gdb: make get_dyn_prop a method of struct type
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118
119 /* Should opaque types be resolved? */
120
121 static bool opaque_type_resolution = true;
122
123 /* See gdbtypes.h. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static bool strict_type_checking = true;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the obstack associated with GDBARCH. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216 }
217
218 /* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222 struct type *
223 alloc_type_copy (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229 }
230
231 /* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234 struct gdbarch *
235 get_type_arch (const struct type *type)
236 {
237 struct gdbarch *arch;
238
239 if (TYPE_OBJFILE_OWNED (type))
240 arch = TYPE_OWNER (type).objfile->arch ();
241 else
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
250 }
251
252 /* See gdbtypes.h. */
253
254 struct type *
255 get_target_type (struct type *type)
256 {
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265 }
266
267 /* See gdbtypes.h. */
268
269 unsigned int
270 type_length_units (struct type *type)
271 {
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276 }
277
278 /* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282 static struct type *
283 alloc_type_instance (struct type *oldtype)
284 {
285 struct type *type;
286
287 /* Allocate the structure. */
288
289 if (! TYPE_OBJFILE_OWNED (oldtype))
290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
291 else
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
299 return type;
300 }
301
302 /* Clear all remnants of the previous type at TYPE, in preparation for
303 replacing it with something else. Preserve owner information. */
304
305 static void
306 smash_type (struct type *type)
307 {
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321 }
322
323 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328 struct type *
329 make_pointer_type (struct type *type, struct type **typeptr)
330 {
331 struct type *ntype; /* New type */
332 struct type *chain;
333
334 ntype = TYPE_POINTER_TYPE (type);
335
336 if (ntype)
337 {
338 if (typeptr == 0)
339 return ntype; /* Don't care about alloc,
340 and have new type. */
341 else if (*typeptr == 0)
342 {
343 *typeptr = ntype; /* Tracking alloc, and have new type. */
344 return ntype;
345 }
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
350 ntype = alloc_type_copy (type);
351 if (typeptr)
352 *typeptr = ntype;
353 }
354 else /* We have storage, but need to reset it. */
355 {
356 ntype = *typeptr;
357 chain = TYPE_CHAIN (ntype);
358 smash_type (ntype);
359 TYPE_CHAIN (ntype) = chain;
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
365 /* FIXME! Assumes the machine has only one representation for pointers! */
366
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
369 TYPE_CODE (ntype) = TYPE_CODE_PTR;
370
371 /* Mark pointers as unsigned. The target converts between pointers
372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
373 gdbarch_address_to_pointer. */
374 TYPE_UNSIGNED (ntype) = 1;
375
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
384 return ntype;
385 }
386
387 /* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390 struct type *
391 lookup_pointer_type (struct type *type)
392 {
393 return make_pointer_type (type, (struct type **) 0);
394 }
395
396 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
401
402 struct type *
403 make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
405 {
406 struct type *ntype; /* New type */
407 struct type **reftype;
408 struct type *chain;
409
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
414
415 if (ntype)
416 {
417 if (typeptr == 0)
418 return ntype; /* Don't care about alloc,
419 and have new type. */
420 else if (*typeptr == 0)
421 {
422 *typeptr = ntype; /* Tracking alloc, and have new type. */
423 return ntype;
424 }
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
429 ntype = alloc_type_copy (type);
430 if (typeptr)
431 *typeptr = ntype;
432 }
433 else /* We have storage, but need to reset it. */
434 {
435 ntype = *typeptr;
436 chain = TYPE_CHAIN (ntype);
437 smash_type (ntype);
438 TYPE_CHAIN (ntype) = chain;
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
446
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
450
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
453 TYPE_CODE (ntype) = refcode;
454
455 *reftype = ntype;
456
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
465 return ntype;
466 }
467
468 /* Same as above, but caller doesn't care about memory allocation
469 details. */
470
471 struct type *
472 lookup_reference_type (struct type *type, enum type_code refcode)
473 {
474 return make_reference_type (type, (struct type **) 0, refcode);
475 }
476
477 /* Lookup the lvalue reference type for the type TYPE. */
478
479 struct type *
480 lookup_lvalue_reference_type (struct type *type)
481 {
482 return lookup_reference_type (type, TYPE_CODE_REF);
483 }
484
485 /* Lookup the rvalue reference type for the type TYPE. */
486
487 struct type *
488 lookup_rvalue_reference_type (struct type *type)
489 {
490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
491 }
492
493 /* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
496 function type we return. We allocate new memory if needed. */
497
498 struct type *
499 make_function_type (struct type *type, struct type **typeptr)
500 {
501 struct type *ntype; /* New type */
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
505 ntype = alloc_type_copy (type);
506 if (typeptr)
507 *typeptr = ntype;
508 }
509 else /* We have storage, but need to reset it. */
510 {
511 ntype = *typeptr;
512 smash_type (ntype);
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
518 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
519
520 INIT_FUNC_SPECIFIC (ntype);
521
522 return ntype;
523 }
524
525 /* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528 struct type *
529 lookup_function_type (struct type *type)
530 {
531 return make_function_type (type, (struct type **) 0);
532 }
533
534 /* Given a type TYPE and argument types, return the appropriate
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
537
538 struct type *
539 lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542 {
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
546 if (nparams > 0)
547 {
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
553 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
561 else
562 TYPE_PROTOTYPED (fn) = 1;
563 }
564
565 TYPE_NFIELDS (fn) = nparams;
566 TYPE_FIELDS (fn)
567 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
568 for (i = 0; i < nparams; ++i)
569 TYPE_FIELD_TYPE (fn, i) = param_types[i];
570
571 return fn;
572 }
573
574 /* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
576
577 int
578 address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
580 {
581 int type_flags;
582
583 /* Check for known address space delimiters. */
584 if (!strcmp (space_identifier, "code"))
585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
586 else if (!strcmp (space_identifier, "data"))
587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
592 return type_flags;
593 else
594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
595 }
596
597 /* Identify address space identifier by integer flag as defined in
598 gdbtypes.h -- return the string version of the adress space name. */
599
600 const char *
601 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
602 {
603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
604 return "code";
605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
606 return "data";
607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
610 else
611 return NULL;
612 }
613
614 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
618
619 static struct type *
620 make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
622 {
623 struct type *ntype;
624
625 ntype = type;
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
633
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
649
650 /* Pointers or references to the original type are not relevant to
651 the new type. */
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
654
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
661
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
665 return ntype;
666 }
667
668 /* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
676
677 struct type *
678 make_type_with_address_space (struct type *type, int space_flag)
679 {
680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687 }
688
689 /* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
694
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
700
701 struct type *
702 make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
705 {
706 struct type *ntype; /* New type */
707
708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
711
712 if (cnst)
713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
714
715 if (voltl)
716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
717
718 if (typeptr && *typeptr != NULL)
719 {
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
733 }
734
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
737
738 if (typeptr != NULL)
739 *typeptr = ntype;
740
741 return ntype;
742 }
743
744 /* Make a 'restrict'-qualified version of TYPE. */
745
746 struct type *
747 make_restrict_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753 }
754
755 /* Make a type without const, volatile, or restrict. */
756
757 struct type *
758 make_unqualified_type (struct type *type)
759 {
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766 }
767
768 /* Make a '_Atomic'-qualified version of TYPE. */
769
770 struct type *
771 make_atomic_type (struct type *type)
772 {
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777 }
778
779 /* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
782
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
788
789 void
790 replace_type (struct type *ntype, struct type *type)
791 {
792 struct type *chain;
793
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
799
800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
801
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
804 chain = ntype;
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
819
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
823 }
824
825 /* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830 struct type *
831 lookup_memberptr_type (struct type *type, struct type *domain)
832 {
833 struct type *mtype;
834
835 mtype = alloc_type_copy (type);
836 smash_to_memberptr_type (mtype, domain, type);
837 return mtype;
838 }
839
840 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842 struct type *
843 lookup_methodptr_type (struct type *to_type)
844 {
845 struct type *mtype;
846
847 mtype = alloc_type_copy (to_type);
848 smash_to_methodptr_type (mtype, to_type);
849 return mtype;
850 }
851
852 /* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
857
858 struct type *
859 allocate_stub_method (struct type *type)
860 {
861 struct type *mtype;
862
863 mtype = alloc_type_copy (type);
864 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
867 TYPE_TARGET_TYPE (mtype) = type;
868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
869 return mtype;
870 }
871
872 /* See gdbtypes.h. */
873
874 bool
875 operator== (const dynamic_prop &l, const dynamic_prop &r)
876 {
877 if (l.kind != r.kind)
878 return false;
879
880 switch (l.kind)
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.data.const_val == r.data.const_val;
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.data.baton == r.data.baton;
890 case PROP_VARIANT_PARTS:
891 return l.data.variant_parts == r.data.variant_parts;
892 case PROP_TYPE:
893 return l.data.original_type == r.data.original_type;
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897 }
898
899 /* See gdbtypes.h. */
900
901 bool
902 operator== (const range_bounds &l, const range_bounds &r)
903 {
904 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
911
912 #undef FIELD_EQ
913 }
914
915 /* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
917
918 struct type *
919 create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
923 {
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
926 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
929 if (result_type == NULL)
930 result_type = alloc_type_copy (index_type);
931 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
932 TYPE_TARGET_TYPE (result_type) = index_type;
933 if (TYPE_STUB (index_type))
934 TYPE_TARGET_STUB (result_type) = 1;
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
937
938 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
939 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
940 TYPE_RANGE_DATA (result_type)->low = *low_bound;
941 TYPE_RANGE_DATA (result_type)->high = *high_bound;
942 TYPE_RANGE_DATA (result_type)->bias = bias;
943
944 /* Initialize the stride to be a constant, the value will already be zero
945 thanks to the use of TYPE_ZALLOC above. */
946 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
947
948 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
949 TYPE_UNSIGNED (result_type) = 1;
950
951 /* Ada allows the declaration of range types whose upper bound is
952 less than the lower bound, so checking the lower bound is not
953 enough. Make sure we do not mark a range type whose upper bound
954 is negative as unsigned. */
955 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
956 TYPE_UNSIGNED (result_type) = 0;
957
958 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
959 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
960
961 return result_type;
962 }
963
964 /* See gdbtypes.h. */
965
966 struct type *
967 create_range_type_with_stride (struct type *result_type,
968 struct type *index_type,
969 const struct dynamic_prop *low_bound,
970 const struct dynamic_prop *high_bound,
971 LONGEST bias,
972 const struct dynamic_prop *stride,
973 bool byte_stride_p)
974 {
975 result_type = create_range_type (result_type, index_type, low_bound,
976 high_bound, bias);
977
978 gdb_assert (stride != nullptr);
979 TYPE_RANGE_DATA (result_type)->stride = *stride;
980 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
981
982 return result_type;
983 }
984
985
986
987 /* Create a range type using either a blank type supplied in
988 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 INDEX_TYPE.
990
991 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
992 to HIGH_BOUND, inclusive.
993
994 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
995 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
996
997 struct type *
998 create_static_range_type (struct type *result_type, struct type *index_type,
999 LONGEST low_bound, LONGEST high_bound)
1000 {
1001 struct dynamic_prop low, high;
1002
1003 low.kind = PROP_CONST;
1004 low.data.const_val = low_bound;
1005
1006 high.kind = PROP_CONST;
1007 high.data.const_val = high_bound;
1008
1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1010
1011 return result_type;
1012 }
1013
1014 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
1017 static bool
1018 has_static_range (const struct range_bounds *bounds)
1019 {
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
1022 return (bounds->low.kind == PROP_CONST
1023 && bounds->high.kind == PROP_CONST
1024 && bounds->stride.kind == PROP_CONST);
1025 }
1026
1027
1028 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1030 bounds will fit in LONGEST), or -1 otherwise. */
1031
1032 int
1033 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1034 {
1035 type = check_typedef (type);
1036 switch (TYPE_CODE (type))
1037 {
1038 case TYPE_CODE_RANGE:
1039 *lowp = TYPE_LOW_BOUND (type);
1040 *highp = TYPE_HIGH_BOUND (type);
1041 return 1;
1042 case TYPE_CODE_ENUM:
1043 if (TYPE_NFIELDS (type) > 0)
1044 {
1045 /* The enums may not be sorted by value, so search all
1046 entries. */
1047 int i;
1048
1049 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1050 for (i = 0; i < TYPE_NFIELDS (type); i++)
1051 {
1052 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1053 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1054 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1055 *highp = TYPE_FIELD_ENUMVAL (type, i);
1056 }
1057
1058 /* Set unsigned indicator if warranted. */
1059 if (*lowp >= 0)
1060 {
1061 TYPE_UNSIGNED (type) = 1;
1062 }
1063 }
1064 else
1065 {
1066 *lowp = 0;
1067 *highp = -1;
1068 }
1069 return 0;
1070 case TYPE_CODE_BOOL:
1071 *lowp = 0;
1072 *highp = 1;
1073 return 0;
1074 case TYPE_CODE_INT:
1075 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1076 return -1;
1077 if (!TYPE_UNSIGNED (type))
1078 {
1079 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1080 *highp = -*lowp - 1;
1081 return 0;
1082 }
1083 /* fall through */
1084 case TYPE_CODE_CHAR:
1085 *lowp = 0;
1086 /* This round-about calculation is to avoid shifting by
1087 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1088 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1089 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1090 *highp = (*highp - 1) | *highp;
1091 return 0;
1092 default:
1093 return -1;
1094 }
1095 }
1096
1097 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1098 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1099 Save the high bound into HIGH_BOUND if not NULL.
1100
1101 Return 1 if the operation was successful. Return zero otherwise,
1102 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1103
1104 We now simply use get_discrete_bounds call to get the values
1105 of the low and high bounds.
1106 get_discrete_bounds can return three values:
1107 1, meaning that index is a range,
1108 0, meaning that index is a discrete type,
1109 or -1 for failure. */
1110
1111 int
1112 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1113 {
1114 struct type *index = TYPE_INDEX_TYPE (type);
1115 LONGEST low = 0;
1116 LONGEST high = 0;
1117 int res;
1118
1119 if (index == NULL)
1120 return 0;
1121
1122 res = get_discrete_bounds (index, &low, &high);
1123 if (res == -1)
1124 return 0;
1125
1126 /* Check if the array bounds are undefined. */
1127 if (res == 1
1128 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1129 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1130 return 0;
1131
1132 if (low_bound)
1133 *low_bound = low;
1134
1135 if (high_bound)
1136 *high_bound = high;
1137
1138 return 1;
1139 }
1140
1141 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1142 representation of a value of this type, save the corresponding
1143 position number in POS.
1144
1145 Its differs from VAL only in the case of enumeration types. In
1146 this case, the position number of the value of the first listed
1147 enumeration literal is zero; the position number of the value of
1148 each subsequent enumeration literal is one more than that of its
1149 predecessor in the list.
1150
1151 Return 1 if the operation was successful. Return zero otherwise,
1152 in which case the value of POS is unmodified.
1153 */
1154
1155 int
1156 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1157 {
1158 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1159 {
1160 int i;
1161
1162 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1163 {
1164 if (val == TYPE_FIELD_ENUMVAL (type, i))
1165 {
1166 *pos = i;
1167 return 1;
1168 }
1169 }
1170 /* Invalid enumeration value. */
1171 return 0;
1172 }
1173 else
1174 {
1175 *pos = val;
1176 return 1;
1177 }
1178 }
1179
1180 /* If the array TYPE has static bounds calculate and update its
1181 size, then return true. Otherwise return false and leave TYPE
1182 unchanged. */
1183
1184 static bool
1185 update_static_array_size (struct type *type)
1186 {
1187 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1188
1189 struct type *range_type = TYPE_INDEX_TYPE (type);
1190
1191 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1192 && has_static_range (TYPE_RANGE_DATA (range_type))
1193 && (!type_not_associated (type)
1194 && !type_not_allocated (type)))
1195 {
1196 LONGEST low_bound, high_bound;
1197 int stride;
1198 struct type *element_type;
1199
1200 /* If the array itself doesn't provide a stride value then take
1201 whatever stride the range provides. Don't update BIT_STRIDE as
1202 we don't want to place the stride value from the range into this
1203 arrays bit size field. */
1204 stride = TYPE_FIELD_BITSIZE (type, 0);
1205 if (stride == 0)
1206 stride = TYPE_BIT_STRIDE (range_type);
1207
1208 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1209 low_bound = high_bound = 0;
1210 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1211 /* Be careful when setting the array length. Ada arrays can be
1212 empty arrays with the high_bound being smaller than the low_bound.
1213 In such cases, the array length should be zero. */
1214 if (high_bound < low_bound)
1215 TYPE_LENGTH (type) = 0;
1216 else if (stride != 0)
1217 {
1218 /* Ensure that the type length is always positive, even in the
1219 case where (for example in Fortran) we have a negative
1220 stride. It is possible to have a single element array with a
1221 negative stride in Fortran (this doesn't mean anything
1222 special, it's still just a single element array) so do
1223 consider that case when touching this code. */
1224 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1225 TYPE_LENGTH (type)
1226 = ((std::abs (stride) * element_count) + 7) / 8;
1227 }
1228 else
1229 TYPE_LENGTH (type) =
1230 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1231
1232 return true;
1233 }
1234
1235 return false;
1236 }
1237
1238 /* Create an array type using either a blank type supplied in
1239 RESULT_TYPE, or creating a new type, inheriting the objfile from
1240 RANGE_TYPE.
1241
1242 Elements will be of type ELEMENT_TYPE, the indices will be of type
1243 RANGE_TYPE.
1244
1245 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1246 This byte stride property is added to the resulting array type
1247 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1248 argument can only be used to create types that are objfile-owned
1249 (see add_dyn_prop), meaning that either this function must be called
1250 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1251
1252 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1253 If BIT_STRIDE is not zero, build a packed array type whose element
1254 size is BIT_STRIDE. Otherwise, ignore this parameter.
1255
1256 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1257 sure it is TYPE_CODE_UNDEF before we bash it into an array
1258 type? */
1259
1260 struct type *
1261 create_array_type_with_stride (struct type *result_type,
1262 struct type *element_type,
1263 struct type *range_type,
1264 struct dynamic_prop *byte_stride_prop,
1265 unsigned int bit_stride)
1266 {
1267 if (byte_stride_prop != NULL
1268 && byte_stride_prop->kind == PROP_CONST)
1269 {
1270 /* The byte stride is actually not dynamic. Pretend we were
1271 called with bit_stride set instead of byte_stride_prop.
