two strings. Returns 1 if they are
3121 the same, 0 otherwise. Handles NULLs properly. */
3122
3123 static int
3124 compare_maybe_null_strings (const char *s, const char *t)
3125 {
3126 if (s == NULL && t != NULL)
3127 return 0;
3128 else if (s != NULL && t == NULL)
3129 return 0;
3130 else if (s == NULL && t== NULL)
3131 return 1;
3132 return strcmp (s, t) == 0;
3133 }
3134
3135 /* A helper function for check_types_worklist that checks two types for
3136 "deep" equality. Returns non-zero if the types are considered the
3137 same, zero otherwise. */
3138
3139 static int
3140 check_types_equal (struct type *type1, struct type *type2,
3141 VEC (type_equality_entry_d) **worklist)
3142 {
3143 CHECK_TYPEDEF (type1);
3144 CHECK_TYPEDEF (type2);
3145
3146 if (type1 == type2)
3147 return 1;
3148
3149 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3150 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3151 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3152 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3153 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3154 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3155 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3156 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3157 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3158 return 0;
3159
3160 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3161 TYPE_TAG_NAME (type2)))
3162 return 0;
3163 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3164 return 0;
3165
3166 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3167 {
3168 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3169 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3170 return 0;
3171 }
3172 else
3173 {
3174 int i;
3175
3176 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3177 {
3178 const struct field *field1 = &TYPE_FIELD (type1, i);
3179 const struct field *field2 = &TYPE_FIELD (type2, i);
3180 struct type_equality_entry entry;
3181
3182 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3183 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3184 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3185 return 0;
3186 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3187 FIELD_NAME (*field2)))
3188 return 0;
3189 switch (FIELD_LOC_KIND (*field1))
3190 {
3191 case FIELD_LOC_KIND_BITPOS:
3192 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3193 return 0;
3194 break;
3195 case FIELD_LOC_KIND_ENUMVAL:
3196 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3197 return 0;
3198 break;
3199 case FIELD_LOC_KIND_PHYSADDR:
3200 if (FIELD_STATIC_PHYSADDR (*field1)
3201 != FIELD_STATIC_PHYSADDR (*field2))
3202 return 0;
3203 break;
3204 case FIELD_LOC_KIND_PHYSNAME:
3205 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3206 FIELD_STATIC_PHYSNAME (*field2)))
3207 return 0;
3208 break;
3209 case FIELD_LOC_KIND_DWARF_BLOCK:
3210 {
3211 struct dwarf2_locexpr_baton *block1, *block2;
3212
3213 block1 = FIELD_DWARF_BLOCK (*field1);
3214 block2 = FIELD_DWARF_BLOCK (*field2);
3215 if (block1->per_cu != block2->per_cu
3216 || block1->size != block2->size
3217 || memcmp (block1->data, block2->data, block1->size) != 0)
3218 return 0;
3219 }
3220 break;
3221 default:
3222 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3223 "%d by check_types_equal"),
3224 FIELD_LOC_KIND (*field1));
3225 }
3226
3227 entry.type1 = FIELD_TYPE (*field1);
3228 entry.type2 = FIELD_TYPE (*field2);
3229 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3230 }
3231 }
3232
3233 if (TYPE_TARGET_TYPE (type1) != NULL)
3234 {
3235 struct type_equality_entry entry;
3236
3237 if (TYPE_TARGET_TYPE (type2) == NULL)
3238 return 0;
3239
3240 entry.type1 = TYPE_TARGET_TYPE (type1);
3241 entry.type2 = TYPE_TARGET_TYPE (type2);
3242 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3243 }
3244 else if (TYPE_TARGET_TYPE (type2) != NULL)
3245 return 0;
3246
3247 return 1;
3248 }
3249
3250 /* Check types on a worklist for equality. Returns zero if any pair
3251 is not equal, non-zero if they are all considered equal. */
3252
3253 static int
3254 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3255 struct bcache *cache)
3256 {
3257 while (!VEC_empty (type_equality_entry_d, *worklist))
3258 {
3259 struct type_equality_entry entry;
3260 int added;
3261
3262 entry = *VEC_last (type_equality_entry_d, *worklist);
3263 VEC_pop (type_equality_entry_d, *worklist);
3264
3265 /* If the type pair has already been visited, we know it is
3266 ok. */
3267 bcache_full (&entry, sizeof (entry), cache, &added);
3268 if (!added)
3269 continue;
3270
3271 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3272 return 0;
3273 }
3274
3275 return 1;
3276 }
3277
3278 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3279 "deep comparison". Otherwise return zero. */
3280
3281 int
3282 types_deeply_equal (struct type *type1, struct type *type2)
3283 {
3284 struct gdb_exception except = exception_none;
3285 int result = 0;
3286 struct bcache *cache;
3287 VEC (type_equality_entry_d) *worklist = NULL;
3288 struct type_equality_entry entry;
3289
3290 gdb_assert (type1 != NULL && type2 != NULL);
3291
3292 /* Early exit for the simple case. */
3293 if (type1 == type2)
3294 return 1;
3295
3296 cache = bcache_xmalloc (NULL, NULL);
3297
3298 entry.type1 = type1;
3299 entry.type2 = type2;
3300 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3301
3302 /* check_types_worklist calls several nested helper functions, some
3303 of which can raise a GDB exception, so we just check and rethrow
3304 here. If there is a GDB exception, a comparison is not capable
3305 (or trusted), so exit. */
3306 TRY
3307 {
3308 result = check_types_worklist (&worklist, cache);
3309 }
3310 CATCH (ex, RETURN_MASK_ALL)
3311 {
3312 except = ex;
3313 }
3314 END_CATCH
3315
3316 bcache_xfree (cache);
3317 VEC_free (type_equality_entry_d, worklist);
3318
3319 /* Rethrow if there was a problem. */
3320 if (except.reason < 0)
3321 throw_exception (except);
3322
3323 return result;
3324 }
3325 \f
3326 /* Compare one type (PARM) for compatibility with another (ARG).
3327 * PARM is intended to be the parameter type of a function; and
3328 * ARG is the supplied argument's type. This function tests if
3329 * the latter can be converted to the former.
3330 * VALUE is the argument's value or NULL if none (or called recursively)
3331 *
3332 * Return 0 if they are identical types;
3333 * Otherwise, return an integer which corresponds to how compatible
3334 * PARM is to ARG. The higher the return value, the worse the match.
3335 * Generally the "bad" conversions are all uniformly assigned a 100. */
3336
3337 struct rank
3338 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3339 {
3340 struct rank rank = {0,0};
3341
3342 if (types_equal (parm, arg))
3343 return EXACT_MATCH_BADNESS;
3344
3345 /* Resolve typedefs */
3346 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3347 parm = check_typedef (parm);
3348 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3349 arg = check_typedef (arg);
3350
3351 /* See through references, since we can almost make non-references
3352 references. */
3353 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3354 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3355 REFERENCE_CONVERSION_BADNESS));
3356 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3357 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3358 REFERENCE_CONVERSION_BADNESS));
3359 if (overload_debug)
3360 /* Debugging only. */
3361 fprintf_filtered (gdb_stderr,
3362 "------ Arg is %s [%d], parm is %s [%d]\n",
3363 TYPE_NAME (arg), TYPE_CODE (arg),
3364 TYPE_NAME (parm), TYPE_CODE (parm));
3365
3366 /* x -> y means arg of type x being supplied for parameter of type y. */
3367
3368 switch (TYPE_CODE (parm))
3369 {
3370 case TYPE_CODE_PTR:
3371 switch (TYPE_CODE (arg))
3372 {
3373 case TYPE_CODE_PTR:
3374
3375 /* Allowed pointer conversions are:
3376 (a) pointer to void-pointer conversion. */
3377 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3378 return VOID_PTR_CONVERSION_BADNESS;
3379
3380 /* (b) pointer to ancestor-pointer conversion. */
3381 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3382 TYPE_TARGET_TYPE (arg),
3383 0);
3384 if (rank.subrank >= 0)
3385 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3386
3387 return INCOMPATIBLE_TYPE_BADNESS;
3388 case TYPE_CODE_ARRAY:
3389 if (types_equal (TYPE_TARGET_TYPE (parm),
3390 TYPE_TARGET_TYPE (arg)))
3391 return EXACT_MATCH_BADNESS;
3392 return INCOMPATIBLE_TYPE_BADNESS;
3393 case TYPE_CODE_FUNC:
3394 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3395 case TYPE_CODE_INT:
3396 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3397 {
3398 if (value_as_long (value) == 0)
3399 {
3400 /* Null pointer conversion: allow it to be cast to a pointer.
