Compute the function length instead of hard coding it
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43 #include "gdbcore.h"
44
45 /* Initialize BADNESS constants. */
46
47 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
48
49 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
51
52 const struct rank EXACT_MATCH_BADNESS = {0,0};
53
54 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72 };
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76 };
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80 };
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84 };
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88 };
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92 };
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96 };
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100 };
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104 };
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108 };
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112 };
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
116 };
117
118 /* Should opaque types be resolved? */
119
120 static int opaque_type_resolution = 1;
121
122 /* A flag to enable printing of debugging information of C++
123 overloading. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static int strict_type_checking = 1;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_VPTR_FIELDNO (type) = -1;
187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
188
189 return type;
190 }
191
192 /* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
194 on the heap. */
195
196 struct type *
197 alloc_type_arch (struct gdbarch *gdbarch)
198 {
199 struct type *type;
200
201 gdb_assert (gdbarch != NULL);
202
203 /* Alloc the structure and start off with all fields zeroed. */
204
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
207
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
210
211 /* Initialize the fields that might not be zero. */
212
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
216
217 return type;
218 }
219
220 /* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
223
224 struct type *
225 alloc_type_copy (const struct type *type)
226 {
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
229 else
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
231 }
232
233 /* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
235
236 struct gdbarch *
237 get_type_arch (const struct type *type)
238 {
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
241 else
242 return TYPE_OWNER (type).gdbarch;
243 }
244
245 /* See gdbtypes.h. */
246
247 struct type *
248 get_target_type (struct type *type)
249 {
250 if (type != NULL)
251 {
252 type = TYPE_TARGET_TYPE (type);
253 if (type != NULL)
254 type = check_typedef (type);
255 }
256
257 return type;
258 }
259
260 /* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
263
264 static struct type *
265 alloc_type_instance (struct type *oldtype)
266 {
267 struct type *type;
268
269 /* Allocate the structure. */
270
271 if (! TYPE_OBJFILE_OWNED (oldtype))
272 type = XCNEW (struct type);
273 else
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
275 struct type);
276
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
278
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
280
281 return type;
282 }
283
284 /* Clear all remnants of the previous type at TYPE, in preparation for
285 replacing it with something else. Preserve owner information. */
286
287 static void
288 smash_type (struct type *type)
289 {
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
292
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
294
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
298
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
301
302 /* For now, leave the pointer/reference types alone. */
303 }
304
305 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
309
310 struct type *
311 make_pointer_type (struct type *type, struct type **typeptr)
312 {
313 struct type *ntype; /* New type */
314 struct type *chain;
315
316 ntype = TYPE_POINTER_TYPE (type);
317
318 if (ntype)
319 {
320 if (typeptr == 0)
321 return ntype; /* Don't care about alloc,
322 and have new type. */
323 else if (*typeptr == 0)
324 {
325 *typeptr = ntype; /* Tracking alloc, and have new type. */
326 return ntype;
327 }
328 }
329
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
331 {
332 ntype = alloc_type_copy (type);
333 if (typeptr)
334 *typeptr = ntype;
335 }
336 else /* We have storage, but need to reset it. */
337 {
338 ntype = *typeptr;
339 chain = TYPE_CHAIN (ntype);
340 smash_type (ntype);
341 TYPE_CHAIN (ntype) = chain;
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
346
347 /* FIXME! Assumes the machine has only one representation for pointers! */
348
349 TYPE_LENGTH (ntype)
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
352
353 /* Mark pointers as unsigned. The target converts between pointers
354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
355 gdbarch_address_to_pointer. */
356 TYPE_UNSIGNED (ntype) = 1;
357
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
366 return ntype;
367 }
368
369 /* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
371
372 struct type *
373 lookup_pointer_type (struct type *type)
374 {
375 return make_pointer_type (type, (struct type **) 0);
376 }
377
378 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
382
383 struct type *
384 make_reference_type (struct type *type, struct type **typeptr)
385 {
386 struct type *ntype; /* New type */
387 struct type *chain;
388
389 ntype = TYPE_REFERENCE_TYPE (type);
390
391 if (ntype)
392 {
393 if (typeptr == 0)
394 return ntype; /* Don't care about alloc,
395 and have new type. */
396 else if (*typeptr == 0)
397 {
398 *typeptr = ntype; /* Tracking alloc, and have new type. */
399 return ntype;
400 }
401 }
402
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
404 {
405 ntype = alloc_type_copy (type);
406 if (typeptr)
407 *typeptr = ntype;
408 }
409 else /* We have storage, but need to reset it. */
410 {
411 ntype = *typeptr;
412 chain = TYPE_CHAIN (ntype);
413 smash_type (ntype);
414 TYPE_CHAIN (ntype) = chain;
415 }
416
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
419
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
422 pointers! */
423
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
426 TYPE_CODE (ntype) = TYPE_CODE_REF;
427
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
430
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
434 {
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
437 }
438
439 return ntype;
440 }
441
442 /* Same as above, but caller doesn't care about memory allocation
443 details. */
444
445 struct type *
446 lookup_reference_type (struct type *type)
447 {
448 return make_reference_type (type, (struct type **) 0);
449 }
450
451 /* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
454 function type we return. We allocate new memory if needed. */
455
456 struct type *
457 make_function_type (struct type *type, struct type **typeptr)
458 {
459 struct type *ntype; /* New type */
460
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
462 {
463 ntype = alloc_type_copy (type);
464 if (typeptr)
465 *typeptr = ntype;
466 }
467 else /* We have storage, but need to reset it. */
468 {
469 ntype = *typeptr;
470 smash_type (ntype);
471 }
472
473 TYPE_TARGET_TYPE (ntype) = type;
474
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
477
478 INIT_FUNC_SPECIFIC (ntype);
479
480 return ntype;
481 }
482
483 /* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
485
486 struct type *
487 lookup_function_type (struct type *type)
488 {
489 return make_function_type (type, (struct type **) 0);
490 }
491
492 /* Given a type TYPE and argument types, return the appropriate
493 function type. If the final type in PARAM_TYPES is NULL, make a
494 varargs function. */
495
496 struct type *
497 lookup_function_type_with_arguments (struct type *type,
498 int nparams,
499 struct type **param_types)
500 {
501 struct type *fn = make_function_type (type, (struct type **) 0);
502 int i;
503
504 if (nparams > 0)
505 {
506 if (param_types[nparams - 1] == NULL)
507 {
508 --nparams;
509 TYPE_VARARGS (fn) = 1;
510 }
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 == TYPE_CODE_VOID)
513 {
514 --nparams;
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
518 }
519 }
520
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
525
526 return fn;
527 }
528
529 /* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
531
532 int
533 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
534 {
535 int type_flags;
536
537 /* Check for known address space delimiters. */
538 if (!strcmp (space_identifier, "code"))
539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
540 else if (!strcmp (space_identifier, "data"))
541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
544 space_identifier,
545 &type_flags))
546 return type_flags;
547 else
548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
549 }
550
551 /* Identify address space identifier by integer flag as defined in
552 gdbtypes.h -- return the string version of the adress space name. */
553
554 const char *
555 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
556 {
557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
558 return "code";
559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
560 return "data";
561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
564 else
565 return NULL;
566 }
567
568 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
569
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
572
573 static struct type *
574 make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
576 {
577 struct type *ntype;
578
579 ntype = type;
580 do
581 {
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
583 return ntype;
584 ntype = TYPE_CHAIN (ntype);
585 }
586 while (ntype != type);
587
588 /* Create a new type instance. */
589 if (storage == NULL)
590 ntype = alloc_type_instance (type);
591 else
592 {
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
598
599 ntype = storage;
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
602 }
603
604 /* Pointers or references to the original type are not relevant to
605 the new type. */
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
608
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
612
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
615
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
618
619 return ntype;
620 }
621
622 /* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
625
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
629 representations. */
630
631 struct type *
632 make_type_with_address_space (struct type *type, int space_flag)
633 {
634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
638 | space_flag);
639
640 return make_qualified_type (type, new_flags, NULL);
641 }
642
643 /* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
648
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
654
655 struct type *
656 make_cv_type (int cnst, int voltl,
657 struct type *type,
658 struct type **typeptr)
659 {
660 struct type *ntype; /* New type */
661
662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
665
666 if (cnst)
667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
668
669 if (voltl)
670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
671
672 if (typeptr && *typeptr != NULL)
673 {
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
677
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
687 }
688
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
691
692 if (typeptr != NULL)
693 *typeptr = ntype;
694
695 return ntype;
696 }
697
698 /* Make a 'restrict'-qualified version of TYPE. */
699
700 struct type *
701 make_restrict_type (struct type *type)
702 {
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
706 NULL);
707 }
708
709 /* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
712
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
718
719 void
720 replace_type (struct type *ntype, struct type *type)
721 {
722 struct type *chain;
723
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
729
730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
731
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
734 chain = ntype;
735 do
736 {
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
744
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
747 }
748 while (ntype != chain);
749
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
753 }
754
755 /* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
759
760 struct type *
761 lookup_memberptr_type (struct type *type, struct type *domain)
762 {
763 struct type *mtype;
764
765 mtype = alloc_type_copy (type);
766 smash_to_memberptr_type (mtype, domain, type);
767 return mtype;
768 }
769
770 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
771
772 struct type *
773 lookup_methodptr_type (struct type *to_type)
774 {
775 struct type *mtype;
776
777 mtype = alloc_type_copy (to_type);
778 smash_to_methodptr_type (mtype, to_type);
779 return mtype;
780 }
781
782 /* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
786 type. */
787
788 struct type *
789 allocate_stub_method (struct type *type)
790 {
791 struct type *mtype;
792
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
799 return mtype;
800 }
801
802 /* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
804
805 struct type *
806 create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
809 {
810 if (result_type == NULL)
811 result_type = alloc_type_copy (index_type);
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
814 if (TYPE_STUB (index_type))
815 TYPE_TARGET_STUB (result_type) = 1;
816 else
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
818
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
823
824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
825 TYPE_UNSIGNED (result_type) = 1;
826
827 return result_type;
828 }
829
830 /* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
832 INDEX_TYPE.
833
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
836
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
839
840 struct type *
841 create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
843 {
844 struct dynamic_prop low, high;
845
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
848
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
851
852 result_type = create_range_type (result_type, index_type, &low, &high);
853
854 return result_type;
855 }
856
857 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
859
860 static int
861 has_static_range (const struct range_bounds *bounds)
862 {
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
865 }
866
867
868 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
871
872 int
873 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
874 {
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
877 {
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
881 return 1;
882 case TYPE_CODE_ENUM:
883 if (TYPE_NFIELDS (type) > 0)
884 {
885 /* The enums may not be sorted by value, so search all
886 entries. */
887 int i;
888
889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
891 {
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
896 }
897
898 /* Set unsigned indicator if warranted. */
899 if (*lowp >= 0)
900 {
901 TYPE_UNSIGNED (type) = 1;
902 }
903 }
904 else
905 {
906 *lowp = 0;
907 *highp = -1;
908 }
909 return 0;
910 case TYPE_CODE_BOOL:
911 *lowp = 0;
912 *highp = 1;
913 return 0;
914 case TYPE_CODE_INT:
915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
916 return -1;
917 if (!TYPE_UNSIGNED (type))
918 {
919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
920 *highp = -*lowp - 1;
921 return 0;
922 }
923 /* ... fall through for unsigned ints ... */
924 case TYPE_CODE_CHAR:
925 *lowp = 0;
926 /* This round-about calculation is to avoid shifting by
927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
931 return 0;
932 default:
933 return -1;
934 }
935 }
936
937 /* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
940
941 Return 1 if the operation was successful. Return zero otherwise,
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
943
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
950
951 int
952 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
953 {
954 struct type *index = TYPE_INDEX_TYPE (type);
955 LONGEST low = 0;
956 LONGEST high = 0;
957 int res;
958
959 if (index == NULL)
960 return 0;
961
962 res = get_discrete_bounds (index, &low, &high);
963 if (res == -1)
964 return 0;
965
966 /* Check if the array bounds are undefined. */
967 if (res == 1
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
970 return 0;
971
972 if (low_bound)
973 *low_bound = low;
974
975 if (high_bound)
976 *high_bound = high;
977
978 return 1;
979 }
980
981 /* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 RANGE_TYPE.
984
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
986 RANGE_TYPE.
987
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
990
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
993 type? */
994
995 struct type *
996 create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
1000 {
1001 if (result_type == NULL)
1002 result_type = alloc_type_copy (range_type);
1003
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1007 {
1008 LONGEST low_bound, high_bound;
1009
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1021 else
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1024 }
1025 else
1026 {
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1034 }
1035
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1039 TYPE_INDEX_TYPE (result_type) = range_type;
1040 TYPE_VPTR_FIELDNO (result_type) = -1;
1041 if (bit_stride > 0)
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1043
1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1045 if (TYPE_LENGTH (result_type) == 0)
1046 TYPE_TARGET_STUB (result_type) = 1;
1047
1048 return result_type;
1049 }
1050
1051 /* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1053
1054 struct type *
1055 create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1058 {
1059 return create_array_type_with_stride (result_type, element_type,
1060 range_type, 0);
1061 }
1062
1063 struct type *
1064 lookup_array_range_type (struct type *element_type,
1065 LONGEST low_bound, LONGEST high_bound)
1066 {
1067 struct gdbarch *gdbarch = get_type_arch (element_type);
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1071
1072 return create_array_type (NULL, element_type, range_type);
1073 }
1074
1075 /* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
1079
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1082
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1085 type? */
1086
1087 struct type *
1088 create_string_type (struct type *result_type,
1089 struct type *string_char_type,
1090 struct type *range_type)
1091 {
1092 result_type = create_array_type (result_type,
1093 string_char_type,
1094 range_type);
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1096 return result_type;
1097 }
1098
1099 struct type *
1100 lookup_string_range_type (struct type *string_char_type,
1101 LONGEST low_bound, LONGEST high_bound)
1102 {
1103 struct type *result_type;
1104
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1108 return result_type;
1109 }
1110
1111 struct type *
1112 create_set_type (struct type *result_type, struct type *domain_type)
1113 {
1114 if (result_type == NULL)
1115 result_type = alloc_type_copy (domain_type);
1116
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1120
1121 if (!TYPE_STUB (domain_type))
1122 {
1123 LONGEST low_bound, high_bound, bit_length;
1124
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1130 if (low_bound >= 0)
1131 TYPE_UNSIGNED (result_type) = 1;
1132 }
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1134
1135 return result_type;
1136 }
1137
1138 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1140
1141 void
1142 make_vector_type (struct type *array_type)
1143 {
1144 struct type *inner_array, *elt_type;
1145 int flags;
1146
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1152
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1155 {
1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1159 }
1160
1161 TYPE_VECTOR (array_type) = 1;
1162 }
1163
1164 struct type *
1165 init_vector_type (struct type *elt_type, int n)
1166 {
1167 struct type *array_type;
1168
1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1170 make_vector_type (array_type);
1171 return array_type;
1172 }
1173
1174 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1179 (for some reason).