1272 This will give us the same result type, while avoiding
1273 the need to handle this as a special case. */
1274 bit_stride = byte_stride_prop->data.const_val * 8;
1275 byte_stride_prop = NULL;
1276 }
1277
1278 if (result_type == NULL)
1279 result_type = alloc_type_copy (range_type);
1280
1281 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1282 TYPE_TARGET_TYPE (result_type) = element_type;
1283
1284 TYPE_NFIELDS (result_type) = 1;
1285 TYPE_FIELDS (result_type) =
1286 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1287 TYPE_INDEX_TYPE (result_type) = range_type;
1288 if (byte_stride_prop != NULL)
1289 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1290 else if (bit_stride > 0)
1291 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1292
1293 if (!update_static_array_size (result_type))
1294 {
1295 /* This type is dynamic and its length needs to be computed
1296 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1297 undefined by setting it to zero. Although we are not expected
1298 to trust TYPE_LENGTH in this case, setting the size to zero
1299 allows us to avoid allocating objects of random sizes in case
1300 we accidently do. */
1301 TYPE_LENGTH (result_type) = 0;
1302 }
1303
1304 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1305 if (TYPE_LENGTH (result_type) == 0)
1306 TYPE_TARGET_STUB (result_type) = 1;
1307
1308 return result_type;
1309 }
1310
1311 /* Same as create_array_type_with_stride but with no bit_stride
1312 (BIT_STRIDE = 0), thus building an unpacked array. */
1313
1314 struct type *
1315 create_array_type (struct type *result_type,
1316 struct type *element_type,
1317 struct type *range_type)
1318 {
1319 return create_array_type_with_stride (result_type, element_type,
1320 range_type, NULL, 0);
1321 }
1322
1323 struct type *
1324 lookup_array_range_type (struct type *element_type,
1325 LONGEST low_bound, LONGEST high_bound)
1326 {
1327 struct type *index_type;
1328 struct type *range_type;
1329
1330 if (TYPE_OBJFILE_OWNED (element_type))
1331 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1332 else
1333 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1334 range_type = create_static_range_type (NULL, index_type,
1335 low_bound, high_bound);
1336
1337 return create_array_type (NULL, element_type, range_type);
1338 }
1339
1340 /* Create a string type using either a blank type supplied in
1341 RESULT_TYPE, or creating a new type. String types are similar
1342 enough to array of char types that we can use create_array_type to
1343 build the basic type and then bash it into a string type.
1344
1345 For fixed length strings, the range type contains 0 as the lower
1346 bound and the length of the string minus one as the upper bound.
1347
1348 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1349 sure it is TYPE_CODE_UNDEF before we bash it into a string
1350 type? */
1351
1352 struct type *
1353 create_string_type (struct type *result_type,
1354 struct type *string_char_type,
1355 struct type *range_type)
1356 {
1357 result_type = create_array_type (result_type,
1358 string_char_type,
1359 range_type);
1360 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1361 return result_type;
1362 }
1363
1364 struct type *
1365 lookup_string_range_type (struct type *string_char_type,
1366 LONGEST low_bound, LONGEST high_bound)
1367 {
1368 struct type *result_type;
1369
1370 result_type = lookup_array_range_type (string_char_type,
1371 low_bound, high_bound);
1372 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1373 return result_type;
1374 }
1375
1376 struct type *
1377 create_set_type (struct type *result_type, struct type *domain_type)
1378 {
1379 if (result_type == NULL)
1380 result_type = alloc_type_copy (domain_type);
1381
1382 TYPE_CODE (result_type) = TYPE_CODE_SET;
1383 TYPE_NFIELDS (result_type) = 1;
1384 TYPE_FIELDS (result_type)
1385 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1386
1387 if (!TYPE_STUB (domain_type))
1388 {
1389 LONGEST low_bound, high_bound, bit_length;
1390
1391 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1392 low_bound = high_bound = 0;
1393 bit_length = high_bound - low_bound + 1;
1394 TYPE_LENGTH (result_type)
1395 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1396 if (low_bound >= 0)
1397 TYPE_UNSIGNED (result_type) = 1;
1398 }
1399 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1400
1401 return result_type;
1402 }
1403
1404 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1405 and any array types nested inside it. */
1406
1407 void
1408 make_vector_type (struct type *array_type)
1409 {
1410 struct type *inner_array, *elt_type;
1411 int flags;
1412
1413 /* Find the innermost array type, in case the array is
1414 multi-dimensional. */
1415 inner_array = array_type;
1416 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1417 inner_array = TYPE_TARGET_TYPE (inner_array);
1418
1419 elt_type = TYPE_TARGET_TYPE (inner_array);
1420 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1421 {
1422 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1423 elt_type = make_qualified_type (elt_type, flags, NULL);
1424 TYPE_TARGET_TYPE (inner_array) = elt_type;
1425 }
1426
1427 TYPE_VECTOR (array_type) = 1;
1428 }
1429
1430 struct type *
1431 init_vector_type (struct type *elt_type, int n)
1432 {
1433 struct type *array_type;
1434
1435 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1436 make_vector_type (array_type);
1437 return array_type;
1438 }
1439
1440 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1441 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1442 confusing. "self" is a common enough replacement for "this".
1443 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1444 TYPE_CODE_METHOD. */
1445
1446 struct type *
1447 internal_type_self_type (struct type *type)
1448 {
1449 switch (TYPE_CODE (type))
1450 {
1451 case TYPE_CODE_METHODPTR:
1452 case TYPE_CODE_MEMBERPTR:
1453 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1454 return NULL;
1455 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1456 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1457 case TYPE_CODE_METHOD:
1458 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1459 return NULL;
1460 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1461 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1462 default:
1463 gdb_assert_not_reached ("bad type");
1464 }
1465 }
1466
1467 /* Set the type of the class that TYPE belongs to.
1468 In c++ this is the class of "this".
1469 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1470 TYPE_CODE_METHOD. */
1471
1472 void
1473 set_type_self_type (struct type *type, struct type *self_type)
1474 {
1475 switch (TYPE_CODE (type))
1476 {
1477 case TYPE_CODE_METHODPTR:
1478 case TYPE_CODE_MEMBERPTR:
1479 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1480 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1481 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1482 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1483 break;
1484 case TYPE_CODE_METHOD:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 INIT_FUNC_SPECIFIC (type);
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1488 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1489 break;
1490 default:
1491 gdb_assert_not_reached ("bad type");
1492 }
1493 }
1494
1495 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1496 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1497 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1498 TYPE doesn't include the offset (that's the value of the MEMBER
1499 itself), but does include the structure type into which it points
1500 (for some reason).
1501
1502 When "smashing" the type, we preserve the objfile that the old type
1503 pointed to, since we aren't changing where the type is actually
1504 allocated. */
1505
1506 void
1507 smash_to_memberptr_type (struct type *type, struct type *self_type,
1508 struct type *to_type)
1509 {
1510 smash_type (type);
1511 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1512 TYPE_TARGET_TYPE (type) = to_type;
1513 set_type_self_type (type, self_type);
1514 /* Assume that a data member pointer is the same size as a normal
1515 pointer. */
1516 TYPE_LENGTH (type)
1517 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1518 }
1519
1520 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1521
1522 When "smashing" the type, we preserve the objfile that the old type
1523 pointed to, since we aren't changing where the type is actually
1524 allocated. */
1525
1526 void
1527 smash_to_methodptr_type (struct type *type, struct type *to_type)
1528 {
1529 smash_type (type);
1530 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1531 TYPE_TARGET_TYPE (type) = to_type;
1532 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1533 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1534 }
1535
1536 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1537 METHOD just means `function that gets an extra "this" argument'.
1538
1539 When "smashing" the type, we preserve the objfile that the old type
1540 pointed to, since we aren't changing where the type is actually
1541 allocated. */
1542
1543 void
1544 smash_to_method_type (struct type *type, struct type *self_type,
1545 struct type *to_type, struct field *args,
1546 int nargs, int varargs)
1547 {
1548 smash_type (type);
1549 TYPE_CODE (type) = TYPE_CODE_METHOD;
1550 TYPE_TARGET_TYPE (type) = to_type;
1551 set_type_self_type (type, self_type);
1552 TYPE_FIELDS (type) = args;
1553 TYPE_NFIELDS (type) = nargs;
1554 if (varargs)
1555 TYPE_VARARGS (type) = 1;
1556 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1557 }
1558
1559 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1560 Since GCC PR debug/47510 DWARF provides associated information to detect the
1561 anonymous class linkage name from its typedef.
1562
1563 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1564 apply it itself. */
1565
1566 const char *
1567 type_name_or_error (struct type *type)
1568 {
1569 struct type *saved_type = type;
1570 const char *name;
1571 struct objfile *objfile;
1572
1573 type = check_typedef (type);
1574
1575 name = TYPE_NAME (type);
1576 if (name != NULL)
1577 return name;
1578
1579 name = TYPE_NAME (saved_type);
1580 objfile = TYPE_OBJFILE (saved_type);
1581 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1582 name ? name : "<anonymous>",
1583 objfile ? objfile_name (objfile) : "<arch>");
1584 }
1585
1586 /* Lookup a typedef or primitive type named NAME, visible in lexical
1587 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1588 suitably defined. */
1589
1590 struct type *
1591 lookup_typename (const struct language_defn *language,
1592 const char *name,
1593 const struct block *block, int noerr)
1594 {
1595 struct symbol *sym;
1596
1597 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1598 language->la_language, NULL).symbol;
1599 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1600 return SYMBOL_TYPE (sym);
1601
1602 if (noerr)
1603 return NULL;
1604 error (_("No type named %s."), name);
1605 }
1606
1607 struct type *
1608 lookup_unsigned_typename (const struct language_defn *language,
1609 const char *name)
1610 {
1611 char *uns = (char *) alloca (strlen (name) + 10);
1612
1613 strcpy (uns, "unsigned ");
1614 strcpy (uns + 9, name);
1615 return lookup_typename (language, uns, NULL, 0);
1616 }
1617
1618 struct type *
1619 lookup_signed_typename (const struct language_defn *language, const char *name)
1620 {
1621 struct type *t;
1622 char *uns = (char *) alloca (strlen (name) + 8);
1623
1624 strcpy (uns, "signed ");
1625 strcpy (uns + 7, name);
1626 t = lookup_typename (language, uns, NULL, 1);
1627 /* If we don't find "signed FOO" just try again with plain "FOO". */
1628 if (t != NULL)
1629 return t;
1630 return lookup_typename (language, name, NULL, 0);
1631 }
1632
1633 /* Lookup a structure type named "struct NAME",
1634 visible in lexical block BLOCK. */
1635
1636 struct type *
1637 lookup_struct (const char *name, const struct block *block)
1638 {
1639 struct symbol *sym;
1640
1641 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1642
1643 if (sym == NULL)
1644 {
1645 error (_("No struct type named %s."), name);
1646 }
1647 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1648 {
1649 error (_("This context has class, union or enum %s, not a struct."),
1650 name);
1651 }
1652 return (SYMBOL_TYPE (sym));
1653 }
1654
1655 /* Lookup a union type named "union NAME",
1656 visible in lexical block BLOCK. */
1657
1658 struct type *
1659 lookup_union (const char *name, const struct block *block)
1660 {
1661 struct symbol *sym;
1662 struct type *t;
1663
1664 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1665
1666 if (sym == NULL)
1667 error (_("No union type named %s."), name);
1668
1669 t = SYMBOL_TYPE (sym);
1670
1671 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1672 return t;
1673
1674 /* If we get here, it's not a union. */
1675 error (_("This context has class, struct or enum %s, not a union."),
1676 name);
1677 }
1678
1679 /* Lookup an enum type named "enum NAME",
1680 visible in lexical block BLOCK. */
1681
1682 struct type *
1683 lookup_enum (const char *name, const struct block *block)
1684 {
1685 struct symbol *sym;
1686
1687 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1688 if (sym == NULL)
1689 {
1690 error (_("No enum type named %s."), name);
1691 }
1692 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1693 {
1694 error (_("This context has class, struct or union %s, not an enum."),
1695 name);
1696 }
1697 return (SYMBOL_TYPE (sym));
1698 }
1699
1700 /* Lookup a template type named "template NAME<TYPE>",
1701 visible in lexical block BLOCK. */
1702
1703 struct type *
1704 lookup_template_type (const char *name, struct type *type,
1705 const struct block *block)
1706 {
1707 struct symbol *sym;
1708 char *nam = (char *)
1709 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1710
1711 strcpy (nam, name);
1712 strcat (nam, "<");
1713 strcat (nam, TYPE_NAME (type));
1714 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1715
1716 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1717
1718 if (sym == NULL)
1719 {
1720 error (_("No template type named %s."), name);
1721 }
1722 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1723 {
1724 error (_("This context has class, union or enum %s, not a struct."),
1725 name);
1726 }
1727 return (SYMBOL_TYPE (sym));
1728 }
1729
1730 /* See gdbtypes.h. */
1731
1732 struct_elt
1733 lookup_struct_elt (struct type *type, const char *name, int noerr)
1734 {
1735 int i;
1736
1737 for (;;)
1738 {
1739 type = check_typedef (type);
1740 if (TYPE_CODE (type) != TYPE_CODE_PTR
1741 && TYPE_CODE (type) != TYPE_CODE_REF)
1742 break;
1743 type = TYPE_TARGET_TYPE (type);
1744 }
1745
1746 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1747 && TYPE_CODE (type) != TYPE_CODE_UNION)
1748 {
1749 std::string type_name = type_to_string (type);
1750 error (_("Type %s is not a structure or union type."),
1751 type_name.c_str ());
1752 }
1753
1754 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1755 {
1756 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1757
1758 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1759 {
1760 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1761 }
1762 else if (!t_field_name || *t_field_name == '\0')
1763 {
1764 struct_elt elt
1765 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1766 if (elt.field != NULL)
1767 {
1768 elt.offset += TYPE_FIELD_BITPOS (type, i);
1769 return elt;
1770 }
1771 }
1772 }
1773
1774 /* OK, it's not in this class. Recursively check the baseclasses. */
1775 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1776 {
1777 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1778 if (elt.field != NULL)
1779 return elt;
1780 }
1781
1782 if (noerr)
1783 return {nullptr, 0};
1784
1785 std::string type_name = type_to_string (type);
1786 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1787 }
1788
1789 /* See gdbtypes.h. */
1790
1791 struct type *
1792 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1793 {
1794 struct_elt elt = lookup_struct_elt (type, name, noerr);
1795 if (elt.field != NULL)
1796 return FIELD_TYPE (*elt.field);
1797 else
1798 return NULL;
1799 }
1800
1801 /* Store in *MAX the largest number representable by unsigned integer type
1802 TYPE. */
1803
1804 void
1805 get_unsigned_type_max (struct type *type, ULONGEST *max)
1806 {
1807 unsigned int n;
1808
1809 type = check_typedef (type);
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1811 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1812
1813 /* Written this way to avoid overflow. */
1814 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1815 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1816 }
1817
1818 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1819 signed integer type TYPE. */
1820
1821 void
1822 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1823 {
1824 unsigned int n;
1825
1826 type = check_typedef (type);
1827 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1828 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1829
1830 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1831 *min = -((ULONGEST) 1 << (n - 1));
1832 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1833 }
1834
1835 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1836 cplus_stuff.vptr_fieldno.
1837
1838 cplus_stuff is initialized to cplus_struct_default which does not
1839 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1840 designated initializers). We cope with that here. */
1841
1842 int
1843 internal_type_vptr_fieldno (struct type *type)
1844 {
1845 type = check_typedef (type);
1846 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1847 || TYPE_CODE (type) == TYPE_CODE_UNION);
1848 if (!HAVE_CPLUS_STRUCT (type))
1849 return -1;
1850 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1851 }
1852
1853 /* Set the value of cplus_stuff.vptr_fieldno. */
1854
1855 void
1856 set_type_vptr_fieldno (struct type *type, int fieldno)
1857 {
1858 type = check_typedef (type);
1859 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1860 || TYPE_CODE (type) == TYPE_CODE_UNION);
1861 if (!HAVE_CPLUS_STRUCT (type))
1862 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1863 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1864 }
1865
1866 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1867 cplus_stuff.vptr_basetype. */
1868
1869 struct type *
1870 internal_type_vptr_basetype (struct type *type)
1871 {
1872 type = check_typedef (type);
1873 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1874 || TYPE_CODE (type) == TYPE_CODE_UNION);
1875 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1876 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1877 }
1878
1879 /* Set the value of cplus_stuff.vptr_basetype. */
1880
1881 void
1882 set_type_vptr_basetype (struct type *type, struct type *basetype)
1883 {
1884 type = check_typedef (type);
1885 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1886 || TYPE_CODE (type) == TYPE_CODE_UNION);
1887 if (!HAVE_CPLUS_STRUCT (type))
1888 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1889 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1890 }
1891
1892 /* Lookup the vptr basetype/fieldno values for TYPE.
1893 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1894 vptr_fieldno. Also, if found and basetype is from the same objfile,
1895 cache the results.
1896 If not found, return -1 and ignore BASETYPEP.
1897 Callers should be aware that in some cases (for example,
1898 the type or one of its baseclasses is a stub type and we are
1899 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1900 this function will not be able to find the
1901 virtual function table pointer, and vptr_fieldno will remain -1 and
1902 vptr_basetype will remain NULL or incomplete. */
1903
1904 int
1905 get_vptr_fieldno (struct type *type, struct type **basetypep)
1906 {
1907 type = check_typedef (type);
1908
1909 if (TYPE_VPTR_FIELDNO (type) < 0)
1910 {
1911 int i;
1912
1913 /* We must start at zero in case the first (and only) baseclass
1914 is virtual (and hence we cannot share the table pointer). */
1915 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1916 {
1917 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1918 int fieldno;
1919 struct type *basetype;
1920
1921 fieldno = get_vptr_fieldno (baseclass, &basetype);
1922 if (fieldno >= 0)
1923 {
1924 /* If the type comes from a different objfile we can't cache
1925 it, it may have a different lifetime. PR 2384 */
1926 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1927 {
1928 set_type_vptr_fieldno (type, fieldno);
1929 set_type_vptr_basetype (type, basetype);
1930 }
1931 if (basetypep)
1932 *basetypep = basetype;
1933 return fieldno;
1934 }
1935 }
1936
1937 /* Not found. */
1938 return -1;
1939 }
1940 else
1941 {
1942 if (basetypep)
1943 *basetypep = TYPE_VPTR_BASETYPE (type);
1944 return TYPE_VPTR_FIELDNO (type);
1945 }
1946 }
1947
1948 static void
1949 stub_noname_complaint (void)
1950 {
1951 complaint (_("stub type has NULL name"));
1952 }
1953
1954 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1955 attached to it, and that property has a non-constant value. */
1956
1957 static int
1958 array_type_has_dynamic_stride (struct type *type)
1959 {
1960 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1961
1962 return (prop != NULL && prop->kind != PROP_CONST);
1963 }
1964
1965 /* Worker for is_dynamic_type. */
1966
1967 static int
1968 is_dynamic_type_internal (struct type *type, int top_level)
1969 {
1970 type = check_typedef (type);
1971
1972 /* We only want to recognize references at the outermost level. */
1973 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1974 type = check_typedef (TYPE_TARGET_TYPE (type));
1975
1976 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1977 dynamic, even if the type itself is statically defined.
