* value.c (value_from_contents_and_address): Always return
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "bfd.h"
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbtypes.h"
30 #include "expression.h"
31 #include "language.h"
32 #include "target.h"
33 #include "value.h"
34 #include "demangle.h"
35 #include "complaints.h"
36 #include "gdbcmd.h"
37 #include "wrapper.h"
38 #include "cp-abi.h"
39 #include "gdb_assert.h"
40 #include "hashtab.h"
41
42 /* These variables point to the objects
43 representing the predefined C data types. */
44
45 struct type *builtin_type_int0;
46 struct type *builtin_type_int8;
47 struct type *builtin_type_uint8;
48 struct type *builtin_type_int16;
49 struct type *builtin_type_uint16;
50 struct type *builtin_type_int32;
51 struct type *builtin_type_uint32;
52 struct type *builtin_type_int64;
53 struct type *builtin_type_uint64;
54 struct type *builtin_type_int128;
55 struct type *builtin_type_uint128;
56
57 /* Floatformat pairs. */
58 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
59 &floatformat_ieee_single_big,
60 &floatformat_ieee_single_little
61 };
62 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
63 &floatformat_ieee_double_big,
64 &floatformat_ieee_double_little
65 };
66 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_double_big,
68 &floatformat_ieee_double_littlebyte_bigword
69 };
70 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_i387_ext,
72 &floatformat_i387_ext
73 };
74 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_m68881_ext,
76 &floatformat_m68881_ext
77 };
78 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_arm_ext_big,
80 &floatformat_arm_ext_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ia64_spill_big,
84 &floatformat_ia64_spill_little
85 };
86 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_ia64_quad_big,
88 &floatformat_ia64_quad_little
89 };
90 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_vax_f,
92 &floatformat_vax_f
93 };
94 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_vax_d,
96 &floatformat_vax_d
97 };
98 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ibm_long_double,
100 &floatformat_ibm_long_double
101 };
102
103 struct type *builtin_type_ieee_single;
104 struct type *builtin_type_ieee_double;
105 struct type *builtin_type_i387_ext;
106 struct type *builtin_type_m68881_ext;
107 struct type *builtin_type_arm_ext;
108 struct type *builtin_type_ia64_spill;
109 struct type *builtin_type_ia64_quad;
110
111 /* Platform-neutral void type. */
112 struct type *builtin_type_void;
113
114 /* Platform-neutral character types. */
115 struct type *builtin_type_true_char;
116 struct type *builtin_type_true_unsigned_char;
117
118
119 int opaque_type_resolution = 1;
120 static void
121 show_opaque_type_resolution (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c,
123 const char *value)
124 {
125 fprintf_filtered (file, _("\
126 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
127 value);
128 }
129
130 int overload_debug = 0;
131 static void
132 show_overload_debug (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c, const char *value)
134 {
135 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
136 value);
137 }
138
139 struct extra
140 {
141 char str[128];
142 int len;
143 }; /* Maximum extension is 128! FIXME */
144
145 static void print_bit_vector (B_TYPE *, int);
146 static void print_arg_types (struct field *, int, int);
147 static void dump_fn_fieldlists (struct type *, int);
148 static void print_cplus_stuff (struct type *, int);
149
150
151 /* Alloc a new type structure and fill it with some defaults. If
152 OBJFILE is non-NULL, then allocate the space for the type structure
153 in that objfile's objfile_obstack. Otherwise allocate the new type
154 structure by xmalloc () (for permanent types). */
155
156 struct type *
157 alloc_type (struct objfile *objfile)
158 {
159 struct type *type;
160
161 /* Alloc the structure and start off with all fields zeroed. */
162
163 if (objfile == NULL)
164 {
165 type = XZALLOC (struct type);
166 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
167 }
168 else
169 {
170 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
171 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
172 struct main_type);
173 OBJSTAT (objfile, n_types++);
174 }
175
176 /* Initialize the fields that might not be zero. */
177
178 TYPE_CODE (type) = TYPE_CODE_UNDEF;
179 TYPE_OBJFILE (type) = objfile;
180 TYPE_VPTR_FIELDNO (type) = -1;
181 TYPE_CHAIN (type) = type; /* Chain back to itself. */
182
183 return (type);
184 }
185
186 /* Alloc a new type instance structure, fill it with some defaults,
187 and point it at OLDTYPE. Allocate the new type instance from the
188 same place as OLDTYPE. */
189
190 static struct type *
191 alloc_type_instance (struct type *oldtype)
192 {
193 struct type *type;
194
195 /* Allocate the structure. */
196
197 if (TYPE_OBJFILE (oldtype) == NULL)
198 type = XZALLOC (struct type);
199 else
200 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
201 struct type);
202
203 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
204
205 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
206
207 return (type);
208 }
209
210 /* Clear all remnants of the previous type at TYPE, in preparation for
211 replacing it with something else. */
212 static void
213 smash_type (struct type *type)
214 {
215 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
216
217 /* For now, delete the rings. */
218 TYPE_CHAIN (type) = type;
219
220 /* For now, leave the pointer/reference types alone. */
221 }
222
223 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
224 to a pointer to memory where the pointer type should be stored.
225 If *TYPEPTR is zero, update it to point to the pointer type we return.
226 We allocate new memory if needed. */
227
228 struct type *
229 make_pointer_type (struct type *type, struct type **typeptr)
230 {
231 struct type *ntype; /* New type */
232 struct objfile *objfile;
233 struct type *chain;
234
235 ntype = TYPE_POINTER_TYPE (type);
236
237 if (ntype)
238 {
239 if (typeptr == 0)
240 return ntype; /* Don't care about alloc,
241 and have new type. */
242 else if (*typeptr == 0)
243 {
244 *typeptr = ntype; /* Tracking alloc, and have new type. */
245 return ntype;
246 }
247 }
248
249 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
250 {
251 ntype = alloc_type (TYPE_OBJFILE (type));
252 if (typeptr)
253 *typeptr = ntype;
254 }
255 else /* We have storage, but need to reset it. */
256 {
257 ntype = *typeptr;
258 objfile = TYPE_OBJFILE (ntype);
259 chain = TYPE_CHAIN (ntype);
260 smash_type (ntype);
261 TYPE_CHAIN (ntype) = chain;
262 TYPE_OBJFILE (ntype) = objfile;
263 }
264
265 TYPE_TARGET_TYPE (ntype) = type;
266 TYPE_POINTER_TYPE (type) = ntype;
267
268 /* FIXME! Assume the machine has only one representation for
269 pointers! */
270
271 TYPE_LENGTH (ntype) =
272 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
273 TYPE_CODE (ntype) = TYPE_CODE_PTR;
274
275 /* Mark pointers as unsigned. The target converts between pointers
276 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
277 gdbarch_address_to_pointer. */
278 TYPE_UNSIGNED (ntype) = 1;
279
280 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
281 TYPE_POINTER_TYPE (type) = ntype;
282
283 /* Update the length of all the other variants of this type. */
284 chain = TYPE_CHAIN (ntype);
285 while (chain != ntype)
286 {
287 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
288 chain = TYPE_CHAIN (chain);
289 }
290
291 return ntype;
292 }
293
294 /* Given a type TYPE, return a type of pointers to that type.
295 May need to construct such a type if this is the first use. */
296
297 struct type *
298 lookup_pointer_type (struct type *type)
299 {
300 return make_pointer_type (type, (struct type **) 0);
301 }
302
303 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
304 points to a pointer to memory where the reference type should be
305 stored. If *TYPEPTR is zero, update it to point to the reference
306 type we return. We allocate new memory if needed. */
307
308 struct type *
309 make_reference_type (struct type *type, struct type **typeptr)
310 {
311 struct type *ntype; /* New type */
312 struct objfile *objfile;
313 struct type *chain;
314
315 ntype = TYPE_REFERENCE_TYPE (type);
316
317 if (ntype)
318 {
319 if (typeptr == 0)
320 return ntype; /* Don't care about alloc,
321 and have new type. */
322 else if (*typeptr == 0)
323 {
324 *typeptr = ntype; /* Tracking alloc, and have new type. */
325 return ntype;
326 }
327 }
328
329 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
330 {
331 ntype = alloc_type (TYPE_OBJFILE (type));
332 if (typeptr)
333 *typeptr = ntype;
334 }
335 else /* We have storage, but need to reset it. */
336 {
337 ntype = *typeptr;
338 objfile = TYPE_OBJFILE (ntype);
339 chain = TYPE_CHAIN (ntype);
340 smash_type (ntype);
341 TYPE_CHAIN (ntype) = chain;
342 TYPE_OBJFILE (ntype) = objfile;
343 }
344
345 TYPE_TARGET_TYPE (ntype) = type;
346 TYPE_REFERENCE_TYPE (type) = ntype;
347
348 /* FIXME! Assume the machine has only one representation for
349 references, and that it matches the (only) representation for
350 pointers! */
351
352 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
353 TYPE_CODE (ntype) = TYPE_CODE_REF;
354
355 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
356 TYPE_REFERENCE_TYPE (type) = ntype;
357
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
366 return ntype;
367 }
368
369 /* Same as above, but caller doesn't care about memory allocation
370 details. */
371
372 struct type *
373 lookup_reference_type (struct type *type)
374 {
375 return make_reference_type (type, (struct type **) 0);
376 }
377
378 /* Lookup a function type that returns type TYPE. TYPEPTR, if
379 nonzero, points to a pointer to memory where the function type
380 should be stored. If *TYPEPTR is zero, update it to point to the
381 function type we return. We allocate new memory if needed. */
382
383 struct type *
384 make_function_type (struct type *type, struct type **typeptr)
385 {
386 struct type *ntype; /* New type */
387 struct objfile *objfile;
388
389 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
390 {
391 ntype = alloc_type (TYPE_OBJFILE (type));
392 if (typeptr)
393 *typeptr = ntype;
394 }
395 else /* We have storage, but need to reset it. */
396 {
397 ntype = *typeptr;
398 objfile = TYPE_OBJFILE (ntype);
399 smash_type (ntype);
400 TYPE_OBJFILE (ntype) = objfile;
401 }
402
403 TYPE_TARGET_TYPE (ntype) = type;
404
405 TYPE_LENGTH (ntype) = 1;
406 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
407
408 return ntype;
409 }
410
411
412 /* Given a type TYPE, return a type of functions that return that type.
413 May need to construct such a type if this is the first use. */
414
415 struct type *
416 lookup_function_type (struct type *type)
417 {
418 return make_function_type (type, (struct type **) 0);
419 }
420
421 /* Identify address space identifier by name --
422 return the integer flag defined in gdbtypes.h. */
423 extern int
424 address_space_name_to_int (char *space_identifier)
425 {
426 struct gdbarch *gdbarch = current_gdbarch;
427 int type_flags;
428 /* Check for known address space delimiters. */
429 if (!strcmp (space_identifier, "code"))
430 return TYPE_INSTANCE_FLAG_CODE_SPACE;
431 else if (!strcmp (space_identifier, "data"))
432 return TYPE_INSTANCE_FLAG_DATA_SPACE;
433 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
434 && gdbarch_address_class_name_to_type_flags (gdbarch,
435 space_identifier,
436 &type_flags))
437 return type_flags;
438 else
439 error (_("Unknown address space specifier: \"%s\""), space_identifier);
440 }
441
442 /* Identify address space identifier by integer flag as defined in
443 gdbtypes.h -- return the string version of the adress space name. */
444
445 const char *
446 address_space_int_to_name (int space_flag)
447 {
448 struct gdbarch *gdbarch = current_gdbarch;
449 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
450 return "code";
451 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
452 return "data";
453 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
454 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
455 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
456 else
457 return NULL;
458 }
459
460 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
461
462 If STORAGE is non-NULL, create the new type instance there.
463 STORAGE must be in the same obstack as TYPE. */
464
465 static struct type *
466 make_qualified_type (struct type *type, int new_flags,
467 struct type *storage)
468 {
469 struct type *ntype;
470
471 ntype = type;
472 do
473 {
474 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
475 return ntype;
476 ntype = TYPE_CHAIN (ntype);
477 }
478 while (ntype != type);
479
480 /* Create a new type instance. */
481 if (storage == NULL)
482 ntype = alloc_type_instance (type);
483 else
484 {
485 /* If STORAGE was provided, it had better be in the same objfile
486 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
487 if one objfile is freed and the other kept, we'd have
488 dangling pointers. */
489 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
490
491 ntype = storage;
492 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
493 TYPE_CHAIN (ntype) = ntype;
494 }
495
496 /* Pointers or references to the original type are not relevant to
497 the new type. */
498 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
499 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
500
501 /* Chain the new qualified type to the old type. */
502 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
503 TYPE_CHAIN (type) = ntype;
504
505 /* Now set the instance flags and return the new type. */
506 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
507
508 /* Set length of new type to that of the original type. */
509 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
510
511 return ntype;
512 }
513
514 /* Make an address-space-delimited variant of a type -- a type that
515 is identical to the one supplied except that it has an address
516 space attribute attached to it (such as "code" or "data").
