Reindent code (resolve_dynamic_type_internal).
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_VPTR_FIELDNO (type) = -1;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = XCNEW (struct type);
203 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
260
261 static struct type *
262 alloc_type_instance (struct type *oldtype)
263 {
264 struct type *type;
265
266 /* Allocate the structure. */
267
268 if (! TYPE_OBJFILE_OWNED (oldtype))
269 type = XCNEW (struct type);
270 else
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
272 struct type);
273
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
275
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
277
278 return type;
279 }
280
281 /* Clear all remnants of the previous type at TYPE, in preparation for
282 replacing it with something else. Preserve owner information. */
283
284 static void
285 smash_type (struct type *type)
286 {
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
289
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
291
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
295
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
298
299 /* For now, leave the pointer/reference types alone. */
300 }
301
302 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
306
307 struct type *
308 make_pointer_type (struct type *type, struct type **typeptr)
309 {
310 struct type *ntype; /* New type */
311 struct type *chain;
312
313 ntype = TYPE_POINTER_TYPE (type);
314
315 if (ntype)
316 {
317 if (typeptr == 0)
318 return ntype; /* Don't care about alloc,
319 and have new type. */
320 else if (*typeptr == 0)
321 {
322 *typeptr = ntype; /* Tracking alloc, and have new type. */
323 return ntype;
324 }
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
329 ntype = alloc_type_copy (type);
330 if (typeptr)
331 *typeptr = ntype;
332 }
333 else /* We have storage, but need to reset it. */
334 {
335 ntype = *typeptr;
336 chain = TYPE_CHAIN (ntype);
337 smash_type (ntype);
338 TYPE_CHAIN (ntype) = chain;
339 }
340
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
343
344 /* FIXME! Assumes the machine has only one representation for pointers! */
345
346 TYPE_LENGTH (ntype)
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
349
350 /* Mark pointers as unsigned. The target converts between pointers
351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
352 gdbarch_address_to_pointer. */
353 TYPE_UNSIGNED (ntype) = 1;
354
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
358 {
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
361 }
362
363 return ntype;
364 }
365
366 /* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
368
369 struct type *
370 lookup_pointer_type (struct type *type)
371 {
372 return make_pointer_type (type, (struct type **) 0);
373 }
374
375 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
379
380 struct type *
381 make_reference_type (struct type *type, struct type **typeptr)
382 {
383 struct type *ntype; /* New type */
384 struct type *chain;
385
386 ntype = TYPE_REFERENCE_TYPE (type);
387
388 if (ntype)
389 {
390 if (typeptr == 0)
391 return ntype; /* Don't care about alloc,
392 and have new type. */
393 else if (*typeptr == 0)
394 {
395 *typeptr = ntype; /* Tracking alloc, and have new type. */
396 return ntype;
397 }
398 }
399
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
401 {
402 ntype = alloc_type_copy (type);
403 if (typeptr)
404 *typeptr = ntype;
405 }
406 else /* We have storage, but need to reset it. */
407 {
408 ntype = *typeptr;
409 chain = TYPE_CHAIN (ntype);
410 smash_type (ntype);
411 TYPE_CHAIN (ntype) = chain;
412 }
413
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
416
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
419 pointers! */
420
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
423 TYPE_CODE (ntype) = TYPE_CODE_REF;
424
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
427
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
431 {
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
434 }
435
436 return ntype;
437 }
438
439 /* Same as above, but caller doesn't care about memory allocation
440 details. */
441
442 struct type *
443 lookup_reference_type (struct type *type)
444 {
445 return make_reference_type (type, (struct type **) 0);
446 }
447
448 /* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
451 function type we return. We allocate new memory if needed. */
452
453 struct type *
454 make_function_type (struct type *type, struct type **typeptr)
455 {
456 struct type *ntype; /* New type */
457
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
459 {
460 ntype = alloc_type_copy (type);
461 if (typeptr)
462 *typeptr = ntype;
463 }
464 else /* We have storage, but need to reset it. */
465 {
466 ntype = *typeptr;
467 smash_type (ntype);
468 }
469
470 TYPE_TARGET_TYPE (ntype) = type;
471
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
474
475 INIT_FUNC_SPECIFIC (ntype);
476
477 return ntype;
478 }
479
480 /* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
482
483 struct type *
484 lookup_function_type (struct type *type)
485 {
486 return make_function_type (type, (struct type **) 0);
487 }
488
489 /* Given a type TYPE and argument types, return the appropriate
490 function type. If the final type in PARAM_TYPES is NULL, make a
491 varargs function. */
492
493 struct type *
494 lookup_function_type_with_arguments (struct type *type,
495 int nparams,
496 struct type **param_types)
497 {
498 struct type *fn = make_function_type (type, (struct type **) 0);
499 int i;
500
501 if (nparams > 0)
502 {
503 if (param_types[nparams - 1] == NULL)
504 {
505 --nparams;
506 TYPE_VARARGS (fn) = 1;
507 }
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
509 == TYPE_CODE_VOID)
510 {
511 --nparams;
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
515 }
516 }
517
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
522
523 return fn;
524 }
525
526 /* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
528
529 int
530 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
531 {
532 int type_flags;
533
534 /* Check for known address space delimiters. */
535 if (!strcmp (space_identifier, "code"))
536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
537 else if (!strcmp (space_identifier, "data"))
538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
541 space_identifier,
542 &type_flags))
543 return type_flags;
544 else
545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
546 }
547
548 /* Identify address space identifier by integer flag as defined in
549 gdbtypes.h -- return the string version of the adress space name. */
550
551 const char *
552 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
553 {
554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
555 return "code";
556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
557 return "data";
558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
561 else
562 return NULL;
563 }
564
565 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
566
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
569
570 static struct type *
571 make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
573 {
574 struct type *ntype;
575
576 ntype = type;
577 do
578 {
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
580 return ntype;
581 ntype = TYPE_CHAIN (ntype);
582 }
583 while (ntype != type);
584
585 /* Create a new type instance. */
586 if (storage == NULL)
587 ntype = alloc_type_instance (type);
588 else
589 {
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
595
596 ntype = storage;
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
599 }
600
601 /* Pointers or references to the original type are not relevant to
602 the new type. */
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
605
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
609
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
612
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
615
616 return ntype;
617 }
618
619 /* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
622
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
626 representations. */
627
628 struct type *
629 make_type_with_address_space (struct type *type, int space_flag)
630 {
631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
635 | space_flag);
636
637 return make_qualified_type (type, new_flags, NULL);
638 }
639
640 /* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
645
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
651
652 struct type *
653 make_cv_type (int cnst, int voltl,
654 struct type *type,
655 struct type **typeptr)
656 {
657 struct type *ntype; /* New type */
658
659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
662
663 if (cnst)
664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
665
666 if (voltl)
667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
668
669 if (typeptr && *typeptr != NULL)
670 {
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
674
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
684 }
685
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
688
689 if (typeptr != NULL)
690 *typeptr = ntype;
691
692 return ntype;
693 }
694
695 /* Make a 'restrict'-qualified version of TYPE. */
696
697 struct type *
698 make_restrict_type (struct type *type)
699 {
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
703 NULL);
704 }
705
706 /* Replace the contents of ntype with the type *type. This changes the
707 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
708 the changes are propogated to all types in the TYPE_CHAIN.
709
710 In order to build recursive types, it's inevitable that we'll need
711 to update types in place --- but this sort of indiscriminate
712 smashing is ugly, and needs to be replaced with something more
713 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
714 clear if more steps are needed. */
715
716 void
717 replace_type (struct type *ntype, struct type *type)
718 {
719 struct type *chain;
720
721 /* These two types had better be in the same objfile. Otherwise,
722 the assignment of one type's main type structure to the other
723 will produce a type with references to objects (names; field
724 lists; etc.) allocated on an objfile other than its own. */
725 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
726
727 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
728
729 /* The type length is not a part of the main type. Update it for
730 each type on the variant chain. */
731 chain = ntype;
732 do
733 {
734 /* Assert that this element of the chain has no address-class bits
735 set in its flags. Such type variants might have type lengths
736 which are supposed to be different from the non-address-class
737 variants. This assertion shouldn't ever be triggered because
738 symbol readers which do construct address-class variants don't
739 call replace_type(). */
740 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
741
742 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
743 chain = TYPE_CHAIN (chain);
744 }
745 while (ntype != chain);
746
747 /* Assert that the two types have equivalent instance qualifiers.
748 This should be true for at least all of our debug readers. */
749 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
750 }
751
752 /* Implement direct support for MEMBER_TYPE in GNU C++.
753 May need to construct such a type if this is the first use.
754 The TYPE is the type of the member. The DOMAIN is the type
755 of the aggregate that the member belongs to. */
756
757 struct type *
758 lookup_memberptr_type (struct type *type, struct type *domain)
759 {
760 struct type *mtype;
761
762 mtype = alloc_type_copy (type);
763 smash_to_memberptr_type (mtype, domain, type);
764 return mtype;
765 }
766
767 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
768
769 struct type *
770 lookup_methodptr_type (struct type *to_type)
771 {
772 struct type *mtype;
773
774 mtype = alloc_type_copy (to_type);
775 smash_to_methodptr_type (mtype, to_type);
776 return mtype;
777 }
778
779 /* Allocate a stub method whose return type is TYPE. This apparently
780 happens for speed of symbol reading, since parsing out the
781 arguments to the method is cpu-intensive, the way we are doing it.
782 So, we will fill in arguments later. This always returns a fresh
783 type. */
784
785 struct type *
786 allocate_stub_method (struct type *type)
787 {
788 struct type *mtype;
789
790 mtype = alloc_type_copy (type);
791 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
792 TYPE_LENGTH (mtype) = 1;
793 TYPE_STUB (mtype) = 1;
794 TYPE_TARGET_TYPE (mtype) = type;
795 /* _DOMAIN_TYPE (mtype) = unknown yet */
796 return mtype;
797 }
798
799 /* Create a range type with a dynamic range from LOW_BOUND to
800 HIGH_BOUND, inclusive. See create_range_type for further details. */
801
802 struct type *
803 create_range_type (struct type *result_type, struct type *index_type,
804 const struct dynamic_prop *low_bound,
805 const struct dynamic_prop *high_bound)
806 {
807 if (result_type == NULL)
808 result_type = alloc_type_copy (index_type);
809 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
810 TYPE_TARGET_TYPE (result_type) = index_type;
811 if (TYPE_STUB (index_type))
812 TYPE_TARGET_STUB (result_type) = 1;
813 else
814 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
815
816 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
817 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
818 TYPE_RANGE_DATA (result_type)->low = *low_bound;
819 TYPE_RANGE_DATA (result_type)->high = *high_bound;
820
821 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
822 TYPE_UNSIGNED (result_type) = 1;
823
824 /* Ada allows the declaration of range types whose upper bound is
825 less than the lower bound, so checking the lower bound is not
826 enough. Make sure we do not mark a range type whose upper bound
827 is negative as unsigned. */
828 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
829 TYPE_UNSIGNED (result_type) = 0;
830
831 return result_type;
832 }
833
834 /* Create a range type using either a blank type supplied in
835 RESULT_TYPE, or creating a new type, inheriting the objfile from
836 INDEX_TYPE.
837
838 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
839 to HIGH_BOUND, inclusive.
840
841 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
842 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
843
844 struct type *
845 create_static_range_type (struct type *result_type, struct type *index_type,
846 LONGEST low_bound, LONGEST high_bound)
847 {
848 struct dynamic_prop low, high;
849
850 low.kind = PROP_CONST;
851 low.data.const_val = low_bound;
852
853 high.kind = PROP_CONST;
854 high.data.const_val = high_bound;
855
856 result_type = create_range_type (result_type, index_type, &low, &high);
857
858 return result_type;
859 }
860
861 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
862 are static, otherwise returns 0. */
863
864 static int
865 has_static_range (const struct range_bounds *bounds)
866 {
867 return (bounds->low.kind == PROP_CONST
868 && bounds->high.kind == PROP_CONST);
869 }
870
871
872 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
873 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
874 bounds will fit in LONGEST), or -1 otherwise. */
875
876 int
877 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
878 {
879 CHECK_TYPEDEF (type);
880 switch (TYPE_CODE (type))
881 {
882 case TYPE_CODE_RANGE:
883 *lowp = TYPE_LOW_BOUND (type);
884 *highp = TYPE_HIGH_BOUND (type);
885 return 1;
886 case TYPE_CODE_ENUM:
887 if (TYPE_NFIELDS (type) > 0)
888 {
889 /* The enums may not be sorted by value, so search all
890 entries. */
891 int i;
892
893 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
894 for (i = 0; i < TYPE_NFIELDS (type); i++)
895 {
896 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
897 *lowp = TYPE_FIELD_ENUMVAL (type, i);
898 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
899 *highp = TYPE_FIELD_ENUMVAL (type, i);
900 }
901
902 /* Set unsigned indicator if warranted. */
903 if (*lowp >= 0)
904 {
905 TYPE_UNSIGNED (type) = 1;
906 }
907 }
908 else
909 {
910 *lowp = 0;
911 *highp = -1;
912 }
913 return 0;
914 case TYPE_CODE_BOOL:
915 *lowp = 0;
916 *highp = 1;
917 return 0;
918 case TYPE_CODE_INT:
919 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
920 return -1;
921 if (!TYPE_UNSIGNED (type))
922 {
923 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
924 *highp = -*lowp - 1;
925 return 0;
926 }
927 /* ... fall through for unsigned ints ... */
928 case TYPE_CODE_CHAR:
929 *lowp = 0;
930 /* This round-about calculation is to avoid shifting by
931 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
932 if TYPE_LENGTH (type) == sizeof (LONGEST). */
933 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
934 *highp = (*highp - 1) | *highp;
935 return 0;
936 default:
937 return -1;
938 }
939 }
940
941 /* Assuming TYPE is a simple, non-empty array type, compute its upper
942 and lower bound. Save the low bound into LOW_BOUND if not NULL.
943 Save the high bound into HIGH_BOUND if not NULL.
944
945 Return 1 if the operation was successful. Return zero otherwise,
946 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
947
948 We now simply use get_discrete_bounds call to get the values
949 of the low and high bounds.
950 get_discrete_bounds can return three values:
951 1, meaning that index is a range,
952 0, meaning that index is a discrete type,
953 or -1 for failure. */
954
955 int
956 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
957 {
958 struct type *index = TYPE_INDEX_TYPE (type);
959 LONGEST low = 0;
960 LONGEST high = 0;
961 int res;
962
963 if (index == NULL)
964 return 0;
965
966 res = get_discrete_bounds (index, &low, &high);
967 if (res == -1)
968 return 0;
969
970 /* Check if the array bounds are undefined. */
971 if (res == 1
972 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
973 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
974 return 0;
975
976 if (low_bound)
977 *low_bound = low;
978
979 if (high_bound)
980 *high_bound = high;
981
982 return 1;
983 }
984
985 /* Create an array type using either a blank type supplied in
986 RESULT_TYPE, or creating a new type, inheriting the objfile from
987 RANGE_TYPE.
988
989 Elements will be of type ELEMENT_TYPE, the indices will be of type
990 RANGE_TYPE.
991
992 If BIT_STRIDE is not zero, build a packed array type whose element
993 size is BIT_STRIDE. Otherwise, ignore this parameter.
994
995 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
996 sure it is TYPE_CODE_UNDEF before we bash it into an array
997 type? */
998
999 struct type *
1000 create_array_type_with_stride (struct type *result_type,
1001 struct type *element_type,
1002 struct type *range_type,
1003 unsigned int bit_stride)
1004 {
1005 if (result_type == NULL)
1006 result_type = alloc_type_copy (range_type);
1007
1008 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1009 TYPE_TARGET_TYPE (result_type) = element_type;
1010 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1011 {
1012 LONGEST low_bound, high_bound;
1013
1014 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1015 low_bound = high_bound = 0;
1016 CHECK_TYPEDEF (element_type);
1017 /* Be careful when setting the array length. Ada arrays can be
1018 empty arrays with the high_bound being smaller than the low_bound.