1978 From a user's point of view, this may appear counter-intuitive;
1979 but it makes sense in this context, because the point is to determine
1980 whether any part of the type needs to be resolved before it can
1981 be exploited. */
1982 if (TYPE_DATA_LOCATION (type) != NULL
1983 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1984 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1985 return 1;
1986
1987 if (TYPE_ASSOCIATED_PROP (type))
1988 return 1;
1989
1990 if (TYPE_ALLOCATED_PROP (type))
1991 return 1;
1992
1993 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
1994 if (prop != nullptr && prop->kind != PROP_TYPE)
1995 return 1;
1996
1997 if (TYPE_HAS_DYNAMIC_LENGTH (type))
1998 return 1;
1999
2000 switch (TYPE_CODE (type))
2001 {
2002 case TYPE_CODE_RANGE:
2003 {
2004 /* A range type is obviously dynamic if it has at least one
2005 dynamic bound. But also consider the range type to be
2006 dynamic when its subtype is dynamic, even if the bounds
2007 of the range type are static. It allows us to assume that
2008 the subtype of a static range type is also static. */
2009 return (!has_static_range (TYPE_RANGE_DATA (type))
2010 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2011 }
2012
2013 case TYPE_CODE_STRING:
2014 /* Strings are very much like an array of characters, and can be
2015 treated as one here. */
2016 case TYPE_CODE_ARRAY:
2017 {
2018 gdb_assert (TYPE_NFIELDS (type) == 1);
2019
2020 /* The array is dynamic if either the bounds are dynamic... */
2021 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
2022 return 1;
2023 /* ... or the elements it contains have a dynamic contents... */
2024 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2025 return 1;
2026 /* ... or if it has a dynamic stride... */
2027 if (array_type_has_dynamic_stride (type))
2028 return 1;
2029 return 0;
2030 }
2031
2032 case TYPE_CODE_STRUCT:
2033 case TYPE_CODE_UNION:
2034 {
2035 int i;
2036
2037 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2038
2039 for (i = 0; i < TYPE_NFIELDS (type); ++i)
2040 {
2041 /* Static fields can be ignored here. */
2042 if (field_is_static (&TYPE_FIELD (type, i)))
2043 continue;
2044 /* If the field has dynamic type, then so does TYPE. */
2045 if (is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2046 return 1;
2047 /* If the field is at a fixed offset, then it is not
2048 dynamic. */
2049 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2050 continue;
2051 /* Do not consider C++ virtual base types to be dynamic
2052 due to the field's offset being dynamic; these are
2053 handled via other means. */
2054 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2055 continue;
2056 return 1;
2057 }
2058 }
2059 break;
2060 }
2061
2062 return 0;
2063 }
2064
2065 /* See gdbtypes.h. */
2066
2067 int
2068 is_dynamic_type (struct type *type)
2069 {
2070 return is_dynamic_type_internal (type, 1);
2071 }
2072
2073 static struct type *resolve_dynamic_type_internal
2074 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2075
2076 /* Given a dynamic range type (dyn_range_type) and a stack of
2077 struct property_addr_info elements, return a static version
2078 of that type. */
2079
2080 static struct type *
2081 resolve_dynamic_range (struct type *dyn_range_type,
2082 struct property_addr_info *addr_stack)
2083 {
2084 CORE_ADDR value;
2085 struct type *static_range_type, *static_target_type;
2086 const struct dynamic_prop *prop;
2087 struct dynamic_prop low_bound, high_bound, stride;
2088
2089 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2090
2091 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2092 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2093 {
2094 low_bound.kind = PROP_CONST;
2095 low_bound.data.const_val = value;
2096 }
2097 else
2098 {
2099 low_bound.kind = PROP_UNDEFINED;
2100 low_bound.data.const_val = 0;
2101 }
2102
2103 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2104 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2105 {
2106 high_bound.kind = PROP_CONST;
2107 high_bound.data.const_val = value;
2108
2109 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2110 high_bound.data.const_val
2111 = low_bound.data.const_val + high_bound.data.const_val - 1;
2112 }
2113 else
2114 {
2115 high_bound.kind = PROP_UNDEFINED;
2116 high_bound.data.const_val = 0;
2117 }
2118
2119 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2120 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2121 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2122 {
2123 stride.kind = PROP_CONST;
2124 stride.data.const_val = value;
2125
2126 /* If we have a bit stride that is not an exact number of bytes then
2127 I really don't think this is going to work with current GDB, the
2128 array indexing code in GDB seems to be pretty heavily tied to byte
2129 offsets right now. Assuming 8 bits in a byte. */
2130 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2131 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2132 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2133 error (_("bit strides that are not a multiple of the byte size "
2134 "are currently not supported"));
2135 }
2136 else
2137 {
2138 stride.kind = PROP_UNDEFINED;
2139 stride.data.const_val = 0;
2140 byte_stride_p = true;
2141 }
2142
2143 static_target_type
2144 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2145 addr_stack, 0);
2146 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2147 static_range_type = create_range_type_with_stride
2148 (copy_type (dyn_range_type), static_target_type,
2149 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2150 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2151 return static_range_type;
2152 }
2153
2154 /* Resolves dynamic bound values of an array or string type TYPE to static
2155 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2156 needed during the dynamic resolution. */
2157
2158 static struct type *
2159 resolve_dynamic_array_or_string (struct type *type,
2160 struct property_addr_info *addr_stack)
2161 {
2162 CORE_ADDR value;
2163 struct type *elt_type;
2164 struct type *range_type;
2165 struct type *ary_dim;
2166 struct dynamic_prop *prop;
2167 unsigned int bit_stride = 0;
2168
2169 /* For dynamic type resolution strings can be treated like arrays of
2170 characters. */
2171 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2172 || TYPE_CODE (type) == TYPE_CODE_STRING);
2173
2174 type = copy_type (type);
2175
2176 elt_type = type;
2177 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2178 range_type = resolve_dynamic_range (range_type, addr_stack);
2179
2180 /* Resolve allocated/associated here before creating a new array type, which
2181 will update the length of the array accordingly. */
2182 prop = TYPE_ALLOCATED_PROP (type);
2183 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2184 {
2185 TYPE_DYN_PROP_ADDR (prop) = value;
2186 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2187 }
2188 prop = TYPE_ASSOCIATED_PROP (type);
2189 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2190 {
2191 TYPE_DYN_PROP_ADDR (prop) = value;
2192 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2193 }
2194
2195 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2196
2197 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2198 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2199 else
2200 elt_type = TYPE_TARGET_TYPE (type);
2201
2202 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2203 if (prop != NULL)
2204 {
2205 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2206 {
2207 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2208 bit_stride = (unsigned int) (value * 8);
2209 }
2210 else
2211 {
2212 /* Could be a bug in our code, but it could also happen
2213 if the DWARF info is not correct. Issue a warning,
2214 and assume no byte/bit stride (leave bit_stride = 0). */
2215 warning (_("cannot determine array stride for type %s"),
2216 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2217 }
2218 }
2219 else
2220 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2221
2222 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2223 bit_stride);
2224 }
2225
2226 /* Resolve dynamic bounds of members of the union TYPE to static
2227 bounds. ADDR_STACK is a stack of struct property_addr_info
2228 to be used if needed during the dynamic resolution. */
2229
2230 static struct type *
2231 resolve_dynamic_union (struct type *type,
2232 struct property_addr_info *addr_stack)
2233 {
2234 struct type *resolved_type;
2235 int i;
2236 unsigned int max_len = 0;
2237
2238 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2239
2240 resolved_type = copy_type (type);
2241 TYPE_FIELDS (resolved_type)
2242 = (struct field *) TYPE_ALLOC (resolved_type,
2243 TYPE_NFIELDS (resolved_type)
2244 * sizeof (struct field));
2245 memcpy (TYPE_FIELDS (resolved_type),
2246 TYPE_FIELDS (type),
2247 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2248 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2249 {
2250 struct type *t;
2251
2252 if (field_is_static (&TYPE_FIELD (type, i)))
2253 continue;
2254
2255 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2256 addr_stack, 0);
2257 TYPE_FIELD_TYPE (resolved_type, i) = t;
2258 if (TYPE_LENGTH (t) > max_len)
2259 max_len = TYPE_LENGTH (t);
2260 }
2261
2262 TYPE_LENGTH (resolved_type) = max_len;
2263 return resolved_type;
2264 }
2265
2266 /* See gdbtypes.h. */
2267
2268 bool
2269 variant::matches (ULONGEST value, bool is_unsigned) const
2270 {
2271 for (const discriminant_range &range : discriminants)
2272 if (range.contains (value, is_unsigned))
2273 return true;
2274 return false;
2275 }
2276
2277 static void
2278 compute_variant_fields_inner (struct type *type,
2279 struct property_addr_info *addr_stack,
2280 const variant_part &part,
2281 std::vector<bool> &flags);
2282
2283 /* A helper function to determine which variant fields will be active.
2284 This handles both the variant's direct fields, and any variant
2285 parts embedded in this variant. TYPE is the type we're examining.
2286 ADDR_STACK holds information about the concrete object. VARIANT is
2287 the current variant to be handled. FLAGS is where the results are
2288 stored -- this function sets the Nth element in FLAGS if the
2289 corresponding field is enabled. ENABLED is whether this variant is
2290 enabled or not. */
2291
2292 static void
2293 compute_variant_fields_recurse (struct type *type,
2294 struct property_addr_info *addr_stack,
2295 const variant &variant,
2296 std::vector<bool> &flags,
2297 bool enabled)
2298 {
2299 for (int field = variant.first_field; field < variant.last_field; ++field)
2300 flags[field] = enabled;
2301
2302 for (const variant_part &new_part : variant.parts)
2303 {
2304 if (enabled)
2305 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2306 else
2307 {
2308 for (const auto &sub_variant : new_part.variants)
2309 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2310 flags, enabled);
2311 }
2312 }
2313 }
2314
2315 /* A helper function to determine which variant fields will be active.
2316 This evaluates the discriminant, decides which variant (if any) is
2317 active, and then updates FLAGS to reflect which fields should be
2318 available. TYPE is the type we're examining. ADDR_STACK holds
2319 information about the concrete object. VARIANT is the current
2320 variant to be handled. FLAGS is where the results are stored --
2321 this function sets the Nth element in FLAGS if the corresponding
2322 field is enabled. */
2323
2324 static void
2325 compute_variant_fields_inner (struct type *type,
2326 struct property_addr_info *addr_stack,
2327 const variant_part &part,
2328 std::vector<bool> &flags)
2329 {
2330 /* Evaluate the discriminant. */
2331 gdb::optional<ULONGEST> discr_value;
2332 if (part.discriminant_index != -1)
2333 {
2334 int idx = part.discriminant_index;
2335
2336 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2337 error (_("Cannot determine struct field location"
2338 " (invalid location kind)"));
2339
2340 if (addr_stack->valaddr.data () != NULL)
2341 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2342 idx);
2343 else
2344 {
2345 CORE_ADDR addr = (addr_stack->addr
2346 + (TYPE_FIELD_BITPOS (type, idx)
2347 / TARGET_CHAR_BIT));
2348
2349 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2350 LONGEST size = bitsize / 8;
2351 if (size == 0)
2352 size = TYPE_LENGTH (TYPE_FIELD_TYPE (type, idx));
2353
2354 gdb_byte bits[sizeof (ULONGEST)];
2355 read_memory (addr, bits, size);
2356
2357 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2358 % TARGET_CHAR_BIT);
2359
2360 discr_value = unpack_bits_as_long (TYPE_FIELD_TYPE (type, idx),
2361 bits, bitpos, bitsize);
2362 }
2363 }
2364
2365 /* Go through each variant and see which applies. */
2366 const variant *default_variant = nullptr;
2367 const variant *applied_variant = nullptr;
2368 for (const auto &variant : part.variants)
2369 {
2370 if (variant.is_default ())
2371 default_variant = &variant;
2372 else if (discr_value.has_value ()
2373 && variant.matches (*discr_value, part.is_unsigned))
2374 {
2375 applied_variant = &variant;
2376 break;
2377 }
2378 }
2379 if (applied_variant == nullptr)
2380 applied_variant = default_variant;
2381
2382 for (const auto &variant : part.variants)
2383 compute_variant_fields_recurse (type, addr_stack, variant,
2384 flags, applied_variant == &variant);
2385 }
2386
2387 /* Determine which variant fields are available in TYPE. The enabled
2388 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2389 about the concrete object. PARTS describes the top-level variant
2390 parts for this type. */
2391
2392 static void
2393 compute_variant_fields (struct type *type,
2394 struct type *resolved_type,
2395 struct property_addr_info *addr_stack,
2396 const gdb::array_view<variant_part> &parts)
2397 {
2398 /* Assume all fields are included by default. */
2399 std::vector<bool> flags (TYPE_NFIELDS (resolved_type), true);
2400
2401 /* Now disable fields based on the variants that control them. */
2402 for (const auto &part : parts)
2403 compute_variant_fields_inner (type, addr_stack, part, flags);
2404
2405 TYPE_NFIELDS (resolved_type) = std::count (flags.begin (), flags.end (),
2406 true);
2407 TYPE_FIELDS (resolved_type)
2408 = (struct field *) TYPE_ALLOC (resolved_type,
2409 TYPE_NFIELDS (resolved_type)
2410 * sizeof (struct field));
2411 int out = 0;
2412 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
2413 {
2414 if (!flags[i])
2415 continue;
2416
2417 TYPE_FIELD (resolved_type, out) = TYPE_FIELD (type, i);
2418 ++out;
2419 }
2420 }
2421
2422 /* Resolve dynamic bounds of members of the struct TYPE to static
2423 bounds. ADDR_STACK is a stack of struct property_addr_info to
2424 be used if needed during the dynamic resolution. */
2425
2426 static struct type *
2427 resolve_dynamic_struct (struct type *type,
2428 struct property_addr_info *addr_stack)
2429 {
2430 struct type *resolved_type;
2431 int i;
2432 unsigned resolved_type_bit_length = 0;
2433
2434 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2435 gdb_assert (TYPE_NFIELDS (type) > 0);
2436
2437 resolved_type = copy_type (type);
2438
2439 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2440 if (variant_prop != nullptr && variant_prop->kind == PROP_VARIANT_PARTS)
2441 {
2442 compute_variant_fields (type, resolved_type, addr_stack,
2443 *variant_prop->data.variant_parts);
2444 /* We want to leave the property attached, so that the Rust code
2445 can tell whether the type was originally an enum. */
2446 variant_prop->kind = PROP_TYPE;
2447 variant_prop->data.original_type = type;
2448 }
2449 else
2450 {
2451 TYPE_FIELDS (resolved_type)
2452 = (struct field *) TYPE_ALLOC (resolved_type,
2453 TYPE_NFIELDS (resolved_type)
2454 * sizeof (struct field));
2455 memcpy (TYPE_FIELDS (resolved_type),
2456 TYPE_FIELDS (type),
2457 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2458 }
2459
2460 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2461 {
2462 unsigned new_bit_length;
2463 struct property_addr_info pinfo;
2464
2465 if (field_is_static (&TYPE_FIELD (resolved_type, i)))
2466 continue;
2467
2468 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2469 {
2470 struct dwarf2_property_baton baton;
2471 baton.property_type
2472 = lookup_pointer_type (TYPE_FIELD_TYPE (resolved_type, i));
2473 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2474
2475 struct dynamic_prop prop;
2476 prop.kind = PROP_LOCEXPR;
2477 prop.data.baton = &baton;
2478
2479 CORE_ADDR addr;
2480 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2481 true))
2482 SET_FIELD_BITPOS (TYPE_FIELD (resolved_type, i),
2483 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2484 }
2485
2486 /* As we know this field is not a static field, the field's
2487 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2488 this is the case, but only trigger a simple error rather
2489 than an internal error if that fails. While failing
2490 that verification indicates a bug in our code, the error
2491 is not severe enough to suggest to the user he stops
2492 his debugging session because of it. */
2493 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2494 error (_("Cannot determine struct field location"
2495 " (invalid location kind)"));
2496
2497 pinfo.type = check_typedef (TYPE_FIELD_TYPE (resolved_type, i));
2498 pinfo.valaddr = addr_stack->valaddr;
2499 pinfo.addr
2500 = (addr_stack->addr
2501 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2502 pinfo.next = addr_stack;
2503
2504 TYPE_FIELD_TYPE (resolved_type, i)
2505 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2506 &pinfo, 0);
2507 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2508 == FIELD_LOC_KIND_BITPOS);
2509
2510 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2511 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2512 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2513 else
2514 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2515 * TARGET_CHAR_BIT);
2516
2517 /* Normally, we would use the position and size of the last field
2518 to determine the size of the enclosing structure. But GCC seems
2519 to be encoding the position of some fields incorrectly when
2520 the struct contains a dynamic field that is not placed last.
2521 So we compute the struct size based on the field that has
2522 the highest position + size - probably the best we can do. */
2523 if (new_bit_length > resolved_type_bit_length)
2524 resolved_type_bit_length = new_bit_length;
2525 }
2526
2527 /* The length of a type won't change for fortran, but it does for C and Ada.
2528 For fortran the size of dynamic fields might change over time but not the
2529 type length of the structure. If we adapt it, we run into problems
2530 when calculating the element offset for arrays of structs. */
2531 if (current_language->la_language != language_fortran)
2532 TYPE_LENGTH (resolved_type)
2533 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2534
2535 /* The Ada language uses this field as a cache for static fixed types: reset
2536 it as RESOLVED_TYPE must have its own static fixed type. */
2537 TYPE_TARGET_TYPE (resolved_type) = NULL;
2538
2539 return resolved_type;
2540 }
2541
2542 /* Worker for resolved_dynamic_type. */
2543
2544 static struct type *
2545 resolve_dynamic_type_internal (struct type *type,
2546 struct property_addr_info *addr_stack,
2547 int top_level)
2548 {
2549 struct type *real_type = check_typedef (type);
2550 struct type *resolved_type = nullptr;
2551 struct dynamic_prop *prop;
2552 CORE_ADDR value;
2553
2554 if (!is_dynamic_type_internal (real_type, top_level))
2555 return type;
2556
2557 gdb::optional<CORE_ADDR> type_length;
2558 prop = TYPE_DYNAMIC_LENGTH (type);
2559 if (prop != NULL
2560 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2561 type_length = value;
2562
2563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2564 {
2565 resolved_type = copy_type (type);
2566 TYPE_TARGET_TYPE (resolved_type)
2567 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2568 top_level);
2569 }
2570 else
2571 {
2572 /* Before trying to resolve TYPE, make sure it is not a stub. */
2573 type = real_type;
2574
2575 switch (TYPE_CODE (type))
2576 {
2577 case TYPE_CODE_REF:
2578 {
2579 struct property_addr_info pinfo;
2580
2581 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2582 pinfo.valaddr = {};
2583 if (addr_stack->valaddr.data () != NULL)
2584 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2585 type);
2586 else
2587 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2588 pinfo.next = addr_stack;
2589
2590 resolved_type = copy_type (type);
2591 TYPE_TARGET_TYPE (resolved_type)
2592 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2593 &pinfo, top_level);
2594 break;
2595 }
2596
2597 case TYPE_CODE_STRING:
2598 /* Strings are very much like an array of characters, and can be
2599 treated as one here. */
2600 case TYPE_CODE_ARRAY:
2601 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2602 break;
2603
2604 case TYPE_CODE_RANGE:
2605 resolved_type = resolve_dynamic_range (type, addr_stack);
2606 break;
2607
2608 case TYPE_CODE_UNION:
2609 resolved_type = resolve_dynamic_union (type, addr_stack);
2610 break;
2611
2612 case TYPE_CODE_STRUCT:
2613 resolved_type = resolve_dynamic_struct (type, addr_stack);
2614 break;
2615 }
2616 }
2617
2618 if (resolved_type == nullptr)
2619 return type;
2620
2621 if (type_length.has_value ())
2622 {
2623 TYPE_LENGTH (resolved_type) = *type_length;
2624 remove_dyn_prop (DYN_PROP_BYTE_SIZE, resolved_type);
2625 }
2626
2627 /* Resolve data_location attribute. */
2628 prop = TYPE_DATA_LOCATION (resolved_type);
2629 if (prop != NULL
2630 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2631 {
2632 TYPE_DYN_PROP_ADDR (prop) = value;
2633 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2634 }
2635
2636 return resolved_type;
2637 }
2638
2639 /* See gdbtypes.h */
2640
2641 struct type *
2642 resolve_dynamic_type (struct type *type,
2643 gdb::array_view<const gdb_byte> valaddr,
2644 CORE_ADDR addr)
2645 {
2646 struct property_addr_info pinfo
2647 = {check_typedef (type), valaddr, addr, NULL};
2648
2649 return resolve_dynamic_type_internal (type, &pinfo, 1);
2650 }
2651
2652 /* See gdbtypes.h */
2653
2654 dynamic_prop *
2655 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2656 {
2657 dynamic_prop_list *node = TYPE_DYN_PROP_LIST (this);
2658
2659 while (node != NULL)
2660 {
2661 if (node->prop_kind == prop_kind)
2662 return &node->prop;
2663 node = node->next;
2664 }
2665 return NULL;
2666 }
2667
2668 /* See gdbtypes.h */
2669
2670 void
2671 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2672 struct type *type)
2673 {
2674 struct dynamic_prop_list *temp;
2675
2676 gdb_assert (TYPE_OBJFILE_OWNED (type));
2677
2678 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2679 struct dynamic_prop_list);
2680 temp->prop_kind = prop_kind;
2681 temp->prop = prop;
2682 temp->next = TYPE_DYN_PROP_LIST (type);
2683
2684 TYPE_DYN_PROP_LIST (type) = temp;
2685 }
2686
2687 /* Remove dynamic property from TYPE in case it exists. */
2688
2689 void
2690 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2691 struct type *type)
2692 {
2693 struct dynamic_prop_list *prev_node, *curr_node;
2694
2695 curr_node = TYPE_DYN_PROP_LIST (type);
2696 prev_node = NULL;
2697
2698 while (NULL != curr_node)
2699 {
2700 if (curr_node->prop_kind == prop_kind)
2701 {
2702 /* Update the linked list but don't free anything.
