Asynchronously resize the TUI
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259 static struct type *
260 alloc_type_instance (struct type *oldtype)
261 {
262 struct type *type;
263
264 /* Allocate the structure. */
265
266 if (! TYPE_OBJFILE_OWNED (oldtype))
267 type = XCNEW (struct type);
268 else
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
276 return type;
277 }
278
279 /* Clear all remnants of the previous type at TYPE, in preparation for
280 replacing it with something else. Preserve owner information. */
281
282 static void
283 smash_type (struct type *type)
284 {
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298 }
299
300 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305 struct type *
306 make_pointer_type (struct type *type, struct type **typeptr)
307 {
308 struct type *ntype; /* New type */
309 struct type *chain;
310
311 ntype = TYPE_POINTER_TYPE (type);
312
313 if (ntype)
314 {
315 if (typeptr == 0)
316 return ntype; /* Don't care about alloc,
317 and have new type. */
318 else if (*typeptr == 0)
319 {
320 *typeptr = ntype; /* Tracking alloc, and have new type. */
321 return ntype;
322 }
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
327 ntype = alloc_type_copy (type);
328 if (typeptr)
329 *typeptr = ntype;
330 }
331 else /* We have storage, but need to reset it. */
332 {
333 ntype = *typeptr;
334 chain = TYPE_CHAIN (ntype);
335 smash_type (ntype);
336 TYPE_CHAIN (ntype) = chain;
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
342 /* FIXME! Assumes the machine has only one representation for pointers! */
343
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
348 /* Mark pointers as unsigned. The target converts between pointers
349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
350 gdbarch_address_to_pointer. */
351 TYPE_UNSIGNED (ntype) = 1;
352
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
361 return ntype;
362 }
363
364 /* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367 struct type *
368 lookup_pointer_type (struct type *type)
369 {
370 return make_pointer_type (type, (struct type **) 0);
371 }
372
373 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
377
378 struct type *
379 make_reference_type (struct type *type, struct type **typeptr)
380 {
381 struct type *ntype; /* New type */
382 struct type *chain;
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
386 if (ntype)
387 {
388 if (typeptr == 0)
389 return ntype; /* Don't care about alloc,
390 and have new type. */
391 else if (*typeptr == 0)
392 {
393 *typeptr = ntype; /* Tracking alloc, and have new type. */
394 return ntype;
395 }
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
400 ntype = alloc_type_copy (type);
401 if (typeptr)
402 *typeptr = ntype;
403 }
404 else /* We have storage, but need to reset it. */
405 {
406 ntype = *typeptr;
407 chain = TYPE_CHAIN (ntype);
408 smash_type (ntype);
409 TYPE_CHAIN (ntype) = chain;
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
418
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
421 TYPE_CODE (ntype) = TYPE_CODE_REF;
422
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
434 return ntype;
435 }
436
437 /* Same as above, but caller doesn't care about memory allocation
438 details. */
439
440 struct type *
441 lookup_reference_type (struct type *type)
442 {
443 return make_reference_type (type, (struct type **) 0);
444 }
445
446 /* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
449 function type we return. We allocate new memory if needed. */
450
451 struct type *
452 make_function_type (struct type *type, struct type **typeptr)
453 {
454 struct type *ntype; /* New type */
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
458 ntype = alloc_type_copy (type);
459 if (typeptr)
460 *typeptr = ntype;
461 }
462 else /* We have storage, but need to reset it. */
463 {
464 ntype = *typeptr;
465 smash_type (ntype);
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
472
473 INIT_FUNC_SPECIFIC (ntype);
474
475 return ntype;
476 }
477
478 /* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481 struct type *
482 lookup_function_type (struct type *type)
483 {
484 return make_function_type (type, (struct type **) 0);
485 }
486
487 /* Given a type TYPE and argument types, return the appropriate
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
490
491 struct type *
492 lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495 {
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
499 if (nparams > 0)
500 {
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
514 }
515
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522 }
523
524 /* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
526
527 int
528 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
529 {
530 int type_flags;
531
532 /* Check for known address space delimiters. */
533 if (!strcmp (space_identifier, "code"))
534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
535 else if (!strcmp (space_identifier, "data"))
536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
541 return type_flags;
542 else
543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
544 }
545
546 /* Identify address space identifier by integer flag as defined in
547 gdbtypes.h -- return the string version of the adress space name. */
548
549 const char *
550 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
551 {
552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
553 return "code";
554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
555 return "data";
556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
559 else
560 return NULL;
561 }
562
563 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
567
568 static struct type *
569 make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
571 {
572 struct type *ntype;
573
574 ntype = type;
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
582
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
598
599 /* Pointers or references to the original type are not relevant to
600 the new type. */
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
603
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
610
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
614 return ntype;
615 }
616
617 /* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
625
626 struct type *
627 make_type_with_address_space (struct type *type, int space_flag)
628 {
629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636 }
637
638 /* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
643
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
649
650 struct type *
651 make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
654 {
655 struct type *ntype; /* New type */
656
657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
660
661 if (cnst)
662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
663
664 if (voltl)
665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
666
667 if (typeptr && *typeptr != NULL)
668 {
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
682 }
683
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
686
687 if (typeptr != NULL)
688 *typeptr = ntype;
689
690 return ntype;
691 }
692
693 /* Make a 'restrict'-qualified version of TYPE. */
694
695 struct type *
696 make_restrict_type (struct type *type)
697 {
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702 }
703
704 /* Make a type without const, volatile, or restrict. */
705
706 struct type *
707 make_unqualified_type (struct type *type)
708 {
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715 }
716
717 /* Make a '_Atomic'-qualified version of TYPE. */
718
719 struct type *
720 make_atomic_type (struct type *type)
721 {
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726 }
727
728 /* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
731
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
737
738 void
739 replace_type (struct type *ntype, struct type *type)
740 {
741 struct type *chain;
742
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
750
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
753 chain = ntype;
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
768
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
772 }
773
774 /* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779 struct type *
780 lookup_memberptr_type (struct type *type, struct type *domain)
781 {
782 struct type *mtype;
783
784 mtype = alloc_type_copy (type);
785 smash_to_memberptr_type (mtype, domain, type);
786 return mtype;
787 }
788
789 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791 struct type *
792 lookup_methodptr_type (struct type *to_type)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (to_type);
797 smash_to_methodptr_type (mtype, to_type);
798 return mtype;
799 }
800
801 /* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
806
807 struct type *
808 allocate_stub_method (struct type *type)
809 {
810 struct type *mtype;
811
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
816 TYPE_TARGET_TYPE (mtype) = type;
817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
818 return mtype;
819 }
820
821 /* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
823
824 struct type *
825 create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
828 {
829 if (result_type == NULL)
830 result_type = alloc_type_copy (index_type);
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
833 if (TYPE_STUB (index_type))
834 TYPE_TARGET_STUB (result_type) = 1;
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
837
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
842
843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
844 TYPE_UNSIGNED (result_type) = 1;
845
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
853 return result_type;
854 }
855
856 /* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866 struct type *
867 create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869 {
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881 }
882
883 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886 static int
887 has_static_range (const struct range_bounds *bounds)
888 {
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891 }
892
893
894 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
897
898 int
899 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
900 {
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
912 entries. */
913 int i;
914
915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
922 }
923
924 /* Set unsigned indicator if warranted. */
925 if (*lowp >= 0)
926 {
927 TYPE_UNSIGNED (type) = 1;
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
946 *highp = -*lowp - 1;
947 return 0;
948 }
949 /* ... fall through for unsigned ints ... */
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961 }
962
963 /* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
967 Return 1 if the operation was successful. Return zero otherwise,
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977 int
978 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979 {
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005 }
1006
1007 /* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
1020
1021 struct type *
1022 create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
1026 {
1027 if (result_type == NULL)
1028 result_type = alloc_type_copy (range_type);
1029
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
1051 else
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1065 TYPE_INDEX_TYPE (result_type) = range_type;
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1068
1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1070 if (TYPE_LENGTH (result_type) == 0)
1071 TYPE_TARGET_STUB (result_type) = 1;
1072
1073 return result_type;
1074 }
1075
1076 /* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079 struct type *
1080 create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083 {
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086 }
1087
1088 struct type *
1089 lookup_array_range_type (struct type *element_type,
1090 LONGEST low_bound, LONGEST high_bound)
1091 {
1092 struct gdbarch *gdbarch = get_type_arch (element_type);
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1096
1097 return create_array_type (NULL, element_type, range_type);
1098 }
1099
1100 /* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
1111
1112 struct type *
1113 create_string_type (struct type *result_type,
1114 struct type *string_char_type,
1115 struct type *range_type)
1116 {
1117 result_type = create_array_type (result_type,
1118 string_char_type,
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1121 return result_type;
1122 }
1123
1124 struct type *
1125 lookup_string_range_type (struct type *string_char_type,
1126 LONGEST low_bound, LONGEST high_bound)
1127 {
1128 struct type *result_type;
1129
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134 }
1135
1136 struct type *
1137 create_set_type (struct type *result_type, struct type *domain_type)
1138 {
1139 if (result_type == NULL)
1140 result_type = alloc_type_copy (domain_type);
1141
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1145
1146 if (!TYPE_STUB (domain_type))
1147 {
1148 LONGEST low_bound, high_bound, bit_length;
1149
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1155 if (low_bound >= 0)
1156 TYPE_UNSIGNED (result_type) = 1;
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
1160 return result_type;
1161 }
1162
1163 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166 void
1167 make_vector_type (struct type *array_type)
1168 {
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
1186 TYPE_VECTOR (array_type) = 1;
1187 }
1188
1189 struct type *
1190 init_vector_type (struct type *elt_type, int n)
1191 {
1192 struct type *array_type;
1193
1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1195 make_vector_type (array_type);
1196 return array_type;
1197 }
1198
1199 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205 struct type *
1206 internal_type_self_type (struct type *type)
1207 {
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
1212 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1213 return NULL;
1214 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1215 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1216 case TYPE_CODE_METHOD:
1217 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1218 return NULL;
1219 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1220 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1221 default:
1222 gdb_assert_not_reached ("bad type");
1223 }
1224 }
1225
1226 /* Set the type of the class that TYPE belongs to.
1227 In c++ this is the class of "this".
1228 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1229 TYPE_CODE_METHOD. */
1230
1231 void
1232 set_type_self_type (struct type *type, struct type *self_type)
1233 {
1234 switch (TYPE_CODE (type))
1235 {
1236 case TYPE_CODE_METHODPTR:
1237 case TYPE_CODE_MEMBERPTR:
1238 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1239 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1240 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1241 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1242 break;
1243 case TYPE_CODE_METHOD:
1244 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1245 INIT_FUNC_SPECIFIC (type);
1246 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1247 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1248 break;
1249 default:
1250 gdb_assert_not_reached ("bad type");
1251 }
1252 }
1253
1254 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1255 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1256 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1257 TYPE doesn't include the offset (that's the value of the MEMBER
1258 itself), but does include the structure type into which it points
1259 (for some reason).
1260
1261 When "smashing" the type, we preserve the objfile that the old type
1262 pointed to, since we aren't changing where the type is actually
1263 allocated. */
1264
1265 void
1266 smash_to_memberptr_type (struct type *type, struct type *self_type,
1267 struct type *to_type)
1268 {
1269 smash_type (type);
1270 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1271 TYPE_TARGET_TYPE (type) = to_type;
1272 set_type_self_type (type, self_type);
1273 /* Assume that a data member pointer is the same size as a normal
1274 pointer. */
1275 TYPE_LENGTH (type)
1276 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1277 }
1278
1279 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1280
1281 When "smashing" the type, we preserve the objfile that the old type
1282 pointed to, since we aren't changing where the type is actually
1283 allocated. */
1284
1285 void
1286 smash_to_methodptr_type (struct type *type, struct type *to_type)
1287 {
1288 smash_type (type);
1289 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1290 TYPE_TARGET_TYPE (type) = to_type;
1291 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1292 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1293 }
1294
1295 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1296 METHOD just means `function that gets an extra "this" argument'.
1297
1298 When "smashing" the type, we preserve the objfile that the old type
1299 pointed to, since we aren't changing where the type is actually
1300 allocated. */
1301
1302 void
1303 smash_to_method_type (struct type *type, struct type *self_type,
1304 struct type *to_type, struct field *args,
1305 int nargs, int varargs)
1306 {
1307 smash_type (type);
1308 TYPE_CODE (type) = TYPE_CODE_METHOD;
1309 TYPE_TARGET_TYPE (type) = to_type;
1310 set_type_self_type (type, self_type);
1311 TYPE_FIELDS (type) = args;
1312 TYPE_NFIELDS (type) = nargs;
1313 if (varargs)
1314 TYPE_VARARGS (type) = 1;
1315 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1316 }
1317
1318 /* Return a typename for a struct/union/enum type without "struct ",
1319 "union ", or "enum ". If the type has a NULL name, return NULL. */
1320
1321 const char *
1322 type_name_no_tag (const struct type *type)
1323 {
1324 if (TYPE_TAG_NAME (type) != NULL)
1325 return TYPE_TAG_NAME (type);
1326
1327 /* Is there code which expects this to return the name if there is
1328 no tag name? My guess is that this is mainly used for C++ in
1329 cases where the two will always be the same. */
1330 return TYPE_NAME (type);
1331 }
1332
1333 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1334 Since GCC PR debug/47510 DWARF provides associated information to detect the
1335 anonymous class linkage name from its typedef.