1180
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
1183 allocated. */
1184
1185 void
1186 smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
1188 {
1189 smash_type (type);
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
1192 /* Assume that a data member pointer is the same size as a normal
1193 pointer. */
1194 TYPE_LENGTH (type)
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1197 }
1198
1199 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1200
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1203 allocated. */
1204
1205 void
1206 smash_to_methodptr_type (struct type *type, struct type *to_type)
1207 {
1208 smash_type (type);
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1213 }
1214
1215 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222 void
1223 smash_to_method_type (struct type *type, struct type *domain,
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
1226 {
1227 smash_type (type);
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1232 if (varargs)
1233 TYPE_VARARGS (type) = 1;
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1236 }
1237
1238 /* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1240
1241 const char *
1242 type_name_no_tag (const struct type *type)
1243 {
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1246
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
1250 return TYPE_NAME (type);
1251 }
1252
1253 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1256
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1258 apply it itself. */
1259
1260 const char *
1261 type_name_no_tag_or_error (struct type *type)
1262 {
1263 struct type *saved_type = type;
1264 const char *name;
1265 struct objfile *objfile;
1266
1267 CHECK_TYPEDEF (type);
1268
1269 name = type_name_no_tag (type);
1270 if (name != NULL)
1271 return name;
1272
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
1278 }
1279
1280 /* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
1283
1284 struct type *
1285 lookup_typename (const struct language_defn *language,
1286 struct gdbarch *gdbarch, const char *name,
1287 const struct block *block, int noerr)
1288 {
1289 struct symbol *sym;
1290 struct type *type;
1291
1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1295
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1297 if (type)
1298 return type;
1299
1300 if (noerr)
1301 return NULL;
1302 error (_("No type named %s."), name);
1303 }
1304
1305 struct type *
1306 lookup_unsigned_typename (const struct language_defn *language,
1307 struct gdbarch *gdbarch, const char *name)
1308 {
1309 char *uns = alloca (strlen (name) + 10);
1310
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1314 }
1315
1316 struct type *
1317 lookup_signed_typename (const struct language_defn *language,
1318 struct gdbarch *gdbarch, const char *name)
1319 {
1320 struct type *t;
1321 char *uns = alloca (strlen (name) + 8);
1322
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
1327 if (t != NULL)
1328 return t;
1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1330 }
1331
1332 /* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1334
1335 struct type *
1336 lookup_struct (const char *name, const struct block *block)
1337 {
1338 struct symbol *sym;
1339
1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1341
1342 if (sym == NULL)
1343 {
1344 error (_("No struct type named %s."), name);
1345 }
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1347 {
1348 error (_("This context has class, union or enum %s, not a struct."),
1349 name);
1350 }
1351 return (SYMBOL_TYPE (sym));
1352 }
1353
1354 /* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1356
1357 struct type *
1358 lookup_union (const char *name, const struct block *block)
1359 {
1360 struct symbol *sym;
1361 struct type *t;
1362
1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1364
1365 if (sym == NULL)
1366 error (_("No union type named %s."), name);
1367
1368 t = SYMBOL_TYPE (sym);
1369
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1371 return t;
1372
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1375 name);
1376 }
1377
1378 /* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1380
1381 struct type *
1382 lookup_enum (const char *name, const struct block *block)
1383 {
1384 struct symbol *sym;
1385
1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1387 if (sym == NULL)
1388 {
1389 error (_("No enum type named %s."), name);
1390 }
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1392 {
1393 error (_("This context has class, struct or union %s, not an enum."),
1394 name);
1395 }
1396 return (SYMBOL_TYPE (sym));
1397 }
1398
1399 /* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1401
1402 struct type *
1403 lookup_template_type (char *name, struct type *type,
1404 const struct block *block)
1405 {
1406 struct symbol *sym;
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1409
1410 strcpy (nam, name);
1411 strcat (nam, "<");
1412 strcat (nam, TYPE_NAME (type));
1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1414
1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1416
1417 if (sym == NULL)
1418 {
1419 error (_("No template type named %s."), name);
1420 }
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1422 {
1423 error (_("This context has class, union or enum %s, not a struct."),
1424 name);
1425 }
1426 return (SYMBOL_TYPE (sym));
1427 }
1428
1429 /* Given a type TYPE, lookup the type of the component of type named
1430 NAME.
1431
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
1437
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1440
1441 struct type *
1442 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1443 {
1444 int i;
1445 char *typename;
1446
1447 for (;;)
1448 {
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1452 break;
1453 type = TYPE_TARGET_TYPE (type);
1454 }
1455
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
1458 {
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
1462 }
1463
1464 #if 0
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1468 foo; } bell;" Disabled by fnf. */
1469 {
1470 char *typename;
1471
1472 typename = type_name_no_tag (type);
1473 if (typename != NULL && strcmp (typename, name) == 0)
1474 return type;
1475 }
1476 #endif
1477
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1479 {
1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1481
1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1483 {
1484 return TYPE_FIELD_TYPE (type, i);
1485 }
1486 else if (!t_field_name || *t_field_name == '\0')
1487 {
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1490
1491 if (subtype != NULL)
1492 return subtype;
1493 }
1494 }
1495
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1498 {
1499 struct type *t;
1500
1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1502 if (t != NULL)
1503 {
1504 return t;
1505 }
1506 }
1507
1508 if (noerr)
1509 {
1510 return NULL;
1511 }
1512
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
1516 }
1517
1518 /* Store in *MAX the largest number representable by unsigned integer type
1519 TYPE. */
1520
1521 void
1522 get_unsigned_type_max (struct type *type, ULONGEST *max)
1523 {
1524 unsigned int n;
1525
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1529
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1533 }
1534
1535 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1537
1538 void
1539 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1540 {
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1546
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1550 }
1551
1552 /* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1555 cache the results.
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
1558 the type or one of its baseclasses is a stub type and we are
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
1561 virtual function table pointer, and vptr_fieldno will remain -1 and
1562 vptr_basetype will remain NULL or incomplete. */
1563
1564 int
1565 get_vptr_fieldno (struct type *type, struct type **basetypep)
1566 {
1567 CHECK_TYPEDEF (type);
1568
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1570 {
1571 int i;
1572
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1576 {
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1578 int fieldno;
1579 struct type *basetype;
1580
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1582 if (fieldno >= 0)
1583 {
1584 /* If the type comes from a different objfile we can't cache
1585 it, it may have a different lifetime. PR 2384 */
1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1587 {
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1590 }
1591 if (basetypep)
1592 *basetypep = basetype;
1593 return fieldno;
1594 }
1595 }
1596
1597 /* Not found. */
1598 return -1;
1599 }
1600 else
1601 {
1602 if (basetypep)
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
1605 }
1606 }
1607
1608 static void
1609 stub_noname_complaint (void)
1610 {
1611 complaint (&symfile_complaints, _("stub type has NULL name"));
1612 }
1613
1614 /* See gdbtypes.h. */
1615
1616 int
1617 is_dynamic_type (struct type *type)
1618 {
1619 type = check_typedef (type);
1620
1621 if (TYPE_CODE (type) == TYPE_CODE_REF)
1622 type = check_typedef (TYPE_TARGET_TYPE (type));
1623
1624 switch (TYPE_CODE (type))
1625 {
1626 case TYPE_CODE_ARRAY:
1627 {
1628 const struct type *range_type;
1629
1630 gdb_assert (TYPE_NFIELDS (type) == 1);
1631 range_type = TYPE_INDEX_TYPE (type);
1632 if (!has_static_range (TYPE_RANGE_DATA (range_type)))
1633 return 1;
1634 else
1635 return is_dynamic_type (TYPE_TARGET_TYPE (type));
1636 break;
1637 }
1638 default:
1639 return 0;
1640 break;
1641 }
1642 }
1643
1644 /* Resolves dynamic bound values of an array type TYPE to static ones.
1645 ADDRESS might be needed to resolve the subrange bounds, it is the location
1646 of the associated array. */
1647
1648 static struct type *
1649 resolve_dynamic_bounds (struct type *type, CORE_ADDR addr)
1650 {
1651 CORE_ADDR value;
1652 struct type *elt_type;
1653 struct type *range_type;
1654 struct type *ary_dim;
1655 const struct dynamic_prop *prop;
1656 const struct dwarf2_locexpr_baton *baton;
1657 struct dynamic_prop low_bound, high_bound;
1658
1659 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1660 {
1661 struct type *copy = copy_type (type);
1662
1663 TYPE_TARGET_TYPE (copy)
1664 = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1665
1666 return copy;
1667 }
1668
1669 if (TYPE_CODE (type) == TYPE_CODE_REF)
1670 {
1671 struct type *copy = copy_type (type);
1672 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1673
1674 TYPE_TARGET_TYPE (copy)
1675 = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), target_addr);
1676 return copy;
1677 }
1678
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1680
1681 elt_type = type;
1682 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1683
1684 prop = &TYPE_RANGE_DATA (range_type)->low;
1685 if (dwarf2_evaluate_property (prop, addr, &value))
1686 {
1687 low_bound.kind = PROP_CONST;
1688 low_bound.data.const_val = value;
1689 }
1690 else
1691 {
1692 low_bound.kind = PROP_UNDEFINED;
1693 low_bound.data.const_val = 0;
1694 }
1695
1696 prop = &TYPE_RANGE_DATA (range_type)->high;
1697 if (dwarf2_evaluate_property (prop, addr, &value))
1698 {
1699 high_bound.kind = PROP_CONST;
1700 high_bound.data.const_val = value;
1701
1702 if (TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count)
1703 high_bound.data.const_val
1704 = low_bound.data.const_val + high_bound.data.const_val - 1;
1705 }
1706 else
1707 {
1708 high_bound.kind = PROP_UNDEFINED;
1709 high_bound.data.const_val = 0;
1710 }
1711
1712 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1713
1714 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1715 elt_type = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1716 else
1717 elt_type = TYPE_TARGET_TYPE (type);
1718
1719 range_type = create_range_type (NULL,
1720 TYPE_TARGET_TYPE (range_type),
1721 &low_bound, &high_bound);
1722 TYPE_RANGE_DATA (range_type)->flag_bound_evaluated = 1;
1723 return create_array_type (copy_type (type),
1724 elt_type,
1725 range_type);
1726 }
1727
1728 /* See gdbtypes.h */
1729
1730 struct type *
1731 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1732 {
1733 struct type *real_type = check_typedef (type);
1734 struct type *resolved_type;
1735
1736 if (!is_dynamic_type (real_type))
1737 return type;
1738
1739 resolved_type = resolve_dynamic_bounds (type, addr);
1740
1741 return resolved_type;
1742 }
1743
1744 /* Find the real type of TYPE. This function returns the real type,
1745 after removing all layers of typedefs, and completing opaque or stub
1746 types. Completion changes the TYPE argument, but stripping of
1747 typedefs does not.
1748
1749 Instance flags (e.g. const/volatile) are preserved as typedefs are
1750 stripped. If necessary a new qualified form of the underlying type
1751 is created.
1752
1753 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1754 not been computed and we're either in the middle of reading symbols, or
1755 there was no name for the typedef in the debug info.
1756
1757 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1758 QUITs in the symbol reading code can also throw.
1759 Thus this function can throw an exception.
1760
1761 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1762 the target type.
1763
1764 If this is a stubbed struct (i.e. declared as struct foo *), see if
1765 we can find a full definition in some other file. If so, copy this
1766 definition, so we can use it in future. There used to be a comment
1767 (but not any code) that if we don't find a full definition, we'd
1768 set a flag so we don't spend time in the future checking the same
1769 type. That would be a mistake, though--we might load in more
1770 symbols which contain a full definition for the type. */
1771
1772 struct type *
1773 check_typedef (struct type *type)
1774 {
1775 struct type *orig_type = type;
1776 /* While we're removing typedefs, we don't want to lose qualifiers.
1777 E.g., const/volatile. */
1778 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1779
1780 gdb_assert (type);
1781
1782 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1783 {
1784 if (!TYPE_TARGET_TYPE (type))
1785 {
1786 const char *name;
1787 struct symbol *sym;
1788
1789 /* It is dangerous to call lookup_symbol if we are currently
1790 reading a symtab. Infinite recursion is one danger. */
1791 if (currently_reading_symtab)
1792 return make_qualified_type (type, instance_flags, NULL);
1793
1794 name = type_name_no_tag (type);
1795 /* FIXME: shouldn't we separately check the TYPE_NAME and
1796 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1797 VAR_DOMAIN as appropriate? (this code was written before
1798 TYPE_NAME and TYPE_TAG_NAME were separate). */
1799 if (name == NULL)
1800 {
1801 stub_noname_complaint ();
1802 return make_qualified_type (type, instance_flags, NULL);
1803 }
1804 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1805 if (sym)
1806 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1807 else /* TYPE_CODE_UNDEF */
1808 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1809 }
1810 type = TYPE_TARGET_TYPE (type);
1811
1812 /* Preserve the instance flags as we traverse down the typedef chain.
1813
1814 Handling address spaces/classes is nasty, what do we do if there's a
1815 conflict?
1816 E.g., what if an outer typedef marks the type as class_1 and an inner
1817 typedef marks the type as class_2?