2703 The property was allocated on objstack and it is not known
2704 if we are on top of it. Nevertheless, everything is released
2705 when the complete objstack is freed. */
2706 if (NULL == prev_node)
2707 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2708 else
2709 prev_node->next = curr_node->next;
2710
2711 return;
2712 }
2713
2714 prev_node = curr_node;
2715 curr_node = curr_node->next;
2716 }
2717 }
2718
2719 /* Find the real type of TYPE. This function returns the real type,
2720 after removing all layers of typedefs, and completing opaque or stub
2721 types. Completion changes the TYPE argument, but stripping of
2722 typedefs does not.
2723
2724 Instance flags (e.g. const/volatile) are preserved as typedefs are
2725 stripped. If necessary a new qualified form of the underlying type
2726 is created.
2727
2728 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2729 not been computed and we're either in the middle of reading symbols, or
2730 there was no name for the typedef in the debug info.
2731
2732 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2733 QUITs in the symbol reading code can also throw.
2734 Thus this function can throw an exception.
2735
2736 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2737 the target type.
2738
2739 If this is a stubbed struct (i.e. declared as struct foo *), see if
2740 we can find a full definition in some other file. If so, copy this
2741 definition, so we can use it in future. There used to be a comment
2742 (but not any code) that if we don't find a full definition, we'd
2743 set a flag so we don't spend time in the future checking the same
2744 type. That would be a mistake, though--we might load in more
2745 symbols which contain a full definition for the type. */
2746
2747 struct type *
2748 check_typedef (struct type *type)
2749 {
2750 struct type *orig_type = type;
2751 /* While we're removing typedefs, we don't want to lose qualifiers.
2752 E.g., const/volatile. */
2753 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2754
2755 gdb_assert (type);
2756
2757 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2758 {
2759 if (!TYPE_TARGET_TYPE (type))
2760 {
2761 const char *name;
2762 struct symbol *sym;
2763
2764 /* It is dangerous to call lookup_symbol if we are currently
2765 reading a symtab. Infinite recursion is one danger. */
2766 if (currently_reading_symtab)
2767 return make_qualified_type (type, instance_flags, NULL);
2768
2769 name = TYPE_NAME (type);
2770 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2771 VAR_DOMAIN as appropriate? */
2772 if (name == NULL)
2773 {
2774 stub_noname_complaint ();
2775 return make_qualified_type (type, instance_flags, NULL);
2776 }
2777 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2778 if (sym)
2779 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2780 else /* TYPE_CODE_UNDEF */
2781 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2782 }
2783 type = TYPE_TARGET_TYPE (type);
2784
2785 /* Preserve the instance flags as we traverse down the typedef chain.
2786
2787 Handling address spaces/classes is nasty, what do we do if there's a
2788 conflict?
2789 E.g., what if an outer typedef marks the type as class_1 and an inner
2790 typedef marks the type as class_2?
2791 This is the wrong place to do such error checking. We leave it to
2792 the code that created the typedef in the first place to flag the
2793 error. We just pick the outer address space (akin to letting the
2794 outer cast in a chain of casting win), instead of assuming
2795 "it can't happen". */
2796 {
2797 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2798 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2799 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2800 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2801
2802 /* Treat code vs data spaces and address classes separately. */
2803 if ((instance_flags & ALL_SPACES) != 0)
2804 new_instance_flags &= ~ALL_SPACES;
2805 if ((instance_flags & ALL_CLASSES) != 0)
2806 new_instance_flags &= ~ALL_CLASSES;
2807
2808 instance_flags |= new_instance_flags;
2809 }
2810 }
2811
2812 /* If this is a struct/class/union with no fields, then check
2813 whether a full definition exists somewhere else. This is for
2814 systems where a type definition with no fields is issued for such
2815 types, instead of identifying them as stub types in the first
2816 place. */
2817
2818 if (TYPE_IS_OPAQUE (type)
2819 && opaque_type_resolution
2820 && !currently_reading_symtab)
2821 {
2822 const char *name = TYPE_NAME (type);
2823 struct type *newtype;
2824
2825 if (name == NULL)
2826 {
2827 stub_noname_complaint ();
2828 return make_qualified_type (type, instance_flags, NULL);
2829 }
2830 newtype = lookup_transparent_type (name);
2831
2832 if (newtype)
2833 {
2834 /* If the resolved type and the stub are in the same
2835 objfile, then replace the stub type with the real deal.
2836 But if they're in separate objfiles, leave the stub
2837 alone; we'll just look up the transparent type every time
2838 we call check_typedef. We can't create pointers between
2839 types allocated to different objfiles, since they may
2840 have different lifetimes. Trying to copy NEWTYPE over to
2841 TYPE's objfile is pointless, too, since you'll have to
2842 move over any other types NEWTYPE refers to, which could
2843 be an unbounded amount of stuff. */
2844 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2845 type = make_qualified_type (newtype,
2846 TYPE_INSTANCE_FLAGS (type),
2847 type);
2848 else
2849 type = newtype;
2850 }
2851 }
2852 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2853 types. */
2854 else if (TYPE_STUB (type) && !currently_reading_symtab)
2855 {
2856 const char *name = TYPE_NAME (type);
2857 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2858 as appropriate? */
2859 struct symbol *sym;
2860
2861 if (name == NULL)
2862 {
2863 stub_noname_complaint ();
2864 return make_qualified_type (type, instance_flags, NULL);
2865 }
2866 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2867 if (sym)
2868 {
2869 /* Same as above for opaque types, we can replace the stub
2870 with the complete type only if they are in the same
2871 objfile. */
2872 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2873 type = make_qualified_type (SYMBOL_TYPE (sym),
2874 TYPE_INSTANCE_FLAGS (type),
2875 type);
2876 else
2877 type = SYMBOL_TYPE (sym);
2878 }
2879 }
2880
2881 if (TYPE_TARGET_STUB (type))
2882 {
2883 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2884
2885 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2886 {
2887 /* Nothing we can do. */
2888 }
2889 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2890 {
2891 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2892 TYPE_TARGET_STUB (type) = 0;
2893 }
2894 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2895 && update_static_array_size (type))
2896 TYPE_TARGET_STUB (type) = 0;
2897 }
2898
2899 type = make_qualified_type (type, instance_flags, NULL);
2900
2901 /* Cache TYPE_LENGTH for future use. */
2902 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2903
2904 return type;
2905 }
2906
2907 /* Parse a type expression in the string [P..P+LENGTH). If an error
2908 occurs, silently return a void type. */
2909
2910 static struct type *
2911 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2912 {
2913 struct ui_file *saved_gdb_stderr;
2914 struct type *type = NULL; /* Initialize to keep gcc happy. */
2915
2916 /* Suppress error messages. */
2917 saved_gdb_stderr = gdb_stderr;
2918 gdb_stderr = &null_stream;
2919
2920 /* Call parse_and_eval_type() without fear of longjmp()s. */
2921 try
2922 {
2923 type = parse_and_eval_type (p, length);
2924 }
2925 catch (const gdb_exception_error &except)
2926 {
2927 type = builtin_type (gdbarch)->builtin_void;
2928 }
2929
2930 /* Stop suppressing error messages. */
2931 gdb_stderr = saved_gdb_stderr;
2932
2933 return type;
2934 }
2935
2936 /* Ugly hack to convert method stubs into method types.
2937
2938 He ain't kiddin'. This demangles the name of the method into a
2939 string including argument types, parses out each argument type,
2940 generates a string casting a zero to that type, evaluates the
2941 string, and stuffs the resulting type into an argtype vector!!!
2942 Then it knows the type of the whole function (including argument
2943 types for overloading), which info used to be in the stab's but was
2944 removed to hack back the space required for them. */
2945
2946 static void
2947 check_stub_method (struct type *type, int method_id, int signature_id)
2948 {
2949 struct gdbarch *gdbarch = get_type_arch (type);
2950 struct fn_field *f;
2951 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2952 char *demangled_name = gdb_demangle (mangled_name,
2953 DMGL_PARAMS | DMGL_ANSI);
2954 char *argtypetext, *p;
2955 int depth = 0, argcount = 1;
2956 struct field *argtypes;
2957 struct type *mtype;
2958
2959 /* Make sure we got back a function string that we can use. */
2960 if (demangled_name)
2961 p = strchr (demangled_name, '(');
2962 else
2963 p = NULL;
2964
2965 if (demangled_name == NULL || p == NULL)
2966 error (_("Internal: Cannot demangle mangled name `%s'."),
2967 mangled_name);
2968
2969 /* Now, read in the parameters that define this type. */
2970 p += 1;
2971 argtypetext = p;
2972 while (*p)
2973 {
2974 if (*p == '(' || *p == '<')
2975 {
2976 depth += 1;
2977 }
2978 else if (*p == ')' || *p == '>')
2979 {
2980 depth -= 1;
2981 }
2982 else if (*p == ',' && depth == 0)
2983 {
2984 argcount += 1;
2985 }
2986
2987 p += 1;
2988 }
2989
2990 /* If we read one argument and it was ``void'', don't count it. */
2991 if (startswith (argtypetext, "(void)"))
2992 argcount -= 1;
2993
2994 /* We need one extra slot, for the THIS pointer. */
2995
2996 argtypes = (struct field *)
2997 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2998 p = argtypetext;
2999
3000 /* Add THIS pointer for non-static methods. */
3001 f = TYPE_FN_FIELDLIST1 (type, method_id);
3002 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3003 argcount = 0;
3004 else
3005 {
3006 argtypes[0].type = lookup_pointer_type (type);
3007 argcount = 1;
3008 }
3009
3010 if (*p != ')') /* () means no args, skip while. */
3011 {
3012 depth = 0;
3013 while (*p)
3014 {
3015 if (depth <= 0 && (*p == ',' || *p == ')'))
3016 {
3017 /* Avoid parsing of ellipsis, they will be handled below.
3018 Also avoid ``void'' as above. */
3019 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3020 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3021 {
3022 argtypes[argcount].type =
3023 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
3024 argcount += 1;
3025 }
3026 argtypetext = p + 1;
3027 }
3028
3029 if (*p == '(' || *p == '<')
3030 {
3031 depth += 1;
3032 }
3033 else if (*p == ')' || *p == '>')
3034 {
3035 depth -= 1;
3036 }
3037
3038 p += 1;
3039 }
3040 }
3041
3042 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3043
3044 /* Now update the old "stub" type into a real type. */
3045 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3046 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3047 We want a method (TYPE_CODE_METHOD). */
3048 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3049 argtypes, argcount, p[-2] == '.');
3050 TYPE_STUB (mtype) = 0;
3051 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3052
3053 xfree (demangled_name);
3054 }
3055
3056 /* This is the external interface to check_stub_method, above. This
3057 function unstubs all of the signatures for TYPE's METHOD_ID method
3058 name. After calling this function TYPE_FN_FIELD_STUB will be
3059 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3060 correct.
3061
3062 This function unfortunately can not die until stabs do. */
3063
3064 void
3065 check_stub_method_group (struct type *type, int method_id)
3066 {
3067 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3068 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3069
3070 for (int j = 0; j < len; j++)
3071 {
3072 if (TYPE_FN_FIELD_STUB (f, j))
3073 check_stub_method (type, method_id, j);
3074 }
3075 }
3076
3077 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3078 const struct cplus_struct_type cplus_struct_default = { };
3079
3080 void
3081 allocate_cplus_struct_type (struct type *type)
3082 {
3083 if (HAVE_CPLUS_STRUCT (type))
3084 /* Structure was already allocated. Nothing more to do. */
3085 return;
3086
3087 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3088 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3089 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3090 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3091 set_type_vptr_fieldno (type, -1);
3092 }
3093
3094 const struct gnat_aux_type gnat_aux_default =
3095 { NULL };
3096
3097 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3098 and allocate the associated gnat-specific data. The gnat-specific
3099 data is also initialized to gnat_aux_default. */
3100
3101 void
3102 allocate_gnat_aux_type (struct type *type)
3103 {
3104 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3105 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3106 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3107 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3108 }
3109
3110 /* Helper function to initialize a newly allocated type. Set type code
3111 to CODE and initialize the type-specific fields accordingly. */
3112
3113 static void
3114 set_type_code (struct type *type, enum type_code code)
3115 {
3116 TYPE_CODE (type) = code;
3117
3118 switch (code)
3119 {
3120 case TYPE_CODE_STRUCT:
3121 case TYPE_CODE_UNION:
3122 case TYPE_CODE_NAMESPACE:
3123 INIT_CPLUS_SPECIFIC (type);
3124 break;
3125 case TYPE_CODE_FLT:
3126 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3127 break;
3128 case TYPE_CODE_FUNC:
3129 INIT_FUNC_SPECIFIC (type);
3130 break;
3131 }
3132 }
3133
3134 /* Helper function to verify floating-point format and size.
3135 BIT is the type size in bits; if BIT equals -1, the size is
3136 determined by the floatformat. Returns size to be used. */
3137
3138 static int
3139 verify_floatformat (int bit, const struct floatformat *floatformat)
3140 {
3141 gdb_assert (floatformat != NULL);
3142
3143 if (bit == -1)
3144 bit = floatformat->totalsize;
3145
3146 gdb_assert (bit >= 0);
3147 gdb_assert (bit >= floatformat->totalsize);
3148
3149 return bit;
3150 }
3151
3152 /* Return the floating-point format for a floating-point variable of
3153 type TYPE. */
3154
3155 const struct floatformat *
3156 floatformat_from_type (const struct type *type)
3157 {
3158 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3159 gdb_assert (TYPE_FLOATFORMAT (type));
3160 return TYPE_FLOATFORMAT (type);
3161 }
3162
3163 /* Helper function to initialize the standard scalar types.
3164
3165 If NAME is non-NULL, then it is used to initialize the type name.
3166 Note that NAME is not copied; it is required to have a lifetime at
3167 least as long as OBJFILE. */
3168
3169 struct type *
3170 init_type (struct objfile *objfile, enum type_code code, int bit,
3171 const char *name)
3172 {
3173 struct type *type;
3174
3175 type = alloc_type (objfile);
3176 set_type_code (type, code);
3177 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3178 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3179 TYPE_NAME (type) = name;
3180
3181 return type;
3182 }
3183
3184 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3185 to use with variables that have no debug info. NAME is the type
3186 name. */
3187
3188 static struct type *
3189 init_nodebug_var_type (struct objfile *objfile, const char *name)
3190 {
3191 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3192 }
3193
3194 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3195 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3196 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3197
3198 struct type *
3199 init_integer_type (struct objfile *objfile,
3200 int bit, int unsigned_p, const char *name)
3201 {
3202 struct type *t;
3203
3204 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3205 if (unsigned_p)
3206 TYPE_UNSIGNED (t) = 1;
3207
3208 return t;
3209 }
3210
3211 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3212 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3213 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3214
3215 struct type *
3216 init_character_type (struct objfile *objfile,
3217 int bit, int unsigned_p, const char *name)
3218 {
3219 struct type *t;
3220
3221 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3222 if (unsigned_p)
3223 TYPE_UNSIGNED (t) = 1;
3224
3225 return t;
3226 }
3227
3228 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3229 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3230 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3231
3232 struct type *
3233 init_boolean_type (struct objfile *objfile,
3234 int bit, int unsigned_p, const char *name)
3235 {
3236 struct type *t;
3237
3238 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3239 if (unsigned_p)
3240 TYPE_UNSIGNED (t) = 1;
3241
3242 return t;
3243 }
3244
3245 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3246 BIT is the type size in bits; if BIT equals -1, the size is
3247 determined by the floatformat. NAME is the type name. Set the
3248 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3249 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3250 order of the objfile's architecture is used. */
3251
3252 struct type *
3253 init_float_type (struct objfile *objfile,
3254 int bit, const char *name,
3255 const struct floatformat **floatformats,
3256 enum bfd_endian byte_order)
3257 {
3258 if (byte_order == BFD_ENDIAN_UNKNOWN)
3259 {
3260 struct gdbarch *gdbarch = objfile->arch ();
3261 byte_order = gdbarch_byte_order (gdbarch);
3262 }
3263 const struct floatformat *fmt = floatformats[byte_order];
3264 struct type *t;
3265
3266 bit = verify_floatformat (bit, fmt);
3267 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3268 TYPE_FLOATFORMAT (t) = fmt;
3269
3270 return t;
3271 }
3272
3273 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3274 BIT is the type size in bits. NAME is the type name. */
3275
3276 struct type *
3277 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3278 {
3279 struct type *t;
3280
3281 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3282 return t;
3283 }
3284
3285 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3286 name. TARGET_TYPE is the component type. */
3287
3288 struct type *
3289 init_complex_type (const char *name, struct type *target_type)
3290 {
3291 struct type *t;
3292
3293 gdb_assert (TYPE_CODE (target_type) == TYPE_CODE_INT
3294 || TYPE_CODE (target_type) == TYPE_CODE_FLT);
3295
3296 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3297 {
3298 if (name == nullptr)
3299 {
3300 char *new_name
3301 = (char *) TYPE_ALLOC (target_type,
3302 strlen (TYPE_NAME (target_type))
3303 + strlen ("_Complex ") + 1);
3304 strcpy (new_name, "_Complex ");
3305 strcat (new_name, TYPE_NAME (target_type));
3306 name = new_name;
3307 }
3308
3309 t = alloc_type_copy (target_type);
3310 set_type_code (t, TYPE_CODE_COMPLEX);
3311 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3312 TYPE_NAME (t) = name;
3313
3314 TYPE_TARGET_TYPE (t) = target_type;
3315 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3316 }
3317
3318 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3319 }
3320
3321 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3322 BIT is the pointer type size in bits. NAME is the type name.