1019 In such cases, the array length should be zero. */
1020 if (high_bound < low_bound)
1021 TYPE_LENGTH (result_type) = 0;
1022 else if (bit_stride > 0)
1023 TYPE_LENGTH (result_type) =
1024 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1025 else
1026 TYPE_LENGTH (result_type) =
1027 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1028 }
1029 else
1030 {
1031 /* This type is dynamic and its length needs to be computed
1032 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1033 undefined by setting it to zero. Although we are not expected
1034 to trust TYPE_LENGTH in this case, setting the size to zero
1035 allows us to avoid allocating objects of random sizes in case
1036 we accidently do. */
1037 TYPE_LENGTH (result_type) = 0;
1038 }
1039
1040 TYPE_NFIELDS (result_type) = 1;
1041 TYPE_FIELDS (result_type) =
1042 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1043 TYPE_INDEX_TYPE (result_type) = range_type;
1044 TYPE_VPTR_FIELDNO (result_type) = -1;
1045 if (bit_stride > 0)
1046 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1047
1048 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1049 if (TYPE_LENGTH (result_type) == 0)
1050 TYPE_TARGET_STUB (result_type) = 1;
1051
1052 return result_type;
1053 }
1054
1055 /* Same as create_array_type_with_stride but with no bit_stride
1056 (BIT_STRIDE = 0), thus building an unpacked array. */
1057
1058 struct type *
1059 create_array_type (struct type *result_type,
1060 struct type *element_type,
1061 struct type *range_type)
1062 {
1063 return create_array_type_with_stride (result_type, element_type,
1064 range_type, 0);
1065 }
1066
1067 struct type *
1068 lookup_array_range_type (struct type *element_type,
1069 LONGEST low_bound, LONGEST high_bound)
1070 {
1071 struct gdbarch *gdbarch = get_type_arch (element_type);
1072 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1073 struct type *range_type
1074 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1075
1076 return create_array_type (NULL, element_type, range_type);
1077 }
1078
1079 /* Create a string type using either a blank type supplied in
1080 RESULT_TYPE, or creating a new type. String types are similar
1081 enough to array of char types that we can use create_array_type to
1082 build the basic type and then bash it into a string type.
1083
1084 For fixed length strings, the range type contains 0 as the lower
1085 bound and the length of the string minus one as the upper bound.
1086
1087 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1088 sure it is TYPE_CODE_UNDEF before we bash it into a string
1089 type? */
1090
1091 struct type *
1092 create_string_type (struct type *result_type,
1093 struct type *string_char_type,
1094 struct type *range_type)
1095 {
1096 result_type = create_array_type (result_type,
1097 string_char_type,
1098 range_type);
1099 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1100 return result_type;
1101 }
1102
1103 struct type *
1104 lookup_string_range_type (struct type *string_char_type,
1105 LONGEST low_bound, LONGEST high_bound)
1106 {
1107 struct type *result_type;
1108
1109 result_type = lookup_array_range_type (string_char_type,
1110 low_bound, high_bound);
1111 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1112 return result_type;
1113 }
1114
1115 struct type *
1116 create_set_type (struct type *result_type, struct type *domain_type)
1117 {
1118 if (result_type == NULL)
1119 result_type = alloc_type_copy (domain_type);
1120
1121 TYPE_CODE (result_type) = TYPE_CODE_SET;
1122 TYPE_NFIELDS (result_type) = 1;
1123 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1124
1125 if (!TYPE_STUB (domain_type))
1126 {
1127 LONGEST low_bound, high_bound, bit_length;
1128
1129 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1130 low_bound = high_bound = 0;
1131 bit_length = high_bound - low_bound + 1;
1132 TYPE_LENGTH (result_type)
1133 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1134 if (low_bound >= 0)
1135 TYPE_UNSIGNED (result_type) = 1;
1136 }
1137 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1138
1139 return result_type;
1140 }
1141
1142 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1143 and any array types nested inside it. */
1144
1145 void
1146 make_vector_type (struct type *array_type)
1147 {
1148 struct type *inner_array, *elt_type;
1149 int flags;
1150
1151 /* Find the innermost array type, in case the array is
1152 multi-dimensional. */
1153 inner_array = array_type;
1154 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1155 inner_array = TYPE_TARGET_TYPE (inner_array);
1156
1157 elt_type = TYPE_TARGET_TYPE (inner_array);
1158 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1159 {
1160 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1161 elt_type = make_qualified_type (elt_type, flags, NULL);
1162 TYPE_TARGET_TYPE (inner_array) = elt_type;
1163 }
1164
1165 TYPE_VECTOR (array_type) = 1;
1166 }
1167
1168 struct type *
1169 init_vector_type (struct type *elt_type, int n)
1170 {
1171 struct type *array_type;
1172
1173 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1174 make_vector_type (array_type);
1175 return array_type;
1176 }
1177
1178 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1179 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1180 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1181 TYPE doesn't include the offset (that's the value of the MEMBER
1182 itself), but does include the structure type into which it points
1183 (for some reason).
1184
1185 When "smashing" the type, we preserve the objfile that the old type
1186 pointed to, since we aren't changing where the type is actually
1187 allocated. */
1188
1189 void
1190 smash_to_memberptr_type (struct type *type, struct type *domain,
1191 struct type *to_type)
1192 {
1193 smash_type (type);
1194 TYPE_TARGET_TYPE (type) = to_type;
1195 TYPE_DOMAIN_TYPE (type) = domain;
1196 /* Assume that a data member pointer is the same size as a normal
1197 pointer. */
1198 TYPE_LENGTH (type)
1199 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1200 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1201 }
1202
1203 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1204
1205 When "smashing" the type, we preserve the objfile that the old type
1206 pointed to, since we aren't changing where the type is actually
1207 allocated. */
1208
1209 void
1210 smash_to_methodptr_type (struct type *type, struct type *to_type)
1211 {
1212 smash_type (type);
1213 TYPE_TARGET_TYPE (type) = to_type;
1214 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1215 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1216 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1217 }
1218
1219 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1220 METHOD just means `function that gets an extra "this" argument'.
1221
1222 When "smashing" the type, we preserve the objfile that the old type
1223 pointed to, since we aren't changing where the type is actually
1224 allocated. */
1225
1226 void
1227 smash_to_method_type (struct type *type, struct type *domain,
1228 struct type *to_type, struct field *args,
1229 int nargs, int varargs)
1230 {
1231 smash_type (type);
1232 TYPE_TARGET_TYPE (type) = to_type;
1233 TYPE_DOMAIN_TYPE (type) = domain;
1234 TYPE_FIELDS (type) = args;
1235 TYPE_NFIELDS (type) = nargs;
1236 if (varargs)
1237 TYPE_VARARGS (type) = 1;
1238 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1239 TYPE_CODE (type) = TYPE_CODE_METHOD;
1240 }
1241
1242 /* Return a typename for a struct/union/enum type without "struct ",
1243 "union ", or "enum ". If the type has a NULL name, return NULL. */
1244
1245 const char *
1246 type_name_no_tag (const struct type *type)
1247 {
1248 if (TYPE_TAG_NAME (type) != NULL)
1249 return TYPE_TAG_NAME (type);
1250
1251 /* Is there code which expects this to return the name if there is
1252 no tag name? My guess is that this is mainly used for C++ in
1253 cases where the two will always be the same. */
1254 return TYPE_NAME (type);
1255 }
1256
1257 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1258 Since GCC PR debug/47510 DWARF provides associated information to detect the
1259 anonymous class linkage name from its typedef.
1260
1261 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1262 apply it itself. */
1263
1264 const char *
1265 type_name_no_tag_or_error (struct type *type)
1266 {
1267 struct type *saved_type = type;
1268 const char *name;
1269 struct objfile *objfile;
1270
1271 CHECK_TYPEDEF (type);
1272
1273 name = type_name_no_tag (type);
1274 if (name != NULL)
1275 return name;
1276
1277 name = type_name_no_tag (saved_type);
1278 objfile = TYPE_OBJFILE (saved_type);
1279 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1280 name ? name : "<anonymous>",
1281 objfile ? objfile_name (objfile) : "<arch>");
1282 }
1283
1284 /* Lookup a typedef or primitive type named NAME, visible in lexical
1285 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1286 suitably defined. */
1287
1288 struct type *
1289 lookup_typename (const struct language_defn *language,
1290 struct gdbarch *gdbarch, const char *name,
1291 const struct block *block, int noerr)
1292 {
1293 struct symbol *sym;
1294 struct type *type;
1295
1296 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1297 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1298 return SYMBOL_TYPE (sym);
1299
1300 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1301 if (type)
1302 return type;
1303
1304 if (noerr)
1305 return NULL;
1306 error (_("No type named %s."), name);
1307 }
1308
1309 struct type *
1310 lookup_unsigned_typename (const struct language_defn *language,
1311 struct gdbarch *gdbarch, const char *name)
1312 {
1313 char *uns = alloca (strlen (name) + 10);
1314
1315 strcpy (uns, "unsigned ");
1316 strcpy (uns + 9, name);
1317 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1318 }
1319
1320 struct type *
1321 lookup_signed_typename (const struct language_defn *language,
1322 struct gdbarch *gdbarch, const char *name)
1323 {
1324 struct type *t;
1325 char *uns = alloca (strlen (name) + 8);
1326
1327 strcpy (uns, "signed ");
1328 strcpy (uns + 7, name);
1329 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1330 /* If we don't find "signed FOO" just try again with plain "FOO". */
1331 if (t != NULL)
1332 return t;
1333 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1334 }
1335
1336 /* Lookup a structure type named "struct NAME",
1337 visible in lexical block BLOCK. */
1338
1339 struct type *
1340 lookup_struct (const char *name, const struct block *block)
1341 {
1342 struct symbol *sym;
1343
1344 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1345
1346 if (sym == NULL)
1347 {
1348 error (_("No struct type named %s."), name);
1349 }
1350 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1351 {
1352 error (_("This context has class, union or enum %s, not a struct."),
1353 name);
1354 }
1355 return (SYMBOL_TYPE (sym));
1356 }
1357
1358 /* Lookup a union type named "union NAME",
1359 visible in lexical block BLOCK. */
1360
1361 struct type *
1362 lookup_union (const char *name, const struct block *block)
1363 {
1364 struct symbol *sym;
1365 struct type *t;
1366
1367 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1368
1369 if (sym == NULL)
1370 error (_("No union type named %s."), name);
1371
1372 t = SYMBOL_TYPE (sym);
1373
1374 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1375 return t;
1376
1377 /* If we get here, it's not a union. */
1378 error (_("This context has class, struct or enum %s, not a union."),
1379 name);
1380 }
1381
1382 /* Lookup an enum type named "enum NAME",
1383 visible in lexical block BLOCK. */
1384
1385 struct type *
1386 lookup_enum (const char *name, const struct block *block)
1387 {
1388 struct symbol *sym;
1389
1390 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1391 if (sym == NULL)
1392 {
1393 error (_("No enum type named %s."), name);
1394 }
1395 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1396 {
1397 error (_("This context has class, struct or union %s, not an enum."),
1398 name);
1399 }
1400 return (SYMBOL_TYPE (sym));
1401 }
1402
1403 /* Lookup a template type named "template NAME<TYPE>",
1404 visible in lexical block BLOCK. */
1405
1406 struct type *
1407 lookup_template_type (char *name, struct type *type,
1408 const struct block *block)
1409 {
1410 struct symbol *sym;
1411 char *nam = (char *)
1412 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1413
1414 strcpy (nam, name);
1415 strcat (nam, "<");
1416 strcat (nam, TYPE_NAME (type));
1417 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1418
1419 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1420
1421 if (sym == NULL)
1422 {
1423 error (_("No template type named %s."), name);
1424 }
1425 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1426 {
1427 error (_("This context has class, union or enum %s, not a struct."),
1428 name);
1429 }
1430 return (SYMBOL_TYPE (sym));
1431 }
1432
1433 /* Given a type TYPE, lookup the type of the component of type named
1434 NAME.
1435
1436 TYPE can be either a struct or union, or a pointer or reference to
1437 a struct or union. If it is a pointer or reference, its target
1438 type is automatically used. Thus '.' and '->' are interchangable,
1439 as specified for the definitions of the expression element types
1440 STRUCTOP_STRUCT and STRUCTOP_PTR.
1441
1442 If NOERR is nonzero, return zero if NAME is not suitably defined.
1443 If NAME is the name of a baseclass type, return that type. */
1444
1445 struct type *
1446 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1447 {
1448 int i;
1449 char *typename;
1450
1451 for (;;)
1452 {
1453 CHECK_TYPEDEF (type);
1454 if (TYPE_CODE (type) != TYPE_CODE_PTR
1455 && TYPE_CODE (type) != TYPE_CODE_REF)
1456 break;
1457 type = TYPE_TARGET_TYPE (type);
1458 }
1459
1460 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1461 && TYPE_CODE (type) != TYPE_CODE_UNION)
1462 {
1463 typename = type_to_string (type);
1464 make_cleanup (xfree, typename);
1465 error (_("Type %s is not a structure or union type."), typename);
1466 }
1467
1468 #if 0
1469 /* FIXME: This change put in by Michael seems incorrect for the case
1470 where the structure tag name is the same as the member name.
1471 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1472 foo; } bell;" Disabled by fnf. */
1473 {
1474 char *typename;
1475
1476 typename = type_name_no_tag (type);
1477 if (typename != NULL && strcmp (typename, name) == 0)
1478 return type;
1479 }
1480 #endif
1481
1482 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1483 {
1484 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1485
1486 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1487 {
1488 return TYPE_FIELD_TYPE (type, i);
1489 }
1490 else if (!t_field_name || *t_field_name == '\0')
1491 {
1492 struct type *subtype
1493 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1494
1495 if (subtype != NULL)
1496 return subtype;
1497 }
1498 }
1499
1500 /* OK, it's not in this class. Recursively check the baseclasses. */
1501 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1502 {
1503 struct type *t;
1504
1505 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1506 if (t != NULL)
1507 {
1508 return t;
1509 }
1510 }
1511
1512 if (noerr)
1513 {
1514 return NULL;
1515 }
1516
1517 typename = type_to_string (type);
1518 make_cleanup (xfree, typename);
1519 error (_("Type %s has no component named %s."), typename, name);
1520 }
1521
1522 /* Store in *MAX the largest number representable by unsigned integer type
1523 TYPE. */
1524
1525 void
1526 get_unsigned_type_max (struct type *type, ULONGEST *max)
1527 {
1528 unsigned int n;
1529
1530 CHECK_TYPEDEF (type);
1531 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1532 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1533
1534 /* Written this way to avoid overflow. */
1535 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1536 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1537 }
1538
1539 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1540 signed integer type TYPE. */
1541
1542 void
1543 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1544 {
1545 unsigned int n;
1546
1547 CHECK_TYPEDEF (type);
1548 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1549 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1550
1551 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1552 *min = -((ULONGEST) 1 << (n - 1));
1553 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1554 }
1555
1556 /* Lookup the vptr basetype/fieldno values for TYPE.
1557 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1558 vptr_fieldno. Also, if found and basetype is from the same objfile,
1559 cache the results.
1560 If not found, return -1 and ignore BASETYPEP.
1561 Callers should be aware that in some cases (for example,
1562 the type or one of its baseclasses is a stub type and we are
1563 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1564 this function will not be able to find the
1565 virtual function table pointer, and vptr_fieldno will remain -1 and
1566 vptr_basetype will remain NULL or incomplete. */
1567
1568 int
1569 get_vptr_fieldno (struct type *type, struct type **basetypep)
1570 {
1571 CHECK_TYPEDEF (type);
1572
1573 if (TYPE_VPTR_FIELDNO (type) < 0)
1574 {
1575 int i;
1576
1577 /* We must start at zero in case the first (and only) baseclass
1578 is virtual (and hence we cannot share the table pointer). */
1579 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1580 {
1581 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1582 int fieldno;
1583 struct type *basetype;
1584
1585 fieldno = get_vptr_fieldno (baseclass, &basetype);
1586 if (fieldno >= 0)
1587 {
1588 /* If the type comes from a different objfile we can't cache
1589 it, it may have a different lifetime. PR 2384 */
1590 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1591 {
1592 TYPE_VPTR_FIELDNO (type) = fieldno;
1593 TYPE_VPTR_BASETYPE (type) = basetype;
1594 }
1595 if (basetypep)
1596 *basetypep = basetype;
1597 return fieldno;
1598 }
1599 }
1600
1601 /* Not found. */
1602 return -1;
1603 }
1604 else
1605 {
1606 if (basetypep)
1607 *basetypep = TYPE_VPTR_BASETYPE (type);
1608 return TYPE_VPTR_FIELDNO (type);
1609 }
1610 }
1611
1612 static void
1613 stub_noname_complaint (void)
1614 {
1615 complaint (&symfile_complaints, _("stub type has NULL name"));
1616 }
1617
1618 /* Worker for is_dynamic_type. */
1619
1620 static int
1621 is_dynamic_type_internal (struct type *type, int top_level)
1622 {
1623 type = check_typedef (type);
1624
1625 /* We only want to recognize references at the outermost level. */
1626 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1627 type = check_typedef (TYPE_TARGET_TYPE (type));
1628
1629 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1630 dynamic, even if the type itself is statically defined.