3401 [4.10.1 of C++ standard draft n3290] */
3402 return NULL_POINTER_CONVERSION_BADNESS;
3403 }
3404 else
3405 {
3406 /* If type checking is disabled, allow the conversion. */
3407 if (!strict_type_checking)
3408 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3409 }
3410 }
3411 /* fall through */
3412 case TYPE_CODE_ENUM:
3413 case TYPE_CODE_FLAGS:
3414 case TYPE_CODE_CHAR:
3415 case TYPE_CODE_RANGE:
3416 case TYPE_CODE_BOOL:
3417 default:
3418 return INCOMPATIBLE_TYPE_BADNESS;
3419 }
3420 case TYPE_CODE_ARRAY:
3421 switch (TYPE_CODE (arg))
3422 {
3423 case TYPE_CODE_PTR:
3424 case TYPE_CODE_ARRAY:
3425 return rank_one_type (TYPE_TARGET_TYPE (parm),
3426 TYPE_TARGET_TYPE (arg), NULL);
3427 default:
3428 return INCOMPATIBLE_TYPE_BADNESS;
3429 }
3430 case TYPE_CODE_FUNC:
3431 switch (TYPE_CODE (arg))
3432 {
3433 case TYPE_CODE_PTR: /* funcptr -> func */
3434 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3435 default:
3436 return INCOMPATIBLE_TYPE_BADNESS;
3437 }
3438 case TYPE_CODE_INT:
3439 switch (TYPE_CODE (arg))
3440 {
3441 case TYPE_CODE_INT:
3442 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3443 {
3444 /* Deal with signed, unsigned, and plain chars and
3445 signed and unsigned ints. */
3446 if (TYPE_NOSIGN (parm))
3447 {
3448 /* This case only for character types. */
3449 if (TYPE_NOSIGN (arg))
3450 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3451 else /* signed/unsigned char -> plain char */
3452 return INTEGER_CONVERSION_BADNESS;
3453 }
3454 else if (TYPE_UNSIGNED (parm))
3455 {
3456 if (TYPE_UNSIGNED (arg))
3457 {
3458 /* unsigned int -> unsigned int, or
3459 unsigned long -> unsigned long */
3460 if (integer_types_same_name_p (TYPE_NAME (parm),
3461 TYPE_NAME (arg)))
3462 return EXACT_MATCH_BADNESS;
3463 else if (integer_types_same_name_p (TYPE_NAME (arg),
3464 "int")
3465 && integer_types_same_name_p (TYPE_NAME (parm),
3466 "long"))
3467 /* unsigned int -> unsigned long */
3468 return INTEGER_PROMOTION_BADNESS;
3469 else
3470 /* unsigned long -> unsigned int */
3471 return INTEGER_CONVERSION_BADNESS;
3472 }
3473 else
3474 {
3475 if (integer_types_same_name_p (TYPE_NAME (arg),
3476 "long")
3477 && integer_types_same_name_p (TYPE_NAME (parm),
3478 "int"))
3479 /* signed long -> unsigned int */
3480 return INTEGER_CONVERSION_BADNESS;
3481 else
3482 /* signed int/long -> unsigned int/long */
3483 return INTEGER_CONVERSION_BADNESS;
3484 }
3485 }
3486 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3487 {
3488 if (integer_types_same_name_p (TYPE_NAME (parm),
3489 TYPE_NAME (arg)))
3490 return EXACT_MATCH_BADNESS;
3491 else if (integer_types_same_name_p (TYPE_NAME (arg),
3492 "int")
3493 && integer_types_same_name_p (TYPE_NAME (parm),
3494 "long"))
3495 return INTEGER_PROMOTION_BADNESS;
3496 else
3497 return INTEGER_CONVERSION_BADNESS;
3498 }
3499 else
3500 return INTEGER_CONVERSION_BADNESS;
3501 }
3502 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3503 return INTEGER_PROMOTION_BADNESS;
3504 else
3505 return INTEGER_CONVERSION_BADNESS;
3506 case TYPE_CODE_ENUM:
3507 case TYPE_CODE_FLAGS:
3508 case TYPE_CODE_CHAR:
3509 case TYPE_CODE_RANGE:
3510 case TYPE_CODE_BOOL:
3511 if (TYPE_DECLARED_CLASS (arg))
3512 return INCOMPATIBLE_TYPE_BADNESS;
3513 return INTEGER_PROMOTION_BADNESS;
3514 case TYPE_CODE_FLT:
3515 return INT_FLOAT_CONVERSION_BADNESS;
3516 case TYPE_CODE_PTR:
3517 return NS_POINTER_CONVERSION_BADNESS;
3518 default:
3519 return INCOMPATIBLE_TYPE_BADNESS;
3520 }
3521 break;
3522 case TYPE_CODE_ENUM:
3523 switch (TYPE_CODE (arg))
3524 {
3525 case TYPE_CODE_INT:
3526 case TYPE_CODE_CHAR:
3527 case TYPE_CODE_RANGE:
3528 case TYPE_CODE_BOOL:
3529 case TYPE_CODE_ENUM:
3530 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3531 return INCOMPATIBLE_TYPE_BADNESS;
3532 return INTEGER_CONVERSION_BADNESS;
3533 case TYPE_CODE_FLT:
3534 return INT_FLOAT_CONVERSION_BADNESS;
3535 default:
3536 return INCOMPATIBLE_TYPE_BADNESS;
3537 }
3538 break;
3539 case TYPE_CODE_CHAR:
3540 switch (TYPE_CODE (arg))
3541 {
3542 case TYPE_CODE_RANGE:
3543 case TYPE_CODE_BOOL:
3544 case TYPE_CODE_ENUM:
3545 if (TYPE_DECLARED_CLASS (arg))
3546 return INCOMPATIBLE_TYPE_BADNESS;
3547 return INTEGER_CONVERSION_BADNESS;
3548 case TYPE_CODE_FLT:
3549 return INT_FLOAT_CONVERSION_BADNESS;
3550 case TYPE_CODE_INT:
3551 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3552 return INTEGER_CONVERSION_BADNESS;
3553 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3554 return INTEGER_PROMOTION_BADNESS;
3555 /* >>> !! else fall through !! <<< */
3556 case TYPE_CODE_CHAR:
3557 /* Deal with signed, unsigned, and plain chars for C++ and
3558 with int cases falling through from previous case. */
3559 if (TYPE_NOSIGN (parm))
3560 {
3561 if (TYPE_NOSIGN (arg))
3562 return EXACT_MATCH_BADNESS;
3563 else
3564 return INTEGER_CONVERSION_BADNESS;
3565 }
3566 else if (TYPE_UNSIGNED (parm))
3567 {
3568 if (TYPE_UNSIGNED (arg))
3569 return EXACT_MATCH_BADNESS;
3570 else
3571 return INTEGER_PROMOTION_BADNESS;
3572 }
3573 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3574 return EXACT_MATCH_BADNESS;
3575 else
3576 return INTEGER_CONVERSION_BADNESS;
3577 default:
3578 return INCOMPATIBLE_TYPE_BADNESS;
3579 }
3580 break;
3581 case TYPE_CODE_RANGE:
3582 switch (TYPE_CODE (arg))
3583 {
3584 case TYPE_CODE_INT:
3585 case TYPE_CODE_CHAR:
3586 case TYPE_CODE_RANGE:
3587 case TYPE_CODE_BOOL:
3588 case TYPE_CODE_ENUM:
3589 return INTEGER_CONVERSION_BADNESS;
3590 case TYPE_CODE_FLT:
3591 return INT_FLOAT_CONVERSION_BADNESS;
3592 default:
3593 return INCOMPATIBLE_TYPE_BADNESS;
3594 }
3595 break;
3596 case TYPE_CODE_BOOL:
3597 switch (TYPE_CODE (arg))
3598 {
3599 /* n3290 draft, section 4.12.1 (conv.bool):
3600
3601 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3602 pointer to member type can be converted to a prvalue of type
3603 bool. A zero value, null pointer value, or null member pointer
3604 value is converted to false; any other value is converted to
3605 true. A prvalue of type std::nullptr_t can be converted to a
3606 prvalue of type bool; the resulting value is false." */
3607 case TYPE_CODE_INT:
3608 case TYPE_CODE_CHAR:
3609 case TYPE_CODE_ENUM:
3610 case TYPE_CODE_FLT:
3611 case TYPE_CODE_MEMBERPTR:
3612 case TYPE_CODE_PTR:
3613 return BOOL_CONVERSION_BADNESS;
3614 case TYPE_CODE_RANGE:
3615 return INCOMPATIBLE_TYPE_BADNESS;
3616 case TYPE_CODE_BOOL:
3617 return EXACT_MATCH_BADNESS;
3618 default:
3619 return INCOMPATIBLE_TYPE_BADNESS;
3620 }
3621 break;
3622 case TYPE_CODE_FLT:
3623 switch (TYPE_CODE (arg))
3624 {
3625 case TYPE_CODE_FLT:
3626 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3627 return FLOAT_PROMOTION_BADNESS;
3628 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3629 return EXACT_MATCH_BADNESS;
3630 else
3631 return FLOAT_CONVERSION_BADNESS;
3632 case TYPE_CODE_INT:
3633 case TYPE_CODE_BOOL:
3634 case TYPE_CODE_ENUM:
3635 case TYPE_CODE_RANGE:
3636 case TYPE_CODE_CHAR:
3637 return INT_FLOAT_CONVERSION_BADNESS;
3638 default:
3639 return INCOMPATIBLE_TYPE_BADNESS;
3640 }
3641 break;
3642 case TYPE_CODE_COMPLEX:
3643 switch (TYPE_CODE (arg))
3644 { /* Strictly not needed for C++, but... */
3645 case TYPE_CODE_FLT:
3646 return FLOAT_PROMOTION_BADNESS;
3647 case TYPE_CODE_COMPLEX:
3648 return EXACT_MATCH_BADNESS;
3649 default:
3650 return INCOMPATIBLE_TYPE_BADNESS;
3651 }
3652 break;
3653 case TYPE_CODE_STRUCT:
3654 switch (TYPE_CODE (arg))
3655 {
3656 case TYPE_CODE_STRUCT:
3657 /* Check for derivation */
3658 rank.subrank = distance_to_ancestor (parm, arg, 0);
3659 if (rank.subrank >= 0)
3660 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3661 /* else fall through */
3662 default:
3663 return INCOMPATIBLE_TYPE_BADNESS;
3664 }
3665 break;
3666 case TYPE_CODE_UNION:
3667 switch (TYPE_CODE (arg))
3668 {
3669 case TYPE_CODE_UNION:
3670 default:
3671 return INCOMPATIBLE_TYPE_BADNESS;
3672 }
3673 break;
3674 case TYPE_CODE_MEMBERPTR:
3675 switch (TYPE_CODE (arg))
3676 {
3677 default:
3678 return INCOMPATIBLE_TYPE_BADNESS;
3679 }
3680 break;
3681 case TYPE_CODE_METHOD:
3682 switch (TYPE_CODE (arg))
3683 {
3684
3685 default:
3686 return INCOMPATIBLE_TYPE_BADNESS;
3687 }
3688 break;
3689 case TYPE_CODE_REF:
3690 switch (TYPE_CODE (arg))
3691 {
3692
3693 default:
3694 return INCOMPATIBLE_TYPE_BADNESS;
3695 }
3696
3697 break;
3698 case TYPE_CODE_SET:
3699 switch (TYPE_CODE (arg))
3700 {
3701 /* Not in C++ */
3702 case TYPE_CODE_SET:
3703 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3704 TYPE_FIELD_TYPE (arg, 0), NULL);
3705 default:
3706 return INCOMPATIBLE_TYPE_BADNESS;
3707 }
3708 break;
3709 case TYPE_CODE_VOID:
3710 default:
3711 return INCOMPATIBLE_TYPE_BADNESS;
3712 } /* switch (TYPE_CODE (arg)) */
3713 }
3714
3715 /* End of functions for overload resolution. */
3716 \f
3717 /* Routines to pretty-print types. */
3718
3719 static void
3720 print_bit_vector (B_TYPE *bits, int nbits)
3721 {
3722 int bitno;
3723
3724 for (bitno = 0; bitno < nbits; bitno++)
3725 {
3726 if ((bitno % 8) == 0)
3727 {
3728 puts_filtered (" ");
3729 }
3730 if (B_TST (bits, bitno))
3731 printf_filtered (("1"));
3732 else
3733 printf_filtered (("0"));
3734 }
3735 }
3736
3737 /* Note the first arg should be the "this" pointer, we may not want to
3738 include it since we may get into a infinitely recursive
3739 situation. */
3740
3741 static void
3742 print_args (struct field *args, int nargs, int spaces)
3743 {
3744 if (args != NULL)
3745 {
3746 int i;
3747
3748 for (i = 0; i < nargs; i++)
3749 {
3750 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3751 args[i].name != NULL ? args[i].name : "<NULL>");
3752 recursive_dump_type (args[i].type, spaces + 2);
3753 }
3754 }
3755 }
3756
3757 int
3758 field_is_static (struct field *f)
3759 {
3760 /* "static" fields are the fields whose location is not relative
3761 to the address of the enclosing struct. It would be nice to
3762 have a dedicated flag that would be set for static fields when
3763 the type is being created. But in practice, checking the field
3764 loc_kind should give us an accurate answer. */
3765 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3766 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3767 }
3768
3769 static void
3770 dump_fn_fieldlists (struct type *type, int spaces)
3771 {
3772 int method_idx;
3773 int overload_idx;
3774 struct fn_field *f;
3775
3776 printfi_filtered (spaces, "fn_fieldlists ");
3777 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3778 printf_filtered ("\n");
3779 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3780 {
3781 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3782 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3783 method_idx,
3784 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3785 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3786 gdb_stdout);
3787 printf_filtered (_(") length %d\n"),
3788 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3789 for (overload_idx = 0;
3790 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3791 overload_idx++)
3792 {
3793 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3794 overload_idx,
3795 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3796 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3797 gdb_stdout);
3798 printf_filtered (")\n");
3799 printfi_filtered (spaces + 8, "type ");
3800 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3801 gdb_stdout);
3802 printf_filtered ("\n");
3803
3804 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3805 spaces + 8 + 2);
3806
3807 printfi_filtered (spaces + 8, "args ");
3808 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3809 gdb_stdout);
3810 printf_filtered ("\n");
3811 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3812 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3813 spaces + 8 + 2);
3814 printfi_filtered (spaces + 8, "fcontext ");
3815 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3816 gdb_stdout);
3817 printf_filtered ("\n");
3818
3819 printfi_filtered (spaces + 8, "is_const %d\n",
3820 TYPE_FN_FIELD_CONST (f, overload_idx));
3821 printfi_filtered (spaces + 8, "is_volatile %d\n",
3822 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3823 printfi_filtered (spaces + 8, "is_private %d\n",
3824 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3825 printfi_filtered (spaces + 8, "is_protected %d\n",
3826 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3827 printfi_filtered (spaces + 8, "is_stub %d\n",
3828 TYPE_FN_FIELD_STUB (f, overload_idx));
3829 printfi_filtered (spaces + 8, "voffset %u\n",
3830 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3831 }
3832 }
3833 }
3834
3835 static void