3323 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3324 TYPE_UNSIGNED flag. */
3325
3326 struct type *
3327 init_pointer_type (struct objfile *objfile,
3328 int bit, const char *name, struct type *target_type)
3329 {
3330 struct type *t;
3331
3332 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3333 TYPE_TARGET_TYPE (t) = target_type;
3334 TYPE_UNSIGNED (t) = 1;
3335 return t;
3336 }
3337
3338 /* See gdbtypes.h. */
3339
3340 unsigned
3341 type_raw_align (struct type *type)
3342 {
3343 if (type->align_log2 != 0)
3344 return 1 << (type->align_log2 - 1);
3345 return 0;
3346 }
3347
3348 /* See gdbtypes.h. */
3349
3350 unsigned
3351 type_align (struct type *type)
3352 {
3353 /* Check alignment provided in the debug information. */
3354 unsigned raw_align = type_raw_align (type);
3355 if (raw_align != 0)
3356 return raw_align;
3357
3358 /* Allow the architecture to provide an alignment. */
3359 struct gdbarch *arch = get_type_arch (type);
3360 ULONGEST align = gdbarch_type_align (arch, type);
3361 if (align != 0)
3362 return align;
3363
3364 switch (TYPE_CODE (type))
3365 {
3366 case TYPE_CODE_PTR:
3367 case TYPE_CODE_FUNC:
3368 case TYPE_CODE_FLAGS:
3369 case TYPE_CODE_INT:
3370 case TYPE_CODE_RANGE:
3371 case TYPE_CODE_FLT:
3372 case TYPE_CODE_ENUM:
3373 case TYPE_CODE_REF:
3374 case TYPE_CODE_RVALUE_REF:
3375 case TYPE_CODE_CHAR:
3376 case TYPE_CODE_BOOL:
3377 case TYPE_CODE_DECFLOAT:
3378 case TYPE_CODE_METHODPTR:
3379 case TYPE_CODE_MEMBERPTR:
3380 align = type_length_units (check_typedef (type));
3381 break;
3382
3383 case TYPE_CODE_ARRAY:
3384 case TYPE_CODE_COMPLEX:
3385 case TYPE_CODE_TYPEDEF:
3386 align = type_align (TYPE_TARGET_TYPE (type));
3387 break;
3388
3389 case TYPE_CODE_STRUCT:
3390 case TYPE_CODE_UNION:
3391 {
3392 int number_of_non_static_fields = 0;
3393 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3394 {
3395 if (!field_is_static (&TYPE_FIELD (type, i)))
3396 {
3397 number_of_non_static_fields++;
3398 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3399 if (f_align == 0)
3400 {
3401 /* Don't pretend we know something we don't. */
3402 align = 0;
3403 break;
3404 }
3405 if (f_align > align)
3406 align = f_align;
3407 }
3408 }
3409 /* A struct with no fields, or with only static fields has an
3410 alignment of 1. */
3411 if (number_of_non_static_fields == 0)
3412 align = 1;
3413 }
3414 break;
3415
3416 case TYPE_CODE_SET:
3417 case TYPE_CODE_STRING:
3418 /* Not sure what to do here, and these can't appear in C or C++
3419 anyway. */
3420 break;
3421
3422 case TYPE_CODE_VOID:
3423 align = 1;
3424 break;
3425
3426 case TYPE_CODE_ERROR:
3427 case TYPE_CODE_METHOD:
3428 default:
3429 break;
3430 }
3431
3432 if ((align & (align - 1)) != 0)
3433 {
3434 /* Not a power of 2, so pass. */
3435 align = 0;
3436 }
3437
3438 return align;
3439 }
3440
3441 /* See gdbtypes.h. */
3442
3443 bool
3444 set_type_align (struct type *type, ULONGEST align)
3445 {
3446 /* Must be a power of 2. Zero is ok. */
3447 gdb_assert ((align & (align - 1)) == 0);
3448
3449 unsigned result = 0;
3450 while (align != 0)
3451 {
3452 ++result;
3453 align >>= 1;
3454 }
3455
3456 if (result >= (1 << TYPE_ALIGN_BITS))
3457 return false;
3458
3459 type->align_log2 = result;
3460 return true;
3461 }
3462
3463 \f
3464 /* Queries on types. */
3465
3466 int
3467 can_dereference (struct type *t)
3468 {
3469 /* FIXME: Should we return true for references as well as
3470 pointers? */
3471 t = check_typedef (t);
3472 return
3473 (t != NULL
3474 && TYPE_CODE (t) == TYPE_CODE_PTR
3475 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3476 }
3477
3478 int
3479 is_integral_type (struct type *t)
3480 {
3481 t = check_typedef (t);
3482 return
3483 ((t != NULL)
3484 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3485 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3486 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3487 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3488 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3489 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3490 }
3491
3492 int
3493 is_floating_type (struct type *t)
3494 {
3495 t = check_typedef (t);
3496 return
3497 ((t != NULL)
3498 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3499 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3500 }
3501
3502 /* Return true if TYPE is scalar. */
3503
3504 int
3505 is_scalar_type (struct type *type)
3506 {
3507 type = check_typedef (type);
3508
3509 switch (TYPE_CODE (type))
3510 {
3511 case TYPE_CODE_ARRAY:
3512 case TYPE_CODE_STRUCT:
3513 case TYPE_CODE_UNION:
3514 case TYPE_CODE_SET:
3515 case TYPE_CODE_STRING:
3516 return 0;
3517 default:
3518 return 1;
3519 }
3520 }
3521
3522 /* Return true if T is scalar, or a composite type which in practice has
3523 the memory layout of a scalar type. E.g., an array or struct with only
3524 one scalar element inside it, or a union with only scalar elements. */
3525
3526 int
3527 is_scalar_type_recursive (struct type *t)
3528 {
3529 t = check_typedef (t);
3530
3531 if (is_scalar_type (t))
3532 return 1;
3533 /* Are we dealing with an array or string of known dimensions? */
3534 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3535 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3536 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3537 {
3538 LONGEST low_bound, high_bound;
3539 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3540
3541 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3542
3543 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3544 }
3545 /* Are we dealing with a struct with one element? */
3546 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3547 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3548 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3549 {
3550 int i, n = TYPE_NFIELDS (t);
3551
3552 /* If all elements of the union are scalar, then the union is scalar. */
3553 for (i = 0; i < n; i++)
3554 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3555 return 0;
3556
3557 return 1;
3558 }
3559
3560 return 0;
3561 }
3562
3563 /* Return true is T is a class or a union. False otherwise. */
3564
3565 int
3566 class_or_union_p (const struct type *t)
3567 {
3568 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3569 || TYPE_CODE (t) == TYPE_CODE_UNION);
3570 }
3571
3572 /* A helper function which returns true if types A and B represent the
3573 "same" class type. This is true if the types have the same main
3574 type, or the same name. */
3575
3576 int
3577 class_types_same_p (const struct type *a, const struct type *b)
3578 {
3579 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3580 || (TYPE_NAME (a) && TYPE_NAME (b)
3581 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3582 }
3583
3584 /* If BASE is an ancestor of DCLASS return the distance between them.
3585 otherwise return -1;
3586 eg:
3587
3588 class A {};
3589 class B: public A {};
3590 class C: public B {};
3591 class D: C {};
3592
3593 distance_to_ancestor (A, A, 0) = 0
3594 distance_to_ancestor (A, B, 0) = 1
3595 distance_to_ancestor (A, C, 0) = 2
3596 distance_to_ancestor (A, D, 0) = 3
3597
3598 If PUBLIC is 1 then only public ancestors are considered,
3599 and the function returns the distance only if BASE is a public ancestor
3600 of DCLASS.
3601 Eg:
3602
3603 distance_to_ancestor (A, D, 1) = -1. */
3604
3605 static int
3606 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3607 {
3608 int i;
3609 int d;
3610
3611 base = check_typedef (base);
3612 dclass = check_typedef (dclass);
3613
3614 if (class_types_same_p (base, dclass))
3615 return 0;
3616
3617 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3618 {
3619 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3620 continue;
3621
3622 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3623 if (d >= 0)
3624 return 1 + d;
3625 }
3626
3627 return -1;
3628 }
3629
3630 /* Check whether BASE is an ancestor or base class or DCLASS
3631 Return 1 if so, and 0 if not.
3632 Note: If BASE and DCLASS are of the same type, this function
3633 will return 1. So for some class A, is_ancestor (A, A) will
3634 return 1. */
3635
3636 int
3637 is_ancestor (struct type *base, struct type *dclass)
3638 {
3639 return distance_to_ancestor (base, dclass, 0) >= 0;
3640 }
3641
3642 /* Like is_ancestor, but only returns true when BASE is a public
3643 ancestor of DCLASS. */
3644
3645 int
3646 is_public_ancestor (struct type *base, struct type *dclass)
3647 {
3648 return distance_to_ancestor (base, dclass, 1) >= 0;
3649 }
3650
3651 /* A helper function for is_unique_ancestor. */
3652
3653 static int
3654 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3655 int *offset,
3656 const gdb_byte *valaddr, int embedded_offset,
3657 CORE_ADDR address, struct value *val)
3658 {
3659 int i, count = 0;
3660
3661 base = check_typedef (base);
3662 dclass = check_typedef (dclass);
3663
3664 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3665 {
3666 struct type *iter;
3667 int this_offset;
3668
3669 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3670
3671 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3672 address, val);
3673
3674 if (class_types_same_p (base, iter))
3675 {
3676 /* If this is the first subclass, set *OFFSET and set count
3677 to 1. Otherwise, if this is at the same offset as
3678 previous instances, do nothing. Otherwise, increment
3679 count. */
3680 if (*offset == -1)
3681 {
3682 *offset = this_offset;
3683 count = 1;
3684 }
3685 else if (this_offset == *offset)
3686 {
3687 /* Nothing. */
3688 }
3689 else
3690 ++count;
3691 }
3692 else
3693 count += is_unique_ancestor_worker (base, iter, offset,
3694 valaddr,
3695 embedded_offset + this_offset,
3696 address, val);
3697 }
3698
3699 return count;
3700 }
3701
3702 /* Like is_ancestor, but only returns true if BASE is a unique base
3703 class of the type of VAL. */
3704
3705 int
3706 is_unique_ancestor (struct type *base, struct value *val)
3707 {
3708 int offset = -1;
3709
3710 return is_unique_ancestor_worker (base, value_type (val), &offset,
3711 value_contents_for_printing (val),
3712 value_embedded_offset (val),
3713 value_address (val), val) == 1;
3714 }
3715
3716 /* See gdbtypes.h. */
3717
3718 enum bfd_endian
3719 type_byte_order (const struct type *type)
3720 {
3721 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3722 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3723 {
3724 if (byteorder == BFD_ENDIAN_BIG)
3725 return BFD_ENDIAN_LITTLE;
3726 else
3727 {
3728 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3729 return BFD_ENDIAN_BIG;
3730 }
3731 }
3732
3733 return byteorder;
3734 }
3735
3736 \f
3737 /* Overload resolution. */
3738
3739 /* Return the sum of the rank of A with the rank of B. */
3740
3741 struct rank
3742 sum_ranks (struct rank a, struct rank b)
3743 {
3744 struct rank c;
3745 c.rank = a.rank + b.rank;
3746 c.subrank = a.subrank + b.subrank;
3747 return c;
3748 }
3749
3750 /* Compare rank A and B and return:
3751 0 if a = b
3752 1 if a is better than b
3753 -1 if b is better than a. */
3754
3755 int
3756 compare_ranks (struct rank a, struct rank b)
3757 {
3758 if (a.rank == b.rank)
3759 {
3760 if (a.subrank == b.subrank)
3761 return 0;
3762 if (a.subrank < b.subrank)
3763 return 1;
3764 if (a.subrank > b.subrank)
3765 return -1;
3766 }
3767
3768 if (a.rank < b.rank)
3769 return 1;
3770
3771 /* a.rank > b.rank */
3772 return -1;
3773 }
3774
3775 /* Functions for overload resolution begin here. */
3776
3777 /* Compare two badness vectors A and B and return the result.
3778 0 => A and B are identical
3779 1 => A and B are incomparable
3780 2 => A is better than B
3781 3 => A is worse than B */
3782
3783 int
3784 compare_badness (const badness_vector &a, const badness_vector &b)
3785 {
3786 int i;
3787 int tmp;
3788 short found_pos = 0; /* any positives in c? */
3789 short found_neg = 0; /* any negatives in c? */
3790
3791 /* differing sizes => incomparable */
3792 if (a.size () != b.size ())
3793 return 1;
3794
3795 /* Subtract b from a */
3796 for (i = 0; i < a.size (); i++)
3797 {
3798 tmp = compare_ranks (b[i], a[i]);
3799 if (tmp > 0)
3800 found_pos = 1;
3801 else if (tmp < 0)
3802 found_neg = 1;
3803 }
3804
3805 if (found_pos)
3806 {
3807 if (found_neg)
3808 return 1; /* incomparable */
3809 else
3810 return 3; /* A > B */
3811 }
3812 else
3813 /* no positives */
3814 {
3815 if (found_neg)
3816 return 2; /* A < B */
3817 else
3818 return 0; /* A == B */
3819 }
3820 }
3821
3822 /* Rank a function by comparing its parameter types (PARMS), to the
3823 types of an argument list (ARGS). Return the badness vector. This
3824 has ARGS.size() + 1 entries. */
3825
3826 badness_vector
3827 rank_function (gdb::array_view<type *> parms,
3828 gdb::array_view<value *> args)
3829 {
3830 /* add 1 for the length-match rank. */
3831 badness_vector bv;
3832 bv.reserve (1 + args.size ());
3833
3834 /* First compare the lengths of the supplied lists.
3835 If there is a mismatch, set it to a high value. */
3836
3837 /* pai/1997-06-03 FIXME: when we have debug info about default
3838 arguments and ellipsis parameter lists, we should consider those
3839 and rank the length-match more finely. */
3840
3841 bv.push_back ((args.size () != parms.size ())
3842 ? LENGTH_MISMATCH_BADNESS
3843 : EXACT_MATCH_BADNESS);
3844
3845 /* Now rank all the parameters of the candidate function. */
3846 size_t min_len = std::min (parms.size (), args.size ());
3847
3848 for (size_t i = 0; i < min_len; i++)
3849 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3850 args[i]));
3851
3852 /* If more arguments than parameters, add dummy entries. */
3853 for (size_t i = min_len; i < args.size (); i++)
3854 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3855
3856 return bv;
3857 }
3858
3859 /* Compare the names of two integer types, assuming that any sign
3860 qualifiers have been checked already. We do it this way because
3861 there may be an "int" in the name of one of the types. */
3862
3863 static int
3864 integer_types_same_name_p (const char *first, const char *second)
3865 {
3866 int first_p, second_p;
3867
3868 /* If both are shorts, return 1; if neither is a short, keep
3869 checking. */
3870 first_p = (strstr (first, "short") != NULL);
3871 second_p = (strstr (second, "short") != NULL);
3872 if (first_p && second_p)
3873 return 1;
3874 if (first_p || second_p)
3875 return 0;
3876
3877 /* Likewise for long. */
3878 first_p = (strstr (first, "long") != NULL);
3879 second_p = (strstr (second, "long") != NULL);
3880 if (first_p && second_p)
3881 return 1;
3882 if (first_p || second_p)
3883 return 0;
3884
3885 /* Likewise for char. */
3886 first_p = (strstr (first, "char") != NULL);
3887 second_p = (strstr (second, "char") != NULL);
3888 if (first_p && second_p)
3889 return 1;
3890 if (first_p || second_p)
3891 return 0;
3892
3893 /* They must both be ints. */
3894 return 1;
3895 }
3896
3897 /* Compares type A to type B. Returns true if they represent the same
3898 type, false otherwise. */
3899
3900 bool
3901 types_equal (struct type *a, struct type *b)
3902 {
3903 /* Identical type pointers. */
3904 /* However, this still doesn't catch all cases of same type for b
3905 and a. The reason is that builtin types are different from
3906 the same ones constructed from the object. */
3907 if (a == b)
3908 return true;
3909
3910 /* Resolve typedefs */
3911 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3912 a = check_typedef (a);
3913 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3914 b = check_typedef (b);
3915
3916 /* If after resolving typedefs a and b are not of the same type
3917 code then they are not equal. */
3918 if (TYPE_CODE (a) != TYPE_CODE (b))
3919 return false;
3920
3921 /* If a and b are both pointers types or both reference types then
3922 they are equal of the same type iff the objects they refer to are
3923 of the same type. */
3924 if (TYPE_CODE (a) == TYPE_CODE_PTR
3925 || TYPE_CODE (a) == TYPE_CODE_REF)
3926 return types_equal (TYPE_TARGET_TYPE (a),
3927 TYPE_TARGET_TYPE (b));
3928
3929 /* Well, damnit, if the names are exactly the same, I'll say they
3930 are exactly the same. This happens when we generate method
3931 stubs. The types won't point to the same address, but they
3932 really are the same. */
3933
3934 if (TYPE_NAME (a) && TYPE_NAME (b)
3935 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3936 return true;
3937
3938 /* Check if identical after resolving typedefs. */
3939 if (a == b)
3940 return true;
3941
3942 /* Two function types are equal if their argument and return types
3943 are equal. */
3944 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3945 {
3946 int i;
3947
3948 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3949 return false;
3950
3951 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3952 return false;
3953
3954 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3955 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3956 return false;
3957
3958 return true;
3959 }
3960
3961 return false;
3962 }
3963 \f
3964 /* Deep comparison of types. */
3965
3966 /* An entry in the type-equality bcache. */
3967
3968 struct type_equality_entry
3969 {
3970 type_equality_entry (struct type *t1, struct type *t2)
3971 : type1 (t1),
3972 type2 (t2)
3973 {
3974 }
3975
3976 struct type *type1, *type2;
3977 };
3978
3979 /* A helper function to compare two strings. Returns true if they are
3980 the same, false otherwise. Handles NULLs properly. */
3981
3982 static bool
3983 compare_maybe_null_strings (const char *s, const char *t)
3984 {
3985 if (s == NULL || t == NULL)
3986 return s == t;
3987 return strcmp (s, t) == 0;
3988 }
3989
3990 /* A helper function for check_types_worklist that checks two types for
3991 "deep" equality. Returns true if the types are considered the
3992 same, false otherwise. */
3993
3994 static bool
3995 check_types_equal (struct type *type1, struct type *type2,
3996 std::vector<type_equality_entry> *worklist)
3997 {
3998 type1 = check_typedef (type1);
3999 type2 = check_typedef (type2);
4000
4001 if (type1 == type2)
4002 return true;
4003
4004 if (TYPE_CODE (type1) != TYPE_CODE (type2)
4005 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4006 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
4007 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
4008 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
4009 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
4010 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
4011 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4012 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
4013 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
4014 return false;
4015
4016 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
4017 return false;
4018 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
4019 return false;
4020
4021 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
4022 {
4023 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
4024 return false;
4025 }
4026 else
4027 {
4028 int i;
4029
4030 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
4031 {
4032 const struct field *field1 = &TYPE_FIELD (type1, i);
4033 const struct field *field2 = &TYPE_FIELD (type2, i);
4034
4035 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4036 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4037 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4038 return false;
4039 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4040 FIELD_NAME (*field2)))
4041 return false;
4042 switch (FIELD_LOC_KIND (*field1))
4043 {
4044 case FIELD_LOC_KIND_BITPOS:
4045 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4046 return false;
4047 break;
4048 case FIELD_LOC_KIND_ENUMVAL:
4049 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4050 return false;
4051 break;
4052 case FIELD_LOC_KIND_PHYSADDR:
4053 if (FIELD_STATIC_PHYSADDR (*field1)
4054 != FIELD_STATIC_PHYSADDR (*field2))
4055 return false;
4056 break;
4057 case FIELD_LOC_KIND_PHYSNAME:
4058 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4059 FIELD_STATIC_PHYSNAME (*field2)))
4060 return false;
4061 break;
4062 case FIELD_LOC_KIND_DWARF_BLOCK:
4063 {
4064 struct dwarf2_locexpr_baton *block1, *block2;
4065
4066 block1 = FIELD_DWARF_BLOCK (*field1);
4067 block2 = FIELD_DWARF_BLOCK (*field2);
4068 if (block1->per_cu != block2->per_cu
4069 || block1->size != block2->size
4070 || memcmp (block1->data, block2->data, block1->size) != 0)
4071 return false;
4072 }
4073 break;
4074 default:
4075 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4076 "%d by check_types_equal"),
4077 FIELD_LOC_KIND (*field1));
4078 }
4079
4080 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
4081 }
4082 }
4083
4084 if (TYPE_TARGET_TYPE (type1) != NULL)
4085 {
4086 if (TYPE_TARGET_TYPE (type2) == NULL)
4087 return false;
4088
4089 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4090 TYPE_TARGET_TYPE (type2));
4091 }
4092 else if (TYPE_TARGET_TYPE (type2) != NULL)
4093 return false;
4094
4095 return true;
4096 }
4097
4098 /* Check types on a worklist for equality. Returns false if any pair
4099 is not equal, true if they are all considered equal. */
4100
4101 static bool
4102 check_types_worklist (std::vector<type_equality_entry> *worklist,
4103 gdb::bcache *cache)
4104 {
4105 while (!worklist->empty ())
4106 {
4107 int added;
4108
4109 struct type_equality_entry entry = std::move (worklist->back ());
4110 worklist->pop_back ();
4111
4112 /* If the type pair has already been visited, we know it is
4113 ok. */
4114 cache->insert (&entry, sizeof (entry), &added);
4115 if (!added)
4116 continue;
4117
4118 if (!check_types_equal (entry.type1, entry.type2, worklist))
4119 return false;
4120 }
4121
4122 return true;
4123 }
4124
4125 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4126 "deep comparison". Otherwise return false. */
4127
4128 bool
4129 types_deeply_equal (struct type *type1, struct type *type2)
4130 {
4131 std::vector<type_equality_entry> worklist;
4132
4133 gdb_assert (type1 != NULL && type2 != NULL);
4134
4135 /* Early exit for the simple case. */
4136 if (type1 == type2)
4137 return true;
4138
4139 gdb::bcache cache (nullptr, nullptr);
4140 worklist.emplace_back (type1, type2);
4141 return check_types_worklist (&worklist, &cache);
4142 }
4143
4144 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4145 Otherwise return one. */
4146
4147 int
4148 type_not_allocated (const struct type *type)
4149 {
4150 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4151
4152 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4153 && !TYPE_DYN_PROP_ADDR (prop));
4154 }
4155
4156 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4157 Otherwise return one. */
4158
4159 int
4160 type_not_associated (const struct type *type)
4161 {
4162 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4163
4164 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4165 && !TYPE_DYN_PROP_ADDR (prop));
4166 }
4167
4168 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4169
4170 static struct rank
4171 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4172 {
4173 struct rank rank = {0,0};
4174
4175 switch (TYPE_CODE (arg))
4176 {
4177 case TYPE_CODE_PTR:
4178
4179 /* Allowed pointer conversions are:
4180 (a) pointer to void-pointer conversion. */
4181 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
4182 return VOID_PTR_CONVERSION_BADNESS;
4183
4184 /* (b) pointer to ancestor-pointer conversion. */
4185 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4186 TYPE_TARGET_TYPE (arg),
4187 0);
4188 if (rank.subrank >= 0)
4189 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4190
4191 return INCOMPATIBLE_TYPE_BADNESS;
4192 case TYPE_CODE_ARRAY:
4193 {
4194 struct type *t1 = TYPE_TARGET_TYPE (parm);
4195 struct type *t2 = TYPE_TARGET_TYPE (arg);
4196
4197 if (types_equal (t1, t2))
4198 {
4199 /* Make sure they are CV equal. */
4200 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4201 rank.subrank |= CV_CONVERSION_CONST;
4202 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4203 rank.subrank |= CV_CONVERSION_VOLATILE;
4204 if (rank.subrank != 0)
4205 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4206 return EXACT_MATCH_BADNESS;
4207 }
4208 return INCOMPATIBLE_TYPE_BADNESS;
4209 }
4210 case TYPE_CODE_FUNC:
4211 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4212 case TYPE_CODE_INT:
4213 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
4214 {
4215 if (value_as_long (value) == 0)
4216 {
4217 /* Null pointer conversion: allow it to be cast to a pointer.