1336
1337 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1338 apply it itself. */
1339
1340 const char *
1341 type_name_no_tag_or_error (struct type *type)
1342 {
1343 struct type *saved_type = type;
1344 const char *name;
1345 struct objfile *objfile;
1346
1347 CHECK_TYPEDEF (type);
1348
1349 name = type_name_no_tag (type);
1350 if (name != NULL)
1351 return name;
1352
1353 name = type_name_no_tag (saved_type);
1354 objfile = TYPE_OBJFILE (saved_type);
1355 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1356 name ? name : "<anonymous>",
1357 objfile ? objfile_name (objfile) : "<arch>");
1358 }
1359
1360 /* Lookup a typedef or primitive type named NAME, visible in lexical
1361 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1362 suitably defined. */
1363
1364 struct type *
1365 lookup_typename (const struct language_defn *language,
1366 struct gdbarch *gdbarch, const char *name,
1367 const struct block *block, int noerr)
1368 {
1369 struct symbol *sym;
1370 struct type *type;
1371
1372 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1373 language->la_language, NULL);
1374 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1375 return SYMBOL_TYPE (sym);
1376
1377 if (noerr)
1378 return NULL;
1379 error (_("No type named %s."), name);
1380 }
1381
1382 struct type *
1383 lookup_unsigned_typename (const struct language_defn *language,
1384 struct gdbarch *gdbarch, const char *name)
1385 {
1386 char *uns = alloca (strlen (name) + 10);
1387
1388 strcpy (uns, "unsigned ");
1389 strcpy (uns + 9, name);
1390 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1391 }
1392
1393 struct type *
1394 lookup_signed_typename (const struct language_defn *language,
1395 struct gdbarch *gdbarch, const char *name)
1396 {
1397 struct type *t;
1398 char *uns = alloca (strlen (name) + 8);
1399
1400 strcpy (uns, "signed ");
1401 strcpy (uns + 7, name);
1402 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1403 /* If we don't find "signed FOO" just try again with plain "FOO". */
1404 if (t != NULL)
1405 return t;
1406 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1407 }
1408
1409 /* Lookup a structure type named "struct NAME",
1410 visible in lexical block BLOCK. */
1411
1412 struct type *
1413 lookup_struct (const char *name, const struct block *block)
1414 {
1415 struct symbol *sym;
1416
1417 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1418
1419 if (sym == NULL)
1420 {
1421 error (_("No struct type named %s."), name);
1422 }
1423 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1424 {
1425 error (_("This context has class, union or enum %s, not a struct."),
1426 name);
1427 }
1428 return (SYMBOL_TYPE (sym));
1429 }
1430
1431 /* Lookup a union type named "union NAME",
1432 visible in lexical block BLOCK. */
1433
1434 struct type *
1435 lookup_union (const char *name, const struct block *block)
1436 {
1437 struct symbol *sym;
1438 struct type *t;
1439
1440 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1441
1442 if (sym == NULL)
1443 error (_("No union type named %s."), name);
1444
1445 t = SYMBOL_TYPE (sym);
1446
1447 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1448 return t;
1449
1450 /* If we get here, it's not a union. */
1451 error (_("This context has class, struct or enum %s, not a union."),
1452 name);
1453 }
1454
1455 /* Lookup an enum type named "enum NAME",
1456 visible in lexical block BLOCK. */
1457
1458 struct type *
1459 lookup_enum (const char *name, const struct block *block)
1460 {
1461 struct symbol *sym;
1462
1463 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1464 if (sym == NULL)
1465 {
1466 error (_("No enum type named %s."), name);
1467 }
1468 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1469 {
1470 error (_("This context has class, struct or union %s, not an enum."),
1471 name);
1472 }
1473 return (SYMBOL_TYPE (sym));
1474 }
1475
1476 /* Lookup a template type named "template NAME<TYPE>",
1477 visible in lexical block BLOCK. */
1478
1479 struct type *
1480 lookup_template_type (char *name, struct type *type,
1481 const struct block *block)
1482 {
1483 struct symbol *sym;
1484 char *nam = (char *)
1485 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1486
1487 strcpy (nam, name);
1488 strcat (nam, "<");
1489 strcat (nam, TYPE_NAME (type));
1490 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1491
1492 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1493
1494 if (sym == NULL)
1495 {
1496 error (_("No template type named %s."), name);
1497 }
1498 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1499 {
1500 error (_("This context has class, union or enum %s, not a struct."),
1501 name);
1502 }
1503 return (SYMBOL_TYPE (sym));
1504 }
1505
1506 /* Given a type TYPE, lookup the type of the component of type named
1507 NAME.
1508
1509 TYPE can be either a struct or union, or a pointer or reference to
1510 a struct or union. If it is a pointer or reference, its target
1511 type is automatically used. Thus '.' and '->' are interchangable,
1512 as specified for the definitions of the expression element types
1513 STRUCTOP_STRUCT and STRUCTOP_PTR.
1514
1515 If NOERR is nonzero, return zero if NAME is not suitably defined.
1516 If NAME is the name of a baseclass type, return that type. */
1517
1518 struct type *
1519 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1520 {
1521 int i;
1522 char *typename;
1523
1524 for (;;)
1525 {
1526 CHECK_TYPEDEF (type);
1527 if (TYPE_CODE (type) != TYPE_CODE_PTR
1528 && TYPE_CODE (type) != TYPE_CODE_REF)
1529 break;
1530 type = TYPE_TARGET_TYPE (type);
1531 }
1532
1533 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1534 && TYPE_CODE (type) != TYPE_CODE_UNION)
1535 {
1536 typename = type_to_string (type);
1537 make_cleanup (xfree, typename);
1538 error (_("Type %s is not a structure or union type."), typename);
1539 }
1540
1541 #if 0
1542 /* FIXME: This change put in by Michael seems incorrect for the case
1543 where the structure tag name is the same as the member name.
1544 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1545 foo; } bell;" Disabled by fnf. */
1546 {
1547 char *typename;
1548
1549 typename = type_name_no_tag (type);
1550 if (typename != NULL && strcmp (typename, name) == 0)
1551 return type;
1552 }
1553 #endif
1554
1555 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1556 {
1557 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1558
1559 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1560 {
1561 return TYPE_FIELD_TYPE (type, i);
1562 }
1563 else if (!t_field_name || *t_field_name == '\0')
1564 {
1565 struct type *subtype
1566 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1567
1568 if (subtype != NULL)
1569 return subtype;
1570 }
1571 }
1572
1573 /* OK, it's not in this class. Recursively check the baseclasses. */
1574 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1575 {
1576 struct type *t;
1577
1578 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1579 if (t != NULL)
1580 {
1581 return t;
1582 }
1583 }
1584
1585 if (noerr)
1586 {
1587 return NULL;
1588 }
1589
1590 typename = type_to_string (type);
1591 make_cleanup (xfree, typename);
1592 error (_("Type %s has no component named %s."), typename, name);
1593 }
1594
1595 /* Store in *MAX the largest number representable by unsigned integer type
1596 TYPE. */
1597
1598 void
1599 get_unsigned_type_max (struct type *type, ULONGEST *max)
1600 {
1601 unsigned int n;
1602
1603 CHECK_TYPEDEF (type);
1604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1605 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1606
1607 /* Written this way to avoid overflow. */
1608 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1609 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1610 }
1611
1612 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1613 signed integer type TYPE. */
1614
1615 void
1616 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1617 {
1618 unsigned int n;
1619
1620 CHECK_TYPEDEF (type);
1621 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1622 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1623
1624 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1625 *min = -((ULONGEST) 1 << (n - 1));
1626 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1627 }
1628
1629 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1630 cplus_stuff.vptr_fieldno.
1631
1632 cplus_stuff is initialized to cplus_struct_default which does not
1633 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1634 designated initializers). We cope with that here. */
1635
1636 int
1637 internal_type_vptr_fieldno (struct type *type)
1638 {
1639 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1640 || TYPE_CODE (type) == TYPE_CODE_UNION);
1641 if (!HAVE_CPLUS_STRUCT (type))
1642 return -1;
1643 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1644 }
1645
1646 /* Set the value of cplus_stuff.vptr_fieldno. */
1647
1648 void
1649 set_type_vptr_fieldno (struct type *type, int fieldno)
1650 {
1651 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1652 || TYPE_CODE (type) == TYPE_CODE_UNION);
1653 if (!HAVE_CPLUS_STRUCT (type))
1654 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1655 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1656 }
1657
1658 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1659 cplus_stuff.vptr_basetype. */
1660
1661 struct type *
1662 internal_type_vptr_basetype (struct type *type)
1663 {
1664 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1665 || TYPE_CODE (type) == TYPE_CODE_UNION);
1666 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1667 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1668 }
1669
1670 /* Set the value of cplus_stuff.vptr_basetype. */
1671
1672 void
1673 set_type_vptr_basetype (struct type *type, struct type *basetype)
1674 {
1675 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1676 || TYPE_CODE (type) == TYPE_CODE_UNION);
1677 if (!HAVE_CPLUS_STRUCT (type))
1678 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1679 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1680 }
1681
1682 /* Lookup the vptr basetype/fieldno values for TYPE.
1683 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1684 vptr_fieldno. Also, if found and basetype is from the same objfile,
1685 cache the results.
1686 If not found, return -1 and ignore BASETYPEP.
1687 Callers should be aware that in some cases (for example,
1688 the type or one of its baseclasses is a stub type and we are
1689 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1690 this function will not be able to find the
1691 virtual function table pointer, and vptr_fieldno will remain -1 and
1692 vptr_basetype will remain NULL or incomplete. */
1693
1694 int
1695 get_vptr_fieldno (struct type *type, struct type **basetypep)
1696 {
1697 CHECK_TYPEDEF (type);
1698
1699 if (TYPE_VPTR_FIELDNO (type) < 0)
1700 {
1701 int i;
1702
1703 /* We must start at zero in case the first (and only) baseclass
1704 is virtual (and hence we cannot share the table pointer). */
1705 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1706 {
1707 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1708 int fieldno;
1709 struct type *basetype;
1710
1711 fieldno = get_vptr_fieldno (baseclass, &basetype);
1712 if (fieldno >= 0)
1713 {
1714 /* If the type comes from a different objfile we can't cache
1715 it, it may have a different lifetime. PR 2384 */
1716 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1717 {
1718 set_type_vptr_fieldno (type, fieldno);
1719 set_type_vptr_basetype (type, basetype);
1720 }
1721 if (basetypep)
1722 *basetypep = basetype;
1723 return fieldno;
1724 }
1725 }
1726
1727 /* Not found. */
1728 return -1;
1729 }
1730 else
1731 {
1732 if (basetypep)
1733 *basetypep = TYPE_VPTR_BASETYPE (type);
1734 return TYPE_VPTR_FIELDNO (type);
1735 }
1736 }
1737
1738 static void
1739 stub_noname_complaint (void)
1740 {
1741 complaint (&symfile_complaints, _("stub type has NULL name"));
1742 }
1743
1744 /* Worker for is_dynamic_type. */
1745
1746 static int
1747 is_dynamic_type_internal (struct type *type, int top_level)
1748 {
1749 type = check_typedef (type);
1750
1751 /* We only want to recognize references at the outermost level. */
1752 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1753 type = check_typedef (TYPE_TARGET_TYPE (type));
1754
1755 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1756 dynamic, even if the type itself is statically defined.
1757 From a user's point of view, this may appear counter-intuitive;
1758 but it makes sense in this context, because the point is to determine
1759 whether any part of the type needs to be resolved before it can
1760 be exploited. */
1761 if (TYPE_DATA_LOCATION (type) != NULL
1762 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1763 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1764 return 1;
1765
1766 switch (TYPE_CODE (type))
1767 {
1768 case TYPE_CODE_RANGE:
1769 {
1770 /* A range type is obviously dynamic if it has at least one
1771 dynamic bound. But also consider the range type to be
1772 dynamic when its subtype is dynamic, even if the bounds
1773 of the range type are static. It allows us to assume that
1774 the subtype of a static range type is also static. */
1775 return (!has_static_range (TYPE_RANGE_DATA (type))
1776 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1777 }
1778
1779 case TYPE_CODE_ARRAY:
1780 {
1781 gdb_assert (TYPE_NFIELDS (type) == 1);
1782
1783 /* The array is dynamic if either the bounds are dynamic,
1784 or the elements it contains have a dynamic contents. */
1785 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1786 return 1;
1787 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1788 }
1789
1790 case TYPE_CODE_STRUCT:
1791 case TYPE_CODE_UNION:
1792 {
1793 int i;
1794
1795 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1796 if (!field_is_static (&TYPE_FIELD (type, i))
1797 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1798 return 1;
1799 }
1800 break;
1801 }
1802
1803 return 0;
1804 }
1805
1806 /* See gdbtypes.h. */
1807
1808 int
1809 is_dynamic_type (struct type *type)
1810 {
1811 return is_dynamic_type_internal (type, 1);
1812 }
1813
1814 static struct type *resolve_dynamic_type_internal
1815 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1816
1817 /* Given a dynamic range type (dyn_range_type) and a stack of
1818 struct property_addr_info elements, return a static version
1819 of that type. */
1820
1821 static struct type *
1822 resolve_dynamic_range (struct type *dyn_range_type,
1823 struct property_addr_info *addr_stack)
1824 {
1825 CORE_ADDR value;
1826 struct type *static_range_type, *static_target_type;
1827 const struct dynamic_prop *prop;
1828 const struct dwarf2_locexpr_baton *baton;
1829 struct dynamic_prop low_bound, high_bound;
1830
1831 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1832
1833 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1834 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1835 {
1836 low_bound.kind = PROP_CONST;
1837 low_bound.data.const_val = value;
1838 }
1839 else
1840 {
1841 low_bound.kind = PROP_UNDEFINED;
1842 low_bound.data.const_val = 0;
1843 }
1844
1845 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1846 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1847 {
1848 high_bound.kind = PROP_CONST;
1849 high_bound.data.const_val = value;
1850
1851 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1852 high_bound.data.const_val
1853 = low_bound.data.const_val + high_bound.data.const_val - 1;
1854 }
1855 else
1856 {
1857 high_bound.kind = PROP_UNDEFINED;
1858 high_bound.data.const_val = 0;
1859 }
1860
1861 static_target_type
1862 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1863 addr_stack, 0);
1864 static_range_type = create_range_type (copy_type (dyn_range_type),
1865 static_target_type,
1866 &low_bound, &high_bound);
1867 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1868 return static_range_type;
1869 }
1870
1871 /* Resolves dynamic bound values of an array type TYPE to static ones.
1872 ADDR_STACK is a stack of struct property_addr_info to be used
1873 if needed during the dynamic resolution. */
1874
1875 static struct type *
1876 resolve_dynamic_array (struct type *type,
1877 struct property_addr_info *addr_stack)
1878 {
1879 CORE_ADDR value;
1880 struct type *elt_type;
1881 struct type *range_type;
1882 struct type *ary_dim;
1883
1884 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1885
1886 elt_type = type;
1887 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1888 range_type = resolve_dynamic_range (range_type, addr_stack);
1889
1890 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1891
1892 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1893 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
1894 else
1895 elt_type = TYPE_TARGET_TYPE (type);
1896
1897 return create_array_type (copy_type (type),
1898 elt_type,
1899 range_type);
1900 }
1901
1902 /* Resolve dynamic bounds of members of the union TYPE to static
1903 bounds. ADDR_STACK is a stack of struct property_addr_info
1904 to be used if needed during the dynamic resolution. */
1905
1906 static struct type *
1907 resolve_dynamic_union (struct type *type,
1908 struct property_addr_info *addr_stack)
1909 {
1910 struct type *resolved_type;
1911 int i;
1912 unsigned int max_len = 0;
1913
1914 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1915
1916 resolved_type = copy_type (type);
1917 TYPE_FIELDS (resolved_type)
1918 = TYPE_ALLOC (resolved_type,
1919 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1920 memcpy (TYPE_FIELDS (resolved_type),
1921 TYPE_FIELDS (type),
1922 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1923 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1924 {
1925 struct type *t;
1926
1927 if (field_is_static (&TYPE_FIELD (type, i)))
1928 continue;
1929
1930 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1931 addr_stack, 0);
1932 TYPE_FIELD_TYPE (resolved_type, i) = t;
1933 if (TYPE_LENGTH (t) > max_len)
1934 max_len = TYPE_LENGTH (t);
1935 }
1936
1937 TYPE_LENGTH (resolved_type) = max_len;
1938 return resolved_type;
1939 }
1940
1941 /* Resolve dynamic bounds of members of the struct TYPE to static
1942 bounds. ADDR_STACK is a stack of struct property_addr_info to
1943 be used if needed during the dynamic resolution. */
1944
1945 static struct type *
1946 resolve_dynamic_struct (struct type *type,
1947 struct property_addr_info *addr_stack)
1948 {
1949 struct type *resolved_type;
1950 int i;
1951 unsigned resolved_type_bit_length = 0;
1952
1953 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1954 gdb_assert (TYPE_NFIELDS (type) > 0);
1955
1956 resolved_type = copy_type (type);
1957 TYPE_FIELDS (resolved_type)
1958 = TYPE_ALLOC (resolved_type,
1959 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1960 memcpy (TYPE_FIELDS (resolved_type),
1961 TYPE_FIELDS (type),
1962 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1963 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1964 {
1965 unsigned new_bit_length;
1966 struct property_addr_info pinfo;
1967
1968 if (field_is_static (&TYPE_FIELD (type, i)))
1969 continue;
1970
1971 /* As we know this field is not a static field, the field's
1972 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1973 this is the case, but only trigger a simple error rather
1974 than an internal error if that fails. While failing
1975 that verification indicates a bug in our code, the error
1976 is not severe enough to suggest to the user he stops
1977 his debugging session because of it. */
1978 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
1979 error (_("Cannot determine struct field location"
1980 " (invalid location kind)"));
1981
1982 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1983 pinfo.addr = addr_stack->addr;
1984 pinfo.next = addr_stack;
1985
1986 TYPE_FIELD_TYPE (resolved_type, i)
1987 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1988 &pinfo, 0);
1989 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1990 == FIELD_LOC_KIND_BITPOS);
1991
1992 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1993 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1994 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1995 else
1996 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1997 * TARGET_CHAR_BIT);
1998
1999 /* Normally, we would use the position and size of the last field
2000 to determine the size of the enclosing structure. But GCC seems
2001 to be encoding the position of some fields incorrectly when
2002 the struct contains a dynamic field that is not placed last.