517
518 The space attributes "code" and "data" are for Harvard
519 architectures. The address space attributes are for architectures
520 which have alternately sized pointers or pointers with alternate
521 representations. */
522
523 struct type *
524 make_type_with_address_space (struct type *type, int space_flag)
525 {
526 struct type *ntype;
527 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
528 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
529 | TYPE_INSTANCE_FLAG_DATA_SPACE
530 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
531 | space_flag);
532
533 return make_qualified_type (type, new_flags, NULL);
534 }
535
536 /* Make a "c-v" variant of a type -- a type that is identical to the
537 one supplied except that it may have const or volatile attributes
538 CNST is a flag for setting the const attribute
539 VOLTL is a flag for setting the volatile attribute
540 TYPE is the base type whose variant we are creating.
541
542 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
543 storage to hold the new qualified type; *TYPEPTR and TYPE must be
544 in the same objfile. Otherwise, allocate fresh memory for the new
545 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
546 new type we construct. */
547 struct type *
548 make_cv_type (int cnst, int voltl,
549 struct type *type,
550 struct type **typeptr)
551 {
552 struct type *ntype; /* New type */
553 struct type *tmp_type = type; /* tmp type */
554 struct objfile *objfile;
555
556 int new_flags = (TYPE_INSTANCE_FLAGS (type)
557 & ~(TYPE_INSTANCE_FLAG_CONST | TYPE_INSTANCE_FLAG_VOLATILE));
558
559 if (cnst)
560 new_flags |= TYPE_INSTANCE_FLAG_CONST;
561
562 if (voltl)
563 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
564
565 if (typeptr && *typeptr != NULL)
566 {
567 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
568 a C-V variant chain that threads across objfiles: if one
569 objfile gets freed, then the other has a broken C-V chain.
570
571 This code used to try to copy over the main type from TYPE to
572 *TYPEPTR if they were in different objfiles, but that's
573 wrong, too: TYPE may have a field list or member function
574 lists, which refer to types of their own, etc. etc. The
575 whole shebang would need to be copied over recursively; you
576 can't have inter-objfile pointers. The only thing to do is
577 to leave stub types as stub types, and look them up afresh by
578 name each time you encounter them. */
579 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
580 }
581
582 ntype = make_qualified_type (type, new_flags,
583 typeptr ? *typeptr : NULL);
584
585 if (typeptr != NULL)
586 *typeptr = ntype;
587
588 return ntype;
589 }
590
591 /* Replace the contents of ntype with the type *type. This changes the
592 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
593 the changes are propogated to all types in the TYPE_CHAIN.
594
595 In order to build recursive types, it's inevitable that we'll need
596 to update types in place --- but this sort of indiscriminate
597 smashing is ugly, and needs to be replaced with something more
598 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
599 clear if more steps are needed. */
600 void
601 replace_type (struct type *ntype, struct type *type)
602 {
603 struct type *chain;
604
605 /* These two types had better be in the same objfile. Otherwise,
606 the assignment of one type's main type structure to the other
607 will produce a type with references to objects (names; field
608 lists; etc.) allocated on an objfile other than its own. */
609 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
610
611 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
612
613 /* The type length is not a part of the main type. Update it for
614 each type on the variant chain. */
615 chain = ntype;
616 do
617 {
618 /* Assert that this element of the chain has no address-class bits
619 set in its flags. Such type variants might have type lengths
620 which are supposed to be different from the non-address-class
621 variants. This assertion shouldn't ever be triggered because
622 symbol readers which do construct address-class variants don't
623 call replace_type(). */
624 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
625
626 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
627 chain = TYPE_CHAIN (chain);
628 }
629 while (ntype != chain);
630
631 /* Assert that the two types have equivalent instance qualifiers.
632 This should be true for at least all of our debug readers. */
633 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
634 }
635
636 /* Implement direct support for MEMBER_TYPE in GNU C++.
637 May need to construct such a type if this is the first use.
638 The TYPE is the type of the member. The DOMAIN is the type
639 of the aggregate that the member belongs to. */
640
641 struct type *
642 lookup_memberptr_type (struct type *type, struct type *domain)
643 {
644 struct type *mtype;
645
646 mtype = alloc_type (TYPE_OBJFILE (type));
647 smash_to_memberptr_type (mtype, domain, type);
648 return (mtype);
649 }
650
651 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
652
653 struct type *
654 lookup_methodptr_type (struct type *to_type)
655 {
656 struct type *mtype;
657
658 mtype = alloc_type (TYPE_OBJFILE (to_type));
659 TYPE_TARGET_TYPE (mtype) = to_type;
660 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
661 TYPE_LENGTH (mtype) = cplus_method_ptr_size (to_type);
662 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
663 return mtype;
664 }
665
666 /* Allocate a stub method whose return type is TYPE. This apparently
667 happens for speed of symbol reading, since parsing out the
668 arguments to the method is cpu-intensive, the way we are doing it.
669 So, we will fill in arguments later. This always returns a fresh
670 type. */
671
672 struct type *
673 allocate_stub_method (struct type *type)
674 {
675 struct type *mtype;
676
677 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
678 TYPE_OBJFILE (type));
679 TYPE_TARGET_TYPE (mtype) = type;
680 /* _DOMAIN_TYPE (mtype) = unknown yet */
681 return (mtype);
682 }
683
684 /* Create a range type using either a blank type supplied in
685 RESULT_TYPE, or creating a new type, inheriting the objfile from
686 INDEX_TYPE.
687
688 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
689 to HIGH_BOUND, inclusive.
690
691 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
692 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
693
694 struct type *
695 create_range_type (struct type *result_type, struct type *index_type,
696 int low_bound, int high_bound)
697 {
698 if (result_type == NULL)
699 result_type = alloc_type (TYPE_OBJFILE (index_type));
700 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
701 TYPE_TARGET_TYPE (result_type) = index_type;
702 if (TYPE_STUB (index_type))
703 TYPE_TARGET_STUB (result_type) = 1;
704 else
705 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
706 TYPE_NFIELDS (result_type) = 2;
707 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type,
708 TYPE_NFIELDS (result_type)
709 * sizeof (struct field));
710 TYPE_LOW_BOUND (result_type) = low_bound;
711 TYPE_HIGH_BOUND (result_type) = high_bound;
712
713 if (low_bound >= 0)
714 TYPE_UNSIGNED (result_type) = 1;
715
716 return result_type;
717 }
718
719 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
720 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
721 bounds will fit in LONGEST), or -1 otherwise. */
722
723 int
724 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
725 {
726 CHECK_TYPEDEF (type);
727 switch (TYPE_CODE (type))
728 {
729 case TYPE_CODE_RANGE:
730 *lowp = TYPE_LOW_BOUND (type);
731 *highp = TYPE_HIGH_BOUND (type);
732 return 1;
733 case TYPE_CODE_ENUM:
734 if (TYPE_NFIELDS (type) > 0)
735 {
736 /* The enums may not be sorted by value, so search all
737 entries */
738 int i;
739
740 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
741 for (i = 0; i < TYPE_NFIELDS (type); i++)
742 {
743 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
744 *lowp = TYPE_FIELD_BITPOS (type, i);
745 if (TYPE_FIELD_BITPOS (type, i) > *highp)
746 *highp = TYPE_FIELD_BITPOS (type, i);
747 }
748
749 /* Set unsigned indicator if warranted. */
750 if (*lowp >= 0)
751 {
752 TYPE_UNSIGNED (type) = 1;
753 }
754 }
755 else
756 {
757 *lowp = 0;
758 *highp = -1;
759 }
760 return 0;
761 case TYPE_CODE_BOOL:
762 *lowp = 0;
763 *highp = 1;
764 return 0;
765 case TYPE_CODE_INT:
766 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
767 return -1;
768 if (!TYPE_UNSIGNED (type))
769 {
770 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
771 *highp = -*lowp - 1;
772 return 0;
773 }
774 /* ... fall through for unsigned ints ... */
775 case TYPE_CODE_CHAR:
776 *lowp = 0;
777 /* This round-about calculation is to avoid shifting by
778 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
779 if TYPE_LENGTH (type) == sizeof (LONGEST). */
780 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
781 *highp = (*highp - 1) | *highp;
782 return 0;
783 default:
784 return -1;
785 }
786 }
787
788 /* Create an array type using either a blank type supplied in
789 RESULT_TYPE, or creating a new type, inheriting the objfile from
790 RANGE_TYPE.
791
792 Elements will be of type ELEMENT_TYPE, the indices will be of type
793 RANGE_TYPE.
794
795 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
796 sure it is TYPE_CODE_UNDEF before we bash it into an array
797 type? */
798
799 struct type *
800 create_array_type (struct type *result_type,
801 struct type *element_type,
802 struct type *range_type)
803 {
804 LONGEST low_bound, high_bound;
805
806 if (result_type == NULL)
807 {
808 result_type = alloc_type (TYPE_OBJFILE (range_type));
809 }
810 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
811 TYPE_TARGET_TYPE (result_type) = element_type;
812 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
813 low_bound = high_bound = 0;
814 CHECK_TYPEDEF (element_type);
815 /* Be careful when setting the array length. Ada arrays can be
816 empty arrays with the high_bound being smaller than the low_bound.
817 In such cases, the array length should be zero. */
818 if (high_bound < low_bound)
819 TYPE_LENGTH (result_type) = 0;
820 else
821 TYPE_LENGTH (result_type) =
822 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
823 TYPE_NFIELDS (result_type) = 1;
824 TYPE_FIELDS (result_type) =
825 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
826 TYPE_INDEX_TYPE (result_type) = range_type;
827 TYPE_VPTR_FIELDNO (result_type) = -1;
828
829 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
830 if (TYPE_LENGTH (result_type) == 0)
831 TYPE_TARGET_STUB (result_type) = 1;
832
833 return (result_type);
834 }
835
836 /* Create a string type using either a blank type supplied in
837 RESULT_TYPE, or creating a new type. String types are similar
838 enough to array of char types that we can use create_array_type to
839 build the basic type and then bash it into a string type.
840
841 For fixed length strings, the range type contains 0 as the lower
842 bound and the length of the string minus one as the upper bound.
843
844 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
845 sure it is TYPE_CODE_UNDEF before we bash it into a string
846 type? */
847
848 struct type *
849 create_string_type (struct type *result_type,
850 struct type *range_type)
851 {
852 struct type *string_char_type;
853
854 string_char_type = language_string_char_type (current_language,
855 current_gdbarch);
856 result_type = create_array_type (result_type,
857 string_char_type,
858 range_type);
859 TYPE_CODE (result_type) = TYPE_CODE_STRING;
860 return (result_type);
861 }
862
863 struct type *
864 create_set_type (struct type *result_type, struct type *domain_type)
865 {
866 if (result_type == NULL)
867 {
868 result_type = alloc_type (TYPE_OBJFILE (domain_type));
869 }
870 TYPE_CODE (result_type) = TYPE_CODE_SET;
871 TYPE_NFIELDS (result_type) = 1;
872 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
873
874 if (!TYPE_STUB (domain_type))
875 {
876 LONGEST low_bound, high_bound, bit_length;
877 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
878 low_bound = high_bound = 0;
879 bit_length = high_bound - low_bound + 1;
880 TYPE_LENGTH (result_type)
881 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
882 if (low_bound >= 0)
883 TYPE_UNSIGNED (result_type) = 1;
884 }
885 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
886
887 return (result_type);
888 }
889
890 void
891 append_flags_type_flag (struct type *type, int bitpos, char *name)
892 {
893 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
894 gdb_assert (bitpos < TYPE_NFIELDS (type));
895 gdb_assert (bitpos >= 0);
896
897 if (name)
898 {
899 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
900 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
901 }
902 else
903 {
904 /* Don't show this field to the user. */
905 TYPE_FIELD_BITPOS (type, bitpos) = -1;
906 }
907 }
908
909 struct type *
910 init_flags_type (char *name, int length)
911 {
912 int nfields = length * TARGET_CHAR_BIT;
913 struct type *type;
914
915 type = init_type (TYPE_CODE_FLAGS, length,
916 TYPE_FLAG_UNSIGNED, name, NULL);
917 TYPE_NFIELDS (type) = nfields;
918 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
919
920 return type;
921 }
922
923 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
924 and any array types nested inside it. */
925
926 void
927 make_vector_type (struct type *array_type)
928 {
929 struct type *inner_array, *elt_type;
930 int flags;
931
932 /* Find the innermost array type, in case the array is
933 multi-dimensional. */
934 inner_array = array_type;
935 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
936 inner_array = TYPE_TARGET_TYPE (inner_array);
937
938 elt_type = TYPE_TARGET_TYPE (inner_array);
939 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
940 {
941 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
942 elt_type = make_qualified_type (elt_type, flags, NULL);
943 TYPE_TARGET_TYPE (inner_array) = elt_type;
944 }
945
946 TYPE_VECTOR (array_type) = 1;
947 }
948
949 struct type *
950 init_vector_type (struct type *elt_type, int n)
951 {
952 struct type *array_type;
953
954 array_type = create_array_type (0, elt_type,
955 create_range_type (0,
956 builtin_type_int32,
957 0, n-1));
958 make_vector_type (array_type);
959 return array_type;
960 }
961
962 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
963 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
964 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
965 TYPE doesn't include the offset (that's the value of the MEMBER
966 itself), but does include the structure type into which it points
967 (for some reason).