4218 [4.10.1 of C++ standard draft n3290] */
4219 return NULL_POINTER_CONVERSION_BADNESS;
4220 }
4221 else
4222 {
4223 /* If type checking is disabled, allow the conversion. */
4224 if (!strict_type_checking)
4225 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4226 }
4227 }
4228 /* fall through */
4229 case TYPE_CODE_ENUM:
4230 case TYPE_CODE_FLAGS:
4231 case TYPE_CODE_CHAR:
4232 case TYPE_CODE_RANGE:
4233 case TYPE_CODE_BOOL:
4234 default:
4235 return INCOMPATIBLE_TYPE_BADNESS;
4236 }
4237 }
4238
4239 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4240
4241 static struct rank
4242 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4243 {
4244 switch (TYPE_CODE (arg))
4245 {
4246 case TYPE_CODE_PTR:
4247 case TYPE_CODE_ARRAY:
4248 return rank_one_type (TYPE_TARGET_TYPE (parm),
4249 TYPE_TARGET_TYPE (arg), NULL);
4250 default:
4251 return INCOMPATIBLE_TYPE_BADNESS;
4252 }
4253 }
4254
4255 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4256
4257 static struct rank
4258 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4259 {
4260 switch (TYPE_CODE (arg))
4261 {
4262 case TYPE_CODE_PTR: /* funcptr -> func */
4263 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4264 default:
4265 return INCOMPATIBLE_TYPE_BADNESS;
4266 }
4267 }
4268
4269 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4270
4271 static struct rank
4272 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4273 {
4274 switch (TYPE_CODE (arg))
4275 {
4276 case TYPE_CODE_INT:
4277 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4278 {
4279 /* Deal with signed, unsigned, and plain chars and
4280 signed and unsigned ints. */
4281 if (TYPE_NOSIGN (parm))
4282 {
4283 /* This case only for character types. */
4284 if (TYPE_NOSIGN (arg))
4285 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4286 else /* signed/unsigned char -> plain char */
4287 return INTEGER_CONVERSION_BADNESS;
4288 }
4289 else if (TYPE_UNSIGNED (parm))
4290 {
4291 if (TYPE_UNSIGNED (arg))
4292 {
4293 /* unsigned int -> unsigned int, or
4294 unsigned long -> unsigned long */
4295 if (integer_types_same_name_p (TYPE_NAME (parm),
4296 TYPE_NAME (arg)))
4297 return EXACT_MATCH_BADNESS;
4298 else if (integer_types_same_name_p (TYPE_NAME (arg),
4299 "int")
4300 && integer_types_same_name_p (TYPE_NAME (parm),
4301 "long"))
4302 /* unsigned int -> unsigned long */
4303 return INTEGER_PROMOTION_BADNESS;
4304 else
4305 /* unsigned long -> unsigned int */
4306 return INTEGER_CONVERSION_BADNESS;
4307 }
4308 else
4309 {
4310 if (integer_types_same_name_p (TYPE_NAME (arg),
4311 "long")
4312 && integer_types_same_name_p (TYPE_NAME (parm),
4313 "int"))
4314 /* signed long -> unsigned int */
4315 return INTEGER_CONVERSION_BADNESS;
4316 else
4317 /* signed int/long -> unsigned int/long */
4318 return INTEGER_CONVERSION_BADNESS;
4319 }
4320 }
4321 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4322 {
4323 if (integer_types_same_name_p (TYPE_NAME (parm),
4324 TYPE_NAME (arg)))
4325 return EXACT_MATCH_BADNESS;
4326 else if (integer_types_same_name_p (TYPE_NAME (arg),
4327 "int")
4328 && integer_types_same_name_p (TYPE_NAME (parm),
4329 "long"))
4330 return INTEGER_PROMOTION_BADNESS;
4331 else
4332 return INTEGER_CONVERSION_BADNESS;
4333 }
4334 else
4335 return INTEGER_CONVERSION_BADNESS;
4336 }
4337 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4338 return INTEGER_PROMOTION_BADNESS;
4339 else
4340 return INTEGER_CONVERSION_BADNESS;
4341 case TYPE_CODE_ENUM:
4342 case TYPE_CODE_FLAGS:
4343 case TYPE_CODE_CHAR:
4344 case TYPE_CODE_RANGE:
4345 case TYPE_CODE_BOOL:
4346 if (TYPE_DECLARED_CLASS (arg))
4347 return INCOMPATIBLE_TYPE_BADNESS;
4348 return INTEGER_PROMOTION_BADNESS;
4349 case TYPE_CODE_FLT:
4350 return INT_FLOAT_CONVERSION_BADNESS;
4351 case TYPE_CODE_PTR:
4352 return NS_POINTER_CONVERSION_BADNESS;
4353 default:
4354 return INCOMPATIBLE_TYPE_BADNESS;
4355 }
4356 }
4357
4358 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4359
4360 static struct rank
4361 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4362 {
4363 switch (TYPE_CODE (arg))
4364 {
4365 case TYPE_CODE_INT:
4366 case TYPE_CODE_CHAR:
4367 case TYPE_CODE_RANGE:
4368 case TYPE_CODE_BOOL:
4369 case TYPE_CODE_ENUM:
4370 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4371 return INCOMPATIBLE_TYPE_BADNESS;
4372 return INTEGER_CONVERSION_BADNESS;
4373 case TYPE_CODE_FLT:
4374 return INT_FLOAT_CONVERSION_BADNESS;
4375 default:
4376 return INCOMPATIBLE_TYPE_BADNESS;
4377 }
4378 }
4379
4380 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4381
4382 static struct rank
4383 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4384 {
4385 switch (TYPE_CODE (arg))
4386 {
4387 case TYPE_CODE_RANGE:
4388 case TYPE_CODE_BOOL:
4389 case TYPE_CODE_ENUM:
4390 if (TYPE_DECLARED_CLASS (arg))
4391 return INCOMPATIBLE_TYPE_BADNESS;
4392 return INTEGER_CONVERSION_BADNESS;
4393 case TYPE_CODE_FLT:
4394 return INT_FLOAT_CONVERSION_BADNESS;
4395 case TYPE_CODE_INT:
4396 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4397 return INTEGER_CONVERSION_BADNESS;
4398 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4399 return INTEGER_PROMOTION_BADNESS;
4400 /* fall through */
4401 case TYPE_CODE_CHAR:
4402 /* Deal with signed, unsigned, and plain chars for C++ and
4403 with int cases falling through from previous case. */
4404 if (TYPE_NOSIGN (parm))
4405 {
4406 if (TYPE_NOSIGN (arg))
4407 return EXACT_MATCH_BADNESS;
4408 else
4409 return INTEGER_CONVERSION_BADNESS;
4410 }
4411 else if (TYPE_UNSIGNED (parm))
4412 {
4413 if (TYPE_UNSIGNED (arg))
4414 return EXACT_MATCH_BADNESS;
4415 else
4416 return INTEGER_PROMOTION_BADNESS;
4417 }
4418 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4419 return EXACT_MATCH_BADNESS;
4420 else
4421 return INTEGER_CONVERSION_BADNESS;
4422 default:
4423 return INCOMPATIBLE_TYPE_BADNESS;
4424 }
4425 }
4426
4427 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4428
4429 static struct rank
4430 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4431 {
4432 switch (TYPE_CODE (arg))
4433 {
4434 case TYPE_CODE_INT:
4435 case TYPE_CODE_CHAR:
4436 case TYPE_CODE_RANGE:
4437 case TYPE_CODE_BOOL:
4438 case TYPE_CODE_ENUM:
4439 return INTEGER_CONVERSION_BADNESS;
4440 case TYPE_CODE_FLT:
4441 return INT_FLOAT_CONVERSION_BADNESS;
4442 default:
4443 return INCOMPATIBLE_TYPE_BADNESS;
4444 }
4445 }
4446
4447 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4448
4449 static struct rank
4450 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4451 {
4452 switch (TYPE_CODE (arg))
4453 {
4454 /* n3290 draft, section 4.12.1 (conv.bool):
4455
4456 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4457 pointer to member type can be converted to a prvalue of type
4458 bool. A zero value, null pointer value, or null member pointer
4459 value is converted to false; any other value is converted to
4460 true. A prvalue of type std::nullptr_t can be converted to a
4461 prvalue of type bool; the resulting value is false." */
4462 case TYPE_CODE_INT:
4463 case TYPE_CODE_CHAR:
4464 case TYPE_CODE_ENUM:
4465 case TYPE_CODE_FLT:
4466 case TYPE_CODE_MEMBERPTR:
4467 case TYPE_CODE_PTR:
4468 return BOOL_CONVERSION_BADNESS;
4469 case TYPE_CODE_RANGE:
4470 return INCOMPATIBLE_TYPE_BADNESS;
4471 case TYPE_CODE_BOOL:
4472 return EXACT_MATCH_BADNESS;
4473 default:
4474 return INCOMPATIBLE_TYPE_BADNESS;
4475 }
4476 }
4477
4478 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4479
4480 static struct rank
4481 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4482 {
4483 switch (TYPE_CODE (arg))
4484 {
4485 case TYPE_CODE_FLT:
4486 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4487 return FLOAT_PROMOTION_BADNESS;
4488 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4489 return EXACT_MATCH_BADNESS;
4490 else
4491 return FLOAT_CONVERSION_BADNESS;
4492 case TYPE_CODE_INT:
4493 case TYPE_CODE_BOOL:
4494 case TYPE_CODE_ENUM:
4495 case TYPE_CODE_RANGE:
4496 case TYPE_CODE_CHAR:
4497 return INT_FLOAT_CONVERSION_BADNESS;
4498 default:
4499 return INCOMPATIBLE_TYPE_BADNESS;
4500 }
4501 }
4502
4503 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4504
4505 static struct rank
4506 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4507 {
4508 switch (TYPE_CODE (arg))
4509 { /* Strictly not needed for C++, but... */
4510 case TYPE_CODE_FLT:
4511 return FLOAT_PROMOTION_BADNESS;
4512 case TYPE_CODE_COMPLEX:
4513 return EXACT_MATCH_BADNESS;
4514 default:
4515 return INCOMPATIBLE_TYPE_BADNESS;
4516 }
4517 }
4518
4519 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4520
4521 static struct rank
4522 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4523 {
4524 struct rank rank = {0, 0};
4525
4526 switch (TYPE_CODE (arg))
4527 {
4528 case TYPE_CODE_STRUCT:
4529 /* Check for derivation */
4530 rank.subrank = distance_to_ancestor (parm, arg, 0);
4531 if (rank.subrank >= 0)
4532 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4533 /* fall through */
4534 default:
4535 return INCOMPATIBLE_TYPE_BADNESS;
4536 }
4537 }
4538
4539 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4540
4541 static struct rank
4542 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4543 {
4544 switch (TYPE_CODE (arg))
4545 {
4546 /* Not in C++ */
4547 case TYPE_CODE_SET:
4548 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4549 TYPE_FIELD_TYPE (arg, 0), NULL);
4550 default:
4551 return INCOMPATIBLE_TYPE_BADNESS;
4552 }
4553 }
4554
4555 /* Compare one type (PARM) for compatibility with another (ARG).
4556 * PARM is intended to be the parameter type of a function; and
4557 * ARG is the supplied argument's type. This function tests if
4558 * the latter can be converted to the former.
4559 * VALUE is the argument's value or NULL if none (or called recursively)
4560 *
4561 * Return 0 if they are identical types;
4562 * Otherwise, return an integer which corresponds to how compatible
4563 * PARM is to ARG. The higher the return value, the worse the match.