1818 This is the wrong place to do such error checking. We leave it to
1819 the code that created the typedef in the first place to flag the
1820 error. We just pick the outer address space (akin to letting the
1821 outer cast in a chain of casting win), instead of assuming
1822 "it can't happen". */
1823 {
1824 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1825 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1826 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1827 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1828
1829 /* Treat code vs data spaces and address classes separately. */
1830 if ((instance_flags & ALL_SPACES) != 0)
1831 new_instance_flags &= ~ALL_SPACES;
1832 if ((instance_flags & ALL_CLASSES) != 0)
1833 new_instance_flags &= ~ALL_CLASSES;
1834
1835 instance_flags |= new_instance_flags;
1836 }
1837 }
1838
1839 /* If this is a struct/class/union with no fields, then check
1840 whether a full definition exists somewhere else. This is for
1841 systems where a type definition with no fields is issued for such
1842 types, instead of identifying them as stub types in the first
1843 place. */
1844
1845 if (TYPE_IS_OPAQUE (type)
1846 && opaque_type_resolution
1847 && !currently_reading_symtab)
1848 {
1849 const char *name = type_name_no_tag (type);
1850 struct type *newtype;
1851
1852 if (name == NULL)
1853 {
1854 stub_noname_complaint ();
1855 return make_qualified_type (type, instance_flags, NULL);
1856 }
1857 newtype = lookup_transparent_type (name);
1858
1859 if (newtype)
1860 {
1861 /* If the resolved type and the stub are in the same
1862 objfile, then replace the stub type with the real deal.
1863 But if they're in separate objfiles, leave the stub
1864 alone; we'll just look up the transparent type every time
1865 we call check_typedef. We can't create pointers between
1866 types allocated to different objfiles, since they may
1867 have different lifetimes. Trying to copy NEWTYPE over to
1868 TYPE's objfile is pointless, too, since you'll have to
1869 move over any other types NEWTYPE refers to, which could
1870 be an unbounded amount of stuff. */
1871 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1872 type = make_qualified_type (newtype,
1873 TYPE_INSTANCE_FLAGS (type),
1874 type);
1875 else
1876 type = newtype;
1877 }
1878 }
1879 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1880 types. */
1881 else if (TYPE_STUB (type) && !currently_reading_symtab)
1882 {
1883 const char *name = type_name_no_tag (type);
1884 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1885 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1886 as appropriate? (this code was written before TYPE_NAME and
1887 TYPE_TAG_NAME were separate). */
1888 struct symbol *sym;
1889
1890 if (name == NULL)
1891 {
1892 stub_noname_complaint ();
1893 return make_qualified_type (type, instance_flags, NULL);
1894 }
1895 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1896 if (sym)
1897 {
1898 /* Same as above for opaque types, we can replace the stub
1899 with the complete type only if they are in the same
1900 objfile. */
1901 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1902 type = make_qualified_type (SYMBOL_TYPE (sym),
1903 TYPE_INSTANCE_FLAGS (type),
1904 type);
1905 else
1906 type = SYMBOL_TYPE (sym);
1907 }
1908 }
1909
1910 if (TYPE_TARGET_STUB (type))
1911 {
1912 struct type *range_type;
1913 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1914
1915 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1916 {
1917 /* Nothing we can do. */
1918 }
1919 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1920 {
1921 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1922 TYPE_TARGET_STUB (type) = 0;
1923 }
1924 }
1925
1926 type = make_qualified_type (type, instance_flags, NULL);
1927
1928 /* Cache TYPE_LENGTH for future use. */
1929 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1930
1931 return type;
1932 }
1933
1934 /* Parse a type expression in the string [P..P+LENGTH). If an error
1935 occurs, silently return a void type. */
1936
1937 static struct type *
1938 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1939 {
1940 struct ui_file *saved_gdb_stderr;
1941 struct type *type = NULL; /* Initialize to keep gcc happy. */
1942 volatile struct gdb_exception except;
1943
1944 /* Suppress error messages. */
1945 saved_gdb_stderr = gdb_stderr;
1946 gdb_stderr = ui_file_new ();
1947
1948 /* Call parse_and_eval_type() without fear of longjmp()s. */
1949 TRY_CATCH (except, RETURN_MASK_ERROR)
1950 {
1951 type = parse_and_eval_type (p, length);
1952 }
1953
1954 if (except.reason < 0)
1955 type = builtin_type (gdbarch)->builtin_void;
1956
1957 /* Stop suppressing error messages. */
1958 ui_file_delete (gdb_stderr);
1959 gdb_stderr = saved_gdb_stderr;
1960
1961 return type;
1962 }
1963
1964 /* Ugly hack to convert method stubs into method types.
1965
1966 He ain't kiddin'. This demangles the name of the method into a
1967 string including argument types, parses out each argument type,
1968 generates a string casting a zero to that type, evaluates the
1969 string, and stuffs the resulting type into an argtype vector!!!
1970 Then it knows the type of the whole function (including argument
1971 types for overloading), which info used to be in the stab's but was
1972 removed to hack back the space required for them. */
1973
1974 static void
1975 check_stub_method (struct type *type, int method_id, int signature_id)
1976 {
1977 struct gdbarch *gdbarch = get_type_arch (type);
1978 struct fn_field *f;
1979 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1980 char *demangled_name = gdb_demangle (mangled_name,
1981 DMGL_PARAMS | DMGL_ANSI);
1982 char *argtypetext, *p;
1983 int depth = 0, argcount = 1;
1984 struct field *argtypes;
1985 struct type *mtype;
1986
1987 /* Make sure we got back a function string that we can use. */
1988 if (demangled_name)
1989 p = strchr (demangled_name, '(');
1990 else
1991 p = NULL;
1992
1993 if (demangled_name == NULL || p == NULL)
1994 error (_("Internal: Cannot demangle mangled name `%s'."),
1995 mangled_name);
1996
1997 /* Now, read in the parameters that define this type. */
1998 p += 1;
1999 argtypetext = p;
2000 while (*p)
2001 {
2002 if (*p == '(' || *p == '<')
2003 {
2004 depth += 1;
2005 }
2006 else if (*p == ')' || *p == '>')
2007 {
2008 depth -= 1;
2009 }
2010 else if (*p == ',' && depth == 0)
2011 {
2012 argcount += 1;
2013 }
2014
2015 p += 1;
2016 }
2017
2018 /* If we read one argument and it was ``void'', don't count it. */
2019 if (strncmp (argtypetext, "(void)", 6) == 0)
2020 argcount -= 1;
2021
2022 /* We need one extra slot, for the THIS pointer. */
2023
2024 argtypes = (struct field *)
2025 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2026 p = argtypetext;
2027
2028 /* Add THIS pointer for non-static methods. */
2029 f = TYPE_FN_FIELDLIST1 (type, method_id);
2030 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2031 argcount = 0;
2032 else
2033 {
2034 argtypes[0].type = lookup_pointer_type (type);
2035 argcount = 1;
2036 }
2037
2038 if (*p != ')') /* () means no args, skip while. */
2039 {
2040 depth = 0;
2041 while (*p)
2042 {
2043 if (depth <= 0 && (*p == ',' || *p == ')'))
2044 {
2045 /* Avoid parsing of ellipsis, they will be handled below.
2046 Also avoid ``void'' as above. */
2047 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2048 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2049 {
2050 argtypes[argcount].type =
2051 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2052 argcount += 1;
2053 }
2054 argtypetext = p + 1;
2055 }
2056
2057 if (*p == '(' || *p == '<')
2058 {
2059 depth += 1;
2060 }
2061 else if (*p == ')' || *p == '>')
2062 {
2063 depth -= 1;
2064 }
2065
2066 p += 1;
2067 }
2068 }
2069
2070 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2071
2072 /* Now update the old "stub" type into a real type. */
2073 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2074 TYPE_DOMAIN_TYPE (mtype) = type;
2075 TYPE_FIELDS (mtype) = argtypes;
2076 TYPE_NFIELDS (mtype) = argcount;
2077 TYPE_STUB (mtype) = 0;
2078 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2079 if (p[-2] == '.')
2080 TYPE_VARARGS (mtype) = 1;
2081
2082 xfree (demangled_name);
2083 }
2084
2085 /* This is the external interface to check_stub_method, above. This
2086 function unstubs all of the signatures for TYPE's METHOD_ID method
2087 name. After calling this function TYPE_FN_FIELD_STUB will be
2088 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2089 correct.
2090
2091 This function unfortunately can not die until stabs do. */
2092
2093 void
2094 check_stub_method_group (struct type *type, int method_id)
2095 {
2096 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2097 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2098 int j, found_stub = 0;
2099
2100 for (j = 0; j < len; j++)
2101 if (TYPE_FN_FIELD_STUB (f, j))
2102 {
2103 found_stub = 1;
2104 check_stub_method (type, method_id, j);
2105 }
2106
2107 /* GNU v3 methods with incorrect names were corrected when we read
2108 in type information, because it was cheaper to do it then. The
2109 only GNU v2 methods with incorrect method names are operators and
2110 destructors; destructors were also corrected when we read in type
2111 information.
2112
2113 Therefore the only thing we need to handle here are v2 operator
2114 names. */
2115 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2116 {
2117 int ret;
2118 char dem_opname[256];
2119
2120 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2121 method_id),
2122 dem_opname, DMGL_ANSI);
2123 if (!ret)
2124 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2125 method_id),
2126 dem_opname, 0);
2127 if (ret)
2128 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2129 }
2130 }
2131
2132 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2133 const struct cplus_struct_type cplus_struct_default = { };
2134
2135 void
2136 allocate_cplus_struct_type (struct type *type)
2137 {
2138 if (HAVE_CPLUS_STRUCT (type))
2139 /* Structure was already allocated. Nothing more to do. */
2140 return;
2141
2142 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2143 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2144 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2145 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2146 }
2147
2148 const struct gnat_aux_type gnat_aux_default =
2149 { NULL };
2150
2151 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2152 and allocate the associated gnat-specific data. The gnat-specific
2153 data is also initialized to gnat_aux_default. */
2154
2155 void
2156 allocate_gnat_aux_type (struct type *type)
2157 {
2158 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2159 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2160 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2161 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2162 }
2163
2164 /* Helper function to initialize the standard scalar types.
2165
2166 If NAME is non-NULL, then it is used to initialize the type name.
2167 Note that NAME is not copied; it is required to have a lifetime at
2168 least as long as OBJFILE. */
2169
2170 struct type *
2171 init_type (enum type_code code, int length, int flags,
2172 const char *name, struct objfile *objfile)
2173 {
2174 struct type *type;
2175
2176 type = alloc_type (objfile);
2177 TYPE_CODE (type) = code;
2178 TYPE_LENGTH (type) = length;
2179
2180 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2181 if (flags & TYPE_FLAG_UNSIGNED)
2182 TYPE_UNSIGNED (type) = 1;
2183 if (flags & TYPE_FLAG_NOSIGN)
2184 TYPE_NOSIGN (type) = 1;
2185 if (flags & TYPE_FLAG_STUB)
2186 TYPE_STUB (type) = 1;
2187 if (flags & TYPE_FLAG_TARGET_STUB)
2188 TYPE_TARGET_STUB (type) = 1;
2189 if (flags & TYPE_FLAG_STATIC)
2190 TYPE_STATIC (type) = 1;
2191 if (flags & TYPE_FLAG_PROTOTYPED)
2192 TYPE_PROTOTYPED (type) = 1;
2193 if (flags & TYPE_FLAG_INCOMPLETE)
2194 TYPE_INCOMPLETE (type) = 1;
2195 if (flags & TYPE_FLAG_VARARGS)
2196 TYPE_VARARGS (type) = 1;
2197 if (flags & TYPE_FLAG_VECTOR)
2198 TYPE_VECTOR (type) = 1;
2199 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2200 TYPE_STUB_SUPPORTED (type) = 1;
2201 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2202 TYPE_FIXED_INSTANCE (type) = 1;
2203 if (flags & TYPE_FLAG_GNU_IFUNC)
2204 TYPE_GNU_IFUNC (type) = 1;
2205
2206 TYPE_NAME (type) = name;
2207
2208 /* C++ fancies. */
2209
2210 if (name && strcmp (name, "char") == 0)
2211 TYPE_NOSIGN (type) = 1;
2212
2213 switch (code)
2214 {
2215 case TYPE_CODE_STRUCT:
2216 case TYPE_CODE_UNION:
2217 case TYPE_CODE_NAMESPACE:
2218 INIT_CPLUS_SPECIFIC (type);
2219 break;
2220 case TYPE_CODE_FLT:
2221 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2222 break;
2223 case TYPE_CODE_FUNC:
2224 INIT_FUNC_SPECIFIC (type);
2225 break;
2226 }
2227 return type;
2228 }
2229 \f
2230 /* Queries on types. */
2231
2232 int
2233 can_dereference (struct type *t)
2234 {
2235 /* FIXME: Should we return true for references as well as
2236 pointers? */
2237 CHECK_TYPEDEF (t);
2238 return
2239 (t != NULL
2240 && TYPE_CODE (t) == TYPE_CODE_PTR
2241 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2242 }
2243
2244 int
2245 is_integral_type (struct type *t)
2246 {
2247 CHECK_TYPEDEF (t);
2248 return
2249 ((t != NULL)
2250 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2251 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2252 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2253 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2254 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2255 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2256 }
2257
2258 /* Return true if TYPE is scalar. */
2259
2260 static int
2261 is_scalar_type (struct type *type)
2262 {
2263 CHECK_TYPEDEF (type);
2264
2265 switch (TYPE_CODE (type))
2266 {
2267 case TYPE_CODE_ARRAY:
2268 case TYPE_CODE_STRUCT:
2269 case TYPE_CODE_UNION:
2270 case TYPE_CODE_SET:
2271 case TYPE_CODE_STRING:
2272 return 0;
2273 default:
2274 return 1;
2275 }
2276 }
2277
2278 /* Return true if T is scalar, or a composite type which in practice has
2279 the memory layout of a scalar type. E.g., an array or struct with only
2280 one scalar element inside it, or a union with only scalar elements. */
2281
2282 int
2283 is_scalar_type_recursive (struct type *t)
2284 {
2285 CHECK_TYPEDEF (t);
2286
2287 if (is_scalar_type (t))
2288 return 1;
2289 /* Are we dealing with an array or string of known dimensions? */
2290 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2291 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2292 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2293 {
2294 LONGEST low_bound, high_bound;
2295 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2296
2297 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2298
2299 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2300 }
2301 /* Are we dealing with a struct with one element? */
2302 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2303 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2304 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2305 {
2306 int i, n = TYPE_NFIELDS (t);
2307
2308 /* If all elements of the union are scalar, then the union is scalar. */
2309 for (i = 0; i < n; i++)
2310 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2311 return 0;
2312
2313 return 1;
2314 }
2315
2316 return 0;
2317 }
2318
2319 /* A helper function which returns true if types A and B represent the
2320 "same" class type. This is true if the types have the same main
2321 type, or the same name. */
2322
2323 int
2324 class_types_same_p (const struct type *a, const struct type *b)
2325 {
2326 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2327 || (TYPE_NAME (a) && TYPE_NAME (b)
2328 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2329 }
2330
2331 /* If BASE is an ancestor of DCLASS return the distance between them.