968
969 When "smashing" the type, we preserve the objfile that the old type
970 pointed to, since we aren't changing where the type is actually
971 allocated. */
972
973 void
974 smash_to_memberptr_type (struct type *type, struct type *domain,
975 struct type *to_type)
976 {
977 struct objfile *objfile;
978
979 objfile = TYPE_OBJFILE (type);
980
981 smash_type (type);
982 TYPE_OBJFILE (type) = objfile;
983 TYPE_TARGET_TYPE (type) = to_type;
984 TYPE_DOMAIN_TYPE (type) = domain;
985 /* Assume that a data member pointer is the same size as a normal
986 pointer. */
987 TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
988 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
989 }
990
991 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
992 METHOD just means `function that gets an extra "this" argument'.
993
994 When "smashing" the type, we preserve the objfile that the old type
995 pointed to, since we aren't changing where the type is actually
996 allocated. */
997
998 void
999 smash_to_method_type (struct type *type, struct type *domain,
1000 struct type *to_type, struct field *args,
1001 int nargs, int varargs)
1002 {
1003 struct objfile *objfile;
1004
1005 objfile = TYPE_OBJFILE (type);
1006
1007 smash_type (type);
1008 TYPE_OBJFILE (type) = objfile;
1009 TYPE_TARGET_TYPE (type) = to_type;
1010 TYPE_DOMAIN_TYPE (type) = domain;
1011 TYPE_FIELDS (type) = args;
1012 TYPE_NFIELDS (type) = nargs;
1013 if (varargs)
1014 TYPE_VARARGS (type) = 1;
1015 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1016 TYPE_CODE (type) = TYPE_CODE_METHOD;
1017 }
1018
1019 /* Return a typename for a struct/union/enum type without "struct ",
1020 "union ", or "enum ". If the type has a NULL name, return NULL. */
1021
1022 char *
1023 type_name_no_tag (const struct type *type)
1024 {
1025 if (TYPE_TAG_NAME (type) != NULL)
1026 return TYPE_TAG_NAME (type);
1027
1028 /* Is there code which expects this to return the name if there is
1029 no tag name? My guess is that this is mainly used for C++ in
1030 cases where the two will always be the same. */
1031 return TYPE_NAME (type);
1032 }
1033
1034 /* Lookup a typedef or primitive type named NAME, visible in lexical
1035 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1036 suitably defined. */
1037
1038 struct type *
1039 lookup_typename (char *name, struct block *block, int noerr)
1040 {
1041 struct symbol *sym;
1042 struct type *tmp;
1043
1044 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1045 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1046 {
1047 tmp = language_lookup_primitive_type_by_name (current_language,
1048 current_gdbarch,
1049 name);
1050 if (tmp)
1051 {
1052 return (tmp);
1053 }
1054 else if (!tmp && noerr)
1055 {
1056 return (NULL);
1057 }
1058 else
1059 {
1060 error (_("No type named %s."), name);
1061 }
1062 }
1063 return (SYMBOL_TYPE (sym));
1064 }
1065
1066 struct type *
1067 lookup_unsigned_typename (char *name)
1068 {
1069 char *uns = alloca (strlen (name) + 10);
1070
1071 strcpy (uns, "unsigned ");
1072 strcpy (uns + 9, name);
1073 return (lookup_typename (uns, (struct block *) NULL, 0));
1074 }
1075
1076 struct type *
1077 lookup_signed_typename (char *name)
1078 {
1079 struct type *t;
1080 char *uns = alloca (strlen (name) + 8);
1081
1082 strcpy (uns, "signed ");
1083 strcpy (uns + 7, name);
1084 t = lookup_typename (uns, (struct block *) NULL, 1);
1085 /* If we don't find "signed FOO" just try again with plain "FOO". */
1086 if (t != NULL)
1087 return t;
1088 return lookup_typename (name, (struct block *) NULL, 0);
1089 }
1090
1091 /* Lookup a structure type named "struct NAME",
1092 visible in lexical block BLOCK. */
1093
1094 struct type *
1095 lookup_struct (char *name, struct block *block)
1096 {
1097 struct symbol *sym;
1098
1099 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1100
1101 if (sym == NULL)
1102 {
1103 error (_("No struct type named %s."), name);
1104 }
1105 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1106 {
1107 error (_("This context has class, union or enum %s, not a struct."),
1108 name);
1109 }
1110 return (SYMBOL_TYPE (sym));
1111 }
1112
1113 /* Lookup a union type named "union NAME",
1114 visible in lexical block BLOCK. */
1115
1116 struct type *
1117 lookup_union (char *name, struct block *block)
1118 {
1119 struct symbol *sym;
1120 struct type *t;
1121
1122 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1123
1124 if (sym == NULL)
1125 error (_("No union type named %s."), name);
1126
1127 t = SYMBOL_TYPE (sym);
1128
1129 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1130 return (t);
1131
1132 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1133 * a further "declared_type" field to discover it is really a union.
1134 */
1135 if (HAVE_CPLUS_STRUCT (t))
1136 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
1137 return (t);
1138
1139 /* If we get here, it's not a union. */
1140 error (_("This context has class, struct or enum %s, not a union."),
1141 name);
1142 }
1143
1144
1145 /* Lookup an enum type named "enum NAME",
1146 visible in lexical block BLOCK. */
1147
1148 struct type *
1149 lookup_enum (char *name, struct block *block)
1150 {
1151 struct symbol *sym;
1152
1153 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1154 if (sym == NULL)
1155 {
1156 error (_("No enum type named %s."), name);
1157 }
1158 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1159 {
1160 error (_("This context has class, struct or union %s, not an enum."),
1161 name);
1162 }
1163 return (SYMBOL_TYPE (sym));
1164 }
1165
1166 /* Lookup a template type named "template NAME<TYPE>",
1167 visible in lexical block BLOCK. */
1168
1169 struct type *
1170 lookup_template_type (char *name, struct type *type,
1171 struct block *block)
1172 {
1173 struct symbol *sym;
1174 char *nam = (char *)
1175 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1176 strcpy (nam, name);
1177 strcat (nam, "<");
1178 strcat (nam, TYPE_NAME (type));
1179 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1180
1181 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1182
1183 if (sym == NULL)
1184 {
1185 error (_("No template type named %s."), name);
1186 }
1187 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1188 {
1189 error (_("This context has class, union or enum %s, not a struct."),
1190 name);
1191 }
1192 return (SYMBOL_TYPE (sym));
1193 }
1194
1195 /* Given a type TYPE, lookup the type of the component of type named
1196 NAME.
1197
1198 TYPE can be either a struct or union, or a pointer or reference to
1199 a struct or union. If it is a pointer or reference, its target
1200 type is automatically used. Thus '.' and '->' are interchangable,
1201 as specified for the definitions of the expression element types
1202 STRUCTOP_STRUCT and STRUCTOP_PTR.
1203
1204 If NOERR is nonzero, return zero if NAME is not suitably defined.
1205 If NAME is the name of a baseclass type, return that type. */
1206
1207 struct type *
1208 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1209 {
1210 int i;
1211
1212 for (;;)
1213 {
1214 CHECK_TYPEDEF (type);
1215 if (TYPE_CODE (type) != TYPE_CODE_PTR
1216 && TYPE_CODE (type) != TYPE_CODE_REF)
1217 break;
1218 type = TYPE_TARGET_TYPE (type);
1219 }
1220
1221 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1222 && TYPE_CODE (type) != TYPE_CODE_UNION)
1223 {
1224 target_terminal_ours ();
1225 gdb_flush (gdb_stdout);
1226 fprintf_unfiltered (gdb_stderr, "Type ");
1227 type_print (type, "", gdb_stderr, -1);
1228 error (_(" is not a structure or union type."));
1229 }
1230
1231 #if 0
1232 /* FIXME: This change put in by Michael seems incorrect for the case
1233 where the structure tag name is the same as the member name.
1234 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1235 foo; } bell;" Disabled by fnf. */
1236 {
1237 char *typename;
1238
1239 typename = type_name_no_tag (type);
1240 if (typename != NULL && strcmp (typename, name) == 0)
1241 return type;
1242 }
1243 #endif
1244
1245 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1246 {
1247 char *t_field_name = TYPE_FIELD_NAME (type, i);
1248
1249 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1250 {
1251 return TYPE_FIELD_TYPE (type, i);
1252 }
1253 }
1254
1255 /* OK, it's not in this class. Recursively check the baseclasses. */
1256 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1257 {
1258 struct type *t;
1259
1260 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1261 if (t != NULL)
1262 {
1263 return t;
1264 }
1265 }
1266
1267 if (noerr)
1268 {
1269 return NULL;
1270 }
1271
1272 target_terminal_ours ();
1273 gdb_flush (gdb_stdout);
1274 fprintf_unfiltered (gdb_stderr, "Type ");
1275 type_print (type, "", gdb_stderr, -1);
1276 fprintf_unfiltered (gdb_stderr, " has no component named ");
1277 fputs_filtered (name, gdb_stderr);
1278 error (("."));
1279 return (struct type *) -1; /* For lint */
1280 }
1281
1282 /* Lookup the vptr basetype/fieldno values for TYPE.
1283 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1284 vptr_fieldno. Also, if found and basetype is from the same objfile,
1285 cache the results.
1286 If not found, return -1 and ignore BASETYPEP.
1287 Callers should be aware that in some cases (for example,
1288 the type or one of its baseclasses is a stub type and we are
1289 debugging a .o file), this function will not be able to find the
1290 virtual function table pointer, and vptr_fieldno will remain -1 and
1291 vptr_basetype will remain NULL or incomplete. */
1292
1293 int
1294 get_vptr_fieldno (struct type *type, struct type **basetypep)
1295 {
1296 CHECK_TYPEDEF (type);
1297
1298 if (TYPE_VPTR_FIELDNO (type) < 0)
1299 {
1300 int i;
1301
1302 /* We must start at zero in case the first (and only) baseclass
1303 is virtual (and hence we cannot share the table pointer). */
1304 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1305 {
1306 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1307 int fieldno;
1308 struct type *basetype;
1309
1310 fieldno = get_vptr_fieldno (baseclass, &basetype);
1311 if (fieldno >= 0)
1312 {
1313 /* If the type comes from a different objfile we can't cache
1314 it, it may have a different lifetime. PR 2384 */
1315 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1316 {
1317 TYPE_VPTR_FIELDNO (type) = fieldno;
1318 TYPE_VPTR_BASETYPE (type) = basetype;
1319 }
1320 if (basetypep)
1321 *basetypep = basetype;
1322 return fieldno;
1323 }
1324 }
1325
1326 /* Not found. */
1327 return -1;
1328 }
1329 else
1330 {
1331 if (basetypep)
1332 *basetypep = TYPE_VPTR_BASETYPE (type);
1333 return TYPE_VPTR_FIELDNO (type);
1334 }
1335 }
1336
1337 /* Find the method and field indices for the destructor in class type T.
1338 Return 1 if the destructor was found, otherwise, return 0. */
1339
1340 int
1341 get_destructor_fn_field (struct type *t,
1342 int *method_indexp,
1343 int *field_indexp)
1344 {
1345 int i;
1346
1347 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1348 {
1349 int j;
1350 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1351
1352 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1353 {
1354 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
1355 {
1356 *method_indexp = i;
1357 *field_indexp = j;
1358 return 1;
1359 }
1360 }
1361 }
1362 return 0;
1363 }
1364
1365 static void
1366 stub_noname_complaint (void)
1367 {
1368 complaint (&symfile_complaints, _("stub type has NULL name"));
1369 }
1370
1371 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1372
1373 If this is a stubbed struct (i.e. declared as struct foo *), see if
1374 we can find a full definition in some other file. If so, copy this
1375 definition, so we can use it in future. There used to be a comment
1376 (but not any code) that if we don't find a full definition, we'd
1377 set a flag so we don't spend time in the future checking the same
1378 type. That would be a mistake, though--we might load in more
1379 symbols which contain a full definition for the type.