2003 So we compute the struct size based on the field that has
2004 the highest position + size - probably the best we can do. */
2005 if (new_bit_length > resolved_type_bit_length)
2006 resolved_type_bit_length = new_bit_length;
2007 }
2008
2009 TYPE_LENGTH (resolved_type)
2010 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2011
2012 return resolved_type;
2013 }
2014
2015 /* Worker for resolved_dynamic_type. */
2016
2017 static struct type *
2018 resolve_dynamic_type_internal (struct type *type,
2019 struct property_addr_info *addr_stack,
2020 int top_level)
2021 {
2022 struct type *real_type = check_typedef (type);
2023 struct type *resolved_type = type;
2024 const struct dynamic_prop *prop;
2025 CORE_ADDR value;
2026
2027 if (!is_dynamic_type_internal (real_type, top_level))
2028 return type;
2029
2030 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2031 {
2032 resolved_type = copy_type (type);
2033 TYPE_TARGET_TYPE (resolved_type)
2034 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2035 top_level);
2036 }
2037 else
2038 {
2039 /* Before trying to resolve TYPE, make sure it is not a stub. */
2040 type = real_type;
2041
2042 switch (TYPE_CODE (type))
2043 {
2044 case TYPE_CODE_REF:
2045 {
2046 struct property_addr_info pinfo;
2047
2048 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2049 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2050 pinfo.next = addr_stack;
2051
2052 resolved_type = copy_type (type);
2053 TYPE_TARGET_TYPE (resolved_type)
2054 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2055 &pinfo, top_level);
2056 break;
2057 }
2058
2059 case TYPE_CODE_ARRAY:
2060 resolved_type = resolve_dynamic_array (type, addr_stack);
2061 break;
2062
2063 case TYPE_CODE_RANGE:
2064 resolved_type = resolve_dynamic_range (type, addr_stack);
2065 break;
2066
2067 case TYPE_CODE_UNION:
2068 resolved_type = resolve_dynamic_union (type, addr_stack);
2069 break;
2070
2071 case TYPE_CODE_STRUCT:
2072 resolved_type = resolve_dynamic_struct (type, addr_stack);
2073 break;
2074 }
2075 }
2076
2077 /* Resolve data_location attribute. */
2078 prop = TYPE_DATA_LOCATION (resolved_type);
2079 if (dwarf2_evaluate_property (prop, addr_stack, &value))
2080 {
2081 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
2082 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
2083 }
2084 else
2085 TYPE_DATA_LOCATION (resolved_type) = NULL;
2086
2087 return resolved_type;
2088 }
2089
2090 /* See gdbtypes.h */
2091
2092 struct type *
2093 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2094 {
2095 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2096
2097 return resolve_dynamic_type_internal (type, &pinfo, 1);
2098 }
2099
2100 /* Find the real type of TYPE. This function returns the real type,
2101 after removing all layers of typedefs, and completing opaque or stub
2102 types. Completion changes the TYPE argument, but stripping of
2103 typedefs does not.
2104
2105 Instance flags (e.g. const/volatile) are preserved as typedefs are
2106 stripped. If necessary a new qualified form of the underlying type
2107 is created.
2108
2109 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2110 not been computed and we're either in the middle of reading symbols, or
2111 there was no name for the typedef in the debug info.
2112
2113 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2114 QUITs in the symbol reading code can also throw.
2115 Thus this function can throw an exception.
2116
2117 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2118 the target type.
2119
2120 If this is a stubbed struct (i.e. declared as struct foo *), see if
2121 we can find a full definition in some other file. If so, copy this
2122 definition, so we can use it in future. There used to be a comment
2123 (but not any code) that if we don't find a full definition, we'd
2124 set a flag so we don't spend time in the future checking the same
2125 type. That would be a mistake, though--we might load in more
2126 symbols which contain a full definition for the type. */
2127
2128 struct type *
2129 check_typedef (struct type *type)
2130 {
2131 struct type *orig_type = type;
2132 /* While we're removing typedefs, we don't want to lose qualifiers.
2133 E.g., const/volatile. */
2134 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2135
2136 gdb_assert (type);
2137
2138 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2139 {
2140 if (!TYPE_TARGET_TYPE (type))
2141 {
2142 const char *name;
2143 struct symbol *sym;
2144
2145 /* It is dangerous to call lookup_symbol if we are currently
2146 reading a symtab. Infinite recursion is one danger. */
2147 if (currently_reading_symtab)
2148 return make_qualified_type (type, instance_flags, NULL);
2149
2150 name = type_name_no_tag (type);
2151 /* FIXME: shouldn't we separately check the TYPE_NAME and
2152 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2153 VAR_DOMAIN as appropriate? (this code was written before
2154 TYPE_NAME and TYPE_TAG_NAME were separate). */
2155 if (name == NULL)
2156 {
2157 stub_noname_complaint ();
2158 return make_qualified_type (type, instance_flags, NULL);
2159 }
2160 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2161 if (sym)
2162 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2163 else /* TYPE_CODE_UNDEF */
2164 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2165 }
2166 type = TYPE_TARGET_TYPE (type);
2167
2168 /* Preserve the instance flags as we traverse down the typedef chain.
2169
2170 Handling address spaces/classes is nasty, what do we do if there's a
2171 conflict?
2172 E.g., what if an outer typedef marks the type as class_1 and an inner
2173 typedef marks the type as class_2?
2174 This is the wrong place to do such error checking. We leave it to
2175 the code that created the typedef in the first place to flag the
2176 error. We just pick the outer address space (akin to letting the
2177 outer cast in a chain of casting win), instead of assuming
2178 "it can't happen". */
2179 {
2180 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2181 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2182 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2183 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2184
2185 /* Treat code vs data spaces and address classes separately. */
2186 if ((instance_flags & ALL_SPACES) != 0)
2187 new_instance_flags &= ~ALL_SPACES;
2188 if ((instance_flags & ALL_CLASSES) != 0)
2189 new_instance_flags &= ~ALL_CLASSES;
2190
2191 instance_flags |= new_instance_flags;
2192 }
2193 }
2194
2195 /* If this is a struct/class/union with no fields, then check
2196 whether a full definition exists somewhere else. This is for
2197 systems where a type definition with no fields is issued for such
2198 types, instead of identifying them as stub types in the first
2199 place. */
2200
2201 if (TYPE_IS_OPAQUE (type)
2202 && opaque_type_resolution
2203 && !currently_reading_symtab)
2204 {
2205 const char *name = type_name_no_tag (type);
2206 struct type *newtype;
2207
2208 if (name == NULL)
2209 {
2210 stub_noname_complaint ();
2211 return make_qualified_type (type, instance_flags, NULL);
2212 }
2213 newtype = lookup_transparent_type (name);
2214
2215 if (newtype)
2216 {
2217 /* If the resolved type and the stub are in the same
2218 objfile, then replace the stub type with the real deal.
2219 But if they're in separate objfiles, leave the stub
2220 alone; we'll just look up the transparent type every time
2221 we call check_typedef. We can't create pointers between
2222 types allocated to different objfiles, since they may
2223 have different lifetimes. Trying to copy NEWTYPE over to
2224 TYPE's objfile is pointless, too, since you'll have to
2225 move over any other types NEWTYPE refers to, which could
2226 be an unbounded amount of stuff. */
2227 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2228 type = make_qualified_type (newtype,
2229 TYPE_INSTANCE_FLAGS (type),
2230 type);
2231 else
2232 type = newtype;
2233 }
2234 }
2235 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2236 types. */
2237 else if (TYPE_STUB (type) && !currently_reading_symtab)
2238 {
2239 const char *name = type_name_no_tag (type);
2240 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2241 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2242 as appropriate? (this code was written before TYPE_NAME and
2243 TYPE_TAG_NAME were separate). */
2244 struct symbol *sym;
2245
2246 if (name == NULL)
2247 {
2248 stub_noname_complaint ();
2249 return make_qualified_type (type, instance_flags, NULL);
2250 }
2251 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2252 if (sym)
2253 {
2254 /* Same as above for opaque types, we can replace the stub
2255 with the complete type only if they are in the same
2256 objfile. */
2257 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2258 type = make_qualified_type (SYMBOL_TYPE (sym),
2259 TYPE_INSTANCE_FLAGS (type),
2260 type);
2261 else
2262 type = SYMBOL_TYPE (sym);
2263 }
2264 }
2265
2266 if (TYPE_TARGET_STUB (type))
2267 {
2268 struct type *range_type;
2269 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2270
2271 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2272 {
2273 /* Nothing we can do. */
2274 }
2275 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2276 {
2277 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2278 TYPE_TARGET_STUB (type) = 0;
2279 }
2280 }
2281
2282 type = make_qualified_type (type, instance_flags, NULL);
2283
2284 /* Cache TYPE_LENGTH for future use. */
2285 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2286
2287 return type;
2288 }
2289
2290 /* Parse a type expression in the string [P..P+LENGTH). If an error
2291 occurs, silently return a void type. */
2292
2293 static struct type *
2294 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2295 {
2296 struct ui_file *saved_gdb_stderr;
2297 struct type *type = NULL; /* Initialize to keep gcc happy. */
2298 volatile struct gdb_exception except;
2299
2300 /* Suppress error messages. */
2301 saved_gdb_stderr = gdb_stderr;
2302 gdb_stderr = ui_file_new ();
2303
2304 /* Call parse_and_eval_type() without fear of longjmp()s. */
2305 TRY_CATCH (except, RETURN_MASK_ERROR)
2306 {
2307 type = parse_and_eval_type (p, length);
2308 }
2309
2310 if (except.reason < 0)
2311 type = builtin_type (gdbarch)->builtin_void;
2312
2313 /* Stop suppressing error messages. */
2314 ui_file_delete (gdb_stderr);
2315 gdb_stderr = saved_gdb_stderr;
2316
2317 return type;
2318 }
2319
2320 /* Ugly hack to convert method stubs into method types.
2321
2322 He ain't kiddin'. This demangles the name of the method into a
2323 string including argument types, parses out each argument type,
2324 generates a string casting a zero to that type, evaluates the
2325 string, and stuffs the resulting type into an argtype vector!!!
2326 Then it knows the type of the whole function (including argument
2327 types for overloading), which info used to be in the stab's but was
2328 removed to hack back the space required for them. */
2329
2330 static void
2331 check_stub_method (struct type *type, int method_id, int signature_id)
2332 {
2333 struct gdbarch *gdbarch = get_type_arch (type);
2334 struct fn_field *f;
2335 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2336 char *demangled_name = gdb_demangle (mangled_name,
2337 DMGL_PARAMS | DMGL_ANSI);
2338 char *argtypetext, *p;
2339 int depth = 0, argcount = 1;
2340 struct field *argtypes;
2341 struct type *mtype;
2342
2343 /* Make sure we got back a function string that we can use. */
2344 if (demangled_name)
2345 p = strchr (demangled_name, '(');
2346 else
2347 p = NULL;
2348
2349 if (demangled_name == NULL || p == NULL)
2350 error (_("Internal: Cannot demangle mangled name `%s'."),
2351 mangled_name);
2352
2353 /* Now, read in the parameters that define this type. */
2354 p += 1;
2355 argtypetext = p;
2356 while (*p)
2357 {
2358 if (*p == '(' || *p == '<')
2359 {
2360 depth += 1;
2361 }
2362 else if (*p == ')' || *p == '>')
2363 {
2364 depth -= 1;
2365 }
2366 else if (*p == ',' && depth == 0)
2367 {
2368 argcount += 1;
2369 }
2370
2371 p += 1;
2372 }
2373
2374 /* If we read one argument and it was ``void'', don't count it. */
2375 if (strncmp (argtypetext, "(void)", 6) == 0)
2376 argcount -= 1;
2377
2378 /* We need one extra slot, for the THIS pointer. */
2379
2380 argtypes = (struct field *)
2381 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2382 p = argtypetext;
2383
2384 /* Add THIS pointer for non-static methods. */
2385 f = TYPE_FN_FIELDLIST1 (type, method_id);
2386 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2387 argcount = 0;
2388 else
2389 {
2390 argtypes[0].type = lookup_pointer_type (type);
2391 argcount = 1;
2392 }
2393
2394 if (*p != ')') /* () means no args, skip while. */
2395 {
2396 depth = 0;
2397 while (*p)
2398 {
2399 if (depth <= 0 && (*p == ',' || *p == ')'))
2400 {
2401 /* Avoid parsing of ellipsis, they will be handled below.
2402 Also avoid ``void'' as above. */
2403 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2404 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2405 {
2406 argtypes[argcount].type =
2407 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2408 argcount += 1;
2409 }
2410 argtypetext = p + 1;
2411 }
2412
2413 if (*p == '(' || *p == '<')
2414 {
2415 depth += 1;
2416 }
2417 else if (*p == ')' || *p == '>')
2418 {
2419 depth -= 1;
2420 }
2421
2422 p += 1;
2423 }
2424 }
2425
2426 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2427
2428 /* Now update the old "stub" type into a real type. */
2429 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2430 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2431 We want a method (TYPE_CODE_METHOD). */
2432 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2433 argtypes, argcount, p[-2] == '.');
2434 TYPE_STUB (mtype) = 0;
2435 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2436
2437 xfree (demangled_name);
2438 }
2439
2440 /* This is the external interface to check_stub_method, above. This
2441 function unstubs all of the signatures for TYPE's METHOD_ID method
2442 name. After calling this function TYPE_FN_FIELD_STUB will be
2443 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2444 correct.
2445
2446 This function unfortunately can not die until stabs do. */
2447
2448 void
2449 check_stub_method_group (struct type *type, int method_id)
2450 {
2451 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2452 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2453 int j, found_stub = 0;
2454
2455 for (j = 0; j < len; j++)
2456 if (TYPE_FN_FIELD_STUB (f, j))
2457 {
2458 found_stub = 1;
2459 check_stub_method (type, method_id, j);
2460 }
2461
2462 /* GNU v3 methods with incorrect names were corrected when we read
2463 in type information, because it was cheaper to do it then. The
2464 only GNU v2 methods with incorrect method names are operators and
2465 destructors; destructors were also corrected when we read in type
2466 information.