2332 otherwise return -1;
2333 eg:
2334
2335 class A {};
2336 class B: public A {};
2337 class C: public B {};
2338 class D: C {};
2339
2340 distance_to_ancestor (A, A, 0) = 0
2341 distance_to_ancestor (A, B, 0) = 1
2342 distance_to_ancestor (A, C, 0) = 2
2343 distance_to_ancestor (A, D, 0) = 3
2344
2345 If PUBLIC is 1 then only public ancestors are considered,
2346 and the function returns the distance only if BASE is a public ancestor
2347 of DCLASS.
2348 Eg:
2349
2350 distance_to_ancestor (A, D, 1) = -1. */
2351
2352 static int
2353 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2354 {
2355 int i;
2356 int d;
2357
2358 CHECK_TYPEDEF (base);
2359 CHECK_TYPEDEF (dclass);
2360
2361 if (class_types_same_p (base, dclass))
2362 return 0;
2363
2364 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2365 {
2366 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2367 continue;
2368
2369 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2370 if (d >= 0)
2371 return 1 + d;
2372 }
2373
2374 return -1;
2375 }
2376
2377 /* Check whether BASE is an ancestor or base class or DCLASS
2378 Return 1 if so, and 0 if not.
2379 Note: If BASE and DCLASS are of the same type, this function
2380 will return 1. So for some class A, is_ancestor (A, A) will
2381 return 1. */
2382
2383 int
2384 is_ancestor (struct type *base, struct type *dclass)
2385 {
2386 return distance_to_ancestor (base, dclass, 0) >= 0;
2387 }
2388
2389 /* Like is_ancestor, but only returns true when BASE is a public
2390 ancestor of DCLASS. */
2391
2392 int
2393 is_public_ancestor (struct type *base, struct type *dclass)
2394 {
2395 return distance_to_ancestor (base, dclass, 1) >= 0;
2396 }
2397
2398 /* A helper function for is_unique_ancestor. */
2399
2400 static int
2401 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2402 int *offset,
2403 const gdb_byte *valaddr, int embedded_offset,
2404 CORE_ADDR address, struct value *val)
2405 {
2406 int i, count = 0;
2407
2408 CHECK_TYPEDEF (base);
2409 CHECK_TYPEDEF (dclass);
2410
2411 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2412 {
2413 struct type *iter;
2414 int this_offset;
2415
2416 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2417
2418 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2419 address, val);
2420
2421 if (class_types_same_p (base, iter))
2422 {
2423 /* If this is the first subclass, set *OFFSET and set count
2424 to 1. Otherwise, if this is at the same offset as
2425 previous instances, do nothing. Otherwise, increment
2426 count. */
2427 if (*offset == -1)
2428 {
2429 *offset = this_offset;
2430 count = 1;
2431 }
2432 else if (this_offset == *offset)
2433 {
2434 /* Nothing. */
2435 }
2436 else
2437 ++count;
2438 }
2439 else
2440 count += is_unique_ancestor_worker (base, iter, offset,
2441 valaddr,
2442 embedded_offset + this_offset,
2443 address, val);
2444 }
2445
2446 return count;
2447 }
2448
2449 /* Like is_ancestor, but only returns true if BASE is a unique base
2450 class of the type of VAL. */
2451
2452 int
2453 is_unique_ancestor (struct type *base, struct value *val)
2454 {
2455 int offset = -1;
2456
2457 return is_unique_ancestor_worker (base, value_type (val), &offset,
2458 value_contents_for_printing (val),
2459 value_embedded_offset (val),
2460 value_address (val), val) == 1;
2461 }
2462
2463 \f
2464 /* Overload resolution. */
2465
2466 /* Return the sum of the rank of A with the rank of B. */
2467
2468 struct rank
2469 sum_ranks (struct rank a, struct rank b)
2470 {
2471 struct rank c;
2472 c.rank = a.rank + b.rank;
2473 c.subrank = a.subrank + b.subrank;
2474 return c;
2475 }
2476
2477 /* Compare rank A and B and return:
2478 0 if a = b
2479 1 if a is better than b
2480 -1 if b is better than a. */
2481
2482 int
2483 compare_ranks (struct rank a, struct rank b)
2484 {
2485 if (a.rank == b.rank)
2486 {
2487 if (a.subrank == b.subrank)
2488 return 0;
2489 if (a.subrank < b.subrank)
2490 return 1;
2491 if (a.subrank > b.subrank)
2492 return -1;
2493 }
2494
2495 if (a.rank < b.rank)
2496 return 1;
2497
2498 /* a.rank > b.rank */
2499 return -1;
2500 }
2501
2502 /* Functions for overload resolution begin here. */
2503
2504 /* Compare two badness vectors A and B and return the result.
2505 0 => A and B are identical
2506 1 => A and B are incomparable
2507 2 => A is better than B
2508 3 => A is worse than B */
2509
2510 int
2511 compare_badness (struct badness_vector *a, struct badness_vector *b)
2512 {
2513 int i;
2514 int tmp;
2515 short found_pos = 0; /* any positives in c? */
2516 short found_neg = 0; /* any negatives in c? */
2517
2518 /* differing lengths => incomparable */
2519 if (a->length != b->length)
2520 return 1;
2521
2522 /* Subtract b from a */
2523 for (i = 0; i < a->length; i++)
2524 {
2525 tmp = compare_ranks (b->rank[i], a->rank[i]);
2526 if (tmp > 0)
2527 found_pos = 1;
2528 else if (tmp < 0)
2529 found_neg = 1;
2530 }
2531
2532 if (found_pos)
2533 {
2534 if (found_neg)
2535 return 1; /* incomparable */
2536 else
2537 return 3; /* A > B */
2538 }
2539 else
2540 /* no positives */
2541 {
2542 if (found_neg)
2543 return 2; /* A < B */
2544 else
2545 return 0; /* A == B */
2546 }
2547 }
2548
2549 /* Rank a function by comparing its parameter types (PARMS, length
2550 NPARMS), to the types of an argument list (ARGS, length NARGS).
2551 Return a pointer to a badness vector. This has NARGS + 1
2552 entries. */
2553
2554 struct badness_vector *
2555 rank_function (struct type **parms, int nparms,
2556 struct value **args, int nargs)
2557 {
2558 int i;
2559 struct badness_vector *bv;
2560 int min_len = nparms < nargs ? nparms : nargs;
2561
2562 bv = xmalloc (sizeof (struct badness_vector));
2563 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2564 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2565
2566 /* First compare the lengths of the supplied lists.
2567 If there is a mismatch, set it to a high value. */
2568
2569 /* pai/1997-06-03 FIXME: when we have debug info about default
2570 arguments and ellipsis parameter lists, we should consider those
2571 and rank the length-match more finely. */
2572
2573 LENGTH_MATCH (bv) = (nargs != nparms)
2574 ? LENGTH_MISMATCH_BADNESS
2575 : EXACT_MATCH_BADNESS;
2576
2577 /* Now rank all the parameters of the candidate function. */
2578 for (i = 1; i <= min_len; i++)
2579 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2580 args[i - 1]);
2581
2582 /* If more arguments than parameters, add dummy entries. */
2583 for (i = min_len + 1; i <= nargs; i++)
2584 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2585
2586 return bv;
2587 }
2588
2589 /* Compare the names of two integer types, assuming that any sign
2590 qualifiers have been checked already. We do it this way because
2591 there may be an "int" in the name of one of the types. */
2592
2593 static int
2594 integer_types_same_name_p (const char *first, const char *second)
2595 {
2596 int first_p, second_p;
2597
2598 /* If both are shorts, return 1; if neither is a short, keep
2599 checking. */
2600 first_p = (strstr (first, "short") != NULL);
2601 second_p = (strstr (second, "short") != NULL);
2602 if (first_p && second_p)
2603 return 1;
2604 if (first_p || second_p)
2605 return 0;
2606
2607 /* Likewise for long. */
2608 first_p = (strstr (first, "long") != NULL);
2609 second_p = (strstr (second, "long") != NULL);
2610 if (first_p && second_p)
2611 return 1;
2612 if (first_p || second_p)
2613 return 0;
2614
2615 /* Likewise for char. */
2616 first_p = (strstr (first, "char") != NULL);
2617 second_p = (strstr (second, "char") != NULL);
2618 if (first_p && second_p)
2619 return 1;
2620 if (first_p || second_p)
2621 return 0;
2622
2623 /* They must both be ints. */
2624 return 1;
2625 }
2626
2627 /* Compares type A to type B returns 1 if the represent the same type
2628 0 otherwise. */
2629
2630 int
2631 types_equal (struct type *a, struct type *b)
2632 {
2633 /* Identical type pointers. */
2634 /* However, this still doesn't catch all cases of same type for b
2635 and a. The reason is that builtin types are different from
2636 the same ones constructed from the object. */
2637 if (a == b)
2638 return 1;
2639
2640 /* Resolve typedefs */
2641 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2642 a = check_typedef (a);
2643 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2644 b = check_typedef (b);
2645
2646 /* If after resolving typedefs a and b are not of the same type
2647 code then they are not equal. */
2648 if (TYPE_CODE (a) != TYPE_CODE (b))
2649 return 0;
2650
2651 /* If a and b are both pointers types or both reference types then
2652 they are equal of the same type iff the objects they refer to are
2653 of the same type. */
2654 if (TYPE_CODE (a) == TYPE_CODE_PTR
2655 || TYPE_CODE (a) == TYPE_CODE_REF)
2656 return types_equal (TYPE_TARGET_TYPE (a),
2657 TYPE_TARGET_TYPE (b));
2658
2659 /* Well, damnit, if the names are exactly the same, I'll say they
2660 are exactly the same. This happens when we generate method
2661 stubs. The types won't point to the same address, but they
2662 really are the same. */
2663
2664 if (TYPE_NAME (a) && TYPE_NAME (b)
2665 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2666 return 1;
2667
2668 /* Check if identical after resolving typedefs. */
2669 if (a == b)
2670 return 1;
2671
2672 /* Two function types are equal if their argument and return types
2673 are equal. */
2674 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2675 {
2676 int i;
2677
2678 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2679 return 0;
2680
2681 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2682 return 0;
2683
2684 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2685 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2686 return 0;
2687
2688 return 1;
2689 }
2690
2691 return 0;
2692 }
2693 \f
2694 /* Deep comparison of types. */
2695
2696 /* An entry in the type-equality bcache. */
2697
2698 typedef struct type_equality_entry
2699 {
2700 struct type *type1, *type2;
2701 } type_equality_entry_d;
2702
2703 DEF_VEC_O (type_equality_entry_d);
2704
2705 /* A helper function to compare two strings. Returns 1 if they are
2706 the same, 0 otherwise. Handles NULLs properly. */
2707
2708 static int
2709 compare_maybe_null_strings (const char *s, const char *t)
2710 {
2711 if (s == NULL && t != NULL)
2712 return 0;
2713 else if (s != NULL && t == NULL)
2714 return 0;
2715 else if (s == NULL && t== NULL)
2716 return 1;
2717 return strcmp (s, t) == 0;
2718 }
2719
2720 /* A helper function for check_types_worklist that checks two types for
2721 "deep" equality. Returns non-zero if the types are considered the
2722 same, zero otherwise. */
2723
2724 static int
2725 check_types_equal (struct type *type1, struct type *type2,
2726 VEC (type_equality_entry_d) **worklist)
2727 {
2728 CHECK_TYPEDEF (type1);
2729 CHECK_TYPEDEF (type2);
2730
2731 if (type1 == type2)
2732 return 1;
2733
2734 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2735 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2736 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2737 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2738 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2739 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2740 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2741 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2742 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2743 return 0;
2744
2745 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2746 TYPE_TAG_NAME (type2)))
2747 return 0;
2748 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2749 return 0;
2750
2751 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2752 {
2753 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2754 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2755 return 0;
2756 }
2757 else
2758 {
2759 int i;
2760
2761 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2762 {
2763 const struct field *field1 = &TYPE_FIELD (type1, i);
2764 const struct field *field2 = &TYPE_FIELD (type2, i);
2765 struct type_equality_entry entry;
2766
2767 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2768 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2769 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2770 return 0;
2771 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2772 FIELD_NAME (*field2)))
2773 return 0;
2774 switch (FIELD_LOC_KIND (*field1))
2775 {
2776 case FIELD_LOC_KIND_BITPOS:
2777 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2778 return 0;
2779 break;
2780 case FIELD_LOC_KIND_ENUMVAL:
2781 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2782 return 0;
2783 break;
2784 case FIELD_LOC_KIND_PHYSADDR:
2785 if (FIELD_STATIC_PHYSADDR (*field1)
2786 != FIELD_STATIC_PHYSADDR (*field2))
2787 return 0;
2788 break;
2789 case FIELD_LOC_KIND_PHYSNAME:
2790 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2791 FIELD_STATIC_PHYSNAME (*field2)))
2792 return 0;
2793 break;
2794 case FIELD_LOC_KIND_DWARF_BLOCK:
2795 {
2796 struct dwarf2_locexpr_baton *block1, *block2;
2797
2798 block1 = FIELD_DWARF_BLOCK (*field1);
2799 block2 = FIELD_DWARF_BLOCK (*field2);
2800 if (block1->per_cu != block2->per_cu
2801 || block1->size != block2->size
2802 || memcmp (block1->data, block2->data, block1->size) != 0)
2803 return 0;
2804 }
2805 break;
2806 default:
2807 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2808 "%d by check_types_equal"),
2809 FIELD_LOC_KIND (*field1));
2810 }
2811
2812 entry.type1 = FIELD_TYPE (*field1);
2813 entry.type2 = FIELD_TYPE (*field2);
2814 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2815 }
2816 }
2817
2818 if (TYPE_TARGET_TYPE (type1) != NULL)
2819 {
2820 struct type_equality_entry entry;
2821
2822 if (TYPE_TARGET_TYPE (type2) == NULL)
2823 return 0;
2824
2825 entry.type1 = TYPE_TARGET_TYPE (type1);
2826 entry.type2 = TYPE_TARGET_TYPE (type2);
2827 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2828 }
2829 else if (TYPE_TARGET_TYPE (type2) != NULL)
2830 return 0;
2831
2832 return 1;
2833 }
2834
2835 /* Check types on a worklist for equality. Returns zero if any pair
2836 is not equal, non-zero if they are all considered equal. */
2837
2838 static int
2839 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2840 struct bcache *cache)
2841 {
2842 while (!VEC_empty (type_equality_entry_d, *worklist))
2843 {
2844 struct type_equality_entry entry;
2845 int added;
2846
2847 entry = *VEC_last (type_equality_entry_d, *worklist);
2848 VEC_pop (type_equality_entry_d, *worklist);
2849
2850 /* If the type pair has already been visited, we know it is
2851 ok. */
2852 bcache_full (&entry, sizeof (entry), cache, &added);
2853 if (!added)
2854 continue;
2855
2856 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2857 return 0;
2858 }
2859
2860 return 1;
2861 }
2862
2863 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2864 "deep comparison". Otherwise return zero. */
2865
2866 int
2867 types_deeply_equal (struct type *type1, struct type *type2)
2868 {
2869 volatile struct gdb_exception except;
2870 int result = 0;
2871 struct bcache *cache;
2872 VEC (type_equality_entry_d) *worklist = NULL;
2873 struct type_equality_entry entry;
2874
2875 gdb_assert (type1 != NULL && type2 != NULL);
2876
2877 /* Early exit for the simple case. */
2878 if (type1 == type2)
2879 return 1;
2880
2881 cache = bcache_xmalloc (NULL, NULL);
2882
2883 entry.type1 = type1;
2884 entry.type2 = type2;
2885 VEC_safe_push (type_equality_entry_d, worklist, &entry);
2886
2887 TRY_CATCH (except, RETURN_MASK_ALL)
2888 {
2889 result = check_types_worklist (&worklist, cache);
2890 }
2891 /* check_types_worklist calls several nested helper functions,
2892 some of which can raise a GDB Exception, so we just check
2893 and rethrow here. If there is a GDB exception, a comparison
2894 is not capable (or trusted), so exit. */
2895 bcache_xfree (cache);
2896 VEC_free (type_equality_entry_d, worklist);
2897 /* Rethrow if there was a problem. */
2898 if (except.reason < 0)
2899 throw_exception (except);
2900
2901 return result;
2902 }
2903 \f
2904 /* Compare one type (PARM) for compatibility with another (ARG).