4564 * Generally the "bad" conversions are all uniformly assigned a 100. */
4565
4566 struct rank
4567 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4568 {
4569 struct rank rank = {0,0};
4570
4571 /* Resolve typedefs */
4572 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4573 parm = check_typedef (parm);
4574 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4575 arg = check_typedef (arg);
4576
4577 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4578 {
4579 if (VALUE_LVAL (value) == not_lval)
4580 {
4581 /* Rvalues should preferably bind to rvalue references or const
4582 lvalue references. */
4583 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4584 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4585 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4586 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4587 else
4588 return INCOMPATIBLE_TYPE_BADNESS;
4589 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4590 }
4591 else
4592 {
4593 /* It's illegal to pass an lvalue as an rvalue. */
4594 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4595 return INCOMPATIBLE_TYPE_BADNESS;
4596 }
4597 }
4598
4599 if (types_equal (parm, arg))
4600 {
4601 struct type *t1 = parm;
4602 struct type *t2 = arg;
4603
4604 /* For pointers and references, compare target type. */
4605 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4606 {
4607 t1 = TYPE_TARGET_TYPE (parm);
4608 t2 = TYPE_TARGET_TYPE (arg);
4609 }
4610
4611 /* Make sure they are CV equal, too. */
4612 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4613 rank.subrank |= CV_CONVERSION_CONST;
4614 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4615 rank.subrank |= CV_CONVERSION_VOLATILE;
4616 if (rank.subrank != 0)
4617 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4618 return EXACT_MATCH_BADNESS;
4619 }
4620
4621 /* See through references, since we can almost make non-references
4622 references. */
4623
4624 if (TYPE_IS_REFERENCE (arg))
4625 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4626 REFERENCE_SEE_THROUGH_BADNESS));
4627 if (TYPE_IS_REFERENCE (parm))
4628 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4629 REFERENCE_SEE_THROUGH_BADNESS));
4630 if (overload_debug)
4631 /* Debugging only. */
4632 fprintf_filtered (gdb_stderr,
4633 "------ Arg is %s [%d], parm is %s [%d]\n",
4634 TYPE_NAME (arg), TYPE_CODE (arg),
4635 TYPE_NAME (parm), TYPE_CODE (parm));
4636
4637 /* x -> y means arg of type x being supplied for parameter of type y. */
4638
4639 switch (TYPE_CODE (parm))
4640 {
4641 case TYPE_CODE_PTR:
4642 return rank_one_type_parm_ptr (parm, arg, value);
4643 case TYPE_CODE_ARRAY:
4644 return rank_one_type_parm_array (parm, arg, value);
4645 case TYPE_CODE_FUNC:
4646 return rank_one_type_parm_func (parm, arg, value);
4647 case TYPE_CODE_INT:
4648 return rank_one_type_parm_int (parm, arg, value);
4649 case TYPE_CODE_ENUM:
4650 return rank_one_type_parm_enum (parm, arg, value);
4651 case TYPE_CODE_CHAR:
4652 return rank_one_type_parm_char (parm, arg, value);
4653 case TYPE_CODE_RANGE:
4654 return rank_one_type_parm_range (parm, arg, value);
4655 case TYPE_CODE_BOOL:
4656 return rank_one_type_parm_bool (parm, arg, value);
4657 case TYPE_CODE_FLT:
4658 return rank_one_type_parm_float (parm, arg, value);
4659 case TYPE_CODE_COMPLEX:
4660 return rank_one_type_parm_complex (parm, arg, value);
4661 case TYPE_CODE_STRUCT:
4662 return rank_one_type_parm_struct (parm, arg, value);
4663 case TYPE_CODE_SET:
4664 return rank_one_type_parm_set (parm, arg, value);
4665 default:
4666 return INCOMPATIBLE_TYPE_BADNESS;
4667 } /* switch (TYPE_CODE (arg)) */
4668 }
4669
4670 /* End of functions for overload resolution. */
4671 \f
4672 /* Routines to pretty-print types. */
4673
4674 static void
4675 print_bit_vector (B_TYPE *bits, int nbits)
4676 {
4677 int bitno;
4678
4679 for (bitno = 0; bitno < nbits; bitno++)
4680 {
4681 if ((bitno % 8) == 0)
4682 {
4683 puts_filtered (" ");
4684 }
4685 if (B_TST (bits, bitno))
4686 printf_filtered (("1"));
4687 else
4688 printf_filtered (("0"));
4689 }
4690 }
4691
4692 /* Note the first arg should be the "this" pointer, we may not want to
4693 include it since we may get into a infinitely recursive
4694 situation. */
4695
4696 static void
4697 print_args (struct field *args, int nargs, int spaces)
4698 {
4699 if (args != NULL)
4700 {
4701 int i;
4702
4703 for (i = 0; i < nargs; i++)
4704 {
4705 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4706 args[i].name != NULL ? args[i].name : "<NULL>");
4707 recursive_dump_type (args[i].type, spaces + 2);
4708 }
4709 }
4710 }
4711
4712 int
4713 field_is_static (struct field *f)
4714 {
4715 /* "static" fields are the fields whose location is not relative
4716 to the address of the enclosing struct. It would be nice to
4717 have a dedicated flag that would be set for static fields when
4718 the type is being created. But in practice, checking the field
4719 loc_kind should give us an accurate answer. */
4720 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4721 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4722 }
4723
4724 static void
4725 dump_fn_fieldlists (struct type *type, int spaces)
4726 {
4727 int method_idx;
4728 int overload_idx;
4729 struct fn_field *f;
4730
4731 printfi_filtered (spaces, "fn_fieldlists ");
4732 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4733 printf_filtered ("\n");
4734 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4735 {
4736 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4737 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4738 method_idx,
4739 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4740 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4741 gdb_stdout);
4742 printf_filtered (_(") length %d\n"),
4743 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4744 for (overload_idx = 0;
4745 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4746 overload_idx++)
4747 {
4748 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4749 overload_idx,
4750 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4751 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4752 gdb_stdout);
4753 printf_filtered (")\n");
4754 printfi_filtered (spaces + 8, "type ");
4755 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4756 gdb_stdout);
4757 printf_filtered ("\n");
4758
4759 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4760 spaces + 8 + 2);
4761
4762 printfi_filtered (spaces + 8, "args ");
4763 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4764 gdb_stdout);
4765 printf_filtered ("\n");
4766 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4767 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4768 spaces + 8 + 2);
4769 printfi_filtered (spaces + 8, "fcontext ");
4770 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4771 gdb_stdout);
4772 printf_filtered ("\n");
4773
4774 printfi_filtered (spaces + 8, "is_const %d\n",
4775 TYPE_FN_FIELD_CONST (f, overload_idx));
4776 printfi_filtered (spaces + 8, "is_volatile %d\n",
4777 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4778 printfi_filtered (spaces + 8, "is_private %d\n",
4779 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4780 printfi_filtered (spaces + 8, "is_protected %d\n",
4781 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4782 printfi_filtered (spaces + 8, "is_stub %d\n",
4783 TYPE_FN_FIELD_STUB (f, overload_idx));
4784 printfi_filtered (spaces + 8, "defaulted %d\n",
4785 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4786 printfi_filtered (spaces + 8, "is_deleted %d\n",
4787 TYPE_FN_FIELD_DELETED (f, overload_idx));
4788 printfi_filtered (spaces + 8, "voffset %u\n",
4789 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4790 }
4791 }
4792 }
4793
4794 static void
4795 print_cplus_stuff (struct type *type, int spaces)
4796 {
4797 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4798 printfi_filtered (spaces, "vptr_basetype ");
4799 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4800 puts_filtered ("\n");
4801 if (TYPE_VPTR_BASETYPE (type) != NULL)
4802 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4803
4804 printfi_filtered (spaces, "n_baseclasses %d\n",
4805 TYPE_N_BASECLASSES (type));
4806 printfi_filtered (spaces, "nfn_fields %d\n",
4807 TYPE_NFN_FIELDS (type));
4808 if (TYPE_N_BASECLASSES (type) > 0)
4809 {
4810 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4811 TYPE_N_BASECLASSES (type));
4812 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4813 gdb_stdout);
4814 printf_filtered (")");
4815
4816 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4817 TYPE_N_BASECLASSES (type));
4818 puts_filtered ("\n");
4819 }
4820 if (TYPE_NFIELDS (type) > 0)
4821 {
4822 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4823 {
4824 printfi_filtered (spaces,
4825 "private_field_bits (%d bits at *",
4826 TYPE_NFIELDS (type));
4827 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4828 gdb_stdout);
4829 printf_filtered (")");
4830 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4831 TYPE_NFIELDS (type));
4832 puts_filtered ("\n");
4833 }
4834 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4835 {
4836 printfi_filtered (spaces,
4837 "protected_field_bits (%d bits at *",
4838 TYPE_NFIELDS (type));
4839 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4840 gdb_stdout);
4841 printf_filtered (")");
4842 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4843 TYPE_NFIELDS (type));
4844 puts_filtered ("\n");
4845 }
4846 }
4847 if (TYPE_NFN_FIELDS (type) > 0)
4848 {
4849 dump_fn_fieldlists (type, spaces);
4850 }
4851
4852 printfi_filtered (spaces, "calling_convention %d\n",
4853 TYPE_CPLUS_CALLING_CONVENTION (type));
4854 }
4855
4856 /* Print the contents of the TYPE's type_specific union, assuming that
4857 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4858
4859 static void
4860 print_gnat_stuff (struct type *type, int spaces)
4861 {
4862 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4863
4864 if (descriptive_type == NULL)
4865 printfi_filtered (spaces + 2, "no descriptive type\n");
4866 else
4867 {
4868 printfi_filtered (spaces + 2, "descriptive type\n");
4869 recursive_dump_type (descriptive_type, spaces + 4);
4870 }
4871 }
4872
4873 static struct obstack dont_print_type_obstack;
4874
4875 void
4876 recursive_dump_type (struct type *type, int spaces)
4877 {
4878 int idx;
4879
4880 if (spaces == 0)
4881 obstack_begin (&dont_print_type_obstack, 0);
4882
4883 if (TYPE_NFIELDS (type) > 0
4884 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4885 {
4886 struct type **first_dont_print
4887 = (struct type **) obstack_base (&dont_print_type_obstack);
4888
4889 int i = (struct type **)
4890 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4891
4892 while (--i >= 0)
4893 {
4894 if (type == first_dont_print[i])
4895 {
4896 printfi_filtered (spaces, "type node ");
4897 gdb_print_host_address (type, gdb_stdout);
4898 printf_filtered (_(" <same as already seen type>\n"));
4899 return;
4900 }
4901 }
4902
4903 obstack_ptr_grow (&dont_print_type_obstack, type);
4904 }
4905
4906 printfi_filtered (spaces, "type node ");
4907 gdb_print_host_address (type, gdb_stdout);
4908 printf_filtered ("\n");
4909 printfi_filtered (spaces, "name '%s' (",
4910 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4911 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4912 printf_filtered (")\n");
4913 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4914 switch (TYPE_CODE (type))
4915 {
4916 case TYPE_CODE_UNDEF:
4917 printf_filtered ("(TYPE_CODE_UNDEF)");
4918 break;
4919 case TYPE_CODE_PTR:
4920 printf_filtered ("(TYPE_CODE_PTR)");
4921 break;
4922 case TYPE_CODE_ARRAY:
4923 printf_filtered ("(TYPE_CODE_ARRAY)");
4924 break;
4925 case TYPE_CODE_STRUCT:
4926 printf_filtered ("(TYPE_CODE_STRUCT)");
4927 break;
4928 case TYPE_CODE_UNION:
4929 printf_filtered ("(TYPE_CODE_UNION)");
4930 break;
4931 case TYPE_CODE_ENUM:
4932 printf_filtered ("(TYPE_CODE_ENUM)");
4933 break;
4934 case TYPE_CODE_FLAGS:
4935 printf_filtered ("(TYPE_CODE_FLAGS)");
4936 break;
4937 case TYPE_CODE_FUNC:
4938 printf_filtered ("(TYPE_CODE_FUNC)");
4939 break;
4940 case TYPE_CODE_INT:
4941 printf_filtered ("(TYPE_CODE_INT)");
4942 break;
4943 case TYPE_CODE_FLT:
4944 printf_filtered ("(TYPE_CODE_FLT)");
4945 break;
4946 case TYPE_CODE_VOID:
4947 printf_filtered ("(TYPE_CODE_VOID)");
4948 break;
4949 case TYPE_CODE_SET:
4950 printf_filtered ("(TYPE_CODE_SET)");
4951 break;
4952 case TYPE_CODE_RANGE:
4953 printf_filtered ("(TYPE_CODE_RANGE)");
4954 break;
4955 case TYPE_CODE_STRING:
4956 printf_filtered ("(TYPE_CODE_STRING)");
4957 break;
4958 case TYPE_CODE_ERROR:
4959 printf_filtered ("(TYPE_CODE_ERROR)");
4960 break;
4961 case TYPE_CODE_MEMBERPTR:
4962 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4963 break;
4964 case TYPE_CODE_METHODPTR:
4965 printf_filtered ("(TYPE_CODE_METHODPTR)");
4966 break;
4967 case TYPE_CODE_METHOD:
4968 printf_filtered ("(TYPE_CODE_METHOD)");
4969 break;
4970 case TYPE_CODE_REF:
4971 printf_filtered ("(TYPE_CODE_REF)");
4972 break;
4973 case TYPE_CODE_CHAR:
4974 printf_filtered ("(TYPE_CODE_CHAR)");
4975 break;
4976 case TYPE_CODE_BOOL:
4977 printf_filtered ("(TYPE_CODE_BOOL)");
4978 break;
4979 case TYPE_CODE_COMPLEX:
4980 printf_filtered ("(TYPE_CODE_COMPLEX)");
4981 break;
4982 case TYPE_CODE_TYPEDEF:
4983 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4984 break;
4985 case TYPE_CODE_NAMESPACE:
4986 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4987 break;
4988 default:
4989 printf_filtered ("(UNKNOWN TYPE CODE)");
4990 break;
4991 }
4992 puts_filtered ("\n");
4993 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4994 if (TYPE_OBJFILE_OWNED (type))
4995 {
4996 printfi_filtered (spaces, "objfile ");
4997 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4998 }
4999 else
5000 {
5001 printfi_filtered (spaces, "gdbarch ");
5002 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5003 }
5004 printf_filtered ("\n");
5005 printfi_filtered (spaces, "target_type ");
5006 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5007 printf_filtered ("\n");
5008 if (TYPE_TARGET_TYPE (type) != NULL)
5009 {
5010 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5011 }
5012 printfi_filtered (spaces, "pointer_type ");
5013 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5014 printf_filtered ("\n");
5015 printfi_filtered (spaces, "reference_type ");
5016 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5017 printf_filtered ("\n");
5018 printfi_filtered (spaces, "type_chain ");
5019 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5020 printf_filtered ("\n");
5021 printfi_filtered (spaces, "instance_flags 0x%x",
5022 TYPE_INSTANCE_FLAGS (type));
5023 if (TYPE_CONST (type))
5024 {
5025 puts_filtered (" TYPE_CONST");
5026 }
5027 if (TYPE_VOLATILE (type))
5028 {
5029 puts_filtered (" TYPE_VOLATILE");
5030 }
5031 if (TYPE_CODE_SPACE (type))
5032 {
5033 puts_filtered (" TYPE_CODE_SPACE");
5034 }
5035 if (TYPE_DATA_SPACE (type))
5036 {
5037 puts_filtered (" TYPE_DATA_SPACE");
5038 }
5039 if (TYPE_ADDRESS_CLASS_1 (type))
5040 {
5041 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5042 }
5043 if (TYPE_ADDRESS_CLASS_2 (type))
5044 {
5045 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5046 }
5047 if (TYPE_RESTRICT (type))
5048 {
5049 puts_filtered (" TYPE_RESTRICT");
5050 }
5051 if (TYPE_ATOMIC (type))
5052 {
5053 puts_filtered (" TYPE_ATOMIC");
5054 }
5055 puts_filtered ("\n");
5056
5057 printfi_filtered (spaces, "flags");
5058 if (TYPE_UNSIGNED (type))
5059 {
5060 puts_filtered (" TYPE_UNSIGNED");
5061 }
5062 if (TYPE_NOSIGN (type))
5063 {
5064 puts_filtered (" TYPE_NOSIGN");
5065 }
5066 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5067 {
5068 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5069 }
5070 if (TYPE_STUB (type))
5071 {
5072 puts_filtered (" TYPE_STUB");
5073 }
5074 if (TYPE_TARGET_STUB (type))
5075 {
5076 puts_filtered (" TYPE_TARGET_STUB");
5077 }
5078 if (TYPE_PROTOTYPED (type))
5079 {
5080 puts_filtered (" TYPE_PROTOTYPED");
5081 }
5082 if (TYPE_VARARGS (type))
5083 {
5084 puts_filtered (" TYPE_VARARGS");
5085 }
5086 /* This is used for things like AltiVec registers on ppc. Gcc emits
5087 an attribute for the array type, which tells whether or not we
5088 have a vector, instead of a regular array. */
5089 if (TYPE_VECTOR (type))
5090 {
5091 puts_filtered (" TYPE_VECTOR");
5092 }
5093 if (TYPE_FIXED_INSTANCE (type))
5094 {
5095 puts_filtered (" TYPE_FIXED_INSTANCE");
5096 }
5097 if (TYPE_STUB_SUPPORTED (type))
5098 {
5099 puts_filtered (" TYPE_STUB_SUPPORTED");
5100 }
5101 if (TYPE_NOTTEXT (type))
5102 {
5103 puts_filtered (" TYPE_NOTTEXT");
5104 }
5105 puts_filtered ("\n");
5106 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
5107 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
5108 puts_filtered ("\n");
5109 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
5110 {
5111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
5112 printfi_filtered (spaces + 2,
5113 "[%d] enumval %s type ",
5114 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5115 else
5116 printfi_filtered (spaces + 2,
5117 "[%d] bitpos %s bitsize %d type ",
5118 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5119 TYPE_FIELD_BITSIZE (type, idx));
5120 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
5121 printf_filtered (" name '%s' (",
5122 TYPE_FIELD_NAME (type, idx) != NULL
5123 ? TYPE_FIELD_NAME (type, idx)
5124 : "<NULL>");
5125 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5126 printf_filtered (")\n");
5127 if (TYPE_FIELD_TYPE (type, idx) != NULL)
5128 {
5129 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
5130 }
5131 }
5132 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5133 {
5134 printfi_filtered (spaces, "low %s%s high %s%s\n",
5135 plongest (TYPE_LOW_BOUND (type)),
5136 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
5137 plongest (TYPE_HIGH_BOUND (type)),
5138 TYPE_HIGH_BOUND_UNDEFINED (type)
5139 ? " (undefined)" : "");
5140 }
5141
5142 switch (TYPE_SPECIFIC_FIELD (type))
5143 {
5144 case TYPE_SPECIFIC_CPLUS_STUFF:
5145 printfi_filtered (spaces, "cplus_stuff ");
5146 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5147 gdb_stdout);
5148 puts_filtered ("\n");
5149 print_cplus_stuff (type, spaces);
5150 break;
5151
5152 case TYPE_SPECIFIC_GNAT_STUFF:
5153 printfi_filtered (spaces, "gnat_stuff ");
5154 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5155 puts_filtered ("\n");
5156 print_gnat_stuff (type, spaces);
5157 break;
5158
5159 case TYPE_SPECIFIC_FLOATFORMAT:
5160 printfi_filtered (spaces, "floatformat ");
5161 if (TYPE_FLOATFORMAT (type) == NULL
5162 || TYPE_FLOATFORMAT (type)->name == NULL)
5163 puts_filtered ("(null)");
5164 else
5165 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5166 puts_filtered ("\n");
5167 break;
5168
5169 case TYPE_SPECIFIC_FUNC:
5170 printfi_filtered (spaces, "calling_convention %d\n",
5171 TYPE_CALLING_CONVENTION (type));
5172 /* tail_call_list is not printed. */
5173 break;
5174
5175 case TYPE_SPECIFIC_SELF_TYPE:
5176 printfi_filtered (spaces, "self_type ");
5177 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5178 puts_filtered ("\n");
5179 break;
5180 }
5181
5182 if (spaces == 0)
5183 obstack_free (&dont_print_type_obstack, NULL);
5184 }
5185 \f
5186 /* Trivial helpers for the libiberty hash table, for mapping one
5187 type to another. */
5188
5189 struct type_pair : public allocate_on_obstack
5190 {
5191 type_pair (struct type *old_, struct type *newobj_)
5192 : old (old_), newobj (newobj_)
5193 {}
5194
5195 struct type * const old, * const newobj;
5196 };
5197
5198 static hashval_t
5199 type_pair_hash (const void *item)
5200 {
5201 const struct type_pair *pair = (const struct type_pair *) item;
5202
5203 return htab_hash_pointer (pair->old);
5204 }
5205
5206 static int
5207 type_pair_eq (const void *item_lhs, const void *item_rhs)
5208 {
5209 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5210 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5211
5212 return lhs->old == rhs->old;
5213 }
5214
5215 /* Allocate the hash table used by copy_type_recursive to walk
5216 types without duplicates. We use OBJFILE's obstack, because
5217 OBJFILE is about to be deleted. */
5218
5219 htab_t
5220 create_copied_types_hash (struct objfile *objfile)
5221 {
5222 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5223 NULL, &objfile->objfile_obstack,
5224 hashtab_obstack_allocate,
5225 dummy_obstack_deallocate);
5226 }
5227
5228 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5229
5230 static struct dynamic_prop_list *
5231 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5232 struct dynamic_prop_list *list)
5233 {
5234 struct dynamic_prop_list *copy = list;
5235 struct dynamic_prop_list **node_ptr = &copy;
5236
5237 while (*node_ptr != NULL)
5238 {
5239 struct dynamic_prop_list *node_copy;
5240
5241 node_copy = ((struct dynamic_prop_list *)
5242 obstack_copy (objfile_obstack, *node_ptr,
5243 sizeof (struct dynamic_prop_list)));
5244 node_copy->prop = (*node_ptr)->prop;
5245 *node_ptr = node_copy;
5246
5247 node_ptr = &node_copy->next;
5248 }
5249
5250 return copy;
5251 }
5252
5253 /* Recursively copy (deep copy) TYPE, if it is associated with
5254 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5255 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5256 it is not associated with OBJFILE. */
5257
5258 struct type *
5259 copy_type_recursive (struct objfile *objfile,
5260 struct type *type,
5261 htab_t copied_types)
5262 {
5263 void **slot;
5264 struct type *new_type;
5265
5266 if (! TYPE_OBJFILE_OWNED (type))
5267 return type;
5268
5269 /* This type shouldn't be pointing to any types in other objfiles;
5270 if it did, the type might disappear unexpectedly. */
5271 gdb_assert (TYPE_OBJFILE (type) == objfile);
5272
5273 struct type_pair pair (type, nullptr);
5274
5275 slot = htab_find_slot (copied_types, &pair, INSERT);
5276 if (*slot != NULL)
5277 return ((struct type_pair *) *slot)->newobj;
5278
5279 new_type = alloc_type_arch (get_type_arch (type));
5280
5281 /* We must add the new type to the hash table immediately, in case
5282 we encounter this type again during a recursive call below. */
5283 struct type_pair *stored
5284 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5285
5286 *slot = stored;
5287
5288 /* Copy the common fields of types. For the main type, we simply
5289 copy the entire thing and then update specific fields as needed. */
5290 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5291 TYPE_OBJFILE_OWNED (new_type) = 0;
5292 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5293
5294 if (TYPE_NAME (type))
5295 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
5296
5297 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5298 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5299
5300 /* Copy the fields. */
5301 if (TYPE_NFIELDS (type))
5302 {
5303 int i, nfields;
5304
5305 nfields = TYPE_NFIELDS (type);
5306 TYPE_FIELDS (new_type) = (struct field *)
5307 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
5308 for (i = 0; i < nfields; i++)
5309 {
5310 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5311 TYPE_FIELD_ARTIFICIAL (type, i);
5312 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5313 if (TYPE_FIELD_TYPE (type, i))
5314 TYPE_FIELD_TYPE (new_type, i)
5315 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5316 copied_types);
5317 if (TYPE_FIELD_NAME (type, i))
5318 TYPE_FIELD_NAME (new_type, i) =
5319 xstrdup (TYPE_FIELD_NAME (type, i));
5320 switch (TYPE_FIELD_LOC_KIND (type, i))
5321 {
5322 case FIELD_LOC_KIND_BITPOS:
5323 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5324 TYPE_FIELD_BITPOS (type, i));
5325 break;
5326 case FIELD_LOC_KIND_ENUMVAL:
5327 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5328 TYPE_FIELD_ENUMVAL (type, i));
5329 break;
5330 case FIELD_LOC_KIND_PHYSADDR:
5331 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5332 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5333 break;
5334 case FIELD_LOC_KIND_PHYSNAME:
5335 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5336 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5337 i)));
5338 break;
5339 default:
5340 internal_error (__FILE__, __LINE__,
5341 _("Unexpected type field location kind: %d"),
5342 TYPE_FIELD_LOC_KIND (type, i));
5343 }
5344 }
5345 }
5346
5347 /* For range types, copy the bounds information. */
5348 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5349 {
5350 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5351 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5352 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5353 }
5354
5355 if (TYPE_DYN_PROP_LIST (type) != NULL)
5356 TYPE_DYN_PROP_LIST (new_type)
5357 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5358 TYPE_DYN_PROP_LIST (type));
5359
5360
5361 /* Copy pointers to other types. */
5362 if (TYPE_TARGET_TYPE (type))
5363 TYPE_TARGET_TYPE (new_type) =
5364 copy_type_recursive (objfile,
5365 TYPE_TARGET_TYPE (type),
5366 copied_types);
5367
5368 /* Maybe copy the type_specific bits.