2467
2468 Therefore the only thing we need to handle here are v2 operator
2469 names. */
2470 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2471 {
2472 int ret;
2473 char dem_opname[256];
2474
2475 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2476 method_id),
2477 dem_opname, DMGL_ANSI);
2478 if (!ret)
2479 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2480 method_id),
2481 dem_opname, 0);
2482 if (ret)
2483 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2484 }
2485 }
2486
2487 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2488 const struct cplus_struct_type cplus_struct_default = { };
2489
2490 void
2491 allocate_cplus_struct_type (struct type *type)
2492 {
2493 if (HAVE_CPLUS_STRUCT (type))
2494 /* Structure was already allocated. Nothing more to do. */
2495 return;
2496
2497 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2498 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2499 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2500 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2501 set_type_vptr_fieldno (type, -1);
2502 }
2503
2504 const struct gnat_aux_type gnat_aux_default =
2505 { NULL };
2506
2507 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2508 and allocate the associated gnat-specific data. The gnat-specific
2509 data is also initialized to gnat_aux_default. */
2510
2511 void
2512 allocate_gnat_aux_type (struct type *type)
2513 {
2514 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2515 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2516 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2517 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2518 }
2519
2520 /* Helper function to initialize the standard scalar types.
2521
2522 If NAME is non-NULL, then it is used to initialize the type name.
2523 Note that NAME is not copied; it is required to have a lifetime at
2524 least as long as OBJFILE. */
2525
2526 struct type *
2527 init_type (enum type_code code, int length, int flags,
2528 const char *name, struct objfile *objfile)
2529 {
2530 struct type *type;
2531
2532 type = alloc_type (objfile);
2533 TYPE_CODE (type) = code;
2534 TYPE_LENGTH (type) = length;
2535
2536 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2537 if (flags & TYPE_FLAG_UNSIGNED)
2538 TYPE_UNSIGNED (type) = 1;
2539 if (flags & TYPE_FLAG_NOSIGN)
2540 TYPE_NOSIGN (type) = 1;
2541 if (flags & TYPE_FLAG_STUB)
2542 TYPE_STUB (type) = 1;
2543 if (flags & TYPE_FLAG_TARGET_STUB)
2544 TYPE_TARGET_STUB (type) = 1;
2545 if (flags & TYPE_FLAG_STATIC)
2546 TYPE_STATIC (type) = 1;
2547 if (flags & TYPE_FLAG_PROTOTYPED)
2548 TYPE_PROTOTYPED (type) = 1;
2549 if (flags & TYPE_FLAG_INCOMPLETE)
2550 TYPE_INCOMPLETE (type) = 1;
2551 if (flags & TYPE_FLAG_VARARGS)
2552 TYPE_VARARGS (type) = 1;
2553 if (flags & TYPE_FLAG_VECTOR)
2554 TYPE_VECTOR (type) = 1;
2555 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2556 TYPE_STUB_SUPPORTED (type) = 1;
2557 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2558 TYPE_FIXED_INSTANCE (type) = 1;
2559 if (flags & TYPE_FLAG_GNU_IFUNC)
2560 TYPE_GNU_IFUNC (type) = 1;
2561
2562 TYPE_NAME (type) = name;
2563
2564 /* C++ fancies. */
2565
2566 if (name && strcmp (name, "char") == 0)
2567 TYPE_NOSIGN (type) = 1;
2568
2569 switch (code)
2570 {
2571 case TYPE_CODE_STRUCT:
2572 case TYPE_CODE_UNION:
2573 case TYPE_CODE_NAMESPACE:
2574 INIT_CPLUS_SPECIFIC (type);
2575 break;
2576 case TYPE_CODE_FLT:
2577 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2578 break;
2579 case TYPE_CODE_FUNC:
2580 INIT_FUNC_SPECIFIC (type);
2581 break;
2582 }
2583 return type;
2584 }
2585 \f
2586 /* Queries on types. */
2587
2588 int
2589 can_dereference (struct type *t)
2590 {
2591 /* FIXME: Should we return true for references as well as
2592 pointers? */
2593 CHECK_TYPEDEF (t);
2594 return
2595 (t != NULL
2596 && TYPE_CODE (t) == TYPE_CODE_PTR
2597 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2598 }
2599
2600 int
2601 is_integral_type (struct type *t)
2602 {
2603 CHECK_TYPEDEF (t);
2604 return
2605 ((t != NULL)
2606 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2607 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2608 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2609 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2610 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2611 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2612 }
2613
2614 /* Return true if TYPE is scalar. */
2615
2616 static int
2617 is_scalar_type (struct type *type)
2618 {
2619 CHECK_TYPEDEF (type);
2620
2621 switch (TYPE_CODE (type))
2622 {
2623 case TYPE_CODE_ARRAY:
2624 case TYPE_CODE_STRUCT:
2625 case TYPE_CODE_UNION:
2626 case TYPE_CODE_SET:
2627 case TYPE_CODE_STRING:
2628 return 0;
2629 default:
2630 return 1;
2631 }
2632 }
2633
2634 /* Return true if T is scalar, or a composite type which in practice has
2635 the memory layout of a scalar type. E.g., an array or struct with only
2636 one scalar element inside it, or a union with only scalar elements. */
2637
2638 int
2639 is_scalar_type_recursive (struct type *t)
2640 {
2641 CHECK_TYPEDEF (t);
2642
2643 if (is_scalar_type (t))
2644 return 1;
2645 /* Are we dealing with an array or string of known dimensions? */
2646 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2647 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2648 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2649 {
2650 LONGEST low_bound, high_bound;
2651 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2652
2653 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2654
2655 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2656 }
2657 /* Are we dealing with a struct with one element? */
2658 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2659 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2660 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2661 {
2662 int i, n = TYPE_NFIELDS (t);
2663
2664 /* If all elements of the union are scalar, then the union is scalar. */
2665 for (i = 0; i < n; i++)
2666 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2667 return 0;
2668
2669 return 1;
2670 }
2671
2672 return 0;
2673 }
2674
2675 /* Return true is T is a class or a union. False otherwise. */
2676
2677 int
2678 class_or_union_p (const struct type *t)
2679 {
2680 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2681 || TYPE_CODE (t) == TYPE_CODE_UNION);
2682 }
2683
2684 /* A helper function which returns true if types A and B represent the
2685 "same" class type. This is true if the types have the same main
2686 type, or the same name. */
2687
2688 int
2689 class_types_same_p (const struct type *a, const struct type *b)
2690 {
2691 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2692 || (TYPE_NAME (a) && TYPE_NAME (b)
2693 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2694 }
2695
2696 /* If BASE is an ancestor of DCLASS return the distance between them.
2697 otherwise return -1;
2698 eg:
2699
2700 class A {};
2701 class B: public A {};
2702 class C: public B {};
2703 class D: C {};
2704
2705 distance_to_ancestor (A, A, 0) = 0
2706 distance_to_ancestor (A, B, 0) = 1
2707 distance_to_ancestor (A, C, 0) = 2
2708 distance_to_ancestor (A, D, 0) = 3
2709
2710 If PUBLIC is 1 then only public ancestors are considered,
2711 and the function returns the distance only if BASE is a public ancestor
2712 of DCLASS.
2713 Eg:
2714
2715 distance_to_ancestor (A, D, 1) = -1. */
2716
2717 static int
2718 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2719 {
2720 int i;
2721 int d;
2722
2723 CHECK_TYPEDEF (base);
2724 CHECK_TYPEDEF (dclass);
2725
2726 if (class_types_same_p (base, dclass))
2727 return 0;
2728
2729 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2730 {
2731 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2732 continue;
2733
2734 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2735 if (d >= 0)
2736 return 1 + d;
2737 }
2738
2739 return -1;
2740 }
2741
2742 /* Check whether BASE is an ancestor or base class or DCLASS
2743 Return 1 if so, and 0 if not.
2744 Note: If BASE and DCLASS are of the same type, this function
2745 will return 1. So for some class A, is_ancestor (A, A) will
2746 return 1. */
2747
2748 int
2749 is_ancestor (struct type *base, struct type *dclass)
2750 {
2751 return distance_to_ancestor (base, dclass, 0) >= 0;
2752 }
2753
2754 /* Like is_ancestor, but only returns true when BASE is a public
2755 ancestor of DCLASS. */
2756
2757 int
2758 is_public_ancestor (struct type *base, struct type *dclass)
2759 {
2760 return distance_to_ancestor (base, dclass, 1) >= 0;
2761 }
2762
2763 /* A helper function for is_unique_ancestor. */
2764
2765 static int
2766 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2767 int *offset,
2768 const gdb_byte *valaddr, int embedded_offset,
2769 CORE_ADDR address, struct value *val)
2770 {
2771 int i, count = 0;
2772
2773 CHECK_TYPEDEF (base);
2774 CHECK_TYPEDEF (dclass);
2775
2776 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2777 {
2778 struct type *iter;
2779 int this_offset;
2780
2781 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2782
2783 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2784 address, val);
2785
2786 if (class_types_same_p (base, iter))
2787 {
2788 /* If this is the first subclass, set *OFFSET and set count
2789 to 1. Otherwise, if this is at the same offset as
2790 previous instances, do nothing. Otherwise, increment
2791 count. */
2792 if (*offset == -1)
2793 {
2794 *offset = this_offset;
2795 count = 1;
2796 }
2797 else if (this_offset == *offset)
2798 {
2799 /* Nothing. */
2800 }
2801 else
2802 ++count;
2803 }
2804 else
2805 count += is_unique_ancestor_worker (base, iter, offset,
2806 valaddr,
2807 embedded_offset + this_offset,
2808 address, val);
2809 }
2810
2811 return count;
2812 }
2813
2814 /* Like is_ancestor, but only returns true if BASE is a unique base
2815 class of the type of VAL. */
2816
2817 int
2818 is_unique_ancestor (struct type *base, struct value *val)
2819 {
2820 int offset = -1;
2821
2822 return is_unique_ancestor_worker (base, value_type (val), &offset,
2823 value_contents_for_printing (val),
2824 value_embedded_offset (val),
2825 value_address (val), val) == 1;
2826 }
2827
2828 \f
2829 /* Overload resolution. */
2830
2831 /* Return the sum of the rank of A with the rank of B. */
2832
2833 struct rank
2834 sum_ranks (struct rank a, struct rank b)
2835 {
2836 struct rank c;
2837 c.rank = a.rank + b.rank;
2838 c.subrank = a.subrank + b.subrank;
2839 return c;
2840 }
2841
2842 /* Compare rank A and B and return:
2843 0 if a = b
2844 1 if a is better than b
2845 -1 if b is better than a. */
2846
2847 int
2848 compare_ranks (struct rank a, struct rank b)
2849 {
2850 if (a.rank == b.rank)
2851 {
2852 if (a.subrank == b.subrank)
2853 return 0;
2854 if (a.subrank < b.subrank)
2855 return 1;
2856 if (a.subrank > b.subrank)
2857 return -1;
2858 }
2859
2860 if (a.rank < b.rank)
2861 return 1;
2862
2863 /* a.rank > b.rank */
2864 return -1;
2865 }
2866
2867 /* Functions for overload resolution begin here. */
2868
2869 /* Compare two badness vectors A and B and return the result.
2870 0 => A and B are identical
2871 1 => A and B are incomparable
2872 2 => A is better than B
2873 3 => A is worse than B */
2874
2875 int
2876 compare_badness (struct badness_vector *a, struct badness_vector *b)
2877 {
2878 int i;
2879 int tmp;
2880 short found_pos = 0; /* any positives in c? */
2881 short found_neg = 0; /* any negatives in c? */
2882
2883 /* differing lengths => incomparable */
2884 if (a->length != b->length)
2885 return 1;
2886
2887 /* Subtract b from a */
2888 for (i = 0; i < a->length; i++)
2889 {
2890 tmp = compare_ranks (b->rank[i], a->rank[i]);
2891 if (tmp > 0)
2892 found_pos = 1;
2893 else if (tmp < 0)
2894 found_neg = 1;
2895 }
2896
2897 if (found_pos)
2898 {
2899 if (found_neg)
2900 return 1; /* incomparable */
2901 else
2902 return 3; /* A > B */
2903 }
2904 else
2905 /* no positives */
2906 {
2907 if (found_neg)
2908 return 2; /* A < B */
2909 else
2910 return 0; /* A == B */
2911 }
2912 }
2913
2914 /* Rank a function by comparing its parameter types (PARMS, length
2915 NPARMS), to the types of an argument list (ARGS, length NARGS).
2916 Return a pointer to a badness vector. This has NARGS + 1
2917 entries. */
2918
2919 struct badness_vector *
2920 rank_function (struct type **parms, int nparms,
2921 struct value **args, int nargs)
2922 {
2923 int i;
2924 struct badness_vector *bv;
2925 int min_len = nparms < nargs ? nparms : nargs;
2926
2927 bv = xmalloc (sizeof (struct badness_vector));
2928 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2929 bv->rank = XNEWVEC (struct rank, nargs + 1);
2930
2931 /* First compare the lengths of the supplied lists.