1631 From a user's point of view, this may appear counter-intuitive;
1632 but it makes sense in this context, because the point is to determine
1633 whether any part of the type needs to be resolved before it can
1634 be exploited. */
1635 if (TYPE_DATA_LOCATION (type) != NULL
1636 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1637 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1638 return 1;
1639
1640 switch (TYPE_CODE (type))
1641 {
1642 case TYPE_CODE_RANGE:
1643 return !has_static_range (TYPE_RANGE_DATA (type));
1644
1645 case TYPE_CODE_ARRAY:
1646 {
1647 gdb_assert (TYPE_NFIELDS (type) == 1);
1648
1649 /* The array is dynamic if either the bounds are dynamic,
1650 or the elements it contains have a dynamic contents. */
1651 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1652 return 1;
1653 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1654 }
1655
1656 case TYPE_CODE_STRUCT:
1657 case TYPE_CODE_UNION:
1658 {
1659 int i;
1660
1661 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1662 if (!field_is_static (&TYPE_FIELD (type, i))
1663 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1664 return 1;
1665 }
1666 break;
1667 }
1668
1669 return 0;
1670 }
1671
1672 /* See gdbtypes.h. */
1673
1674 int
1675 is_dynamic_type (struct type *type)
1676 {
1677 return is_dynamic_type_internal (type, 1);
1678 }
1679
1680 static struct type *resolve_dynamic_type_internal (struct type *type,
1681 CORE_ADDR addr,
1682 int top_level);
1683
1684 /* Given a dynamic range type (dyn_range_type) and address,
1685 return a static version of that type. */
1686
1687 static struct type *
1688 resolve_dynamic_range (struct type *dyn_range_type, CORE_ADDR addr)
1689 {
1690 CORE_ADDR value;
1691 struct type *static_range_type;
1692 const struct dynamic_prop *prop;
1693 const struct dwarf2_locexpr_baton *baton;
1694 struct dynamic_prop low_bound, high_bound;
1695
1696 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1697
1698 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1699 if (dwarf2_evaluate_property (prop, addr, &value))
1700 {
1701 low_bound.kind = PROP_CONST;
1702 low_bound.data.const_val = value;
1703 }
1704 else
1705 {
1706 low_bound.kind = PROP_UNDEFINED;
1707 low_bound.data.const_val = 0;
1708 }
1709
1710 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1711 if (dwarf2_evaluate_property (prop, addr, &value))
1712 {
1713 high_bound.kind = PROP_CONST;
1714 high_bound.data.const_val = value;
1715
1716 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1717 high_bound.data.const_val
1718 = low_bound.data.const_val + high_bound.data.const_val - 1;
1719 }
1720 else
1721 {
1722 high_bound.kind = PROP_UNDEFINED;
1723 high_bound.data.const_val = 0;
1724 }
1725
1726 static_range_type = create_range_type (copy_type (dyn_range_type),
1727 TYPE_TARGET_TYPE (dyn_range_type),
1728 &low_bound, &high_bound);
1729 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1730 return static_range_type;
1731 }
1732
1733 /* Resolves dynamic bound values of an array type TYPE to static ones.
1734 ADDRESS might be needed to resolve the subrange bounds, it is the location
1735 of the associated array. */
1736
1737 static struct type *
1738 resolve_dynamic_array (struct type *type, CORE_ADDR addr)
1739 {
1740 CORE_ADDR value;
1741 struct type *elt_type;
1742 struct type *range_type;
1743 struct type *ary_dim;
1744
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1746
1747 elt_type = type;
1748 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1749 range_type = resolve_dynamic_range (range_type, addr);
1750
1751 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1752
1753 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1754 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr);
1755 else
1756 elt_type = TYPE_TARGET_TYPE (type);
1757
1758 return create_array_type (copy_type (type),
1759 elt_type,
1760 range_type);
1761 }
1762
1763 /* Resolve dynamic bounds of members of the union TYPE to static
1764 bounds. */
1765
1766 static struct type *
1767 resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1768 {
1769 struct type *resolved_type;
1770 int i;
1771 unsigned int max_len = 0;
1772
1773 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1774
1775 resolved_type = copy_type (type);
1776 TYPE_FIELDS (resolved_type)
1777 = TYPE_ALLOC (resolved_type,
1778 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1779 memcpy (TYPE_FIELDS (resolved_type),
1780 TYPE_FIELDS (type),
1781 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1782 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1783 {
1784 struct type *t;
1785
1786 if (field_is_static (&TYPE_FIELD (type, i)))
1787 continue;
1788
1789 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1790 addr, 0);
1791 TYPE_FIELD_TYPE (resolved_type, i) = t;
1792 if (TYPE_LENGTH (t) > max_len)
1793 max_len = TYPE_LENGTH (t);
1794 }
1795
1796 TYPE_LENGTH (resolved_type) = max_len;
1797 return resolved_type;
1798 }
1799
1800 /* Resolve dynamic bounds of members of the struct TYPE to static
1801 bounds. */
1802
1803 static struct type *
1804 resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1805 {
1806 struct type *resolved_type;
1807 int i;
1808 unsigned resolved_type_bit_length = 0;
1809
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1811 gdb_assert (TYPE_NFIELDS (type) > 0);
1812
1813 resolved_type = copy_type (type);
1814 TYPE_FIELDS (resolved_type)
1815 = TYPE_ALLOC (resolved_type,
1816 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1817 memcpy (TYPE_FIELDS (resolved_type),
1818 TYPE_FIELDS (type),
1819 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1820 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1821 {
1822 unsigned new_bit_length;
1823
1824 if (field_is_static (&TYPE_FIELD (type, i)))
1825 continue;
1826
1827 TYPE_FIELD_TYPE (resolved_type, i)
1828 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1829 addr, 0);
1830
1831 /* As we know this field is not a static field, the field's
1832 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1833 this is the case, but only trigger a simple error rather
1834 than an internal error if that fails. While failing
1835 that verification indicates a bug in our code, the error
1836 is not severe enough to suggest to the user he stops
1837 his debugging session because of it. */
1838 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
1839 error (_("Cannot determine struct field location"
1840 " (invalid location kind)"));
1841 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1842 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1843 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1844 else
1845 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1846 * TARGET_CHAR_BIT);
1847
1848 /* Normally, we would use the position and size of the last field
1849 to determine the size of the enclosing structure. But GCC seems
1850 to be encoding the position of some fields incorrectly when
1851 the struct contains a dynamic field that is not placed last.
1852 So we compute the struct size based on the field that has
1853 the highest position + size - probably the best we can do. */
1854 if (new_bit_length > resolved_type_bit_length)
1855 resolved_type_bit_length = new_bit_length;
1856 }
1857
1858 TYPE_LENGTH (resolved_type)
1859 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1860
1861 return resolved_type;
1862 }
1863
1864 /* Worker for resolved_dynamic_type. */
1865
1866 static struct type *
1867 resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1868 int top_level)
1869 {
1870 struct type *real_type = check_typedef (type);
1871 struct type *resolved_type = type;
1872 const struct dynamic_prop *prop;
1873 CORE_ADDR value;
1874
1875 if (!is_dynamic_type_internal (real_type, top_level))
1876 return type;
1877
1878 switch (TYPE_CODE (type))
1879 {
1880 case TYPE_CODE_TYPEDEF:
1881 resolved_type = copy_type (type);
1882 TYPE_TARGET_TYPE (resolved_type)
1883 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1884 top_level);
1885 break;
1886
1887 case TYPE_CODE_REF:
1888 {
1889 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1890
1891 resolved_type = copy_type (type);
1892 TYPE_TARGET_TYPE (resolved_type)
1893 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1894 target_addr, top_level);
1895 break;
1896 }
1897
1898 case TYPE_CODE_ARRAY:
1899 resolved_type = resolve_dynamic_array (type, addr);
1900 break;
1901
1902 case TYPE_CODE_RANGE:
1903 resolved_type = resolve_dynamic_range (type, addr);
1904 break;
1905
1906 case TYPE_CODE_UNION:
1907 resolved_type = resolve_dynamic_union (type, addr);
1908 break;
1909
1910 case TYPE_CODE_STRUCT:
1911 resolved_type = resolve_dynamic_struct (type, addr);
1912 break;
1913 }
1914
1915 /* Resolve data_location attribute. */
1916 prop = TYPE_DATA_LOCATION (resolved_type);
1917 if (dwarf2_evaluate_property (prop, addr, &value))
1918 {
1919 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
1920 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
1921 }
1922 else
1923 TYPE_DATA_LOCATION (resolved_type) = NULL;
1924
1925 return resolved_type;
1926 }
1927
1928 /* See gdbtypes.h */
1929
1930 struct type *
1931 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1932 {
1933 return resolve_dynamic_type_internal (type, addr, 1);
1934 }
1935
1936 /* Find the real type of TYPE. This function returns the real type,
1937 after removing all layers of typedefs, and completing opaque or stub
1938 types. Completion changes the TYPE argument, but stripping of
1939 typedefs does not.
1940
1941 Instance flags (e.g. const/volatile) are preserved as typedefs are
1942 stripped. If necessary a new qualified form of the underlying type
1943 is created.
1944
1945 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1946 not been computed and we're either in the middle of reading symbols, or
1947 there was no name for the typedef in the debug info.
1948
1949 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1950 QUITs in the symbol reading code can also throw.
1951 Thus this function can throw an exception.
1952
1953 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1954 the target type.
1955
1956 If this is a stubbed struct (i.e. declared as struct foo *), see if
1957 we can find a full definition in some other file. If so, copy this
1958 definition, so we can use it in future. There used to be a comment
1959 (but not any code) that if we don't find a full definition, we'd
1960 set a flag so we don't spend time in the future checking the same
1961 type. That would be a mistake, though--we might load in more
1962 symbols which contain a full definition for the type. */
1963
1964 struct type *
1965 check_typedef (struct type *type)
1966 {
1967 struct type *orig_type = type;
1968 /* While we're removing typedefs, we don't want to lose qualifiers.
1969 E.g., const/volatile. */
1970 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1971
1972 gdb_assert (type);
1973
1974 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1975 {
1976 if (!TYPE_TARGET_TYPE (type))
1977 {
1978 const char *name;
1979 struct symbol *sym;
1980
1981 /* It is dangerous to call lookup_symbol if we are currently
1982 reading a symtab. Infinite recursion is one danger. */
1983 if (currently_reading_symtab)
1984 return make_qualified_type (type, instance_flags, NULL);
1985
1986 name = type_name_no_tag (type);
1987 /* FIXME: shouldn't we separately check the TYPE_NAME and
1988 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1989 VAR_DOMAIN as appropriate? (this code was written before
1990 TYPE_NAME and TYPE_TAG_NAME were separate). */
1991 if (name == NULL)
1992 {
1993 stub_noname_complaint ();
1994 return make_qualified_type (type, instance_flags, NULL);
1995 }
1996 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1997 if (sym)
1998 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1999 else /* TYPE_CODE_UNDEF */
2000 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2001 }
2002 type = TYPE_TARGET_TYPE (type);
2003
2004 /* Preserve the instance flags as we traverse down the typedef chain.
2005
2006 Handling address spaces/classes is nasty, what do we do if there's a
2007 conflict?
2008 E.g., what if an outer typedef marks the type as class_1 and an inner
2009 typedef marks the type as class_2?
2010 This is the wrong place to do such error checking. We leave it to
2011 the code that created the typedef in the first place to flag the
2012 error. We just pick the outer address space (akin to letting the
2013 outer cast in a chain of casting win), instead of assuming
2014 "it can't happen". */
2015 {
2016 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2017 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2018 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2019 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2020
2021 /* Treat code vs data spaces and address classes separately. */
2022 if ((instance_flags & ALL_SPACES) != 0)
2023 new_instance_flags &= ~ALL_SPACES;
2024 if ((instance_flags & ALL_CLASSES) != 0)
2025 new_instance_flags &= ~ALL_CLASSES;
2026
2027 instance_flags |= new_instance_flags;
2028 }
2029 }
2030
2031 /* If this is a struct/class/union with no fields, then check
2032 whether a full definition exists somewhere else. This is for
2033 systems where a type definition with no fields is issued for such
2034 types, instead of identifying them as stub types in the first
2035 place. */
2036
2037 if (TYPE_IS_OPAQUE (type)
2038 && opaque_type_resolution
2039 && !currently_reading_symtab)
2040 {
2041 const char *name = type_name_no_tag (type);
2042 struct type *newtype;
2043
2044 if (name == NULL)
2045 {
2046 stub_noname_complaint ();
2047 return make_qualified_type (type, instance_flags, NULL);
2048 }
2049 newtype = lookup_transparent_type (name);
2050
2051 if (newtype)
2052 {
2053 /* If the resolved type and the stub are in the same
2054 objfile, then replace the stub type with the real deal.
2055 But if they're in separate objfiles, leave the stub
2056 alone; we'll just look up the transparent type every time
2057 we call check_typedef. We can't create pointers between
2058 types allocated to different objfiles, since they may
2059 have different lifetimes. Trying to copy NEWTYPE over to
2060 TYPE's objfile is pointless, too, since you'll have to
2061 move over any other types NEWTYPE refers to, which could
2062 be an unbounded amount of stuff. */
2063 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2064 type = make_qualified_type (newtype,
2065 TYPE_INSTANCE_FLAGS (type),
2066 type);
2067 else
2068 type = newtype;
2069 }
2070 }
2071 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2072 types. */
2073 else if (TYPE_STUB (type) && !currently_reading_symtab)
2074 {
2075 const char *name = type_name_no_tag (type);
2076 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2077 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2078 as appropriate? (this code was written before TYPE_NAME and
2079 TYPE_TAG_NAME were separate). */
2080 struct symbol *sym;
2081
2082 if (name == NULL)
2083 {
2084 stub_noname_complaint ();
2085 return make_qualified_type (type, instance_flags, NULL);
2086 }
2087 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2088 if (sym)
2089 {
2090 /* Same as above for opaque types, we can replace the stub
2091 with the complete type only if they are in the same
2092 objfile. */
2093 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2094 type = make_qualified_type (SYMBOL_TYPE (sym),
2095 TYPE_INSTANCE_FLAGS (type),
2096 type);
2097 else
2098 type = SYMBOL_TYPE (sym);
2099 }
2100 }
2101
2102 if (TYPE_TARGET_STUB (type))
2103 {
2104 struct type *range_type;
2105 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2106
2107 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2108 {
2109 /* Nothing we can do. */
2110 }
2111 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2112 {
2113 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2114 TYPE_TARGET_STUB (type) = 0;
2115 }
2116 }
2117
2118 type = make_qualified_type (type, instance_flags, NULL);
2119
2120 /* Cache TYPE_LENGTH for future use. */
2121 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2122
2123 return type;
2124 }
2125
2126 /* Parse a type expression in the string [P..P+LENGTH). If an error
2127 occurs, silently return a void type. */
2128
2129 static struct type *
2130 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2131 {
2132 struct ui_file *saved_gdb_stderr;
2133 struct type *type = NULL; /* Initialize to keep gcc happy. */
2134 volatile struct gdb_exception except;
2135
2136 /* Suppress error messages. */
2137 saved_gdb_stderr = gdb_stderr;
2138 gdb_stderr = ui_file_new ();
2139
2140 /* Call parse_and_eval_type() without fear of longjmp()s. */
2141 TRY_CATCH (except, RETURN_MASK_ERROR)
2142 {
2143 type = parse_and_eval_type (p, length);
2144 }
2145
2146 if (except.reason < 0)
2147 type = builtin_type (gdbarch)->builtin_void;
2148
2149 /* Stop suppressing error messages. */
2150 ui_file_delete (gdb_stderr);
2151 gdb_stderr = saved_gdb_stderr;
2152
2153 return type;
2154 }
2155
2156 /* Ugly hack to convert method stubs into method types.