2905 * PARM is intended to be the parameter type of a function; and
2906 * ARG is the supplied argument's type. This function tests if
2907 * the latter can be converted to the former.
2908 * VALUE is the argument's value or NULL if none (or called recursively)
2909 *
2910 * Return 0 if they are identical types;
2911 * Otherwise, return an integer which corresponds to how compatible
2912 * PARM is to ARG. The higher the return value, the worse the match.
2913 * Generally the "bad" conversions are all uniformly assigned a 100. */
2914
2915 struct rank
2916 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2917 {
2918 struct rank rank = {0,0};
2919
2920 if (types_equal (parm, arg))
2921 return EXACT_MATCH_BADNESS;
2922
2923 /* Resolve typedefs */
2924 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2925 parm = check_typedef (parm);
2926 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2927 arg = check_typedef (arg);
2928
2929 /* See through references, since we can almost make non-references
2930 references. */
2931 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2932 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2933 REFERENCE_CONVERSION_BADNESS));
2934 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2935 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2936 REFERENCE_CONVERSION_BADNESS));
2937 if (overload_debug)
2938 /* Debugging only. */
2939 fprintf_filtered (gdb_stderr,
2940 "------ Arg is %s [%d], parm is %s [%d]\n",
2941 TYPE_NAME (arg), TYPE_CODE (arg),
2942 TYPE_NAME (parm), TYPE_CODE (parm));
2943
2944 /* x -> y means arg of type x being supplied for parameter of type y. */
2945
2946 switch (TYPE_CODE (parm))
2947 {
2948 case TYPE_CODE_PTR:
2949 switch (TYPE_CODE (arg))
2950 {
2951 case TYPE_CODE_PTR:
2952
2953 /* Allowed pointer conversions are:
2954 (a) pointer to void-pointer conversion. */
2955 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2956 return VOID_PTR_CONVERSION_BADNESS;
2957
2958 /* (b) pointer to ancestor-pointer conversion. */
2959 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2960 TYPE_TARGET_TYPE (arg),
2961 0);
2962 if (rank.subrank >= 0)
2963 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2964
2965 return INCOMPATIBLE_TYPE_BADNESS;
2966 case TYPE_CODE_ARRAY:
2967 if (types_equal (TYPE_TARGET_TYPE (parm),
2968 TYPE_TARGET_TYPE (arg)))
2969 return EXACT_MATCH_BADNESS;
2970 return INCOMPATIBLE_TYPE_BADNESS;
2971 case TYPE_CODE_FUNC:
2972 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2973 case TYPE_CODE_INT:
2974 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2975 {
2976 if (value_as_long (value) == 0)
2977 {
2978 /* Null pointer conversion: allow it to be cast to a pointer.
2979 [4.10.1 of C++ standard draft n3290] */
2980 return NULL_POINTER_CONVERSION_BADNESS;
2981 }
2982 else
2983 {
2984 /* If type checking is disabled, allow the conversion. */
2985 if (!strict_type_checking)
2986 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2987 }
2988 }
2989 /* fall through */
2990 case TYPE_CODE_ENUM:
2991 case TYPE_CODE_FLAGS:
2992 case TYPE_CODE_CHAR:
2993 case TYPE_CODE_RANGE:
2994 case TYPE_CODE_BOOL:
2995 default:
2996 return INCOMPATIBLE_TYPE_BADNESS;
2997 }
2998 case TYPE_CODE_ARRAY:
2999 switch (TYPE_CODE (arg))
3000 {
3001 case TYPE_CODE_PTR:
3002 case TYPE_CODE_ARRAY:
3003 return rank_one_type (TYPE_TARGET_TYPE (parm),
3004 TYPE_TARGET_TYPE (arg), NULL);
3005 default:
3006 return INCOMPATIBLE_TYPE_BADNESS;
3007 }
3008 case TYPE_CODE_FUNC:
3009 switch (TYPE_CODE (arg))
3010 {
3011 case TYPE_CODE_PTR: /* funcptr -> func */
3012 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3013 default:
3014 return INCOMPATIBLE_TYPE_BADNESS;
3015 }
3016 case TYPE_CODE_INT:
3017 switch (TYPE_CODE (arg))
3018 {
3019 case TYPE_CODE_INT:
3020 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3021 {
3022 /* Deal with signed, unsigned, and plain chars and
3023 signed and unsigned ints. */
3024 if (TYPE_NOSIGN (parm))
3025 {
3026 /* This case only for character types. */
3027 if (TYPE_NOSIGN (arg))
3028 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3029 else /* signed/unsigned char -> plain char */
3030 return INTEGER_CONVERSION_BADNESS;
3031 }
3032 else if (TYPE_UNSIGNED (parm))
3033 {
3034 if (TYPE_UNSIGNED (arg))
3035 {
3036 /* unsigned int -> unsigned int, or
3037 unsigned long -> unsigned long */
3038 if (integer_types_same_name_p (TYPE_NAME (parm),
3039 TYPE_NAME (arg)))
3040 return EXACT_MATCH_BADNESS;
3041 else if (integer_types_same_name_p (TYPE_NAME (arg),
3042 "int")
3043 && integer_types_same_name_p (TYPE_NAME (parm),
3044 "long"))
3045 /* unsigned int -> unsigned long */
3046 return INTEGER_PROMOTION_BADNESS;
3047 else
3048 /* unsigned long -> unsigned int */
3049 return INTEGER_CONVERSION_BADNESS;
3050 }
3051 else
3052 {
3053 if (integer_types_same_name_p (TYPE_NAME (arg),
3054 "long")
3055 && integer_types_same_name_p (TYPE_NAME (parm),
3056 "int"))
3057 /* signed long -> unsigned int */
3058 return INTEGER_CONVERSION_BADNESS;
3059 else
3060 /* signed int/long -> unsigned int/long */
3061 return INTEGER_CONVERSION_BADNESS;
3062 }
3063 }
3064 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3065 {
3066 if (integer_types_same_name_p (TYPE_NAME (parm),
3067 TYPE_NAME (arg)))
3068 return EXACT_MATCH_BADNESS;
3069 else if (integer_types_same_name_p (TYPE_NAME (arg),
3070 "int")
3071 && integer_types_same_name_p (TYPE_NAME (parm),
3072 "long"))
3073 return INTEGER_PROMOTION_BADNESS;
3074 else
3075 return INTEGER_CONVERSION_BADNESS;
3076 }
3077 else
3078 return INTEGER_CONVERSION_BADNESS;
3079 }
3080 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3081 return INTEGER_PROMOTION_BADNESS;
3082 else
3083 return INTEGER_CONVERSION_BADNESS;
3084 case TYPE_CODE_ENUM:
3085 case TYPE_CODE_FLAGS:
3086 case TYPE_CODE_CHAR:
3087 case TYPE_CODE_RANGE:
3088 case TYPE_CODE_BOOL:
3089 if (TYPE_DECLARED_CLASS (arg))
3090 return INCOMPATIBLE_TYPE_BADNESS;
3091 return INTEGER_PROMOTION_BADNESS;
3092 case TYPE_CODE_FLT:
3093 return INT_FLOAT_CONVERSION_BADNESS;
3094 case TYPE_CODE_PTR:
3095 return NS_POINTER_CONVERSION_BADNESS;
3096 default:
3097 return INCOMPATIBLE_TYPE_BADNESS;
3098 }
3099 break;
3100 case TYPE_CODE_ENUM:
3101 switch (TYPE_CODE (arg))
3102 {
3103 case TYPE_CODE_INT:
3104 case TYPE_CODE_CHAR:
3105 case TYPE_CODE_RANGE:
3106 case TYPE_CODE_BOOL:
3107 case TYPE_CODE_ENUM:
3108 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3109 return INCOMPATIBLE_TYPE_BADNESS;
3110 return INTEGER_CONVERSION_BADNESS;
3111 case TYPE_CODE_FLT:
3112 return INT_FLOAT_CONVERSION_BADNESS;
3113 default:
3114 return INCOMPATIBLE_TYPE_BADNESS;
3115 }
3116 break;
3117 case TYPE_CODE_CHAR:
3118 switch (TYPE_CODE (arg))
3119 {
3120 case TYPE_CODE_RANGE:
3121 case TYPE_CODE_BOOL:
3122 case TYPE_CODE_ENUM:
3123 if (TYPE_DECLARED_CLASS (arg))
3124 return INCOMPATIBLE_TYPE_BADNESS;
3125 return INTEGER_CONVERSION_BADNESS;
3126 case TYPE_CODE_FLT:
3127 return INT_FLOAT_CONVERSION_BADNESS;
3128 case TYPE_CODE_INT:
3129 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3130 return INTEGER_CONVERSION_BADNESS;
3131 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3132 return INTEGER_PROMOTION_BADNESS;
3133 /* >>> !! else fall through !! <<< */
3134 case TYPE_CODE_CHAR:
3135 /* Deal with signed, unsigned, and plain chars for C++ and
3136 with int cases falling through from previous case. */
3137 if (TYPE_NOSIGN (parm))
3138 {
3139 if (TYPE_NOSIGN (arg))
3140 return EXACT_MATCH_BADNESS;
3141 else
3142 return INTEGER_CONVERSION_BADNESS;
3143 }
3144 else if (TYPE_UNSIGNED (parm))
3145 {
3146 if (TYPE_UNSIGNED (arg))
3147 return EXACT_MATCH_BADNESS;
3148 else
3149 return INTEGER_PROMOTION_BADNESS;
3150 }
3151 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3152 return EXACT_MATCH_BADNESS;
3153 else
3154 return INTEGER_CONVERSION_BADNESS;
3155 default:
3156 return INCOMPATIBLE_TYPE_BADNESS;
3157 }
3158 break;
3159 case TYPE_CODE_RANGE:
3160 switch (TYPE_CODE (arg))
3161 {
3162 case TYPE_CODE_INT:
3163 case TYPE_CODE_CHAR:
3164 case TYPE_CODE_RANGE:
3165 case TYPE_CODE_BOOL:
3166 case TYPE_CODE_ENUM:
3167 return INTEGER_CONVERSION_BADNESS;
3168 case TYPE_CODE_FLT:
3169 return INT_FLOAT_CONVERSION_BADNESS;
3170 default:
3171 return INCOMPATIBLE_TYPE_BADNESS;
3172 }
3173 break;
3174 case TYPE_CODE_BOOL:
3175 switch (TYPE_CODE (arg))
3176 {
3177 /* n3290 draft, section 4.12.1 (conv.bool):
3178
3179 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3180 pointer to member type can be converted to a prvalue of type
3181 bool. A zero value, null pointer value, or null member pointer
3182 value is converted to false; any other value is converted to
3183 true. A prvalue of type std::nullptr_t can be converted to a
3184 prvalue of type bool; the resulting value is false." */
3185 case TYPE_CODE_INT:
3186 case TYPE_CODE_CHAR:
3187 case TYPE_CODE_ENUM:
3188 case TYPE_CODE_FLT:
3189 case TYPE_CODE_MEMBERPTR:
3190 case TYPE_CODE_PTR:
3191 return BOOL_CONVERSION_BADNESS;
3192 case TYPE_CODE_RANGE:
3193 return INCOMPATIBLE_TYPE_BADNESS;
3194 case TYPE_CODE_BOOL:
3195 return EXACT_MATCH_BADNESS;
3196 default:
3197 return INCOMPATIBLE_TYPE_BADNESS;
3198 }
3199 break;
3200 case TYPE_CODE_FLT:
3201 switch (TYPE_CODE (arg))
3202 {
3203 case TYPE_CODE_FLT:
3204 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3205 return FLOAT_PROMOTION_BADNESS;
3206 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3207 return EXACT_MATCH_BADNESS;
3208 else
3209 return FLOAT_CONVERSION_BADNESS;
3210 case TYPE_CODE_INT:
3211 case TYPE_CODE_BOOL:
3212 case TYPE_CODE_ENUM:
3213 case TYPE_CODE_RANGE:
3214 case TYPE_CODE_CHAR:
3215 return INT_FLOAT_CONVERSION_BADNESS;
3216 default:
3217 return INCOMPATIBLE_TYPE_BADNESS;
3218 }
3219 break;
3220 case TYPE_CODE_COMPLEX:
3221 switch (TYPE_CODE (arg))
3222 { /* Strictly not needed for C++, but... */
3223 case TYPE_CODE_FLT:
3224 return FLOAT_PROMOTION_BADNESS;
3225 case TYPE_CODE_COMPLEX:
3226 return EXACT_MATCH_BADNESS;
3227 default:
3228 return INCOMPATIBLE_TYPE_BADNESS;
3229 }
3230 break;
3231 case TYPE_CODE_STRUCT:
3232 /* currently same as TYPE_CODE_CLASS. */
3233 switch (TYPE_CODE (arg))
3234 {
3235 case TYPE_CODE_STRUCT:
3236 /* Check for derivation */
3237 rank.subrank = distance_to_ancestor (parm, arg, 0);
3238 if (rank.subrank >= 0)
3239 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3240 /* else fall through */
3241 default:
3242 return INCOMPATIBLE_TYPE_BADNESS;
3243 }
3244 break;
3245 case TYPE_CODE_UNION:
3246 switch (TYPE_CODE (arg))
3247 {
3248 case TYPE_CODE_UNION:
3249 default:
3250 return INCOMPATIBLE_TYPE_BADNESS;
3251 }
3252 break;
3253 case TYPE_CODE_MEMBERPTR:
3254 switch (TYPE_CODE (arg))
3255 {
3256 default:
3257 return INCOMPATIBLE_TYPE_BADNESS;
3258 }
3259 break;
3260 case TYPE_CODE_METHOD:
3261 switch (TYPE_CODE (arg))
3262 {
3263
3264 default:
3265 return INCOMPATIBLE_TYPE_BADNESS;
3266 }
3267 break;
3268 case TYPE_CODE_REF:
3269 switch (TYPE_CODE (arg))
3270 {
3271
3272 default:
3273 return INCOMPATIBLE_TYPE_BADNESS;
3274 }
3275
3276 break;
3277 case TYPE_CODE_SET:
3278 switch (TYPE_CODE (arg))
3279 {
3280 /* Not in C++ */
3281 case TYPE_CODE_SET:
3282 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3283 TYPE_FIELD_TYPE (arg, 0), NULL);
3284 default:
3285 return INCOMPATIBLE_TYPE_BADNESS;
3286 }
3287 break;
3288 case TYPE_CODE_VOID:
3289 default:
3290 return INCOMPATIBLE_TYPE_BADNESS;
3291 } /* switch (TYPE_CODE (arg)) */
3292 }
3293
3294 /* End of functions for overload resolution. */
3295 \f
3296 /* Routines to pretty-print types. */
3297
3298 static void
3299 print_bit_vector (B_TYPE *bits, int nbits)
3300 {
3301 int bitno;
3302
3303 for (bitno = 0; bitno < nbits; bitno++)
3304 {
3305 if ((bitno % 8) == 0)
3306 {
3307 puts_filtered (" ");
3308 }
3309 if (B_TST (bits, bitno))
3310 printf_filtered (("1"));
3311 else
3312 printf_filtered (("0"));
3313 }
3314 }
3315
3316 /* Note the first arg should be the "this" pointer, we may not want to
3317 include it since we may get into a infinitely recursive
3318 situation. */
3319
3320 static void
3321 print_arg_types (struct field *args, int nargs, int spaces)
3322 {
3323 if (args != NULL)
3324 {
3325 int i;
3326
3327 for (i = 0; i < nargs; i++)
3328 recursive_dump_type (args[i].type, spaces + 2);
3329 }
3330 }
3331
3332 int
3333 field_is_static (struct field *f)
3334 {
3335 /* "static" fields are the fields whose location is not relative
3336 to the address of the enclosing struct. It would be nice to
3337 have a dedicated flag that would be set for static fields when
3338 the type is being created. But in practice, checking the field
3339 loc_kind should give us an accurate answer. */