3836 print_cplus_stuff (struct type *type, int spaces)
3837 {
3838 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3839 printfi_filtered (spaces, "vptr_basetype ");
3840 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3841 puts_filtered ("\n");
3842 if (TYPE_VPTR_BASETYPE (type) != NULL)
3843 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3844
3845 printfi_filtered (spaces, "n_baseclasses %d\n",
3846 TYPE_N_BASECLASSES (type));
3847 printfi_filtered (spaces, "nfn_fields %d\n",
3848 TYPE_NFN_FIELDS (type));
3849 if (TYPE_N_BASECLASSES (type) > 0)
3850 {
3851 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3852 TYPE_N_BASECLASSES (type));
3853 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3854 gdb_stdout);
3855 printf_filtered (")");
3856
3857 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3858 TYPE_N_BASECLASSES (type));
3859 puts_filtered ("\n");
3860 }
3861 if (TYPE_NFIELDS (type) > 0)
3862 {
3863 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3864 {
3865 printfi_filtered (spaces,
3866 "private_field_bits (%d bits at *",
3867 TYPE_NFIELDS (type));
3868 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3869 gdb_stdout);
3870 printf_filtered (")");
3871 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3872 TYPE_NFIELDS (type));
3873 puts_filtered ("\n");
3874 }
3875 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3876 {
3877 printfi_filtered (spaces,
3878 "protected_field_bits (%d bits at *",
3879 TYPE_NFIELDS (type));
3880 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3881 gdb_stdout);
3882 printf_filtered (")");
3883 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3884 TYPE_NFIELDS (type));
3885 puts_filtered ("\n");
3886 }
3887 }
3888 if (TYPE_NFN_FIELDS (type) > 0)
3889 {
3890 dump_fn_fieldlists (type, spaces);
3891 }
3892 }
3893
3894 /* Print the contents of the TYPE's type_specific union, assuming that
3895 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3896
3897 static void
3898 print_gnat_stuff (struct type *type, int spaces)
3899 {
3900 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3901
3902 if (descriptive_type == NULL)
3903 printfi_filtered (spaces + 2, "no descriptive type\n");
3904 else
3905 {
3906 printfi_filtered (spaces + 2, "descriptive type\n");
3907 recursive_dump_type (descriptive_type, spaces + 4);
3908 }
3909 }
3910
3911 static struct obstack dont_print_type_obstack;
3912
3913 void
3914 recursive_dump_type (struct type *type, int spaces)
3915 {
3916 int idx;
3917
3918 if (spaces == 0)
3919 obstack_begin (&dont_print_type_obstack, 0);
3920
3921 if (TYPE_NFIELDS (type) > 0
3922 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3923 {
3924 struct type **first_dont_print
3925 = (struct type **) obstack_base (&dont_print_type_obstack);
3926
3927 int i = (struct type **)
3928 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3929
3930 while (--i >= 0)
3931 {
3932 if (type == first_dont_print[i])
3933 {
3934 printfi_filtered (spaces, "type node ");
3935 gdb_print_host_address (type, gdb_stdout);
3936 printf_filtered (_(" <same as already seen type>\n"));
3937 return;
3938 }
3939 }
3940
3941 obstack_ptr_grow (&dont_print_type_obstack, type);
3942 }
3943
3944 printfi_filtered (spaces, "type node ");
3945 gdb_print_host_address (type, gdb_stdout);
3946 printf_filtered ("\n");
3947 printfi_filtered (spaces, "name '%s' (",
3948 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3949 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3950 printf_filtered (")\n");
3951 printfi_filtered (spaces, "tagname '%s' (",
3952 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3953 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3954 printf_filtered (")\n");
3955 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3956 switch (TYPE_CODE (type))
3957 {
3958 case TYPE_CODE_UNDEF:
3959 printf_filtered ("(TYPE_CODE_UNDEF)");
3960 break;
3961 case TYPE_CODE_PTR:
3962 printf_filtered ("(TYPE_CODE_PTR)");
3963 break;
3964 case TYPE_CODE_ARRAY:
3965 printf_filtered ("(TYPE_CODE_ARRAY)");
3966 break;
3967 case TYPE_CODE_STRUCT:
3968 printf_filtered ("(TYPE_CODE_STRUCT)");
3969 break;
3970 case TYPE_CODE_UNION:
3971 printf_filtered ("(TYPE_CODE_UNION)");
3972 break;
3973 case TYPE_CODE_ENUM:
3974 printf_filtered ("(TYPE_CODE_ENUM)");
3975 break;
3976 case TYPE_CODE_FLAGS:
3977 printf_filtered ("(TYPE_CODE_FLAGS)");
3978 break;
3979 case TYPE_CODE_FUNC:
3980 printf_filtered ("(TYPE_CODE_FUNC)");
3981 break;
3982 case TYPE_CODE_INT:
3983 printf_filtered ("(TYPE_CODE_INT)");
3984 break;
3985 case TYPE_CODE_FLT:
3986 printf_filtered ("(TYPE_CODE_FLT)");
3987 break;
3988 case TYPE_CODE_VOID:
3989 printf_filtered ("(TYPE_CODE_VOID)");
3990 break;
3991 case TYPE_CODE_SET:
3992 printf_filtered ("(TYPE_CODE_SET)");
3993 break;
3994 case TYPE_CODE_RANGE:
3995 printf_filtered ("(TYPE_CODE_RANGE)");
3996 break;
3997 case TYPE_CODE_STRING:
3998 printf_filtered ("(TYPE_CODE_STRING)");
3999 break;
4000 case TYPE_CODE_ERROR:
4001 printf_filtered ("(TYPE_CODE_ERROR)");
4002 break;
4003 case TYPE_CODE_MEMBERPTR:
4004 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4005 break;
4006 case TYPE_CODE_METHODPTR:
4007 printf_filtered ("(TYPE_CODE_METHODPTR)");
4008 break;
4009 case TYPE_CODE_METHOD:
4010 printf_filtered ("(TYPE_CODE_METHOD)");
4011 break;
4012 case TYPE_CODE_REF:
4013 printf_filtered ("(TYPE_CODE_REF)");
4014 break;
4015 case TYPE_CODE_CHAR:
4016 printf_filtered ("(TYPE_CODE_CHAR)");
4017 break;
4018 case TYPE_CODE_BOOL:
4019 printf_filtered ("(TYPE_CODE_BOOL)");
4020 break;
4021 case TYPE_CODE_COMPLEX:
4022 printf_filtered ("(TYPE_CODE_COMPLEX)");
4023 break;
4024 case TYPE_CODE_TYPEDEF:
4025 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4026 break;
4027 case TYPE_CODE_NAMESPACE:
4028 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4029 break;
4030 default:
4031 printf_filtered ("(UNKNOWN TYPE CODE)");
4032 break;
4033 }
4034 puts_filtered ("\n");
4035 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4036 if (TYPE_OBJFILE_OWNED (type))
4037 {
4038 printfi_filtered (spaces, "objfile ");
4039 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4040 }
4041 else
4042 {
4043 printfi_filtered (spaces, "gdbarch ");
4044 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4045 }
4046 printf_filtered ("\n");
4047 printfi_filtered (spaces, "target_type ");