2157
2158 He ain't kiddin'. This demangles the name of the method into a
2159 string including argument types, parses out each argument type,
2160 generates a string casting a zero to that type, evaluates the
2161 string, and stuffs the resulting type into an argtype vector!!!
2162 Then it knows the type of the whole function (including argument
2163 types for overloading), which info used to be in the stab's but was
2164 removed to hack back the space required for them. */
2165
2166 static void
2167 check_stub_method (struct type *type, int method_id, int signature_id)
2168 {
2169 struct gdbarch *gdbarch = get_type_arch (type);
2170 struct fn_field *f;
2171 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2172 char *demangled_name = gdb_demangle (mangled_name,
2173 DMGL_PARAMS | DMGL_ANSI);
2174 char *argtypetext, *p;
2175 int depth = 0, argcount = 1;
2176 struct field *argtypes;
2177 struct type *mtype;
2178
2179 /* Make sure we got back a function string that we can use. */
2180 if (demangled_name)
2181 p = strchr (demangled_name, '(');
2182 else
2183 p = NULL;
2184
2185 if (demangled_name == NULL || p == NULL)
2186 error (_("Internal: Cannot demangle mangled name `%s'."),
2187 mangled_name);
2188
2189 /* Now, read in the parameters that define this type. */
2190 p += 1;
2191 argtypetext = p;
2192 while (*p)
2193 {
2194 if (*p == '(' || *p == '<')
2195 {
2196 depth += 1;
2197 }
2198 else if (*p == ')' || *p == '>')
2199 {
2200 depth -= 1;
2201 }
2202 else if (*p == ',' && depth == 0)
2203 {
2204 argcount += 1;
2205 }
2206
2207 p += 1;
2208 }
2209
2210 /* If we read one argument and it was ``void'', don't count it. */
2211 if (strncmp (argtypetext, "(void)", 6) == 0)
2212 argcount -= 1;
2213
2214 /* We need one extra slot, for the THIS pointer. */
2215
2216 argtypes = (struct field *)
2217 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2218 p = argtypetext;
2219
2220 /* Add THIS pointer for non-static methods. */
2221 f = TYPE_FN_FIELDLIST1 (type, method_id);
2222 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2223 argcount = 0;
2224 else
2225 {
2226 argtypes[0].type = lookup_pointer_type (type);
2227 argcount = 1;
2228 }
2229
2230 if (*p != ')') /* () means no args, skip while. */
2231 {
2232 depth = 0;
2233 while (*p)
2234 {
2235 if (depth <= 0 && (*p == ',' || *p == ')'))
2236 {
2237 /* Avoid parsing of ellipsis, they will be handled below.
2238 Also avoid ``void'' as above. */
2239 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2240 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2241 {
2242 argtypes[argcount].type =
2243 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2244 argcount += 1;
2245 }
2246 argtypetext = p + 1;
2247 }
2248
2249 if (*p == '(' || *p == '<')
2250 {
2251 depth += 1;
2252 }
2253 else if (*p == ')' || *p == '>')
2254 {
2255 depth -= 1;
2256 }
2257
2258 p += 1;
2259 }
2260 }
2261
2262 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2263
2264 /* Now update the old "stub" type into a real type. */
2265 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2266 TYPE_DOMAIN_TYPE (mtype) = type;
2267 TYPE_FIELDS (mtype) = argtypes;
2268 TYPE_NFIELDS (mtype) = argcount;
2269 TYPE_STUB (mtype) = 0;
2270 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2271 if (p[-2] == '.')
2272 TYPE_VARARGS (mtype) = 1;
2273
2274 xfree (demangled_name);
2275 }
2276
2277 /* This is the external interface to check_stub_method, above. This
2278 function unstubs all of the signatures for TYPE's METHOD_ID method
2279 name. After calling this function TYPE_FN_FIELD_STUB will be
2280 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2281 correct.
2282
2283 This function unfortunately can not die until stabs do. */
2284
2285 void
2286 check_stub_method_group (struct type *type, int method_id)
2287 {
2288 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2289 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2290 int j, found_stub = 0;
2291
2292 for (j = 0; j < len; j++)
2293 if (TYPE_FN_FIELD_STUB (f, j))
2294 {
2295 found_stub = 1;
2296 check_stub_method (type, method_id, j);
2297 }
2298
2299 /* GNU v3 methods with incorrect names were corrected when we read
2300 in type information, because it was cheaper to do it then. The
2301 only GNU v2 methods with incorrect method names are operators and
2302 destructors; destructors were also corrected when we read in type
2303 information.
2304
2305 Therefore the only thing we need to handle here are v2 operator
2306 names. */
2307 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2308 {
2309 int ret;
2310 char dem_opname[256];
2311
2312 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2313 method_id),
2314 dem_opname, DMGL_ANSI);
2315 if (!ret)
2316 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2317 method_id),
2318 dem_opname, 0);
2319 if (ret)
2320 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2321 }
2322 }
2323
2324 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2325 const struct cplus_struct_type cplus_struct_default = { };
2326
2327 void
2328 allocate_cplus_struct_type (struct type *type)
2329 {
2330 if (HAVE_CPLUS_STRUCT (type))
2331 /* Structure was already allocated. Nothing more to do. */
2332 return;
2333
2334 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2335 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2336 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2337 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2338 }
2339
2340 const struct gnat_aux_type gnat_aux_default =
2341 { NULL };
2342
2343 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2344 and allocate the associated gnat-specific data. The gnat-specific
2345 data is also initialized to gnat_aux_default. */
2346
2347 void
2348 allocate_gnat_aux_type (struct type *type)
2349 {
2350 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2351 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2352 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2353 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2354 }
2355
2356 /* Helper function to initialize the standard scalar types.
2357
2358 If NAME is non-NULL, then it is used to initialize the type name.
2359 Note that NAME is not copied; it is required to have a lifetime at
2360 least as long as OBJFILE. */
2361
2362 struct type *
2363 init_type (enum type_code code, int length, int flags,
2364 const char *name, struct objfile *objfile)
2365 {
2366 struct type *type;
2367
2368 type = alloc_type (objfile);
2369 TYPE_CODE (type) = code;
2370 TYPE_LENGTH (type) = length;
2371
2372 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2373 if (flags & TYPE_FLAG_UNSIGNED)
2374 TYPE_UNSIGNED (type) = 1;
2375 if (flags & TYPE_FLAG_NOSIGN)
2376 TYPE_NOSIGN (type) = 1;
2377 if (flags & TYPE_FLAG_STUB)
2378 TYPE_STUB (type) = 1;
2379 if (flags & TYPE_FLAG_TARGET_STUB)
2380 TYPE_TARGET_STUB (type) = 1;
2381 if (flags & TYPE_FLAG_STATIC)
2382 TYPE_STATIC (type) = 1;
2383 if (flags & TYPE_FLAG_PROTOTYPED)
2384 TYPE_PROTOTYPED (type) = 1;
2385 if (flags & TYPE_FLAG_INCOMPLETE)
2386 TYPE_INCOMPLETE (type) = 1;
2387 if (flags & TYPE_FLAG_VARARGS)
2388 TYPE_VARARGS (type) = 1;
2389 if (flags & TYPE_FLAG_VECTOR)
2390 TYPE_VECTOR (type) = 1;
2391 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2392 TYPE_STUB_SUPPORTED (type) = 1;
2393 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2394 TYPE_FIXED_INSTANCE (type) = 1;
2395 if (flags & TYPE_FLAG_GNU_IFUNC)
2396 TYPE_GNU_IFUNC (type) = 1;
2397
2398 TYPE_NAME (type) = name;
2399
2400 /* C++ fancies. */
2401
2402 if (name && strcmp (name, "char") == 0)
2403 TYPE_NOSIGN (type) = 1;
2404
2405 switch (code)
2406 {
2407 case TYPE_CODE_STRUCT:
2408 case TYPE_CODE_UNION:
2409 case TYPE_CODE_NAMESPACE:
2410 INIT_CPLUS_SPECIFIC (type);
2411 break;
2412 case TYPE_CODE_FLT:
2413 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2414 break;
2415 case TYPE_CODE_FUNC:
2416 INIT_FUNC_SPECIFIC (type);
2417 break;
2418 }
2419 return type;
2420 }
2421 \f
2422 /* Queries on types. */
2423
2424 int
2425 can_dereference (struct type *t)
2426 {
2427 /* FIXME: Should we return true for references as well as
2428 pointers? */
2429 CHECK_TYPEDEF (t);
2430 return
2431 (t != NULL
2432 && TYPE_CODE (t) == TYPE_CODE_PTR
2433 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2434 }
2435
2436 int
2437 is_integral_type (struct type *t)
2438 {
2439 CHECK_TYPEDEF (t);
2440 return
2441 ((t != NULL)
2442 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2443 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2444 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2445 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2446 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2447 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2448 }
2449
2450 /* Return true if TYPE is scalar. */
2451
2452 static int
2453 is_scalar_type (struct type *type)
2454 {
2455 CHECK_TYPEDEF (type);
2456
2457 switch (TYPE_CODE (type))
2458 {
2459 case TYPE_CODE_ARRAY:
2460 case TYPE_CODE_STRUCT:
2461 case TYPE_CODE_UNION:
2462 case TYPE_CODE_SET:
2463 case TYPE_CODE_STRING:
2464 return 0;
2465 default:
2466 return 1;
2467 }
2468 }
2469
2470 /* Return true if T is scalar, or a composite type which in practice has
2471 the memory layout of a scalar type. E.g., an array or struct with only
2472 one scalar element inside it, or a union with only scalar elements. */
2473
2474 int
2475 is_scalar_type_recursive (struct type *t)
2476 {
2477 CHECK_TYPEDEF (t);
2478
2479 if (is_scalar_type (t))
2480 return 1;
2481 /* Are we dealing with an array or string of known dimensions? */
2482 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2483 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2484 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2485 {
2486 LONGEST low_bound, high_bound;
2487 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2488
2489 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2490
2491 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2492 }
2493 /* Are we dealing with a struct with one element? */
2494 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2495 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2496 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2497 {
2498 int i, n = TYPE_NFIELDS (t);
2499
2500 /* If all elements of the union are scalar, then the union is scalar. */
2501 for (i = 0; i < n; i++)
2502 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2503 return 0;
2504
2505 return 1;
2506 }
2507
2508 return 0;
2509 }
2510
2511 /* A helper function which returns true if types A and B represent the
2512 "same" class type. This is true if the types have the same main
2513 type, or the same name. */
2514
2515 int
2516 class_types_same_p (const struct type *a, const struct type *b)
2517 {
2518 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2519 || (TYPE_NAME (a) && TYPE_NAME (b)
2520 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2521 }
2522
2523 /* If BASE is an ancestor of DCLASS return the distance between them.
2524 otherwise return -1;
2525 eg:
2526
2527 class A {};
2528 class B: public A {};
2529 class C: public B {};
2530 class D: C {};
2531
2532 distance_to_ancestor (A, A, 0) = 0
2533 distance_to_ancestor (A, B, 0) = 1
2534 distance_to_ancestor (A, C, 0) = 2
2535 distance_to_ancestor (A, D, 0) = 3
2536
2537 If PUBLIC is 1 then only public ancestors are considered,
2538 and the function returns the distance only if BASE is a public ancestor
2539 of DCLASS.
2540 Eg:
2541
2542 distance_to_ancestor (A, D, 1) = -1. */
2543
2544 static int
2545 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2546 {
2547 int i;
2548 int d;
2549
2550 CHECK_TYPEDEF (base);
2551 CHECK_TYPEDEF (dclass);
2552
2553 if (class_types_same_p (base, dclass))
2554 return 0;
2555
2556 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2557 {
2558 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2559 continue;
2560
2561 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2562 if (d >= 0)
2563 return 1 + d;
2564 }
2565
2566 return -1;
2567 }
2568
2569 /* Check whether BASE is an ancestor or base class or DCLASS
2570 Return 1 if so, and 0 if not.
2571 Note: If BASE and DCLASS are of the same type, this function
2572 will return 1. So for some class A, is_ancestor (A, A) will
2573 return 1. */
2574
2575 int
2576 is_ancestor (struct type *base, struct type *dclass)
2577 {
2578 return distance_to_ancestor (base, dclass, 0) >= 0;
2579 }
2580
2581 /* Like is_ancestor, but only returns true when BASE is a public
2582 ancestor of DCLASS. */
2583
2584 int
2585 is_public_ancestor (struct type *base, struct type *dclass)
2586 {
2587 return distance_to_ancestor (base, dclass, 1) >= 0;
2588 }
2589
2590 /* A helper function for is_unique_ancestor. */
2591
2592 static int
2593 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2594 int *offset,
2595 const gdb_byte *valaddr, int embedded_offset,
2596 CORE_ADDR address, struct value *val)
2597 {
2598 int i, count = 0;
2599
2600 CHECK_TYPEDEF (base);
2601 CHECK_TYPEDEF (dclass);
2602
2603 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2604 {
2605 struct type *iter;
2606 int this_offset;
2607
2608 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2609
2610 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2611 address, val);
2612
2613 if (class_types_same_p (base, iter))
2614 {
2615 /* If this is the first subclass, set *OFFSET and set count
2616 to 1. Otherwise, if this is at the same offset as
2617 previous instances, do nothing. Otherwise, increment
2618 count. */
2619 if (*offset == -1)
2620 {
2621 *offset = this_offset;
2622 count = 1;
2623 }
2624 else if (this_offset == *offset)
2625 {
2626 /* Nothing. */
2627 }
2628 else
2629 ++count;
2630 }
2631 else
2632 count += is_unique_ancestor_worker (base, iter, offset,
2633 valaddr,
2634 embedded_offset + this_offset,
2635 address, val);
2636 }
2637
2638 return count;
2639 }
2640
2641 /* Like is_ancestor, but only returns true if BASE is a unique base
2642 class of the type of VAL. */
2643
2644 int
2645 is_unique_ancestor (struct type *base, struct value *val)
2646 {
2647 int offset = -1;
2648
2649 return is_unique_ancestor_worker (base, value_type (val), &offset,
2650 value_contents_for_printing (val),
2651 value_embedded_offset (val),
2652 value_address (val), val) == 1;
2653 }
2654
2655 \f
2656 /* Overload resolution. */
2657
2658 /* Return the sum of the rank of A with the rank of B. */
2659
2660 struct rank
2661 sum_ranks (struct rank a, struct rank b)
2662 {
2663 struct rank c;
2664 c.rank = a.rank + b.rank;
2665 c.subrank = a.subrank + b.subrank;
2666 return c;
2667 }
2668
2669 /* Compare rank A and B and return:
2670 0 if a = b
2671 1 if a is better than b
2672 -1 if b is better than a. */
2673
2674 int
2675 compare_ranks (struct rank a, struct rank b)
2676 {
2677 if (a.rank == b.rank)
2678 {
2679 if (a.subrank == b.subrank)
2680 return 0;
2681 if (a.subrank < b.subrank)
2682 return 1;
2683 if (a.subrank > b.subrank)
2684 return -1;
2685 }
2686
2687 if (a.rank < b.rank)
2688 return 1;
2689
2690 /* a.rank > b.rank */
2691 return -1;
2692 }
2693
2694 /* Functions for overload resolution begin here. */
2695
2696 /* Compare two badness vectors A and B and return the result.