1380
1381 This used to be coded as a macro, but I don't think it is called
1382 often enough to merit such treatment. */
1383
1384 /* Find the real type of TYPE. This function returns the real type,
1385 after removing all layers of typedefs and completing opaque or stub
1386 types. Completion changes the TYPE argument, but stripping of
1387 typedefs does not. */
1388
1389 struct type *
1390 check_typedef (struct type *type)
1391 {
1392 struct type *orig_type = type;
1393 int is_const, is_volatile;
1394
1395 gdb_assert (type);
1396
1397 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1398 {
1399 if (!TYPE_TARGET_TYPE (type))
1400 {
1401 char *name;
1402 struct symbol *sym;
1403
1404 /* It is dangerous to call lookup_symbol if we are currently
1405 reading a symtab. Infinite recursion is one danger. */
1406 if (currently_reading_symtab)
1407 return type;
1408
1409 name = type_name_no_tag (type);
1410 /* FIXME: shouldn't we separately check the TYPE_NAME and
1411 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1412 VAR_DOMAIN as appropriate? (this code was written before
1413 TYPE_NAME and TYPE_TAG_NAME were separate). */
1414 if (name == NULL)
1415 {
1416 stub_noname_complaint ();
1417 return type;
1418 }
1419 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1420 if (sym)
1421 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1422 else /* TYPE_CODE_UNDEF */
1423 TYPE_TARGET_TYPE (type) = alloc_type (NULL);
1424 }
1425 type = TYPE_TARGET_TYPE (type);
1426 }
1427
1428 is_const = TYPE_CONST (type);
1429 is_volatile = TYPE_VOLATILE (type);
1430
1431 /* If this is a struct/class/union with no fields, then check
1432 whether a full definition exists somewhere else. This is for
1433 systems where a type definition with no fields is issued for such
1434 types, instead of identifying them as stub types in the first
1435 place. */
1436
1437 if (TYPE_IS_OPAQUE (type)
1438 && opaque_type_resolution
1439 && !currently_reading_symtab)
1440 {
1441 char *name = type_name_no_tag (type);
1442 struct type *newtype;
1443 if (name == NULL)
1444 {
1445 stub_noname_complaint ();
1446 return type;
1447 }
1448 newtype = lookup_transparent_type (name);
1449
1450 if (newtype)
1451 {
1452 /* If the resolved type and the stub are in the same
1453 objfile, then replace the stub type with the real deal.
1454 But if they're in separate objfiles, leave the stub
1455 alone; we'll just look up the transparent type every time
1456 we call check_typedef. We can't create pointers between
1457 types allocated to different objfiles, since they may
1458 have different lifetimes. Trying to copy NEWTYPE over to
1459 TYPE's objfile is pointless, too, since you'll have to
1460 move over any other types NEWTYPE refers to, which could
1461 be an unbounded amount of stuff. */
1462 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1463 make_cv_type (is_const, is_volatile, newtype, &type);
1464 else
1465 type = newtype;
1466 }
1467 }
1468 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1469 types. */
1470 else if (TYPE_STUB (type) && !currently_reading_symtab)
1471 {
1472 char *name = type_name_no_tag (type);
1473 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1474 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1475 as appropriate? (this code was written before TYPE_NAME and
1476 TYPE_TAG_NAME were separate). */
1477 struct symbol *sym;
1478 if (name == NULL)
1479 {
1480 stub_noname_complaint ();
1481 return type;
1482 }
1483 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1484 if (sym)
1485 {
1486 /* Same as above for opaque types, we can replace the stub
1487 with the complete type only if they are int the same
1488 objfile. */
1489 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1490 make_cv_type (is_const, is_volatile,
1491 SYMBOL_TYPE (sym), &type);
1492 else
1493 type = SYMBOL_TYPE (sym);
1494 }
1495 }
1496
1497 if (TYPE_TARGET_STUB (type))
1498 {
1499 struct type *range_type;
1500 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1501
1502 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1503 {
1504 /* Empty. */
1505 }
1506 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1507 && TYPE_NFIELDS (type) == 1
1508 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1509 == TYPE_CODE_RANGE))
1510 {
1511 /* Now recompute the length of the array type, based on its
1512 number of elements and the target type's length.
1513 Watch out for Ada null Ada arrays where the high bound
1514 is smaller than the low bound. */
1515 const int low_bound = TYPE_LOW_BOUND (range_type);
1516 const int high_bound = TYPE_HIGH_BOUND (range_type);
1517 int nb_elements;
1518
1519 if (high_bound < low_bound)
1520 nb_elements = 0;
1521 else
1522 nb_elements = high_bound - low_bound + 1;
1523
1524 TYPE_LENGTH (type) = nb_elements * TYPE_LENGTH (target_type);
1525 TYPE_TARGET_STUB (type) = 0;
1526 }
1527 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1528 {
1529 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1530 TYPE_TARGET_STUB (type) = 0;
1531 }
1532 }
1533 /* Cache TYPE_LENGTH for future use. */
1534 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1535 return type;
1536 }
1537
1538 /* Parse a type expression in the string [P..P+LENGTH). If an error
1539 occurs, silently return builtin_type_void. */
1540
1541 static struct type *
1542 safe_parse_type (char *p, int length)
1543 {
1544 struct ui_file *saved_gdb_stderr;
1545 struct type *type;
1546
1547 /* Suppress error messages. */
1548 saved_gdb_stderr = gdb_stderr;
1549 gdb_stderr = ui_file_new ();
1550
1551 /* Call parse_and_eval_type() without fear of longjmp()s. */
1552 if (!gdb_parse_and_eval_type (p, length, &type))
1553 type = builtin_type_void;
1554
1555 /* Stop suppressing error messages. */
1556 ui_file_delete (gdb_stderr);
1557 gdb_stderr = saved_gdb_stderr;
1558
1559 return type;
1560 }
1561
1562 /* Ugly hack to convert method stubs into method types.
1563
1564 He ain't kiddin'. This demangles the name of the method into a
1565 string including argument types, parses out each argument type,
1566 generates a string casting a zero to that type, evaluates the
1567 string, and stuffs the resulting type into an argtype vector!!!
1568 Then it knows the type of the whole function (including argument
1569 types for overloading), which info used to be in the stab's but was
1570 removed to hack back the space required for them. */
1571
1572 static void
1573 check_stub_method (struct type *type, int method_id, int signature_id)
1574 {
1575 struct fn_field *f;
1576 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1577 char *demangled_name = cplus_demangle (mangled_name,
1578 DMGL_PARAMS | DMGL_ANSI);
1579 char *argtypetext, *p;
1580 int depth = 0, argcount = 1;
1581 struct field *argtypes;
1582 struct type *mtype;
1583
1584 /* Make sure we got back a function string that we can use. */
1585 if (demangled_name)
1586 p = strchr (demangled_name, '(');
1587 else
1588 p = NULL;
1589
1590 if (demangled_name == NULL || p == NULL)
1591 error (_("Internal: Cannot demangle mangled name `%s'."),
1592 mangled_name);
1593
1594 /* Now, read in the parameters that define this type. */
1595 p += 1;
1596 argtypetext = p;
1597 while (*p)
1598 {
1599 if (*p == '(' || *p == '<')
1600 {
1601 depth += 1;
1602 }
1603 else if (*p == ')' || *p == '>')
1604 {
1605 depth -= 1;
1606 }
1607 else if (*p == ',' && depth == 0)
1608 {
1609 argcount += 1;
1610 }
1611
1612 p += 1;
1613 }
1614
1615 /* If we read one argument and it was ``void'', don't count it. */
1616 if (strncmp (argtypetext, "(void)", 6) == 0)
1617 argcount -= 1;
1618
1619 /* We need one extra slot, for the THIS pointer. */
1620
1621 argtypes = (struct field *)
1622 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1623 p = argtypetext;
1624
1625 /* Add THIS pointer for non-static methods. */
1626 f = TYPE_FN_FIELDLIST1 (type, method_id);
1627 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1628 argcount = 0;
1629 else
1630 {
1631 argtypes[0].type = lookup_pointer_type (type);
1632 argcount = 1;
1633 }
1634
1635 if (*p != ')') /* () means no args, skip while */
1636 {
1637 depth = 0;
1638 while (*p)
1639 {
1640 if (depth <= 0 && (*p == ',' || *p == ')'))
1641 {
1642 /* Avoid parsing of ellipsis, they will be handled below.
1643 Also avoid ``void'' as above. */
1644 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1645 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1646 {
1647 argtypes[argcount].type =
1648 safe_parse_type (argtypetext, p - argtypetext);
1649 argcount += 1;
1650 }
1651 argtypetext = p + 1;
1652 }
1653
1654 if (*p == '(' || *p == '<')
1655 {
1656 depth += 1;
1657 }
1658 else if (*p == ')' || *p == '>')
1659 {
1660 depth -= 1;
1661 }
1662
1663 p += 1;
1664 }
1665 }
1666
1667 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1668
1669 /* Now update the old "stub" type into a real type. */
1670 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1671 TYPE_DOMAIN_TYPE (mtype) = type;
1672 TYPE_FIELDS (mtype) = argtypes;
1673 TYPE_NFIELDS (mtype) = argcount;
1674 TYPE_STUB (mtype) = 0;
1675 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1676 if (p[-2] == '.')
1677 TYPE_VARARGS (mtype) = 1;
1678
1679 xfree (demangled_name);
1680 }
1681
1682 /* This is the external interface to check_stub_method, above. This
1683 function unstubs all of the signatures for TYPE's METHOD_ID method
1684 name. After calling this function TYPE_FN_FIELD_STUB will be
1685 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1686 correct.
1687
1688 This function unfortunately can not die until stabs do. */
1689
1690 void
1691 check_stub_method_group (struct type *type, int method_id)
1692 {
1693 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1694 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1695 int j, found_stub = 0;
1696
1697 for (j = 0; j < len; j++)
1698 if (TYPE_FN_FIELD_STUB (f, j))
1699 {
1700 found_stub = 1;
1701 check_stub_method (type, method_id, j);
1702 }
1703
1704 /* GNU v3 methods with incorrect names were corrected when we read
1705 in type information, because it was cheaper to do it then. The
1706 only GNU v2 methods with incorrect method names are operators and
1707 destructors; destructors were also corrected when we read in type
1708 information.
1709
1710 Therefore the only thing we need to handle here are v2 operator
1711 names. */
1712 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1713 {
1714 int ret;
1715 char dem_opname[256];
1716
1717 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1718 method_id),
1719 dem_opname, DMGL_ANSI);
1720 if (!ret)
1721 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1722 method_id),
1723 dem_opname, 0);
1724 if (ret)
1725 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1726 }
1727 }
1728
1729 const struct cplus_struct_type cplus_struct_default;
1730
1731 void
1732 allocate_cplus_struct_type (struct type *type)
1733 {
1734 if (!HAVE_CPLUS_STRUCT (type))
1735 {
1736 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1737 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1738 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1739 }
1740 }
1741
1742 /* Helper function to initialize the standard scalar types.
1743
1744 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
1745 the string pointed to by name in the objfile_obstack for that
1746 objfile, and initialize the type name to that copy. There are
1747 places (mipsread.c in particular, where init_type is called with a
1748 NULL value for NAME). */
1749
1750 struct type *
1751 init_type (enum type_code code, int length, int flags,
1752 char *name, struct objfile *objfile)
1753 {
1754 struct type *type;
1755
1756 type = alloc_type (objfile);
1757 TYPE_CODE (type) = code;
1758 TYPE_LENGTH (type) = length;
1759
1760 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1761 if (flags & TYPE_FLAG_UNSIGNED)
1762 TYPE_UNSIGNED (type) = 1;
1763 if (flags & TYPE_FLAG_NOSIGN)
1764 TYPE_NOSIGN (type) = 1;
1765 if (flags & TYPE_FLAG_STUB)
1766 TYPE_STUB (type) = 1;
1767 if (flags & TYPE_FLAG_TARGET_STUB)
1768 TYPE_TARGET_STUB (type) = 1;
1769 if (flags & TYPE_FLAG_STATIC)
1770 TYPE_STATIC (type) = 1;
1771 if (flags & TYPE_FLAG_PROTOTYPED)
1772 TYPE_PROTOTYPED (type) = 1;
1773 if (flags & TYPE_FLAG_INCOMPLETE)
1774 TYPE_INCOMPLETE (type) = 1;
1775 if (flags & TYPE_FLAG_VARARGS)
1776 TYPE_VARARGS (type) = 1;
1777 if (flags & TYPE_FLAG_VECTOR)
1778 TYPE_VECTOR (type) = 1;
1779 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1780 TYPE_STUB_SUPPORTED (type) = 1;
1781 if (flags & TYPE_FLAG_NOTTEXT)
1782 TYPE_NOTTEXT (type) = 1;
1783 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1784 TYPE_FIXED_INSTANCE (type) = 1;
1785
1786 if ((name != NULL) && (objfile != NULL))
1787 {
1788 TYPE_NAME (type) = obsavestring (name, strlen (name),
1789 &objfile->objfile_obstack);
1790 }
1791 else
1792 {
1793 TYPE_NAME (type) = name;
1794 }
1795
1796 /* C++ fancies. */
1797
1798 if (name && strcmp (name, "char") == 0)
1799 TYPE_NOSIGN (type) = 1;
1800
1801 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1802 || code == TYPE_CODE_NAMESPACE)
1803 {
1804 INIT_CPLUS_SPECIFIC (type);
1805 }
1806 return (type);
1807 }
1808
1809 /* Helper function. Create an empty composite type. */
1810
1811 struct type *
1812 init_composite_type (char *name, enum type_code code)
1813 {
1814 struct type *t;
1815 gdb_assert (code == TYPE_CODE_STRUCT
1816 || code == TYPE_CODE_UNION);
1817 t = init_type (code, 0, 0, NULL, NULL);
1818 TYPE_TAG_NAME (t) = name;
1819 return t;
1820 }
1821
1822 /* Helper function. Append a field to a composite type. */
1823
1824 void
1825 append_composite_type_field (struct type *t, char *name,
1826 struct type *field)
1827 {
1828 struct field *f;
1829 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1830 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1831 sizeof (struct field) * TYPE_NFIELDS (t));
1832 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1833 memset (f, 0, sizeof f[0]);
1834 FIELD_TYPE (f[0]) = field;
1835 FIELD_NAME (f[0]) = name;
1836 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1837 {
1838 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
1839 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1840 }
1841 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1842 {
1843 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1844 if (TYPE_NFIELDS (t) > 1)
1845 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1846 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
1847 * TARGET_CHAR_BIT));
1848 }
1849 }
1850
1851 int
1852 can_dereference (struct type *t)
1853 {
1854 /* FIXME: Should we return true for references as well as
1855 pointers? */
1856 CHECK_TYPEDEF (t);
1857 return
1858 (t != NULL
1859 && TYPE_CODE (t) == TYPE_CODE_PTR
1860 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1861 }
1862
1863 int
1864 is_integral_type (struct type *t)
1865 {
1866 CHECK_TYPEDEF (t);
1867 return
1868 ((t != NULL)
1869 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1870 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1871 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1872 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1873 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1874 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1875 }