3340 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3341 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3342 }
3343
3344 static void
3345 dump_fn_fieldlists (struct type *type, int spaces)
3346 {
3347 int method_idx;
3348 int overload_idx;
3349 struct fn_field *f;
3350
3351 printfi_filtered (spaces, "fn_fieldlists ");
3352 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3353 printf_filtered ("\n");
3354 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3355 {
3356 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3357 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3358 method_idx,
3359 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3360 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3361 gdb_stdout);
3362 printf_filtered (_(") length %d\n"),
3363 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3364 for (overload_idx = 0;
3365 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3366 overload_idx++)
3367 {
3368 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3369 overload_idx,
3370 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3371 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3372 gdb_stdout);
3373 printf_filtered (")\n");
3374 printfi_filtered (spaces + 8, "type ");
3375 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3376 gdb_stdout);
3377 printf_filtered ("\n");
3378
3379 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3380 spaces + 8 + 2);
3381
3382 printfi_filtered (spaces + 8, "args ");
3383 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3384 gdb_stdout);
3385 printf_filtered ("\n");
3386
3387 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3388 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3389 overload_idx)),
3390 spaces);
3391 printfi_filtered (spaces + 8, "fcontext ");
3392 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3393 gdb_stdout);
3394 printf_filtered ("\n");
3395
3396 printfi_filtered (spaces + 8, "is_const %d\n",
3397 TYPE_FN_FIELD_CONST (f, overload_idx));
3398 printfi_filtered (spaces + 8, "is_volatile %d\n",
3399 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3400 printfi_filtered (spaces + 8, "is_private %d\n",
3401 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3402 printfi_filtered (spaces + 8, "is_protected %d\n",
3403 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3404 printfi_filtered (spaces + 8, "is_stub %d\n",
3405 TYPE_FN_FIELD_STUB (f, overload_idx));
3406 printfi_filtered (spaces + 8, "voffset %u\n",
3407 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3408 }
3409 }
3410 }
3411
3412 static void
3413 print_cplus_stuff (struct type *type, int spaces)
3414 {
3415 printfi_filtered (spaces, "n_baseclasses %d\n",
3416 TYPE_N_BASECLASSES (type));
3417 printfi_filtered (spaces, "nfn_fields %d\n",
3418 TYPE_NFN_FIELDS (type));
3419 if (TYPE_N_BASECLASSES (type) > 0)
3420 {
3421 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3422 TYPE_N_BASECLASSES (type));
3423 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3424 gdb_stdout);
3425 printf_filtered (")");
3426
3427 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3428 TYPE_N_BASECLASSES (type));
3429 puts_filtered ("\n");
3430 }
3431 if (TYPE_NFIELDS (type) > 0)
3432 {
3433 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3434 {
3435 printfi_filtered (spaces,
3436 "private_field_bits (%d bits at *",
3437 TYPE_NFIELDS (type));
3438 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3439 gdb_stdout);
3440 printf_filtered (")");
3441 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3442 TYPE_NFIELDS (type));
3443 puts_filtered ("\n");
3444 }
3445 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3446 {
3447 printfi_filtered (spaces,
3448 "protected_field_bits (%d bits at *",
3449 TYPE_NFIELDS (type));
3450 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3451 gdb_stdout);
3452 printf_filtered (")");
3453 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3454 TYPE_NFIELDS (type));
3455 puts_filtered ("\n");
3456 }
3457 }
3458 if (TYPE_NFN_FIELDS (type) > 0)
3459 {
3460 dump_fn_fieldlists (type, spaces);
3461 }
3462 }
3463
3464 /* Print the contents of the TYPE's type_specific union, assuming that
3465 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3466
3467 static void
3468 print_gnat_stuff (struct type *type, int spaces)
3469 {
3470 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3471
3472 recursive_dump_type (descriptive_type, spaces + 2);
3473 }
3474
3475 static struct obstack dont_print_type_obstack;
3476
3477 void
3478 recursive_dump_type (struct type *type, int spaces)
3479 {
3480 int idx;
3481
3482 if (spaces == 0)
3483 obstack_begin (&dont_print_type_obstack, 0);
3484
3485 if (TYPE_NFIELDS (type) > 0
3486 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3487 {
3488 struct type **first_dont_print
3489 = (struct type **) obstack_base (&dont_print_type_obstack);
3490
3491 int i = (struct type **)
3492 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3493
3494 while (--i >= 0)
3495 {
3496 if (type == first_dont_print[i])
3497 {
3498 printfi_filtered (spaces, "type node ");
3499 gdb_print_host_address (type, gdb_stdout);
3500 printf_filtered (_(" <same as already seen type>\n"));
3501 return;
3502 }
3503 }
3504
3505 obstack_ptr_grow (&dont_print_type_obstack, type);
3506 }
3507
3508 printfi_filtered (spaces, "type node ");
3509 gdb_print_host_address (type, gdb_stdout);
3510 printf_filtered ("\n");
3511 printfi_filtered (spaces, "name '%s' (",
3512 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3513 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3514 printf_filtered (")\n");
3515 printfi_filtered (spaces, "tagname '%s' (",
3516 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3517 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3518 printf_filtered (")\n");
3519 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3520 switch (TYPE_CODE (type))
3521 {
3522 case TYPE_CODE_UNDEF:
3523 printf_filtered ("(TYPE_CODE_UNDEF)");
3524 break;
3525 case TYPE_CODE_PTR:
3526 printf_filtered ("(TYPE_CODE_PTR)");
3527 break;
3528 case TYPE_CODE_ARRAY:
3529 printf_filtered ("(TYPE_CODE_ARRAY)");
3530 break;
3531 case TYPE_CODE_STRUCT:
3532 printf_filtered ("(TYPE_CODE_STRUCT)");
3533 break;
3534 case TYPE_CODE_UNION:
3535 printf_filtered ("(TYPE_CODE_UNION)");
3536 break;
3537 case TYPE_CODE_ENUM:
3538 printf_filtered ("(TYPE_CODE_ENUM)");
3539 break;
3540 case TYPE_CODE_FLAGS:
3541 printf_filtered ("(TYPE_CODE_FLAGS)");
3542 break;
3543 case TYPE_CODE_FUNC:
3544 printf_filtered ("(TYPE_CODE_FUNC)");
3545 break;
3546 case TYPE_CODE_INT:
3547 printf_filtered ("(TYPE_CODE_INT)");
3548 break;
3549 case TYPE_CODE_FLT:
3550 printf_filtered ("(TYPE_CODE_FLT)");
3551 break;
3552 case TYPE_CODE_VOID:
3553 printf_filtered ("(TYPE_CODE_VOID)");
3554 break;
3555 case TYPE_CODE_SET:
3556 printf_filtered ("(TYPE_CODE_SET)");
3557 break;
3558 case TYPE_CODE_RANGE:
3559 printf_filtered ("(TYPE_CODE_RANGE)");
3560 break;
3561 case TYPE_CODE_STRING:
3562 printf_filtered ("(TYPE_CODE_STRING)");
3563 break;
3564 case TYPE_CODE_ERROR:
3565 printf_filtered ("(TYPE_CODE_ERROR)");
3566 break;
3567 case TYPE_CODE_MEMBERPTR:
3568 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3569 break;
3570 case TYPE_CODE_METHODPTR:
3571 printf_filtered ("(TYPE_CODE_METHODPTR)");
3572 break;
3573 case TYPE_CODE_METHOD:
3574 printf_filtered ("(TYPE_CODE_METHOD)");
3575 break;
3576 case TYPE_CODE_REF:
3577 printf_filtered ("(TYPE_CODE_REF)");
3578 break;
3579 case TYPE_CODE_CHAR:
3580 printf_filtered ("(TYPE_CODE_CHAR)");
3581 break;
3582 case TYPE_CODE_BOOL:
3583 printf_filtered ("(TYPE_CODE_BOOL)");
3584 break;
3585 case TYPE_CODE_COMPLEX:
3586 printf_filtered ("(TYPE_CODE_COMPLEX)");
3587 break;
3588 case TYPE_CODE_TYPEDEF:
3589 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3590 break;
3591 case TYPE_CODE_NAMESPACE:
3592 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3593 break;
3594 default:
3595 printf_filtered ("(UNKNOWN TYPE CODE)");
3596 break;
3597 }
3598 puts_filtered ("\n");
3599 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3600 if (TYPE_OBJFILE_OWNED (type))
3601 {
3602 printfi_filtered (spaces, "objfile ");
3603 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3604 }
3605 else
3606 {
3607 printfi_filtered (spaces, "gdbarch ");
3608 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3609 }
3610 printf_filtered ("\n");
3611 printfi_filtered (spaces, "target_type ");
3612 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3613 printf_filtered ("\n");
3614 if (TYPE_TARGET_TYPE (type) != NULL)
3615 {
3616 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3617 }
3618 printfi_filtered (spaces, "pointer_type ");
3619 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3620 printf_filtered ("\n");
3621 printfi_filtered (spaces, "reference_type ");
3622 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3623 printf_filtered ("\n");
3624 printfi_filtered (spaces, "type_chain ");
3625 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3626 printf_filtered ("\n");
3627 printfi_filtered (spaces, "instance_flags 0x%x",
3628 TYPE_INSTANCE_FLAGS (type));
3629 if (TYPE_CONST (type))
3630 {
3631 puts_filtered (" TYPE_FLAG_CONST");
3632 }
3633 if (TYPE_VOLATILE (type))
3634 {
3635 puts_filtered (" TYPE_FLAG_VOLATILE");
3636 }
3637 if (TYPE_CODE_SPACE (type))
3638 {
3639 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3640 }
3641 if (TYPE_DATA_SPACE (type))
3642 {
3643 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3644 }
3645 if (TYPE_ADDRESS_CLASS_1 (type))
3646 {
3647 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3648 }
3649 if (TYPE_ADDRESS_CLASS_2 (type))
3650 {
3651 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3652 }
3653 if (TYPE_RESTRICT (type))
3654 {
3655 puts_filtered (" TYPE_FLAG_RESTRICT");
3656 }
3657 puts_filtered ("\n");
3658
3659 printfi_filtered (spaces, "flags");
3660 if (TYPE_UNSIGNED (type))
3661 {
3662 puts_filtered (" TYPE_FLAG_UNSIGNED");
3663 }
3664 if (TYPE_NOSIGN (type))
3665 {
3666 puts_filtered (" TYPE_FLAG_NOSIGN");
3667 }
3668 if (TYPE_STUB (type))
3669 {
3670 puts_filtered (" TYPE_FLAG_STUB");
3671 }
3672 if (TYPE_TARGET_STUB (type))
3673 {
3674 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3675 }
3676 if (TYPE_STATIC (type))
3677 {
3678 puts_filtered (" TYPE_FLAG_STATIC");
3679 }
3680 if (TYPE_PROTOTYPED (type))
3681 {
3682 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3683 }
3684 if (TYPE_INCOMPLETE (type))
3685 {
3686 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3687 }
3688 if (TYPE_VARARGS (type))
3689 {
3690 puts_filtered (" TYPE_FLAG_VARARGS");
3691 }
3692 /* This is used for things like AltiVec registers on ppc. Gcc emits
3693 an attribute for the array type, which tells whether or not we
3694 have a vector, instead of a regular array. */
3695 if (TYPE_VECTOR (type))
3696 {
3697 puts_filtered (" TYPE_FLAG_VECTOR");
3698 }
3699 if (TYPE_FIXED_INSTANCE (type))
3700 {
3701 puts_filtered (" TYPE_FIXED_INSTANCE");
3702 }
3703 if (TYPE_STUB_SUPPORTED (type))
3704 {
3705 puts_filtered (" TYPE_STUB_SUPPORTED");
3706 }
3707 if (TYPE_NOTTEXT (type))
3708 {
3709 puts_filtered (" TYPE_NOTTEXT");
3710 }
3711 puts_filtered ("\n");
3712 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3713 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3714 puts_filtered ("\n");
3715 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3716 {
3717 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3718 printfi_filtered (spaces + 2,
3719 "[%d] enumval %s type ",
3720 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3721 else
3722 printfi_filtered (spaces + 2,
3723 "[%d] bitpos %d bitsize %d type ",
3724 idx, TYPE_FIELD_BITPOS (type, idx),
3725 TYPE_FIELD_BITSIZE (type, idx));
3726 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3727 printf_filtered (" name '%s' (",
3728 TYPE_FIELD_NAME (type, idx) != NULL
3729 ? TYPE_FIELD_NAME (type, idx)
3730 : "<NULL>");
3731 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3732 printf_filtered (")\n");
3733 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3734 {
3735 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3736 }
3737 }
3738 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3739 {
3740 printfi_filtered (spaces, "low %s%s high %s%s\n",
3741 plongest (TYPE_LOW_BOUND (type)),
3742 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3743 plongest (TYPE_HIGH_BOUND (type)),
3744 TYPE_HIGH_BOUND_UNDEFINED (type)
3745 ? " (undefined)" : "");
3746 }
3747 printfi_filtered (spaces, "vptr_basetype ");
3748 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3749 puts_filtered ("\n");