2932 If there is a mismatch, set it to a high value. */
2933
2934 /* pai/1997-06-03 FIXME: when we have debug info about default
2935 arguments and ellipsis parameter lists, we should consider those
2936 and rank the length-match more finely. */
2937
2938 LENGTH_MATCH (bv) = (nargs != nparms)
2939 ? LENGTH_MISMATCH_BADNESS
2940 : EXACT_MATCH_BADNESS;
2941
2942 /* Now rank all the parameters of the candidate function. */
2943 for (i = 1; i <= min_len; i++)
2944 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2945 args[i - 1]);
2946
2947 /* If more arguments than parameters, add dummy entries. */
2948 for (i = min_len + 1; i <= nargs; i++)
2949 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2950
2951 return bv;
2952 }
2953
2954 /* Compare the names of two integer types, assuming that any sign
2955 qualifiers have been checked already. We do it this way because
2956 there may be an "int" in the name of one of the types. */
2957
2958 static int
2959 integer_types_same_name_p (const char *first, const char *second)
2960 {
2961 int first_p, second_p;
2962
2963 /* If both are shorts, return 1; if neither is a short, keep
2964 checking. */
2965 first_p = (strstr (first, "short") != NULL);
2966 second_p = (strstr (second, "short") != NULL);
2967 if (first_p && second_p)
2968 return 1;
2969 if (first_p || second_p)
2970 return 0;
2971
2972 /* Likewise for long. */
2973 first_p = (strstr (first, "long") != NULL);
2974 second_p = (strstr (second, "long") != NULL);
2975 if (first_p && second_p)
2976 return 1;
2977 if (first_p || second_p)
2978 return 0;
2979
2980 /* Likewise for char. */
2981 first_p = (strstr (first, "char") != NULL);
2982 second_p = (strstr (second, "char") != NULL);
2983 if (first_p && second_p)
2984 return 1;
2985 if (first_p || second_p)
2986 return 0;
2987
2988 /* They must both be ints. */
2989 return 1;
2990 }
2991
2992 /* Compares type A to type B returns 1 if the represent the same type
2993 0 otherwise. */
2994
2995 int
2996 types_equal (struct type *a, struct type *b)
2997 {
2998 /* Identical type pointers. */
2999 /* However, this still doesn't catch all cases of same type for b
3000 and a. The reason is that builtin types are different from
3001 the same ones constructed from the object. */
3002 if (a == b)
3003 return 1;
3004
3005 /* Resolve typedefs */
3006 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3007 a = check_typedef (a);
3008 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3009 b = check_typedef (b);
3010
3011 /* If after resolving typedefs a and b are not of the same type
3012 code then they are not equal. */
3013 if (TYPE_CODE (a) != TYPE_CODE (b))
3014 return 0;
3015
3016 /* If a and b are both pointers types or both reference types then
3017 they are equal of the same type iff the objects they refer to are
3018 of the same type. */
3019 if (TYPE_CODE (a) == TYPE_CODE_PTR
3020 || TYPE_CODE (a) == TYPE_CODE_REF)
3021 return types_equal (TYPE_TARGET_TYPE (a),
3022 TYPE_TARGET_TYPE (b));
3023
3024 /* Well, damnit, if the names are exactly the same, I'll say they
3025 are exactly the same. This happens when we generate method
3026 stubs. The types won't point to the same address, but they
3027 really are the same. */
3028
3029 if (TYPE_NAME (a) && TYPE_NAME (b)
3030 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3031 return 1;
3032
3033 /* Check if identical after resolving typedefs. */
3034 if (a == b)
3035 return 1;
3036
3037 /* Two function types are equal if their argument and return types
3038 are equal. */
3039 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3040 {
3041 int i;
3042
3043 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3044 return 0;
3045
3046 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3047 return 0;
3048
3049 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3050 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3051 return 0;
3052
3053 return 1;
3054 }
3055
3056 return 0;
3057 }
3058 \f
3059 /* Deep comparison of types. */
3060
3061 /* An entry in the type-equality bcache. */
3062
3063 typedef struct type_equality_entry
3064 {
3065 struct type *type1, *type2;
3066 } type_equality_entry_d;
3067
3068 DEF_VEC_O (type_equality_entry_d);
3069
3070 /* A helper function to compare two strings. Returns 1 if they are
3071 the same, 0 otherwise. Handles NULLs properly. */
3072
3073 static int
3074 compare_maybe_null_strings (const char *s, const char *t)
3075 {
3076 if (s == NULL && t != NULL)
3077 return 0;
3078 else if (s != NULL && t == NULL)
3079 return 0;
3080 else if (s == NULL && t== NULL)
3081 return 1;
3082 return strcmp (s, t) == 0;
3083 }
3084
3085 /* A helper function for check_types_worklist that checks two types for
3086 "deep" equality. Returns non-zero if the types are considered the
3087 same, zero otherwise. */
3088
3089 static int
3090 check_types_equal (struct type *type1, struct type *type2,
3091 VEC (type_equality_entry_d) **worklist)
3092 {
3093 CHECK_TYPEDEF (type1);
3094 CHECK_TYPEDEF (type2);
3095
3096 if (type1 == type2)
3097 return 1;
3098
3099 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3100 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3101 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3102 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3103 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3104 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3105 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3106 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3107 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3108 return 0;
3109
3110 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3111 TYPE_TAG_NAME (type2)))
3112 return 0;
3113 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3114 return 0;
3115
3116 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3117 {
3118 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3119 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3120 return 0;
3121 }
3122 else
3123 {
3124 int i;
3125
3126 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3127 {
3128 const struct field *field1 = &TYPE_FIELD (type1, i);
3129 const struct field *field2 = &TYPE_FIELD (type2, i);
3130 struct type_equality_entry entry;
3131
3132 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3133 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3134 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3135 return 0;
3136 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3137 FIELD_NAME (*field2)))
3138 return 0;
3139 switch (FIELD_LOC_KIND (*field1))
3140 {
3141 case FIELD_LOC_KIND_BITPOS:
3142 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3143 return 0;
3144 break;
3145 case FIELD_LOC_KIND_ENUMVAL:
3146 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3147 return 0;
3148 break;
3149 case FIELD_LOC_KIND_PHYSADDR:
3150 if (FIELD_STATIC_PHYSADDR (*field1)
3151 != FIELD_STATIC_PHYSADDR (*field2))
3152 return 0;
3153 break;
3154 case FIELD_LOC_KIND_PHYSNAME:
3155 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3156 FIELD_STATIC_PHYSNAME (*field2)))
3157 return 0;
3158 break;
3159 case FIELD_LOC_KIND_DWARF_BLOCK:
3160 {
3161 struct dwarf2_locexpr_baton *block1, *block2;
3162
3163 block1 = FIELD_DWARF_BLOCK (*field1);
3164 block2 = FIELD_DWARF_BLOCK (*field2);
3165 if (block1->per_cu != block2->per_cu
3166 || block1->size != block2->size
3167 || memcmp (block1->data, block2->data, block1->size) != 0)
3168 return 0;
3169 }
3170 break;
3171 default:
3172 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3173 "%d by check_types_equal"),
3174 FIELD_LOC_KIND (*field1));
3175 }
3176
3177 entry.type1 = FIELD_TYPE (*field1);
3178 entry.type2 = FIELD_TYPE (*field2);
3179 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3180 }
3181 }
3182
3183 if (TYPE_TARGET_TYPE (type1) != NULL)
3184 {
3185 struct type_equality_entry entry;
3186
3187 if (TYPE_TARGET_TYPE (type2) == NULL)
3188 return 0;
3189
3190 entry.type1 = TYPE_TARGET_TYPE (type1);
3191 entry.type2 = TYPE_TARGET_TYPE (type2);
3192 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3193 }
3194 else if (TYPE_TARGET_TYPE (type2) != NULL)
3195 return 0;
3196
3197 return 1;
3198 }
3199
3200 /* Check types on a worklist for equality. Returns zero if any pair
3201 is not equal, non-zero if they are all considered equal. */
3202
3203 static int
3204 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3205 struct bcache *cache)
3206 {
3207 while (!VEC_empty (type_equality_entry_d, *worklist))
3208 {
3209 struct type_equality_entry entry;
3210 int added;
3211
3212 entry = *VEC_last (type_equality_entry_d, *worklist);
3213 VEC_pop (type_equality_entry_d, *worklist);
3214
3215 /* If the type pair has already been visited, we know it is
3216 ok. */
3217 bcache_full (&entry, sizeof (entry), cache, &added);
3218 if (!added)
3219 continue;
3220
3221 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3222 return 0;
3223 }
3224
3225 return 1;
3226 }
3227
3228 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3229 "deep comparison". Otherwise return zero. */
3230
3231 int
3232 types_deeply_equal (struct type *type1, struct type *type2)
3233 {
3234 volatile struct gdb_exception except;
3235 int result = 0;
3236 struct bcache *cache;
3237 VEC (type_equality_entry_d) *worklist = NULL;
3238 struct type_equality_entry entry;
3239
3240 gdb_assert (type1 != NULL && type2 != NULL);
3241
3242 /* Early exit for the simple case. */
3243 if (type1 == type2)
3244 return 1;
3245
3246 cache = bcache_xmalloc (NULL, NULL);
3247
3248 entry.type1 = type1;
3249 entry.type2 = type2;
3250 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3251
3252 TRY_CATCH (except, RETURN_MASK_ALL)
3253 {
3254 result = check_types_worklist (&worklist, cache);
3255 }
3256 /* check_types_worklist calls several nested helper functions,
3257 some of which can raise a GDB Exception, so we just check
3258 and rethrow here. If there is a GDB exception, a comparison
3259 is not capable (or trusted), so exit. */
3260 bcache_xfree (cache);
3261 VEC_free (type_equality_entry_d, worklist);
3262 /* Rethrow if there was a problem. */
3263 if (except.reason < 0)
3264 throw_exception (except);
3265
3266 return result;
3267 }
3268 \f
3269 /* Compare one type (PARM) for compatibility with another (ARG).
3270 * PARM is intended to be the parameter type of a function; and
3271 * ARG is the supplied argument's type. This function tests if
3272 * the latter can be converted to the former.
3273 * VALUE is the argument's value or NULL if none (or called recursively)
3274 *
3275 * Return 0 if they are identical types;
3276 * Otherwise, return an integer which corresponds to how compatible
3277 * PARM is to ARG. The higher the return value, the worse the match.
3278 * Generally the "bad" conversions are all uniformly assigned a 100. */
3279
3280 struct rank
3281 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3282 {
3283 struct rank rank = {0,0};
3284
3285 if (types_equal (parm, arg))
3286 return EXACT_MATCH_BADNESS;
3287
3288 /* Resolve typedefs */
3289 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3290 parm = check_typedef (parm);
3291 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3292 arg = check_typedef (arg);
3293
3294 /* See through references, since we can almost make non-references
3295 references. */
3296 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3297 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3298 REFERENCE_CONVERSION_BADNESS));
3299 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3300 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3301 REFERENCE_CONVERSION_BADNESS));
3302 if (overload_debug)
3303 /* Debugging only. */
3304 fprintf_filtered (gdb_stderr,
3305 "------ Arg is %s [%d], parm is %s [%d]\n",
3306 TYPE_NAME (arg), TYPE_CODE (arg),
3307 TYPE_NAME (parm), TYPE_CODE (parm));
3308
3309 /* x -> y means arg of type x being supplied for parameter of type y. */
3310
3311 switch (TYPE_CODE (parm))
3312 {
3313 case TYPE_CODE_PTR:
3314 switch (TYPE_CODE (arg))
3315 {
3316 case TYPE_CODE_PTR:
3317
3318 /* Allowed pointer conversions are:
3319 (a) pointer to void-pointer conversion. */
3320 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3321 return VOID_PTR_CONVERSION_BADNESS;
3322
3323 /* (b) pointer to ancestor-pointer conversion. */
3324 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3325 TYPE_TARGET_TYPE (arg),
3326 0);
3327 if (rank.subrank >= 0)
3328 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3329
3330 return INCOMPATIBLE_TYPE_BADNESS;
3331 case TYPE_CODE_ARRAY:
3332 if (types_equal (TYPE_TARGET_TYPE (parm),
3333 TYPE_TARGET_TYPE (arg)))
3334 return EXACT_MATCH_BADNESS;
3335 return INCOMPATIBLE_TYPE_BADNESS;
3336 case TYPE_CODE_FUNC:
3337 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3338 case TYPE_CODE_INT:
3339 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3340 {
3341 if (value_as_long (value) == 0)
3342 {
3343 /* Null pointer conversion: allow it to be cast to a pointer.
3344 [4.10.1 of C++ standard draft n3290] */
3345 return NULL_POINTER_CONVERSION_BADNESS;
3346 }
3347 else
3348 {
3349 /* If type checking is disabled, allow the conversion. */
3350 if (!strict_type_checking)
3351 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3352 }
3353 }
3354 /* fall through */
3355 case TYPE_CODE_ENUM:
3356 case TYPE_CODE_FLAGS:
3357 case TYPE_CODE_CHAR:
3358 case TYPE_CODE_RANGE:
3359 case TYPE_CODE_BOOL:
3360 default:
3361 return INCOMPATIBLE_TYPE_BADNESS;
3362 }
3363 case TYPE_CODE_ARRAY:
3364 switch (TYPE_CODE (arg))
3365 {
3366 case TYPE_CODE_PTR:
3367 case TYPE_CODE_ARRAY:
3368 return rank_one_type (TYPE_TARGET_TYPE (parm),
3369 TYPE_TARGET_TYPE (arg), NULL);
3370 default:
3371 return INCOMPATIBLE_TYPE_BADNESS;
3372 }
3373 case TYPE_CODE_FUNC:
3374 switch (TYPE_CODE (arg))
3375 {
3376 case TYPE_CODE_PTR: /* funcptr -> func */
3377 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3378 default:
3379 return INCOMPATIBLE_TYPE_BADNESS;
3380 }
3381 case TYPE_CODE_INT:
3382 switch (TYPE_CODE (arg))
3383 {
3384 case TYPE_CODE_INT:
3385 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3386 {
3387 /* Deal with signed, unsigned, and plain chars and
3388 signed and unsigned ints. */
3389 if (TYPE_NOSIGN (parm))
3390 {
3391 /* This case only for character types. */
3392 if (TYPE_NOSIGN (arg))
3393 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3394 else /* signed/unsigned char -> plain char */
3395 return INTEGER_CONVERSION_BADNESS;
3396 }
3397 else if (TYPE_UNSIGNED (parm))
3398 {
3399 if (TYPE_UNSIGNED (arg))
3400 {
3401 /* unsigned int -> unsigned int, or