4048 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4049 printf_filtered ("\n");
4050 if (TYPE_TARGET_TYPE (type) != NULL)
4051 {
4052 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4053 }
4054 printfi_filtered (spaces, "pointer_type ");
4055 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4056 printf_filtered ("\n");
4057 printfi_filtered (spaces, "reference_type ");
4058 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4059 printf_filtered ("\n");
4060 printfi_filtered (spaces, "type_chain ");
4061 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4062 printf_filtered ("\n");
4063 printfi_filtered (spaces, "instance_flags 0x%x",
4064 TYPE_INSTANCE_FLAGS (type));
4065 if (TYPE_CONST (type))
4066 {
4067 puts_filtered (" TYPE_FLAG_CONST");
4068 }
4069 if (TYPE_VOLATILE (type))
4070 {
4071 puts_filtered (" TYPE_FLAG_VOLATILE");
4072 }
4073 if (TYPE_CODE_SPACE (type))
4074 {
4075 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4076 }
4077 if (TYPE_DATA_SPACE (type))
4078 {
4079 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4080 }
4081 if (TYPE_ADDRESS_CLASS_1 (type))
4082 {
4083 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4084 }
4085 if (TYPE_ADDRESS_CLASS_2 (type))
4086 {
4087 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4088 }
4089 if (TYPE_RESTRICT (type))
4090 {
4091 puts_filtered (" TYPE_FLAG_RESTRICT");
4092 }
4093 if (TYPE_ATOMIC (type))
4094 {
4095 puts_filtered (" TYPE_FLAG_ATOMIC");
4096 }
4097 puts_filtered ("\n");
4098
4099 printfi_filtered (spaces, "flags");
4100 if (TYPE_UNSIGNED (type))
4101 {
4102 puts_filtered (" TYPE_FLAG_UNSIGNED");
4103 }
4104 if (TYPE_NOSIGN (type))
4105 {
4106 puts_filtered (" TYPE_FLAG_NOSIGN");
4107 }
4108 if (TYPE_STUB (type))
4109 {
4110 puts_filtered (" TYPE_FLAG_STUB");
4111 }
4112 if (TYPE_TARGET_STUB (type))
4113 {
4114 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4115 }
4116 if (TYPE_STATIC (type))
4117 {
4118 puts_filtered (" TYPE_FLAG_STATIC");
4119 }
4120 if (TYPE_PROTOTYPED (type))
4121 {
4122 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4123 }
4124 if (TYPE_INCOMPLETE (type))
4125 {
4126 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4127 }
4128 if (TYPE_VARARGS (type))
4129 {
4130 puts_filtered (" TYPE_FLAG_VARARGS");
4131 }
4132 /* This is used for things like AltiVec registers on ppc. Gcc emits
4133 an attribute for the array type, which tells whether or not we
4134 have a vector, instead of a regular array. */
4135 if (TYPE_VECTOR (type))
4136 {
4137 puts_filtered (" TYPE_FLAG_VECTOR");
4138 }
4139 if (TYPE_FIXED_INSTANCE (type))
4140 {
4141 puts_filtered (" TYPE_FIXED_INSTANCE");
4142 }
4143 if (TYPE_STUB_SUPPORTED (type))
4144 {
4145 puts_filtered (" TYPE_STUB_SUPPORTED");
4146 }
4147 if (TYPE_NOTTEXT (type))
4148 {
4149 puts_filtered (" TYPE_NOTTEXT");
4150 }
4151 puts_filtered ("\n");
4152 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4153 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4154 puts_filtered ("\n");
4155 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4156 {
4157 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4158 printfi_filtered (spaces + 2,
4159 "[%d] enumval %s type ",
4160 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4161 else
4162 printfi_filtered (spaces + 2,
4163 "[%d] bitpos %d bitsize %d type ",
4164 idx, TYPE_FIELD_BITPOS (type, idx),
4165 TYPE_FIELD_BITSIZE (type, idx));
4166 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4167 printf_filtered (" name '%s' (",
4168 TYPE_FIELD_NAME (type, idx) != NULL
4169 ? TYPE_FIELD_NAME (type, idx)
4170 : "<NULL>");
4171 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4172 printf_filtered (")\n");
4173 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4174 {
4175 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4176 }
4177 }
4178 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4179 {
4180 printfi_filtered (spaces, "low %s%s high %s%s\n",
4181 plongest (TYPE_LOW_BOUND (type)),
4182 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4183 plongest (TYPE_HIGH_BOUND (type)),
4184 TYPE_HIGH_BOUND_UNDEFINED (type)
4185 ? " (undefined)" : "");
4186 }
4187
4188 switch (TYPE_SPECIFIC_FIELD (type))
4189 {
4190 case TYPE_SPECIFIC_CPLUS_STUFF:
4191 printfi_filtered (spaces, "cplus_stuff ");
4192 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4193 gdb_stdout);
4194 puts_filtered ("\n");
4195 print_cplus_stuff (type, spaces);
4196 break;
4197
4198 case TYPE_SPECIFIC_GNAT_STUFF:
4199 printfi_filtered (spaces, "gnat_stuff ");
4200 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4201 puts_filtered ("\n");
4202 print_gnat_stuff (type, spaces);
4203 break;
4204
4205 case TYPE_SPECIFIC_FLOATFORMAT:
4206 printfi_filtered (spaces, "floatformat ");
4207 if (TYPE_FLOATFORMAT (type) == NULL)
4208 puts_filtered ("(null)");
4209 else
4210 {
4211 puts_filtered ("{ ");
4212 if (TYPE_FLOATFORMAT (type)[0] == NULL
4213 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4214 puts_filtered ("(null)");
4215 else
4216 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4217
4218 puts_filtered (", ");
4219 if (TYPE_FLOATFORMAT (type)[1] == NULL
4220 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4221 puts_filtered ("(null)");
4222 else
4223 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4224
4225 puts_filtered (" }");
4226 }
4227 puts_filtered ("\n");
4228 break;
4229
4230 case TYPE_SPECIFIC_FUNC:
4231 printfi_filtered (spaces, "calling_convention %d\n",
4232 TYPE_CALLING_CONVENTION (type));
4233 /* tail_call_list is not printed. */
4234 break;
4235
4236 case TYPE_SPECIFIC_SELF_TYPE:
4237 printfi_filtered (spaces, "self_type ");
4238 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4239 puts_filtered ("\n");
4240 break;
4241 }
4242
4243 if (spaces == 0)
4244 obstack_free (&dont_print_type_obstack, NULL);
4245 }
4246 \f
4247 /* Trivial helpers for the libiberty hash table, for mapping one
4248 type to another. */
4249
4250 struct type_pair
4251 {
4252 struct type *old, *newobj;
4253 };
4254
4255 static hashval_t
4256 type_pair_hash (const void *item)
4257 {
4258 const struct type_pair *pair = item;
4259
4260 return htab_hash_pointer (pair->old);
4261 }
4262
4263 static int
4264 type_pair_eq (const void *item_lhs, const void *item_rhs)
4265 {