2697 0 => A and B are identical
2698 1 => A and B are incomparable
2699 2 => A is better than B
2700 3 => A is worse than B */
2701
2702 int
2703 compare_badness (struct badness_vector *a, struct badness_vector *b)
2704 {
2705 int i;
2706 int tmp;
2707 short found_pos = 0; /* any positives in c? */
2708 short found_neg = 0; /* any negatives in c? */
2709
2710 /* differing lengths => incomparable */
2711 if (a->length != b->length)
2712 return 1;
2713
2714 /* Subtract b from a */
2715 for (i = 0; i < a->length; i++)
2716 {
2717 tmp = compare_ranks (b->rank[i], a->rank[i]);
2718 if (tmp > 0)
2719 found_pos = 1;
2720 else if (tmp < 0)
2721 found_neg = 1;
2722 }
2723
2724 if (found_pos)
2725 {
2726 if (found_neg)
2727 return 1; /* incomparable */
2728 else
2729 return 3; /* A > B */
2730 }
2731 else
2732 /* no positives */
2733 {
2734 if (found_neg)
2735 return 2; /* A < B */
2736 else
2737 return 0; /* A == B */
2738 }
2739 }
2740
2741 /* Rank a function by comparing its parameter types (PARMS, length
2742 NPARMS), to the types of an argument list (ARGS, length NARGS).
2743 Return a pointer to a badness vector. This has NARGS + 1
2744 entries. */
2745
2746 struct badness_vector *
2747 rank_function (struct type **parms, int nparms,
2748 struct value **args, int nargs)
2749 {
2750 int i;
2751 struct badness_vector *bv;
2752 int min_len = nparms < nargs ? nparms : nargs;
2753
2754 bv = xmalloc (sizeof (struct badness_vector));
2755 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2756 bv->rank = XNEWVEC (struct rank, nargs + 1);
2757
2758 /* First compare the lengths of the supplied lists.
2759 If there is a mismatch, set it to a high value. */
2760
2761 /* pai/1997-06-03 FIXME: when we have debug info about default
2762 arguments and ellipsis parameter lists, we should consider those
2763 and rank the length-match more finely. */
2764
2765 LENGTH_MATCH (bv) = (nargs != nparms)
2766 ? LENGTH_MISMATCH_BADNESS
2767 : EXACT_MATCH_BADNESS;
2768
2769 /* Now rank all the parameters of the candidate function. */
2770 for (i = 1; i <= min_len; i++)
2771 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2772 args[i - 1]);
2773
2774 /* If more arguments than parameters, add dummy entries. */
2775 for (i = min_len + 1; i <= nargs; i++)
2776 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2777
2778 return bv;
2779 }
2780
2781 /* Compare the names of two integer types, assuming that any sign
2782 qualifiers have been checked already. We do it this way because
2783 there may be an "int" in the name of one of the types. */
2784
2785 static int
2786 integer_types_same_name_p (const char *first, const char *second)
2787 {
2788 int first_p, second_p;
2789
2790 /* If both are shorts, return 1; if neither is a short, keep
2791 checking. */
2792 first_p = (strstr (first, "short") != NULL);
2793 second_p = (strstr (second, "short") != NULL);
2794 if (first_p && second_p)
2795 return 1;
2796 if (first_p || second_p)
2797 return 0;
2798
2799 /* Likewise for long. */
2800 first_p = (strstr (first, "long") != NULL);
2801 second_p = (strstr (second, "long") != NULL);
2802 if (first_p && second_p)
2803 return 1;
2804 if (first_p || second_p)
2805 return 0;
2806
2807 /* Likewise for char. */
2808 first_p = (strstr (first, "char") != NULL);
2809 second_p = (strstr (second, "char") != NULL);
2810 if (first_p && second_p)
2811 return 1;
2812 if (first_p || second_p)
2813 return 0;
2814
2815 /* They must both be ints. */
2816 return 1;
2817 }
2818
2819 /* Compares type A to type B returns 1 if the represent the same type
2820 0 otherwise. */
2821
2822 int
2823 types_equal (struct type *a, struct type *b)
2824 {
2825 /* Identical type pointers. */
2826 /* However, this still doesn't catch all cases of same type for b
2827 and a. The reason is that builtin types are different from
2828 the same ones constructed from the object. */
2829 if (a == b)
2830 return 1;
2831
2832 /* Resolve typedefs */
2833 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2834 a = check_typedef (a);
2835 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2836 b = check_typedef (b);
2837
2838 /* If after resolving typedefs a and b are not of the same type
2839 code then they are not equal. */
2840 if (TYPE_CODE (a) != TYPE_CODE (b))
2841 return 0;
2842
2843 /* If a and b are both pointers types or both reference types then
2844 they are equal of the same type iff the objects they refer to are
2845 of the same type. */
2846 if (TYPE_CODE (a) == TYPE_CODE_PTR
2847 || TYPE_CODE (a) == TYPE_CODE_REF)
2848 return types_equal (TYPE_TARGET_TYPE (a),
2849 TYPE_TARGET_TYPE (b));
2850
2851 /* Well, damnit, if the names are exactly the same, I'll say they
2852 are exactly the same. This happens when we generate method
2853 stubs. The types won't point to the same address, but they
2854 really are the same. */
2855
2856 if (TYPE_NAME (a) && TYPE_NAME (b)
2857 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2858 return 1;
2859
2860 /* Check if identical after resolving typedefs. */
2861 if (a == b)
2862 return 1;
2863
2864 /* Two function types are equal if their argument and return types
2865 are equal. */
2866 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2867 {
2868 int i;
2869
2870 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2871 return 0;
2872
2873 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2874 return 0;
2875
2876 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2877 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2878 return 0;
2879
2880 return 1;
2881 }
2882
2883 return 0;
2884 }
2885 \f
2886 /* Deep comparison of types. */
2887
2888 /* An entry in the type-equality bcache. */
2889
2890 typedef struct type_equality_entry
2891 {
2892 struct type *type1, *type2;
2893 } type_equality_entry_d;
2894
2895 DEF_VEC_O (type_equality_entry_d);
2896
2897 /* A helper function to compare two strings. Returns 1 if they are
2898 the same, 0 otherwise. Handles NULLs properly. */
2899
2900 static int
2901 compare_maybe_null_strings (const char *s, const char *t)
2902 {
2903 if (s == NULL && t != NULL)
2904 return 0;
2905 else if (s != NULL && t == NULL)
2906 return 0;
2907 else if (s == NULL && t== NULL)
2908 return 1;
2909 return strcmp (s, t) == 0;
2910 }
2911
2912 /* A helper function for check_types_worklist that checks two types for
2913 "deep" equality. Returns non-zero if the types are considered the
2914 same, zero otherwise. */
2915
2916 static int
2917 check_types_equal (struct type *type1, struct type *type2,
2918 VEC (type_equality_entry_d) **worklist)
2919 {
2920 CHECK_TYPEDEF (type1);
2921 CHECK_TYPEDEF (type2);
2922
2923 if (type1 == type2)
2924 return 1;
2925
2926 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2927 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2928 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2929 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2930 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2931 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2932 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2933 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2934 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2935 return 0;
2936
2937 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2938 TYPE_TAG_NAME (type2)))
2939 return 0;
2940 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2941 return 0;
2942
2943 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2944 {
2945 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2946 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2947 return 0;
2948 }
2949 else
2950 {
2951 int i;
2952
2953 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2954 {
2955 const struct field *field1 = &TYPE_FIELD (type1, i);
2956 const struct field *field2 = &TYPE_FIELD (type2, i);
2957 struct type_equality_entry entry;
2958
2959 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2960 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2961 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2962 return 0;
2963 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2964 FIELD_NAME (*field2)))
2965 return 0;
2966 switch (FIELD_LOC_KIND (*field1))
2967 {
2968 case FIELD_LOC_KIND_BITPOS:
2969 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2970 return 0;
2971 break;
2972 case FIELD_LOC_KIND_ENUMVAL:
2973 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2974 return 0;
2975 break;
2976 case FIELD_LOC_KIND_PHYSADDR:
2977 if (FIELD_STATIC_PHYSADDR (*field1)
2978 != FIELD_STATIC_PHYSADDR (*field2))
2979 return 0;
2980 break;
2981 case FIELD_LOC_KIND_PHYSNAME:
2982 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2983 FIELD_STATIC_PHYSNAME (*field2)))
2984 return 0;
2985 break;
2986 case FIELD_LOC_KIND_DWARF_BLOCK:
2987 {
2988 struct dwarf2_locexpr_baton *block1, *block2;
2989
2990 block1 = FIELD_DWARF_BLOCK (*field1);
2991 block2 = FIELD_DWARF_BLOCK (*field2);
2992 if (block1->per_cu != block2->per_cu
2993 || block1->size != block2->size
2994 || memcmp (block1->data, block2->data, block1->size) != 0)
2995 return 0;
2996 }
2997 break;
2998 default:
2999 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3000 "%d by check_types_equal"),
3001 FIELD_LOC_KIND (*field1));
3002 }
3003
3004 entry.type1 = FIELD_TYPE (*field1);
3005 entry.type2 = FIELD_TYPE (*field2);
3006 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3007 }
3008 }
3009
3010 if (TYPE_TARGET_TYPE (type1) != NULL)
3011 {
3012 struct type_equality_entry entry;
3013
3014 if (TYPE_TARGET_TYPE (type2) == NULL)
3015 return 0;
3016
3017 entry.type1 = TYPE_TARGET_TYPE (type1);
3018 entry.type2 = TYPE_TARGET_TYPE (type2);
3019 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3020 }
3021 else if (TYPE_TARGET_TYPE (type2) != NULL)
3022 return 0;
3023
3024 return 1;
3025 }
3026
3027 /* Check types on a worklist for equality. Returns zero if any pair
3028 is not equal, non-zero if they are all considered equal. */
3029
3030 static int
3031 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3032 struct bcache *cache)
3033 {
3034 while (!VEC_empty (type_equality_entry_d, *worklist))
3035 {
3036 struct type_equality_entry entry;
3037 int added;
3038
3039 entry = *VEC_last (type_equality_entry_d, *worklist);
3040 VEC_pop (type_equality_entry_d, *worklist);
3041
3042 /* If the type pair has already been visited, we know it is
3043 ok. */
3044 bcache_full (&entry, sizeof (entry), cache, &added);
3045 if (!added)
3046 continue;
3047
3048 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3049 return 0;
3050 }
3051
3052 return 1;
3053 }
3054
3055 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3056 "deep comparison". Otherwise return zero. */
3057
3058 int
3059 types_deeply_equal (struct type *type1, struct type *type2)
3060 {
3061 volatile struct gdb_exception except;
3062 int result = 0;
3063 struct bcache *cache;
3064 VEC (type_equality_entry_d) *worklist = NULL;
3065 struct type_equality_entry entry;
3066
3067 gdb_assert (type1 != NULL && type2 != NULL);
3068
3069 /* Early exit for the simple case. */
3070 if (type1 == type2)
3071 return 1;
3072
3073 cache = bcache_xmalloc (NULL, NULL);
3074
3075 entry.type1 = type1;
3076 entry.type2 = type2;
3077 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3078
3079 TRY_CATCH (except, RETURN_MASK_ALL)
3080 {
3081 result = check_types_worklist (&worklist, cache);
3082 }
3083 /* check_types_worklist calls several nested helper functions,
3084 some of which can raise a GDB Exception, so we just check
3085 and rethrow here. If there is a GDB exception, a comparison
3086 is not capable (or trusted), so exit. */
3087 bcache_xfree (cache);
3088 VEC_free (type_equality_entry_d, worklist);
3089 /* Rethrow if there was a problem. */
3090 if (except.reason < 0)
3091 throw_exception (except);
3092
3093 return result;
3094 }
3095 \f
3096 /* Compare one type (PARM) for compatibility with another (ARG).
3097 * PARM is intended to be the parameter type of a function; and
3098 * ARG is the supplied argument's type. This function tests if
3099 * the latter can be converted to the former.
3100 * VALUE is the argument's value or NULL if none (or called recursively)
3101 *
3102 * Return 0 if they are identical types;
3103 * Otherwise, return an integer which corresponds to how compatible
3104 * PARM is to ARG. The higher the return value, the worse the match.
3105 * Generally the "bad" conversions are all uniformly assigned a 100. */
3106
3107 struct rank
3108 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3109 {
3110 struct rank rank = {0,0};
3111
3112 if (types_equal (parm, arg))
3113 return EXACT_MATCH_BADNESS;
3114
3115 /* Resolve typedefs */
3116 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3117 parm = check_typedef (parm);
3118 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3119 arg = check_typedef (arg);
3120
3121 /* See through references, since we can almost make non-references
3122 references. */
3123 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3124 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3125 REFERENCE_CONVERSION_BADNESS));
3126 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3127 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3128 REFERENCE_CONVERSION_BADNESS));
3129 if (overload_debug)
3130 /* Debugging only. */
3131 fprintf_filtered (gdb_stderr,
3132 "------ Arg is %s [%d], parm is %s [%d]\n",
3133 TYPE_NAME (arg), TYPE_CODE (arg),
3134 TYPE_NAME (parm), TYPE_CODE (parm));
3135
3136 /* x -> y means arg of type x being supplied for parameter of type y. */
3137
3138 switch (TYPE_CODE (parm))
3139 {
3140 case TYPE_CODE_PTR:
3141 switch (TYPE_CODE (arg))
3142 {
3143 case TYPE_CODE_PTR:
3144
3145 /* Allowed pointer conversions are:
3146 (a) pointer to void-pointer conversion. */
3147 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3148 return VOID_PTR_CONVERSION_BADNESS;
3149
3150 /* (b) pointer to ancestor-pointer conversion. */
3151 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3152 TYPE_TARGET_TYPE (arg),
3153 0);
3154 if (rank.subrank >= 0)
3155 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3156
3157 return INCOMPATIBLE_TYPE_BADNESS;
3158 case TYPE_CODE_ARRAY:
3159 if (types_equal (TYPE_TARGET_TYPE (parm),
3160 TYPE_TARGET_TYPE (arg)))
3161 return EXACT_MATCH_BADNESS;
3162 return INCOMPATIBLE_TYPE_BADNESS;
3163 case TYPE_CODE_FUNC:
3164 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3165 case TYPE_CODE_INT:
3166 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3167 {
3168 if (value_as_long (value) == 0)
3169 {
3170 /* Null pointer conversion: allow it to be cast to a pointer.