3402 unsigned long -> unsigned long */
3403 if (integer_types_same_name_p (TYPE_NAME (parm),
3404 TYPE_NAME (arg)))
3405 return EXACT_MATCH_BADNESS;
3406 else if (integer_types_same_name_p (TYPE_NAME (arg),
3407 "int")
3408 && integer_types_same_name_p (TYPE_NAME (parm),
3409 "long"))
3410 /* unsigned int -> unsigned long */
3411 return INTEGER_PROMOTION_BADNESS;
3412 else
3413 /* unsigned long -> unsigned int */
3414 return INTEGER_CONVERSION_BADNESS;
3415 }
3416 else
3417 {
3418 if (integer_types_same_name_p (TYPE_NAME (arg),
3419 "long")
3420 && integer_types_same_name_p (TYPE_NAME (parm),
3421 "int"))
3422 /* signed long -> unsigned int */
3423 return INTEGER_CONVERSION_BADNESS;
3424 else
3425 /* signed int/long -> unsigned int/long */
3426 return INTEGER_CONVERSION_BADNESS;
3427 }
3428 }
3429 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3430 {
3431 if (integer_types_same_name_p (TYPE_NAME (parm),
3432 TYPE_NAME (arg)))
3433 return EXACT_MATCH_BADNESS;
3434 else if (integer_types_same_name_p (TYPE_NAME (arg),
3435 "int")
3436 && integer_types_same_name_p (TYPE_NAME (parm),
3437 "long"))
3438 return INTEGER_PROMOTION_BADNESS;
3439 else
3440 return INTEGER_CONVERSION_BADNESS;
3441 }
3442 else
3443 return INTEGER_CONVERSION_BADNESS;
3444 }
3445 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3446 return INTEGER_PROMOTION_BADNESS;
3447 else
3448 return INTEGER_CONVERSION_BADNESS;
3449 case TYPE_CODE_ENUM:
3450 case TYPE_CODE_FLAGS:
3451 case TYPE_CODE_CHAR:
3452 case TYPE_CODE_RANGE:
3453 case TYPE_CODE_BOOL:
3454 if (TYPE_DECLARED_CLASS (arg))
3455 return INCOMPATIBLE_TYPE_BADNESS;
3456 return INTEGER_PROMOTION_BADNESS;
3457 case TYPE_CODE_FLT:
3458 return INT_FLOAT_CONVERSION_BADNESS;
3459 case TYPE_CODE_PTR:
3460 return NS_POINTER_CONVERSION_BADNESS;
3461 default:
3462 return INCOMPATIBLE_TYPE_BADNESS;
3463 }
3464 break;
3465 case TYPE_CODE_ENUM:
3466 switch (TYPE_CODE (arg))
3467 {
3468 case TYPE_CODE_INT:
3469 case TYPE_CODE_CHAR:
3470 case TYPE_CODE_RANGE:
3471 case TYPE_CODE_BOOL:
3472 case TYPE_CODE_ENUM:
3473 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3474 return INCOMPATIBLE_TYPE_BADNESS;
3475 return INTEGER_CONVERSION_BADNESS;
3476 case TYPE_CODE_FLT:
3477 return INT_FLOAT_CONVERSION_BADNESS;
3478 default:
3479 return INCOMPATIBLE_TYPE_BADNESS;
3480 }
3481 break;
3482 case TYPE_CODE_CHAR:
3483 switch (TYPE_CODE (arg))
3484 {
3485 case TYPE_CODE_RANGE:
3486 case TYPE_CODE_BOOL:
3487 case TYPE_CODE_ENUM:
3488 if (TYPE_DECLARED_CLASS (arg))
3489 return INCOMPATIBLE_TYPE_BADNESS;
3490 return INTEGER_CONVERSION_BADNESS;
3491 case TYPE_CODE_FLT:
3492 return INT_FLOAT_CONVERSION_BADNESS;
3493 case TYPE_CODE_INT:
3494 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3495 return INTEGER_CONVERSION_BADNESS;
3496 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3497 return INTEGER_PROMOTION_BADNESS;
3498 /* >>> !! else fall through !! <<< */
3499 case TYPE_CODE_CHAR:
3500 /* Deal with signed, unsigned, and plain chars for C++ and
3501 with int cases falling through from previous case. */
3502 if (TYPE_NOSIGN (parm))
3503 {
3504 if (TYPE_NOSIGN (arg))
3505 return EXACT_MATCH_BADNESS;
3506 else
3507 return INTEGER_CONVERSION_BADNESS;
3508 }
3509 else if (TYPE_UNSIGNED (parm))
3510 {
3511 if (TYPE_UNSIGNED (arg))
3512 return EXACT_MATCH_BADNESS;
3513 else
3514 return INTEGER_PROMOTION_BADNESS;
3515 }
3516 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3517 return EXACT_MATCH_BADNESS;
3518 else
3519 return INTEGER_CONVERSION_BADNESS;
3520 default:
3521 return INCOMPATIBLE_TYPE_BADNESS;
3522 }
3523 break;
3524 case TYPE_CODE_RANGE:
3525 switch (TYPE_CODE (arg))
3526 {
3527 case TYPE_CODE_INT:
3528 case TYPE_CODE_CHAR:
3529 case TYPE_CODE_RANGE:
3530 case TYPE_CODE_BOOL:
3531 case TYPE_CODE_ENUM:
3532 return INTEGER_CONVERSION_BADNESS;
3533 case TYPE_CODE_FLT:
3534 return INT_FLOAT_CONVERSION_BADNESS;
3535 default:
3536 return INCOMPATIBLE_TYPE_BADNESS;
3537 }
3538 break;
3539 case TYPE_CODE_BOOL:
3540 switch (TYPE_CODE (arg))
3541 {
3542 /* n3290 draft, section 4.12.1 (conv.bool):
3543
3544 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3545 pointer to member type can be converted to a prvalue of type
3546 bool. A zero value, null pointer value, or null member pointer
3547 value is converted to false; any other value is converted to
3548 true. A prvalue of type std::nullptr_t can be converted to a
3549 prvalue of type bool; the resulting value is false." */
3550 case TYPE_CODE_INT:
3551 case TYPE_CODE_CHAR:
3552 case TYPE_CODE_ENUM:
3553 case TYPE_CODE_FLT:
3554 case TYPE_CODE_MEMBERPTR:
3555 case TYPE_CODE_PTR:
3556 return BOOL_CONVERSION_BADNESS;
3557 case TYPE_CODE_RANGE:
3558 return INCOMPATIBLE_TYPE_BADNESS;
3559 case TYPE_CODE_BOOL:
3560 return EXACT_MATCH_BADNESS;
3561 default:
3562 return INCOMPATIBLE_TYPE_BADNESS;
3563 }
3564 break;
3565 case TYPE_CODE_FLT:
3566 switch (TYPE_CODE (arg))
3567 {
3568 case TYPE_CODE_FLT:
3569 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3570 return FLOAT_PROMOTION_BADNESS;
3571 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3572 return EXACT_MATCH_BADNESS;
3573 else
3574 return FLOAT_CONVERSION_BADNESS;
3575 case TYPE_CODE_INT:
3576 case TYPE_CODE_BOOL:
3577 case TYPE_CODE_ENUM:
3578 case TYPE_CODE_RANGE:
3579 case TYPE_CODE_CHAR:
3580 return INT_FLOAT_CONVERSION_BADNESS;
3581 default:
3582 return INCOMPATIBLE_TYPE_BADNESS;
3583 }
3584 break;
3585 case TYPE_CODE_COMPLEX:
3586 switch (TYPE_CODE (arg))
3587 { /* Strictly not needed for C++, but... */
3588 case TYPE_CODE_FLT:
3589 return FLOAT_PROMOTION_BADNESS;
3590 case TYPE_CODE_COMPLEX:
3591 return EXACT_MATCH_BADNESS;
3592 default:
3593 return INCOMPATIBLE_TYPE_BADNESS;
3594 }
3595 break;
3596 case TYPE_CODE_STRUCT:
3597 switch (TYPE_CODE (arg))
3598 {
3599 case TYPE_CODE_STRUCT:
3600 /* Check for derivation */
3601 rank.subrank = distance_to_ancestor (parm, arg, 0);
3602 if (rank.subrank >= 0)
3603 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3604 /* else fall through */
3605 default:
3606 return INCOMPATIBLE_TYPE_BADNESS;
3607 }
3608 break;
3609 case TYPE_CODE_UNION:
3610 switch (TYPE_CODE (arg))
3611 {
3612 case TYPE_CODE_UNION:
3613 default:
3614 return INCOMPATIBLE_TYPE_BADNESS;
3615 }
3616 break;
3617 case TYPE_CODE_MEMBERPTR:
3618 switch (TYPE_CODE (arg))
3619 {
3620 default:
3621 return INCOMPATIBLE_TYPE_BADNESS;
3622 }
3623 break;
3624 case TYPE_CODE_METHOD:
3625 switch (TYPE_CODE (arg))
3626 {
3627
3628 default:
3629 return INCOMPATIBLE_TYPE_BADNESS;
3630 }
3631 break;
3632 case TYPE_CODE_REF:
3633 switch (TYPE_CODE (arg))
3634 {
3635
3636 default:
3637 return INCOMPATIBLE_TYPE_BADNESS;
3638 }
3639
3640 break;
3641 case TYPE_CODE_SET:
3642 switch (TYPE_CODE (arg))
3643 {
3644 /* Not in C++ */
3645 case TYPE_CODE_SET:
3646 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3647 TYPE_FIELD_TYPE (arg, 0), NULL);
3648 default:
3649 return INCOMPATIBLE_TYPE_BADNESS;
3650 }
3651 break;
3652 case TYPE_CODE_VOID:
3653 default:
3654 return INCOMPATIBLE_TYPE_BADNESS;
3655 } /* switch (TYPE_CODE (arg)) */
3656 }
3657
3658 /* End of functions for overload resolution. */
3659 \f
3660 /* Routines to pretty-print types. */
3661
3662 static void
3663 print_bit_vector (B_TYPE *bits, int nbits)
3664 {
3665 int bitno;
3666
3667 for (bitno = 0; bitno < nbits; bitno++)
3668 {
3669 if ((bitno % 8) == 0)
3670 {
3671 puts_filtered (" ");
3672 }
3673 if (B_TST (bits, bitno))
3674 printf_filtered (("1"));
3675 else
3676 printf_filtered (("0"));
3677 }
3678 }
3679
3680 /* Note the first arg should be the "this" pointer, we may not want to
3681 include it since we may get into a infinitely recursive
3682 situation. */
3683
3684 static void
3685 print_args (struct field *args, int nargs, int spaces)
3686 {
3687 if (args != NULL)
3688 {
3689 int i;
3690
3691 for (i = 0; i < nargs; i++)
3692 {
3693 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3694 args[i].name != NULL ? args[i].name : "<NULL>");
3695 recursive_dump_type (args[i].type, spaces + 2);
3696 }
3697 }
3698 }
3699
3700 int
3701 field_is_static (struct field *f)
3702 {
3703 /* "static" fields are the fields whose location is not relative
3704 to the address of the enclosing struct. It would be nice to
3705 have a dedicated flag that would be set for static fields when
3706 the type is being created. But in practice, checking the field
3707 loc_kind should give us an accurate answer. */
3708 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3709 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3710 }
3711
3712 static void
3713 dump_fn_fieldlists (struct type *type, int spaces)
3714 {
3715 int method_idx;
3716 int overload_idx;
3717 struct fn_field *f;
3718
3719 printfi_filtered (spaces, "fn_fieldlists ");
3720 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3721 printf_filtered ("\n");
3722 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3723 {
3724 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3725 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3726 method_idx,
3727 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3728 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3729 gdb_stdout);
3730 printf_filtered (_(") length %d\n"),
3731 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3732 for (overload_idx = 0;
3733 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3734 overload_idx++)
3735 {
3736 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3737 overload_idx,
3738 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3739 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3740 gdb_stdout);
3741 printf_filtered (")\n");
3742 printfi_filtered (spaces + 8, "type ");
3743 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3744 gdb_stdout);
3745 printf_filtered ("\n");
3746
3747 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3748 spaces + 8 + 2);
3749
3750 printfi_filtered (spaces + 8, "args ");
3751 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3752 gdb_stdout);
3753 printf_filtered ("\n");
3754 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3755 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3756 spaces + 8 + 2);
3757 printfi_filtered (spaces + 8, "fcontext ");
3758 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3759 gdb_stdout);
3760 printf_filtered ("\n");
3761
3762 printfi_filtered (spaces + 8, "is_const %d\n",
3763 TYPE_FN_FIELD_CONST (f, overload_idx));
3764 printfi_filtered (spaces + 8, "is_volatile %d\n",
3765 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3766 printfi_filtered (spaces + 8, "is_private %d\n",
3767 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3768 printfi_filtered (spaces + 8, "is_protected %d\n",
3769 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3770 printfi_filtered (spaces + 8, "is_stub %d\n",
3771 TYPE_FN_FIELD_STUB (f, overload_idx));
3772 printfi_filtered (spaces + 8, "voffset %u\n",
3773 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3774 }
3775 }
3776 }
3777
3778 static void
3779 print_cplus_stuff (struct type *type, int spaces)
3780 {
3781 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3782 printfi_filtered (spaces, "vptr_basetype ");
3783 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3784 puts_filtered ("\n");
3785 if (TYPE_VPTR_BASETYPE (type) != NULL)
3786 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3787
3788 printfi_filtered (spaces, "n_baseclasses %d\n",
3789 TYPE_N_BASECLASSES (type));
3790 printfi_filtered (spaces, "nfn_fields %d\n",
3791 TYPE_NFN_FIELDS (type));
3792 if (TYPE_N_BASECLASSES (type) > 0)
3793 {
3794 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3795 TYPE_N_BASECLASSES (type));
3796 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3797 gdb_stdout);
3798 printf_filtered (")");
3799
3800 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3801 TYPE_N_BASECLASSES (type));
3802 puts_filtered ("\n");
3803 }
3804 if (TYPE_NFIELDS (type) > 0)
3805 {
3806 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3807 {
3808 printfi_filtered (spaces,
3809 "private_field_bits (%d bits at *",
3810 TYPE_NFIELDS (type));
3811 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3812 gdb_stdout);
3813 printf_filtered (")");
3814 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3815 TYPE_NFIELDS (type));
3816 puts_filtered ("\n");
3817 }
3818 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3819 {
3820 printfi_filtered (spaces,
3821 "protected_field_bits (%d bits at *",
3822 TYPE_NFIELDS (type));
3823 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3824 gdb_stdout);
3825 printf_filtered (")");
3826 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3827 TYPE_NFIELDS (type));
3828 puts_filtered ("\n");
3829 }
3830 }
3831 if (TYPE_NFN_FIELDS (type) > 0)
3832 {
3833 dump_fn_fieldlists (type, spaces);
3834 }
3835 }
3836
3837 /* Print the contents of the TYPE's type_specific union, assuming that
3838 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3839
3840 static void
3841 print_gnat_stuff (struct type *type, int spaces)
3842 {
3843 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3844
3845 recursive_dump_type (descriptive_type, spaces + 2);
3846 }
3847
3848 static struct obstack dont_print_type_obstack;
3849
3850 void
3851 recursive_dump_type (struct type *type, int spaces)
3852 {
3853 int idx;
3854
3855 if (spaces == 0)
3856 obstack_begin (&dont_print_type_obstack, 0);
3857
3858 if (TYPE_NFIELDS (type) > 0
3859 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3860 {
3861 struct type **first_dont_print
3862 = (struct type **) obstack_base (&dont_print_type_obstack);
3863
3864 int i = (struct type **)
3865 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3866
3867 while (--i >= 0)
3868 {
3869 if (type == first_dont_print[i])
3870 {
3871 printfi_filtered (spaces, "type node ");
3872 gdb_print_host_address (type, gdb_stdout);
3873 printf_filtered (_(" <same as already seen type>\n"));
3874 return;
3875 }
3876 }
3877
3878 obstack_ptr_grow (&dont_print_type_obstack, type);
3879 }
3880
3881 printfi_filtered (spaces, "type node ");
3882 gdb_print_host_address (type, gdb_stdout);
3883 printf_filtered ("\n");
3884 printfi_filtered (spaces, "name '%s' (",
3885 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3886 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3887 printf_filtered (")\n");
3888 printfi_filtered (spaces, "tagname '%s' (",
3889 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3890 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3891 printf_filtered (")\n");
3892 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3893 switch (TYPE_CODE (type))
3894 {