3750 if (TYPE_VPTR_BASETYPE (type) != NULL)
3751 {
3752 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3753 }
3754 printfi_filtered (spaces, "vptr_fieldno %d\n",
3755 TYPE_VPTR_FIELDNO (type));
3756
3757 switch (TYPE_SPECIFIC_FIELD (type))
3758 {
3759 case TYPE_SPECIFIC_CPLUS_STUFF:
3760 printfi_filtered (spaces, "cplus_stuff ");
3761 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3762 gdb_stdout);
3763 puts_filtered ("\n");
3764 print_cplus_stuff (type, spaces);
3765 break;
3766
3767 case TYPE_SPECIFIC_GNAT_STUFF:
3768 printfi_filtered (spaces, "gnat_stuff ");
3769 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3770 puts_filtered ("\n");
3771 print_gnat_stuff (type, spaces);
3772 break;
3773
3774 case TYPE_SPECIFIC_FLOATFORMAT:
3775 printfi_filtered (spaces, "floatformat ");
3776 if (TYPE_FLOATFORMAT (type) == NULL)
3777 puts_filtered ("(null)");
3778 else
3779 {
3780 puts_filtered ("{ ");
3781 if (TYPE_FLOATFORMAT (type)[0] == NULL
3782 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3783 puts_filtered ("(null)");
3784 else
3785 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3786
3787 puts_filtered (", ");
3788 if (TYPE_FLOATFORMAT (type)[1] == NULL
3789 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3790 puts_filtered ("(null)");
3791 else
3792 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3793
3794 puts_filtered (" }");
3795 }
3796 puts_filtered ("\n");
3797 break;
3798
3799 case TYPE_SPECIFIC_FUNC:
3800 printfi_filtered (spaces, "calling_convention %d\n",
3801 TYPE_CALLING_CONVENTION (type));
3802 /* tail_call_list is not printed. */
3803 break;
3804 }
3805
3806 if (spaces == 0)
3807 obstack_free (&dont_print_type_obstack, NULL);
3808 }
3809 \f
3810 /* Trivial helpers for the libiberty hash table, for mapping one
3811 type to another. */
3812
3813 struct type_pair
3814 {
3815 struct type *old, *new;
3816 };
3817
3818 static hashval_t
3819 type_pair_hash (const void *item)
3820 {
3821 const struct type_pair *pair = item;
3822
3823 return htab_hash_pointer (pair->old);
3824 }
3825
3826 static int
3827 type_pair_eq (const void *item_lhs, const void *item_rhs)
3828 {
3829 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3830
3831 return lhs->old == rhs->old;
3832 }
3833
3834 /* Allocate the hash table used by copy_type_recursive to walk
3835 types without duplicates. We use OBJFILE's obstack, because
3836 OBJFILE is about to be deleted. */
3837
3838 htab_t
3839 create_copied_types_hash (struct objfile *objfile)
3840 {
3841 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3842 NULL, &objfile->objfile_obstack,
3843 hashtab_obstack_allocate,
3844 dummy_obstack_deallocate);
3845 }
3846
3847 /* Recursively copy (deep copy) TYPE, if it is associated with
3848 OBJFILE. Return a new type allocated using malloc, a saved type if
3849 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3850 not associated with OBJFILE. */
3851
3852 struct type *
3853 copy_type_recursive (struct objfile *objfile,
3854 struct type *type,
3855 htab_t copied_types)
3856 {
3857 struct type_pair *stored, pair;
3858 void **slot;
3859 struct type *new_type;
3860
3861 if (! TYPE_OBJFILE_OWNED (type))
3862 return type;
3863
3864 /* This type shouldn't be pointing to any types in other objfiles;
3865 if it did, the type might disappear unexpectedly. */
3866 gdb_assert (TYPE_OBJFILE (type) == objfile);
3867
3868 pair.old = type;
3869 slot = htab_find_slot (copied_types, &pair, INSERT);
3870 if (*slot != NULL)
3871 return ((struct type_pair *) *slot)->new;
3872
3873 new_type = alloc_type_arch (get_type_arch (type));
3874
3875 /* We must add the new type to the hash table immediately, in case
3876 we encounter this type again during a recursive call below. */
3877 stored
3878 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3879 stored->old = type;
3880 stored->new = new_type;
3881 *slot = stored;
3882
3883 /* Copy the common fields of types. For the main type, we simply
3884 copy the entire thing and then update specific fields as needed. */
3885 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3886 TYPE_OBJFILE_OWNED (new_type) = 0;
3887 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3888
3889 if (TYPE_NAME (type))
3890 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3891 if (TYPE_TAG_NAME (type))
3892 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3893
3894 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3895 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3896
3897 /* Copy the fields. */
3898 if (TYPE_NFIELDS (type))
3899 {
3900 int i, nfields;
3901
3902 nfields = TYPE_NFIELDS (type);
3903 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
3904 for (i = 0; i < nfields; i++)
3905 {
3906 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3907 TYPE_FIELD_ARTIFICIAL (type, i);
3908 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3909 if (TYPE_FIELD_TYPE (type, i))
3910 TYPE_FIELD_TYPE (new_type, i)
3911 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3912 copied_types);
3913 if (TYPE_FIELD_NAME (type, i))
3914 TYPE_FIELD_NAME (new_type, i) =
3915 xstrdup (TYPE_FIELD_NAME (type, i));
3916 switch (TYPE_FIELD_LOC_KIND (type, i))
3917 {
3918 case FIELD_LOC_KIND_BITPOS:
3919 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3920 TYPE_FIELD_BITPOS (type, i));
3921 break;
3922 case FIELD_LOC_KIND_ENUMVAL:
3923 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3924 TYPE_FIELD_ENUMVAL (type, i));
3925 break;
3926 case FIELD_LOC_KIND_PHYSADDR:
3927 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3928 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3929 break;
3930 case FIELD_LOC_KIND_PHYSNAME:
3931 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3932 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3933 i)));
3934 break;
3935 default:
3936 internal_error (__FILE__, __LINE__,
3937 _("Unexpected type field location kind: %d"),
3938 TYPE_FIELD_LOC_KIND (type, i));
3939 }
3940 }
3941 }
3942
3943 /* For range types, copy the bounds information. */
3944 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3945 {
3946 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3947 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3948 }
3949
3950 /* Copy pointers to other types. */
3951 if (TYPE_TARGET_TYPE (type))
3952 TYPE_TARGET_TYPE (new_type) =
3953 copy_type_recursive (objfile,
3954 TYPE_TARGET_TYPE (type),
3955 copied_types);
3956 if (TYPE_VPTR_BASETYPE (type))
3957 TYPE_VPTR_BASETYPE (new_type) =
3958 copy_type_recursive (objfile,
3959 TYPE_VPTR_BASETYPE (type),
3960 copied_types);
3961 /* Maybe copy the type_specific bits.
3962
3963 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3964 base classes and methods. There's no fundamental reason why we
3965 can't, but at the moment it is not needed. */
3966
3967 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3968 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3969 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3970 || TYPE_CODE (type) == TYPE_CODE_UNION
3971 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3972 INIT_CPLUS_SPECIFIC (new_type);
3973
3974 return new_type;
3975 }
3976
3977 /* Make a copy of the given TYPE, except that the pointer & reference
3978 types are not preserved.
3979
3980 This function assumes that the given type has an associated objfile.
3981 This objfile is used to allocate the new type. */
3982
3983 struct type *
3984 copy_type (const struct type *type)
3985 {
3986 struct type *new_type;
3987
3988 gdb_assert (TYPE_OBJFILE_OWNED (type));
3989
3990 new_type = alloc_type_copy (type);
3991 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3992 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3993 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3994 sizeof (struct main_type));
3995
3996 return new_type;
3997 }
3998 \f
3999 /* Helper functions to initialize architecture-specific types. */
4000
4001 /* Allocate a type structure associated with GDBARCH and set its
4002 CODE, LENGTH, and NAME fields. */
4003
4004 struct type *
4005 arch_type (struct gdbarch *gdbarch,
4006 enum type_code code, int length, char *name)
4007 {
4008 struct type *type;
4009
4010 type = alloc_type_arch (gdbarch);
4011 TYPE_CODE (type) = code;
4012 TYPE_LENGTH (type) = length;
4013
4014 if (name)
4015 TYPE_NAME (type) = xstrdup (name);
4016
4017 return type;
4018 }
4019
4020 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4021 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4022 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4023
4024 struct type *
4025 arch_integer_type (struct gdbarch *gdbarch,
4026 int bit, int unsigned_p, char *name)
4027 {
4028 struct type *t;
4029
4030 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4031 if (unsigned_p)
4032 TYPE_UNSIGNED (t) = 1;
4033 if (name && strcmp (name, "char") == 0)
4034 TYPE_NOSIGN (t) = 1;
4035
4036 return t;
4037 }
4038
4039 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4040 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4041 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4042
4043 struct type *
4044 arch_character_type (struct gdbarch *gdbarch,
4045 int bit, int unsigned_p, char *name)
4046 {
4047 struct type *t;
4048
4049 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4050 if (unsigned_p)
4051 TYPE_UNSIGNED (t) = 1;
4052
4053 return t;
4054 }
4055
4056 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4057 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4058 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4059
4060 struct type *
4061 arch_boolean_type (struct gdbarch *gdbarch,
4062 int bit, int unsigned_p, char *name)
4063 {
4064 struct type *t;
4065
4066 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4067 if (unsigned_p)
4068 TYPE_UNSIGNED (t) = 1;
4069
4070 return t;
4071 }
4072
4073 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4074 BIT is the type size in bits; if BIT equals -1, the size is
4075 determined by the floatformat. NAME is the type name. Set the
4076 TYPE_FLOATFORMAT from FLOATFORMATS. */
4077
4078 struct type *
4079 arch_float_type (struct gdbarch *gdbarch,
4080 int bit, char *name, const struct floatformat **floatformats)
4081 {
4082 struct type *t;
4083
4084 if (bit == -1)
4085 {
4086 gdb_assert (floatformats != NULL);
4087 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4088 bit = floatformats[0]->totalsize;
4089 }
4090 gdb_assert (bit >= 0);
4091
4092 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4093 TYPE_FLOATFORMAT (t) = floatformats;
4094 return t;
4095 }
4096
4097 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4098 NAME is the type name. TARGET_TYPE is the component float type. */
4099
4100 struct type *
4101 arch_complex_type (struct gdbarch *gdbarch,
4102 char *name, struct type *target_type)
4103 {
4104 struct type *t;
4105
4106 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4107 2 * TYPE_LENGTH (target_type), name);
4108 TYPE_TARGET_TYPE (t) = target_type;
4109 return t;
4110 }
4111
4112 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4113 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4114
4115 struct type *
4116 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4117 {
4118 int nfields = length * TARGET_CHAR_BIT;
4119 struct type *type;
4120
4121 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4122 TYPE_UNSIGNED (type) = 1;
4123 TYPE_NFIELDS (type) = nfields;
4124 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4125
4126 return type;
4127 }
4128
4129 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4130 position BITPOS is called NAME. */
4131
4132 void
4133 append_flags_type_flag (struct type *type, int bitpos, char *name)
4134 {
4135 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4136 gdb_assert (bitpos < TYPE_NFIELDS (type));
4137 gdb_assert (bitpos >= 0);
4138
4139 if (name)
4140 {
4141 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4142 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4143 }
4144 else
4145 {
4146 /* Don't show this field to the user. */
4147 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4148 }
4149 }
4150
4151 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4152 specified by CODE) associated with GDBARCH. NAME is the type name. */
4153
4154 struct type *
4155 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4156 {
4157 struct type *t;
4158
4159 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4160 t = arch_type (gdbarch, code, 0, NULL);
4161 TYPE_TAG_NAME (t) = name;
4162 INIT_CPLUS_SPECIFIC (t);
4163 return t;
4164 }
4165
4166 /* Add new field with name NAME and type FIELD to composite type T.