1876
1877 /* Check whether BASE is an ancestor or base class or DCLASS
1878 Return 1 if so, and 0 if not.
1879 Note: callers may want to check for identity of the types before
1880 calling this function -- identical types are considered to satisfy
1881 the ancestor relationship even if they're identical. */
1882
1883 int
1884 is_ancestor (struct type *base, struct type *dclass)
1885 {
1886 int i;
1887
1888 CHECK_TYPEDEF (base);
1889 CHECK_TYPEDEF (dclass);
1890
1891 if (base == dclass)
1892 return 1;
1893 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1894 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1895 return 1;
1896
1897 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1898 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1899 return 1;
1900
1901 return 0;
1902 }
1903 \f
1904
1905
1906 /* Functions for overload resolution begin here */
1907
1908 /* Compare two badness vectors A and B and return the result.
1909 0 => A and B are identical
1910 1 => A and B are incomparable
1911 2 => A is better than B
1912 3 => A is worse than B */
1913
1914 int
1915 compare_badness (struct badness_vector *a, struct badness_vector *b)
1916 {
1917 int i;
1918 int tmp;
1919 short found_pos = 0; /* any positives in c? */
1920 short found_neg = 0; /* any negatives in c? */
1921
1922 /* differing lengths => incomparable */
1923 if (a->length != b->length)
1924 return 1;
1925
1926 /* Subtract b from a */
1927 for (i = 0; i < a->length; i++)
1928 {
1929 tmp = a->rank[i] - b->rank[i];
1930 if (tmp > 0)
1931 found_pos = 1;
1932 else if (tmp < 0)
1933 found_neg = 1;
1934 }
1935
1936 if (found_pos)
1937 {
1938 if (found_neg)
1939 return 1; /* incomparable */
1940 else
1941 return 3; /* A > B */
1942 }
1943 else
1944 /* no positives */
1945 {
1946 if (found_neg)
1947 return 2; /* A < B */
1948 else
1949 return 0; /* A == B */
1950 }
1951 }
1952
1953 /* Rank a function by comparing its parameter types (PARMS, length
1954 NPARMS), to the types of an argument list (ARGS, length NARGS).
1955 Return a pointer to a badness vector. This has NARGS + 1
1956 entries. */
1957
1958 struct badness_vector *
1959 rank_function (struct type **parms, int nparms,
1960 struct type **args, int nargs)
1961 {
1962 int i;
1963 struct badness_vector *bv;
1964 int min_len = nparms < nargs ? nparms : nargs;
1965
1966 bv = xmalloc (sizeof (struct badness_vector));
1967 bv->length = nargs + 1; /* add 1 for the length-match rank */
1968 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1969
1970 /* First compare the lengths of the supplied lists.
1971 If there is a mismatch, set it to a high value. */
1972
1973 /* pai/1997-06-03 FIXME: when we have debug info about default
1974 arguments and ellipsis parameter lists, we should consider those
1975 and rank the length-match more finely. */
1976
1977 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1978
1979 /* Now rank all the parameters of the candidate function */
1980 for (i = 1; i <= min_len; i++)
1981 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
1982
1983 /* If more arguments than parameters, add dummy entries */
1984 for (i = min_len + 1; i <= nargs; i++)
1985 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1986
1987 return bv;
1988 }
1989
1990 /* Compare the names of two integer types, assuming that any sign
1991 qualifiers have been checked already. We do it this way because
1992 there may be an "int" in the name of one of the types. */
1993
1994 static int
1995 integer_types_same_name_p (const char *first, const char *second)
1996 {
1997 int first_p, second_p;
1998
1999 /* If both are shorts, return 1; if neither is a short, keep
2000 checking. */
2001 first_p = (strstr (first, "short") != NULL);
2002 second_p = (strstr (second, "short") != NULL);
2003 if (first_p && second_p)
2004 return 1;
2005 if (first_p || second_p)
2006 return 0;
2007
2008 /* Likewise for long. */
2009 first_p = (strstr (first, "long") != NULL);
2010 second_p = (strstr (second, "long") != NULL);
2011 if (first_p && second_p)
2012 return 1;
2013 if (first_p || second_p)
2014 return 0;
2015
2016 /* Likewise for char. */
2017 first_p = (strstr (first, "char") != NULL);
2018 second_p = (strstr (second, "char") != NULL);
2019 if (first_p && second_p)
2020 return 1;
2021 if (first_p || second_p)
2022 return 0;
2023
2024 /* They must both be ints. */
2025 return 1;
2026 }
2027
2028 /* Compare one type (PARM) for compatibility with another (ARG).
2029 * PARM is intended to be the parameter type of a function; and
2030 * ARG is the supplied argument's type. This function tests if
2031 * the latter can be converted to the former.
2032 *
2033 * Return 0 if they are identical types;
2034 * Otherwise, return an integer which corresponds to how compatible
2035 * PARM is to ARG. The higher the return value, the worse the match.
2036 * Generally the "bad" conversions are all uniformly assigned a 100. */
2037
2038 int
2039 rank_one_type (struct type *parm, struct type *arg)
2040 {
2041 /* Identical type pointers. */
2042 /* However, this still doesn't catch all cases of same type for arg
2043 and param. The reason is that builtin types are different from
2044 the same ones constructed from the object. */
2045 if (parm == arg)
2046 return 0;
2047
2048 /* Resolve typedefs */
2049 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2050 parm = check_typedef (parm);
2051 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2052 arg = check_typedef (arg);
2053
2054 /*
2055 Well, damnit, if the names are exactly the same, I'll say they
2056 are exactly the same. This happens when we generate method
2057 stubs. The types won't point to the same address, but they
2058 really are the same.
2059 */
2060
2061 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2062 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2063 return 0;
2064
2065 /* Check if identical after resolving typedefs. */
2066 if (parm == arg)
2067 return 0;
2068
2069 /* See through references, since we can almost make non-references
2070 references. */
2071 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2072 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2073 + REFERENCE_CONVERSION_BADNESS);
2074 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2075 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2076 + REFERENCE_CONVERSION_BADNESS);
2077 if (overload_debug)
2078 /* Debugging only. */
2079 fprintf_filtered (gdb_stderr,
2080 "------ Arg is %s [%d], parm is %s [%d]\n",
2081 TYPE_NAME (arg), TYPE_CODE (arg),
2082 TYPE_NAME (parm), TYPE_CODE (parm));
2083
2084 /* x -> y means arg of type x being supplied for parameter of type y */
2085
2086 switch (TYPE_CODE (parm))
2087 {
2088 case TYPE_CODE_PTR:
2089 switch (TYPE_CODE (arg))
2090 {
2091 case TYPE_CODE_PTR:
2092 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2093 return VOID_PTR_CONVERSION_BADNESS;
2094 else
2095 return rank_one_type (TYPE_TARGET_TYPE (parm),
2096 TYPE_TARGET_TYPE (arg));
2097 case TYPE_CODE_ARRAY:
2098 return rank_one_type (TYPE_TARGET_TYPE (parm),
2099 TYPE_TARGET_TYPE (arg));
2100 case TYPE_CODE_FUNC:
2101 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2102 case TYPE_CODE_INT:
2103 case TYPE_CODE_ENUM:
2104 case TYPE_CODE_FLAGS:
2105 case TYPE_CODE_CHAR:
2106 case TYPE_CODE_RANGE:
2107 case TYPE_CODE_BOOL:
2108 return POINTER_CONVERSION_BADNESS;
2109 default:
2110 return INCOMPATIBLE_TYPE_BADNESS;
2111 }
2112 case TYPE_CODE_ARRAY:
2113 switch (TYPE_CODE (arg))
2114 {
2115 case TYPE_CODE_PTR:
2116 case TYPE_CODE_ARRAY:
2117 return rank_one_type (TYPE_TARGET_TYPE (parm),
2118 TYPE_TARGET_TYPE (arg));
2119 default:
2120 return INCOMPATIBLE_TYPE_BADNESS;
2121 }
2122 case TYPE_CODE_FUNC:
2123 switch (TYPE_CODE (arg))
2124 {
2125 case TYPE_CODE_PTR: /* funcptr -> func */
2126 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2127 default:
2128 return INCOMPATIBLE_TYPE_BADNESS;
2129 }
2130 case TYPE_CODE_INT:
2131 switch (TYPE_CODE (arg))
2132 {
2133 case TYPE_CODE_INT:
2134 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2135 {
2136 /* Deal with signed, unsigned, and plain chars and
2137 signed and unsigned ints. */
2138 if (TYPE_NOSIGN (parm))
2139 {
2140 /* This case only for character types */
2141 if (TYPE_NOSIGN (arg))
2142 return 0; /* plain char -> plain char */
2143 else /* signed/unsigned char -> plain char */
2144 return INTEGER_CONVERSION_BADNESS;
2145 }
2146 else if (TYPE_UNSIGNED (parm))
2147 {
2148 if (TYPE_UNSIGNED (arg))
2149 {
2150 /* unsigned int -> unsigned int, or
2151 unsigned long -> unsigned long */
2152 if (integer_types_same_name_p (TYPE_NAME (parm),
2153 TYPE_NAME (arg)))
2154 return 0;
2155 else if (integer_types_same_name_p (TYPE_NAME (arg),
2156 "int")
2157 && integer_types_same_name_p (TYPE_NAME (parm),
2158 "long"))
2159 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2160 else
2161 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2162 }
2163 else
2164 {
2165 if (integer_types_same_name_p (TYPE_NAME (arg),
2166 "long")
2167 && integer_types_same_name_p (TYPE_NAME (parm),
2168 "int"))
2169 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2170 else
2171 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2172 }
2173 }
2174 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2175 {
2176 if (integer_types_same_name_p (TYPE_NAME (parm),
2177 TYPE_NAME (arg)))
2178 return 0;
2179 else if (integer_types_same_name_p (TYPE_NAME (arg),
2180 "int")
2181 && integer_types_same_name_p (TYPE_NAME (parm),
2182 "long"))
2183 return INTEGER_PROMOTION_BADNESS;
2184 else
2185 return INTEGER_CONVERSION_BADNESS;
2186 }
2187 else
2188 return INTEGER_CONVERSION_BADNESS;
2189 }
2190 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2191 return INTEGER_PROMOTION_BADNESS;
2192 else
2193 return INTEGER_CONVERSION_BADNESS;
2194 case TYPE_CODE_ENUM:
2195 case TYPE_CODE_FLAGS:
2196 case TYPE_CODE_CHAR:
2197 case TYPE_CODE_RANGE:
2198 case TYPE_CODE_BOOL:
2199 return INTEGER_PROMOTION_BADNESS;
2200 case TYPE_CODE_FLT:
2201 return INT_FLOAT_CONVERSION_BADNESS;
2202 case TYPE_CODE_PTR:
2203 return NS_POINTER_CONVERSION_BADNESS;
2204 default:
2205 return INCOMPATIBLE_TYPE_BADNESS;
2206 }
2207 break;
2208 case TYPE_CODE_ENUM:
2209 switch (TYPE_CODE (arg))
2210 {
2211 case TYPE_CODE_INT:
2212 case TYPE_CODE_CHAR:
2213 case TYPE_CODE_RANGE:
2214 case TYPE_CODE_BOOL:
2215 case TYPE_CODE_ENUM:
2216 return INTEGER_CONVERSION_BADNESS;
2217 case TYPE_CODE_FLT:
2218 return INT_FLOAT_CONVERSION_BADNESS;
2219 default:
2220 return INCOMPATIBLE_TYPE_BADNESS;
2221 }
2222 break;
2223 case TYPE_CODE_CHAR:
2224 switch (TYPE_CODE (arg))
2225 {
2226 case TYPE_CODE_RANGE:
2227 case TYPE_CODE_BOOL:
2228 case TYPE_CODE_ENUM:
2229 return INTEGER_CONVERSION_BADNESS;
2230 case TYPE_CODE_FLT:
2231 return INT_FLOAT_CONVERSION_BADNESS;
2232 case TYPE_CODE_INT:
2233 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2234 return INTEGER_CONVERSION_BADNESS;
2235 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2236 return INTEGER_PROMOTION_BADNESS;
2237 /* >>> !! else fall through !! <<< */
2238 case TYPE_CODE_CHAR:
2239 /* Deal with signed, unsigned, and plain chars for C++ and
2240 with int cases falling through from previous case. */
2241 if (TYPE_NOSIGN (parm))
2242 {
2243 if (TYPE_NOSIGN (arg))
2244 return 0;
2245 else
2246 return INTEGER_CONVERSION_BADNESS;