3171 [4.10.1 of C++ standard draft n3290] */
3172 return NULL_POINTER_CONVERSION_BADNESS;
3173 }
3174 else
3175 {
3176 /* If type checking is disabled, allow the conversion. */
3177 if (!strict_type_checking)
3178 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3179 }
3180 }
3181 /* fall through */
3182 case TYPE_CODE_ENUM:
3183 case TYPE_CODE_FLAGS:
3184 case TYPE_CODE_CHAR:
3185 case TYPE_CODE_RANGE:
3186 case TYPE_CODE_BOOL:
3187 default:
3188 return INCOMPATIBLE_TYPE_BADNESS;
3189 }
3190 case TYPE_CODE_ARRAY:
3191 switch (TYPE_CODE (arg))
3192 {
3193 case TYPE_CODE_PTR:
3194 case TYPE_CODE_ARRAY:
3195 return rank_one_type (TYPE_TARGET_TYPE (parm),
3196 TYPE_TARGET_TYPE (arg), NULL);
3197 default:
3198 return INCOMPATIBLE_TYPE_BADNESS;
3199 }
3200 case TYPE_CODE_FUNC:
3201 switch (TYPE_CODE (arg))
3202 {
3203 case TYPE_CODE_PTR: /* funcptr -> func */
3204 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3205 default:
3206 return INCOMPATIBLE_TYPE_BADNESS;
3207 }
3208 case TYPE_CODE_INT:
3209 switch (TYPE_CODE (arg))
3210 {
3211 case TYPE_CODE_INT:
3212 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3213 {
3214 /* Deal with signed, unsigned, and plain chars and
3215 signed and unsigned ints. */
3216 if (TYPE_NOSIGN (parm))
3217 {
3218 /* This case only for character types. */
3219 if (TYPE_NOSIGN (arg))
3220 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3221 else /* signed/unsigned char -> plain char */
3222 return INTEGER_CONVERSION_BADNESS;
3223 }
3224 else if (TYPE_UNSIGNED (parm))
3225 {
3226 if (TYPE_UNSIGNED (arg))
3227 {
3228 /* unsigned int -> unsigned int, or
3229 unsigned long -> unsigned long */
3230 if (integer_types_same_name_p (TYPE_NAME (parm),
3231 TYPE_NAME (arg)))
3232 return EXACT_MATCH_BADNESS;
3233 else if (integer_types_same_name_p (TYPE_NAME (arg),
3234 "int")
3235 && integer_types_same_name_p (TYPE_NAME (parm),
3236 "long"))
3237 /* unsigned int -> unsigned long */
3238 return INTEGER_PROMOTION_BADNESS;
3239 else
3240 /* unsigned long -> unsigned int */
3241 return INTEGER_CONVERSION_BADNESS;
3242 }
3243 else
3244 {
3245 if (integer_types_same_name_p (TYPE_NAME (arg),
3246 "long")
3247 && integer_types_same_name_p (TYPE_NAME (parm),
3248 "int"))
3249 /* signed long -> unsigned int */
3250 return INTEGER_CONVERSION_BADNESS;
3251 else
3252 /* signed int/long -> unsigned int/long */
3253 return INTEGER_CONVERSION_BADNESS;
3254 }
3255 }
3256 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3257 {
3258 if (integer_types_same_name_p (TYPE_NAME (parm),
3259 TYPE_NAME (arg)))
3260 return EXACT_MATCH_BADNESS;
3261 else if (integer_types_same_name_p (TYPE_NAME (arg),
3262 "int")
3263 && integer_types_same_name_p (TYPE_NAME (parm),
3264 "long"))
3265 return INTEGER_PROMOTION_BADNESS;
3266 else
3267 return INTEGER_CONVERSION_BADNESS;
3268 }
3269 else
3270 return INTEGER_CONVERSION_BADNESS;
3271 }
3272 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3273 return INTEGER_PROMOTION_BADNESS;
3274 else
3275 return INTEGER_CONVERSION_BADNESS;
3276 case TYPE_CODE_ENUM:
3277 case TYPE_CODE_FLAGS:
3278 case TYPE_CODE_CHAR:
3279 case TYPE_CODE_RANGE:
3280 case TYPE_CODE_BOOL:
3281 if (TYPE_DECLARED_CLASS (arg))
3282 return INCOMPATIBLE_TYPE_BADNESS;
3283 return INTEGER_PROMOTION_BADNESS;
3284 case TYPE_CODE_FLT:
3285 return INT_FLOAT_CONVERSION_BADNESS;
3286 case TYPE_CODE_PTR:
3287 return NS_POINTER_CONVERSION_BADNESS;
3288 default:
3289 return INCOMPATIBLE_TYPE_BADNESS;
3290 }
3291 break;
3292 case TYPE_CODE_ENUM:
3293 switch (TYPE_CODE (arg))
3294 {
3295 case TYPE_CODE_INT:
3296 case TYPE_CODE_CHAR:
3297 case TYPE_CODE_RANGE:
3298 case TYPE_CODE_BOOL:
3299 case TYPE_CODE_ENUM:
3300 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3301 return INCOMPATIBLE_TYPE_BADNESS;
3302 return INTEGER_CONVERSION_BADNESS;
3303 case TYPE_CODE_FLT:
3304 return INT_FLOAT_CONVERSION_BADNESS;
3305 default:
3306 return INCOMPATIBLE_TYPE_BADNESS;
3307 }
3308 break;
3309 case TYPE_CODE_CHAR:
3310 switch (TYPE_CODE (arg))
3311 {
3312 case TYPE_CODE_RANGE:
3313 case TYPE_CODE_BOOL:
3314 case TYPE_CODE_ENUM:
3315 if (TYPE_DECLARED_CLASS (arg))
3316 return INCOMPATIBLE_TYPE_BADNESS;
3317 return INTEGER_CONVERSION_BADNESS;
3318 case TYPE_CODE_FLT:
3319 return INT_FLOAT_CONVERSION_BADNESS;
3320 case TYPE_CODE_INT:
3321 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3322 return INTEGER_CONVERSION_BADNESS;
3323 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3324 return INTEGER_PROMOTION_BADNESS;
3325 /* >>> !! else fall through !! <<< */
3326 case TYPE_CODE_CHAR:
3327 /* Deal with signed, unsigned, and plain chars for C++ and
3328 with int cases falling through from previous case. */
3329 if (TYPE_NOSIGN (parm))
3330 {
3331 if (TYPE_NOSIGN (arg))
3332 return EXACT_MATCH_BADNESS;
3333 else
3334 return INTEGER_CONVERSION_BADNESS;
3335 }
3336 else if (TYPE_UNSIGNED (parm))
3337 {
3338 if (TYPE_UNSIGNED (arg))
3339 return EXACT_MATCH_BADNESS;
3340 else
3341 return INTEGER_PROMOTION_BADNESS;
3342 }
3343 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3344 return EXACT_MATCH_BADNESS;
3345 else
3346 return INTEGER_CONVERSION_BADNESS;
3347 default:
3348 return INCOMPATIBLE_TYPE_BADNESS;
3349 }
3350 break;
3351 case TYPE_CODE_RANGE:
3352 switch (TYPE_CODE (arg))
3353 {
3354 case TYPE_CODE_INT:
3355 case TYPE_CODE_CHAR:
3356 case TYPE_CODE_RANGE:
3357 case TYPE_CODE_BOOL:
3358 case TYPE_CODE_ENUM:
3359 return INTEGER_CONVERSION_BADNESS;
3360 case TYPE_CODE_FLT:
3361 return INT_FLOAT_CONVERSION_BADNESS;
3362 default:
3363 return INCOMPATIBLE_TYPE_BADNESS;
3364 }
3365 break;
3366 case TYPE_CODE_BOOL:
3367 switch (TYPE_CODE (arg))
3368 {
3369 /* n3290 draft, section 4.12.1 (conv.bool):
3370
3371 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3372 pointer to member type can be converted to a prvalue of type
3373 bool. A zero value, null pointer value, or null member pointer
3374 value is converted to false; any other value is converted to
3375 true. A prvalue of type std::nullptr_t can be converted to a
3376 prvalue of type bool; the resulting value is false." */
3377 case TYPE_CODE_INT:
3378 case TYPE_CODE_CHAR:
3379 case TYPE_CODE_ENUM:
3380 case TYPE_CODE_FLT:
3381 case TYPE_CODE_MEMBERPTR:
3382 case TYPE_CODE_PTR:
3383 return BOOL_CONVERSION_BADNESS;
3384 case TYPE_CODE_RANGE:
3385 return INCOMPATIBLE_TYPE_BADNESS;
3386 case TYPE_CODE_BOOL:
3387 return EXACT_MATCH_BADNESS;
3388 default:
3389 return INCOMPATIBLE_TYPE_BADNESS;
3390 }
3391 break;
3392 case TYPE_CODE_FLT:
3393 switch (TYPE_CODE (arg))
3394 {
3395 case TYPE_CODE_FLT:
3396 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3397 return FLOAT_PROMOTION_BADNESS;
3398 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3399 return EXACT_MATCH_BADNESS;
3400 else
3401 return FLOAT_CONVERSION_BADNESS;
3402 case TYPE_CODE_INT:
3403 case TYPE_CODE_BOOL:
3404 case TYPE_CODE_ENUM:
3405 case TYPE_CODE_RANGE:
3406 case TYPE_CODE_CHAR:
3407 return INT_FLOAT_CONVERSION_BADNESS;
3408 default:
3409 return INCOMPATIBLE_TYPE_BADNESS;
3410 }
3411 break;
3412 case TYPE_CODE_COMPLEX:
3413 switch (TYPE_CODE (arg))
3414 { /* Strictly not needed for C++, but... */
3415 case TYPE_CODE_FLT:
3416 return FLOAT_PROMOTION_BADNESS;
3417 case TYPE_CODE_COMPLEX:
3418 return EXACT_MATCH_BADNESS;
3419 default:
3420 return INCOMPATIBLE_TYPE_BADNESS;
3421 }
3422 break;
3423 case TYPE_CODE_STRUCT:
3424 switch (TYPE_CODE (arg))
3425 {
3426 case TYPE_CODE_STRUCT:
3427 /* Check for derivation */
3428 rank.subrank = distance_to_ancestor (parm, arg, 0);
3429 if (rank.subrank >= 0)
3430 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3431 /* else fall through */
3432 default:
3433 return INCOMPATIBLE_TYPE_BADNESS;
3434 }
3435 break;
3436 case TYPE_CODE_UNION:
3437 switch (TYPE_CODE (arg))
3438 {
3439 case TYPE_CODE_UNION:
3440 default:
3441 return INCOMPATIBLE_TYPE_BADNESS;
3442 }
3443 break;
3444 case TYPE_CODE_MEMBERPTR:
3445 switch (TYPE_CODE (arg))
3446 {
3447 default:
3448 return INCOMPATIBLE_TYPE_BADNESS;
3449 }
3450 break;
3451 case TYPE_CODE_METHOD:
3452 switch (TYPE_CODE (arg))
3453 {
3454
3455 default:
3456 return INCOMPATIBLE_TYPE_BADNESS;
3457 }
3458 break;
3459 case TYPE_CODE_REF:
3460 switch (TYPE_CODE (arg))
3461 {
3462
3463 default:
3464 return INCOMPATIBLE_TYPE_BADNESS;
3465 }
3466
3467 break;
3468 case TYPE_CODE_SET:
3469 switch (TYPE_CODE (arg))
3470 {
3471 /* Not in C++ */
3472 case TYPE_CODE_SET:
3473 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3474 TYPE_FIELD_TYPE (arg, 0), NULL);
3475 default:
3476 return INCOMPATIBLE_TYPE_BADNESS;
3477 }
3478 break;
3479 case TYPE_CODE_VOID:
3480 default:
3481 return INCOMPATIBLE_TYPE_BADNESS;
3482 } /* switch (TYPE_CODE (arg)) */
3483 }
3484
3485 /* End of functions for overload resolution. */
3486 \f
3487 /* Routines to pretty-print types. */
3488
3489 static void
3490 print_bit_vector (B_TYPE *bits, int nbits)
3491 {
3492 int bitno;
3493
3494 for (bitno = 0; bitno < nbits; bitno++)
3495 {
3496 if ((bitno % 8) == 0)
3497 {
3498 puts_filtered (" ");
3499 }
3500 if (B_TST (bits, bitno))
3501 printf_filtered (("1"));
3502 else
3503 printf_filtered (("0"));
3504 }
3505 }
3506
3507 /* Note the first arg should be the "this" pointer, we may not want to
3508 include it since we may get into a infinitely recursive
3509 situation. */
3510
3511 static void
3512 print_args (struct field *args, int nargs, int spaces)
3513 {
3514 if (args != NULL)
3515 {
3516 int i;
3517
3518 for (i = 0; i < nargs; i++)
3519 {
3520 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3521 args[i].name != NULL ? args[i].name : "<NULL>");
3522 recursive_dump_type (args[i].type, spaces + 2);
3523 }
3524 }
3525 }
3526
3527 int
3528 field_is_static (struct field *f)
3529 {
3530 /* "static" fields are the fields whose location is not relative
3531 to the address of the enclosing struct. It would be nice to
3532 have a dedicated flag that would be set for static fields when
3533 the type is being created. But in practice, checking the field
3534 loc_kind should give us an accurate answer. */
3535 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3536 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3537 }
3538
3539 static void
3540 dump_fn_fieldlists (struct type *type, int spaces)
3541 {
3542 int method_idx;
3543 int overload_idx;
3544 struct fn_field *f;
3545
3546 printfi_filtered (spaces, "fn_fieldlists ");
3547 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3548 printf_filtered ("\n");
3549 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3550 {
3551 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3552 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3553 method_idx,
3554 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3555 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3556 gdb_stdout);
3557 printf_filtered (_(") length %d\n"),
3558 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3559 for (overload_idx = 0;
3560 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3561 overload_idx++)
3562 {
3563 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3564 overload_idx,
3565 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3566 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3567 gdb_stdout);
3568 printf_filtered (")\n");
3569 printfi_filtered (spaces + 8, "type ");
3570 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3571 gdb_stdout);
3572 printf_filtered ("\n");
3573
3574 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3575 spaces + 8 + 2);
3576
3577 printfi_filtered (spaces + 8, "args ");
3578 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3579 gdb_stdout);
3580 printf_filtered ("\n");
3581 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3582 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3583 spaces + 8 + 2);
3584 printfi_filtered (spaces + 8, "fcontext ");
3585 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3586 gdb_stdout);
3587 printf_filtered ("\n");
3588
3589 printfi_filtered (spaces + 8, "is_const %d\n",
3590 TYPE_FN_FIELD_CONST (f, overload_idx));
3591 printfi_filtered (spaces + 8, "is_volatile %d\n",
3592 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3593 printfi_filtered (spaces + 8, "is_private %d\n",
3594 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3595 printfi_filtered (spaces + 8, "is_protected %d\n",
3596 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3597 printfi_filtered (spaces + 8, "is_stub %d\n",
3598 TYPE_FN_FIELD_STUB (f, overload_idx));
3599 printfi_filtered (spaces + 8, "voffset %u\n",
3600 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3601 }
3602 }
3603 }
3604
3605 static void
3606 print_cplus_stuff (struct type *type, int spaces)
3607 {
3608 printfi_filtered (spaces, "n_baseclasses %d\n",
3609 TYPE_N_BASECLASSES (type));
3610 printfi_filtered (spaces, "nfn_fields %d\n",
3611 TYPE_NFN_FIELDS (type));
3612 if (TYPE_N_BASECLASSES (type) > 0)
3613 {
3614 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3615 TYPE_N_BASECLASSES (type));
3616 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3617 gdb_stdout);
3618 printf_filtered (")");
3619
3620 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3621 TYPE_N_BASECLASSES (type));
3622 puts_filtered ("\n");
3623 }
3624 if (TYPE_NFIELDS (type) > 0)
3625 {
3626 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3627 {
3628 printfi_filtered (spaces,
3629 "private_field_bits (%d bits at *",
3630 TYPE_NFIELDS (type));
3631 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3632 gdb_stdout);
3633 printf_filtered (")");
3634 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3635 TYPE_NFIELDS (type));
3636 puts_filtered ("\n");
3637 }
3638 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3639 {
3640 printfi_filtered (spaces,
3641 "protected_field_bits (%d bits at *",
3642 TYPE_NFIELDS (type));
3643 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3644 gdb_stdout);
3645 printf_filtered (")");
3646 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3647 TYPE_NFIELDS (type));
3648 puts_filtered ("\n");
3649 }
3650 }
3651 if (TYPE_NFN_FIELDS (type) > 0)
3652 {
3653 dump_fn_fieldlists (type, spaces);
3654 }
3655 }
3656
3657 /* Print the contents of the TYPE's type_specific union, assuming that
3658 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3659
3660 static void
3661 print_gnat_stuff (struct type *type, int spaces)
3662 {
3663 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3664
3665 recursive_dump_type (descriptive_type, spaces + 2);
3666 }
3667
3668 static struct obstack dont_print_type_obstack;
3669
3670 void
3671 recursive_dump_type (struct type *type, int spaces)
3672 {
3673 int idx;
3674
3675 if (spaces == 0)
3676 obstack_begin (&dont_print_type_obstack, 0);
3677
3678 if (TYPE_NFIELDS (type) > 0
3679 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3680 {
3681 struct type **first_dont_print
3682 = (struct type **) obstack_base (&dont_print_type_obstack);
3683
3684 int i = (struct type **)
3685 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3686
3687 while (--i >= 0)
3688 {
3689 if (type == first_dont_print[i])
3690 {
3691 printfi_filtered (spaces, "type node ");