4167 Do not set the field's position or adjust the type's length;
4168 the caller should do so. Return the new field. */
4169
4170 struct field *
4171 append_composite_type_field_raw (struct type *t, char *name,
4172 struct type *field)
4173 {
4174 struct field *f;
4175
4176 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4177 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4178 sizeof (struct field) * TYPE_NFIELDS (t));
4179 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4180 memset (f, 0, sizeof f[0]);
4181 FIELD_TYPE (f[0]) = field;
4182 FIELD_NAME (f[0]) = name;
4183 return f;
4184 }
4185
4186 /* Add new field with name NAME and type FIELD to composite type T.
4187 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4188
4189 void
4190 append_composite_type_field_aligned (struct type *t, char *name,
4191 struct type *field, int alignment)
4192 {
4193 struct field *f = append_composite_type_field_raw (t, name, field);
4194
4195 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4196 {
4197 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4198 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4199 }
4200 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4201 {
4202 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4203 if (TYPE_NFIELDS (t) > 1)
4204 {
4205 SET_FIELD_BITPOS (f[0],
4206 (FIELD_BITPOS (f[-1])
4207 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4208 * TARGET_CHAR_BIT)));
4209
4210 if (alignment)
4211 {
4212 int left;
4213
4214 alignment *= TARGET_CHAR_BIT;
4215 left = FIELD_BITPOS (f[0]) % alignment;
4216
4217 if (left)
4218 {
4219 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4220 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4221 }
4222 }
4223 }
4224 }
4225 }
4226
4227 /* Add new field with name NAME and type FIELD to composite type T. */
4228
4229 void
4230 append_composite_type_field (struct type *t, char *name,
4231 struct type *field)
4232 {
4233 append_composite_type_field_aligned (t, name, field, 0);
4234 }
4235
4236 static struct gdbarch_data *gdbtypes_data;
4237
4238 const struct builtin_type *
4239 builtin_type (struct gdbarch *gdbarch)
4240 {
4241 return gdbarch_data (gdbarch, gdbtypes_data);
4242 }
4243
4244 static void *
4245 gdbtypes_post_init (struct gdbarch *gdbarch)
4246 {
4247 struct builtin_type *builtin_type
4248 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4249
4250 /* Basic types. */
4251 builtin_type->builtin_void
4252 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4253 builtin_type->builtin_char
4254 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4255 !gdbarch_char_signed (gdbarch), "char");
4256 builtin_type->builtin_signed_char
4257 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4258 0, "signed char");
4259 builtin_type->builtin_unsigned_char
4260 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4261 1, "unsigned char");
4262 builtin_type->builtin_short
4263 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4264 0, "short");
4265 builtin_type->builtin_unsigned_short
4266 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4267 1, "unsigned short");
4268 builtin_type->builtin_int
4269 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4270 0, "int");
4271 builtin_type->builtin_unsigned_int
4272 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4273 1, "unsigned int");
4274 builtin_type->builtin_long
4275 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4276 0, "long");
4277 builtin_type->builtin_unsigned_long
4278 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4279 1, "unsigned long");
4280 builtin_type->builtin_long_long
4281 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4282 0, "long long");
4283 builtin_type->builtin_unsigned_long_long
4284 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4285 1, "unsigned long long");
4286 builtin_type->builtin_float
4287 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4288 "float", gdbarch_float_format (gdbarch));
4289 builtin_type->builtin_double
4290 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4291 "double", gdbarch_double_format (gdbarch));
4292 builtin_type->builtin_long_double
4293 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4294 "long double", gdbarch_long_double_format (gdbarch));
4295 builtin_type->builtin_complex
4296 = arch_complex_type (gdbarch, "complex",
4297 builtin_type->builtin_float);
4298 builtin_type->builtin_double_complex
4299 = arch_complex_type (gdbarch, "double complex",
4300 builtin_type->builtin_double);
4301 builtin_type->builtin_string
4302 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4303 builtin_type->builtin_bool
4304 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4305
4306 /* The following three are about decimal floating point types, which
4307 are 32-bits, 64-bits and 128-bits respectively. */
4308 builtin_type->builtin_decfloat
4309 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4310 builtin_type->builtin_decdouble
4311 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4312 builtin_type->builtin_declong
4313 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4314
4315 /* "True" character types. */
4316 builtin_type->builtin_true_char
4317 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4318 builtin_type->builtin_true_unsigned_char
4319 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4320
4321 /* Fixed-size integer types. */
4322 builtin_type->builtin_int0
4323 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4324 builtin_type->builtin_int8
4325 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4326 builtin_type->builtin_uint8
4327 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4328 builtin_type->builtin_int16
4329 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4330 builtin_type->builtin_uint16
4331 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4332 builtin_type->builtin_int32
4333 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4334 builtin_type->builtin_uint32
4335 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4336 builtin_type->builtin_int64
4337 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4338 builtin_type->builtin_uint64
4339 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4340 builtin_type->builtin_int128
4341 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4342 builtin_type->builtin_uint128
4343 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4344 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4345 TYPE_INSTANCE_FLAG_NOTTEXT;
4346 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4347 TYPE_INSTANCE_FLAG_NOTTEXT;
4348
4349 /* Wide character types. */
4350 builtin_type->builtin_char16
4351 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4352 builtin_type->builtin_char32
4353 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4354
4355
4356 /* Default data/code pointer types. */
4357 builtin_type->builtin_data_ptr
4358 = lookup_pointer_type (builtin_type->builtin_void);
4359 builtin_type->builtin_func_ptr
4360 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4361 builtin_type->builtin_func_func
4362 = lookup_function_type (builtin_type->builtin_func_ptr);
4363
4364 /* This type represents a GDB internal function. */
4365 builtin_type->internal_fn
4366 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4367 "<internal function>");
4368
4369 return builtin_type;
4370 }
4371
4372 /* This set of objfile-based types is intended to be used by symbol
4373 readers as basic types. */
4374
4375 static const struct objfile_data *objfile_type_data;
4376
4377 const struct objfile_type *
4378 objfile_type (struct objfile *objfile)
4379 {
4380 struct gdbarch *gdbarch;
4381 struct objfile_type *objfile_type
4382 = objfile_data (objfile, objfile_type_data);
4383
4384 if (objfile_type)
4385 return objfile_type;
4386
4387 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4388 1, struct objfile_type);
4389
4390 /* Use the objfile architecture to determine basic type properties. */
4391 gdbarch = get_objfile_arch (objfile);
4392
4393 /* Basic types. */
4394 objfile_type->builtin_void
4395 = init_type (TYPE_CODE_VOID, 1,
4396 0,
4397 "void", objfile);
4398
4399 objfile_type->builtin_char
4400 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4401 (TYPE_FLAG_NOSIGN
4402 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4403 "char", objfile);
4404 objfile_type->builtin_signed_char
4405 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4406 0,
4407 "signed char", objfile);
4408 objfile_type->builtin_unsigned_char
4409 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4410 TYPE_FLAG_UNSIGNED,
4411 "unsigned char", objfile);
4412 objfile_type->builtin_short
4413 = init_type (TYPE_CODE_INT,
4414 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4415 0, "short", objfile);
4416 objfile_type->builtin_unsigned_short
4417 = init_type (TYPE_CODE_INT,
4418 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4419 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4420 objfile_type->builtin_int
4421 = init_type (TYPE_CODE_INT,
4422 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4423 0, "int", objfile);
4424 objfile_type->builtin_unsigned_int
4425 = init_type (TYPE_CODE_INT,
4426 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4427 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4428 objfile_type->builtin_long
4429 = init_type (TYPE_CODE_INT,
4430 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4431 0, "long", objfile);
4432 objfile_type->builtin_unsigned_long
4433 = init_type (TYPE_CODE_INT,
4434 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4435 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4436 objfile_type->builtin_long_long
4437 = init_type (TYPE_CODE_INT,
4438 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4439 0, "long long", objfile);
4440 objfile_type->builtin_unsigned_long_long
4441 = init_type (TYPE_CODE_INT,
4442 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4443 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4444
4445 objfile_type->builtin_float
4446 = init_type (TYPE_CODE_FLT,
4447 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4448 0, "float", objfile);
4449 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4450 = gdbarch_float_format (gdbarch);
4451 objfile_type->builtin_double
4452 = init_type (TYPE_CODE_FLT,
4453 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4454 0, "double", objfile);
4455 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4456 = gdbarch_double_format (gdbarch);
4457 objfile_type->builtin_long_double
4458 = init_type (TYPE_CODE_FLT,
4459 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4460 0, "long double", objfile);
4461 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4462 = gdbarch_long_double_format (gdbarch);
4463
4464 /* This type represents a type that was unrecognized in symbol read-in. */
4465 objfile_type->builtin_error
4466 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4467
4468 /* The following set of types is used for symbols with no
4469 debug information. */
4470 objfile_type->nodebug_text_symbol
4471 = init_type (TYPE_CODE_FUNC, 1, 0,
4472 "<text variable, no debug info>", objfile);
4473 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4474 = objfile_type->builtin_int;
4475 objfile_type->nodebug_text_gnu_ifunc_symbol
4476 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4477 "<text gnu-indirect-function variable, no debug info>",
4478 objfile);
4479 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4480 = objfile_type->nodebug_text_symbol;
4481 objfile_type->nodebug_got_plt_symbol
4482 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4483 "<text from jump slot in .got.plt, no debug info>",
4484 objfile);
4485 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4486 = objfile_type->nodebug_text_symbol;
4487 objfile_type->nodebug_data_symbol
4488 = init_type (TYPE_CODE_INT,
4489 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4490 "<data variable, no debug info>", objfile);
4491 objfile_type->nodebug_unknown_symbol
4492 = init_type (TYPE_CODE_INT, 1, 0,
4493 "<variable (not text or data), no debug info>", objfile);
4494 objfile_type->nodebug_tls_symbol
4495 = init_type (TYPE_CODE_INT,
4496 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4497 "<thread local variable, no debug info>", objfile);
4498
4499 /* NOTE: on some targets, addresses and pointers are not necessarily
4500 the same.
4501
4502 The upshot is:
4503 - gdb's `struct type' always describes the target's
4504 representation.
4505 - gdb's `struct value' objects should always hold values in
4506 target form.
4507 - gdb's CORE_ADDR values are addresses in the unified virtual
4508 address space that the assembler and linker work with. Thus,
4509 since target_read_memory takes a CORE_ADDR as an argument, it
4510 can access any memory on the target, even if the processor has
4511 separate code and data address spaces.
4512
4513 In this context, objfile_type->builtin_core_addr is a bit odd:
4514 it's a target type for a value the target will never see. It's
4515 only used to hold the values of (typeless) linker symbols, which
4516 are indeed in the unified virtual address space. */
4517
4518 objfile_type->builtin_core_addr
4519 = init_type (TYPE_CODE_INT,
4520 gdbarch_addr_bit (gdbarch) / 8,
4521 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4522
4523 set_objfile_data (objfile, objfile_type_data, objfile_type);
4524 return objfile_type;
4525 }
4526
4527 extern initialize_file_ftype _initialize_gdbtypes;
4528
4529 void
4530 _initialize_gdbtypes (void)
4531 {
4532 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4533 objfile_type_data = register_objfile_data ();
4534
4535 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4536 _("Set debugging of C++ overloading."),
4537 _("Show debugging of C++ overloading."),
4538 _("When enabled, ranking of the "
4539 "functions is displayed."),
4540 NULL,
4541 show_overload_debug,
4542 &setdebuglist, &showdebuglist);
4543
4544 /* Add user knob for controlling resolution of opaque types. */
4545 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4546 &opaque_type_resolution,
4547 _("Set resolution of opaque struct/class/union"
4548 " types (if set before loading symbols)."),
4549 _("Show resolution of opaque struct/class/union"
4550 " types (if set before loading symbols)."),
4551 NULL, NULL,
4552 show_opaque_type_resolution,
4553 &setlist, &showlist);
4554
4555 /* Add an option to permit non-strict type checking. */
4556 add_setshow_boolean_cmd ("type", class_support,
4557 &strict_type_checking,
4558 _("Set strict type checking."),
4559 _("Show strict type checking."),
4560 NULL, NULL,
4561 show_strict_type_checking,
4562 &setchecklist, &showchecklist);
4563 }
This page took 0.130083 seconds and 4 git commands to generate.