3895 case TYPE_CODE_UNDEF:
3896 printf_filtered ("(TYPE_CODE_UNDEF)");
3897 break;
3898 case TYPE_CODE_PTR:
3899 printf_filtered ("(TYPE_CODE_PTR)");
3900 break;
3901 case TYPE_CODE_ARRAY:
3902 printf_filtered ("(TYPE_CODE_ARRAY)");
3903 break;
3904 case TYPE_CODE_STRUCT:
3905 printf_filtered ("(TYPE_CODE_STRUCT)");
3906 break;
3907 case TYPE_CODE_UNION:
3908 printf_filtered ("(TYPE_CODE_UNION)");
3909 break;
3910 case TYPE_CODE_ENUM:
3911 printf_filtered ("(TYPE_CODE_ENUM)");
3912 break;
3913 case TYPE_CODE_FLAGS:
3914 printf_filtered ("(TYPE_CODE_FLAGS)");
3915 break;
3916 case TYPE_CODE_FUNC:
3917 printf_filtered ("(TYPE_CODE_FUNC)");
3918 break;
3919 case TYPE_CODE_INT:
3920 printf_filtered ("(TYPE_CODE_INT)");
3921 break;
3922 case TYPE_CODE_FLT:
3923 printf_filtered ("(TYPE_CODE_FLT)");
3924 break;
3925 case TYPE_CODE_VOID:
3926 printf_filtered ("(TYPE_CODE_VOID)");
3927 break;
3928 case TYPE_CODE_SET:
3929 printf_filtered ("(TYPE_CODE_SET)");
3930 break;
3931 case TYPE_CODE_RANGE:
3932 printf_filtered ("(TYPE_CODE_RANGE)");
3933 break;
3934 case TYPE_CODE_STRING:
3935 printf_filtered ("(TYPE_CODE_STRING)");
3936 break;
3937 case TYPE_CODE_ERROR:
3938 printf_filtered ("(TYPE_CODE_ERROR)");
3939 break;
3940 case TYPE_CODE_MEMBERPTR:
3941 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3942 break;
3943 case TYPE_CODE_METHODPTR:
3944 printf_filtered ("(TYPE_CODE_METHODPTR)");
3945 break;
3946 case TYPE_CODE_METHOD:
3947 printf_filtered ("(TYPE_CODE_METHOD)");
3948 break;
3949 case TYPE_CODE_REF:
3950 printf_filtered ("(TYPE_CODE_REF)");
3951 break;
3952 case TYPE_CODE_CHAR:
3953 printf_filtered ("(TYPE_CODE_CHAR)");
3954 break;
3955 case TYPE_CODE_BOOL:
3956 printf_filtered ("(TYPE_CODE_BOOL)");
3957 break;
3958 case TYPE_CODE_COMPLEX:
3959 printf_filtered ("(TYPE_CODE_COMPLEX)");
3960 break;
3961 case TYPE_CODE_TYPEDEF:
3962 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3963 break;
3964 case TYPE_CODE_NAMESPACE:
3965 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3966 break;
3967 default:
3968 printf_filtered ("(UNKNOWN TYPE CODE)");
3969 break;
3970 }
3971 puts_filtered ("\n");
3972 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3973 if (TYPE_OBJFILE_OWNED (type))
3974 {
3975 printfi_filtered (spaces, "objfile ");
3976 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3977 }
3978 else
3979 {
3980 printfi_filtered (spaces, "gdbarch ");
3981 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3982 }
3983 printf_filtered ("\n");
3984 printfi_filtered (spaces, "target_type ");
3985 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3986 printf_filtered ("\n");
3987 if (TYPE_TARGET_TYPE (type) != NULL)
3988 {
3989 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3990 }
3991 printfi_filtered (spaces, "pointer_type ");
3992 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3993 printf_filtered ("\n");
3994 printfi_filtered (spaces, "reference_type ");
3995 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3996 printf_filtered ("\n");
3997 printfi_filtered (spaces, "type_chain ");
3998 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3999 printf_filtered ("\n");
4000 printfi_filtered (spaces, "instance_flags 0x%x",
4001 TYPE_INSTANCE_FLAGS (type));
4002 if (TYPE_CONST (type))
4003 {
4004 puts_filtered (" TYPE_FLAG_CONST");
4005 }
4006 if (TYPE_VOLATILE (type))
4007 {
4008 puts_filtered (" TYPE_FLAG_VOLATILE");
4009 }
4010 if (TYPE_CODE_SPACE (type))
4011 {
4012 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4013 }
4014 if (TYPE_DATA_SPACE (type))
4015 {
4016 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4017 }
4018 if (TYPE_ADDRESS_CLASS_1 (type))
4019 {
4020 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4021 }
4022 if (TYPE_ADDRESS_CLASS_2 (type))
4023 {
4024 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4025 }
4026 if (TYPE_RESTRICT (type))
4027 {
4028 puts_filtered (" TYPE_FLAG_RESTRICT");
4029 }
4030 if (TYPE_ATOMIC (type))
4031 {
4032 puts_filtered (" TYPE_FLAG_ATOMIC");
4033 }
4034 puts_filtered ("\n");
4035
4036 printfi_filtered (spaces, "flags");
4037 if (TYPE_UNSIGNED (type))
4038 {
4039 puts_filtered (" TYPE_FLAG_UNSIGNED");
4040 }
4041 if (TYPE_NOSIGN (type))
4042 {
4043 puts_filtered (" TYPE_FLAG_NOSIGN");
4044 }
4045 if (TYPE_STUB (type))
4046 {
4047 puts_filtered (" TYPE_FLAG_STUB");
4048 }
4049 if (TYPE_TARGET_STUB (type))
4050 {
4051 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4052 }
4053 if (TYPE_STATIC (type))
4054 {
4055 puts_filtered (" TYPE_FLAG_STATIC");
4056 }
4057 if (TYPE_PROTOTYPED (type))
4058 {
4059 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4060 }
4061 if (TYPE_INCOMPLETE (type))
4062 {
4063 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4064 }
4065 if (TYPE_VARARGS (type))
4066 {
4067 puts_filtered (" TYPE_FLAG_VARARGS");
4068 }
4069 /* This is used for things like AltiVec registers on ppc. Gcc emits
4070 an attribute for the array type, which tells whether or not we
4071 have a vector, instead of a regular array. */
4072 if (TYPE_VECTOR (type))
4073 {
4074 puts_filtered (" TYPE_FLAG_VECTOR");
4075 }
4076 if (TYPE_FIXED_INSTANCE (type))
4077 {
4078 puts_filtered (" TYPE_FIXED_INSTANCE");
4079 }
4080 if (TYPE_STUB_SUPPORTED (type))
4081 {
4082 puts_filtered (" TYPE_STUB_SUPPORTED");
4083 }
4084 if (TYPE_NOTTEXT (type))
4085 {
4086 puts_filtered (" TYPE_NOTTEXT");
4087 }
4088 puts_filtered ("\n");
4089 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4090 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4091 puts_filtered ("\n");
4092 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4093 {
4094 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4095 printfi_filtered (spaces + 2,
4096 "[%d] enumval %s type ",
4097 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4098 else
4099 printfi_filtered (spaces + 2,
4100 "[%d] bitpos %d bitsize %d type ",
4101 idx, TYPE_FIELD_BITPOS (type, idx),
4102 TYPE_FIELD_BITSIZE (type, idx));
4103 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4104 printf_filtered (" name '%s' (",
4105 TYPE_FIELD_NAME (type, idx) != NULL
4106 ? TYPE_FIELD_NAME (type, idx)
4107 : "<NULL>");
4108 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4109 printf_filtered (")\n");
4110 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4111 {
4112 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4113 }
4114 }
4115 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4116 {
4117 printfi_filtered (spaces, "low %s%s high %s%s\n",
4118 plongest (TYPE_LOW_BOUND (type)),
4119 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4120 plongest (TYPE_HIGH_BOUND (type)),
4121 TYPE_HIGH_BOUND_UNDEFINED (type)
4122 ? " (undefined)" : "");
4123 }
4124
4125 switch (TYPE_SPECIFIC_FIELD (type))
4126 {
4127 case TYPE_SPECIFIC_CPLUS_STUFF:
4128 printfi_filtered (spaces, "cplus_stuff ");
4129 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4130 gdb_stdout);
4131 puts_filtered ("\n");
4132 print_cplus_stuff (type, spaces);
4133 break;
4134
4135 case TYPE_SPECIFIC_GNAT_STUFF:
4136 printfi_filtered (spaces, "gnat_stuff ");
4137 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4138 puts_filtered ("\n");
4139 print_gnat_stuff (type, spaces);
4140 break;
4141
4142 case TYPE_SPECIFIC_FLOATFORMAT:
4143 printfi_filtered (spaces, "floatformat ");
4144 if (TYPE_FLOATFORMAT (type) == NULL)
4145 puts_filtered ("(null)");
4146 else
4147 {
4148 puts_filtered ("{ ");
4149 if (TYPE_FLOATFORMAT (type)[0] == NULL
4150 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4151 puts_filtered ("(null)");
4152 else
4153 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4154
4155 puts_filtered (", ");
4156 if (TYPE_FLOATFORMAT (type)[1] == NULL
4157 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4158 puts_filtered ("(null)");
4159 else
4160 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4161
4162 puts_filtered (" }");
4163 }
4164 puts_filtered ("\n");
4165 break;
4166
4167 case TYPE_SPECIFIC_FUNC:
4168 printfi_filtered (spaces, "calling_convention %d\n",
4169 TYPE_CALLING_CONVENTION (type));
4170 /* tail_call_list is not printed. */
4171 break;
4172
4173 case TYPE_SPECIFIC_SELF_TYPE:
4174 printfi_filtered (spaces, "self_type ");
4175 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4176 puts_filtered ("\n");
4177 break;
4178 }
4179
4180 if (spaces == 0)
4181 obstack_free (&dont_print_type_obstack, NULL);
4182 }
4183 \f
4184 /* Trivial helpers for the libiberty hash table, for mapping one
4185 type to another. */
4186
4187 struct type_pair
4188 {
4189 struct type *old, *new;
4190 };
4191
4192 static hashval_t
4193 type_pair_hash (const void *item)
4194 {
4195 const struct type_pair *pair = item;
4196
4197 return htab_hash_pointer (pair->old);
4198 }
4199
4200 static int
4201 type_pair_eq (const void *item_lhs, const void *item_rhs)
4202 {
4203 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4204
4205 return lhs->old == rhs->old;
4206 }
4207
4208 /* Allocate the hash table used by copy_type_recursive to walk
4209 types without duplicates. We use OBJFILE's obstack, because
4210 OBJFILE is about to be deleted. */
4211
4212 htab_t
4213 create_copied_types_hash (struct objfile *objfile)
4214 {
4215 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4216 NULL, &objfile->objfile_obstack,
4217 hashtab_obstack_allocate,
4218 dummy_obstack_deallocate);
4219 }
4220
4221 /* Recursively copy (deep copy) TYPE, if it is associated with
4222 OBJFILE. Return a new type allocated using malloc, a saved type if
4223 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4224 not associated with OBJFILE. */
4225
4226 struct type *
4227 copy_type_recursive (struct objfile *objfile,
4228 struct type *type,
4229 htab_t copied_types)
4230 {
4231 struct type_pair *stored, pair;
4232 void **slot;
4233 struct type *new_type;
4234
4235 if (! TYPE_OBJFILE_OWNED (type))
4236 return type;
4237
4238 /* This type shouldn't be pointing to any types in other objfiles;
4239 if it did, the type might disappear unexpectedly. */
4240 gdb_assert (TYPE_OBJFILE (type) == objfile);
4241
4242 pair.old = type;
4243 slot = htab_find_slot (copied_types, &pair, INSERT);
4244 if (*slot != NULL)
4245 return ((struct type_pair *) *slot)->new;
4246
4247 new_type = alloc_type_arch (get_type_arch (type));
4248
4249 /* We must add the new type to the hash table immediately, in case
4250 we encounter this type again during a recursive call below. */
4251 stored
4252 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4253 stored->old = type;
4254 stored->new = new_type;
4255 *slot = stored;
4256
4257 /* Copy the common fields of types. For the main type, we simply
4258 copy the entire thing and then update specific fields as needed. */
4259 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4260 TYPE_OBJFILE_OWNED (new_type) = 0;
4261 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4262
4263 if (TYPE_NAME (type))
4264 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4265 if (TYPE_TAG_NAME (type))
4266 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4267
4268 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4269 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4270
4271 /* Copy the fields. */
4272 if (TYPE_NFIELDS (type))
4273 {
4274 int i, nfields;
4275
4276 nfields = TYPE_NFIELDS (type);
4277 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4278 for (i = 0; i < nfields; i++)
4279 {
4280 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4281 TYPE_FIELD_ARTIFICIAL (type, i);
4282 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4283 if (TYPE_FIELD_TYPE (type, i))
4284 TYPE_FIELD_TYPE (new_type, i)
4285 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4286 copied_types);
4287 if (TYPE_FIELD_NAME (type, i))
4288 TYPE_FIELD_NAME (new_type, i) =
4289 xstrdup (TYPE_FIELD_NAME (type, i));
4290 switch (TYPE_FIELD_LOC_KIND (type, i))
4291 {
4292 case FIELD_LOC_KIND_BITPOS:
4293 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4294 TYPE_FIELD_BITPOS (type, i));
4295 break;
4296 case FIELD_LOC_KIND_ENUMVAL:
4297 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4298 TYPE_FIELD_ENUMVAL (type, i));
4299 break;
4300 case FIELD_LOC_KIND_PHYSADDR:
4301 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4302 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4303 break;
4304 case FIELD_LOC_KIND_PHYSNAME:
4305 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4306 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4307 i)));
4308 break;
4309 default:
4310 internal_error (__FILE__, __LINE__,
4311 _("Unexpected type field location kind: %d"),
4312 TYPE_FIELD_LOC_KIND (type, i));
4313 }
4314 }
4315 }
4316
4317 /* For range types, copy the bounds information. */
4318 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4319 {
4320 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4321 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4322 }
4323
4324 /* Copy the data location information. */
4325 if (TYPE_DATA_LOCATION (type) != NULL)
4326 {
4327 TYPE_DATA_LOCATION (new_type)
4328 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4329 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4330 sizeof (struct dynamic_prop));
4331 }
4332
4333 /* Copy pointers to other types. */
4334 if (TYPE_TARGET_TYPE (type))
4335 TYPE_TARGET_TYPE (new_type) =
4336 copy_type_recursive (objfile,
4337 TYPE_TARGET_TYPE (type),
4338 copied_types);
4339
4340 /* Maybe copy the type_specific bits.
4341
4342 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4343 base classes and methods. There's no fundamental reason why we
4344 can't, but at the moment it is not needed. */
4345
4346 switch (TYPE_SPECIFIC_FIELD (type))
4347 {
4348 case TYPE_SPECIFIC_NONE:
4349 break;
4350 case TYPE_SPECIFIC_FUNC:
4351 INIT_FUNC_SPECIFIC (new_type);
4352 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4353 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4354 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4355 break;
4356 case TYPE_SPECIFIC_FLOATFORMAT:
4357 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4358 break;
4359 case TYPE_SPECIFIC_CPLUS_STUFF:
4360 INIT_CPLUS_SPECIFIC (new_type);
4361 break;
4362 case TYPE_SPECIFIC_GNAT_STUFF:
4363 INIT_GNAT_SPECIFIC (new_type);
4364 break;
4365 case TYPE_SPECIFIC_SELF_TYPE:
4366 set_type_self_type (new_type,
4367 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4368 copied_types));
4369 break;
4370 default:
4371 gdb_assert_not_reached ("bad type_specific_kind");
4372 }
4373
4374 return new_type;
4375 }
4376
4377 /* Make a copy of the given TYPE, except that the pointer & reference
4378 types are not preserved.