3692 gdb_print_host_address (type, gdb_stdout);
3693 printf_filtered (_(" <same as already seen type>\n"));
3694 return;
3695 }
3696 }
3697
3698 obstack_ptr_grow (&dont_print_type_obstack, type);
3699 }
3700
3701 printfi_filtered (spaces, "type node ");
3702 gdb_print_host_address (type, gdb_stdout);
3703 printf_filtered ("\n");
3704 printfi_filtered (spaces, "name '%s' (",
3705 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3706 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3707 printf_filtered (")\n");
3708 printfi_filtered (spaces, "tagname '%s' (",
3709 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3710 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3711 printf_filtered (")\n");
3712 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3713 switch (TYPE_CODE (type))
3714 {
3715 case TYPE_CODE_UNDEF:
3716 printf_filtered ("(TYPE_CODE_UNDEF)");
3717 break;
3718 case TYPE_CODE_PTR:
3719 printf_filtered ("(TYPE_CODE_PTR)");
3720 break;
3721 case TYPE_CODE_ARRAY:
3722 printf_filtered ("(TYPE_CODE_ARRAY)");
3723 break;
3724 case TYPE_CODE_STRUCT:
3725 printf_filtered ("(TYPE_CODE_STRUCT)");
3726 break;
3727 case TYPE_CODE_UNION:
3728 printf_filtered ("(TYPE_CODE_UNION)");
3729 break;
3730 case TYPE_CODE_ENUM:
3731 printf_filtered ("(TYPE_CODE_ENUM)");
3732 break;
3733 case TYPE_CODE_FLAGS:
3734 printf_filtered ("(TYPE_CODE_FLAGS)");
3735 break;
3736 case TYPE_CODE_FUNC:
3737 printf_filtered ("(TYPE_CODE_FUNC)");
3738 break;
3739 case TYPE_CODE_INT:
3740 printf_filtered ("(TYPE_CODE_INT)");
3741 break;
3742 case TYPE_CODE_FLT:
3743 printf_filtered ("(TYPE_CODE_FLT)");
3744 break;
3745 case TYPE_CODE_VOID:
3746 printf_filtered ("(TYPE_CODE_VOID)");
3747 break;
3748 case TYPE_CODE_SET:
3749 printf_filtered ("(TYPE_CODE_SET)");
3750 break;
3751 case TYPE_CODE_RANGE:
3752 printf_filtered ("(TYPE_CODE_RANGE)");
3753 break;
3754 case TYPE_CODE_STRING:
3755 printf_filtered ("(TYPE_CODE_STRING)");
3756 break;
3757 case TYPE_CODE_ERROR:
3758 printf_filtered ("(TYPE_CODE_ERROR)");
3759 break;
3760 case TYPE_CODE_MEMBERPTR:
3761 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3762 break;
3763 case TYPE_CODE_METHODPTR:
3764 printf_filtered ("(TYPE_CODE_METHODPTR)");
3765 break;
3766 case TYPE_CODE_METHOD:
3767 printf_filtered ("(TYPE_CODE_METHOD)");
3768 break;
3769 case TYPE_CODE_REF:
3770 printf_filtered ("(TYPE_CODE_REF)");
3771 break;
3772 case TYPE_CODE_CHAR:
3773 printf_filtered ("(TYPE_CODE_CHAR)");
3774 break;
3775 case TYPE_CODE_BOOL:
3776 printf_filtered ("(TYPE_CODE_BOOL)");
3777 break;
3778 case TYPE_CODE_COMPLEX:
3779 printf_filtered ("(TYPE_CODE_COMPLEX)");
3780 break;
3781 case TYPE_CODE_TYPEDEF:
3782 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3783 break;
3784 case TYPE_CODE_NAMESPACE:
3785 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3786 break;
3787 default:
3788 printf_filtered ("(UNKNOWN TYPE CODE)");
3789 break;
3790 }
3791 puts_filtered ("\n");
3792 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3793 if (TYPE_OBJFILE_OWNED (type))
3794 {
3795 printfi_filtered (spaces, "objfile ");
3796 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3797 }
3798 else
3799 {
3800 printfi_filtered (spaces, "gdbarch ");
3801 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3802 }
3803 printf_filtered ("\n");
3804 printfi_filtered (spaces, "target_type ");
3805 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3806 printf_filtered ("\n");
3807 if (TYPE_TARGET_TYPE (type) != NULL)
3808 {
3809 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3810 }
3811 printfi_filtered (spaces, "pointer_type ");
3812 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3813 printf_filtered ("\n");
3814 printfi_filtered (spaces, "reference_type ");
3815 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3816 printf_filtered ("\n");
3817 printfi_filtered (spaces, "type_chain ");
3818 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3819 printf_filtered ("\n");
3820 printfi_filtered (spaces, "instance_flags 0x%x",
3821 TYPE_INSTANCE_FLAGS (type));
3822 if (TYPE_CONST (type))
3823 {
3824 puts_filtered (" TYPE_FLAG_CONST");
3825 }
3826 if (TYPE_VOLATILE (type))
3827 {
3828 puts_filtered (" TYPE_FLAG_VOLATILE");
3829 }
3830 if (TYPE_CODE_SPACE (type))
3831 {
3832 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3833 }
3834 if (TYPE_DATA_SPACE (type))
3835 {
3836 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3837 }
3838 if (TYPE_ADDRESS_CLASS_1 (type))
3839 {
3840 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3841 }
3842 if (TYPE_ADDRESS_CLASS_2 (type))
3843 {
3844 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3845 }
3846 if (TYPE_RESTRICT (type))
3847 {
3848 puts_filtered (" TYPE_FLAG_RESTRICT");
3849 }
3850 puts_filtered ("\n");
3851
3852 printfi_filtered (spaces, "flags");
3853 if (TYPE_UNSIGNED (type))
3854 {
3855 puts_filtered (" TYPE_FLAG_UNSIGNED");
3856 }
3857 if (TYPE_NOSIGN (type))
3858 {
3859 puts_filtered (" TYPE_FLAG_NOSIGN");
3860 }
3861 if (TYPE_STUB (type))
3862 {
3863 puts_filtered (" TYPE_FLAG_STUB");
3864 }
3865 if (TYPE_TARGET_STUB (type))
3866 {
3867 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3868 }
3869 if (TYPE_STATIC (type))
3870 {
3871 puts_filtered (" TYPE_FLAG_STATIC");
3872 }
3873 if (TYPE_PROTOTYPED (type))
3874 {
3875 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3876 }
3877 if (TYPE_INCOMPLETE (type))
3878 {
3879 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3880 }
3881 if (TYPE_VARARGS (type))
3882 {
3883 puts_filtered (" TYPE_FLAG_VARARGS");
3884 }
3885 /* This is used for things like AltiVec registers on ppc. Gcc emits
3886 an attribute for the array type, which tells whether or not we
3887 have a vector, instead of a regular array. */
3888 if (TYPE_VECTOR (type))
3889 {
3890 puts_filtered (" TYPE_FLAG_VECTOR");
3891 }
3892 if (TYPE_FIXED_INSTANCE (type))
3893 {
3894 puts_filtered (" TYPE_FIXED_INSTANCE");
3895 }
3896 if (TYPE_STUB_SUPPORTED (type))
3897 {
3898 puts_filtered (" TYPE_STUB_SUPPORTED");
3899 }
3900 if (TYPE_NOTTEXT (type))
3901 {
3902 puts_filtered (" TYPE_NOTTEXT");
3903 }
3904 puts_filtered ("\n");
3905 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3906 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3907 puts_filtered ("\n");
3908 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3909 {
3910 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3911 printfi_filtered (spaces + 2,
3912 "[%d] enumval %s type ",
3913 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3914 else
3915 printfi_filtered (spaces + 2,
3916 "[%d] bitpos %d bitsize %d type ",
3917 idx, TYPE_FIELD_BITPOS (type, idx),
3918 TYPE_FIELD_BITSIZE (type, idx));
3919 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3920 printf_filtered (" name '%s' (",
3921 TYPE_FIELD_NAME (type, idx) != NULL
3922 ? TYPE_FIELD_NAME (type, idx)
3923 : "<NULL>");
3924 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3925 printf_filtered (")\n");
3926 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3927 {
3928 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3929 }
3930 }
3931 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3932 {
3933 printfi_filtered (spaces, "low %s%s high %s%s\n",
3934 plongest (TYPE_LOW_BOUND (type)),
3935 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3936 plongest (TYPE_HIGH_BOUND (type)),
3937 TYPE_HIGH_BOUND_UNDEFINED (type)
3938 ? " (undefined)" : "");
3939 }
3940 printfi_filtered (spaces, "vptr_basetype ");
3941 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3942 puts_filtered ("\n");
3943 if (TYPE_VPTR_BASETYPE (type) != NULL)
3944 {
3945 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3946 }
3947 printfi_filtered (spaces, "vptr_fieldno %d\n",
3948 TYPE_VPTR_FIELDNO (type));
3949
3950 switch (TYPE_SPECIFIC_FIELD (type))
3951 {
3952 case TYPE_SPECIFIC_CPLUS_STUFF:
3953 printfi_filtered (spaces, "cplus_stuff ");
3954 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3955 gdb_stdout);
3956 puts_filtered ("\n");
3957 print_cplus_stuff (type, spaces);
3958 break;
3959
3960 case TYPE_SPECIFIC_GNAT_STUFF:
3961 printfi_filtered (spaces, "gnat_stuff ");
3962 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3963 puts_filtered ("\n");
3964 print_gnat_stuff (type, spaces);
3965 break;
3966
3967 case TYPE_SPECIFIC_FLOATFORMAT:
3968 printfi_filtered (spaces, "floatformat ");
3969 if (TYPE_FLOATFORMAT (type) == NULL)
3970 puts_filtered ("(null)");
3971 else
3972 {
3973 puts_filtered ("{ ");
3974 if (TYPE_FLOATFORMAT (type)[0] == NULL
3975 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3976 puts_filtered ("(null)");
3977 else
3978 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3979
3980 puts_filtered (", ");
3981 if (TYPE_FLOATFORMAT (type)[1] == NULL
3982 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3983 puts_filtered ("(null)");
3984 else
3985 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3986
3987 puts_filtered (" }");
3988 }
3989 puts_filtered ("\n");
3990 break;
3991
3992 case TYPE_SPECIFIC_FUNC:
3993 printfi_filtered (spaces, "calling_convention %d\n",
3994 TYPE_CALLING_CONVENTION (type));
3995 /* tail_call_list is not printed. */
3996 break;
3997 }
3998
3999 if (spaces == 0)
4000 obstack_free (&dont_print_type_obstack, NULL);
4001 }
4002 \f
4003 /* Trivial helpers for the libiberty hash table, for mapping one
4004 type to another. */
4005
4006 struct type_pair
4007 {
4008 struct type *old, *new;
4009 };
4010
4011 static hashval_t
4012 type_pair_hash (const void *item)
4013 {
4014 const struct type_pair *pair = item;
4015
4016 return htab_hash_pointer (pair->old);
4017 }
4018
4019 static int
4020 type_pair_eq (const void *item_lhs, const void *item_rhs)
4021 {
4022 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4023
4024 return lhs->old == rhs->old;
4025 }
4026
4027 /* Allocate the hash table used by copy_type_recursive to walk
4028 types without duplicates. We use OBJFILE's obstack, because
4029 OBJFILE is about to be deleted. */
4030
4031 htab_t
4032 create_copied_types_hash (struct objfile *objfile)
4033 {
4034 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4035 NULL, &objfile->objfile_obstack,
4036 hashtab_obstack_allocate,
4037 dummy_obstack_deallocate);
4038 }
4039
4040 /* Recursively copy (deep copy) TYPE, if it is associated with
4041 OBJFILE. Return a new type allocated using malloc, a saved type if
4042 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4043 not associated with OBJFILE. */
4044
4045 struct type *
4046 copy_type_recursive (struct objfile *objfile,
4047 struct type *type,
4048 htab_t copied_types)
4049 {
4050 struct type_pair *stored, pair;
4051 void **slot;
4052 struct type *new_type;
4053
4054 if (! TYPE_OBJFILE_OWNED (type))
4055 return type;
4056
4057 /* This type shouldn't be pointing to any types in other objfiles;
4058 if it did, the type might disappear unexpectedly. */
4059 gdb_assert (TYPE_OBJFILE (type) == objfile);
4060
4061 pair.old = type;
4062 slot = htab_find_slot (copied_types, &pair, INSERT);
4063 if (*slot != NULL)
4064 return ((struct type_pair *) *slot)->new;
4065
4066 new_type = alloc_type_arch (get_type_arch (type));
4067
4068 /* We must add the new type to the hash table immediately, in case
4069 we encounter this type again during a recursive call below. */
4070 stored
4071 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4072 stored->old = type;
4073 stored->new = new_type;
4074 *slot = stored;
4075
4076 /* Copy the common fields of types. For the main type, we simply
4077 copy the entire thing and then update specific fields as needed. */
4078 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4079 TYPE_OBJFILE_OWNED (new_type) = 0;
4080 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4081
4082 if (TYPE_NAME (type))
4083 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4084 if (TYPE_TAG_NAME (type))
4085 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4086
4087 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4088 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4089
4090 /* Copy the fields. */
4091 if (TYPE_NFIELDS (type))
4092 {
4093 int i, nfields;
4094
4095 nfields = TYPE_NFIELDS (type);
4096 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4097 for (i = 0; i < nfields; i++)
4098 {
4099 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4100 TYPE_FIELD_ARTIFICIAL (type, i);
4101 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4102 if (TYPE_FIELD_TYPE (type, i))
4103 TYPE_FIELD_TYPE (new_type, i)
4104 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4105 copied_types);
4106 if (TYPE_FIELD_NAME (type, i))
4107 TYPE_FIELD_NAME (new_type, i) =
4108 xstrdup (TYPE_FIELD_NAME (type, i));
4109 switch (TYPE_FIELD_LOC_KIND (type, i))
4110 {
4111 case FIELD_LOC_KIND_BITPOS:
4112 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4113 TYPE_FIELD_BITPOS (type, i));
4114 break;
4115 case FIELD_LOC_KIND_ENUMVAL:
4116 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4117 TYPE_FIELD_ENUMVAL (type, i));
4118 break;
4119 case FIELD_LOC_KIND_PHYSADDR:
4120 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4121 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4122 break;
4123 case FIELD_LOC_KIND_PHYSNAME:
4124 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4125 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4126 i)));
4127 break;
4128 default:
4129 internal_error (__FILE__, __LINE__,
4130 _("Unexpected type field location kind: %d"),
4131 TYPE_FIELD_LOC_KIND (type, i));
4132 }
4133 }
4134 }
4135
4136 /* For range types, copy the bounds information. */
4137 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4138 {
4139 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4140 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4141 }
4142
4143 /* Copy the data location information. */
4144 if (TYPE_DATA_LOCATION (type) != NULL)
4145 {
4146 TYPE_DATA_LOCATION (new_type)
4147 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4148 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4149 sizeof (struct dynamic_prop));
4150 }
4151
4152 /* Copy pointers to other types. */
4153 if (TYPE_TARGET_TYPE (type))
4154 TYPE_TARGET_TYPE (new_type) =
4155 copy_type_recursive (objfile,
4156 TYPE_TARGET_TYPE (type),
4157 copied_types);
4158 if (TYPE_VPTR_BASETYPE (type))
4159 TYPE_VPTR_BASETYPE (new_type) =
4160 copy_type_recursive (objfile,
4161 TYPE_VPTR_BASETYPE (type),
4162 copied_types);
4163 /* Maybe copy the type_specific bits.
4164
4165 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4166 base classes and methods. There's no fundamental reason why we
4167 can't, but at the moment it is not needed. */
4168
4169 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4170 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4171 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4172 || TYPE_CODE (type) == TYPE_CODE_UNION
4173 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4174 INIT_CPLUS_SPECIFIC (new_type);
4175
4176 return new_type;
4177 }
4178
4179 /* Make a copy of the given TYPE, except that the pointer & reference
4180 types are not preserved.