4266 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4267
4268 return lhs->old == rhs->old;
4269 }
4270
4271 /* Allocate the hash table used by copy_type_recursive to walk
4272 types without duplicates. We use OBJFILE's obstack, because
4273 OBJFILE is about to be deleted. */
4274
4275 htab_t
4276 create_copied_types_hash (struct objfile *objfile)
4277 {
4278 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4279 NULL, &objfile->objfile_obstack,
4280 hashtab_obstack_allocate,
4281 dummy_obstack_deallocate);
4282 }
4283
4284 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4285
4286 static struct dynamic_prop_list *
4287 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4288 struct dynamic_prop_list *list)
4289 {
4290 struct dynamic_prop_list *copy = list;
4291 struct dynamic_prop_list **node_ptr = &copy;
4292
4293 while (*node_ptr != NULL)
4294 {
4295 struct dynamic_prop_list *node_copy;
4296
4297 node_copy = obstack_copy (objfile_obstack, *node_ptr,
4298 sizeof (struct dynamic_prop_list));
4299 node_copy->prop = (*node_ptr)->prop;
4300 *node_ptr = node_copy;
4301
4302 node_ptr = &node_copy->next;
4303 }
4304
4305 return copy;
4306 }
4307
4308 /* Recursively copy (deep copy) TYPE, if it is associated with
4309 OBJFILE. Return a new type allocated using malloc, a saved type if
4310 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4311 not associated with OBJFILE. */
4312
4313 struct type *
4314 copy_type_recursive (struct objfile *objfile,
4315 struct type *type,
4316 htab_t copied_types)
4317 {
4318 struct type_pair *stored, pair;
4319 void **slot;
4320 struct type *new_type;
4321
4322 if (! TYPE_OBJFILE_OWNED (type))
4323 return type;
4324
4325 /* This type shouldn't be pointing to any types in other objfiles;
4326 if it did, the type might disappear unexpectedly. */
4327 gdb_assert (TYPE_OBJFILE (type) == objfile);
4328
4329 pair.old = type;
4330 slot = htab_find_slot (copied_types, &pair, INSERT);
4331 if (*slot != NULL)
4332 return ((struct type_pair *) *slot)->newobj;
4333
4334 new_type = alloc_type_arch (get_type_arch (type));
4335
4336 /* We must add the new type to the hash table immediately, in case
4337 we encounter this type again during a recursive call below. */
4338 stored
4339 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4340 stored->old = type;
4341 stored->newobj = new_type;
4342 *slot = stored;
4343
4344 /* Copy the common fields of types. For the main type, we simply
4345 copy the entire thing and then update specific fields as needed. */
4346 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4347 TYPE_OBJFILE_OWNED (new_type) = 0;
4348 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4349
4350 if (TYPE_NAME (type))
4351 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4352 if (TYPE_TAG_NAME (type))
4353 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4354
4355 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4356 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4357
4358 /* Copy the fields. */
4359 if (TYPE_NFIELDS (type))
4360 {
4361 int i, nfields;
4362
4363 nfields = TYPE_NFIELDS (type);
4364 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4365 for (i = 0; i < nfields; i++)
4366 {
4367 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4368 TYPE_FIELD_ARTIFICIAL (type, i);
4369 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4370 if (TYPE_FIELD_TYPE (type, i))
4371 TYPE_FIELD_TYPE (new_type, i)
4372 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4373 copied_types);
4374 if (TYPE_FIELD_NAME (type, i))
4375 TYPE_FIELD_NAME (new_type, i) =
4376 xstrdup (TYPE_FIELD_NAME (type, i));
4377 switch (TYPE_FIELD_LOC_KIND (type, i))
4378 {
4379 case FIELD_LOC_KIND_BITPOS:
4380 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4381 TYPE_FIELD_BITPOS (type, i));
4382 break;
4383 case FIELD_LOC_KIND_ENUMVAL:
4384 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4385 TYPE_FIELD_ENUMVAL (type, i));
4386 break;
4387 case FIELD_LOC_KIND_PHYSADDR:
4388 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4389 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4390 break;
4391 case FIELD_LOC_KIND_PHYSNAME:
4392 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4393 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4394 i)));
4395 break;
4396 default:
4397 internal_error (__FILE__, __LINE__,
4398 _("Unexpected type field location kind: %d"),
4399 TYPE_FIELD_LOC_KIND (type, i));
4400 }
4401 }
4402 }
4403
4404 /* For range types, copy the bounds information. */
4405 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4406 {
4407 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4408 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4409 }
4410
4411 if (TYPE_DYN_PROP_LIST (type) != NULL)
4412 TYPE_DYN_PROP_LIST (new_type)
4413 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4414 TYPE_DYN_PROP_LIST (type));
4415
4416
4417 /* Copy pointers to other types. */
4418 if (TYPE_TARGET_TYPE (type))
4419 TYPE_TARGET_TYPE (new_type) =
4420 copy_type_recursive (objfile,
4421 TYPE_TARGET_TYPE (type),
4422 copied_types);
4423
4424 /* Maybe copy the type_specific bits.
4425
4426 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4427 base classes and methods. There's no fundamental reason why we
4428 can't, but at the moment it is not needed. */
4429
4430 switch (TYPE_SPECIFIC_FIELD (type))
4431 {
4432 case TYPE_SPECIFIC_NONE:
4433 break;
4434 case TYPE_SPECIFIC_FUNC:
4435 INIT_FUNC_SPECIFIC (new_type);
4436 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4437 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4438 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4439 break;
4440 case TYPE_SPECIFIC_FLOATFORMAT:
4441 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4442 break;
4443 case TYPE_SPECIFIC_CPLUS_STUFF:
4444 INIT_CPLUS_SPECIFIC (new_type);
4445 break;
4446 case TYPE_SPECIFIC_GNAT_STUFF:
4447 INIT_GNAT_SPECIFIC (new_type);
4448 break;
4449 case TYPE_SPECIFIC_SELF_TYPE:
4450 set_type_self_type (new_type,
4451 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4452 copied_types));
4453 break;
4454 default:
4455 gdb_assert_not_reached ("bad type_specific_kind");
4456 }
4457
4458 return new_type;
4459 }
4460
4461 /* Make a copy of the given TYPE, except that the pointer & reference
4462 types are not preserved.