2247 }
2248 else if (TYPE_UNSIGNED (parm))
2249 {
2250 if (TYPE_UNSIGNED (arg))
2251 return 0;
2252 else
2253 return INTEGER_PROMOTION_BADNESS;
2254 }
2255 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2256 return 0;
2257 else
2258 return INTEGER_CONVERSION_BADNESS;
2259 default:
2260 return INCOMPATIBLE_TYPE_BADNESS;
2261 }
2262 break;
2263 case TYPE_CODE_RANGE:
2264 switch (TYPE_CODE (arg))
2265 {
2266 case TYPE_CODE_INT:
2267 case TYPE_CODE_CHAR:
2268 case TYPE_CODE_RANGE:
2269 case TYPE_CODE_BOOL:
2270 case TYPE_CODE_ENUM:
2271 return INTEGER_CONVERSION_BADNESS;
2272 case TYPE_CODE_FLT:
2273 return INT_FLOAT_CONVERSION_BADNESS;
2274 default:
2275 return INCOMPATIBLE_TYPE_BADNESS;
2276 }
2277 break;
2278 case TYPE_CODE_BOOL:
2279 switch (TYPE_CODE (arg))
2280 {
2281 case TYPE_CODE_INT:
2282 case TYPE_CODE_CHAR:
2283 case TYPE_CODE_RANGE:
2284 case TYPE_CODE_ENUM:
2285 case TYPE_CODE_FLT:
2286 case TYPE_CODE_PTR:
2287 return BOOLEAN_CONVERSION_BADNESS;
2288 case TYPE_CODE_BOOL:
2289 return 0;
2290 default:
2291 return INCOMPATIBLE_TYPE_BADNESS;
2292 }
2293 break;
2294 case TYPE_CODE_FLT:
2295 switch (TYPE_CODE (arg))
2296 {
2297 case TYPE_CODE_FLT:
2298 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2299 return FLOAT_PROMOTION_BADNESS;
2300 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2301 return 0;
2302 else
2303 return FLOAT_CONVERSION_BADNESS;
2304 case TYPE_CODE_INT:
2305 case TYPE_CODE_BOOL:
2306 case TYPE_CODE_ENUM:
2307 case TYPE_CODE_RANGE:
2308 case TYPE_CODE_CHAR:
2309 return INT_FLOAT_CONVERSION_BADNESS;
2310 default:
2311 return INCOMPATIBLE_TYPE_BADNESS;
2312 }
2313 break;
2314 case TYPE_CODE_COMPLEX:
2315 switch (TYPE_CODE (arg))
2316 { /* Strictly not needed for C++, but... */
2317 case TYPE_CODE_FLT:
2318 return FLOAT_PROMOTION_BADNESS;
2319 case TYPE_CODE_COMPLEX:
2320 return 0;
2321 default:
2322 return INCOMPATIBLE_TYPE_BADNESS;
2323 }
2324 break;
2325 case TYPE_CODE_STRUCT:
2326 /* currently same as TYPE_CODE_CLASS */
2327 switch (TYPE_CODE (arg))
2328 {
2329 case TYPE_CODE_STRUCT:
2330 /* Check for derivation */
2331 if (is_ancestor (parm, arg))
2332 return BASE_CONVERSION_BADNESS;
2333 /* else fall through */
2334 default:
2335 return INCOMPATIBLE_TYPE_BADNESS;
2336 }
2337 break;
2338 case TYPE_CODE_UNION:
2339 switch (TYPE_CODE (arg))
2340 {
2341 case TYPE_CODE_UNION:
2342 default:
2343 return INCOMPATIBLE_TYPE_BADNESS;
2344 }
2345 break;
2346 case TYPE_CODE_MEMBERPTR:
2347 switch (TYPE_CODE (arg))
2348 {
2349 default:
2350 return INCOMPATIBLE_TYPE_BADNESS;
2351 }
2352 break;
2353 case TYPE_CODE_METHOD:
2354 switch (TYPE_CODE (arg))
2355 {
2356
2357 default:
2358 return INCOMPATIBLE_TYPE_BADNESS;
2359 }
2360 break;
2361 case TYPE_CODE_REF:
2362 switch (TYPE_CODE (arg))
2363 {
2364
2365 default:
2366 return INCOMPATIBLE_TYPE_BADNESS;
2367 }
2368
2369 break;
2370 case TYPE_CODE_SET:
2371 switch (TYPE_CODE (arg))
2372 {
2373 /* Not in C++ */
2374 case TYPE_CODE_SET:
2375 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2376 TYPE_FIELD_TYPE (arg, 0));
2377 default:
2378 return INCOMPATIBLE_TYPE_BADNESS;
2379 }
2380 break;
2381 case TYPE_CODE_VOID:
2382 default:
2383 return INCOMPATIBLE_TYPE_BADNESS;
2384 } /* switch (TYPE_CODE (arg)) */
2385 }
2386
2387
2388 /* End of functions for overload resolution */
2389
2390 static void
2391 print_bit_vector (B_TYPE *bits, int nbits)
2392 {
2393 int bitno;
2394
2395 for (bitno = 0; bitno < nbits; bitno++)
2396 {
2397 if ((bitno % 8) == 0)
2398 {
2399 puts_filtered (" ");
2400 }
2401 if (B_TST (bits, bitno))
2402 printf_filtered (("1"));
2403 else
2404 printf_filtered (("0"));
2405 }
2406 }
2407
2408 /* Note the first arg should be the "this" pointer, we may not want to
2409 include it since we may get into a infinitely recursive
2410 situation. */
2411
2412 static void
2413 print_arg_types (struct field *args, int nargs, int spaces)
2414 {
2415 if (args != NULL)
2416 {
2417 int i;
2418
2419 for (i = 0; i < nargs; i++)
2420 recursive_dump_type (args[i].type, spaces + 2);
2421 }
2422 }
2423
2424 int
2425 field_is_static (struct field *f)
2426 {
2427 /* "static" fields are the fields whose location is not relative
2428 to the address of the enclosing struct. It would be nice to
2429 have a dedicated flag that would be set for static fields when
2430 the type is being created. But in practice, checking the field
2431 loc_kind should give us an accurate answer (at least as long as
2432 we assume that DWARF block locations are not going to be used
2433 for static fields). FIXME? */
2434 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2435 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2436 }
2437
2438 static void
2439 dump_fn_fieldlists (struct type *type, int spaces)
2440 {
2441 int method_idx;
2442 int overload_idx;
2443 struct fn_field *f;
2444
2445 printfi_filtered (spaces, "fn_fieldlists ");
2446 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2447 printf_filtered ("\n");
2448 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2449 {
2450 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2451 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2452 method_idx,
2453 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2454 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2455 gdb_stdout);
2456 printf_filtered (_(") length %d\n"),
2457 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2458 for (overload_idx = 0;
2459 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2460 overload_idx++)
2461 {
2462 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2463 overload_idx,
2464 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2465 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2466 gdb_stdout);
2467 printf_filtered (")\n");
2468 printfi_filtered (spaces + 8, "type ");
2469 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2470 gdb_stdout);
2471 printf_filtered ("\n");
2472
2473 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2474 spaces + 8 + 2);
2475
2476 printfi_filtered (spaces + 8, "args ");
2477 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2478 gdb_stdout);
2479 printf_filtered ("\n");
2480
2481 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2482 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2483 overload_idx)),
2484 spaces);
2485 printfi_filtered (spaces + 8, "fcontext ");
2486 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2487 gdb_stdout);
2488 printf_filtered ("\n");
2489
2490 printfi_filtered (spaces + 8, "is_const %d\n",
2491 TYPE_FN_FIELD_CONST (f, overload_idx));
2492 printfi_filtered (spaces + 8, "is_volatile %d\n",
2493 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2494 printfi_filtered (spaces + 8, "is_private %d\n",
2495 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2496 printfi_filtered (spaces + 8, "is_protected %d\n",
2497 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2498 printfi_filtered (spaces + 8, "is_stub %d\n",
2499 TYPE_FN_FIELD_STUB (f, overload_idx));
2500 printfi_filtered (spaces + 8, "voffset %u\n",
2501 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2502 }
2503 }
2504 }
2505
2506 static void
2507 print_cplus_stuff (struct type *type, int spaces)
2508 {
2509 printfi_filtered (spaces, "n_baseclasses %d\n",
2510 TYPE_N_BASECLASSES (type));
2511 printfi_filtered (spaces, "nfn_fields %d\n",
2512 TYPE_NFN_FIELDS (type));
2513 printfi_filtered (spaces, "nfn_fields_total %d\n",
2514 TYPE_NFN_FIELDS_TOTAL (type));
2515 if (TYPE_N_BASECLASSES (type) > 0)
2516 {
2517 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2518 TYPE_N_BASECLASSES (type));
2519 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2520 gdb_stdout);
2521 printf_filtered (")");
2522
2523 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2524 TYPE_N_BASECLASSES (type));
2525 puts_filtered ("\n");
2526 }
2527 if (TYPE_NFIELDS (type) > 0)
2528 {
2529 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2530 {
2531 printfi_filtered (spaces,
2532 "private_field_bits (%d bits at *",
2533 TYPE_NFIELDS (type));
2534 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2535 gdb_stdout);
2536 printf_filtered (")");
2537 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2538 TYPE_NFIELDS (type));
2539 puts_filtered ("\n");
2540 }
2541 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2542 {
2543 printfi_filtered (spaces,
2544 "protected_field_bits (%d bits at *",
2545 TYPE_NFIELDS (type));
2546 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2547 gdb_stdout);
2548 printf_filtered (")");
2549 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2550 TYPE_NFIELDS (type));
2551 puts_filtered ("\n");
2552 }
2553 }
2554 if (TYPE_NFN_FIELDS (type) > 0)
2555 {
2556 dump_fn_fieldlists (type, spaces);
2557 }
2558 }
2559
2560 static struct obstack dont_print_type_obstack;
2561
2562 void
2563 recursive_dump_type (struct type *type, int spaces)
2564 {
2565 int idx;
2566
2567 if (spaces == 0)
2568 obstack_begin (&dont_print_type_obstack, 0);
2569
2570 if (TYPE_NFIELDS (type) > 0
2571 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2572 {
2573 struct type **first_dont_print
2574 = (struct type **) obstack_base (&dont_print_type_obstack);
2575
2576 int i = (struct type **)
2577 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2578
2579 while (--i >= 0)
2580 {
2581 if (type == first_dont_print[i])
2582 {
2583 printfi_filtered (spaces, "type node ");
2584 gdb_print_host_address (type, gdb_stdout);
2585 printf_filtered (_(" <same as already seen type>\n"));
2586 return;
2587 }
2588 }
2589
2590 obstack_ptr_grow (&dont_print_type_obstack, type);
2591 }
2592
2593 printfi_filtered (spaces, "type node ");
2594 gdb_print_host_address (type, gdb_stdout);
2595 printf_filtered ("\n");
2596 printfi_filtered (spaces, "name '%s' (",
2597 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2598 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2599 printf_filtered (")\n");
2600 printfi_filtered (spaces, "tagname '%s' (",
2601 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2602 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2603 printf_filtered (")\n");
2604 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2605 switch (TYPE_CODE (type))
2606 {
2607 case TYPE_CODE_UNDEF:
2608 printf_filtered ("(TYPE_CODE_UNDEF)");
2609 break;
2610 case TYPE_CODE_PTR:
2611 printf_filtered ("(TYPE_CODE_PTR)");
2612 break;
2613 case TYPE_CODE_ARRAY:
2614 printf_filtered ("(TYPE_CODE_ARRAY)");
2615 break;
2616 case TYPE_CODE_STRUCT:
2617 printf_filtered ("(TYPE_CODE_STRUCT)");
2618 break;
2619 case TYPE_CODE_UNION:
2620 printf_filtered ("(TYPE_CODE_UNION)");
2621 break;
2622 case TYPE_CODE_ENUM:
2623 printf_filtered ("(TYPE_CODE_ENUM)");
2624 break;
2625 case TYPE_CODE_FLAGS:
2626 printf_filtered ("(TYPE_CODE_FLAGS)");
2627 break;
2628 case TYPE_CODE_FUNC:
2629 printf_filtered ("(TYPE_CODE_FUNC)");
2630 break;
2631 case TYPE_CODE_INT:
2632 printf_filtered ("(TYPE_CODE_INT)");
2633 break;
2634 case TYPE_CODE_FLT:
2635 printf_filtered ("(TYPE_CODE_FLT)");
2636 break;
2637 case TYPE_CODE_VOID:
2638 printf_filtered ("(TYPE_CODE_VOID)");
2639 break;
2640 case TYPE_CODE_SET:
2641 printf_filtered ("(TYPE_CODE_SET)");
2642 break;
2643 case TYPE_CODE_RANGE:
2644 printf_filtered ("(TYPE_CODE_RANGE)");
2645 break;
2646 case TYPE_CODE_STRING:
2647 printf_filtered ("(TYPE_CODE_STRING)");
2648 break;
2649 case TYPE_CODE_BITSTRING:
2650 printf_filtered ("(TYPE_CODE_BITSTRING)");
2651 break;
2652 case TYPE_CODE_ERROR:
2653 printf_filtered ("(TYPE_CODE_ERROR)");
2654 break;
2655 case TYPE_CODE_MEMBERPTR:
2656 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2657 break;
2658 case TYPE_CODE_METHODPTR:
2659 printf_filtered ("(TYPE_CODE_METHODPTR)");
2660 break;
2661 case TYPE_CODE_METHOD:
2662 printf_filtered ("(TYPE_CODE_METHOD)");
2663 break;
2664 case TYPE_CODE_REF:
2665 printf_filtered ("(TYPE_CODE_REF)");
2666 break;
2667 case TYPE_CODE_CHAR:
2668 printf_filtered ("(TYPE_CODE_CHAR)");
2669 break;
2670 case TYPE_CODE_BOOL:
2671 printf_filtered ("(TYPE_CODE_BOOL)");
2672 break;
2673 case TYPE_CODE_COMPLEX:
2674 printf_filtered ("(TYPE_CODE_COMPLEX)");
2675 break;
2676 case TYPE_CODE_TYPEDEF:
2677 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2678 break;
2679 case TYPE_CODE_TEMPLATE:
2680 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2681 break;
2682 case TYPE_CODE_TEMPLATE_ARG:
2683 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2684 break;
2685 case TYPE_CODE_NAMESPACE:
2686 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2687 break;
2688 default:
2689 printf_filtered ("(UNKNOWN TYPE CODE)");
2690 break;
2691 }
2692 puts_filtered ("\n");
2693 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2694 printfi_filtered (spaces, "objfile ");
2695 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
2696 printf_filtered ("\n");
2697 printfi_filtered (spaces, "target_type ");
2698 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2699 printf_filtered ("\n");
2700 if (TYPE_TARGET_TYPE (type) != NULL)
2701 {
2702 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2703 }
2704 printfi_filtered (spaces, "pointer_type ");
2705 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2706 printf_filtered ("\n");
2707 printfi_filtered (spaces, "reference_type ");
2708 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2709 printf_filtered ("\n");
2710 printfi_filtered (spaces, "type_chain ");
2711 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2712 printf_filtered ("\n");
2713 printfi_filtered (spaces, "instance_flags 0x%x",
2714 TYPE_INSTANCE_FLAGS (type));
2715 if (TYPE_CONST (type))
2716 {
2717 puts_filtered (" TYPE_FLAG_CONST");
2718 }
2719 if (TYPE_VOLATILE (type))
2720 {
2721 puts_filtered (" TYPE_FLAG_VOLATILE");
2722 }
2723 if (TYPE_CODE_SPACE (type))
2724 {
2725 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2726 }
2727 if (TYPE_DATA_SPACE (type))
2728 {
2729 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2730 }
2731 if (TYPE_ADDRESS_CLASS_1 (type))
2732 {
2733 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2734 }
2735 if (TYPE_ADDRESS_CLASS_2 (type))
2736 {
2737 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2738 }
2739 puts_filtered ("\n");
2740
2741 printfi_filtered (spaces, "flags");
2742 if (TYPE_UNSIGNED (type))
2743 {
2744 puts_filtered (" TYPE_FLAG_UNSIGNED");
2745 }
2746 if (TYPE_NOSIGN (type))
2747 {
2748 puts_filtered (" TYPE_FLAG_NOSIGN");
2749 }
2750 if (TYPE_STUB (type))
2751 {
2752 puts_filtered (" TYPE_FLAG_STUB");
2753 }
2754 if (TYPE_TARGET_STUB (type))
2755 {
2756 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2757 }
2758 if (TYPE_STATIC (type))
2759 {
2760 puts_filtered (" TYPE_FLAG_STATIC");
2761 }
2762 if (TYPE_PROTOTYPED (type))
2763 {
2764 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2765 }
2766 if (TYPE_INCOMPLETE (type))
2767 {
2768 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2769 }
2770 if (TYPE_VARARGS (type))
2771 {
2772 puts_filtered (" TYPE_FLAG_VARARGS");
2773 }
2774 /* This is used for things like AltiVec registers on ppc. Gcc emits
2775 an attribute for the array type, which tells whether or not we
2776 have a vector, instead of a regular array. */
2777 if (TYPE_VECTOR (type))
2778 {
2779 puts_filtered (" TYPE_FLAG_VECTOR");
2780 }
2781 if (TYPE_FIXED_INSTANCE (type))
2782 {
2783 puts_filtered (" TYPE_FIXED_INSTANCE");
2784 }
2785 if (TYPE_STUB_SUPPORTED (type))
2786 {
2787 puts_filtered (" TYPE_STUB_SUPPORTED");
2788 }
2789 if (TYPE_NOTTEXT (type))
2790 {
2791 puts_filtered (" TYPE_NOTTEXT");
2792 }
2793 puts_filtered ("\n");
2794 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2795 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2796 puts_filtered ("\n");
2797 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2798 {
2799 printfi_filtered (spaces + 2,
2800 "[%d] bitpos %d bitsize %d type ",
2801 idx, TYPE_FIELD_BITPOS (type, idx),
2802 TYPE_FIELD_BITSIZE (type, idx));
2803 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2804 printf_filtered (" name '%s' (",
2805 TYPE_FIELD_NAME (type, idx) != NULL
2806 ? TYPE_FIELD_NAME (type, idx)
2807 : "<NULL>");
2808 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2809 printf_filtered (")\n");
2810 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2811 {
2812 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2813 }
2814 }
2815 printfi_filtered (spaces, "vptr_basetype ");
2816 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2817 puts_filtered ("\n");
2818 if (TYPE_VPTR_BASETYPE (type) != NULL)
2819 {
2820 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2821 }
2822 printfi_filtered (spaces, "vptr_fieldno %d\n",
2823 TYPE_VPTR_FIELDNO (type));
2824 switch (TYPE_CODE (type))
2825 {
2826 case TYPE_CODE_STRUCT:
2827 printfi_filtered (spaces, "cplus_stuff ");
2828 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2829 gdb_stdout);
2830 puts_filtered ("\n");
2831 print_cplus_stuff (type, spaces);
2832 break;
2833
2834 case TYPE_CODE_FLT:
2835 printfi_filtered (spaces, "floatformat ");
2836 if (TYPE_FLOATFORMAT (type) == NULL)
2837 puts_filtered ("(null)");
2838 else
2839 {
2840 puts_filtered ("{ ");
2841 if (TYPE_FLOATFORMAT (type)[0] == NULL
2842 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2843 puts_filtered ("(null)");
2844 else
2845 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2846
2847 puts_filtered (", ");
2848 if (TYPE_FLOATFORMAT (type)[1] == NULL
2849 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2850 puts_filtered ("(null)");
2851 else
2852 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2853
2854 puts_filtered (" }");
2855 }
2856 puts_filtered ("\n");
2857 break;
2858
2859 default:
2860 /* We have to pick one of the union types to be able print and
2861 test the value. Pick cplus_struct_type, even though we know
2862 it isn't any particular one. */
2863 printfi_filtered (spaces, "type_specific ");
2864 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
2865 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2866 {
2867 printf_filtered (_(" (unknown data form)"));
2868 }
2869 printf_filtered ("\n");
2870 break;
2871
2872 }
2873 if (spaces == 0)
2874 obstack_free (&dont_print_type_obstack, NULL);
2875 }
2876
2877 /* Trivial helpers for the libiberty hash table, for mapping one
2878 type to another. */
2879
2880 struct type_pair
2881 {
2882 struct type *old, *new;
2883 };
2884
2885 static hashval_t
2886 type_pair_hash (const void *item)
2887 {
2888 const struct type_pair *pair = item;
2889 return htab_hash_pointer (pair->old);
2890 }
2891
2892 static int
2893 type_pair_eq (const void *item_lhs, const void *item_rhs)
2894 {
2895 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2896 return lhs->old == rhs->old;
2897 }
2898
2899 /* Allocate the hash table used by copy_type_recursive to walk
2900 types without duplicates. We use OBJFILE's obstack, because
2901 OBJFILE is about to be deleted. */
2902
2903 htab_t
2904 create_copied_types_hash (struct objfile *objfile)
2905 {
2906 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2907 NULL, &objfile->objfile_obstack,
2908 hashtab_obstack_allocate,
2909 dummy_obstack_deallocate);
2910 }
2911
2912 /* Recursively copy (deep copy) TYPE, if it is associated with
2913 OBJFILE. Return a new type allocated using malloc, a saved type if
2914 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2915 not associated with OBJFILE. */
2916
2917 struct type *
2918 copy_type_recursive (struct objfile *objfile,
2919 struct type *type,
2920 htab_t copied_types)
2921 {
2922 struct type_pair *stored, pair;
2923 void **slot;
2924 struct type *new_type;
2925
2926 if (TYPE_OBJFILE (type) == NULL)
2927 return type;
2928
2929 /* This type shouldn't be pointing to any types in other objfiles;
2930 if it did, the type might disappear unexpectedly. */
2931 gdb_assert (TYPE_OBJFILE (type) == objfile);
2932
2933 pair.old = type;
2934 slot = htab_find_slot (copied_types, &pair, INSERT);
2935 if (*slot != NULL)
2936 return ((struct type_pair *) *slot)->new;
2937
2938 new_type = alloc_type (NULL);
2939
2940 /* We must add the new type to the hash table immediately, in case
2941 we encounter this type again during a recursive call below. */
2942 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
2943 stored->old = type;
2944 stored->new = new_type;
2945 *slot = stored;
2946
2947 /* Copy the common fields of types. For the main type, we simply
2948 copy the entire thing and then update specific fields as needed. */
2949 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
2950 TYPE_OBJFILE (new_type) = NULL;
2951
2952 if (TYPE_NAME (type))
2953 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2954 if (TYPE_TAG_NAME (type))
2955 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
2956
2957 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2958 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2959
2960 /* Copy the fields. */
2961 if (TYPE_NFIELDS (type))
2962 {
2963 int i, nfields;
2964
2965 nfields = TYPE_NFIELDS (type);
2966 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
2967 for (i = 0; i < nfields; i++)
2968 {
2969 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2970 TYPE_FIELD_ARTIFICIAL (type, i);
2971 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2972 if (TYPE_FIELD_TYPE (type, i))
2973 TYPE_FIELD_TYPE (new_type, i)
2974 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2975 copied_types);
2976 if (TYPE_FIELD_NAME (type, i))
2977 TYPE_FIELD_NAME (new_type, i) =
2978 xstrdup (TYPE_FIELD_NAME (type, i));
2979 switch (TYPE_FIELD_LOC_KIND (type, i))
2980 {
2981 case FIELD_LOC_KIND_BITPOS:
2982 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
2983 TYPE_FIELD_BITPOS (type, i));
2984 break;
2985 case FIELD_LOC_KIND_PHYSADDR:
2986 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
2987 TYPE_FIELD_STATIC_PHYSADDR (type, i));
2988 break;
2989 case FIELD_LOC_KIND_PHYSNAME:
2990 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
2991 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
2992 i)));
2993 break;
2994 default:
2995 internal_error (__FILE__, __LINE__,
2996 _("Unexpected type field location kind: %d"),
2997 TYPE_FIELD_LOC_KIND (type, i));
2998 }
2999 }
3000 }
3001
3002 /* Copy pointers to other types. */
3003 if (TYPE_TARGET_TYPE (type))
3004 TYPE_TARGET_TYPE (new_type) =
3005 copy_type_recursive (objfile,
3006 TYPE_TARGET_TYPE (type),
3007 copied_types);
3008 if (TYPE_VPTR_BASETYPE (type))
3009 TYPE_VPTR_BASETYPE (new_type) =
3010 copy_type_recursive (objfile,
3011 TYPE_VPTR_BASETYPE (type),
3012 copied_types);
3013 /* Maybe copy the type_specific bits.