4379
4380 This function assumes that the given type has an associated objfile.
4381 This objfile is used to allocate the new type. */
4382
4383 struct type *
4384 copy_type (const struct type *type)
4385 {
4386 struct type *new_type;
4387
4388 gdb_assert (TYPE_OBJFILE_OWNED (type));
4389
4390 new_type = alloc_type_copy (type);
4391 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4392 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4393 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4394 sizeof (struct main_type));
4395 if (TYPE_DATA_LOCATION (type) != NULL)
4396 {
4397 TYPE_DATA_LOCATION (new_type)
4398 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4399 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4400 sizeof (struct dynamic_prop));
4401 }
4402
4403 return new_type;
4404 }
4405 \f
4406 /* Helper functions to initialize architecture-specific types. */
4407
4408 /* Allocate a type structure associated with GDBARCH and set its
4409 CODE, LENGTH, and NAME fields. */
4410
4411 struct type *
4412 arch_type (struct gdbarch *gdbarch,
4413 enum type_code code, int length, char *name)
4414 {
4415 struct type *type;
4416
4417 type = alloc_type_arch (gdbarch);
4418 TYPE_CODE (type) = code;
4419 TYPE_LENGTH (type) = length;
4420
4421 if (name)
4422 TYPE_NAME (type) = xstrdup (name);
4423
4424 return type;
4425 }
4426
4427 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4428 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4429 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4430
4431 struct type *
4432 arch_integer_type (struct gdbarch *gdbarch,
4433 int bit, int unsigned_p, char *name)
4434 {
4435 struct type *t;
4436
4437 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4438 if (unsigned_p)
4439 TYPE_UNSIGNED (t) = 1;
4440 if (name && strcmp (name, "char") == 0)
4441 TYPE_NOSIGN (t) = 1;
4442
4443 return t;
4444 }
4445
4446 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4447 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4448 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4449
4450 struct type *
4451 arch_character_type (struct gdbarch *gdbarch,
4452 int bit, int unsigned_p, char *name)
4453 {
4454 struct type *t;
4455
4456 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4457 if (unsigned_p)
4458 TYPE_UNSIGNED (t) = 1;
4459
4460 return t;
4461 }
4462
4463 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4464 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4465 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4466
4467 struct type *
4468 arch_boolean_type (struct gdbarch *gdbarch,
4469 int bit, int unsigned_p, char *name)
4470 {
4471 struct type *t;
4472
4473 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4474 if (unsigned_p)
4475 TYPE_UNSIGNED (t) = 1;
4476
4477 return t;
4478 }
4479
4480 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4481 BIT is the type size in bits; if BIT equals -1, the size is
4482 determined by the floatformat. NAME is the type name. Set the
4483 TYPE_FLOATFORMAT from FLOATFORMATS. */
4484
4485 struct type *
4486 arch_float_type (struct gdbarch *gdbarch,
4487 int bit, char *name, const struct floatformat **floatformats)
4488 {
4489 struct type *t;
4490
4491 if (bit == -1)
4492 {
4493 gdb_assert (floatformats != NULL);
4494 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4495 bit = floatformats[0]->totalsize;
4496 }
4497 gdb_assert (bit >= 0);
4498
4499 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4500 TYPE_FLOATFORMAT (t) = floatformats;
4501 return t;
4502 }
4503
4504 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4505 NAME is the type name. TARGET_TYPE is the component float type. */
4506
4507 struct type *
4508 arch_complex_type (struct gdbarch *gdbarch,
4509 char *name, struct type *target_type)
4510 {
4511 struct type *t;
4512
4513 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4514 2 * TYPE_LENGTH (target_type), name);
4515 TYPE_TARGET_TYPE (t) = target_type;
4516 return t;
4517 }
4518
4519 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4520 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4521
4522 struct type *
4523 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4524 {
4525 int nfields = length * TARGET_CHAR_BIT;
4526 struct type *type;
4527
4528 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4529 TYPE_UNSIGNED (type) = 1;
4530 TYPE_NFIELDS (type) = nfields;
4531 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4532
4533 return type;
4534 }
4535
4536 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4537 position BITPOS is called NAME. */
4538
4539 void
4540 append_flags_type_flag (struct type *type, int bitpos, char *name)
4541 {
4542 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4543 gdb_assert (bitpos < TYPE_NFIELDS (type));
4544 gdb_assert (bitpos >= 0);
4545
4546 if (name)
4547 {
4548 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4549 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4550 }
4551 else
4552 {
4553 /* Don't show this field to the user. */
4554 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4555 }
4556 }
4557
4558 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4559 specified by CODE) associated with GDBARCH. NAME is the type name. */
4560
4561 struct type *
4562 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4563 {
4564 struct type *t;
4565
4566 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4567 t = arch_type (gdbarch, code, 0, NULL);
4568 TYPE_TAG_NAME (t) = name;
4569 INIT_CPLUS_SPECIFIC (t);
4570 return t;
4571 }
4572
4573 /* Add new field with name NAME and type FIELD to composite type T.
4574 Do not set the field's position or adjust the type's length;
4575 the caller should do so. Return the new field. */
4576
4577 struct field *
4578 append_composite_type_field_raw (struct type *t, char *name,
4579 struct type *field)
4580 {
4581 struct field *f;
4582
4583 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4584 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4585 sizeof (struct field) * TYPE_NFIELDS (t));
4586 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4587 memset (f, 0, sizeof f[0]);
4588 FIELD_TYPE (f[0]) = field;
4589 FIELD_NAME (f[0]) = name;
4590 return f;
4591 }
4592
4593 /* Add new field with name NAME and type FIELD to composite type T.
4594 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4595
4596 void
4597 append_composite_type_field_aligned (struct type *t, char *name,
4598 struct type *field, int alignment)
4599 {
4600 struct field *f = append_composite_type_field_raw (t, name, field);
4601
4602 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4603 {
4604 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4605 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4606 }
4607 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4608 {
4609 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4610 if (TYPE_NFIELDS (t) > 1)
4611 {
4612 SET_FIELD_BITPOS (f[0],
4613 (FIELD_BITPOS (f[-1])
4614 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4615 * TARGET_CHAR_BIT)));
4616
4617 if (alignment)
4618 {
4619 int left;
4620
4621 alignment *= TARGET_CHAR_BIT;
4622 left = FIELD_BITPOS (f[0]) % alignment;
4623
4624 if (left)
4625 {
4626 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4627 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4628 }
4629 }
4630 }
4631 }
4632 }
4633
4634 /* Add new field with name NAME and type FIELD to composite type T. */
4635
4636 void
4637 append_composite_type_field (struct type *t, char *name,
4638 struct type *field)
4639 {
4640 append_composite_type_field_aligned (t, name, field, 0);
4641 }
4642
4643 static struct gdbarch_data *gdbtypes_data;
4644
4645 const struct builtin_type *
4646 builtin_type (struct gdbarch *gdbarch)
4647 {
4648 return gdbarch_data (gdbarch, gdbtypes_data);
4649 }
4650
4651 static void *
4652 gdbtypes_post_init (struct gdbarch *gdbarch)
4653 {
4654 struct builtin_type *builtin_type
4655 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4656
4657 /* Basic types. */
4658 builtin_type->builtin_void
4659 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4660 builtin_type->builtin_char
4661 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4662 !gdbarch_char_signed (gdbarch), "char");
4663 builtin_type->builtin_signed_char
4664 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4665 0, "signed char");
4666 builtin_type->builtin_unsigned_char
4667 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4668 1, "unsigned char");
4669 builtin_type->builtin_short
4670 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4671 0, "short");
4672 builtin_type->builtin_unsigned_short
4673 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4674 1, "unsigned short");
4675 builtin_type->builtin_int
4676 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4677 0, "int");
4678 builtin_type->builtin_unsigned_int
4679 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4680 1, "unsigned int");
4681 builtin_type->builtin_long
4682 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4683 0, "long");
4684 builtin_type->builtin_unsigned_long
4685 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4686 1, "unsigned long");
4687 builtin_type->builtin_long_long
4688 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4689 0, "long long");
4690 builtin_type->builtin_unsigned_long_long
4691 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4692 1, "unsigned long long");
4693 builtin_type->builtin_float
4694 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4695 "float", gdbarch_float_format (gdbarch));
4696 builtin_type->builtin_double
4697 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4698 "double", gdbarch_double_format (gdbarch));
4699 builtin_type->builtin_long_double
4700 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4701 "long double", gdbarch_long_double_format (gdbarch));
4702 builtin_type->builtin_complex
4703 = arch_complex_type (gdbarch, "complex",
4704 builtin_type->builtin_float);
4705 builtin_type->builtin_double_complex
4706 = arch_complex_type (gdbarch, "double complex",
4707 builtin_type->builtin_double);
4708 builtin_type->builtin_string
4709 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4710 builtin_type->builtin_bool
4711 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4712
4713 /* The following three are about decimal floating point types, which
4714 are 32-bits, 64-bits and 128-bits respectively. */
4715 builtin_type->builtin_decfloat
4716 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4717 builtin_type->builtin_decdouble
4718 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4719 builtin_type->builtin_declong
4720 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4721
4722 /* "True" character types. */
4723 builtin_type->builtin_true_char
4724 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4725 builtin_type->builtin_true_unsigned_char
4726 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4727
4728 /* Fixed-size integer types. */
4729 builtin_type->builtin_int0
4730 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4731 builtin_type->builtin_int8
4732 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4733 builtin_type->builtin_uint8
4734 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4735 builtin_type->builtin_int16
4736 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4737 builtin_type->builtin_uint16
4738 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4739 builtin_type->builtin_int32
4740 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4741 builtin_type->builtin_uint32
4742 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4743 builtin_type->builtin_int64
4744 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4745 builtin_type->builtin_uint64
4746 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4747 builtin_type->builtin_int128
4748 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4749 builtin_type->builtin_uint128
4750 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4751 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4752 TYPE_INSTANCE_FLAG_NOTTEXT;
4753 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4754 TYPE_INSTANCE_FLAG_NOTTEXT;
4755
4756 /* Wide character types. */
4757 builtin_type->builtin_char16
4758 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4759 builtin_type->builtin_char32
4760 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4761
4762
4763 /* Default data/code pointer types. */
4764 builtin_type->builtin_data_ptr
4765 = lookup_pointer_type (builtin_type->builtin_void);
4766 builtin_type->builtin_func_ptr
4767 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4768 builtin_type->builtin_func_func
4769 = lookup_function_type (builtin_type->builtin_func_ptr);
4770
4771 /* This type represents a GDB internal function. */
4772 builtin_type->internal_fn
4773 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4774 "<internal function>");
4775
4776 /* This type represents an xmethod. */
4777 builtin_type->xmethod
4778 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4779
4780 return builtin_type;
4781 }
4782
4783 /* This set of objfile-based types is intended to be used by symbol
4784 readers as basic types. */
4785
4786 static const struct objfile_data *objfile_type_data;
4787
4788 const struct objfile_type *
4789 objfile_type (struct objfile *objfile)
4790 {
4791 struct gdbarch *gdbarch;
4792 struct objfile_type *objfile_type
4793 = objfile_data (objfile, objfile_type_data);
4794
4795 if (objfile_type)
4796 return objfile_type;
4797
4798 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4799 1, struct objfile_type);
4800
4801 /* Use the objfile architecture to determine basic type properties. */
4802 gdbarch = get_objfile_arch (objfile);
4803
4804 /* Basic types. */
4805 objfile_type->builtin_void
4806 = init_type (TYPE_CODE_VOID, 1,
4807 0,
4808 "void", objfile);
4809
4810 objfile_type->builtin_char
4811 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4812 (TYPE_FLAG_NOSIGN
4813 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4814 "char", objfile);
4815 objfile_type->builtin_signed_char
4816 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4817 0,
4818 "signed char", objfile);
4819 objfile_type->builtin_unsigned_char
4820 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4821 TYPE_FLAG_UNSIGNED,
4822 "unsigned char", objfile);
4823 objfile_type->builtin_short
4824 = init_type (TYPE_CODE_INT,
4825 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4826 0, "short", objfile);
4827 objfile_type->builtin_unsigned_short
4828 = init_type (TYPE_CODE_INT,
4829 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4830 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4831 objfile_type->builtin_int
4832 = init_type (TYPE_CODE_INT,
4833 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4834 0, "int", objfile);
4835 objfile_type->builtin_unsigned_int
4836 = init_type (TYPE_CODE_INT,
4837 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4838 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4839 objfile_type->builtin_long
4840 = init_type (TYPE_CODE_INT,
4841 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4842 0, "long", objfile);
4843 objfile_type->builtin_unsigned_long
4844 = init_type (TYPE_CODE_INT,
4845 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4846 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4847 objfile_type->builtin_long_long
4848 = init_type (TYPE_CODE_INT,
4849 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4850 0, "long long", objfile);
4851 objfile_type->builtin_unsigned_long_long
4852 = init_type (TYPE_CODE_INT,
4853 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4854 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4855
4856 objfile_type->builtin_float
4857 = init_type (TYPE_CODE_FLT,
4858 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4859 0, "float", objfile);
4860 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4861 = gdbarch_float_format (gdbarch);
4862 objfile_type->builtin_double
4863 = init_type (TYPE_CODE_FLT,
4864 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4865 0, "double", objfile);
4866 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4867 = gdbarch_double_format (gdbarch);
4868 objfile_type->builtin_long_double
4869 = init_type (TYPE_CODE_FLT,
4870 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4871 0, "long double", objfile);
4872 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4873 = gdbarch_long_double_format (gdbarch);
4874
4875 /* This type represents a type that was unrecognized in symbol read-in. */
4876 objfile_type->builtin_error
4877 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4878
4879 /* The following set of types is used for symbols with no
4880 debug information. */
4881 objfile_type->nodebug_text_symbol
4882 = init_type (TYPE_CODE_FUNC, 1, 0,
4883 "<text variable, no debug info>", objfile);
4884 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4885 = objfile_type->builtin_int;
4886 objfile_type->nodebug_text_gnu_ifunc_symbol
4887 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4888 "<text gnu-indirect-function variable, no debug info>",
4889 objfile);
4890 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4891 = objfile_type->nodebug_text_symbol;
4892 objfile_type->nodebug_got_plt_symbol
4893 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4894 "<text from jump slot in .got.plt, no debug info>",
4895 objfile);
4896 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4897 = objfile_type->nodebug_text_symbol;
4898 objfile_type->nodebug_data_symbol
4899 = init_type (TYPE_CODE_INT,
4900 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4901 "<data variable, no debug info>", objfile);
4902 objfile_type->nodebug_unknown_symbol
4903 = init_type (TYPE_CODE_INT, 1, 0,
4904 "<variable (not text or data), no debug info>", objfile);
4905 objfile_type->nodebug_tls_symbol
4906 = init_type (TYPE_CODE_INT,
4907 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4908 "<thread local variable, no debug info>", objfile);
4909
4910 /* NOTE: on some targets, addresses and pointers are not necessarily
4911 the same.
4912
4913 The upshot is:
4914 - gdb's `struct type' always describes the target's
4915 representation.
4916 - gdb's `struct value' objects should always hold values in
4917 target form.
4918 - gdb's CORE_ADDR values are addresses in the unified virtual
4919 address space that the assembler and linker work with. Thus,
4920 since target_read_memory takes a CORE_ADDR as an argument, it
4921 can access any memory on the target, even if the processor has
4922 separate code and data address spaces.
4923
4924 In this context, objfile_type->builtin_core_addr is a bit odd:
4925 it's a target type for a value the target will never see. It's
4926 only used to hold the values of (typeless) linker symbols, which
4927 are indeed in the unified virtual address space. */
4928
4929 objfile_type->builtin_core_addr
4930 = init_type (TYPE_CODE_INT,
4931 gdbarch_addr_bit (gdbarch) / 8,
4932 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4933
4934 set_objfile_data (objfile, objfile_type_data, objfile_type);
4935 return objfile_type;
4936 }
4937
4938 extern initialize_file_ftype _initialize_gdbtypes;
4939
4940 void
4941 _initialize_gdbtypes (void)
4942 {
4943 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4944 objfile_type_data = register_objfile_data ();
4945
4946 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4947 _("Set debugging of C++ overloading."),
4948 _("Show debugging of C++ overloading."),
4949 _("When enabled, ranking of the "
4950 "functions is displayed."),
4951 NULL,
4952 show_overload_debug,
4953 &setdebuglist, &showdebuglist);
4954
4955 /* Add user knob for controlling resolution of opaque types. */
4956 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4957 &opaque_type_resolution,
4958 _("Set resolution of opaque struct/class/union"
4959 " types (if set before loading symbols)."),
4960 _("Show resolution of opaque struct/class/union"
4961 " types (if set before loading symbols)."),
4962 NULL, NULL,
4963 show_opaque_type_resolution,
4964 &setlist, &showlist);
4965
4966 /* Add an option to permit non-strict type checking. */
4967 add_setshow_boolean_cmd ("type", class_support,
4968 &strict_type_checking,
4969 _("Set strict type checking."),
4970 _("Show strict type checking."),
4971 NULL, NULL,
4972 show_strict_type_checking,
4973 &setchecklist, &showchecklist);
4974 }
This page took 0.140027 seconds and 4 git commands to generate.