5369
5370 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5371 base classes and methods. There's no fundamental reason why we
5372 can't, but at the moment it is not needed. */
5373
5374 switch (TYPE_SPECIFIC_FIELD (type))
5375 {
5376 case TYPE_SPECIFIC_NONE:
5377 break;
5378 case TYPE_SPECIFIC_FUNC:
5379 INIT_FUNC_SPECIFIC (new_type);
5380 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5381 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5382 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5383 break;
5384 case TYPE_SPECIFIC_FLOATFORMAT:
5385 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5386 break;
5387 case TYPE_SPECIFIC_CPLUS_STUFF:
5388 INIT_CPLUS_SPECIFIC (new_type);
5389 break;
5390 case TYPE_SPECIFIC_GNAT_STUFF:
5391 INIT_GNAT_SPECIFIC (new_type);
5392 break;
5393 case TYPE_SPECIFIC_SELF_TYPE:
5394 set_type_self_type (new_type,
5395 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5396 copied_types));
5397 break;
5398 default:
5399 gdb_assert_not_reached ("bad type_specific_kind");
5400 }
5401
5402 return new_type;
5403 }
5404
5405 /* Make a copy of the given TYPE, except that the pointer & reference
5406 types are not preserved.
5407
5408 This function assumes that the given type has an associated objfile.
5409 This objfile is used to allocate the new type. */
5410
5411 struct type *
5412 copy_type (const struct type *type)
5413 {
5414 struct type *new_type;
5415
5416 gdb_assert (TYPE_OBJFILE_OWNED (type));
5417
5418 new_type = alloc_type_copy (type);
5419 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5420 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5421 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5422 sizeof (struct main_type));
5423 if (TYPE_DYN_PROP_LIST (type) != NULL)
5424 TYPE_DYN_PROP_LIST (new_type)
5425 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5426 TYPE_DYN_PROP_LIST (type));
5427
5428 return new_type;
5429 }
5430 \f
5431 /* Helper functions to initialize architecture-specific types. */
5432
5433 /* Allocate a type structure associated with GDBARCH and set its
5434 CODE, LENGTH, and NAME fields. */
5435
5436 struct type *
5437 arch_type (struct gdbarch *gdbarch,
5438 enum type_code code, int bit, const char *name)
5439 {
5440 struct type *type;
5441
5442 type = alloc_type_arch (gdbarch);
5443 set_type_code (type, code);
5444 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5445 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5446
5447 if (name)
5448 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5449
5450 return type;
5451 }
5452
5453 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5454 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5455 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5456
5457 struct type *
5458 arch_integer_type (struct gdbarch *gdbarch,
5459 int bit, int unsigned_p, const char *name)
5460 {
5461 struct type *t;
5462
5463 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5464 if (unsigned_p)
5465 TYPE_UNSIGNED (t) = 1;
5466
5467 return t;
5468 }
5469
5470 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5471 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5472 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5473
5474 struct type *
5475 arch_character_type (struct gdbarch *gdbarch,
5476 int bit, int unsigned_p, const char *name)
5477 {
5478 struct type *t;
5479
5480 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5481 if (unsigned_p)
5482 TYPE_UNSIGNED (t) = 1;
5483
5484 return t;
5485 }
5486
5487 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5488 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5489 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5490
5491 struct type *
5492 arch_boolean_type (struct gdbarch *gdbarch,
5493 int bit, int unsigned_p, const char *name)
5494 {
5495 struct type *t;
5496
5497 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5498 if (unsigned_p)
5499 TYPE_UNSIGNED (t) = 1;
5500
5501 return t;
5502 }
5503
5504 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5505 BIT is the type size in bits; if BIT equals -1, the size is
5506 determined by the floatformat. NAME is the type name. Set the
5507 TYPE_FLOATFORMAT from FLOATFORMATS. */
5508
5509 struct type *
5510 arch_float_type (struct gdbarch *gdbarch,
5511 int bit, const char *name,
5512 const struct floatformat **floatformats)
5513 {
5514 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5515 struct type *t;
5516
5517 bit = verify_floatformat (bit, fmt);
5518 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5519 TYPE_FLOATFORMAT (t) = fmt;
5520
5521 return t;
5522 }
5523
5524 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5525 BIT is the type size in bits. NAME is the type name. */
5526
5527 struct type *
5528 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5529 {
5530 struct type *t;
5531
5532 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5533 return t;
5534 }
5535
5536 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5537 BIT is the pointer type size in bits. NAME is the type name.
5538 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5539 TYPE_UNSIGNED flag. */
5540
5541 struct type *
5542 arch_pointer_type (struct gdbarch *gdbarch,
5543 int bit, const char *name, struct type *target_type)
5544 {
5545 struct type *t;
5546
5547 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5548 TYPE_TARGET_TYPE (t) = target_type;
5549 TYPE_UNSIGNED (t) = 1;
5550 return t;
5551 }
5552
5553 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5554 NAME is the type name. BIT is the size of the flag word in bits. */
5555
5556 struct type *
5557 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5558 {
5559 struct type *type;
5560
5561 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5562 TYPE_UNSIGNED (type) = 1;
5563 TYPE_NFIELDS (type) = 0;
5564 /* Pre-allocate enough space assuming every field is one bit. */
5565 TYPE_FIELDS (type)
5566 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5567
5568 return type;
5569 }
5570
5571 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5572 position BITPOS is called NAME. Pass NAME as "" for fields that
5573 should not be printed. */
5574
5575 void
5576 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5577 struct type *field_type, const char *name)
5578 {
5579 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5580 int field_nr = TYPE_NFIELDS (type);
5581
5582 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5583 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5584 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5585 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5586 gdb_assert (name != NULL);
5587
5588 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5589 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5590 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5591 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5592 ++TYPE_NFIELDS (type);
5593 }
5594
5595 /* Special version of append_flags_type_field to add a flag field.
5596 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5597 position BITPOS is called NAME. */
5598
5599 void
5600 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5601 {
5602 struct gdbarch *gdbarch = get_type_arch (type);
5603
5604 append_flags_type_field (type, bitpos, 1,
5605 builtin_type (gdbarch)->builtin_bool,
5606 name);
5607 }
5608
5609 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5610 specified by CODE) associated with GDBARCH. NAME is the type name. */
5611
5612 struct type *
5613 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5614 enum type_code code)
5615 {
5616 struct type *t;
5617
5618 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5619 t = arch_type (gdbarch, code, 0, NULL);
5620 TYPE_NAME (t) = name;
5621 INIT_CPLUS_SPECIFIC (t);
5622 return t;
5623 }
5624
5625 /* Add new field with name NAME and type FIELD to composite type T.
5626 Do not set the field's position or adjust the type's length;
5627 the caller should do so. Return the new field. */
5628
5629 struct field *
5630 append_composite_type_field_raw (struct type *t, const char *name,
5631 struct type *field)
5632 {
5633 struct field *f;
5634
5635 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5636 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5637 TYPE_NFIELDS (t));
5638 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5639 memset (f, 0, sizeof f[0]);
5640 FIELD_TYPE (f[0]) = field;
5641 FIELD_NAME (f[0]) = name;
5642 return f;
5643 }
5644
5645 /* Add new field with name NAME and type FIELD to composite type T.
5646 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5647
5648 void
5649 append_composite_type_field_aligned (struct type *t, const char *name,
5650 struct type *field, int alignment)
5651 {
5652 struct field *f = append_composite_type_field_raw (t, name, field);
5653
5654 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5655 {
5656 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5657 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5658 }
5659 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5660 {
5661 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5662 if (TYPE_NFIELDS (t) > 1)
5663 {
5664 SET_FIELD_BITPOS (f[0],
5665 (FIELD_BITPOS (f[-1])
5666 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5667 * TARGET_CHAR_BIT)));
5668
5669 if (alignment)
5670 {
5671 int left;
5672
5673 alignment *= TARGET_CHAR_BIT;
5674 left = FIELD_BITPOS (f[0]) % alignment;
5675
5676 if (left)
5677 {
5678 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5679 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5680 }
5681 }
5682 }
5683 }
5684 }
5685
5686 /* Add new field with name NAME and type FIELD to composite type T. */
5687
5688 void
5689 append_composite_type_field (struct type *t, const char *name,
5690 struct type *field)
5691 {
5692 append_composite_type_field_aligned (t, name, field, 0);
5693 }
5694
5695 static struct gdbarch_data *gdbtypes_data;
5696
5697 const struct builtin_type *
5698 builtin_type (struct gdbarch *gdbarch)
5699 {
5700 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5701 }
5702
5703 static void *
5704 gdbtypes_post_init (struct gdbarch *gdbarch)
5705 {
5706 struct builtin_type *builtin_type
5707 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5708
5709 /* Basic types. */
5710 builtin_type->builtin_void
5711 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5712 builtin_type->builtin_char
5713 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5714 !gdbarch_char_signed (gdbarch), "char");
5715 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5716 builtin_type->builtin_signed_char
5717 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5718 0, "signed char");
5719 builtin_type->builtin_unsigned_char
5720 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5721 1, "unsigned char");
5722 builtin_type->builtin_short
5723 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5724 0, "short");
5725 builtin_type->builtin_unsigned_short
5726 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5727 1, "unsigned short");
5728 builtin_type->builtin_int
5729 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5730 0, "int");
5731 builtin_type->builtin_unsigned_int
5732 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5733 1, "unsigned int");
5734 builtin_type->builtin_long
5735 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5736 0, "long");
5737 builtin_type->builtin_unsigned_long
5738 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5739 1, "unsigned long");
5740 builtin_type->builtin_long_long
5741 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5742 0, "long long");
5743 builtin_type->builtin_unsigned_long_long
5744 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5745 1, "unsigned long long");
5746 builtin_type->builtin_half
5747 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5748 "half", gdbarch_half_format (gdbarch));
5749 builtin_type->builtin_float
5750 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5751 "float", gdbarch_float_format (gdbarch));
5752 builtin_type->builtin_double
5753 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5754 "double", gdbarch_double_format (gdbarch));
5755 builtin_type->builtin_long_double
5756 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5757 "long double", gdbarch_long_double_format (gdbarch));
5758 builtin_type->builtin_complex
5759 = init_complex_type ("complex", builtin_type->builtin_float);
5760 builtin_type->builtin_double_complex
5761 = init_complex_type ("double complex", builtin_type->builtin_double);
5762 builtin_type->builtin_string
5763 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5764 builtin_type->builtin_bool
5765 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5766
5767 /* The following three are about decimal floating point types, which
5768 are 32-bits, 64-bits and 128-bits respectively. */
5769 builtin_type->builtin_decfloat
5770 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5771 builtin_type->builtin_decdouble
5772 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5773 builtin_type->builtin_declong
5774 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5775
5776 /* "True" character types. */
5777 builtin_type->builtin_true_char
5778 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5779 builtin_type->builtin_true_unsigned_char
5780 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5781
5782 /* Fixed-size integer types. */
5783 builtin_type->builtin_int0
5784 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5785 builtin_type->builtin_int8
5786 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5787 builtin_type->builtin_uint8
5788 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5789 builtin_type->builtin_int16
5790 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5791 builtin_type->builtin_uint16
5792 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5793 builtin_type->builtin_int24
5794 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5795 builtin_type->builtin_uint24
5796 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5797 builtin_type->builtin_int32
5798 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5799 builtin_type->builtin_uint32
5800 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5801 builtin_type->builtin_int64
5802 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5803 builtin_type->builtin_uint64
5804 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5805 builtin_type->builtin_int128
5806 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5807 builtin_type->builtin_uint128
5808 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5809 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5810 TYPE_INSTANCE_FLAG_NOTTEXT;
5811 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5812 TYPE_INSTANCE_FLAG_NOTTEXT;
5813
5814 /* Wide character types. */
5815 builtin_type->builtin_char16
5816 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5817 builtin_type->builtin_char32
5818 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5819 builtin_type->builtin_wchar
5820 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5821 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5822
5823 /* Default data/code pointer types. */
5824 builtin_type->builtin_data_ptr
5825 = lookup_pointer_type (builtin_type->builtin_void);
5826 builtin_type->builtin_func_ptr
5827 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5828 builtin_type->builtin_func_func
5829 = lookup_function_type (builtin_type->builtin_func_ptr);
5830
5831 /* This type represents a GDB internal function. */
5832 builtin_type->internal_fn
5833 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5834 "<internal function>");
5835
5836 /* This type represents an xmethod. */
5837 builtin_type->xmethod
5838 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5839
5840 return builtin_type;
5841 }
5842
5843 /* This set of objfile-based types is intended to be used by symbol
5844 readers as basic types. */
5845
5846 static const struct objfile_key<struct objfile_type,
5847 gdb::noop_deleter<struct objfile_type>>
5848 objfile_type_data;
5849
5850 const struct objfile_type *
5851 objfile_type (struct objfile *objfile)
5852 {
5853 struct gdbarch *gdbarch;
5854 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5855
5856 if (objfile_type)
5857 return objfile_type;
5858
5859 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5860 1, struct objfile_type);
5861
5862 /* Use the objfile architecture to determine basic type properties. */
5863 gdbarch = objfile->arch ();
5864
5865 /* Basic types. */
5866 objfile_type->builtin_void
5867 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5868 objfile_type->builtin_char
5869 = init_integer_type (objfile, TARGET_CHAR_BIT,
5870 !gdbarch_char_signed (gdbarch), "char");
5871 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5872 objfile_type->builtin_signed_char
5873 = init_integer_type (objfile, TARGET_CHAR_BIT,
5874 0, "signed char");
5875 objfile_type->builtin_unsigned_char
5876 = init_integer_type (objfile, TARGET_CHAR_BIT,
5877 1, "unsigned char");
5878 objfile_type->builtin_short
5879 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5880 0, "short");
5881 objfile_type->builtin_unsigned_short
5882 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5883 1, "unsigned short");
5884 objfile_type->builtin_int
5885 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5886 0, "int");
5887 objfile_type->builtin_unsigned_int
5888 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5889 1, "unsigned int");
5890 objfile_type->builtin_long
5891 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5892 0, "long");
5893 objfile_type->builtin_unsigned_long
5894 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5895 1, "unsigned long");
5896 objfile_type->builtin_long_long
5897 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5898 0, "long long");
5899 objfile_type->builtin_unsigned_long_long
5900 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5901 1, "unsigned long long");
5902 objfile_type->builtin_float
5903 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5904 "float", gdbarch_float_format (gdbarch));
5905 objfile_type->builtin_double
5906 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5907 "double", gdbarch_double_format (gdbarch));
5908 objfile_type->builtin_long_double
5909 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5910 "long double", gdbarch_long_double_format (gdbarch));
5911
5912 /* This type represents a type that was unrecognized in symbol read-in. */
5913 objfile_type->builtin_error
5914 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5915
5916 /* The following set of types is used for symbols with no
5917 debug information. */
5918 objfile_type->nodebug_text_symbol
5919 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5920 "<text variable, no debug info>");
5921 objfile_type->nodebug_text_gnu_ifunc_symbol
5922 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5923 "<text gnu-indirect-function variable, no debug info>");
5924 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5925 objfile_type->nodebug_got_plt_symbol
5926 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5927 "<text from jump slot in .got.plt, no debug info>",
5928 objfile_type->nodebug_text_symbol);
5929 objfile_type->nodebug_data_symbol
5930 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5931 objfile_type->nodebug_unknown_symbol
5932 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5933 objfile_type->nodebug_tls_symbol
5934 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5935
5936 /* NOTE: on some targets, addresses and pointers are not necessarily
5937 the same.
5938
5939 The upshot is:
5940 - gdb's `struct type' always describes the target's
5941 representation.
5942 - gdb's `struct value' objects should always hold values in
5943 target form.
5944 - gdb's CORE_ADDR values are addresses in the unified virtual
5945 address space that the assembler and linker work with. Thus,
5946 since target_read_memory takes a CORE_ADDR as an argument, it
5947 can access any memory on the target, even if the processor has
5948 separate code and data address spaces.
5949
5950 In this context, objfile_type->builtin_core_addr is a bit odd:
5951 it's a target type for a value the target will never see. It's
5952 only used to hold the values of (typeless) linker symbols, which
5953 are indeed in the unified virtual address space. */
5954
5955 objfile_type->builtin_core_addr
5956 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5957 "__CORE_ADDR");
5958
5959 objfile_type_data.set (objfile, objfile_type);
5960 return objfile_type;
5961 }
5962
5963 void _initialize_gdbtypes ();
5964 void
5965 _initialize_gdbtypes ()
5966 {
5967 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5968
5969 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5970 _("Set debugging of C++ overloading."),
5971 _("Show debugging of C++ overloading."),
5972 _("When enabled, ranking of the "
5973 "functions is displayed."),
5974 NULL,
5975 show_overload_debug,
5976 &setdebuglist, &showdebuglist);
5977
5978 /* Add user knob for controlling resolution of opaque types. */
5979 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5980 &opaque_type_resolution,
5981 _("Set resolution of opaque struct/class/union"
5982 " types (if set before loading symbols)."),
5983 _("Show resolution of opaque struct/class/union"
5984 " types (if set before loading symbols)."),
5985 NULL, NULL,
5986 show_opaque_type_resolution,
5987 &setlist, &showlist);
5988
5989 /* Add an option to permit non-strict type checking. */
5990 add_setshow_boolean_cmd ("type", class_support,
5991 &strict_type_checking,
5992 _("Set strict type checking."),
5993 _("Show strict type checking."),
5994 NULL, NULL,
5995 show_strict_type_checking,
5996 &setchecklist, &showchecklist);
5997 }
This page took 0.202382 seconds and 4 git commands to generate.