3014
3015 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3016 base classes and methods. There's no fundamental reason why we
3017 can't, but at the moment it is not needed. */
3018
3019 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3020 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3021 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3022 || TYPE_CODE (type) == TYPE_CODE_UNION
3023 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3024 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3025 INIT_CPLUS_SPECIFIC (new_type);
3026
3027 return new_type;
3028 }
3029
3030 /* Make a copy of the given TYPE, except that the pointer & reference
3031 types are not preserved.
3032
3033 This function assumes that the given type has an associated objfile.
3034 This objfile is used to allocate the new type. */
3035
3036 struct type *
3037 copy_type (const struct type *type)
3038 {
3039 struct type *new_type;
3040
3041 gdb_assert (TYPE_OBJFILE (type) != NULL);
3042
3043 new_type = alloc_type (TYPE_OBJFILE (type));
3044 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3045 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3046 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3047 sizeof (struct main_type));
3048
3049 return new_type;
3050 }
3051
3052 static struct type *
3053 build_flt (int bit, char *name, const struct floatformat **floatformats)
3054 {
3055 struct type *t;
3056
3057 if (bit == -1)
3058 {
3059 gdb_assert (floatformats != NULL);
3060 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3061 bit = floatformats[0]->totalsize;
3062 }
3063 gdb_assert (bit >= 0);
3064
3065 t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
3066 TYPE_FLOATFORMAT (t) = floatformats;
3067 return t;
3068 }
3069
3070 static struct gdbarch_data *gdbtypes_data;
3071
3072 const struct builtin_type *
3073 builtin_type (struct gdbarch *gdbarch)
3074 {
3075 return gdbarch_data (gdbarch, gdbtypes_data);
3076 }
3077
3078
3079 static struct type *
3080 build_complex (int bit, char *name, struct type *target_type)
3081 {
3082 struct type *t;
3083 if (bit <= 0 || target_type == builtin_type_error)
3084 {
3085 gdb_assert (builtin_type_error != NULL);
3086 return builtin_type_error;
3087 }
3088 t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3089 0, name, (struct objfile *) NULL);
3090 TYPE_TARGET_TYPE (t) = target_type;
3091 return t;
3092 }
3093
3094 static void *
3095 gdbtypes_post_init (struct gdbarch *gdbarch)
3096 {
3097 struct builtin_type *builtin_type
3098 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3099
3100 builtin_type->builtin_void =
3101 init_type (TYPE_CODE_VOID, 1,
3102 0,
3103 "void", (struct objfile *) NULL);
3104 builtin_type->builtin_char =
3105 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3106 (TYPE_FLAG_NOSIGN
3107 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3108 "char", (struct objfile *) NULL);
3109 builtin_type->builtin_signed_char =
3110 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3111 0,
3112 "signed char", (struct objfile *) NULL);
3113 builtin_type->builtin_unsigned_char =
3114 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3115 TYPE_FLAG_UNSIGNED,
3116 "unsigned char", (struct objfile *) NULL);
3117 builtin_type->builtin_short =
3118 init_type (TYPE_CODE_INT,
3119 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3120 0, "short", (struct objfile *) NULL);
3121 builtin_type->builtin_unsigned_short =
3122 init_type (TYPE_CODE_INT,
3123 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3124 TYPE_FLAG_UNSIGNED, "unsigned short",
3125 (struct objfile *) NULL);
3126 builtin_type->builtin_int =
3127 init_type (TYPE_CODE_INT,
3128 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3129 0, "int", (struct objfile *) NULL);
3130 builtin_type->builtin_unsigned_int =
3131 init_type (TYPE_CODE_INT,
3132 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3133 TYPE_FLAG_UNSIGNED, "unsigned int",
3134 (struct objfile *) NULL);
3135 builtin_type->builtin_long =
3136 init_type (TYPE_CODE_INT,
3137 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3138 0, "long", (struct objfile *) NULL);
3139 builtin_type->builtin_unsigned_long =
3140 init_type (TYPE_CODE_INT,
3141 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3142 TYPE_FLAG_UNSIGNED, "unsigned long",
3143 (struct objfile *) NULL);
3144 builtin_type->builtin_long_long =
3145 init_type (TYPE_CODE_INT,
3146 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3147 0, "long long", (struct objfile *) NULL);
3148 builtin_type->builtin_unsigned_long_long =
3149 init_type (TYPE_CODE_INT,
3150 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3151 TYPE_FLAG_UNSIGNED, "unsigned long long",
3152 (struct objfile *) NULL);
3153 builtin_type->builtin_float
3154 = build_flt (gdbarch_float_bit (gdbarch), "float",
3155 gdbarch_float_format (gdbarch));
3156 builtin_type->builtin_double
3157 = build_flt (gdbarch_double_bit (gdbarch), "double",
3158 gdbarch_double_format (gdbarch));
3159 builtin_type->builtin_long_double
3160 = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3161 gdbarch_long_double_format (gdbarch));
3162 builtin_type->builtin_complex
3163 = build_complex (gdbarch_float_bit (gdbarch), "complex",
3164 builtin_type->builtin_float);
3165 builtin_type->builtin_double_complex
3166 = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3167 builtin_type->builtin_double);
3168 builtin_type->builtin_string =
3169 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3170 0,
3171 "string", (struct objfile *) NULL);
3172 builtin_type->builtin_bool =
3173 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3174 0,
3175 "bool", (struct objfile *) NULL);
3176
3177 /* The following three are about decimal floating point types, which
3178 are 32-bits, 64-bits and 128-bits respectively. */
3179 builtin_type->builtin_decfloat
3180 = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
3181 0,
3182 "_Decimal32", (struct objfile *) NULL);
3183 builtin_type->builtin_decdouble
3184 = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
3185 0,
3186 "_Decimal64", (struct objfile *) NULL);
3187 builtin_type->builtin_declong
3188 = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
3189 0,
3190 "_Decimal128", (struct objfile *) NULL);
3191
3192 /* Pointer/Address types. */
3193
3194 /* NOTE: on some targets, addresses and pointers are not necessarily
3195 the same --- for example, on the D10V, pointers are 16 bits long,
3196 but addresses are 32 bits long. See doc/gdbint.texinfo,
3197 ``Pointers Are Not Always Addresses''.
3198
3199 The upshot is:
3200 - gdb's `struct type' always describes the target's
3201 representation.
3202 - gdb's `struct value' objects should always hold values in
3203 target form.
3204 - gdb's CORE_ADDR values are addresses in the unified virtual
3205 address space that the assembler and linker work with. Thus,
3206 since target_read_memory takes a CORE_ADDR as an argument, it
3207 can access any memory on the target, even if the processor has
3208 separate code and data address spaces.
3209
3210 So, for example:
3211 - If v is a value holding a D10V code pointer, its contents are
3212 in target form: a big-endian address left-shifted two bits.
3213 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3214 sizeof (void *) == 2 on the target.
3215
3216 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3217 target type for a value the target will never see. It's only
3218 used to hold the values of (typeless) linker symbols, which are
3219 indeed in the unified virtual address space. */
3220
3221 builtin_type->builtin_data_ptr =
3222 make_pointer_type (builtin_type->builtin_void, NULL);
3223 builtin_type->builtin_func_ptr =
3224 lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3225 builtin_type->builtin_core_addr =
3226 init_type (TYPE_CODE_INT,
3227 gdbarch_addr_bit (gdbarch) / 8,
3228 TYPE_FLAG_UNSIGNED,
3229 "__CORE_ADDR", (struct objfile *) NULL);
3230
3231
3232 /* The following set of types is used for symbols with no
3233 debug information. */
3234 builtin_type->nodebug_text_symbol =
3235 init_type (TYPE_CODE_FUNC, 1, 0,
3236 "<text variable, no debug info>", NULL);
3237 TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
3238 builtin_type->builtin_int;
3239 builtin_type->nodebug_data_symbol =
3240 init_type (TYPE_CODE_INT,
3241 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3242 "<data variable, no debug info>", NULL);
3243 builtin_type->nodebug_unknown_symbol =
3244 init_type (TYPE_CODE_INT, 1, 0,
3245 "<variable (not text or data), no debug info>", NULL);
3246 builtin_type->nodebug_tls_symbol =
3247 init_type (TYPE_CODE_INT,
3248 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3249 "<thread local variable, no debug info>", NULL);
3250
3251 return builtin_type;
3252 }
3253
3254 extern void _initialize_gdbtypes (void);
3255 void
3256 _initialize_gdbtypes (void)
3257 {
3258 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3259
3260 /* FIXME: The following types are architecture-neutral. However,
3261 they contain pointer_type and reference_type fields potentially
3262 caching pointer or reference types that *are* architecture
3263 dependent. */
3264
3265 builtin_type_int0 =
3266 init_type (TYPE_CODE_INT, 0 / 8,
3267 0,
3268 "int0_t", (struct objfile *) NULL);
3269 builtin_type_int8 =
3270 init_type (TYPE_CODE_INT, 8 / 8,
3271 TYPE_FLAG_NOTTEXT,
3272 "int8_t", (struct objfile *) NULL);
3273 builtin_type_uint8 =
3274 init_type (TYPE_CODE_INT, 8 / 8,
3275 TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
3276 "uint8_t", (struct objfile *) NULL);
3277 builtin_type_int16 =
3278 init_type (TYPE_CODE_INT, 16 / 8,
3279 0,
3280 "int16_t", (struct objfile *) NULL);
3281 builtin_type_uint16 =
3282 init_type (TYPE_CODE_INT, 16 / 8,
3283 TYPE_FLAG_UNSIGNED,
3284 "uint16_t", (struct objfile *) NULL);
3285 builtin_type_int32 =
3286 init_type (TYPE_CODE_INT, 32 / 8,
3287 0,
3288 "int32_t", (struct objfile *) NULL);
3289 builtin_type_uint32 =
3290 init_type (TYPE_CODE_INT, 32 / 8,
3291 TYPE_FLAG_UNSIGNED,
3292 "uint32_t", (struct objfile *) NULL);
3293 builtin_type_int64 =
3294 init_type (TYPE_CODE_INT, 64 / 8,
3295 0,
3296 "int64_t", (struct objfile *) NULL);
3297 builtin_type_uint64 =
3298 init_type (TYPE_CODE_INT, 64 / 8,
3299 TYPE_FLAG_UNSIGNED,
3300 "uint64_t", (struct objfile *) NULL);
3301 builtin_type_int128 =
3302 init_type (TYPE_CODE_INT, 128 / 8,
3303 0,
3304 "int128_t", (struct objfile *) NULL);
3305 builtin_type_uint128 =
3306 init_type (TYPE_CODE_INT, 128 / 8,
3307 TYPE_FLAG_UNSIGNED,
3308 "uint128_t", (struct objfile *) NULL);
3309
3310 builtin_type_ieee_single =
3311 build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
3312 builtin_type_ieee_double =
3313 build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
3314 builtin_type_i387_ext =
3315 build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
3316 builtin_type_m68881_ext =
3317 build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
3318 builtin_type_arm_ext =
3319 build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
3320 builtin_type_ia64_spill =
3321 build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
3322 builtin_type_ia64_quad =
3323 build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
3324
3325 builtin_type_void =
3326 init_type (TYPE_CODE_VOID, 1,
3327 0,
3328 "void", (struct objfile *) NULL);
3329 builtin_type_true_char =
3330 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3331 0,
3332 "true character", (struct objfile *) NULL);
3333 builtin_type_true_unsigned_char =
3334 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3335 TYPE_FLAG_UNSIGNED,
3336 "true character", (struct objfile *) NULL);
3337
3338 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3339 Set debugging of C++ overloading."), _("\
3340 Show debugging of C++ overloading."), _("\
3341 When enabled, ranking of the functions is displayed."),
3342 NULL,
3343 show_overload_debug,
3344 &setdebuglist, &showdebuglist);
3345
3346 /* Add user knob for controlling resolution of opaque types. */
3347 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3348 &opaque_type_resolution, _("\
3349 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3350 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3351 NULL,
3352 show_opaque_type_resolution,
3353 &setlist, &showlist);
3354 }
This page took 0.102059 seconds and 4 git commands to generate.