4463
4464 This function assumes that the given type has an associated objfile.
4465 This objfile is used to allocate the new type. */
4466
4467 struct type *
4468 copy_type (const struct type *type)
4469 {
4470 struct type *new_type;
4471
4472 gdb_assert (TYPE_OBJFILE_OWNED (type));
4473
4474 new_type = alloc_type_copy (type);
4475 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4476 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4477 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4478 sizeof (struct main_type));
4479 if (TYPE_DYN_PROP_LIST (type) != NULL)
4480 TYPE_DYN_PROP_LIST (new_type)
4481 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4482 TYPE_DYN_PROP_LIST (type));
4483
4484 return new_type;
4485 }
4486 \f
4487 /* Helper functions to initialize architecture-specific types. */
4488
4489 /* Allocate a type structure associated with GDBARCH and set its
4490 CODE, LENGTH, and NAME fields. */
4491
4492 struct type *
4493 arch_type (struct gdbarch *gdbarch,
4494 enum type_code code, int length, char *name)
4495 {
4496 struct type *type;
4497
4498 type = alloc_type_arch (gdbarch);
4499 TYPE_CODE (type) = code;
4500 TYPE_LENGTH (type) = length;
4501
4502 if (name)
4503 TYPE_NAME (type) = xstrdup (name);
4504
4505 return type;
4506 }
4507
4508 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4509 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4510 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4511
4512 struct type *
4513 arch_integer_type (struct gdbarch *gdbarch,
4514 int bit, int unsigned_p, char *name)
4515 {
4516 struct type *t;
4517
4518 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4519 if (unsigned_p)
4520 TYPE_UNSIGNED (t) = 1;
4521 if (name && strcmp (name, "char") == 0)
4522 TYPE_NOSIGN (t) = 1;
4523
4524 return t;
4525 }
4526
4527 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4528 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4529 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4530
4531 struct type *
4532 arch_character_type (struct gdbarch *gdbarch,
4533 int bit, int unsigned_p, char *name)
4534 {
4535 struct type *t;
4536
4537 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4538 if (unsigned_p)
4539 TYPE_UNSIGNED (t) = 1;
4540
4541 return t;
4542 }
4543
4544 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4545 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4546 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4547
4548 struct type *
4549 arch_boolean_type (struct gdbarch *gdbarch,
4550 int bit, int unsigned_p, char *name)
4551 {
4552 struct type *t;
4553
4554 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4555 if (unsigned_p)
4556 TYPE_UNSIGNED (t) = 1;
4557
4558 return t;
4559 }
4560
4561 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4562 BIT is the type size in bits; if BIT equals -1, the size is
4563 determined by the floatformat. NAME is the type name. Set the
4564 TYPE_FLOATFORMAT from FLOATFORMATS. */
4565
4566 struct type *
4567 arch_float_type (struct gdbarch *gdbarch,
4568 int bit, char *name, const struct floatformat **floatformats)
4569 {
4570 struct type *t;
4571
4572 if (bit == -1)
4573 {
4574 gdb_assert (floatformats != NULL);
4575 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4576 bit = floatformats[0]->totalsize;
4577 }
4578 gdb_assert (bit >= 0);
4579
4580 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4581 TYPE_FLOATFORMAT (t) = floatformats;
4582 return t;
4583 }
4584
4585 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4586 NAME is the type name. TARGET_TYPE is the component float type. */
4587
4588 struct type *
4589 arch_complex_type (struct gdbarch *gdbarch,
4590 char *name, struct type *target_type)
4591 {
4592 struct type *t;
4593
4594 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4595 2 * TYPE_LENGTH (target_type), name);
4596 TYPE_TARGET_TYPE (t) = target_type;
4597 return t;
4598 }
4599
4600 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4601 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4602
4603 struct type *
4604 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4605 {
4606 int nfields = length * TARGET_CHAR_BIT;
4607 struct type *type;
4608
4609 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4610 TYPE_UNSIGNED (type) = 1;
4611 TYPE_NFIELDS (type) = nfields;
4612 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4613
4614 return type;
4615 }
4616
4617 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4618 position BITPOS is called NAME. */
4619
4620 void
4621 append_flags_type_flag (struct type *type, int bitpos, char *name)
4622 {
4623 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4624 gdb_assert (bitpos < TYPE_NFIELDS (type));
4625 gdb_assert (bitpos >= 0);
4626
4627 if (name)
4628 {
4629 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4630 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4631 }
4632 else
4633 {
4634 /* Don't show this field to the user. */
4635 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4636 }
4637 }
4638
4639 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4640 specified by CODE) associated with GDBARCH. NAME is the type name. */
4641
4642 struct type *
4643 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4644 {
4645 struct type *t;
4646
4647 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4648 t = arch_type (gdbarch, code, 0, NULL);
4649 TYPE_TAG_NAME (t) = name;
4650 INIT_CPLUS_SPECIFIC (t);
4651 return t;
4652 }
4653
4654 /* Add new field with name NAME and type FIELD to composite type T.
4655 Do not set the field's position or adjust the type's length;
4656 the caller should do so. Return the new field. */
4657
4658 struct field *
4659 append_composite_type_field_raw (struct type *t, char *name,
4660 struct type *field)
4661 {
4662 struct field *f;
4663
4664 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4665 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4666 sizeof (struct field) * TYPE_NFIELDS (t));
4667 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4668 memset (f, 0, sizeof f[0]);
4669 FIELD_TYPE (f[0]) = field;
4670 FIELD_NAME (f[0]) = name;
4671 return f;
4672 }
4673
4674 /* Add new field with name NAME and type FIELD to composite type T.
4675 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4676
4677 void
4678 append_composite_type_field_aligned (struct type *t, char *name,
4679 struct type *field, int alignment)
4680 {
4681 struct field *f = append_composite_type_field_raw (t, name, field);
4682
4683 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4684 {
4685 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4686 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4687 }
4688 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4689 {
4690 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4691 if (TYPE_NFIELDS (t) > 1)
4692 {
4693 SET_FIELD_BITPOS (f[0],
4694 (FIELD_BITPOS (f[-1])
4695 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4696 * TARGET_CHAR_BIT)));
4697
4698 if (alignment)
4699 {
4700 int left;
4701
4702 alignment *= TARGET_CHAR_BIT;
4703 left = FIELD_BITPOS (f[0]) % alignment;
4704
4705 if (left)
4706 {
4707 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4708 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4709 }
4710 }
4711 }
4712 }
4713 }
4714
4715 /* Add new field with name NAME and type FIELD to composite type T. */
4716
4717 void
4718 append_composite_type_field (struct type *t, char *name,
4719 struct type *field)
4720 {
4721 append_composite_type_field_aligned (t, name, field, 0);
4722 }
4723
4724 static struct gdbarch_data *gdbtypes_data;
4725
4726 const struct builtin_type *
4727 builtin_type (struct gdbarch *gdbarch)
4728 {
4729 return gdbarch_data (gdbarch, gdbtypes_data);
4730 }
4731
4732 static void *
4733 gdbtypes_post_init (struct gdbarch *gdbarch)
4734 {
4735 struct builtin_type *builtin_type
4736 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4737
4738 /* Basic types. */
4739 builtin_type->builtin_void
4740 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4741 builtin_type->builtin_char
4742 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4743 !gdbarch_char_signed (gdbarch), "char");
4744 builtin_type->builtin_signed_char
4745 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4746 0, "signed char");
4747 builtin_type->builtin_unsigned_char
4748 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4749 1, "unsigned char");
4750 builtin_type->builtin_short
4751 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4752 0, "short");
4753 builtin_type->builtin_unsigned_short
4754 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4755 1, "unsigned short");
4756 builtin_type->builtin_int
4757 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4758 0, "int");
4759 builtin_type->builtin_unsigned_int
4760 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4761 1, "unsigned int");
4762 builtin_type->builtin_long
4763 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4764 0, "long");
4765 builtin_type->builtin_unsigned_long
4766 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4767 1, "unsigned long");
4768 builtin_type->builtin_long_long
4769 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4770 0, "long long");
4771 builtin_type->builtin_unsigned_long_long
4772 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4773 1, "unsigned long long");
4774 builtin_type->builtin_float
4775 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4776 "float", gdbarch_float_format (gdbarch));
4777 builtin_type->builtin_double
4778 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4779 "double", gdbarch_double_format (gdbarch));
4780 builtin_type->builtin_long_double
4781 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4782 "long double", gdbarch_long_double_format (gdbarch));
4783 builtin_type->builtin_complex
4784 = arch_complex_type (gdbarch, "complex",
4785 builtin_type->builtin_float);
4786 builtin_type->builtin_double_complex
4787 = arch_complex_type (gdbarch, "double complex",
4788 builtin_type->builtin_double);
4789 builtin_type->builtin_string
4790 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4791 builtin_type->builtin_bool
4792 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4793