4181
4182 This function assumes that the given type has an associated objfile.
4183 This objfile is used to allocate the new type. */
4184
4185 struct type *
4186 copy_type (const struct type *type)
4187 {
4188 struct type *new_type;
4189
4190 gdb_assert (TYPE_OBJFILE_OWNED (type));
4191
4192 new_type = alloc_type_copy (type);
4193 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4194 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4195 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4196 sizeof (struct main_type));
4197 if (TYPE_DATA_LOCATION (type) != NULL)
4198 {
4199 TYPE_DATA_LOCATION (new_type)
4200 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4201 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4202 sizeof (struct dynamic_prop));
4203 }
4204
4205 return new_type;
4206 }
4207 \f
4208 /* Helper functions to initialize architecture-specific types. */
4209
4210 /* Allocate a type structure associated with GDBARCH and set its
4211 CODE, LENGTH, and NAME fields. */
4212
4213 struct type *
4214 arch_type (struct gdbarch *gdbarch,
4215 enum type_code code, int length, char *name)
4216 {
4217 struct type *type;
4218
4219 type = alloc_type_arch (gdbarch);
4220 TYPE_CODE (type) = code;
4221 TYPE_LENGTH (type) = length;
4222
4223 if (name)
4224 TYPE_NAME (type) = xstrdup (name);
4225
4226 return type;
4227 }
4228
4229 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4230 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4231 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4232
4233 struct type *
4234 arch_integer_type (struct gdbarch *gdbarch,
4235 int bit, int unsigned_p, char *name)
4236 {
4237 struct type *t;
4238
4239 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4240 if (unsigned_p)
4241 TYPE_UNSIGNED (t) = 1;
4242 if (name && strcmp (name, "char") == 0)
4243 TYPE_NOSIGN (t) = 1;
4244
4245 return t;
4246 }
4247
4248 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4249 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4250 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4251
4252 struct type *
4253 arch_character_type (struct gdbarch *gdbarch,
4254 int bit, int unsigned_p, char *name)
4255 {
4256 struct type *t;
4257
4258 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4259 if (unsigned_p)
4260 TYPE_UNSIGNED (t) = 1;
4261
4262 return t;
4263 }
4264
4265 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4266 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4267 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4268
4269 struct type *
4270 arch_boolean_type (struct gdbarch *gdbarch,
4271 int bit, int unsigned_p, char *name)
4272 {
4273 struct type *t;
4274
4275 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4276 if (unsigned_p)
4277 TYPE_UNSIGNED (t) = 1;
4278
4279 return t;
4280 }
4281
4282 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4283 BIT is the type size in bits; if BIT equals -1, the size is
4284 determined by the floatformat. NAME is the type name. Set the
4285 TYPE_FLOATFORMAT from FLOATFORMATS. */
4286
4287 struct type *
4288 arch_float_type (struct gdbarch *gdbarch,
4289 int bit, char *name, const struct floatformat **floatformats)
4290 {
4291 struct type *t;
4292
4293 if (bit == -1)
4294 {
4295 gdb_assert (floatformats != NULL);
4296 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4297 bit = floatformats[0]->totalsize;
4298 }
4299 gdb_assert (bit >= 0);
4300
4301 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4302 TYPE_FLOATFORMAT (t) = floatformats;
4303 return t;
4304 }
4305
4306 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4307 NAME is the type name. TARGET_TYPE is the component float type. */
4308
4309 struct type *
4310 arch_complex_type (struct gdbarch *gdbarch,
4311 char *name, struct type *target_type)
4312 {
4313 struct type *t;
4314
4315 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4316 2 * TYPE_LENGTH (target_type), name);
4317 TYPE_TARGET_TYPE (t) = target_type;
4318 return t;
4319 }
4320
4321 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4322 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4323
4324 struct type *
4325 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4326 {
4327 int nfields = length * TARGET_CHAR_BIT;
4328 struct type *type;
4329
4330 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4331 TYPE_UNSIGNED (type) = 1;
4332 TYPE_NFIELDS (type) = nfields;
4333 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4334
4335 return type;
4336 }
4337
4338 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4339 position BITPOS is called NAME. */
4340
4341 void
4342 append_flags_type_flag (struct type *type, int bitpos, char *name)
4343 {
4344 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4345 gdb_assert (bitpos < TYPE_NFIELDS (type));
4346 gdb_assert (bitpos >= 0);
4347
4348 if (name)
4349 {
4350 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4351 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4352 }
4353 else
4354 {
4355 /* Don't show this field to the user. */
4356 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4357 }
4358 }
4359
4360 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4361 specified by CODE) associated with GDBARCH. NAME is the type name. */
4362
4363 struct type *
4364 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4365 {
4366 struct type *t;
4367
4368 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4369 t = arch_type (gdbarch, code, 0, NULL);
4370 TYPE_TAG_NAME (t) = name;
4371 INIT_CPLUS_SPECIFIC (t);
4372 return t;
4373 }
4374
4375 /* Add new field with name NAME and type FIELD to composite type T.
4376 Do not set the field's position or adjust the type's length;
4377 the caller should do so. Return the new field. */
4378
4379 struct field *
4380 append_composite_type_field_raw (struct type *t, char *name,
4381 struct type *field)
4382 {
4383 struct field *f;
4384
4385 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4386 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4387 sizeof (struct field) * TYPE_NFIELDS (t));
4388 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4389 memset (f, 0, sizeof f[0]);
4390 FIELD_TYPE (f[0]) = field;
4391 FIELD_NAME (f[0]) = name;
4392 return f;
4393 }
4394
4395 /* Add new field with name NAME and type FIELD to composite type T.
4396 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4397
4398 void
4399 append_composite_type_field_aligned (struct type *t, char *name,
4400 struct type *field, int alignment)
4401 {
4402 struct field *f = append_composite_type_field_raw (t, name, field);
4403
4404 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4405 {
4406 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4407 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4408 }
4409 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4410 {
4411 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4412 if (TYPE_NFIELDS (t) > 1)
4413 {
4414 SET_FIELD_BITPOS (f[0],
4415 (FIELD_BITPOS (f[-1])
4416 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4417 * TARGET_CHAR_BIT)));
4418
4419 if (alignment)
4420 {
4421 int left;
4422
4423 alignment *= TARGET_CHAR_BIT;
4424 left = FIELD_BITPOS (f[0]) % alignment;
4425
4426 if (left)
4427 {
4428 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4429 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4430 }
4431 }
4432 }
4433 }
4434 }
4435
4436 /* Add new field with name NAME and type FIELD to composite type T. */
4437
4438 void
4439 append_composite_type_field (struct type *t, char *name,
4440 struct type *field)
4441 {
4442 append_composite_type_field_aligned (t, name, field, 0);
4443 }
4444
4445 static struct gdbarch_data *gdbtypes_data;
4446
4447 const struct builtin_type *
4448 builtin_type (struct gdbarch *gdbarch)
4449 {
4450 return gdbarch_data (gdbarch, gdbtypes_data);
4451 }
4452
4453 static void *
4454 gdbtypes_post_init (struct gdbarch *gdbarch)
4455 {
4456 struct builtin_type *builtin_type
4457 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4458
4459 /* Basic types. */
4460 builtin_type->builtin_void
4461 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4462 builtin_type->builtin_char
4463 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4464 !gdbarch_char_signed (gdbarch), "char");
4465 builtin_type->builtin_signed_char
4466 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4467 0, "signed char");
4468 builtin_type->builtin_unsigned_char
4469 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4470 1, "unsigned char");
4471 builtin_type->builtin_short
4472 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4473 0, "short");
4474 builtin_type->builtin_unsigned_short
4475 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4476 1, "unsigned short");
4477 builtin_type->builtin_int
4478 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4479 0, "int");
4480 builtin_type->builtin_unsigned_int
4481 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4482 1, "unsigned int");
4483 builtin_type->builtin_long
4484 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4485 0, "long");
4486 builtin_type->builtin_unsigned_long
4487 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4488 1, "unsigned long");
4489 builtin_type->builtin_long_long
4490 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4491 0, "long long");
4492 builtin_type->builtin_unsigned_long_long
4493 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4494 1, "unsigned long long");
4495 builtin_type->builtin_float
4496 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4497 "float", gdbarch_float_format (gdbarch));
4498 builtin_type->builtin_double
4499 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4500 "double", gdbarch_double_format (gdbarch));
4501 builtin_type->builtin_long_double
4502 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4503 "long double", gdbarch_long_double_format (gdbarch));
4504 builtin_type->builtin_complex
4505 = arch_complex_type (gdbarch, "complex",
4506 builtin_type->builtin_float);
4507 builtin_type->builtin_double_complex
4508 = arch_complex_type (gdbarch, "double complex",
4509 builtin_type->builtin_double);
4510 builtin_type->builtin_string
4511 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4512 builtin_type->builtin_bool
4513 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4514
4515 /* The following three are about decimal floating point types, which
4516 are 32-bits, 64-bits and 128-bits respectively. */
4517 builtin_type->builtin_decfloat
4518 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4519 builtin_type->builtin_decdouble
4520 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4521 builtin_type->builtin_declong
4522 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4523
4524 /* "True" character types. */
4525 builtin_type->builtin_true_char
4526 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4527 builtin_type->builtin_true_unsigned_char
4528 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4529
4530 /* Fixed-size integer types. */
4531 builtin_type->builtin_int0
4532 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4533 builtin_type->builtin_int8
4534 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4535 builtin_type->builtin_uint8
4536 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4537 builtin_type->builtin_int16
4538 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4539 builtin_type->builtin_uint16
4540 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4541 builtin_type->builtin_int32
4542 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4543 builtin_type->builtin_uint32
4544 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4545 builtin_type->builtin_int64
4546 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4547 builtin_type->builtin_uint64
4548 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4549 builtin_type->builtin_int128
4550 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4551 builtin_type->builtin_uint128
4552 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4553 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4554 TYPE_INSTANCE_FLAG_NOTTEXT;
4555 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4556 TYPE_INSTANCE_FLAG_NOTTEXT;
4557
4558 /* Wide character types. */
4559 builtin_type->builtin_char16
4560 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4561 builtin_type->builtin_char32
4562 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4563
4564
4565 /* Default data/code pointer types. */
4566 builtin_type->builtin_data_ptr
4567 = lookup_pointer_type (builtin_type->builtin_void);
4568 builtin_type->builtin_func_ptr
4569 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4570 builtin_type->builtin_func_func
4571 = lookup_function_type (builtin_type->builtin_func_ptr);
4572
4573 /* This type represents a GDB internal function. */
4574 builtin_type->internal_fn
4575 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4576 "<internal function>");
4577
4578 /* This type represents an xmethod. */
4579 builtin_type->xmethod
4580 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4581
4582 return builtin_type;
4583 }
4584
4585 /* This set of objfile-based types is intended to be used by symbol
4586 readers as basic types. */
4587
4588 static const struct objfile_data *objfile_type_data;
4589
4590 const struct objfile_type *
4591 objfile_type (struct objfile *objfile)
4592 {
4593 struct gdbarch *gdbarch;
4594 struct objfile_type *objfile_type
4595 = objfile_data (objfile, objfile_type_data);
4596
4597 if (objfile_type)
4598 return objfile_type;
4599
4600 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4601 1, struct objfile_type);
4602
4603 /* Use the objfile architecture to determine basic type properties. */
4604 gdbarch = get_objfile_arch (objfile);
4605
4606 /* Basic types. */
4607 objfile_type->builtin_void
4608 = init_type (TYPE_CODE_VOID, 1,
4609 0,
4610 "void", objfile);
4611
4612 objfile_type->builtin_char
4613 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4614 (TYPE_FLAG_NOSIGN
4615 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4616 "char", objfile);
4617 objfile_type->builtin_signed_char
4618 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4619 0,
4620 "signed char", objfile);
4621 objfile_type->builtin_unsigned_char
4622 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4623 TYPE_FLAG_UNSIGNED,
4624 "unsigned char", objfile);
4625 objfile_type->builtin_short
4626 = init_type (TYPE_CODE_INT,
4627 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4628 0, "short", objfile);
4629 objfile_type->builtin_unsigned_short
4630 = init_type (TYPE_CODE_INT,
4631 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4632 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4633 objfile_type->builtin_int
4634 = init_type (TYPE_CODE_INT,
4635 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4636 0, "int", objfile);
4637 objfile_type->builtin_unsigned_int
4638 = init_type (TYPE_CODE_INT,
4639 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4640 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4641 objfile_type->builtin_long
4642 = init_type (TYPE_CODE_INT,
4643 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4644 0, "long", objfile);
4645 objfile_type->builtin_unsigned_long
4646 = init_type (TYPE_CODE_INT,
4647 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4648 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4649 objfile_type->builtin_long_long
4650 = init_type (TYPE_CODE_INT,
4651 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4652 0, "long long", objfile);
4653 objfile_type->builtin_unsigned_long_long
4654 = init_type (TYPE_CODE_INT,
4655 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4656 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4657
4658 objfile_type->builtin_float
4659 = init_type (TYPE_CODE_FLT,
4660 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4661 0, "float", objfile);
4662 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4663 = gdbarch_float_format (gdbarch);
4664 objfile_type->builtin_double
4665 = init_type (TYPE_CODE_FLT,
4666 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4667 0, "double", objfile);
4668 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4669 = gdbarch_double_format (gdbarch);
4670 objfile_type->builtin_long_double
4671 = init_type (TYPE_CODE_FLT,
4672 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4673 0, "long double", objfile);
4674 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4675 = gdbarch_long_double_format (gdbarch);
4676
4677 /* This type represents a type that was unrecognized in symbol read-in. */
4678 objfile_type->builtin_error
4679 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4680
4681 /* The following set of types is used for symbols with no
4682 debug information. */
4683 objfile_type->nodebug_text_symbol
4684 = init_type (TYPE_CODE_FUNC, 1, 0,
4685 "<text variable, no debug info>", objfile);
4686 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4687 = objfile_type->builtin_int;
4688 objfile_type->nodebug_text_gnu_ifunc_symbol
4689 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4690 "<text gnu-indirect-function variable, no debug info>",
4691 objfile);
4692 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4693 = objfile_type->nodebug_text_symbol;
4694 objfile_type->nodebug_got_plt_symbol
4695 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4696 "<text from jump slot in .got.plt, no debug info>",
4697 objfile);
4698 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4699 = objfile_type->nodebug_text_symbol;
4700 objfile_type->nodebug_data_symbol
4701 = init_type (TYPE_CODE_INT,
4702 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4703 "<data variable, no debug info>", objfile);
4704 objfile_type->nodebug_unknown_symbol
4705 = init_type (TYPE_CODE_INT, 1, 0,
4706 "<variable (not text or data), no debug info>", objfile);
4707 objfile_type->nodebug_tls_symbol
4708 = init_type (TYPE_CODE_INT,
4709 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4710 "<thread local variable, no debug info>", objfile);
4711
4712 /* NOTE: on some targets, addresses and pointers are not necessarily
4713 the same.
4714
4715 The upshot is:
4716 - gdb's `struct type' always describes the target's
4717 representation.
4718 - gdb's `struct value' objects should always hold values in
4719 target form.
4720 - gdb's CORE_ADDR values are addresses in the unified virtual
4721 address space that the assembler and linker work with. Thus,
4722 since target_read_memory takes a CORE_ADDR as an argument, it
4723 can access any memory on the target, even if the processor has
4724 separate code and data address spaces.
4725
4726 In this context, objfile_type->builtin_core_addr is a bit odd:
4727 it's a target type for a value the target will never see. It's
4728 only used to hold the values of (typeless) linker symbols, which
4729 are indeed in the unified virtual address space. */
4730
4731 objfile_type->builtin_core_addr
4732 = init_type (TYPE_CODE_INT,
4733 gdbarch_addr_bit (gdbarch) / 8,
4734 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4735
4736 set_objfile_data (objfile, objfile_type_data, objfile_type);
4737 return objfile_type;
4738 }
4739
4740 extern initialize_file_ftype _initialize_gdbtypes;
4741
4742 void
4743 _initialize_gdbtypes (void)
4744 {
4745 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4746 objfile_type_data = register_objfile_data ();
4747
4748 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4749 _("Set debugging of C++ overloading."),
4750 _("Show debugging of C++ overloading."),
4751 _("When enabled, ranking of the "
4752 "functions is displayed."),
4753 NULL,
4754 show_overload_debug,
4755 &setdebuglist, &showdebuglist);
4756
4757 /* Add user knob for controlling resolution of opaque types. */
4758 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4759 &opaque_type_resolution,
4760 _("Set resolution of opaque struct/class/union"
4761 " types (if set before loading symbols)."),
4762 _("Show resolution of opaque struct/class/union"
4763 " types (if set before loading symbols)."),
4764 NULL, NULL,
4765 show_opaque_type_resolution,
4766 &setlist, &showlist);
4767
4768 /* Add an option to permit non-strict type checking. */
4769 add_setshow_boolean_cmd ("type", class_support,
4770 &strict_type_checking,
4771 _("Set strict type checking."),
4772 _("Show strict type checking."),
4773 NULL, NULL,
4774 show_strict_type_checking,
4775 &setchecklist, &showchecklist);
4776 }
This page took 0.130761 seconds and 4 git commands to generate.