4794 /* The following three are about decimal floating point types, which
4795 are 32-bits, 64-bits and 128-bits respectively. */
4796 builtin_type->builtin_decfloat
4797 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4798 builtin_type->builtin_decdouble
4799 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4800 builtin_type->builtin_declong
4801 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4802
4803 /* "True" character types. */
4804 builtin_type->builtin_true_char
4805 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4806 builtin_type->builtin_true_unsigned_char
4807 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4808
4809 /* Fixed-size integer types. */
4810 builtin_type->builtin_int0
4811 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4812 builtin_type->builtin_int8
4813 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4814 builtin_type->builtin_uint8
4815 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4816 builtin_type->builtin_int16
4817 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4818 builtin_type->builtin_uint16
4819 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4820 builtin_type->builtin_int32
4821 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4822 builtin_type->builtin_uint32
4823 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4824 builtin_type->builtin_int64
4825 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4826 builtin_type->builtin_uint64
4827 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4828 builtin_type->builtin_int128
4829 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4830 builtin_type->builtin_uint128
4831 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4832 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4833 TYPE_INSTANCE_FLAG_NOTTEXT;
4834 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4835 TYPE_INSTANCE_FLAG_NOTTEXT;
4836
4837 /* Wide character types. */
4838 builtin_type->builtin_char16
4839 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4840 builtin_type->builtin_char32
4841 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4842
4843
4844 /* Default data/code pointer types. */
4845 builtin_type->builtin_data_ptr
4846 = lookup_pointer_type (builtin_type->builtin_void);
4847 builtin_type->builtin_func_ptr
4848 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4849 builtin_type->builtin_func_func
4850 = lookup_function_type (builtin_type->builtin_func_ptr);
4851
4852 /* This type represents a GDB internal function. */
4853 builtin_type->internal_fn
4854 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4855 "<internal function>");
4856
4857 /* This type represents an xmethod. */
4858 builtin_type->xmethod
4859 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4860
4861 return builtin_type;
4862 }
4863
4864 /* This set of objfile-based types is intended to be used by symbol
4865 readers as basic types. */
4866
4867 static const struct objfile_data *objfile_type_data;
4868
4869 const struct objfile_type *
4870 objfile_type (struct objfile *objfile)
4871 {
4872 struct gdbarch *gdbarch;
4873 struct objfile_type *objfile_type
4874 = objfile_data (objfile, objfile_type_data);
4875
4876 if (objfile_type)
4877 return objfile_type;
4878
4879 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4880 1, struct objfile_type);
4881
4882 /* Use the objfile architecture to determine basic type properties. */
4883 gdbarch = get_objfile_arch (objfile);
4884
4885 /* Basic types. */
4886 objfile_type->builtin_void
4887 = init_type (TYPE_CODE_VOID, 1,
4888 0,
4889 "void", objfile);
4890
4891 objfile_type->builtin_char
4892 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4893 (TYPE_FLAG_NOSIGN
4894 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4895 "char", objfile);
4896 objfile_type->builtin_signed_char
4897 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4898 0,
4899 "signed char", objfile);
4900 objfile_type->builtin_unsigned_char
4901 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4902 TYPE_FLAG_UNSIGNED,
4903 "unsigned char", objfile);
4904 objfile_type->builtin_short
4905 = init_type (TYPE_CODE_INT,
4906 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4907 0, "short", objfile);
4908 objfile_type->builtin_unsigned_short
4909 = init_type (TYPE_CODE_INT,
4910 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4911 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4912 objfile_type->builtin_int
4913 = init_type (TYPE_CODE_INT,
4914 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4915 0, "int", objfile);
4916 objfile_type->builtin_unsigned_int
4917 = init_type (TYPE_CODE_INT,
4918 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4919 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4920 objfile_type->builtin_long
4921 = init_type (TYPE_CODE_INT,
4922 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4923 0, "long", objfile);
4924 objfile_type->builtin_unsigned_long
4925 = init_type (TYPE_CODE_INT,
4926 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4927 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4928 objfile_type->builtin_long_long
4929 = init_type (TYPE_CODE_INT,
4930 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4931 0, "long long", objfile);
4932 objfile_type->builtin_unsigned_long_long
4933 = init_type (TYPE_CODE_INT,
4934 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4935 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4936
4937 objfile_type->builtin_float
4938 = init_type (TYPE_CODE_FLT,
4939 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4940 0, "float", objfile);
4941 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4942 = gdbarch_float_format (gdbarch);
4943 objfile_type->builtin_double
4944 = init_type (TYPE_CODE_FLT,
4945 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4946 0, "double", objfile);
4947 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4948 = gdbarch_double_format (gdbarch);
4949 objfile_type->builtin_long_double
4950 = init_type (TYPE_CODE_FLT,
4951 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4952 0, "long double", objfile);
4953 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4954 = gdbarch_long_double_format (gdbarch);
4955
4956 /* This type represents a type that was unrecognized in symbol read-in. */
4957 objfile_type->builtin_error
4958 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4959
4960 /* The following set of types is used for symbols with no
4961 debug information. */
4962 objfile_type->nodebug_text_symbol
4963 = init_type (TYPE_CODE_FUNC, 1, 0,
4964 "<text variable, no debug info>", objfile);
4965 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4966 = objfile_type->builtin_int;
4967 objfile_type->nodebug_text_gnu_ifunc_symbol
4968 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4969 "<text gnu-indirect-function variable, no debug info>",
4970 objfile);
4971 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4972 = objfile_type->nodebug_text_symbol;
4973 objfile_type->nodebug_got_plt_symbol
4974 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4975 "<text from jump slot in .got.plt, no debug info>",
4976 objfile);
4977 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4978 = objfile_type->nodebug_text_symbol;
4979 objfile_type->nodebug_data_symbol
4980 = init_type (TYPE_CODE_INT,
4981 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4982 "<data variable, no debug info>", objfile);
4983 objfile_type->nodebug_unknown_symbol
4984 = init_type (TYPE_CODE_INT, 1, 0,
4985 "<variable (not text or data), no debug info>", objfile);
4986 objfile_type->nodebug_tls_symbol
4987 = init_type (TYPE_CODE_INT,
4988 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4989 "<thread local variable, no debug info>", objfile);
4990
4991 /* NOTE: on some targets, addresses and pointers are not necessarily
4992 the same.
4993
4994 The upshot is:
4995 - gdb's `struct type' always describes the target's
4996 representation.
4997 - gdb's `struct value' objects should always hold values in
4998 target form.
4999 - gdb's CORE_ADDR values are addresses in the unified virtual
5000 address space that the assembler and linker work with. Thus,
5001 since target_read_memory takes a CORE_ADDR as an argument, it
5002 can access any memory on the target, even if the processor has
5003 separate code and data address spaces.
5004
5005 In this context, objfile_type->builtin_core_addr is a bit odd:
5006 it's a target type for a value the target will never see. It's
5007 only used to hold the values of (typeless) linker symbols, which
5008 are indeed in the unified virtual address space. */
5009
5010 objfile_type->builtin_core_addr
5011 = init_type (TYPE_CODE_INT,
5012 gdbarch_addr_bit (gdbarch) / 8,
5013 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
5014
5015 set_objfile_data (objfile, objfile_type_data, objfile_type);
5016 return objfile_type;
5017 }
5018
5019 extern initialize_file_ftype _initialize_gdbtypes;
5020
5021 void
5022 _initialize_gdbtypes (void)
5023 {
5024 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5025 objfile_type_data = register_objfile_data ();
5026
5027 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5028 _("Set debugging of C++ overloading."),
5029 _("Show debugging of C++ overloading."),
5030 _("When enabled, ranking of the "
5031 "functions is displayed."),
5032 NULL,
5033 show_overload_debug,
5034 &setdebuglist, &showdebuglist);
5035
5036 /* Add user knob for controlling resolution of opaque types. */
5037 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5038 &opaque_type_resolution,
5039 _("Set resolution of opaque struct/class/union"
5040 " types (if set before loading symbols)."),
5041 _("Show resolution of opaque struct/class/union"
5042 " types (if set before loading symbols)."),
5043 NULL, NULL,
5044 show_opaque_type_resolution,
5045 &setlist, &showlist);
5046
5047 /* Add an option to permit non-strict type checking. */
5048 add_setshow_boolean_cmd ("type", class_support,
5049 &strict_type_checking,
5050 _("Set strict type checking."),
5051 _("Show strict type checking."),
5052 NULL, NULL,
5053 show_strict_type_checking,
5054 &setchecklist, &showchecklist);
5055 }
This page took 0.133552 seconds and 4 git commands to generate.